WO2015155845A1 - 作業機械の遠隔操縦システム - Google Patents

作業機械の遠隔操縦システム Download PDF

Info

Publication number
WO2015155845A1
WO2015155845A1 PCT/JP2014/060237 JP2014060237W WO2015155845A1 WO 2015155845 A1 WO2015155845 A1 WO 2015155845A1 JP 2014060237 W JP2014060237 W JP 2014060237W WO 2015155845 A1 WO2015155845 A1 WO 2015155845A1
Authority
WO
WIPO (PCT)
Prior art keywords
remote control
work machine
tilt
seat
traveling
Prior art date
Application number
PCT/JP2014/060237
Other languages
English (en)
French (fr)
Inventor
弘幸 山田
貴雅 甲斐
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US15/300,477 priority Critical patent/US9982415B2/en
Priority to JP2016512522A priority patent/JP6220961B2/ja
Priority to PCT/JP2014/060237 priority patent/WO2015155845A1/ja
Publication of WO2015155845A1 publication Critical patent/WO2015155845A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/16Cabins, platforms, or the like, for drivers
    • E02F9/166Cabins, platforms, or the like, for drivers movable, tiltable or pivoting, e.g. movable seats, dampening arrangements of cabins
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2004Control mechanisms, e.g. control levers
    • E02F9/2012Setting the functions of the control levers, e.g. changing assigned functions among operations levers, setting functions dependent on the operator or seat orientation
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/005Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement by providing the operator with signals other than visual, e.g. acoustic, haptic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes

Definitions

  • the present invention relates to a system for operating a work machine from a remote location, and particularly to a system for operating a work machine on which a machine body travels from a remote location.
  • an image captured by a camera attached to the work machine is transmitted to a remote control facility by wired or wireless communication, and the image is displayed on a monitor in the control facility.
  • the operator operates an input device such as an operation lever in the steering equipment while watching the image on the monitor, and transmits the operation signal instructed by the input device to the work machine, so that the work machine operates as instructed by the operator. By doing so, the work machine can be controlled from a remote location.
  • Patent Document 1 is a system for remotely operating a tower crane.
  • the tower crane has an omnidirectional camera, a turning sensor for detecting a turning position of a boom, and an inclination state of a virtual operation seat in the tower crane.
  • An inclination sensor is installed. Information obtained from these sensors is transmitted to the remote control room, and the operation seat on which the actual investigator is seated is rotated and tilted in synchronization with the turning position of the boom and the tilt angle of the virtual operation seat.
  • the excavation force and torsion are each converted into two sine wave amplitudes by the controller, the chair on which the operator sits is vibrated in the vertical direction by the sine wave based on the excavation force, and rotational vibration is given by the sine wave based on the torsion Is.
  • the present invention provides a remote control system that realizes reduction of operator fatigue without impairing safety and workability in a remote control system that presents information to the operator sensibly by moving such a seat. It is.
  • the present invention provides a remote control system for a work machine in which an operator controls a work machine from a remote control facility installed at a remote place.
  • the work machine includes a traveling means, a tilt direction and a tilt of a fuselage.
  • the remote control equipment includes a seat on which an operator is seated, and a tilt driving unit that tilts the seat, and the tilt driving unit is configured to detect the tilt while the work machine is traveling.
  • the seat is tilted so that the seat is synchronized with the tilt direction and the tilt amount detected in step 1, and the tilt of the seat is controlled to maintain a constant tilt amount when the work machine is not running. is there.
  • the seat in the remote control system for a work machine, when the work machine is not running, the seat is tilted so that the seat is synchronized with a low frequency component of the tilt amount detected by the tilt detection means. It is a feature.
  • the present invention provides a remote control system for a work machine, comprising travel state detection means for detecting whether the work machine is running or stopped, and the tilt drive means indicates that the travel state detection means is running.
  • the seat is tilted so that the seat is synchronized with the tilt direction and the tilt amount detected by the tilt detection means, and while the travel state detection means indicates that it is stopped, the travel state detection means is stopped from running
  • the inclination of the seat is controlled so as to maintain the amount of inclination detected by the inclination detecting means when switching to the inside.
  • the present invention provides a remote control system for a work machine, wherein the work machine includes a traveling body and a revolving body supported so as to be rotatable about a vertical axis with respect to the traveling body, and the amount of rotation of the revolving body with respect to the traveling body is determined.
  • the tilt direction of the swing body is derived based on the detected amount of rotation, and the seat is tilted so that the seat is synchronized with the tilt direction of the swing body.
  • the present invention relates to a remote control system for a work machine, wherein the work machine is provided with video detection means for detecting an image seen from the machine body, the remote control facility is provided with video output means for presenting the video to an operator, and the work machine travels.
  • the video output means When the machine is running, the video output means outputs the video as it is, and when the work machine is not running, the video detected by the video detection means is caused by the tilt vibration of the fuselage. After the generated vibration component in the image is removed, the image is output by the image output means.
  • the tilt information of the airframe is presented to the operator sensibly by moving the seat, but the work machine stops traveling, excavation, loading, transportation, etc. It can be configured not to present the tilt information of the airframe to the operator when starting work.
  • the static inclination angle of the work machine changes when the condition of the ground on which the work machine is placed changes with steps, hills, etc., and the static inclination angle of the work machine does not change while traveling is stopped.
  • the scene where the operator needs the tilt information in real time is also running, and it is necessary to know whether the tilt angle is safe enough to prevent the aircraft from falling over when climbing over slopes, steps or grooves.
  • the aircraft is basically stopped running, and various mechanisms for working are operated. At this time, the aircraft may vibrate due to specific work operations such as suddenly stopping various mechanisms, and the dynamic tilt angle may change. This is unnecessary and causes the operator to accumulate fatigue.
  • the operator can know in real time the tilt information of the aircraft necessary for traveling, and the safety is enhanced, and the workability is improved without being affected by the vibration of the aircraft generated during actual work. Operator fatigue can also be reduced.
  • Remote control system for work machine Partial enlarged view of the hydraulic excavator in FIG.
  • Remote pilot seat pedestal drive mechanism Remote control system configuration diagram
  • Remote control system control flow chart Control flow diagram of remote control system according to second embodiment
  • FIG. 1 to 5 show a first embodiment
  • FIG. 6 shows a second embodiment
  • symbol is attached
  • a hydraulic excavator will be described as an example of a work machine.
  • the work machine in the present invention is not limited to a hydraulic excavator, and the ground can be used in any work machine that performs excavation, loading, transportation, and the like. It is applicable to all things that have the ability to travel against.
  • FIG. 1 shows the remote control system of the hydraulic excavator
  • FIG. 2 is an enlarged view of the vicinity of the driver seat of the hydraulic excavator in FIG.
  • FIG. 4 is a block diagram showing the remote control system of FIG. 1 in blocks for each component.
  • the hydraulic excavator remote control system according to the first embodiment will be described below with reference to FIGS. 1, 2, and 4.
  • the remote control system for a hydraulic excavator is a remote control mainly including a hydraulic excavator 1 which is a target of remote control and components necessary for actual operation by an operator provided in a remote place. It has equipment 3 as a component.
  • the hydraulic excavator 1 includes an upper swing body 11, a lower traveling body 12 including a crawler, a boom 13, an arm 14, a bucket 15, and a boom 13 that constitute a front portion for performing excavation and the like, as in a general excavator.
  • a boom cylinder 16 for driving, an arm cylinder 17 for driving the arm 14, a bucket cylinder 18 for driving the bucket 15, and a driver seat 19 provided in the upper swing body 11 are configured.
  • the upper swing body 11 is rotatably supported by the lower traveling body 12, and the upper swing body 11 is driven to rotate relative to the lower traveling body 12 by a swing motor (not shown).
  • One end of the boom 13 is rotatably supported by the upper swing body 11, and the boom 13 is driven to rotate relative to the upper swing body 11 according to the expansion and contraction of the boom cylinder 16.
  • One end of the arm 14 is rotatably supported by the boom 13, and the arm 14 is driven to rotate relative to the boom 13 in accordance with the expansion and contraction of the arm cylinder 17.
  • the bucket 15 is rotatably supported by the arm 14, and the bucket 15 is rotationally driven relative to the arm 14 according to the expansion and contraction of the bucket cylinder 18.
  • the hydraulic excavator 1 having such a configuration controls the bucket 15 to an arbitrary position and posture by driving the swing motor, the boom cylinder 16, the arm cylinder 17, and the bucket cylinder 18 to appropriate positions, and performs a desired work. It can be carried out.
  • the turning motor and each cylinder are controlled by the vehicle body control unit 26, and the turning motor and each cylinder can be moved by giving the vehicle body control unit 26 a lever signal for instructing the operation of each part.
  • the driver's seat 19 is provided in the hydraulic excavator 1, but the driver's seat 19 is not necessarily required because it is a body that performs remote control. However, in reality, the possibility of partial boarding by an operator is sufficiently conceivable even for a remotely controlled aircraft, and since there is little need to remove the driver's seat, in this embodiment, the driver's seat 19 is The hydraulic excavator 1 is disposed.
  • the hydraulic excavator 1 is provided with the camera 20 that is an image detection unit that is disposed on the upper swing body 11 and detects an image that can be seen from the airframe, and is tilted on the upper swing body 11.
  • An inclination sensor 21 that is an inclination detection means for detecting a direction and an inclination amount
  • a turning sensor 22 that is a turning detection means for detecting the amount of rotation of the upper turning body 11 relative to the lower traveling body 12, and a traveling state in which the rotational speed of the traveling motor is detected.
  • a travel rotation sensor 23 serving as detection means, a vehicle body side remote control unit 25 that acquires and processes these sensor signals, and a wireless communication antenna 24 are provided.
  • the turning detection means detects the angular velocity of the upper swing body 11 and integrates it to obtain the rotation amount, in addition to the relative rotation amount between the lower traveling body 12 and the upper swing body 11. It may be a thing.
  • the traveling state detecting means may determine whether or not the vehicle is traveling based on the presence or absence of an instruction for traveling from an operator's control signal.
  • the image that can be seen from the aircraft, the direction and amount of inclination of the aircraft, the amount of turning, and the traveling speed are acquired by the respective sensors and processed appropriately by the vehicle body side remote control unit 25. It can be transmitted to the remote control facility 3 via the communication antenna 24.
  • information is exchanged between the remotely controlled aircraft and the control equipment using wireless communication.
  • wireless communication may be used.
  • the amount of information that can be transmitted increases, it is possible to transmit and receive video with less time delay and video with higher resolution.
  • the remote control facility 3 includes a seat 31 on which an operator is seated, a front operation lever 32 for inputting movements of the turning motor and each cylinder, a traveling operation lever 33 for inputting movements of the traveling motor, and a monitor that displays an image obtained by the camera 20.
  • 34 a seat 37 on which a seat 31, a travel operation lever 33, and a monitor 34 are placed; an actuator 35 that tilts the pedestal 37; a connecting portion 36 that connects the actuator 35 and the pedestal 37; a control box 40; and a wireless communication antenna 42.
  • information communication with the vehicle body side remote control unit 25 information acquisition of the operation levers 32 and 33, output of video information to the monitor 34, and control of the actuator 35 are performed via the wireless communication antenna 42.
  • a control-side remote control unit 43 is disposed, and the remote control unit 43 and the operation levers 32 and 33, the monitor 34, and the actuator 35 are electrically connected by a wiring 41.
  • the monitor 34 is composed of three monitors, a right monitor 34a, a left monitor 34b, and a front monitor 34c. Compared to the configuration of one front monitor by widening the viewing angle and providing an immersive feeling. A field of view close to that of a real machine can be obtained.
  • the remote control facility 3 can capture the image transmitted from the hydraulic excavator 1, the tilt direction and the tilt amount, the turning rotation amount, and the traveling speed to the control-side remote control unit 43 via the wireless communication antenna 42. Further, the control-side remote control unit 43 outputs the video to the monitor 34 and appropriately drives the actuator 35 to control the pedestal 37 so as to be equal to the tilt angle of the airframe, as well as the front operation lever 32 and the traveling operation. An operation amount signal of the lever 33 is acquired and transmitted to the vehicle body side remote control unit 25 via the wireless communication antenna 42. The vehicle body side remote control unit 25 outputs an operation amount signal of each operation lever sent from the operation side remote control unit 43 via the wireless communication antenna 24 to the vehicle body control unit 26, and the vehicle body control unit 26 is obtained. The swing motor and each cylinder are appropriately controlled based on the manipulated variable signal.
  • the pedestal 37 is connected to three actuators 35a, 35b, and 35c via connecting portions 36a, 36b, and 36c, respectively.
  • the actuator 35 (35a to 35c) is an electric or hydraulic cylinder that outputs a linear motion, and is installed so that the cylinder rod expands and contracts in the vertical direction.
  • the connecting portion 36 (36a to 36c) includes two joints, a universal joint 361 (361a to 361c) and a linear motion guide guide 362 (362a to 362c).
  • each actuator 35 has a total of four degrees of freedom of three-axis rotation and one-axis translation.
  • the three linear motion guides 362 are arranged so that the virtual axis extension lines in the guide direction intersect at one point near the center of the triangle formed by connecting the intersections of the output direction axes of the three actuators 35 and the pedestals 37. Has been.
  • the pedestal 37 can tilt the pedestal 37 and the seat 31 placed on the pedestal 37 so as to have an arbitrary inclination direction and amount by appropriately controlling expansion and contraction of the cylinder rods of the three actuators 35. It becomes possible.
  • the pedestal 37 can be driven in translation in the vertical direction, and the vertical vibration of the airframe can be reproduced by the seat 31.
  • FIG. 4 shows only the parts related to the remote control system for the processing performed in each of the three control units of the control side remote control unit, the vehicle body side remote control unit, and the vehicle body control unit.
  • the vehicle body side remote control unit 25 receives the latest camera image Img, inclination direction ⁇ , inclination amount R, turning rotation amount ⁇ , traveling from the camera 20, the inclination sensor 21, the turning sensor 22, and the traveling rotation sensor 23, respectively. Get speed ⁇ . These sensor signals are transmitted to the control-side remote control unit 43 by wireless communication. An operation amount signal Pn of the operation levers 32 and 33 is received from the control side remote control unit 43 and transmitted to the vehicle body control unit 26. The vehicle body control unit drives the turning motor, the boom cylinder 16, the arm cylinder 17, and the bucket cylinder 18 based on the received operation amount signal Pn.
  • the control-side remote control unit has an inclination direction variable ⁇ a and an inclination amount variable Ra that hold the posture of the pedestal 37 during travel, and “0” is initially substituted as an initial value.
  • the camera image Img, the inclination direction ⁇ , the inclination amount R, the turning rotation amount ⁇ , and the traveling speed ⁇ are received from the vehicle body side remote control unit, and if the absolute value of the traveling speed ⁇ is “0” or more (during traveling). , ⁇ a, Ra are updated to the received tilt information ⁇ , R.
  • the traveling rotational speed ⁇ is “0”, ⁇ a and Ra are not updated, and ⁇ a and Ra are held as they are at the last value (when the vehicle stopped) as it is. Further, only when the traveling speed ⁇ is “0”, a process of subtracting the turning angle ⁇ from ⁇ a is performed, and the value is substituted into ⁇ and Ra is substituted into R. Based on ⁇ and R, the target position of the actuator 35 is calculated, and the position of the actuator 35 is controlled so as to be the target position. Next, the received camera video is output to the monitor 34 so that the camera video is displayed on the monitor 34. Finally, the operation amount Pn of the front operation lever 32 and the travel operation lever 33 is acquired and transmitted to the vehicle body side remote control unit 25.
  • the carriage 37 and the seat 31 disposed thereon are controlled in real time to the inclination direction and the amount of inclination obtained by the inclination sensor 21, and the excavator 1 travels. If not, the seat 31 is controlled to maintain the same amount of inclination. Further, when the upper swing body 11 turns with respect to the lower travel body 12 in a state where the excavator 1 is not traveling, the inclination direction of the upper swing body 11 is calculated in accordance with the turning angle.
  • the amount of inclination of the airframe is maintained at the final amount of inclination during traveling (approximately equal to the amount of inclination at the moment when traveling is stopped).
  • the operator seats the vibration of the airframe generated by the work by calculating the tilt direction during or after the turn from the held tilt direction and the amount of turning rotation.
  • the seat can be controlled so that it is not synchronized with the seat. With such a configuration, it is not necessary to give vibration of the airframe that causes fatigue to the operator, the operator's fatigue can be reduced, and workability can be improved.
  • a hydraulic excavator is used as a work machine. For this reason, there is a possibility that the inclination direction may change depending on the amount of turning rotation even when traveling is stopped, and calculation processing of the inclination direction based on the amount of turning rotation is included.
  • a work machine that does not turn such as a wheel loader, or a hydraulic excavator Even so, if an inclination sensor is provided on the lower traveling body, such a calculation process of the inclination direction based on the amount of turning rotation is unnecessary, and no turning sensor is required.
  • the branching process for determining whether or not the vehicle is traveling and the calculation process for the inclination direction after the branching are performed by the control-side remote control unit 43.
  • a remote control system for a work machine according to a second embodiment of the present invention will be described with reference to FIG.
  • the second embodiment is different from the first embodiment only in the contents of the control processing, and the other configurations are the same as those in the first embodiment, so that the drawings and explanations are omitted.
  • a hydraulic excavator is described as an example of a work machine as in the first embodiment.
  • the work machine in the present invention is not limited to a hydraulic excavator, and excavation, loading, transportation, and the like.
  • the present invention is applicable to all working machines that have the ability to travel with respect to the ground.
  • the flowchart of FIG. 6 shows the flow of control of the entire remote control system according to the second embodiment.
  • the difference from the first embodiment is the processing in the control-side remote controller 43, and only the difference from the first embodiment will be described.
  • the processing contents in the control-side remote control unit 43 in the second embodiment do not use the variables ⁇ a and Ra that hold the tilt information. For this reason, the process of updating the values of ⁇ a and Ra during traveling and maintaining the inclination information at the moment of stopping when traveling is not performed. Instead, the following processing is performed while traveling is stopped. That is, the turning rotation amount ⁇ is added to the inclination direction ⁇ , ⁇ and R after addition are applied to the low-pass filter, and the turning rotation amount ⁇ is subtracted from ⁇ after passing through the filter.
  • traveling is stopped with the turning rotation amount ⁇
  • the turning rotation amount ⁇ when the turning rotation amount ⁇ is added to the inclination direction ⁇ , the inclination direction after the addition coincides with the inclination direction of the lower traveling body.
  • ⁇ a and Ra do not change at all while the traveling is stopped.
  • ⁇ and R after the low-pass filter processing of the present embodiment fluctuate in the inclination direction and the amount of inclination of the aircraft even when the vehicle is stopped, for example, the ground collapses and the aircraft tilts. In such a case, the tilt information can be extracted.
  • the series of processes during the traveling stop of the present embodiment continues to hold the inclination information at the moment when the first embodiment stops traveling, and performs the calculation for the amount of turning rotation for this,
  • the amount of rotation is calculated for the low frequency component of the tilt information.
  • the seat inclination amount and the image presented to the operator at the time of traveling stop do not include vibration components, and the movement of the seat and the image can be synchronized.
  • the vehicle body side remote control unit 43 may perform the branching process to determine whether the vehicle is running or the process after the branching, as in the first embodiment.

Abstract

 作業機械を遠隔地から操縦する遠隔操縦システムにおいて、安全性と作業性の向上を図ると共に、オペレータの疲労を軽減する。 作業機械を遠隔地から操縦する遠隔操縦システムにおいて、機体走行時に機体の傾斜情報をオペレータが着座する座席を機体に連動して傾斜駆動することで、体感的にオペレータへ提示し安全性と作業性の向上を図る。一方、機体が走行していない時には座席の傾斜量を保持することで、機体の作業による大きな傾斜振動をオペレータへ与えず、オペレータの疲労軽減を図ることを実現する。

Description

作業機械の遠隔操縦システム
 本発明は、作業機械を遠隔地から操縦するシステムに関するものであり、特に機体が走行する作業機械を遠隔地から操縦するシステムに関するものである。
 建設機械や運搬機械などの作業機械は、通常オペレータが搭乗し、各種レバーやハンドルなどを操作することによって所望の作業を実現する。ただし、これらの作業機械が、例えば崖の崩壊のおそれのある場所などで用いられる場合、無人の作業機械を遠隔地に設置された操縦設備からオペレータが操縦するという、遠隔操縦手段が用いられることがある。
 作業機械の遠隔操縦では、作業機械に取付けられたカメラによって撮影された映像を、遠隔地の操縦設備へ有線又は無線通信によって伝送し、操縦設備内のモニタにその映像が映し出される。オペレータは、モニタ上の映像を見ながら、操縦設備内の操作レバーなどの入力装置を操り、入力装置によって指示される操作信号を作業機械へ伝送することによって、作業機械がオペレータの指示通りに動作することで、遠隔地からの作業機械の操縦を実現する。
 このような作業機械の一般的な遠隔操縦に対して、〔特許文献1〕〔特許文献2〕のような、映像以外の情報をオペレータへ提示する遠隔操縦システムが考えられている。
 〔特許文献1〕は、タワークレーンを遠隔操作するためのシステムであり、タワークレーンに全方位カメラと、ブームの旋回位置を検知する旋回センサと、タワークレーン内の仮想操作席の傾斜状態を検知する傾斜センサを設置している。これらのセンサから得られる情報を遠隔操作室に伝送し、実際の捜査員が着座する操作席をブームの旋回位置及び仮想操作席の傾斜角度に同調させて回転及び傾斜させる。このような構成により、遠隔操作の際にも本来の操作席に実際に着座している状態をリアルタイムに再現することができ、従来通りの感覚で違和感なくタワークレーンを遠隔操作することが可能となる。
は、油圧ショベルの作業力(掘削力とねじれ)を作業力検出器で検出し、これを遠隔地の操縦装置へ送信する。操縦装置では、コントローラによって掘削力とねじれをそれぞれ2つの正弦波の振幅に変換し、オペレータが座る椅子を掘削力に基づく正弦波により上下方向に振動させ、ねじれに基づく正弦波により回転振動を与えるものである。このような構成により、作業力をオペレータに体の感覚として実感できる臨場感を与えることができ、ひいては作業性を向上させることができる。
特開2013-116773号公報 特開平9-217382号公報
 これらの文献が示す通り、作業機械の遠隔操縦には映像のみでなく、機体の傾斜や回転や作業力など、機体搭乗時にオペレータが視覚以外で体感する情報を、遠隔操縦設備においてもオペレータが着座する座席を動かすなどの体感的な情報として提示することで、オペレータは従来通りの感覚で違和感なく操作できると共に、得られる情報量が増えることから、安全性や作業性の向上が見込まれる。
 ただし、座席を動かすなど体感的に振動や揺れをオペレータへ与えることはオペレータの疲労にもつながり、機体の傾斜や回転などの体感情報の中でも、作業への必要性の小さい情報はオペレータへ提示せず、必要な情報のみに絞ってなるべく座席を動かさないほうがオペレータの疲労軽減にとって良い。本発明は、このような座席を動かすことで体感的にオペレータへ情報を提示する遠隔操縦システムにおいて、安全性や作業性を損なわずオペレータの疲労軽減を実現するような遠隔操縦システムを提供するものである。
 上記課題を達成するために、本発明は遠隔地に設置された遠隔操縦設備からオペレータが作業機械を操縦する作業機械の遠隔操縦システムにおいて、前記作業機械は走行手段と、機体の傾斜方向と傾斜量を検出する傾斜検出手段を備え、前記遠隔操縦設備はオペレータが着座する座席と、座席を傾斜させる傾斜駆動手段とを備え、前記傾斜駆動手段は前記作業機械が走行中には前記傾斜検出手段で検出された傾斜方向と傾斜量に座席が同調するよう座席を傾斜させ、前記作業機械が走行していないときには一定の傾斜量を保つよう前記座席の傾斜を制御することを特徴とするものである。
 更に、本発明は作業機械の遠隔操縦システムにおいて、前記作業機械が走行していないときには前記傾斜検出手段で検出された傾斜量の低周波数成分に対して座席が同調するよう座席を傾斜させることを特徴とするものである。
 更に、本発明は作業機械の遠隔操縦システムにおいて、前記作業機械は走行中か停止中かを検出する走行状態検出手段を備え、前記傾斜駆動手段は前記走行状態検出手段が走行中を示している間は傾斜検出手段で検出された傾斜方向と傾斜量に座席が同調するよう座席を傾斜させ、前記走行状態検出手段が停止中を示している間は、前記走行状態検出手段が走行中から停止中に切り替わった時の傾斜検出手段で検出された傾斜量を保つよう、前記座席の傾斜を制御することを特徴とするものである。
 更に、本発明は作業機械の遠隔操縦システムにおいて、前記作業機械は走行体と、走行体に対して垂直軸回りに回転可能に支持された旋回体から成り、走行体に対する旋回体の回転量を検出する旋回検出手段を備え、前記作業機械が走行していないときには前記走行体の傾斜方向を傾斜検出手段によって直接、あるいは間接的に取得し、前記走行体の傾斜方向に対して旋回検出手段によって検出された旋回回転量を基に前記旋回体の傾斜方向を導出し、この前記旋回体の傾斜方向に座席が同調するよう座席を傾斜させることを特徴とするものである。
 更に、本発明は作業機械の遠隔操縦システムにおいて、作業機械は機体から見える映像を検出する映像検出手段を備え、遠隔操縦設備は映像をオペレータへ提示する映像出力手段を備え、作業機械が走行しているときには前記映像検出手段で検出された映像をそのまま前記映像出力手段で出力し、作業機械が走行していないときには前記映像検出手段で検出された映像に対して、機体の傾斜振動が要因で起こる映像内の振動成分を除去した後、前記映像出力手段で出力することを特徴とするものである。
 本発明により、作業機械が走行中にはオペレータへ機体の傾斜情報が、座席が動かされることにより体感的にオペレータへ提示されるが、作業機械が走行を止め、掘削や積込、運搬などの作業に取り掛かる時には機体の傾斜情報をオペレータへ提示しないよう構成することができる。
 通常、作業機械の静的傾斜角度が変わるのは、作業機械の置かれた地面の状況が段差や坂道などと変わる場合であり、走行停止中は作業機械の静的傾斜角度が変わることはない。また、オペレータが傾斜情報をリアルタイムに必要とする場面も走行中であり、坂道や段差や溝を乗り越える場合などに機体が転倒しない程度の安全な傾斜角度か否かを知る必要がある。一方、掘削や積込、運搬などの作業中は基本的に機体は走行停止しており、作業を行うための各種機構が動作する。この時に、各種機構を急停止させるなど特定の作業動作により機体が振動し、動的傾斜角度が変わることはあるが、このような機体の振動など動的傾斜角度情報はオペレータが作業する上で不必要であり、オペレータに疲労を蓄積させることになる。
 本発明により、オペレータは走行中に必要な機体の傾斜情報をリアルタイムに知ることができ安全性が高まると共に、実際の作業時に発生する機体の振動の影響を受けず作業性も向上し、加えてオペレータの疲労を軽減することもできる。
第1の実施の形態である作業機械の遠隔操縦システム 図1の油圧ショベルの部分拡大図 遠隔操縦席台座駆動機構 遠隔操縦システム構成図 遠隔操縦システム制御フロー図 第2の実施の形態である遠隔操縦システムの制御フロー図
 以下、図面を参照しながら本発明の実施の形態を説明する。図1から図5までは第1の実施の形態を示すものであり、図6は第2の実施の形態を示す。なお、全ての図において同一の部分、構成については同じ符号を付している。
 図1から図4を用いて第1の実施の形態である作業機械の遠隔操縦システムの全体構成を説明する。本実施の形態では、作業機械として油圧ショベルを例に説明するが、本発明における作業機械は油圧ショベルに限定するものではなく、掘削、積込、運搬などを行うあらゆる作業機械の中で、地面に対して走行する能力を有する全てのものに適用可能である。
 図1は油圧ショベルの遠隔操縦システムを示しており、図2は図1の油圧ショベルの運転席付近の拡大図である。また、図4は図1の遠隔操縦システムを構成要素ごとにブロックで表わした構成図である。以下、図1、図2、図4を用いて第1の実施の形態である油圧ショベルの遠隔操縦システムを説明する。
 第1の実施の形態である油圧ショベルの遠隔操縦システムは、主に遠隔操縦の対象である油圧ショベル1と、遠隔地に設けられオペレータが実際に操縦するために必要な各部品を備える遠隔操縦設備3とを構成要素として持つ。
 油圧ショベル1は、一般的な油圧ショベルと同様に、上部旋回体11、クローラを含む下部走行体12、掘削などの作業を行うフロント部を構成するブーム13、アーム14、バケット15、ブーム13を駆動するブームシリンダ16、アーム14を駆動するアームシリンダ17、バケット15を駆動するバケットシリンダ18、上部旋回体11内に設けられた運転席19から構成されている。
 上部旋回体11は下部走行体12に回転可能に支持されており、図示されていない旋回モータによって、上部旋回体11は下部走行体12に対して相対的に回転駆動される。ブーム13の一端は上部旋回体11に回転可能に支持されており、ブームシリンダ16の伸縮に応じてブーム13が上部旋回体11に対して相対的に回転駆動される。アーム14の一端はブーム13へ回転可能に支持されており、アームシリンダ17の伸縮に応じてアーム14がブーム13に対して相対的に回転駆動される。バケット15はアーム14へ回転可能に支持されており、バケットシリンダ18の伸縮に応じてバケット15がアーム14に対して相対的に回転駆動される。このような構成である油圧ショベル1は旋回モータやブームシリンダ16、アームシリンダ17、バケットシリンダ18を適切な位置に駆動することにより、バケット15を任意の位置、姿勢に制御し、所望の作業を行うことができる。旋回モータや各シリンダは車体コントロールユニット26によって制御されており、車体コントロールユニット26に各部の操作を指示するレバー信号を与えることにより、旋回モータや各シリンダを動かすことができる。
 なお、本実施の形態では油圧ショベル1に運転席19が配設されているが、遠隔操縦を行う機体であることから運転席19は必ずしも必要ではない。しかし、実際には遠隔操縦対象機体であってもオペレータが部分的に搭乗する可能性は十分考えられ、また、あえて運転席を外す必要性も低いことから、本実施の形態では運転席19を油圧ショベル1に配設している。
 本実施の形態における油圧ショベル1は、これらの構成以外に、上部旋回体11に配設され機体から見える映像を検出する映像検出手段であるカメラ20、上部旋回体11に配設され機体の傾斜方向および傾斜量を検出する傾斜検出手段である傾斜センサ21、下部走行体12に対する上部旋回体11の回転量を検出する旋回検出手段である旋回センサ22、走行モータの回転速度を検出する走行状態検出手段である、走行回転センサ23、これらのセンサ信号を取得、処理する車体側遠隔コントロールユニット25、無線通信アンテナ24を備えている。なお旋回検出手段には下部走行体12と上部旋回体11との相対的な回転量を取得するもの以外にも、上部旋回体11の角速度を検出し、それを積分することで回転量を求めるものであってもよい。また走行状態検出手段には走行モータの回転速度を検出するもの以外にも、オペレータの操縦信号から走行に対する指示の有無で走行しているか否かを判断するものであってもよい。
 本構成により、機体から見える映像、機体の傾斜方向および傾斜量、旋回回転量、走行速度をそれぞれのセンサで取得し、車体側遠隔コントロールユニット25によって適切に処理した上で、これらの情報を無線通信アンテナ24を介して遠隔操縦設備3へ送信することができる。
 なお、本実施の形態では遠隔操縦対象機体と操縦設備との間を無線通信を用いて情報のやり取りを行う構成としているが、機体と操縦設備との距離が近ければ有線通信を用いてもよい。その場合、伝送可能な情報量が増えるため、より時間遅れの少ない映像や、より高解像度の映像などの送受信が可能となる。
 遠隔操縦設備3は、オペレータが着座する座席31、旋回モータや各シリンダの動きを入力するフロント操作レバー32、走行モータの動きを入力する走行操作レバー33、カメラ20によって得られた映像を映し出すモニタ34、座席31や走行操作レバー33、モニタ34が置かれた台座37、台座37を傾斜駆動するアクチュエータ35、アクチュエータ35と台座37とを接続する連結部36、コントロールボックス40、無線通信アンテナ42を備えている。コントロールボックス40内には、無線通信アンテナ42を介して車体側遠隔コントロールユニット25との情報通信、操作レバー32、33の情報取得、モニタ34への映像情報の出力、アクチュエータ35の制御、を行う操縦側遠隔コントロールユニット43が配設されており、遠隔コントロールユニット43と操作レバー32、33やモニタ34、アクチュエータ35とは配線41によって電気的に接続されている。
 モニタ34は、右側モニタ34a、左側モニタ34b、正面モニタ34cの3つのモニタから構成されており、視野角を広くし没入感が出るようにすることで、正面のモニタ1台の構成に比べて実機に近い視野を得られるようにしている。
 遠隔操縦設備3は無線通信アンテナ42を介して操縦側遠隔コントロールユニット43に、油圧ショベル1から伝送される映像、傾斜方向および傾斜量、旋回回転量、走行速度を取りこむことができる。また、操縦側遠隔コントロールユニット43は、映像をモニタ34へ出力し、アクチュエータ35を適切に駆動することで台座37を機体の傾斜角度と同等となるよう制御すると共に、フロント操作レバー32、走行操作レバー33の操作量信号を取得して、無線通信アンテナ42を介して車体側遠隔コントロールユニット25へ送信する。車体側遠隔コントロールユニット25は、無線通信アンテナ24を介して操縦側遠隔コントロールユニット43から送られてきた各操作レバーの操作量信号を、車体コントロールユニット26へ出力し、車体コントロールユニット26は得られた操作量信号を基に旋回モータや各シリンダを適切に制御する。
 このような構成により、オペレータは遠隔操縦設備3内の座席31に着座し、モニタ34に映し出される映像を見ると同時に、機体の傾斜情報を座席31が傾斜することで体感しながら、各操作レバー32、33を操作することで、遠隔地にある油圧ショベル1を実機搭乗に近い感覚で操縦することが可能となっている。
 次に、図3を用いて台座37の傾斜駆動構造を説明する。台座37は、3つのアクチュエータ35a、35b、35cがそれぞれ連結部36a、36b、36cを介して連結されている。アクチュエータ35(35a~35c)は、直動運動を出力する電動あるいは油圧シリンダであり、鉛直方向にシリンダロッドが伸縮するよう設置されている。連結部36(36a~36c)は、自在継手361(361a~361c)と直動案内ガイド362(362a~362c)の2つから構成されている。加えて、アクチュエータ35のシリンダロッドは出力方向の軸回りの回転が拘束されておらず、連結部36と合わせて、各アクチュエータ35は3軸回転と1軸並進の合計4自由度を持って台座37へ接続されている。また、3つの直動案内ガイド362は、3つのアクチュエータ35の出力方向の軸と台座37との交点を結んでできる三角形の中央付近で、案内方向の仮想軸延長線が一点で交わるように配置されている。
 このような構成により、台座37は3つのアクチュエータ35のシリンダロッドの伸縮を適切に制御することにより、任意の傾斜方向および傾斜量となるよう台座37やそれに置かれた座席31を傾斜させることが可能となる。加えて、台座37を鉛直方向に並進駆動することもでき、機体の上下振動を座席31で再現することも可能である。
 次に、図4を用いて本実施の形態で行われる遠隔操縦システム全体の制御の流れについて説明する。図4には、操縦側遠隔コントロールユニット、車体側遠隔コントロールユニット、車体コントロールユニットの3つのコントロールユニットについて、それぞれで行われる処理について遠隔操縦システムに関連のある部分のみ示している。
 まず車体側の処理の流れについて説明する。車体側では、まず車体側遠隔コントロールユニット25が、カメラ20、傾斜センサ21、旋回センサ22、走行回転センサ23からそれぞれ最新のカメラ映像Img、傾斜方向θ、傾斜量R、旋回回転量φ、走行速度ωを取得する。これらのセンサ信号を、無線通信によって操縦側遠隔コントロールユニット43へ送信する。操縦側遠隔コントロールユニット43からは、操作レバー32、33の操作量信号Pnを受信し、これを車体コントロールユニット26へ送信する。車体コントロールユニットでは、受信した操作量信号Pnを基に、旋回モータやブームシリンダ16、アームシリンダ17、バケットシリンダ18を駆動する。
 続いて、図5のフローチャートを用いて遠隔操縦側の処理の流れについて説明する。操縦側遠隔コントロールユニットでは、台座37の走行時の姿勢を保持する傾斜方向の変数θa、傾斜量の変数Raを持っており、初期値として最初に「0」を代入する。次に車体側遠隔コントロールユニットからカメラ映像Img、傾斜方向θ、傾斜量R、旋回回転量φ、走行速度ωを受信し、走行速度ωの絶対値が「0」以上(走行中)であれば、θa、Raを受信した傾斜情報θ、Rに更新する。走行回転速度ωが「0」であれば、θa、Raの更新は行わず、θa、Raは走行時の最後の(停止した瞬間の)値がそのまま保持される。また、走行速度ωが「0」のときにのみ、θaから旋回角度φを減算する処理を行い、その値をθへ代入すると共に、RへRaを代入する。このθ、Rを基にアクチュエータ35の目標位置を演算し、目標位置となるようアクチュエータ35を位置制御する。次に、モニタ34に受信したカメラ映像を出力し、モニタ34上でカメラ映像が映し出されるようにする。最後に、フロント操作レバー32と走行操作レバー33の操作量Pnを取得し、車体側遠隔コントロールユニット25へ送信する。
 このような処理により、油圧ショベル1が走行中にのみ、台車37やそれに配置された座席31が、傾斜センサ21によって得られた傾斜方向および傾斜量にリアルタイムに制御され、油圧ショベル1が走行していない場合には座席31は同じ傾斜量を保持するように制御される。また、油圧ショベル1が走行していない状態で上部旋回体11が下部走行体12に対して旋回すると、その旋回角度に合わせて上部旋回体11の傾斜方向を演算する。
 このように構成された遠隔操縦システムについて、その効果を説明する。まず、機体走行時に機体の傾斜角度誤認によって転倒するなどの事故を防ぐため、オペレータの着座する座席を機体の傾斜情報と同調するよう傾けることで、オペレータへ体感的に機体の傾斜情報を提示し、安全性の向上を図ることができる。一方、例えば油圧ショベルの場合などは、ブームやアーム、バケットを激しく動かして作業すると機体が大きく振動することがある。この振動は、オペレータの作業にとって必要性が低く、オペレータの疲労の原因の一つとなっている。一般的に、作業時には機体は走行停止しており、また、走行停止時には機体の傾斜量が変化することは少ない。このため、走行停止時には機体の傾斜量を走行時の最後の傾斜量(走行停止した瞬間の傾斜量とほぼ等しい)を保持する。走行停止時に旋回することで傾斜方向が変わる場合には、保持した傾斜方向と旋回回転量から旋回中あるいは旋回後の傾斜方向を演算することで、作業によって発生する機体の振動をオペレータが着座する座席で同調させないよう座席を制御できる。このような構成により、疲労の原因となる機体の振動をオペレータへ与えずに済み、オペレータの疲労を軽減し、作業性の向上を図ることができる。
 本実施の形態では、作業機械として油圧ショベルを対象とした。このため、走行停止時にも旋回回転量によって傾斜方向が変わる可能性があり、旋回回転量による傾斜方向の演算処理が入っているが、例えばホイールローダなどのように旋回しない作業機械や、油圧ショベルであっても下部走行体に傾斜センサを配設すれば、このような旋回回転量による傾斜方向の演算処理は必要なく、旋回センサも必要ない。また、本実施の形態では、走行中かどうかの分岐処理や分岐後の傾斜方向の演算処理を操縦側遠隔コントロールユニット43で行っているが、これらの処理は車体側遠隔コントロールユニット25で行ってもよい。操縦側遠隔コントロールユニット43でこれらの処理を行った場合、車体側遠隔コントロールユニット25では計算量が減るため、より小型あるいは安価なコントロールユニットを車体へ搭載することができる。一方、車体側遠隔コントロールユニット25でこれらの処理を行った場合、旋回回転量や走行速度の情報を操縦側遠隔コントロールユニットへ送信しなくて済むため、通信量を減らすことができる。
 次に、図6を用いて本発明の第2の実施の形態である作業機械の遠隔操縦システムについて説明する。第2の実施の形態が第1の実施の形態と異なる点は制御の処理内容についてのみであり、その他の構成については第1の実施の形態と同様であるため、図や説明は省略する。本実施の形態においても、第1の実施の形態と同様に作業機械として油圧ショベルを例に説明するが、本発明における作業機械は油圧ショベルに限定するものではなく、掘削、積込、運搬などを行うあらゆる作業機械の中で、地面に対して走行する能力を有する全てのものに適用可能である。
 図6のフローチャートは第2の実施の形態である遠隔操縦システム全体の制御の流れについて示したものである。第1の実施の形態と異なる点は、操縦側遠隔コントローラ43内の処理であり、第1の実施の形態と異なる点に関してのみ説明する。
 第2の実施の形態における操縦側遠隔コントロールユニット43での処理内容は、第1の実施の形態のそれと異なり、まず傾斜情報を保持する変数θa、Raを用いない。このため、走行中にθa、Raの値を更新したり、走行停止時に停止した瞬間の傾斜情報を保持し続けるという処理を行わない。その代わりに、走行停止中に以下の処理を行う。すなわち、傾斜方向θに対して、旋回回転量φを加算し、加算後のθとRを低域通過フィルタにかけ、フィルタ通過後のθから旋回回転量φを減算するというものである。旋回回転量がφの状態で走行停止していた場合、傾斜方向θに旋回回転量φを加算すると、加算後の傾斜方向は下部走行体の傾斜方向と一致する。これに低域通過フィルタをかけると、作業などによって発生する振動成分を除去することができる。この低域通過フィルタ処理後の傾斜方向と、第1の実施の形態での走行停止した瞬間の傾斜方向θaとがほぼ同等の値となるが、θa、Raが走行停止中は全く変動しないのに対し、本実施の形態の低域通過フィルタ処理後のθ、Rは、例えば地面が崩れて機体が傾くなどのように、走行停止中であっても機体の傾斜方向および傾斜量が変動するような場合に、傾斜情報を抽出することができる。低域通過フィルタ処理後の傾斜方向から旋回回転量φを減算することにより、旋回回転量φでの機体の傾斜情報を正くオペレータへ提示することができる。
 本実施の形態の走行停止中の一連の処理は、第1の実施の形態が走行停止した瞬間の傾斜情報を保持し続け、これに対して旋回回転量分の演算を行うのに対して、傾斜情報の低周波数成分に対して旋回回転量分の演算を行うというものである。このような処理により、走行停止中にも機体の傾斜方向および傾斜量が変動するような場合に対処することが可能となる。また、単に傾斜方向θに低域通過フィルタ処理すると位相遅れが発生し、旋回による傾斜方向変動に同調させることができない可能性が高い。一方、本実施の形態の処理では旋回による傾斜方向変動に同調させることが可能である。
 このような構成により、第1の実施の形態における発明の効果に加えて、走行停止時にも変動する機体の傾斜情報をオペレータへ提示することができ、例えば走行停止中に崖の崩壊によって機体が傾くなどの状況にも対応することが可能となり、より安全性の向上を図ることができる。
 第2の実施の形態における操縦側遠隔コントロールユニット43での処理内容で、第1の実施の形態のそれと異なるもう一つの点は、走行停止時のみ、カメラ20から得られる映像Imgに対して、機体の振動が要因で起こる映像内の振動成分を除去してから、操縦側遠隔コントロールユニットに映像Imgを送信する処理が追加されているところである。Imgの振動成分除去方法としては、傾斜センサ21から得られる傾斜方向θと傾斜量Rの情報を基に画像をシフトさせればよい。
 このような構成により、走行停止時においてオペレータへ提示する座席の傾斜量と映像とがどちらも振動成分を含まず、座席の動きと映像とを同期させることができる。このような構成により、体感情報と視覚情報とのずれによって引き起こされるオペレータの疲労を軽減することが可能となる。
 なお、本実施の形態においても第1の実施の形態と同様、走行中かどうかの分岐処理や分岐後の処理は車体側遠隔コントロールユニット43で行ってもよい。
 1         油圧ショベル
 11        上部旋回体
 12        下部走行体
 13        ブーム
 14        アーム
 15        バケット
 16        ブームシリンダ
 17        アームシリンダ
 18        バケットシリンダ
 19        運転席
 20        カメラ
 21        傾斜センサ
 22        旋回センサ
 23        走行回転センサ
 24        無線通信アンテナ
 25        車体側遠隔コントロールユニット
 26        車体コントロールユニット
 3         遠隔操縦設備
 31        座席
 32        フロント操作レバー
 33        走行操作レバー
 34        モニタ
 35        アクチュエータ
 36        連結部
 37        台座
 40        コントロールボックス
 41        配線
 42        無線通信アンテナ
 43        操縦側遠隔コントロールユニット

Claims (5)

  1.  遠隔地に設置された遠隔操縦設備からオペレータが作業機械を操縦する作業機械の遠隔操縦システムにおいて、
    前記作業機械は走行手段と、
    機体の傾斜方向と傾斜量を検出する傾斜検出手段を備え、
    前記遠隔操縦設備はオペレータが着座する座席と、
    座席を傾斜させる傾斜駆動手段とを備え、
    前記傾斜駆動手段は前記作業機械が走行中には前記傾斜検出手段で検出された傾斜方向と傾斜量に座席が同調するよう座席を傾斜させ、
    前記作業機械が走行していないときには一定の傾斜量を保つよう前記座席の傾斜を制御することを特徴とする作業機械の遠隔操縦システム。
  2. 請求項1の作業機械の遠隔操縦システムにおいて、
    前記作業機械が走行していないときには前記傾斜検出手段で検出された傾斜量の低周波数成分に対して座席が同調するよう座席を傾斜させることを特徴とする作業機械の遠隔操縦システム。
  3.  請求項1の作業機械の遠隔操縦システムにおいて、
    前記作業機械は走行中か停止中かを検出する走行状態検出手段を備え、
    前記傾斜駆動手段は前記走行状態検出手段が走行中を示している間は傾斜検出手段で検出された傾斜方向と傾斜量に座席が同調するよう座席を傾斜させ、
    前記走行状態検出手段が停止中を示している間は、前記走行状態検出手段が走行中から停止中に切り替わった時の傾斜検出手段で検出された傾斜量を保つよう、前記座席の傾斜を制御することを特徴とする作業機械の遠隔操縦システム。
  4.  請求項1または請求項2の作業機械の遠隔操縦システムにおいて、
    前記作業機械は走行体と、走行体に対して垂直軸回りに回転可能に支持された旋回体から成り、走行体に対する旋回体の回転量を検出する旋回検出手段を備え、
    前記作業機械が走行していないときには前記走行体の傾斜方向を傾斜検出手段によって直接、あるいは間接的に取得し、前記走行体の傾斜方向に対して旋回検出手段によって検出された旋回回転量を基に前記旋回体の傾斜方向を導出し、この前記旋回体の傾斜方向に座席が同調するよう座席を傾斜させることを特徴とする作業機械の遠隔操縦システム。
  5.  請求項1または請求項2の作業機械の遠隔操縦システムにおいて、
    作業機械は機体から見える映像を検出する映像検出手段を備え、
    遠隔操縦設備は映像をオペレータへ提示する映像出力手段を備え、
    作業機械が走行しているときには前記映像検出手段で検出された映像をそのまま前記映像出力手段で出力し、
    作業機械が走行していないときには前記映像検出手段で検出された映像に対して、機体の傾斜振動が要因で起こる映像内の振動成分を除去した後、前記映像出力手段で出力することを特徴とする作業機械の遠隔操縦システム。
PCT/JP2014/060237 2014-04-09 2014-04-09 作業機械の遠隔操縦システム WO2015155845A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/300,477 US9982415B2 (en) 2014-04-09 2014-04-09 Remote control system for work machines
JP2016512522A JP6220961B2 (ja) 2014-04-09 2014-04-09 作業機械の遠隔操縦システム
PCT/JP2014/060237 WO2015155845A1 (ja) 2014-04-09 2014-04-09 作業機械の遠隔操縦システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/060237 WO2015155845A1 (ja) 2014-04-09 2014-04-09 作業機械の遠隔操縦システム

Publications (1)

Publication Number Publication Date
WO2015155845A1 true WO2015155845A1 (ja) 2015-10-15

Family

ID=54287448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060237 WO2015155845A1 (ja) 2014-04-09 2014-04-09 作業機械の遠隔操縦システム

Country Status (3)

Country Link
US (1) US9982415B2 (ja)
JP (1) JP6220961B2 (ja)
WO (1) WO2015155845A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017174205A3 (de) * 2016-01-14 2018-01-25 Liebherr-Components Biberach Gmbh Fernsteuer-einrichtung für kran, baumaschine und/oder flurförderzeug
JP2018142123A (ja) * 2017-02-27 2018-09-13 株式会社Ihi 遠隔操縦システム
JP2019060184A (ja) * 2017-09-28 2019-04-18 カヤバ システム マシナリー株式会社 掘削現場監視装置
WO2019187560A1 (ja) * 2018-03-29 2019-10-03 コベルコ建機株式会社 作業機械操縦装置
JP2020143520A (ja) * 2019-03-07 2020-09-10 コベルコ建機株式会社 遠隔操作システム
WO2023286416A1 (ja) * 2021-07-15 2023-01-19 コベルコ建機株式会社 遠隔操作装置
US11970837B2 (en) 2018-03-29 2024-04-30 Kobelco Construction Machinery Co., Ltd. Working machine control device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10114370B2 (en) * 2016-11-21 2018-10-30 Caterpillar Inc. Machine automation system with autonomy electronic control module
WO2019017188A1 (ja) * 2017-07-18 2019-01-24 株式会社クボタ 作業機
JP7063036B2 (ja) * 2018-03-23 2022-05-09 コベルコ建機株式会社 建設機械
JP7143634B2 (ja) * 2018-05-29 2022-09-29 コベルコ建機株式会社 技能評価システム及び技能評価方法
JP2020133143A (ja) * 2019-02-14 2020-08-31 コベルコ建機株式会社 監視装置及び建設機械
JP2020170474A (ja) * 2019-04-05 2020-10-15 コベルコ建機株式会社 スキル情報提示システム及びスキル情報提示方法
JP7302244B2 (ja) * 2019-04-05 2023-07-04 コベルコ建機株式会社 スキル情報提示システム及びスキル情報提示方法
JP2021025271A (ja) * 2019-08-02 2021-02-22 コベルコ建機株式会社 作業機
US11466429B2 (en) * 2020-01-23 2022-10-11 Stanley Black & Decker, Inc. Prime mover mountable hydraulic tool and related monitoring systems and methods
US11486115B2 (en) 2020-02-13 2022-11-01 Caterpillar Inc. Remote training system and method
DE102020108592A1 (de) 2020-03-27 2021-09-30 Jungheinrich Aktiengesellschaft Vorrichtung sowie Verfahren zum Fernsteuern eines Flurförderzeugs
JP2022154888A (ja) * 2021-03-30 2022-10-13 コベルコ建機株式会社 遠隔操作装置
KR102653874B1 (ko) * 2022-03-15 2024-04-03 도평건기 주식회사 건설중장비 안전원격제어 장치 및 방법
JP2024007313A (ja) 2022-07-05 2024-01-18 吉谷土木株式会社 作付け支援方法と圃場作業支援システム等

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608141B2 (ja) * 1997-03-14 2005-01-05 清水建設株式会社 油圧制御機械の遠隔制御装置
JP2005354479A (ja) * 2004-06-11 2005-12-22 Hitachi Constr Mach Co Ltd 作業機械の無線遠隔操縦システム
JP2013116773A (ja) * 2011-12-01 2013-06-13 Shimizu Corp タワークレーンの遠隔操作システム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557304A (en) * 1967-10-24 1971-01-19 Richard O Rue Remote control flying system
JPH0610773B2 (ja) * 1985-09-13 1994-02-09 日本舗道株式会社 搬送車遠隔操縦装置
FR2639384B1 (fr) * 1988-11-21 1991-02-22 Case Poclain Dispositif de commande d'un engin de travaux publics
JP3000068B2 (ja) * 1991-09-28 2000-01-17 東急建設株式会社 掘削ロボットにおける遠隔臨場制御方法
US5865624A (en) * 1995-11-09 1999-02-02 Hayashigawa; Larry Reactive ride simulator apparatus and method
JPH09217382A (ja) 1996-02-09 1997-08-19 Hitachi Constr Mach Co Ltd 遠隔操縦掘削機
JP3628826B2 (ja) * 1996-12-24 2005-03-16 本田技研工業株式会社 脚式移動ロボットの遠隔制御システム
US6353773B1 (en) * 1997-04-21 2002-03-05 Honda Giken Kogyo Kabushiki Kaissha Remote control system for biped locomotion robot
JPH1161887A (ja) * 1997-08-25 1999-03-05 Ohbayashi Corp 建設機械用遠隔操縦装置
JP3364419B2 (ja) * 1997-10-29 2003-01-08 新キャタピラー三菱株式会社 遠隔無線操縦システム並びに遠隔操縦装置,移動式中継局及び無線移動式作業機械
US6633800B1 (en) * 2001-01-31 2003-10-14 Ainsworth Inc. Remote control system
JP2003064725A (ja) * 2001-08-28 2003-03-05 Maeda Corp 無人化機械土工システム
JP2003162213A (ja) * 2001-11-27 2003-06-06 Mitsubishi Heavy Ind Ltd 模擬環境実現装置および模擬環境実現方法
JP4001328B2 (ja) * 2002-03-29 2007-10-31 若築建設株式会社 遠隔操作型水中施工機械
US8139108B2 (en) * 2007-01-31 2012-03-20 Caterpillar Inc. Simulation system implementing real-time machine data
CN102356417B (zh) * 2009-03-17 2014-09-10 马克思-普朗克科学促进协会 用于通过人工操作员对机器进行远程控制的遥操作方法和人机界面
US9213333B2 (en) * 2013-06-06 2015-12-15 Caterpillar Inc. Remote operator station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608141B2 (ja) * 1997-03-14 2005-01-05 清水建設株式会社 油圧制御機械の遠隔制御装置
JP2005354479A (ja) * 2004-06-11 2005-12-22 Hitachi Constr Mach Co Ltd 作業機械の無線遠隔操縦システム
JP2013116773A (ja) * 2011-12-01 2013-06-13 Shimizu Corp タワークレーンの遠隔操作システム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3950558A1 (de) * 2016-01-14 2022-02-09 Liebherr-Components Biberach GmbH Fernsteuer-einrichtung für kran, baumaschine und/oder flurförderzeug
US10850949B2 (en) 2016-01-14 2020-12-01 Liebherr-Components Biberach Gmbh Remote control device for a crane, a construction machine and/or for a pallet truck
RU2741456C2 (ru) * 2016-01-14 2021-01-26 Либхерр-Компонентс Биберах Гмбх Устройство дистанционного управления для крана, строительной машины и/или автопогрузчика
WO2017174205A3 (de) * 2016-01-14 2018-01-25 Liebherr-Components Biberach Gmbh Fernsteuer-einrichtung für kran, baumaschine und/oder flurförderzeug
JP2018142123A (ja) * 2017-02-27 2018-09-13 株式会社Ihi 遠隔操縦システム
JP7119285B2 (ja) 2017-02-27 2022-08-17 株式会社Ihi 遠隔操縦システム
JP2019060184A (ja) * 2017-09-28 2019-04-18 カヤバ システム マシナリー株式会社 掘削現場監視装置
WO2019187560A1 (ja) * 2018-03-29 2019-10-03 コベルコ建機株式会社 作業機械操縦装置
JP2019173444A (ja) * 2018-03-29 2019-10-10 コベルコ建機株式会社 作業機械操縦装置
JP7000957B2 (ja) 2018-03-29 2022-01-19 コベルコ建機株式会社 作業機械操縦装置
US11970837B2 (en) 2018-03-29 2024-04-30 Kobelco Construction Machinery Co., Ltd. Working machine control device
JP2020143520A (ja) * 2019-03-07 2020-09-10 コベルコ建機株式会社 遠隔操作システム
WO2023286416A1 (ja) * 2021-07-15 2023-01-19 コベルコ建機株式会社 遠隔操作装置

Also Published As

Publication number Publication date
JPWO2015155845A1 (ja) 2017-04-13
US9982415B2 (en) 2018-05-29
JP6220961B2 (ja) 2017-10-25
US20170121938A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
JP6220961B2 (ja) 作業機械の遠隔操縦システム
CN109311639B (zh) 用于起重机、施工机械和/或托盘搬运车的遥控装置
EP3767044B1 (en) Pivot control device for pivoting-type working machine
CN101681180B (zh) 用于机器的操作员控制装置
IL193486A (en) A method for remote control of an unmanned terrestrial vehicle with a panoramic camera and this type of vehicle
JP6650710B2 (ja) 無人車両における遠隔操縦用画像の作製方法、及び無人車両の遠隔操縦システム
WO2014096773A1 (en) Inceptor apparatus
WO2020194883A1 (ja) 遠隔操作システム
CN111788359B (zh) 工程机械
WO2015155878A1 (ja) 遠隔操縦作業機
JP4277825B2 (ja) ロボットの教示システム
JP7318258B2 (ja) 遠隔操作システムおよび遠隔操作サーバ
JP2019214836A (ja) 作業機械の遠隔制御システム
KR101651898B1 (ko) 농업용 트랙터 시뮬레이터의 제어 장치
US10926665B2 (en) Method for controlling a seating apparatus of a motor vehicle when operating a virtual reality application and seating apparatus
GB2509091A (en) Inceptor Apparatus
JP6433664B2 (ja) 建設機械用俯瞰画像表示装置
JP2007016403A (ja) 作業機械のカメラ制御装置
JPH09193078A (ja) 遠隔操縦機械のカメラ方向制御装置
JP7225935B2 (ja) 遠隔操作システム
WO2023100689A1 (ja) 建設機械の駆動装置、これを備えた建設機械及び建設機械システム
JP2019214824A (ja) 作業機械
JPH0820975A (ja) 建設機械の監視装置
JP2023040534A (ja) 遠隔操縦訓練装置
JP2015199135A (ja) マスタスレーブマニピュレータの位置姿勢合わせ方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14888967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512522

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15300477

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14888967

Country of ref document: EP

Kind code of ref document: A1