WO2015149502A1 - 双氟磺酰亚胺鎓盐的制备方法 - Google Patents

双氟磺酰亚胺鎓盐的制备方法 Download PDF

Info

Publication number
WO2015149502A1
WO2015149502A1 PCT/CN2014/089126 CN2014089126W WO2015149502A1 WO 2015149502 A1 WO2015149502 A1 WO 2015149502A1 CN 2014089126 W CN2014089126 W CN 2014089126W WO 2015149502 A1 WO2015149502 A1 WO 2015149502A1
Authority
WO
WIPO (PCT)
Prior art keywords
bisfluorosulfonimide
cation
phosphonium
hydrogen fluoride
ion
Prior art date
Application number
PCT/CN2014/089126
Other languages
English (en)
French (fr)
Inventor
陈群
Original Assignee
深圳新宙邦科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳新宙邦科技股份有限公司 filed Critical 深圳新宙邦科技股份有限公司
Publication of WO2015149502A1 publication Critical patent/WO2015149502A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/02Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements
    • C07D295/037Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements with quaternary ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • C01B21/093Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more sulfur atoms
    • C01B21/0935Imidodisulfonic acid; Nitrilotrisulfonic acid; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/02Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements
    • C07D295/023Preparation; Separation; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/10Spiro-condensed systems

Definitions

  • the invention relates to a preparation method of a fluorine-containing compound, in particular to a preparation method of a bisfluorosulfonimide phosphonium salt.
  • Difluorosulfonimide sulfonium salt is an important class of ionic compounds. As a high-performance electrolyte material, it plays a key role in electrochemical new energy devices such as lithium-ion batteries and supercapacitors. Therefore, it has high industrial application. value.
  • Japanese Soda Co., Ltd. patent CN103391896A firstly reacting chlorosulfonyl isocyanate with chlorosulfonic acid to obtain dichlorosulfonimide, then reacting with ammonium fluoride in acetonitrile, filtering and removing the solvent to obtain bisfluorosulfonimide ammonium salt. Finally, cation exchange with the ruthenium compound gives a bisfluorosulfonimide sulfonium salt.
  • the method reported in the patent has the problems that the reaction and the purification process are too long, the impurities are not easily separated from the product, the product yield is too low, the raw material consumption is too much, and the manufacturing cost is too high.
  • Japan Catalyst Patent CN102917979A firstly reacting sulfonamide with thionyl chloride and chlorosulfonic acid (or chlorosulfonyl isocyanate with chlorosulfonic acid) to obtain dichlorosulfonimide, followed by metal fluoride in organic solvent The reaction yields a bisfluorosulfonimide metal salt, and finally cation exchange with the hydrazine compound to obtain a bisfluorosulfonimide sulfonium salt.
  • This method has the following disadvantages: the preparation and purification process is too long, resulting in too much material consumption and too high production cost; the impurity ions in the cation exchange reaction are difficult to separate from the cesium ions, resulting in too low product yield and purity. If the above problems are not solved, it will hinder the large-scale application of bisfluorosulfonimide sulfonium salt, especially to prevent it from becoming a mainstream electrolyte material in new energy devices such as lithium ion batteries and supercapacitors.
  • an object of the present invention is to provide a method for preparing a bisfluorosulfonimide phosphonium salt which has low raw material cost and high utilization rate and is easy to purify the product.
  • a bisfluorosulfonimide phosphonium salt can be prepared from a dichlorosulfonylimide and a phosphonium ion halide, and a product having a high purity can be obtained by directly distilling off hydrogen fluoride.
  • the method shortens the existing process flow, reduces material consumption and waste discharge, and reduces the manufacturing cost of the product; since the cation which is difficult to remove is not introduced in the preparation process, the product is easy to be purified, and the purity and the yield are extremely high.
  • the present invention is completed based on these findings, and provides a method for producing a bisfluorosulfonimide phosphonium salt, which comprises halogenating a bischlorosulfonimide represented by the formula (A) and a phosphonium ion represented by the formula (B). a step of reacting hydrogen fluoride with hydrogen fluoride to obtain a bisfluorosulfonimide phosphonium salt;
  • M + represents a phosphonium cation and X - represents a halogen ion.
  • the reaction product is bisfluorosulfonimide sulfonium salt and hydrogen halide, and there are no other complicated reaction by-products, thereby reducing material consumption and waste generation, and improving raw material utilization rate, product yield and purity;
  • the hydrogen halide of the reaction product will be naturally discharged in the form of gas, thereby further improving the purity of the product; no cations which are difficult to remove are introduced during the reaction, and a small amount of excess hydrogen fluoride which may be contained in the product may also pass.
  • Conventional technical means such as distillation can be removed or recycled, so that the product can be easily purified, and the high-purity practical application standard can be achieved without complicated purification process, which simplifies the preparation process of the product and lays a good foundation for large-scale industrial production. technical foundation.
  • Example 1 is a liquid chromatogram of dichlorosulfonimide prepared in Example 1 of the present invention
  • Example 2 is a liquid chromatogram of a difluorosulfonylimide ammonium salt prepared in Example 2 of the present invention
  • Example 3 is an ion chromatogram of a tetraethylammonium cation of a bisfluorosulfonimide tetraethylammonium salt prepared in Example 3 of the present invention
  • Figure 4 is a bisfluorosulfonimide of the bisfluorosulfonimide tetraethylammonium salt prepared in Example 3 of the present invention. Ion chromatogram of ions;
  • Figure 5 is an ion chromatogram of a 1,1-dimethylpyrrolidinium cation of a bisfluorosulfonimide-1,1-dimethylpyrrolidinium salt prepared in Example 4 of the present invention
  • Example 6 is an ion chromatogram of a spirobipyrrolidinium cation of a bisfluorosulfonimide spirobipyrrolidinium salt prepared in Example 5 of the present invention
  • Figure 7 is an ion chromatogram of a 1,1-dimethylpiperidinium cation of a bisfluorosulfonimide-1,1-dimethylpiperidinium salt prepared in Example 6 of the present invention
  • Figure 8 is an ion chromatogram of a 4,4-dimethylmorpholinium cation of a bisfluorosulfonimide-4,4-dimethylmorpholinium salt prepared in Example 7 of the present invention
  • Figure 9 is an ion chromatogram of a 1,3-dimethylimidazolium cation of a bisfluorosulfonimide-1,3-dimethylimidazolium salt prepared in Example 8 of the present invention.
  • Figure 10 is an ion chromatogram of a 1-methylpyridinium cation of a bisfluorosulfonimide-1-methylpyridinium salt obtained in Example 9 of the present invention.
  • the main difference between the present invention and the prior art is that hydrogen fluoride is used as a fluorinating reagent and a reaction solvent is reacted with bischlorosulfonimide or hydrazine ion halide to prepare a bisfluorosulfonimide sulfonium salt, thereby reducing the cost of raw materials.
  • hydrogen fluoride is used as a fluorinating reagent and a reaction solvent is reacted with bischlorosulfonimide or hydrazine ion halide to prepare a bisfluorosulfonimide sulfonium salt, thereby reducing the cost of raw materials.
  • the preparation process is more concise and efficient, and it is laid for large-scale industrial preparation of bisfluorosulfonimide antimony salt. Good technical foundation.
  • the method for preparing a bisfluorosulfonimide phosphonium salt provided by the present invention comprises: reacting a bischlorosulfonimide represented by the structural formula (A), a phosphonium ion halide represented by the structural formula (B), and hydrogen fluoride.
  • the step of obtaining a bisfluorosulfonimide sulfonium salt comprises: reacting a bischlorosulfonimide represented by the structural formula (A), a phosphonium ion halide represented by the structural formula (B), and hydrogen fluoride.
  • M + represents a phosphonium cation and X - represents a halogen ion.
  • the bischlorosulfonimide may be a commercially available product or a method described in the literature (R. Appel et al, Chem. Ber. 1962, 95, 625; M. Goehring et al, Inorg. Synth. 1966, 8, 105; J. Ruff, Inorg. Chem. 1967, 6, 2108; M. Berran et al, Z. Anorg. Allg. Chem. 2005, 631, 55).
  • the bischlorosulfonimide is prepared by a mixed reaction of a sulfonamide, a thionyl chloride and a chlorosulfonic acid, and the reaction equation is as follows:
  • the reaction temperature is controlled at 120 to 140 ° C, and the reaction time is 20 to 30 hours.
  • the acid gas (SO 2 , HCl) generated during the reaction can be absorbed into the alkali solution, and the dichlorosulfonimide obtained after the reaction can be further purified by vacuum distillation.
  • the dichlorosulfonimide fraction temperature is 110. ⁇ 114 ° C / 2 mmHg.
  • the hydrogen fluoride may be a commercially available product, or may be obtained by reacting fluorite calcium fluoride with concentrated sulfuric acid.
  • the phosphonium ion halide may be a commercially available product, or may be synthesized by a method described in the literature (Electrochim. Acta. 2006, 51, 5567) and the literature cited therein.
  • the phosphonium cations include ammonium ion (NH 4 + ), imidazolium ion (a), pyridinium ion (b), pyrrolidinium ion (c), piperidinium ion (d), morpholinium ion (e), quaternary ammonium ion (f), etc.
  • halogen ion includes fluoride ion (F - ), chloride ion (Cl - ), bromide ion (Br - ), and iodide ion (I - ).
  • the phosphonium cation is a phosphonium cation containing an organic group R.
  • the organic group may, for example, be a saturated or unsaturated hydrocarbon group, and the atom constituting the atom is preferably a carbon atom, a hydrogen atom, a fluorine atom, an oxygen atom, a nitrogen atom or a sulfur atom.
  • the saturated or unsaturated hydrocarbon group may be a linear, linear or cyclic hydrocarbon group, and the number of carbon atoms constituting it is preferably from 0 to 18. If the ruthenium cation is bonded to two organic groups R1 and R2, the R1 group and the R2 group may be the same or different, or may be combined to form an R group having two bonding positions, as follows:
  • Examples of the phosphonium cation containing an organic group include a 1,3-dimethylimidazolium cation, a 1-ethyl-3-methylimidazolium cation, a 1-propyl-3-methylimidazolium cation, and 1 -butyl-3-methylimidazolium cation, 1-hexyl-3-methylimidazolium cation, 1-hexadecyl-3-methylimidazolium cation, 1-allyl-3-ethylimidazole Imidazolium cations such as phosphonium cations, 1,3-diallyl imidazolium cations; 1-methylpyridinium cations, 1-ethylpyridinium cations, 1-pentylpyridinium cations, 1-allylpyridinium Pyridinium cation such as cation; 1,1-dimethylpyrrolidinium cation, 1-methyl-1-propylpyrrolidin
  • the hydrogen fluoride is present in a liquid form, and the dichlorosulfonimide is added dropwise to an excess amount of hydrogen fluoride (hydrogen fluoride can be contained in a dry reaction vessel), and the reaction temperature is controlled to be below 20 ° C, preferably -15 to 15 ° C, more preferably 0 to 10 ° C.
  • the dichlorosulfonimide may be first reacted with hydrogen fluoride, and then added with a ruthenium ion halide.
  • the hydrogen fluoride and the ruthenium ion halide may be first mixed and then reacted with dichlorosulfonimide to form an acid gas. Absorbed into the lye.
  • the reaction time is preferably from 1 to 12 hours, more preferably from 3 to 6 hours, depending on the reaction scale.
  • the above preparation method further comprises the step of distilling off the hydrogen fluoride by distilling the bisfluorosulfonimide sulfonium salt obtained by the reaction, and the distillation temperature is preferably from 30 ° C to 60 ° C.
  • the distilled hydrogen fluoride can be recycled.
  • the purity of the bisfluorosulfonimide sulfonium salt prepared by the above method is above 99%, which is significantly higher than the purity of the bisfluorosulfonimide sulfonium salt prepared by the prior art method, and the above method is superior to the prior art.
  • the process is simpler, the raw material costs are lower, the by-products are less, and the product is easier to purify.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种双氟磺酰亚胺鎓盐的制备方法,其包括将结构式(A)所示的双氯磺酰亚胺、结构式(B)所示的鎓离子卤化物和氟化氢反应制得双氟磺酰亚胺鎓盐的步骤;其中,M +表示鎓阳离子,X -表示卤素离子。

Description

双氟磺酰亚胺鎓盐的制备方法 技术领域
本发明涉及一种含氟化合物的制备方法,具体涉及双氟磺酰亚胺鎓盐的制备方法。
背景技术
双氟磺酰亚胺鎓盐是一类重要的离子化合物,其作为高性能电解质材料,在锂离子电池、超级电容器等电化学新能源器件起关键性的作用,因此具有很高的产业化应用价值。
日本曹达株式会社专利CN103391896A,首先由氯磺酰异氰酸酯与氯磺酸反应得到双氯磺酰亚胺,然后在乙腈中与氟化铵反应后过滤除去溶剂得到双氟磺酰亚胺铵盐,最后与鎓化合物发生阳离子交换得到双氟磺酰亚胺鎓盐。该专利报道的方法存在反应和纯化工艺流程太长,杂质不易与产品分离,产品收率太低,原料消耗太多,制造成本太高等问题。
株式会社日本触媒专利CN102917979A,首先由磺酰胺与二氯亚砜、氯磺酸反应(或氯磺酰异氰酸酯与氯磺酸反应)得到双氯磺酰亚胺,接着在有机溶剂中与金属氟化物反应得到双氟磺酰亚胺金属盐,最后与鎓化合物发生阳离子交换得到双氟磺酰亚胺鎓盐。
上述已知的专利均采用公开的方法合成双氯磺酰亚胺(R.Appel et al,Chem.Ber.1962,95,625;M.Goehring et al,Inorg.Synth.1966,8,105;J.Ruff,Inorg.Chem.1967,6,2108;M.Berran et al,Z.Anorg.Allg.Chem.2005,631,55),然后制备并提纯双氟磺酰亚胺类化合物,最后与鎓化合物进行阳离子交换制备并提纯得到双氟磺酰亚胺鎓盐。这种方法存在以下缺点:制备与纯化工艺流程太长,导致物料消耗太多,生产成本太高;阳离子交换反应中的杂质离子与鎓离子很难分离,导致产品收率和纯度太低。以上问题若未解决,将阻碍双氟磺酰亚胺鎓盐的大规模应用,尤其是阻碍其成为锂离子电池、超级电容器等新能源器件中的主流电解质材料。
发明内容
为了克服上述现有技术的缺陷,本发明的目的在于提供一种原料成本低且利用率高、产品易纯化的双氟磺酰亚胺鎓盐的制备方法。
为实现上述发明目的,本发明的发明人通过反复的深入研究,结果发现使 用氟化氢作为反应溶剂和氟化试剂,可以由双氯磺酰亚胺与鎓离子卤化物制备得到双氟磺酰亚胺鎓盐,直接蒸馏除去氟化氢就得到纯度很高的产品。该方法缩短了现有工艺流程,减少了物料消耗和废弃物排放,降低了产品制造成本;因为制备过程中没有引入难以去除的阳离子,因此产品容易纯化,纯度与收率极高。本发明基于这些见解而完成,提供的一种双氟磺酰亚胺鎓盐的制备方法,包括将结构式(A)所示的双氯磺酰亚胺、结构式(B)所示的鎓离子卤化物和氟化氢反应制得双氟磺酰亚胺鎓盐的步骤;
Figure PCTCN2014089126-appb-000001
其中,M+表示鎓阳离子,X-表示卤素离子。
从上述技术方案可知,本发明的双氟磺酰亚胺鎓盐的制备方法,具有以下优点:
1、以氟化氢作为氟化试剂和反应溶剂,氟化氢相对易获得且原料成本较低,从而大大降低了产品的生产成本;
2、由双氯磺酰亚胺、氟化氢和鎓离子卤化物直接制备得到双氟磺酰亚胺鎓盐,显著简化了产品的制备工艺流程,提高生产效率;
3、反应产物为双氟磺酰亚胺鎓盐和卤化氢,不存在其他复杂的反应副产物,从而减少了物料消耗和废弃物生成,提高了原料的利用率、产品收率和纯度;
4、反应过程中,反应产物卤化氢会以气体的形式自然排出,从而进一步提高了产品的纯度;反应过程中没有引入难以去除的阳离子,而且产品中可能夹杂的少量多余的氟化氢,也可以通过蒸馏等常规的技术手段予以去除或回收,从而使产品易于纯化,无需通过复杂的提纯工艺即能达到高纯度的实际应用标准,简化了产品的制备工艺流程,为大规模工业化生产打下了良好的技术基础。
附图说明
图1为本发明实施例1制得的双氯磺酰亚胺的液相色谱图;
图2为本发明实施例2制得的双氟磺酰亚胺铵盐的液相色谱图;
图3为本发明实施例3制得的双氟磺酰亚胺四乙基铵盐的四乙基铵阳离子的离子色谱图;
图4为本发明实施例3制得的双氟磺酰亚胺四乙基铵盐的双氟磺酰亚胺阴 离子的离子色谱图;
图5为本发明实施例4制得的双氟磺酰亚胺-1,1-二甲基吡咯烷鎓盐的1,1-二甲基吡咯烷鎓阳离子的离子色谱图;
图6为本发明实施例5制得的双氟磺酰亚胺螺二吡咯烷鎓盐的螺二吡咯烷鎓阳离子的离子色谱图;
图7为本发明实施例6制得的双氟磺酰亚胺-1,1-二甲基哌啶鎓盐的1,1-二甲基哌啶鎓阳离子的离子色谱图;
图8为本发明实施例7制得的双氟磺酰亚胺-4,4-二甲基吗啉鎓盐的4,4-二甲基吗啉鎓阳离子的离子色谱图;
图9为本发明实施例8制得的双氟磺酰亚胺-1,3-二甲基咪唑鎓盐的1,3-二甲基咪唑鎓阳离子的离子色谱图;
图10为本发明实施例9制得的双氟磺酰亚胺-1-甲基吡啶鎓盐的1-甲基吡啶鎓阳离子的离子色谱图。
具体实施方式
为详细说明本发明的技术内容、构造特征、所实现目的及效果,以下结合实施方式详予说明。
本发明与现有技术的主要区别点在于:采用氟化氢作为氟化试剂和反应溶剂与双氯磺酰亚胺、鎓离子卤化物反应制得双氟磺酰亚胺鎓盐,从而达到降低原料成本,减少物料消耗和废弃物生成,提高原料利用率、产品收率和纯度,并使产品的纯化更容易,制备工艺流程更简洁高效,为大规模产业化制备双氟磺酰亚胺鎓盐打下良好的技术基础。
具体的,本发明提供的双氟磺酰亚胺鎓盐的制备方法,包括将结构式(A)所示的双氯磺酰亚胺、结构式(B)所示的鎓离子卤化物和氟化氢反应制得双氟磺酰亚胺鎓盐的步骤。
Figure PCTCN2014089126-appb-000002
其中,M+表示鎓阳离子,X-表示卤素离子。
在上述制备方法中,所述双氯磺酰亚胺可以是市售产品,也可以通过文献记载的方法(R.Appel et al,Chem.Ber.1962,95,625;M.Goehring et al,Inorg. Synth.1966,8,105;J.Ruff,Inorg.Chem.1967,6,2108;M.Berran et al,Z.Anorg.Allg.Chem.2005,631,55)合成得到。优选的,所述双氯磺酰亚胺由磺酰胺、二氯亚砜和氯磺酸混合反应制得,反应方程式如下:
Figure PCTCN2014089126-appb-000003
其中,反应温度控制在120~140℃,反应时间为20~30小时。反应过程中产生的酸性气体(SO2、HCl)可通到碱液中吸收,反应后得到的双氯磺酰亚胺可通过减压蒸馏进一步提纯,双氯磺酰亚胺的馏分温度为110~114℃/2mmHg。
优选的,所述磺酰胺、二氯亚砜和氯磺酸的摩尔比为磺酰胺∶二氯亚砜∶氯磺酸=1∶2∶1~1∶4∶1。
在上述制备方法中,所述氟化氢可以是市售产品,也可以通过萤石氟化钙与浓硫酸反应得到。
在上述制备方法中,所述鎓离子卤化物可以是市售产品,也可以通过文献(Electrochim.Acta.2006,51,5567)等及其引用的文献记载的方法合成得到。其中,鎓阳离子可以举出铵根离子(NH4 +)、咪唑鎓离子(a)、吡啶鎓离子(b)、吡咯烷鎓离子(c)、哌啶鎓离子(d)、吗啉鎓离子(e)、季铵离子(f)等;卤素离子包括氟离子(F-)、氯离子(Cl-)、溴离子(Br-)和碘离子(I-)。优选的,所述鎓阳离子为含有机基团R的鎓阳离子。作为有机基团,可以举出饱和或不饱和烃基等,构成其的原子优选为碳原子、氢原子、氟原子、氧原子、氮原子或硫原子。饱和或不饱和烃基可以是直链、直链或环状的烃基,构成其的碳原子数优选为0-18个。若鎓阳离子键接R1和R2两个有机基团,R1基团和R2基团可以相同,也可以不同,也可以合二为一成为含两个键接位置的R基团,如下所示:
Figure PCTCN2014089126-appb-000004
作为含有机基团的鎓阳离子,可以举出1,3-二甲基咪唑鎓阳离子、1-乙基-3-甲基咪唑鎓阳离子、1-丙基-3-甲基咪唑鎓阳离子、1-丁基-3-甲基咪唑鎓阳离子、1-己基-3-甲基咪唑鎓阳离子、1-十六烷基-3-甲基咪唑鎓阳离子、1-烯丙基-3-乙基咪唑鎓阳离子、1,3-二烯丙基咪唑鎓阳离子等咪唑鎓阳离子;1-甲基吡啶鎓阳离子、1-乙基吡啶鎓阳离子、1-戊基吡啶鎓阳离子、1-烯丙基吡啶鎓阳离子等吡啶鎓阳离子;1,1-二甲基吡咯烷鎓阳离子、1-甲基-1-丙基吡咯烷鎓阳离子、1-甲基-1-丁基吡咯烷鎓阳离子、1,1-二乙基吡咯烷鎓阳离子、螺二吡咯烷鎓阳离子等吡咯烷鎓阳离子;1,1-二甲基哌啶鎓阳离子、1-甲基-1-丙基哌啶鎓阳离子、螺二吡哌啶鎓阳离子等吡咯烷鎓阳离子;4,4-二甲基吗啉鎓阳离子、4-甲基-4-丙基吗啉鎓阳离子等吗啉鎓阳离子;四甲基铵阳离子、四乙基铵阳离子、四丁基铵阳离子、三乙基甲基铵阳离子、环己基乙基铵阳离子、二烯丙基二甲基铵阳离子、四(五氟乙基)铵阳离子等季铵鎓阳离子。
在上述制备方法中,所述双氯磺酰亚胺、鎓离子卤化物和氟化氢的摩尔比优选为双氯磺酰亚胺∶鎓离子卤化物∶氟化氢=1∶1∶10~1∶1∶100,更优选为双氯磺酰亚胺∶鎓离子卤化物∶氟化氢=1∶1∶10~1∶1∶30。所述氟化氢以液态形式存在,所述双氯磺酰亚胺以滴加的方式加入到过量的氟化氢中(氟化氢可盛放于干燥的反应容器中),反应温度控制在20℃以下,优选为-15~15℃,更优选为0~10℃。双氯磺酰亚胺可先与氟化氢反应,再加入鎓离子卤化物反应,也可以将氟化氢和鎓离子卤化物先混合后再加入双氯磺酰亚胺进行反应,反应生成的酸性气体可通到碱液中吸收。反应时间因反应规模不同,优选为1~12小时,更优选为3~6小时。
进一步的,上述制备方法还包括将反应制得的双氟磺酰亚胺鎓盐蒸馏去除氟化氢的步骤,蒸馏的温度优选为30℃~60℃。蒸馏出的氟化氢可进行回收处理。
采用上述方法制得的双氟磺酰亚胺鎓盐的纯度在99%以上,明显高于现有技术的方法制得的双氟磺酰亚胺鎓盐的纯度,而且上述方法比现有技术的方法工艺更简单、原料成本更低、副产品更少、产品纯化更容易。
以下列举实施例作进一步说明。
实施例1:双氯磺酰亚胺的制备
搅拌下,在干燥的5L反应容器中依次加入679克磺酰胺(7mol),1785克 二氯亚砜(15mol),和815.5克氯磺酸(7mol)得到混合液。加热混合液至140℃进行反应,产生的二氧化硫和氯化氢酸性气体由碱液吸收。反应20小时后得到的棕黄色液体粗产物进行减压真空蒸馏,收集110~114℃/2mmHg的馏分,得到1438克(收率96%)双氯磺酰亚胺无色液体,经液相色谱检测纯度为99.30%(图1)。
实施例2:双氟磺酰亚胺铵盐的制备
5℃恒温搅拌下,在3L干燥反应容器中加入1600克氟化氢(80mol),缓慢加入1284克双氯磺酰亚胺(6mol)进行化学反应,产生的氯化氢酸性气体由碱液吸收。滴加完双氯磺酰亚胺后保持5℃恒温继续反应3小时,得到双氟磺酰亚胺的氟化氢溶液。向该溶液中加入222克氟化铵(6mol),5℃恒温搅拌2小时,发生离子交换反应,得到双氟磺酰亚胺铵盐。40℃下加热蒸馏回收1300克氟化氢后,继续真空加热干燥得到1164克(收率98%)双氟磺酰亚胺铵盐,经液相色谱检测纯度为99.34%(图2)。
实施例3:双氟磺酰亚胺四乙基铵盐的制备
8℃恒温搅拌下,在1L干燥反应容器中加入500克氟化氢(25mol),缓慢加入165.5克四乙基氯化铵(1mol)和214克双氯磺酰亚胺(1mol)进行化学反应,产生的氯化氢酸性气体由碱液吸收。保持8℃恒温继续反应5小时,然后加热到50℃蒸馏回收450克氟化氢,继续真空加热干燥得到307克(收率99%)双氟磺酰亚胺四乙基铵盐,经离子色谱测定四乙基铵阳离子纯度为99.94%(图3),双氟磺酰亚胺阴离子纯度为99.77%(图4)。
实施例4:双氟磺酰亚胺-1,1-二甲基吡咯烷鎓盐的制备
10℃恒温搅拌下,在1L干燥反应容器中加入500克氟化氢(25mol),缓慢加入135.5克氯化-1,1-二甲基吡咯烷鎓盐(1mol)和214克双氯磺酰亚胺(1mol)进行化学反应,产生的氯化氢酸性气体由碱液吸收。保持10℃恒温继续反应3小时,然后加热到50℃蒸馏回收452克氟化氢,继续真空加热干燥得到277克(收率99%)双氟磺酰亚胺-1,1-二甲基吡咯烷鎓盐,经离子色谱测定1,1-二甲基吡咯烷鎓阳离子纯度为99.80%(图5),双氟磺酰亚胺阴离子纯度为99.83%。
实施例5:双氟磺酰亚胺螺二吡咯烷鎓盐的制备
5℃恒温搅拌下,在1L干燥反应容器中加入600克氟化氢(30mol),缓慢 加入161.5克氯化-1-甲基-1-丙基-吡咯烷鎓盐(1mol)和214克双氯磺酰亚胺(1mol)进行化学反应,产生的氯化氢酸性气体由碱液吸收。保持5℃恒温继续反应4小时,然后加热到50℃蒸馏回收554克氟化氢,继续真空加热干燥得到303克(收率99%)双氟磺酰亚胺螺二吡咯烷鎓盐,经离子色谱测定螺二吡咯烷鎓阳离子纯度99.91%(图6),双氟磺酰亚胺阴离子纯度为99.93%。
实施例6:双氟磺酰亚胺-1,1-二甲基哌啶鎓盐的制备
5℃恒温搅拌下,在1L干燥反应容器中加入600克氟化氢(30mol),缓慢加入150克氯化-1,1-二甲基哌啶鎓盐(1mol)和214克双氯磺酰亚胺(1mol)进行化学反应,产生的氯化氢酸性气体由碱液吸收。保持5℃恒温继续反应4小时,然后加热到50℃蒸馏回收552克氟化氢,继续真空加热干燥得到290克(收率99%)双氟磺酰亚胺-1,1-二甲基哌啶鎓盐,经离子色谱测定1,1-二甲基哌啶鎓阳离子纯度为99.96%(图7),双氟磺酰亚胺阴离子纯度为99.89%。
实施例7:双氟磺酰亚胺-4,4-二甲基吗啉鎓盐的制备
5℃恒温搅拌下,在1L干燥反应容器中加入600克氟化氢(30mol),缓慢加入152克氯化-4,4-二甲基吗啉鎓盐(1mol)和214克双氯磺酰亚胺(1mol)进行化学反应,产生的氯化氢酸性气体由碱液吸收。保持5℃恒温继续反应4小时,然后加热到50℃蒸馏回收550克氟化氢,继续真空加热干燥得到293克(收率99%)双氟磺酰亚胺-4,4-二甲基吗啉鎓盐,经离子色谱测定4,4-二甲基吗啉鎓阳离子纯度为99.94%(图8),双氟磺酰亚胺阴离子纯度为99.85%。
实施例8:双氟磺酰亚胺-1,3-二甲基咪唑鎓盐的制备
5℃恒温搅拌下,在1L干燥反应容器中加入600克氟化氢(30mol),缓慢加入133克氯化-1,3-二甲基咪唑鎓盐(1mol)和214克双氯磺酰亚胺(1mol)进行化学反应,产生的氯化氢酸性气体由碱液吸收。保持5℃恒温继续反应4小时,然后加热到50℃蒸馏回收552克氟化氢,继续真空加热干燥得到274克(收率99%)双氟磺酰亚胺-1,3-二甲基咪唑鎓盐,经离子色谱测定1,3-二甲基咪唑鎓阳离子纯度为99.06%(图9),双氟磺酰亚胺阴离子纯度为99.57%。
实施例9:双氟磺酰亚胺-1-甲基吡啶鎓盐的制备
5℃恒温搅拌下,在1L干燥反应容器中加入600克氟化氢(30mol),缓慢加入130克氯化-1-甲基吡啶鎓盐(1mol)和214克双氯磺酰亚胺(1mol)进行 化学反应,产生的氯化氢酸性气体由碱液吸收。保持5℃恒温继续反应4小时,然后加热到50℃蒸馏回收553克氟化氢,继续真空加热干燥得到270克(收率99%)双氟磺酰亚胺-1-甲基吡啶鎓盐,经离子色谱测定1-甲基吡啶鎓阳离子纯度为99.89%(图10),双氟磺酰亚胺阴离子纯度为99.74%。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换。

Claims (10)

  1. 一种双氟磺酰亚胺鎓盐的制备方法,其特征在于:包括将结构式(A)所示的双氯磺酰亚胺、结构式(B)所示的鎓离子卤化物和氟化氢反应制得双氟磺酰亚胺鎓盐的步骤;
    Figure PCTCN2014089126-appb-100001
    其中,M+表示鎓阳离子,X-表示卤素离子。
  2. 根据权利要求1所述的双氟磺酰亚胺鎓盐的制备方法,其特征在于:所述鎓阳离子为含有机基团的鎓阳离子。
  3. 根据权利要求2所述的双氟磺酰亚胺鎓盐的制备方法,其特征在于:所述有机基团为直链或环状的饱和或不饱和烃基,碳原子数为0~18个。
  4. 根据权利要求2所述的双氟磺酰亚胺鎓盐的制备方法,其特征在于:所述鎓阳离子为吡啶鎓阳离子、吡咯烷鎓阳离子、吗啉鎓阳离子或季铵鎓阳离子。
  5. 根据权利要求1至4任意一项所述的双氟磺酰亚胺鎓盐的制备方法,其特征在于:所述双氯磺酰亚胺、鎓离子卤化物和氟化氢的摩尔比为双氯磺酰亚胺∶鎓离子卤化物∶氟化氢=1∶1∶10~1∶1∶100。
  6. 根据权利要求1所述的双氟磺酰亚胺鎓盐的制备方法,其特征在于:所述氟化氢以液态形式存在,所述双氯磺酰亚胺以滴加的方式加入到过量的氟化氢中,反应温度控制在20℃以下。
  7. 根据权利要求6所述的双氟磺酰亚胺鎓盐的制备方法,其特征在于:反应温度为-15~15℃,反应时间为1~12小时。
  8. 根据权利要求1所述的双氟磺酰亚胺鎓盐的制备方法,其特征在于:还包括将反应制得的双氟磺酰亚胺鎓盐蒸馏去除氟化氢的步骤。
  9. 根据权利要求8所述的双氟磺酰亚胺鎓盐的制备方法,其特征在于:所述加热蒸馏的温度为30℃~60℃。
  10. 根据权利要求1至4任意一项所述的双氟磺酰亚胺鎓盐的制备方法,其特征在于:制得的双氟磺酰亚胺鎓盐的纯度在99%以上。
PCT/CN2014/089126 2014-03-31 2014-10-22 双氟磺酰亚胺鎓盐的制备方法 WO2015149502A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410126808.4A CN104230722A (zh) 2014-03-31 2014-03-31 双氟磺酰亚胺鎓盐的制备方法
CN201410126808.4 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015149502A1 true WO2015149502A1 (zh) 2015-10-08

Family

ID=52219736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089126 WO2015149502A1 (zh) 2014-03-31 2014-10-22 双氟磺酰亚胺鎓盐的制备方法

Country Status (2)

Country Link
CN (1) CN104230722A (zh)
WO (1) WO2015149502A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091813A (ja) * 2015-11-10 2017-05-25 日産自動車株式会社 イオン伝導性を有する固体電解質およびこれを用いた電気化学デバイス

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105985267A (zh) * 2015-02-05 2016-10-05 江苏国泰超威新材料有限公司 一种应用于电子行业的离子液体的制备方法
CN105131000A (zh) * 2015-08-25 2015-12-09 江苏华盛精化工有限责任公司 双氟代磺酰亚胺螺旋双吡咯烷鎓的制备方法
EP3714019A1 (en) * 2017-11-21 2020-09-30 Nitto Denko Corporation Imidazolium fluorosulfonylimide ionic adhesive compositions and selective debonding thereof
CN109941978B (zh) * 2019-04-25 2020-08-18 浙江科峰锂电材料科技有限公司 制备双氟磺酰亚胺铵及双氟磺酰亚胺碱金属盐的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980955A (zh) * 2008-03-31 2011-02-23 株式会社日本触媒 磺酰亚胺盐及其制备方法
JP2011144086A (ja) * 2010-01-15 2011-07-28 Nippon Shokubai Co Ltd フルオロスルホニルイミド塩の製造方法
CN103347811A (zh) * 2011-02-10 2013-10-09 日本曹达株式会社 氟磺酰亚胺铵盐的制造方法
CN103391896A (zh) * 2011-03-03 2013-11-13 日本曹达株式会社 氟磺酰亚胺铵盐的制造方法
JP2014162680A (ja) * 2013-02-25 2014-09-08 Nippon Shokubai Co Ltd フルオロスルホニルイミド塩の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291903B1 (ko) * 2008-07-23 2013-07-31 다이이치 고교 세이야쿠 가부시키가이샤 비스(플루오로설포닐)이미드 음이온 화합물의 제조 방법과 이온대화합물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980955A (zh) * 2008-03-31 2011-02-23 株式会社日本触媒 磺酰亚胺盐及其制备方法
JP2011144086A (ja) * 2010-01-15 2011-07-28 Nippon Shokubai Co Ltd フルオロスルホニルイミド塩の製造方法
CN103347811A (zh) * 2011-02-10 2013-10-09 日本曹达株式会社 氟磺酰亚胺铵盐的制造方法
CN103391896A (zh) * 2011-03-03 2013-11-13 日本曹达株式会社 氟磺酰亚胺铵盐的制造方法
JP2014162680A (ja) * 2013-02-25 2014-09-08 Nippon Shokubai Co Ltd フルオロスルホニルイミド塩の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091813A (ja) * 2015-11-10 2017-05-25 日産自動車株式会社 イオン伝導性を有する固体電解質およびこれを用いた電気化学デバイス

Also Published As

Publication number Publication date
CN104230722A (zh) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2015143866A1 (zh) 双氟磺酰亚胺及其碱金属盐的制备方法
JP5886998B2 (ja) フルオロスルホニルイミド塩の製造方法
WO2015149502A1 (zh) 双氟磺酰亚胺鎓盐的制备方法
KR101744373B1 (ko) 플루오로술포닐이미드암모늄염의 제조 방법
CN111498819A (zh) 制备含有氟磺酰基基团的酰亚胺
JP2009504790A (ja) スルホニルイミド及びその誘導体を調製するための方法
CN108456155A (zh) 用于制备含有氟磺酰基基团的酰亚胺盐的方法
JP6691740B2 (ja) フルオロスルホニルイミド化合物の製造方法
CN106276829A (zh) 一种双氟磺酰亚胺锂的合成方法
CN106854195A (zh) 一种高纯度氟代碳酸乙烯酯的制备方法
JP5538534B2 (ja) フッ素含有イミド化合物の製造方法
JP5653130B2 (ja) ビス(フルオロスルホニル)イミドの製造方法
CN116283601A (zh) 一种双氟磺酰亚胺有机铵盐的制备方法
WO2011148961A1 (ja) フッ素含有イミド化合物の製造方法
KR101687374B1 (ko) 디플루오로술포닐 이미드 또는 그 염의 제조 방법
JP2014105115A (ja) 高純度ビス(フルオロスルホニル)イミドおよびその製造方法
CN107244662B (zh) 一种双(氟代磺酰基)亚胺钾盐的制备方法
JP2016509996A (ja) イオン液体を製造する方法
JP5518573B2 (ja) フッ素化スルホンイミド化合物の製造方法
CN104592164A (zh) 一种离子液体的制备方法
WO2012039025A1 (ja) ペルフルオロアルキルスルホンアミドの製造方法
JP2012214464A (ja) N−スルフィニル−ペルフルオロアルカンスルホンアミドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 14887855

Country of ref document: EP

Kind code of ref document: A1