WO2015156066A1 - 耐食性に優れたニッケルろう材 - Google Patents

耐食性に優れたニッケルろう材 Download PDF

Info

Publication number
WO2015156066A1
WO2015156066A1 PCT/JP2015/056779 JP2015056779W WO2015156066A1 WO 2015156066 A1 WO2015156066 A1 WO 2015156066A1 JP 2015056779 W JP2015056779 W JP 2015056779W WO 2015156066 A1 WO2015156066 A1 WO 2015156066A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
less
brazing
corrosion resistance
content
Prior art date
Application number
PCT/JP2015/056779
Other languages
English (en)
French (fr)
Inventor
幸隆 濱田
信一 西村
Original Assignee
福田金属箔粉工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54287646&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015156066(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 福田金属箔粉工業株式会社 filed Critical 福田金属箔粉工業株式会社
Priority to JP2015537469A priority Critical patent/JP5858512B1/ja
Priority to US14/782,820 priority patent/US9486882B2/en
Priority to KR1020157025851A priority patent/KR101651400B1/ko
Priority to EP15777551.1A priority patent/EP3009223B1/en
Priority to ES15777551.1T priority patent/ES2640125T3/es
Priority to CN201580000285.1A priority patent/CN105189030B/zh
Publication of WO2015156066A1 publication Critical patent/WO2015156066A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/002Alloys based on nickel or cobalt with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • B22F2007/047Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method non-pressurised baking of the paste or slurry containing metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing

Definitions

  • the present invention relates to a brazing material that is used for heat exchangers such as general-purpose heat exchangers, water heaters, EGR coolers, and waste heat recovery devices, and is suitable for joining various stainless steel members.
  • the present invention relates to a nickel brazing material having a low melting temperature and excellent corrosion resistance as compared with other nickel brazing materials.
  • BNi2, BNi5, and BNi7 defined in the above.
  • BNi5 has a high melting temperature
  • brazing is performed at a high temperature of 1200 ° C. or higher, so the heat effect on the stainless steel substrate is large.
  • BNi2 contains B, so the grains of the brazed stainless steel substrate Bonding when brazing due to the penetration of B into the field and lowering the strength of the base material, low Cr content and poor corrosion resistance and heat resistance, and BNi7 has a low melting temperature but low material strength There is a problem that the strength is low.
  • Patent Documents 1 to 6 have been proposed in recent years.
  • the brazing materials described in Patent Documents 1 to 4 below all contain Ni as a main component and contain Cr, Si, P, and the like. These have sufficient bonding strength, but the melting temperature is low. It is a brazing material having a high melting point exceeding 1000 ° C. or a brazing material that does not have sufficient corrosion resistance.
  • Patent Documents 5 to 6 described below a brazing material having a melting temperature of 1000 ° C. or lower is described. However, the material strength and corrosion resistance are not sufficient, or the strength of the base material is affected by B There was a problem of containing.
  • An object of the present invention is to solve the above-mentioned problems in the prior art, and to provide a nickel brazing material having a lower brazing temperature and having an appropriate material strength and excellent corrosion resistance.
  • the following targets are set and all of them are set. Satisfied. (Target value) (1) Melting temperature [liquidus temperature] ⁇ 1000 ° C or less (2) Material strength [bending strength] ⁇ 600 N / mm 2 or more (3) Corrosion resistance [Corrosion loss with sulfuric acid] ⁇ 0.50 mg / m 2 s or less
  • the alloy of the present invention (nickel brazing filler metal) satisfying all the above target values has a melting temperature of 1000 ° C. or less, and has corrosion resistance against acid, and its composition is Cr of 15.0 to 30.0. Wt%, Cu 6.0-18.0 wt%, Mo 1.0-5.0 wt%, P 5.0-7.0 wt%, Si 3.0-5.0 wt% And the balance is made of Ni and inevitable impurities, and the total of Si and P is 9.5 to 11.0% by mass.
  • the inevitable impurities are impurities that are inevitably mixed in the manufacturing process of each raw material, although not intentionally added. Examples of such impurities include Mg, S, O, and N. , V, Zr, etc., and the sum of these is usually 0.3% by mass or less and does not affect the function of the present invention.
  • the nickel brazing material of the present invention is characterized in that the nickel brazing material having the above characteristics contains 0.1 to 1.5% by mass of Sn.
  • the nickel brazing material of the present invention is selected from the group consisting of Co, Fe, Mn, C, B, Al and Ti as an element which does not adversely affect the characteristics in the nickel brazing material having the above characteristics.
  • the Co content is 5.0 mass% or less
  • the Fe content is 5.0 mass% or less
  • the Mn content is 3.0 mass% or less
  • C The total content of B, Al, Ti is 0.5 mass% or less
  • the total content of Co, Fe, Mn, C, B, Al, Ti is 10.0 mass% or less. is there.
  • the Cr dissolves in the Ni solid solution to improve the heat resistance / corrosion resistance and material strength of the alloy and contribute to the adjustment of the melting temperature.
  • the content is less than 15.0% by mass, a sufficient effect is obtained. Absent.
  • the Cr content is set in the range of 15.0 to 30.0% by mass.
  • the Cu dissolves in the Ni solid solution and contributes to lowering the melting temperature and improves the corrosion resistance. However, if it is less than 6.0% by mass, its effect is insufficient, and if it exceeds 18.0% by mass, it melts. In addition to an increase in temperature and a decrease in material strength, the Cu content was set in the range of 6.0 to 18.0% by mass.
  • Mo dissolves in the Ni solid solution and contributes to lowering the melting temperature and improves the corrosion resistance. However, if it is less than 1.0% by mass, its effect is insufficient, and if it exceeds 5.0% by mass, it melts. Since the temperature rises, the Mo content is set in the range of 1.0 to 5.0% by mass.
  • P has the effect of lowering the melting point of the alloy due to the eutectic reaction with Ni, and improves the fluidity and improves the wetting and spreading to the stainless steel base material, but the effect is less than 5.0% by mass. I can't fully demonstrate it. On the other hand, if it exceeds 7.0% by mass, the material strength is greatly reduced, and a satisfactory bonding strength cannot be obtained. Therefore, the P content is set in the range of 5.0 to 7.0% by mass.
  • Si has the effect of lowering the melting point of the alloy by eutectic reaction with Ni in the same manner as P, and also exhibits the flux action to improve the workability of brazing.
  • Si is less than 3.0% by mass, If the effect is not exhibited and the amount exceeds 5.0% by mass, an intermetallic compound with Ni or Cr is excessively formed, and the material strength is lowered. Therefore, the Si content is set in the range of 3.0 to 5.0% by mass.
  • the total of Si + P is set in the range of 9.5 to 11.0% by mass.
  • Sn improves the fluidity of the molten brazing material during brazing and improves the wettability to the stainless steel base material. However, if the Sn content is less than 0.1% by mass, the effect is insufficient. If the Sn content exceeds 1.5% by mass, a large amount of a compound with Cu is formed to increase the melting temperature and decrease the material strength and corrosion resistance. cause. Therefore, the Sn content is set in the range of 0.1 to 1.5% by mass.
  • Co is 5.0% by mass or less
  • Fe is 5.0% by mass or less
  • Mn is 3.0% by mass or less
  • C, B elements that do not adversely affect the characteristics.
  • Al and Ti can be contained in a total amount of 0.5% by mass or less, but in order to satisfy the target corrosion resistance, material strength and melting temperature set values, Co, Fe, Mn, C, B
  • the upper limit of the total of Al, Ti was set to 10.0% by mass. In the present invention, the upper limit of the total is particularly preferably 4.0% by mass or less.
  • Ni content in the nickel brazing material of the present invention is 35% by mass or more, and preferably 39% by mass or more.
  • the nickel brazing material of the present invention has the following characteristics, it is effective in application to a stainless steel heat exchanger used for evaporating, condensing, and supplying hot water. (1) Since the liquidus temperature is 1000 ° C. or less, the heat treatment (brazing) temperature can be set low. (2) Since the material strength of the brazing alloy itself is high, an appropriate bonding strength can be obtained in brazing. (3) Excellent corrosion resistance in sulfuric acid and nitric acid environments.
  • the nickel brazing material of the present invention is prepared by adjusting and blending Ni as a base and additive components Cr, Cu, Mo, P, and Si to a predetermined mass%, and adding Sn, Co, Fe, Mn, etc. as necessary. After a predetermined amount of metal is completely melted in the crucible of the melting furnace, the molten alloy is powdered by an atomizing method or a melt pulverization method, or cast into a predetermined mold to obtain a rod shape or a plate shape be able to.
  • a method of installing the brazing material of the present invention on a stainless steel substrate is sprinkled with a binder and powder on the substrate surface (spreading) ), A method of applying a paste in which a binder and powder are mixed, a method of processing and installing into a sheet or foil, a method of spraying and installing powder, and the like.
  • the alloy of the example of the present invention prepared as described above and the comparative example alloy were melted, and the liquidus temperature measurement, the bending strength measurement, the corrosion weight loss measurement in sulfuric acid and the brazing test were performed by the following methods. went.
  • Liquidus temperature measurement 100 g of ingot having a composition composition of each alloy is melted by heating to about 1500 ° C. in an argon stream using an electric furnace, and then naturally cooled in the furnace. The melting point temperature was measured by a thermal analysis method in which the temperature of the solution was continuously measured. That is, a thermal analysis curve was drawn on a recorder connected to a thermocouple inserted in the center of the melt, and the liquidus temperature was read from the cooling curve.
  • Example alloys were melted in an electric furnace in an argon gas atmosphere, and the molten metal was cast into a graphite mold to obtain a 5 mm ⁇ rod-shaped cast piece, which weighed about 0.5 g.
  • a brazing filler metal sample was cut.
  • a brazing filler metal sample was placed on a SUS304 stainless steel base material and brazed heat treatment (hereinafter referred to as brazing) in a vacuum of 10 ⁇ 4 to 10 ⁇ 3 torr at 1030 ° C. for 30 minutes. It was called). After brazing, as shown in FIG.
  • the comparative alloy having a melting temperature of 1000 ° C. or higher cannot be comparatively evaluated because it does not melt under the same conditions, and the comparative alloy having a melting temperature of 1000 ° C. or lower is an example in terms of bending strength and corrosion resistance.
  • a brazing test was not performed because it was found to be inferior to the alloy. Therefore, Tables 2 and 3 do not describe the 1030 ° C. brazing spread coefficient, W.
  • Table 1 shows examples of the present invention, and Tables 2 and 3 show comparative examples.
  • Examples 1 to 15 are examples of the present invention, and their liquidus temperatures are all 1000 ° C. or lower. Further, the bending strengths are all 600 N / mm 2 or more, and it can be seen that the example alloys of the present invention have good material strength.
  • the corrosion weight loss under the test conditions is 0.50 mg / m 2 ⁇ s or less, and it can be seen that the example alloys of the present invention have good corrosion resistance against sulfuric acid.
  • (a) to (l) are brazing materials having compositions out of the range of the alloy of the present invention, and at least one of liquidus temperature, bending strength, and sulfuric acid resistance characteristics.
  • the characteristic does not meet the target value. Specifically, (a) shows the Cr amount exceeding the upper limit of the claimed range, (b) and (c) shows the Cu amount outside the claimed range, and (d) shows the Mo amount being the upper limit of the claimed range.
  • the liquidus temperature is higher than 1000 ° C.
  • (E) to (h) are those in which the amount of P, Si or P + Si is outside the claimed range, the liquidus temperature is higher than 1000 ° C., or the material strength (bending strength) is Inferior.
  • the content of other additive elements exceeds the upper limit of the claims, and none of them satisfies at least one target characteristic.
  • (A), (B), and (C) of comparative brazing materials shown in Table 3 are Ni-based brazing alloy compositions defined in conventional JIS and WS standards. Comparative brazing materials (D) to (P) are described in “Patent No. 3168158”, “JP 2009-202198 A”, “JP 2010-269347 A”, “WO 2012/035829”, “JP 2007”. -75867 "and” JP-A 2011-110575 ", respectively. None of these brazing materials shown in Table 3 satisfy at least one of the target values of liquidus temperature, bending strength, and corrosion resistance against sulfuric acid.
  • example alloys of the present invention show good wettability to various stainless steel base materials, and the brazing atmosphere is not only vacuum, but also in a reducing hydrogen atmosphere or an inert argon atmosphere. Indicates.
  • the nickel brazing material of the present invention has a melting temperature of 1000 ° C. or less, the brazing material itself has high material strength, and exhibits good corrosion resistance against acids such as sulfuric acid. It is suitable for joining (brazing) to members and can be widely used not only for refrigerant evaporation / condenser / hot water supply, but also for heat exchangers related to the environment and energy.

Abstract

 各種ステンレス鋼の部材を比較的低い温度でろう付接合でき、適度な材料強度と優れた耐食性を備えた熱交換器等のろう付に用いられるニッケルろう材を提供する。 1000℃以下の溶融温度を有し、かつ、酸に対する耐食性を備え、Crを15.0~30.0質量%、Cuを6.0~18.0質量%、Moを1.0~5.0質量%、Pを5.0~7.0質量%、Siを3.0~5.0質量%、Snを0.1~1.5質量%含み、残部がNiおよび不可避不純物からなり、SiとPの合計が9.5質量%~11.0質量%である。これに加えて、Co、Fe、Mn、C、B、AlおよびTiからなる群より選択される1種以上の元素を含有してもよく、この際、Coの含有量は5.0質量%以下、Feの含有量は5.0質量%以下、Mnの含有量は3.0質量%以下、C、B、Al、Tiの合計含有量は0.5質量%以下で、これら元素の合計含有量は10.0質量%以下である。

Description

耐食性に優れたニッケルろう材
 本発明は、汎用の熱交換器や給湯器、EGR Cooler、廃熱回収装置などの熱交換器用途に用いられ、各種ステンレス鋼の部材を接合するのに適したろう材に関するものであり、特に汎用のニッケルろう材と比較して低い溶融温度を有する耐食性に優れたニッケルろう材に関するものである。
 従来より、冷媒の蒸発・凝縮器あるいはEGR Coolerや給湯用途などに使用されるステンレス製熱交換器のろう付には、銅ろう付が幅広く適用されている。しかし近年の熱交換器は高効率化が要求され、高温環境となって銅ろうによるろう付では耐久性が満足できなくなっている。
 そこで、銅ろうより耐食性および耐酸化性に優れたニッケルろう材への置き換えが検討されており、ステンレス製熱交換器の接合に使用するニッケルろう材には、JIS Z 3265:1998「ニッケルろう」に規定されたBNi2、BNi5、BNi7が挙げられる。
 しかし、BNi5は溶融温度が高いため、ろう付は1200℃以上の高温で行われるためステンレス基材への熱影響が大きい、BNi2はBを含有しているためろう付したステンレス鋼基材の粒界内にBが進入して基材の強度が低下する他、Cr含有量が少なく耐食性や耐熱性が悪い、又、BNi7は低い溶融温度を有するが材料強度が低いためろう付した場合の接合強度が低い、という問題がある。
 そこで、このような問題を解決するために、近年、例えば下記の特許文献1~6に記載されるような新しいろう材が提案されている。
 下記の特許文献1~4に記載されたろう材は、いずれもNiを主成分としてCrやSi、P等を含有するものであり、これらは十分な接合強度を有しているが、溶融温度が1000℃を超える高融点のろう材であるか、もしくは十分な耐食性を有していないろう材である。また、下記の特許文献5~6の実施例には、溶融温度が1000℃以下のろう材が記載されているが、材料強度や耐食性が十分でなかったり、基材の強度に影響を及ぼすBが含有されているという問題点があった。
 このように、今日まで使用環境に応じて使い分けされているJIS Z 3265:1998「ニッケルろう」に規定の汎用ろう材や、特許文献1~6記載のニッケルろう材には上述の問題点があり、耐熱性・耐食性と適度な材料強度を備え、且つ比較的低い温度でろう付が可能な全ての特性を兼ね備えたニッケルろう材は提案されていないのが現状である。
特許第3168158号公報 特開2009-202198号公報 特開2010-269347号公報 WO2012/035829 特開2007-75867号公報 特開2011-110575号公報
 冷媒の蒸発・凝縮器あるいはEGR Coolerや給湯用途などに使用されるステンレス製熱交換器のろう付には、耐熱性・耐食性と接合強度および比較的低いろう付温度を有するニッケルろう材が要求されており、これら全ての特性を満足するニッケルろう材の開発が課題となっている。
 本発明は、従来技術における上記の問題点を解決し、更に低いろう付温度を有し、かつ、適度な材料強度と優れた耐食性を備えたニッケルろう材を提供することを課題とする。
 本発明では、低いろう付温度を有し、かつ、適度な材料強度と優れた耐食性を備えたニッケルろう材の開発を行うための合金組成の検討にあたり、下記の目標を設定してこれを全て満足することを条件とした。
(目標値)
 (1)溶融温度〔液相線温度〕    → 1000℃以下
 (2)材料強度〔抗折力〕      → 600N/mm以上
 (3)耐食性 〔硫酸での腐食減量〕 → 0.50mg/m・s以下
 上記の目標値を全て満足する本発明の合金(ニッケルろう材)は、溶融温度が1000℃以下で、しかも、酸に対する耐食性を備えており、その組成が、Crを15.0~30.0質量%、Cuを6.0~18.0質量%、Moを1.0~5.0質量%、Pを5.0~7.0質量%、Siを3.0~5.0質量%含み、残部がNiおよび不可避不純物からなり、SiとPの合計が9.5~11.0質量%であることを特徴とする。
 ここで、不可避不純物とは、意図的に添加していないのに、各原料の製造工程等で不可避的に混入する不純物のことであり、このような不純物としては、Mg、S、O、N、V、Zrなどが挙げられ、これらの総和は通常0.3質量%以下であり、本発明の作用に影響を及ぼす程ではない。
 又、本発明のニッケルろう材は、上記の特徴を有するニッケルろう材において、Snを0.1~1.5質量%含有することを特徴とするものでもある。
 又、本発明のニッケルろう材は、上記の特徴を有するニッケルろう材において、さらに、特性に悪影響を及ぼさない元素として、Co、Fe、Mn、C、B、AlおよびTiからなる群より選択される1種以上の元素を含有し、かつ、Coの含有量が5.0質量%以下、Feの含有量が5.0質量%以下、Mnの含有量が3.0質量%以下、C、B、Al、Tiの合計含有量が0.5質量%以下、Co、Fe、Mn、C、B、Al、Tiの合計含有量が10.0質量%以下であることを特徴とするものでもある。
 本発明において、各成分範囲を前記のごとく限定した理由を以下に述べる。
 Crは、Ni固溶体に固溶して、合金の耐熱性・耐食性や材料強度を向上させ、さらに溶融温度の調整に寄与するが、含有量が15.0質量%未満では十分な効果が得られない。また、30.0質量%を超えると溶融温度が上昇する他、ろう付過程で基材へのぬれや広がりが低下して、ろう付作業性が低下する。このため、Crの含有量は15.0~30.0質量%の範囲に定めた。
 Cuは、Ni固溶体に固溶して、溶融温度の低下に寄与する他、耐食性を向上させるが、6.0質量%未満ではその効果が不十分であり、18.0質量%を超えると溶融温度が上昇する他、材料強度が低下するため、Cuの含有量は6.0~18.0質量%の範囲に定めた。
 Moは、Ni固溶体に固溶して、溶融温度の低下に寄与する他、耐食性を向上させるが、1.0質量%未満ではその効果が不十分であり、5.0質量%を超えると溶融温度が上昇するため、Moの含有量は1.0~5.0質量%の範囲に定めた。
 Pは、Niとの共晶反応により、合金の融点を低下させる効果があり、また流動性が向上してステンレス母材へのぬれや拡がりを良くするが、5.0質量%未満では効果が十分には発揮できない。また、7.0質量%を超えると材料強度が大きく低下して満足する接合強度が得られない。したがって、Pの含有量は5.0~7.0質量%の範囲に定めた。
 Siは、Pと同様にNiとの共晶反応で合金の融点を低下させる効果がある他、フラックス作用を発揮してろう付作業性を改善するが、Siが3.0質量%未満ではその効果が発揮されず、5.0質量%を超えるとNiやCrとの金属間化合物が過剰に形成されて、材料強度が低下する。したがって、Siの含有量は3.0~5.0質量%の範囲に定めた。
 さらに、SiとPは、その合計が9.5質量%以下であると融点低下の効果が十分に得られず、11.0質量%を超えると過共晶となって材料強度が大幅に低下する。このため、Si+Pの合計は9.5~11.0質量%の範囲に定めた。
 Snは、ろう付け時の溶融ろう材の流動性を向上させステンレス母材への濡れ性を良くさせる。ただしSnの含有量が0.1質量%未満ではその効果が不十分であり、1.5質量%を超えるとCuとの化合物を多量に形成して溶融温度の上昇や材料強度、耐食性の低下を引き起こす。したがって、Snの含有量は0.1~1.5質量%の範囲に定めた。
 また、本発明のニッケルろう材では、特性に悪い影響を及ぼさない元素として、Coを5.0質量%以下、Feを5.0質量%以下、Mnを3.0質量%以下、C、B、Al、Tiを合計で0.5質量%以下含有することができるが、目標とする耐食性や材料強度、溶融温度の設定値をいずれも満足するために、Co、Fe、Mn、C、B、Al、Tiの合計の上限を10.0質量%と定めた。本発明では、上記合計の上限は特に4.0質量%以下が好ましい。
 なお、本発明のニッケルろう材におけるNiの含有量は35質量%以上であり、好ましくは39質量%以上である。
 本発明のニッケルろう材は、以下の特徴を有しているので、冷媒の蒸発・凝縮器・給湯用途などに使用されるステンレス製熱交換器への適用において、効果を発揮するものである。
(1)液相線温度が1000℃以下であるため、熱処理(ろう付)温度を低く設定できる。
(2)ろう材合金自身の材料強度が高いため、ろう付において適度な接合強度が得られる。
(3)硫酸や硝酸環境における耐食性に優れている。
ろう材合金のろう付試験を説明するための模式図である。
 本発明のニッケルろう材は、ベースとなるNiと、添加成分のCr、Cu、Mo、P、Siを所定の質量%に調整・配合し、必要に応じてSn、Co、Fe、Mnなどを所定量添加した地金を、溶解炉のルツボ内で完全に溶解した後、溶融合金をアトマイズ法や溶融粉砕法により粉末とする、あるいは所定の型に鋳造して棒状や板状にして、得ることができる。
 特にアトマイズ法で製造した合金粉末では、目的の施工方法に適した粒度に調整した後、ステンレス鋼基材に本発明ろう材を設置する方法として、基材面にバインダと粉末をふりかけ塗布(散布)する方法、バインダと粉末を混合したペースト状にして塗布する方法、シート状あるいは箔状に加工して設置する方法、粉末を溶射して設置する方法など、種々の方法が自由に選択できる。
 上述のように調整・配合した本発明の実施例合金と比較例合金を溶製し、以下に示す方法で、液相線温度測定、抗折力測定、硫酸における腐食減量測定とろう付試験を行った。
(1)液相線温度測定:各合金の配合組成を有する100gの地金を、電気炉を用いアルゴン気流中で約1500℃まで加熱して溶解し、その後、炉内で自然冷却させながら合金の温度を連続的に測定する熱分析法により、融点温度を測定した。即ち、溶湯中央部に挿入した熱電対に連結する記録計に熱分析曲線を描かせ、その冷却曲線から液相線温度を読み取った。
(2)抗折力測定:上記(1)と同じ方法で地金を溶解し、その溶湯を石英ガラス管に鋳造した後、約φ5×35mmに機械加工して、試験片とした。次に、抗折力試験冶具(三点支持、支点間距離25.4mm(JIS Z 2511:2006「金属粉-抗折試験による圧粉体強さ測定方法に記載される冶具」))に試験片を設置し、万能試験機により荷重をかけて破断したときの荷重を測定し、試験片形状と破断荷重から合金の抗折力(N/mm)を算出した。
(3)硫酸における腐食減量測定:上記(1)と同じ方法で地金を溶解し、その溶湯をシェル鋳型内に鋳造した後、この鋳造片を約10×10×20mmに機械加工して、試験片とした。次に300ccビーカー内に1%硫酸水溶液を用意し、その中に試験片を入れて、全浸漬法による腐食試験を行った。試験条件は、試験温度80℃、試験時間6時間とした。そして、試験前後の単位面積、単位時間あたりの質量減少量を算出して腐食減量(mg/m・s)とし硫酸に対する耐食性を評価した。
評価の指標を以下に示す。
 「腐食減量≦0.50mg/m・s:○」
 「腐食減量>0.50mg/m・s:×」
(4)ろう付試験:実施例合金を電気炉内、アルゴンガス雰囲気中で溶解し、その溶湯を黒鉛型に鋳造して5mmφの棒状鋳造片を得、それを約0.5gの重量となるよう切断し、ろう材試料とした。次に、図1(a)に示すようにSUS304ステンレス鋼母材上にろう材試料を載せて1030℃で30分間、10-4~10-3torrの真空中でろう付熱処理(以下、ろう付という)を行った。ろう付後、図1(b)に示すようにろう材が溶けて拡がった面積Sを計測し、その面積Sをろう付前試料の断面積Soで割った数値、即ち、ろう拡がり係数W(=S/So)を求め、ろう材合金のSUS304ステンレス鋼母材に対するぬれ性の指標とした。
 尚、溶融温度1000℃以上の比較例合金は同一条件で溶融しないために比較評価を行うことができず、又、溶融温度1000℃以下の比較例合金は抗折力や耐食性の面で実施例合金より劣っていることが明らかになったので、ろう付試験は実施しなかった。よって、表2と表3には、1030℃ろう付け拡がり係数、Wを記載していない。
 表1に本発明の実施例を、表2、表3に比較例を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1に示している合金No.1~15が本発明の実施例であり、その液相線温度はすべて1000℃以下となっている。また、抗折力はいずれも600N/mm以上を示しており、本発明の実施例合金は材料強度が良好であることがわかる。
 さらに、硫酸耐食性については、試験条件中における腐食減量がいずれも0.50mg/m・s以下であり、本発明の実施例合金は、硫酸に対する耐食性が良好であることがわかる。
 又、1030℃のろう付け試験結果において、いずれの実施例合金も完全に溶融した状態が得られ、SUS304ステンレス鋼母材に対する濡れ性が良好であることがわかり、特に(10)および(11)のSnを含有した組成では20以上の大きなろう拡がり係数を備えていることがわかる。
 一方、表2に示す合金において、(a)~(l)は本発明合金の範囲から外れた組成のろう材であり、液相線温度、抗折力、耐硫酸特性の少なくともいずれか1つの特性が目標値を満たしていない。具体的には、(a)はCr量が請求範囲の上限を上回ったもの、(b)、(c)はCu量が請求範囲から外れたもの、(d)はMo量が請求範囲の上限を上回ったもので、これらの合金はいずれも、液相線温度が1000℃よりも高い温度となっている。(e)~(h)はP、Si量あるいはP+Si量が請求範囲から外れたもので、液相線温度が1000℃よりも高い温度となっているか、あるいは、材料強度(抗折力)が劣っている。(i)~(l)についてはその他添加元素の含有量が請求範囲の上限を上回っており、いずれも目標特性の少なくとも1つを満たしていない。
 表3に示す比較ろう材の(A)、(B)、(C)は、従来からあるJIS及びWS規格に規定されたNi基ろう材合金組成である。比較例ろう材(D)~(P)は「特許第3168158号公報」、「特開2009-202198号公報」、「特開2010-269347号公報」、「WO2012/035829」、「特開2007-75867号公報」、「特開2011-110575号公報」にそれぞれ記載された先行文献のニッケルろう材である。
 表3に示されたこれらのろう材はいずれも、液相線温度、抗折力、硫酸に対する耐食性の目標値の少なくとも1つを満足していない。
 なお、本発明の実施例合金は各種ステンレス鋼母材に対して良好な濡れを示し、ろう付雰囲気は真空のほか、還元性の水素雰囲気中や不活性のアルゴン雰囲気中でも、良好なろう付性を示す。
 以上詳述したように、本発明のニッケルろう材は、溶融温度が1000℃以下で、ろう材自身の材料強度が高く、さらに硫酸等の酸に対して良好な耐食性を発揮するので、各種ステンレス部材への接合(ろう付)に適しており、冷媒の蒸発・凝縮器・給湯用途に限らず、環境・エネルギー関連の熱交換器に広く活用できる。
So:ろう材試料の断面積
S :ろう付後の合金の拡がり面積
W :ろう拡がり係数(S/So)
1 :母材(SUS304ステンレス鋼)
2 :ろう付前のろう材試料(φ5mm、約0.5g)
3 :ろう付後の溶けて拡がったろう材合金

Claims (3)

  1.  1000℃以下の溶融温度を有し、かつ、酸に対する耐食性を備えたニッケルろう材であって、当該ろう材が、Crを15.0~30.0質量%、Cuを6.0~18.0質量%、Moを1.0~5.0質量%、Pを5.0~7.0質量%、Siを3.0~5.0質量%含み、残部がNiおよび不可避不純物からなり、SiとPの合計が9.5~11.0質量%であることを特徴とするニッケルろう材。
  2.  さらに、ステンレス鋼母材に対する濡れ性を向上させる元素として、Snを0.1~1.5質量%含有することを特徴とする請求項1に記載のニッケルろう材。
  3.  さらに、特性に悪影響を及ぼさない元素として、Co、Fe、Mn、C、B、AlおよびTiからなる群より選択される1種以上の元素を含有し、かつ、Coの含有量が5.0質量%以下、Feの含有量が5.0質量%以下、Mnの含有量が3.0質量%以下、C、B、Al、Tiの合計含有量が0.5質量%以下、Co、Fe、Mn、C、B、Al、Tiの合計含有量が10.0質量%以下であることを特徴とする請求項1又は2に記載のニッケルろう材。
PCT/JP2015/056779 2014-04-11 2015-03-09 耐食性に優れたニッケルろう材 WO2015156066A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015537469A JP5858512B1 (ja) 2014-04-11 2015-03-09 耐食性に優れたニッケルろう材
US14/782,820 US9486882B2 (en) 2014-04-11 2015-03-09 Nickel brazing material having excellent corrosion resistance
KR1020157025851A KR101651400B1 (ko) 2014-04-11 2015-03-09 내식성이 우수한 니켈 납땜재
EP15777551.1A EP3009223B1 (en) 2014-04-11 2015-03-09 Nickel brazing material having excellent corrosion resistance
ES15777551.1T ES2640125T3 (es) 2014-04-11 2015-03-09 Material de soldadura fuerte de níquel con excelente resistencia a la corrosión
CN201580000285.1A CN105189030B (zh) 2014-04-11 2015-03-09 耐蚀性优异的镍钎料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-081941 2014-04-11
JP2014081941 2014-04-11

Publications (1)

Publication Number Publication Date
WO2015156066A1 true WO2015156066A1 (ja) 2015-10-15

Family

ID=54287646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056779 WO2015156066A1 (ja) 2014-04-11 2015-03-09 耐食性に優れたニッケルろう材

Country Status (7)

Country Link
US (1) US9486882B2 (ja)
EP (1) EP3009223B1 (ja)
JP (1) JP5858512B1 (ja)
KR (1) KR101651400B1 (ja)
CN (1) CN105189030B (ja)
ES (1) ES2640125T3 (ja)
WO (1) WO2015156066A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249701A1 (ja) 2021-05-28 2022-12-01 福田金属箔粉工業株式会社 ぬれ広がり性に優れたニッケルろう材

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105364336A (zh) * 2015-12-29 2016-03-02 常熟市良益金属材料有限公司 一种高镍合金无裂纹焊接工艺
CN105479037B (zh) * 2016-01-07 2018-04-13 厦门大学 一种镍基无硼钎料及其制备方法
US9839980B2 (en) * 2016-04-14 2017-12-12 Siemens Energy, Inc. Methods of brazing wide gaps in nickel base superalloys without substantial degradation of properties
EP3318350A1 (de) 2016-11-02 2018-05-09 Linde Aktiengesellschaft Verfahren zur generativen fertigung eines 3-dimensionalen bauteils
JP6860410B2 (ja) * 2017-04-25 2021-04-14 山陽特殊製鋼株式会社 微量のVを含有するNi−Cr基合金ろう材
CN108247235A (zh) * 2018-01-10 2018-07-06 浙江亚通焊材有限公司 一种油冷器在低真空条件下快速钎焊的镍基钎料
CN109865962B (zh) * 2019-03-05 2021-05-28 苏州昆腾威新材料科技有限公司 一种低熔点耐腐蚀镍基共晶钎焊材料及其应用
CN111283306A (zh) * 2020-03-12 2020-06-16 无锡市普尔换热器制造有限公司 一种镍基不锈钢换热器的氩弧焊缝开裂倾向消除工艺
CN112410617B (zh) * 2020-11-17 2022-04-12 丹阳润泽新材料科技有限公司 一种镍合金焊丝及其制备方法
CN113770587B (zh) * 2021-09-15 2022-04-19 浙江亚通焊材有限公司 一种用于低真空环境的高温钎焊环及其制备方法
CN114101970A (zh) * 2021-11-04 2022-03-01 杭州华光焊接新材料股份有限公司 一种镍基非晶钎料带材及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009202198A (ja) * 2008-02-27 2009-09-10 T Rad Co Ltd 熱交換器用Ni−Cu系ろう材
JP2009545451A (ja) * 2006-08-01 2009-12-24 ファキュウムシュメルゼ ゲーエムベーハー ウント コンパニー カーゲー 鑞付け用ニッケル基合金及び鑞付け法
JP2010269347A (ja) * 2009-05-22 2010-12-02 T Rad Co Ltd 熱交換器用Ni−Cr−Cu−Fe系ろう材
WO2012035829A1 (ja) * 2010-09-13 2012-03-22 福田金属箔粉工業株式会社 ろう接用ニッケル基塩酸耐食合金

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03168158A (ja) 1989-11-28 1991-07-19 Hideo Fumiyama 経皮的冠状動脈形成術後の再狭窄を防止するガイドワイヤー
JP3168158B2 (ja) 1996-02-20 2001-05-21 福田金属箔粉工業株式会社 ぬれ性・耐食性に優れたNi基耐熱ろう材
JP3354922B2 (ja) 2000-11-15 2002-12-09 福田金属箔粉工業株式会社 Ni基耐熱ろう材
JP4690156B2 (ja) 2005-09-15 2011-06-01 福田金属箔粉工業株式会社 Niろう材合金
JP5546836B2 (ja) 2009-11-26 2014-07-09 山陽特殊製鋼株式会社 Ni−Fe基合金ろう材
JP5389000B2 (ja) * 2010-12-02 2014-01-15 株式会社神戸製鋼所 Ni基合金溶接金属、Ni基合金被覆アーク溶接棒
JP6116795B2 (ja) 2011-03-08 2017-04-19 マルヤス工業株式会社 ニッケル基合金ろう材
WO2013077113A1 (ja) * 2011-11-24 2013-05-30 福田金属箔粉工業株式会社 濡れ広がり性と耐食性に優れたNi-Cr系ろう材
CN102581513B (zh) * 2012-03-06 2015-01-14 中国科学院金属研究所 一种用于核电站核岛主设备的镍基焊丝
US20140037986A1 (en) 2012-08-02 2014-02-06 Michael Weinstein Nickel-based brazing metal powder for brazing base metal parts with reduced erosion
CN102941418B (zh) 2012-11-19 2015-03-04 湖南新光环科技发展有限公司 一种镍基钎料及其制备合金涂层的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009545451A (ja) * 2006-08-01 2009-12-24 ファキュウムシュメルゼ ゲーエムベーハー ウント コンパニー カーゲー 鑞付け用ニッケル基合金及び鑞付け法
JP2009202198A (ja) * 2008-02-27 2009-09-10 T Rad Co Ltd 熱交換器用Ni−Cu系ろう材
JP2010269347A (ja) * 2009-05-22 2010-12-02 T Rad Co Ltd 熱交換器用Ni−Cr−Cu−Fe系ろう材
WO2012035829A1 (ja) * 2010-09-13 2012-03-22 福田金属箔粉工業株式会社 ろう接用ニッケル基塩酸耐食合金

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3009223A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022249701A1 (ja) 2021-05-28 2022-12-01 福田金属箔粉工業株式会社 ぬれ広がり性に優れたニッケルろう材
KR20240014463A (ko) 2021-05-28 2024-02-01 후쿠다 킨조쿠 하쿠훈 코교 가부시키가이샤 젖음 퍼짐성이 우수한 니켈 경납재

Also Published As

Publication number Publication date
US20160045987A1 (en) 2016-02-18
ES2640125T3 (es) 2017-10-31
KR20160021746A (ko) 2016-02-26
US9486882B2 (en) 2016-11-08
EP3009223B1 (en) 2017-07-12
CN105189030B (zh) 2017-03-01
JPWO2015156066A1 (ja) 2017-04-13
CN105189030A (zh) 2015-12-23
EP3009223A1 (en) 2016-04-20
EP3009223A4 (en) 2016-06-22
KR101651400B1 (ko) 2016-08-26
JP5858512B1 (ja) 2016-02-10

Similar Documents

Publication Publication Date Title
JP5858512B1 (ja) 耐食性に優れたニッケルろう材
JP5846646B2 (ja) 耐熱性に優れたニッケルろう材
JP5783641B2 (ja) ろう接用ニッケル基塩酸耐食合金
JP5269888B2 (ja) 鉄基耐熱耐食ろう材
WO2013077113A1 (ja) 濡れ広がり性と耐食性に優れたNi-Cr系ろう材
JP4690156B2 (ja) Niろう材合金
WO2015019876A1 (ja) Cuを添加したNi-Cr-Fe基合金ろう材
US8951368B2 (en) Iron-based brazing foil and method for brazing
WO2011065486A1 (ja) Ni-Fe基合金ろう材
CN105364335A (zh) Al-Ag-Cu-Mg铝基合金态钎料及其制备方法
CN104191103A (zh) 一种含稀土元素La的中温镁合金钎料及其制备方法
JP2012050992A (ja) アルミニウム材のフラックスレスろう付方法、フラックスレスろう付用アルミニウム合金ブレージングシートおよびフラックスレスろう付用アルミニウム合金ろう材
WO2022249701A1 (ja) ぬれ広がり性に優れたニッケルろう材
TW201620660A (zh) 耐蝕性優異之鎳焊材
US20220371116A1 (en) Low melting nickel-manganese-silicon based braze filler metals for heat exchanger applications
JP2008115444A (ja) 表面硬化用高硬度の耐熱Cr基合金
JP2931360B2 (ja) ろう材用合金粉末

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580000285.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015537469

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157025851

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14782820

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015777551

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015777551

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE