WO2015147550A1 - 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지 - Google Patents

고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지 Download PDF

Info

Publication number
WO2015147550A1
WO2015147550A1 PCT/KR2015/002932 KR2015002932W WO2015147550A1 WO 2015147550 A1 WO2015147550 A1 WO 2015147550A1 KR 2015002932 W KR2015002932 W KR 2015002932W WO 2015147550 A1 WO2015147550 A1 WO 2015147550A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
polymer electrolyte
electrolyte membrane
polymer
Prior art date
Application number
PCT/KR2015/002932
Other languages
English (en)
French (fr)
Inventor
김나영
이무석
이동훈
신용철
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to EP15768211.3A priority Critical patent/EP3125349B1/en
Priority to CN201580014087.0A priority patent/CN106104887B/zh
Priority to JP2017500789A priority patent/JP6205519B2/ja
Priority to US15/127,825 priority patent/US10003096B2/en
Publication of WO2015147550A1 publication Critical patent/WO2015147550A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/20Polysulfones
    • C08G75/23Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polymer electrolyte membrane, a membrane-electrode assembly including the same, and a fuel cell. More specifically, the polymer electrolyte membrane has improved durability against radical attack, and is caused by attack of radicals formed at the cathode side during fuel cell operation. The reaction does not occur in the aromatic ring of the polymer electrolyte membrane or the aromatic ring is broken, and the interaction between the acid and the base is improved, thereby maximizing the function of the ion conductive group, thereby reducing the fuel in a low-humidity state.
  • the present invention relates to a polymer electrolyte membrane, a membrane-electrode assembly including the same, and a fuel cell capable of improving battery operation performance.
  • a fuel cell converts chemical energy generated by oxidation of a fuel directly into electrical energy, and thus, has been in the spotlight as a next generation energy source due to its high energy efficiency and eco-friendly features with low pollutant emission.
  • the fuel cell generally has a structure in which an anode and a cathode are formed on both sides of an electrolyte membrane, and such a structure is called a membrane electrode assembly (MEA).
  • MEA membrane electrode assembly
  • the fuel cell may be classified into an alkaline electrolyte fuel cell and a polymer electrolyte fuel cell (PEMFC) according to the type of electrolyte membrane, wherein the polymer electrolyte fuel cell has a low operating temperature of less than 100 and a high speed. Starting, responsiveness and excellent durability make it a popular portable, automotive, and home power source.
  • PEMFC polymer electrolyte fuel cell
  • polymer electrolyte fuel cell examples include a hydrogen ion exchange membrane fuel cell (PEMFC) using hydrogen gas as a fuel.
  • PEMFC hydrogen ion exchange membrane fuel cell
  • the polymer electrolyte membrane is a passage through which hydrogen ions (H + ) generated from the anode are transferred to the cathode, the conductivity of hydrogen ions (H + ) should be excellent.
  • the polymer electrolyte membrane should have excellent separation ability to separate hydrogen gas supplied to the anode and oxygen supplied to the cathode, and in addition, mechanical strength, dimensional stability, chemical resistance, etc., should be excellent. Characteristics such as ohmic loss should be small.
  • fluorine-based ion conductors fluororesin perfluorosulfonic acid resins
  • the fluorine-based ion conductor has a weak mechanical strength, so that when used for a long time, pinholes are generated, thereby lowering energy conversion efficiency.
  • Attempts have been made to increase the film thickness of the fluorine-based ion conductor in order to reinforce the mechanical strength.
  • the resistance loss is increased and the use of expensive materials is increased, thereby degrading economic efficiency.
  • a polymer electrolyte membrane in the form of a reinforcing membrane having a mechanical strength improved by introducing a support of a reinforcing agent concept into the hydrocarbon-based ion conductor has been proposed.
  • As the support a support of a hydrophobic hydrocarbon-based polymer having no ion conductivity is mainly used. Due to the hydrophobic support, the dimensional stability is improved, and as a result, mechanical properties such as tensile strength can be ensured even when wetted, and the film thickness for minimizing film resistance and increasing performance can be minimized.
  • the porous support is immersed in the impregnation solution for a predetermined time, or the impregnation The solution is applied to the surface of the porous support.
  • the impregnability of the support is low or the affinity between the hydrocarbon-based ion conductor and the porous support in the process of evaporating and removing the solvent after the impregnation or coating process decreases, so that the inside of the porous support is Defects such as cavities may occur, and cracks and desorption of membranes and electrodes may occur due to membrane crushing of the corresponding parts by such cavities. For this reason, the impregnation or coating process is repeated several times. As a result, the thickness of the polymer electrolyte membrane increases and the thickness becomes uneven.
  • Patent Document 1 Korean Patent Publication No. 2006-0083374 (published: 2006.07.20)
  • Patent Document 2 Korean Patent Publication No. 2006-0083372 (published: 2006.07.20)
  • Patent Document 3 Korean Patent Publication No. 2011-0120185 (published: 2011.11.03)
  • An object of the present invention is to improve the durability of the radical attack, the acid-base interaction (interaction) is improved to maximize the function of the ion conductive group, the polymer that can improve the fuel cell operating performance in low humidity conditions It is to provide an electrolyte membrane.
  • Another object of the present invention is to provide a membrane-electrode assembly including the polymer electrolyte membrane.
  • Still another object of the present invention is to provide a fuel cell including the polymer electrolyte membrane.
  • the polymer electrolyte membrane according to an embodiment of the present invention includes a polymer including repeating units represented by the following Chemical Formulas 1 to 3.
  • A is any one ion conductive group selected from the group consisting of sulfonic acid groups, carboxylic acid groups and phosphoric acid groups
  • X is a single bond
  • R' is a hydrogen atom, a halogen atom, an alkyl group, Any one selected from the group consisting of a halogenated alkyl group, an allyl group, an aryl group, a nitro group, and a nitrile group
  • Y is a divalent nitrogen-containing aromatic ring group
  • Z is -O- or -S-
  • R 1 To R 14 are each independently selected from the group consisting of sulfonic acid group, carboxylic acid group,
  • the polymer may include 100 mole parts of the repeating unit represented by Formula 3, 1 to 200 mole parts of the repeating unit represented by Formula 1, and 1 to 200 mole parts of the repeating unit represented by Formula 2.
  • the divalent nitrogen-containing aromatic ring group is pyrrole, thiazole, isothiazole, oxazole, isoxazole, imidazole, imidazoline, imidazolidine, pyrazole, triazine, pyridine, pyrimidine, pyridazine, Pyrazine, indole, quinoline, isoquinoline, tetrazole, tetrazine, triazole, carbazole, quinoxaline, quinazoline, indolizin, isoindole, indazole, phthalazine, naphthyridine, bipyridine, benzimidazole, It may be a divalent group of any one nitrogen-containing aromatic ring compound selected from the group consisting of imidazole, pyrrolidine, pyrroline, pyrazoline, pyrazolidine, piperidine, piperazine and indolin.
  • the polymer may further include a repeating unit represented by Formula 4 below.
  • Z is -O- or -S-
  • R 15 to R 22 are each independently sulfonic acid group, carboxylic acid group, phosphoric acid group, hydrogen atom, halogen atom, alkyl group, halogenated alkyl group, allyl group, It is any one selected from the group consisting of an aryl group, a nitro group and a nitrile group.
  • the polymer is 100 mole parts of the repeating unit represented by Formula 3, 1 to 200 mole parts of the repeating unit represented by Formula 1, 1 to 200 mole parts of the repeating unit represented by Formula 2, and repeating represented by Formula 4
  • the unit may contain 1 to 200 moles.
  • the polymer may include repeating units represented by the following Chemical Formulas 5 and 6.
  • A is any one ion conductive group selected from the group consisting of sulfonic acid groups, carboxylic acid groups and phosphoric acid groups
  • Y is a divalent nitrogen-containing aromatic ring group
  • Z is -O- Or -S-
  • R 1 to R 6 and R 15 to R 22 are each independently sulfonic acid group, carboxylic acid group, phosphoric acid group, hydrogen atom, halogen atom, alkyl group, halogenated alkyl group, allyl group, aryl group, nitro group And nitrile groups.
  • the polymer may further include repeating units represented by the following Chemical Formulas 7 and 8.
  • A is any one ion conductive group selected from the group consisting of sulfonic acid groups, carboxylic acid groups and phosphoric acid groups
  • X is a single bond
  • -CO-, -SO 2- , -CONH- , -COO-, -CR ' 2- , cyclohexylidene group, fluorenylidene group, -O- and -S- is any one selected from the group consisting of
  • R' is a hydrogen atom, a halogen atom, an alkyl group, Halogenated alkyl group, allyl group, aryl group, nitro group and any one selected from the group consisting of nitrile group
  • Z is -O- or -S-
  • R 1 to R 22 are each independently sulfonic acid group, carboxyl It is any one selected from the group consisting of an acid group, a phosphoric acid group, a hydrogen atom, a halogen atom, an alky
  • the polymer electrolyte membrane may include a porous support in which nanofibers are integrated into a nonwoven fabric including a plurality of pores, and the polymer filling the pores of the porous support.
  • a membrane-electrode assembly including an anode electrode and a cathode electrode disposed to face each other, and the above-mentioned polymer electrolyte membrane positioned between the anode electrode and the cathode electrode. Is provided.
  • a fuel cell according to another embodiment of the present invention includes the membrane-electrode assembly.
  • the polymer electrolyte membrane of the present invention has improved durability against radical attack, the reaction of radicals formed on the cathode side during the fuel cell operation does not cause an addition reaction or breakage of the aromatic ring to the aromatic ring of the polymer electrolyte membrane.
  • the acid-base interaction is improved to maximize the function of the ion conductive group, thereby improving fuel cell operation performance at low humidity.
  • FIG. 1 is a schematic diagram of a nozzle type electrospinning apparatus.
  • FIG. 2 is a schematic cross-sectional view of a membrane-electrode assembly according to an embodiment of the present invention.
  • nano means nanoscale and includes a size of 1 ⁇ m or less.
  • diameter described herein means the length of the minor axis passing through the center of the fiber, and the length means the length of the major axis passing through the center of the fiber.
  • an alkyl group includes a primary alkyl group, a secondary alkyl group, and a tertiary alkyl group.
  • an alkyl group is a linear or pulverized alkyl group having 1 to 10 carbon atoms
  • a halogenated alkyl group is a linear or pulverized halogenated alkyl group having 1 to 10 carbon atoms
  • an aryl group having 6 carbon atoms It means an aryl group which is from 30.
  • substituted Iran hydrogen is a halogen atom, a hydroxyl group, a carboxyl group, a cyano group, a nitro group, an amino group, a thio group, a methyl thio group, an alkoxy group, a nitrile group, an aldehyde group, an epoxy group, an ether group, an ester group, an ester group , Carbonyl group, acetal group, ketone group, alkyl group, perfluoroalkyl group, cycloalkyl group, heterocycloalkyl group, allyl group, benzyl group, aryl group, heteroaryl group, derivatives thereof, and combinations thereof Means replaced by one.
  • the polymer electrolyte membrane according to an embodiment of the present invention includes a polymer including repeating units represented by the following Chemical Formulas 1 to 3.
  • the polymer contains a nitrogen-containing aromatic ring group in the main chain, thereby improving durability against radical attack and acid-base interaction. Accordingly, the polymer electrolyte membrane does not cause an addition reaction or aromatic ring breakage to the aromatic ring of the polymer electrolyte membrane by attack of radicals formed at the cathode side during fuel cell operation, thereby maximizing the function of the ion conductive group. In addition, it is possible to improve the fuel cell operation performance in a low-humidity state.
  • A is an ion conductive group.
  • the ion conductive group may be any one ion conductive group selected from the group consisting of a sulfonic acid group, a carboxylic acid group and a phosphoric acid group, and may be preferably a sulfonic acid group.
  • Z is -O- or S-, preferably -O-.
  • X is in the group consisting of a single bond, -CO-, -SO 2- , -CONH-, -COO-, -CR ' 2- , a cyclohexylidene group, a fluorenylidene group, -O- and -S- It may be any one selected, wherein R 'may be any one selected from the group consisting of hydrogen atom, halogen atom, alkyl group, halogenated alkyl group, allyl group, aryl group, nitro group and nitrile group.
  • X is a single bond, it means that the phenyl groups present on both sides of the X is directly connected, and a biphenyl group is representatively exemplified.
  • R 1 to R 14 may each independently be any one selected from the group consisting of a sulfonic acid group, a carboxylic acid group, a phosphoric acid group, a hydrogen atom, a halogen atom, an alkyl group, a halogenated alkyl group, an allyl group, an aryl group, a nitro group, and a nitrile group have.
  • the halogen atom is any one selected from the group consisting of bromine, fluorine and chlorine
  • the alkyl group may be methyl, ethyl, propyl, butyl, isobutyl, amyl, hexyl, cyclohexyl, octyl
  • the halogenated alkyl group may be a trifluoromethyl group, a pentafluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluoropentyl group, a perfluorohexyl group, and the like
  • the allyl group may be a propenyl group or the like.
  • the aryl group may be a phenyl group, pentafluorophenyl group, or the like.
  • the perfluoroalkyl group means an alkyl group in which some hydrogen atoms or all hydrogen atoms are substituted with fluorine.
  • N is an integer of 0 to 4, preferably may be an integer of 0 or 1.
  • Y is a divalent nitrogen-containing aromatic ring group.
  • the nitrogen-containing aromatic ring group means that the aromatic ring contains at least one nitrogen atom as a hetero atom. Moreover, an oxygen atom, a sulfur atom, etc. may be included as another hetero atom with the said nitrogen atom.
  • the divalent nitrogen-containing aromatic ring group is pyrrole, thiazole, isothiazole, oxazole, isoxazole, imidazole, imidazoline, imidazolidine, pyrazole, triazine, pyridine, pyrimidine, Pyridazine, pyrazine, indole, quinoline, isoquinoline, tetrazole, tetrazine, triazole, carbazole, quinoxaline, quinazoline, indoliazine, isoindole, indazole, phthalazine, naphthyridine, bipyridine, benz It may be a divalent group of any one nitrogen-containing aromatic ring compound selected from the group consisting of imidazole, imidazole, pyrrolidine, pyrroline, pyrazoline, pyrazolidine, piperidine, piperazine and indolin.
  • the polymer may include 100 mole parts of the repeating unit represented by Formula 3, 1 to 200 mole parts of the repeating unit represented by Formula 1, and 1 to 200 mole parts of the repeating unit represented by Formula 2, preferably 100 mole parts of the repeating unit represented by Formula 3, 30 to 70 mole parts of the repeating unit represented by Formula 1, and 30 to 70 mole parts of the repeating unit represented by Formula 2.
  • the repeating unit represented by Formula 2 is out of the content range with respect to 100 mol parts of the repeating unit represented by Formula 3, the swelling degree may be maximized when the polymer electrolyte membrane is wetted, thereby deteriorating mechanical properties and making durability long-term.
  • the polymer electrolyte membrane may not function as an electrolyte membrane for fuel cells due to low ion conductivity or cell performance. have.
  • the polymer may further include a repeating unit represented by Formula 4 below.
  • X may not be -SO 2- .
  • Z is -O- or -S-
  • R 15 to R 22 are each independently sulfonic acid group, carboxylic acid group, phosphoric acid group, hydrogen atom, halogen atom, alkyl group, halogenated alkyl group, allyl group, It may be any one selected from the group consisting of aryl group, nitro group and nitrile group.
  • the polymer further includes a repeating unit represented by Formula 4, 100 mol parts of the compound represented by Formula 3, 1 to 200 mol parts of the repeating unit represented by Formula 1, and a repeating unit represented by Formula 2 1 to 200 mole parts, and may include 1 to 200 mole parts of the repeating unit represented by Formula 4, preferably 100 mole parts of the compound represented by Formula 3, 50 to 150 mole parts of the repeating unit represented by Formula 1, 50 to 150 mole parts of the repeating unit represented by Formula 2, and 50 to 150 mole parts of the repeating unit represented by the formula (4).
  • the content of the repeating unit represented by Formula 4 is out of the range with respect to 100 mol parts of the repeating unit represented by Formula 3, ion conductivity or cell performance of the polymer electrolyte membrane may be reduced.
  • the polymer may be in a form including repeating units represented by the following Chemical Formulas 5 and 6. That is, the polymer is a case in which the repeating unit represented by the formula (3) includes repeating units of the form combined with the repeating units represented by the formulas (1) and (4), in which case the repeating unit represented by the formula (1) The repeating unit represented by Formula 4 is not directly bonded.
  • the polymer When the polymer is in a form including repeating units represented by Formulas 5 and 6, the polymer may be a random copolymer in which repeating units represented by Formulas 5 and 6 are randomly bonded,
  • the block copolymer may include a first block in which repeating units represented by Formula 5 are bonded and a second block in which repeating units represented by Formula 6 are bonded.
  • polymer may further include repeating units represented by the following Formulas 7 and 8 together with the repeating units represented by Formulas 5 and 6.
  • the polymer is an aromatic nucleophilic substitution reaction of the active dihalide monomer of the repeating units represented by Formula 1 or Formula 2 and the dihydroxyl monomer of the repeating unit represented by Formula 3, or as Formula 1 or Formula 2 It can be polymerized by the aromatic nucleophilic substitution reaction of the dihydroxy monomer of the repeating units represented and the active dihalide monomer of the repeating unit represented by the formula (3).
  • the active dihalide monomer of the repeating unit represented by Chemical Formula 1 may be SDCDPS (sulfonated dichlorodiphenyl sulfone) or SDFDPS (sulfonated difluorodiphenyl sulfone), and the active dihalide monomer of the repeating unit represented by Chemical Formula 4 may be DCDPS ( dichlorodiphenyl sulfone) or difluorodiphenyl sulfone (DFDPS), and the dihydroxy monomer of the repeating unit represented by Formula 3 may be a nitrogen-containing aromatic ring compound including two -OH substituents.
  • SDCDPS sulfonated dichlorodiphenyl sulfone
  • SDFDPS sulfonated difluorodiphenyl sulfone
  • DCDPS dichlorodiphenyl sulfone
  • DDPS difluorodiphenyl sulfone
  • the dihydroxy monomer of the repeating unit represented by Formula 3
  • the polymerization reaction may be preferably carried out in the presence of an alkaline compound.
  • the alkaline compound may be sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, or the like, which may be used alone or in combination of two or more thereof.
  • the polymerization reaction may be carried out in a solvent, in particular, as the solvent, N, N-dimethyl acetamide, N, N-dimethyl formamide, N-methyl (methyl)- Aprotic polar solvents such as 2-pyrrolidone, dimethyl sulfoxide, sulfolane, or 1,3-dimethyl-2-imidazolidinone.
  • solvent in particular, as the solvent, N, N-dimethyl acetamide, N, N-dimethyl formamide, N-methyl (methyl)- Aprotic polar solvents such as 2-pyrrolidone, dimethyl sulfoxide, sulfolane, or 1,3-dimethyl-2-imidazolidinone.
  • the ion conductive group of the repeating unit represented by Chemical Formula 1 has been described as being introduced by polymerizing using a monomer including an ion conductive group.
  • the present invention is not limited thereto, and for example, the ion conductive group does not include the ion conductive group.
  • the sulfonating agent may be used to introduce an ion conductive group into the repeating unit represented by Formula 1 above.
  • the polymer When the polymer includes a sulfonic acid group as an ion conductive group, the polymer may have a sulfonation degree of 1 to 40 mol%, preferably 5 to 40 mol%. When the polymer has a sulfation degree in the range as described above it can exhibit excellent ionic conductivity without lowering the dimensional stability.
  • the polymer electrolyte membrane may include a porous support in which non-woven fabrics in which nanofibers include a plurality of pores, and the polymer filling pores of the porous support.
  • the porous support plays a role of enhancing dimensional stability by enhancing mechanical strength of the polymer electrolyte membrane and suppressing volume expansion by moisture.
  • the porous support is made of nanofibers having an optimized diameter to have an optimized porosity and thickness, easy to manufacture, and in order to exhibit excellent mechanical properties after moisture, the polymer has a weight of 30,000 to 500,000 g / mol It is preferable to have an average molecular weight. If the weight average molecular weight of the polymer is less than 30,000 g / mol, it is possible to easily control the porosity and thickness of the porous support, but the mechanical properties may decrease during porosity and moisture. On the other hand, if the weight average molecular weight of the polymer exceeds 500,000g / mol does not proceed smoothly the manufacturing process may be reduced porosity.
  • the porous support is a nonwoven fabric in which nanofibers are formed in a nonwoven fabric including a plurality of pores.
  • the porous support is made of polymer nanofibers in which nanofibers prepared by electrospinning are irregularly and discontinuously arranged in three dimensions. It is an aggregate.
  • the nanofibers were measured from an average of 50 to 50 fiber diameters by using an electron scanning microscope (Scanning Electron Microscope, JSM6700F, JEOL), 0.01 to 5 It may be desirable to have an average diameter of ⁇ m. If the average diameter of the nanofibers is less than 0.01 ⁇ m may reduce the mechanical strength of the porous support, if the average diameter of the nanofibers exceeds 5 ⁇ m porosity may be reduced and the thickness may be thick.
  • the porous support may be formed by any arrangement of nanofibers having a diameter as described above, it may include a plurality of pores uniformly distributed.
  • the porous support having a plurality of pores uniformly distributed in this way has properties (dimension stability, etc.) that can complement the excellent porosity and physical properties of the ion conductor.
  • the pore diameter of the pores formed in the porous support may be formed in the range of 0.05 to 30 ⁇ m, when the pore size is less than 0.05 ⁇ m may decrease the ion conductivity of the polymer electrolyte membrane, the pore When the thickness exceeds 30 ⁇ m, the mechanical strength of the polymer electrolyte membrane may decrease.
  • the porosity representing the degree of formation of pores of the porous support may be 80 to 95%.
  • the specific surface area of the porous support is large, it is easy to fill the polymer into the pores, and as a result can exhibit excellent ionic conductivity.
  • the porosity of the porous support is less than 80%, it is difficult to obtain sufficient ionic conductivity, and if the porosity of the porous support exceeds 95%, mechanical strength and form stability may decrease.
  • the porosity (%) can be calculated by the ratio of the air volume to the total volume of the porous support, as shown in Equation 1 below.
  • the total volume of the porous support is calculated by measuring the width, length, and thickness of a sample of a porous support in the form of a rectangular shape, and the air volume of the porous support is inverted from density after measuring the mass of the sample of the porous support.
  • One polymer volume can be obtained by subtracting the total volume of the porous support.
  • the porous support may have an average thickness of 5 to 50 ⁇ m. If the thickness of the porous support is less than 5 ⁇ m, the mechanical strength and dimensional stability of the polymer electrolyte membrane may be deteriorated. On the other hand, if the thickness is more than 50 ⁇ m, the resistance loss may increase, making it difficult to reduce the weight and integration. More preferred thickness of the porous support is in the range of 10 to 30 ⁇ m.
  • the polymer may be included in an amount of 50 to 99 wt% based on the total weight of the polymer electrolyte membrane.
  • the content of the polymer is less than 50% by weight, the ionic conductivity of the polymer electrolyte membrane may be lowered.
  • the content of the polymer exceeds 99% by weight, the mechanical strength and dimensional stability of the polymer electrolyte membrane may be reduced.
  • the polymer electrolyte membrane is uniformly and densely packed with the polymer in the porous porous support, thereby exhibiting excellent mechanical strength, specifically, 10 MPa or more, with high ionic conductivity.
  • the thickness of the entire polymer electrolyte membrane may be reduced, specifically, it may be reduced to 80 ⁇ m or less. As a result, the ion conduction rate is increased and the resistance loss is reduced with the saving of material cost.
  • the polymer electrolyte membrane may exhibit excellent dimensional stability by including a hydrophobic porous support. Specifically, when swelled in water, it shows excellent dimensional stability of 8% or less, preferably 1% or less.
  • the dimensional stability is a physical property evaluated according to Equation 2 below from the change in length before and after swelling when the polymer electrolyte membrane is swelled in water.
  • the polymer electrolyte membrane filled with the polymer in the pores of the porous support is electrospinning an electrospinning solution to prepare a porous support in which the nanofibers are integrated into a nonwoven fabric including a plurality of pores, and included in the porous support. It can be prepared through a second step of filling the polymer in the pores.
  • the electrospinning solution is a solution containing the monomers for forming the nanofibers, the monomers for forming the nanofibers exhibit excellent chemical resistance, has a hydrophobic property by moisture in a high humidity environment Hydrocarbon type polymer which does not have a possibility of morphological modification can be used preferably.
  • the hydrocarbon-based polymer may be nylon, polyimide, polyaramid, polyetherimide, polyacrylonitrile, polyaniline, polyethylene oxide, polyethylene naphthalate, polybutylene terephthalate, styrene butadiene rubber, polystyrene, polyvinyl chloride, Polyvinyl alcohol, polyvinylidene fluoride, polyvinyl butylene, polyurethane, polybenzoxazole, polybenzimidazole, polyamideimide, polyethylene terephthalate, polyethylene, polypropylene, copolymers thereof, and mixtures thereof
  • a polyimide which is more excellent in heat resistance, chemical resistance, and shape stability.
  • the method of preparing the porous support may include adding diamine and dianhydride to a solvent to prepare an electrospinning solution. Electrospinning to produce a polyamic acid nanoweb in which the nanofibers are integrated into a nonwoven fabric comprising a plurality of pores, and imidizing the polyamic acid nanoweb to produce a polyimide nanoweb.
  • dianhydride examples include pyromellyrtic dianhydride (PMDA), 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride (3,3', 4,4'-benzophenonetetracarboxylic dianhydride, BTDA) ), 4,4'-oxydiphthalic anhydride (ODPA), 3,4,3 ', 4'-biphenyltetracarboxylic anhydride (3,4,3', 4 ')
  • PMDA pyromellyrtic dianhydride
  • BTDA 4,4'-benzophenone tetracarboxylic dianhydride
  • ODPA 4,4'-oxydiphthalic anhydride
  • BPDA -biphenyltetracarboxylic dianhydride
  • SiDA bis (3,4-carboxyphenyl) dimethylsilane dianhydride
  • ODA 4,4'-oxydianiline
  • 1,3-bis (4-aminophenoxy) benzene 1,3-bis (4-aminophenoxy) benzene
  • RODA p-phenylene diamine
  • o-phenylene diamine o-phenylene diamine, o-PDA
  • mixtures thereof may be used.
  • the solvent is m-cresol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), acetone, diethyl acetate, tetrahydro
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • DMSO dimethyl sulfoxide
  • acetone diethyl acetate
  • THF furan
  • chloroform chloroform
  • ⁇ -butyrolactone ⁇ -butyrolactone
  • Monomers for forming the nanofibers are preferably included in 5 to 20% by weight based on the total weight of the electrospinning solution. If the content of the monomers is less than 5% by weight, the spinning may not proceed smoothly, and fiber formation may not be achieved or fibers having a uniform diameter may be produced, whereas the content of the monomers may exceed 20% by weight. In this case, as the discharge pressure increases rapidly, spinning may not be performed or processability may be reduced.
  • the electrospinning solution is spun to prepare a nanoweb precursor, that is, a polyamic acid nanoweb.
  • the spinning is not particularly limited in the present invention, but may be electrospinning, electro-blown spinning, centrifugal spinning, melt blowing, or the like. Emission can be used.
  • FIG. 1 is a schematic diagram of a nozzle type electrospinning apparatus.
  • the electrospinning supplies a predetermined amount of the precursor solution to the nozzle 3 using a metering pump 2 in a solution tank 1 in which the nanofiber precursor solution is stored, and a high voltage generator While applying the high voltage generated in (6) to the nozzle (3) through the voltage transfer rod (5), the nanofiber precursor solution is discharged through the nozzle (3) and then the coagulated nanofiber precursor And further solidify these solidified nanofiber precursors in the collector 4 to produce precursor nanofibers of the porous support.
  • the strength of the electric field between the nozzle 3 and the collector 4 applied by the high voltage generator 6 and the voltage transfer rod 5 is preferably 850 to 3,500 V / cm. If the strength of the electric field is less than 850 V / cm, it is difficult to manufacture a nanofiber having a uniform thickness because the precursor solution is not continuously discharged, and the nanofibers formed after the spinning cannot be smoothly focused on the collector. Fabrication of the web may be difficult, and nanowebs having a normal shape cannot be obtained because the nanofibers do not settle correctly in the collector 4 when the electric field strength exceeds 3,500 V / cm.
  • a nanofiber precursor having a uniform fiber diameter, preferably an average diameter of 0.01 to 5 ⁇ m is prepared, and the nanofiber precursor is arranged in a predetermined direction or randomly to have a nonwoven form.
  • the porous support may be prepared by curing the nanofiber precursor of the nanoweb precursor.
  • a curing process is performed as an additional process for the nanofiber precursors.
  • the nanofiber precursor prepared by electrospinning is made of polyamic acid, it is converted into polyimide through imidization during the curing process.
  • the temperature during the curing process is preferably adjusted in consideration of the conversion rate of the nanofiber precursor. Specifically, it is preferable that a curing process at 80 to 650 ° C is performed. When the curing temperature is less than 80 °C conversion rate is low, as a result there is a fear that the heat resistance and chemical resistance of the nano-web, and when the curing temperature exceeds 650 °C due to decomposition of the nanofibers nano web There is a fear that the physical properties of the.
  • the second step is to fill the polymer in the pores contained in the porous support prepared in step 1.
  • Filling method of the polymer is to support the porous support in the ion conductor solution prepared by dissolving the polymer in a solvent, or by using a variety of coating methods known in the art, such as spraying, screen printing, doctor blade process A method of applying the ion conductor solution to the porous support can be used.
  • the supporting process it is preferable to perform the supporting process 2 to 5 times at room temperature (20 to 25 °C) for 5 to 30 minutes.
  • the ion conductor solution may be prepared by dissolving the polymer in an organic solvent.
  • NMP N-methyl-2-pyrrolidinone
  • DMF dimethylformamide
  • DMA dimethyl acetamide
  • the present invention is not limited thereto.
  • the content of the polymer in the ion conductor solution may be appropriately determined in consideration of the content of the polymer included in the polymer electrolyte membrane. Specifically, it may be included in 5 to 40% by weight in the ion conductor solution. When the polymer is included in less than 5% by weight relative to the entire ion conductor solution, the polymer may form an empty space without being sufficiently filled in the pores of the porous support, when the polymer exceeds 40% by weight The viscosity of the ion conductor solution may be too high to easily fill the pores of the porous support.
  • the method of manufacturing the polymer electrolyte membrane may further include a process of removing the organic solvent after the filling of the polymer, the organic solvent removal process is a process for drying for 2 to 15 hours in a vacuum oven of 60 to 150 °C Can be done.
  • According to another embodiment of the present invention provides a fuel cell membrane-electrode assembly and a fuel cell including the polymer electrolyte membrane.
  • the membrane-electrode assembly includes an anode electrode and a cathode electrode positioned to face each other, and the polymer electrolyte membrane positioned between the anode electrode and the cathode electrode.
  • the membrane-electrode assembly 100 is the fuel cell electrode disposed on both sides of the polymer electrolyte membrane 50 and the polymer electrolyte membrane 50 ( 20, 20 ').
  • the electrode 20, 20 ′ includes an electrode substrate 40, 40 ′ and a catalyst layer 30, 30 ′ formed on the surface of the electrode substrate 40, 40 ′, and the electrode substrate 40, 40 ′.
  • a microporous layer (not shown) including conductive fine particles such as carbon powder and carbon black to facilitate material diffusion between the electrode substrates 40 and 40 'between the catalyst layers 30 and 30'. It may further include.
  • an oxidation reaction is disposed on one surface of the polymer electrolyte membrane 50 to generate hydrogen ions and electrons from fuel delivered through the electrode base 40 to the catalyst layer 30.
  • the electrode 20 causing the electrode is called an anode electrode and is disposed on the other surface of the polymer electrolyte membrane 50 and passes through the hydrogen ions and the electrode base 40 ′ supplied through the polymer electrolyte membrane 50 to the catalyst layer (
  • the electrode 20 ' which causes a reduction reaction to generate water from the oxidant delivered to the 30') is called a cathode electrode.
  • the catalyst layers 30, 30 'of the anode and cathode electrodes 20, 20' comprise a catalyst.
  • the catalyst may participate in the reaction of the battery, and any of those that can be used as a catalyst for a fuel cell may be used.
  • a platinum-based catalyst may be used, and the platinum-based catalyst may be platinum, ruthenium, osmium, platinum-ruthenium alloy, platinum-osmium alloy, platinum-palladium alloy, or platinum-M alloy (M is Ga, Ti, V).
  • One or more selected from the group consisting of / Mo, Pt / Ru / V, Pt / Fe / Co, Pt / Ru / Rh / Ni, and Pt / Ru / Sn / W can be used.
  • Such a catalyst may be used as the catalyst itself (black), or may be used on a carrier.
  • carbon-based materials such as graphite, denka black, ketjen black, acetylene black, carbon nanotube, carbon nanofiber, carbon nanowire, carbon nanoball, or activated carbon may be used, and alumina, silica, zirconia, Or inorganic fine particles, such as titania, can also be used.
  • the catalyst layers 30 and 30 ′ may further include a binder resin for improving adhesion between the catalyst layer and the polymer electrolyte membrane and transferring hydrogen ions.
  • the binder resin may be the same as the ion conductor used in the production of the polymer electrolyte membrane.
  • a porous conductive substrate may be used to smoothly supply hydrogen or oxygen.
  • Typical examples thereof include a carbon film, a carbon cloth, a carbon felt, or a metal cloth (a porous film composed of a metal cloth in a fibrous state or a metal film formed on a surface of a cloth formed of polymer fibers). May be used, but is not limited thereto.
  • fluorine-based resin examples include polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, polyperfluoroalkyl vinyl ether, polyperfluorosulfonyl fluoride alkoxy vinyl ether, and fluorinated ethylene propylene ( Fluorinated ethylene propylene), polychlorotrifluoroethylene or copolymers thereof can be used.
  • the membrane-electrode assembly 100 may be manufactured according to a conventional method for manufacturing a membrane-electrode assembly for fuel cells, except for using the polymer electrolyte membrane according to the present invention as the polymer electrolyte membrane 50.
  • a fuel cell according to another embodiment of the present invention provides a fuel cell including the membrane-electrode assembly 100.
  • the fuel cell includes at least one electricity generating unit for generating electricity through the oxidation reaction of the fuel and the reduction reaction of the oxidant; A fuel supply unit supplying fuel to the electricity generation unit; And an oxidant supply unit supplying an oxidant such as oxygen or air to the electricity generation unit, wherein the electricity generation unit supplies fuel and oxidant to both sides of the membrane-electrode assembly 100 and the membrane-electrode assembly 100.
  • the fuel may be a gas or liquid hydrogen or hydrocarbon fuel, and a representative example of the hydrocarbon fuel may be methanol, ethanol, propanol, butanol or natural gas.
  • the separator, the fuel supply unit and the oxidant supply unit constituting the electricity generating unit are used in a conventional fuel cell. , Detailed description thereof will be omitted.
  • Dried SDCDS (3,3'-disulfonated-4,4'-dichlorodiphenyl sulfone) and DCDPS (4,4'-dichlorodiphenyl sulfone) were weighed in a glove box at a molar ratio of 50:50 and placed in a reactor with NMP. The temperature was slowly raised to 195 ° C. and stirred for 16hr. After the polymerization, the precipitate was precipitated in water to remove salts at 100 ° C. for 2 hours, filtered, and the resulting filtrate was dried to prepare a polymer.
  • the polymer prepared in Comparative Example 1-1 was dissolved in DMAc at 20% by weight to form a polymer electrolyte membrane in the form of a single membrane.
  • a polymer electrolyte was prepared by the same method as in Comparative Example 2-1, except that the polymer prepared in Example 1-1 was used instead of the polymer prepared in Comparative Example 1-1 in Comparative Example 2-1.
  • the membrane was prepared.
  • Polyamic acid (polyamic acid) was dissolved in dimethylformamide to prepare 5L of 480poise spinning solution. After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 20 nozzles and applied a high voltage of 3kV through a quantitative gear pump to produce a web of nanofiber precursor. The solution feed amount was 1.5 ml / min. The porous web of the prepared nanofiber precursor was heat-treated at 350 ° C. to prepare a porous support (porosity: 40% by volume).
  • the porous support prepared above was impregnated in the ion conductor solution prepared by dissolving the polymer prepared in Comparative Example 1-1 at 20 wt% in DMAc twice for 30 minutes, and then left for 1 hour under reduced pressure. , And dried for 10 hours in a vacuum of 80 °C to prepare a polymer electrolyte membrane.
  • the weight per unit area of the polyimide nanofibers was 6.8 gsm, and the weight of the polymer was 65 mg / cm 2 .
  • a polymer electrolyte membrane was prepared in the same manner as in Comparative Example 2-2, except that the polymer prepared in Example 1-1 was used instead of the polymer prepared in Comparative Example 1-1 in Comparative Example 2-2. Prepared.
  • the polymers prepared in Comparative Examples 1-1 and 1-1 were prepared by preparing 1 to 10% by weight of a solution using DMAc solvent, respectively, and then subjected to NMR analysis using the prepared solution.
  • the proton peak of the phenyl group was observed in the range of 7.1 ppm, 7.65 ppm, and 7.9 ppm in all of the polymers prepared in Comparative Examples 1-1 and Example 1-1, and in particular, Example 1-.
  • a peak was observed in the range of 8.2 ppm and 8.5 ppm, compared to the polymer prepared in Comparative Example 1-1, and a peak overlapping with the proton of the phenyl group was observed between 7.0 and 7.3 ppm. That is, in the polymer prepared in Example 1-1, the proton of the pyridine group could be confirmed by the peak observed further in the 8.0 to 8.7 ppm region.
  • the polymer electrolyte membrane prepared in Example can be seen that the decomposition time is significantly improved due to the improved durability against radical attack compared to the polymer electrolyte membrane prepared in Comparative Example.
  • the polymer electrolyte membrane prepared in Example has improved acid-base interaction as compared to the polymer electrolyte membrane prepared in Comparative Example, thereby maximizing the function of the ion conductive group, and thus operating the fuel cell in a low-humidity state. It can be seen that this improvement.
  • the polymer electrolyte membrane can be applied to a membrane-electrode assembly and a fuel cell.
  • the polymer electrolyte membrane has improved durability against radical attack, and thus, the reaction of radicals formed on the cathode side during the fuel cell operation does not cause an addition reaction or breakage of the aromatic ring to the aromatic ring of the polymer electrolyte membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명은 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지에 관한 것으로서, 상기 고분자 전해질막은 하기 화학식 1 내지 3으로 표시되는 반복 단위들을 포함하는 중합체를 포함한다. 상기 화학식 1 내지 3은 명세서 중에서 정의된 바와 같다. 상기 고분자 전해질막은 라디칼 공격에 대한 내구성이 우수하고, 산-염기의 상호 작용(interaction)이 향상되어 이온 전도성기의 기능을 극대화함으로써, 저가습 상태에서의 연료전지 운전 성능을 개선시킬 수 있다.

Description

고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지
본 발명은 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지에 관한 것으로서, 보다 상세하게는 상기 고분자 전해질막은 라디칼 공격에 대한 내구성이 향상되어, 연료전지 운전시 캐소드 쪽에서 형성된 라디칼들의 공격에 의하여 상기 고분자 전해질막의 방향족 고리에 첨가 반응이 일어나거나 방향족 고리가 끊어지는 현상이 발생하지 않으며, 산-염기의 상호 작용(interaction)이 향상되어 이온 전도성기의 기능을 극대화함으로써, 저가습 상태에서의 연료전지 운전 성능을 개선시킬 수 있는 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지에 관한 것이다.
연료 전지는 연료의 산화에 의해서 생기는 화학에너지를 직접 전기에너지로 변환시키는 전지로서 높은 에너지 효율성과 오염물 배출이 적은 친환경적인 특징으로 인해 차세대 에너지원으로 각광받고 있다.
상기 연료 전지는 일반적으로 전해질막을 사이에 두고 그 양쪽에 산화극(Anode)과 환원극(Cathode)이 각각 형성된 구조를 이루며, 이와 같은 구조를 막-전극 접합체(Membrane Electrode Assembly: MEA)라 칭한다.
상기 연료 전지는 전해질막의 종류에 따라 알칼리 전해질 연료 전지, 고분자 전해질 연료 전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC) 등으로 구분될 수 있는데, 그 중에 상기 고분자 전해질 연료 전지는 100 미만의 낮은 작동온도, 빠른 시동과 응답 특성 및 우수한 내구성 등의 장점으로 인하여 휴대용, 차량용 및 가정용 전원장치로 각광을 받고 있다.
상기 고분자 전해질 연료 전지의 대표적인 예로는 수소 가스를 연료로 사용하는 수소이온 교환막 연료 전지(Proton Exchange Membrane Fuel Cell: PEMFC) 등을 들 수 있다.
상기 고분자 전해질 연료 전지에서 일어나는 반응을 요약하면, 우선, 수소가스와 같은 연료가 상기 산화극에 공급되면, 상기 산화극에서는 수소의 산화반응에 의해 수소이온(H+)과 전자(e-)가 생성된다. 생성된 수소이온(H+)은 상기 고분자 전해질막을 통해 상기 환원극으로 전달되고, 생성된 전자(e-)는 외부회로를 통해 상기 환원극에 전달된다. 상기 환원극에서는 산소가 공급되고, 산소가 수소이온(H+) 및 전자(e-)와 결합하여 산소의 환원반응에 의해 물이 생성된다.
상기 고분자 전해질막은 상기 산화극에서 생성된 수소이온(H+)이 상기 환원극으로 전달되는 통로이므로 기본적으로 수소이온(H+)의 전도도가 우수해야 한다. 또한, 상기 고분자 전해질막은 상기 산화극에 공급되는 수소가스와 상기 환원극에 공급되는 산소를 분리하는 분리능이 우수해야 하고, 그 외에도 기계적 강도, 치수안정성, 내화학성 등이 우수해야 하며, 고전류밀도에서 저항손실(ohmic loss)이 작아야 하는 등의 특성이 요구된다.
현재 사용되고 있는 고분자 전해질막으로는 불소계 수지로서 퍼플루오로설폰산 수지(이하, 불소계 이온 전도체라 함)가 있다. 그러나, 상기 불소계 이온 전도체는 기계적 강도가 약하여 장시간 사용하게 되면 핀홀(pinhole)이 발생하고 그로 인해 에너지 전환효율이 떨어지는 문제가 있다. 기계적 강도를 보강하기 위해서 상기 불소계 이온 전도체의 막두께를 증가시켜 사용하는 시도가 있지만 이 경우는 저항손실이 증가되고 또한 고가인 재료의 사용이 증가되어 경제성이 떨어지는 문제가 있다.
상기와 같은 불소계 이온 전도체의 단점을 개선하기 위하여, 최근 탄화수소계 이온 전도체 개발이 활발하게 이루어지고 있다. 그러나, 상기 연료전지의 운전조건인 습윤/건조 상태에서 상기 고분자 전해질막은 팽창/수축을 반복하기 때문에, 구조적으로 함수율이 높은 상기 탄화수소계 고분자 전해질막은 낮은 치수 안정성과 인장 강도로 인하여 장기적인 막의 내구성이 떨어지는 단점이 있다.
이와 같은 문제를 해결하기 위해서, 상기 탄화수소계 이온 전도체에 보강제 개념의 지지체를 도입하여 기계적 강도를 향상시킨 강화막 형태의 고분자 전해질막이 제안되었다. 상기 지지체로는 주로 이온전도성이 없는 소수성의 탄화수소계 고분자의 지지체가 사용된다. 이 같은 소수성의 지지체로 인해 치수안정성이 개선되고, 그 결과로 함습시에도 인장강도 등의 기계적 물성을 확보할 수 있고, 또 막저항의 최소화 및 성능 증가를 위한 막 두께를 최소화할 수 있다.
한편, 상기 탄화수소계 이온 전도체를 강화막 형태로 제조하기 위해서는, 상기 탄화수소계 이온 전도체를 용매에 용해시켜 함침 용액을 제조한 후, 상기 다공성 지지체를 상기 함침 용액에 일정 시간 동안 침지시키거나, 상기 함침 용액을 상기 다공성 지지체 표면에 도포하는 방법을 이용하게 된다. 그러나, 상기 방법의 경우 지지체의 함침성이 낮거나 또는 상기 함침 또는 도포 공정 이후 상기 용매를 증발시켜 제거하는 과정에서 상기 탄화수소계 이온 전도체와 상기 다공성 지지체와의 친화성이 떨어지면서 상기 다공성 지지체 내부에 공동(cavity)과 같은 결함(defect)가 발생할 수 있으며, 이 같은 캐비티에 의한 해당 부분의 막 눌림 현상으로 크랙(crack) 및 막-전극의 탈리 등이 발생하게 된다. 이 때문에 상기 함침 또는 도포 공정을 여러 차례 반복하게 되는데, 이에 따라 상기 고분자 전해질막의 두께가 증가하고, 두께가 불균일해진다.
또한, 다공도가 낮은 지지체를 사용할 경우 지지체 자체가 저항이 되기 때문에 전지 성능이 떨어지는 문제가 있다. 이에 대해 다공도를 극대화한 다공성 지지체 구조의 지지체를 도입한 강화막이 제안되었다. 그러나 이 같은 강화막은 우수한 성능과 물성에도 불구하고 고가습 운전조건(60 내지 100%) 보다 저가습 운전조건(60% 미만)에서 성능 감소가 일어난다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국특허공개 제2006-0083374호(공개일: 2006.07.20)
(특허문헌 2) 한국특허공개 제2006-0083372호(공개일: 2006.07.20)
(특허문헌 3) 한국특허공개 제2011-0120185호(공개일: 2011.11.03)
본 발명의 목적은 라디칼 공격에 대한 내구성이 향상되고, 산-염기의 상호 작용(interaction)이 향상되어 이온 전도성기의 기능을 극대화함으로써, 저가습 상태에서의 연료전지 운전 성능을 개선시킬 수 있는 고분자 전해질막을 제공하는 것이다.
본 발명의 다른 목적은 상기 고분자 전해질막을 포함하는 막-전극 어셈블리를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 고분자 전해질막을 포함하는 연료전지를 제공하는 것이다.
본 발명의 일 실시예에 따른 고분자 전해질막은, 하기 화학식 1 내지 3으로 표시되는 반복 단위들을 포함하는 중합체를 포함한다.
[화학식 1]
Figure PCTKR2015002932-appb-I000001
[화학식 2]
Figure PCTKR2015002932-appb-I000002
[화학식 3]
Figure PCTKR2015002932-appb-I000003
상기 화학식 1 내지 3에서, 상기 A는 술폰산기, 카르복실산기 및 인산기로 이루어진 군에서 선택되는 어느 하나의 이온 전도성기이고, 상기 X는 단일 결합, -CO-, -SO2-, -CONH-, -COO-, -CR'2-, 시클로헥실리덴기, 플루오레닐리덴기, -O- 및 -S-로 이루어진 군에서 선택되는 어느 하나이고, 상기 R'는 수소 원자, 할로겐 원자, 알킬기, 할로겐화 알킬기, 알릴기, 아릴기, 니트로기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나이고, 상기 Y는 2가의 함질소 방향족 고리기이고, 상기 Z는 -O- 또는 -S-이고, 상기 R1 내지 R14는 각각 독립적으로 술폰산기, 카르복실산기, 인산기, 수소 원자, 할로겐 원자, 알킬기, 할로겐화 알킬기, 알릴기, 아릴기, 니트로기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나이고, 상기 n은 0 내지 4의 정수이다.
상기 중합체는 상기 화학식 3으로 표시되는 반복 단위를 100 몰부, 상기 화학식 1로 표시되는 반복 단위를 1 내지 200 몰부, 상기 화학식 2로 표시되는 반복 단위를 1 내지 200몰부로 포함할 수 있다.
상기 2가의 함질소 방향족 고리기는 피롤, 티아졸, 이소티아졸, 옥사졸, 이소옥사졸, 이미다졸, 이미다졸린, 이미다졸리딘, 피라졸, 트리아진, 피리딘, 피리미딘, 피리다진, 피라진, 인돌, 퀴놀린, 이소퀴놀린, 테트라졸, 테트라진, 트리아졸, 카르바졸, 퀴녹살린, 퀴나졸린, 인돌리진, 이소인돌, 인다졸, 프탈라진, 나프티리딘, 바이피리딘, 벤즈이미다졸, 이미다졸, 피롤리딘, 피롤린, 피라졸린, 피라졸리딘, 피페리딘, 피페라진 및 인돌린으로 이루어진 군에서 선택되는 어느 하나의 함질소 방향족 고리 화합물의 2가기일 수 있다.
상기 중합체는 하기 화학식 4로 표시되는 반복단위를 더 포함할 수 있다.
[화학식 4]
Figure PCTKR2015002932-appb-I000004
상기 화학식 4에서, 상기 Z는 -O- 또는 -S-이고, 상기 R15 내지 R22는 각각 독립적으로 술폰산기, 카르복실산기, 인산기, 수소 원자, 할로겐 원자, 알킬기, 할로겐화 알킬기, 알릴기, 아릴기, 니트로기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나이다.
상기 중합체는 상기 화학식 3으로 표시되는 반복 단위를 100 몰부, 상기 화학식 1로 표시되는 반복 단위를 1 내지 200 몰부, 상기 화학식 2로 표시되는 반복 단위를 1 내지 200 몰부, 상기 화학식 4로 표시되는 반복 단위를 1 내지 200 몰부로 포함할 수 있다.
상기 중합체는 하기 화학식 5 및 6으로 표시되는 반복 단위들을 포함할 수 있다.
[화학식 5]
Figure PCTKR2015002932-appb-I000005
[화학식 6]
Figure PCTKR2015002932-appb-I000006
상기 화학식 5 및 6에서, 상기 A는 술폰산기, 카르복실산기 및 인산기로 이루어진 군에서 선택되는 어느 하나의 이온 전도성기이고, 상기 Y는 2가의 함질소 방향족 고리기이고, 상기 Z는 -O- 또는 -S-이고, 상기 R1 내지 R6 및 R15 내지 R22는 각각 독립적으로 술폰산기, 카르복실산기, 인산기, 수소 원자, 할로겐 원자, 알킬기, 할로겐화 알킬기, 알릴기, 아릴기, 니트로기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나이다.
상기 중합체는 하기 화학식 7 및 8로 표시되는 반복 단위들을 더 포함할 수 있다.
[화학식 7]
Figure PCTKR2015002932-appb-I000007
[화학식 8]
Figure PCTKR2015002932-appb-I000008
상기 화학식 7 및 8에서, 상기 A는 술폰산기, 카르복실산기 및 인산기로 이루어진 군에서 선택되는 어느 하나의 이온 전도성기이고, 상기 X는 단일 결합, -CO-, -SO2-, -CONH-, -COO-, -CR'2-, 시클로헥실리덴기, 플루오레닐리덴기, -O- 및 -S-로 이루어진 군에서 선택되는 어느 하나이고, 상기 R'는 수소 원자, 할로겐 원자, 알킬기, 할로겐화 알킬기, 알릴기, 아릴기, 니트로기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나이고, 상기 Z는 -O- 또는 -S-이고, 상기 R1 내지 R22는 각각 독립적으로 술폰산기, 카르복실산기, 인산기, 수소 원자, 할로겐 원자, 알킬기, 할로겐화 알킬기, 알릴기, 아릴기, 니트로기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나이고, 상기 n은 0 내지 4의 정수이다.
상기 고분자 전해질막은 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 다공성 지지체, 그리고 상기 다공성 지지체의 기공을 채우고 있는 상기한 중합체를 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따른 막-전극 어셈블리는, 서로 대향하여 위치하는 애노드 전극과 캐소드 전극, 그리고 상기 애노드 전극과 캐소드 전극 사이에 위치하는 상기한 고분자 전해질막을 포함하는 막-전극 어셈블리가 제공된다.
본 발명의 또 다른 일 실시예에 따른 연료전지는, 상기한 막-전극 어셈블리를 포함한다.
본 발명의 고분자 전해질막은 라디칼 공격에 대한 내구성이 향상되어, 연료전지 운전시 캐소드 쪽에서 형성된 라디칼들의 공격에 의하여 상기 고분자 전해질막의 방향족 고리에 첨가 반응이 일어나거나 방향족 고리가 끊어지는 현상이 발생하지 않으며, 산-염기의 상호 작용(interaction)이 향상되어 이온 전도성기의 기능을 극대화함으로써, 저가습 상태에서의 연료전지 운전 성능을 개선시킬 수 있다.
도 1은 노즐형 전기 방사 장치의 개략도이다.
도 2는 본 발명의 일 실시예에 따른 막-전극 어셈블리를 개략적으로 나타낸 단면도이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 명세서에 기재된 용어 나노란 나노 스케일을 의미하며, 1㎛ 이하의 크기를 포함한다.
본 명세서에 기재된 용어 직경이란, 섬유의 중심을 지나는 단축의 길이를 의미하고, 길이란 섬유의 중심을 지나는 장축의 길이를 의미한다.
본 명세서에서 특별한 언급이 없는 한 알킬기는 1차 알킬기, 2차 알킬기 및 3차 알킬기를 포함한다.
본 명세서에서 특별한 언급이 없는 한 알킬기는 직쇄 또는 분쇄의 탄소수 1 내지 10인 알킬기, 할로겐화 알킬기는 직쇄 또는 분쇄의 탄소수 1 내지 10인 할로겐화 알킬기, 알릴기는 탄소수 2 내지 10인 알릴기, 아릴기는 탄소수 6 내지 30인 아릴기를 의미한다.
본 명세서에서 모든 화합물 또는 치환기는 특별한 언급이 없는 한 치환되거나 비치환된 것일 수 있다. 여기서, 치환된이란 수소가 할로겐 원자, 하이드록시기, 카르복실기, 시아노기, 니트로기, 아미노기, 사이오기, 메틸사이오기, 알콕시기, 나이트릴기, 알데하이드기, 에폭시기, 에테르기, 에스테르기, 에스테르기, 카르보닐기, 아세탈기, 케톤기, 알킬기, 퍼플루오로알킬기, 시클로알킬기, 헤테로시클로알킬기, 알릴기, 벤질기, 아릴기, 헤테로아릴기, 이들의 유도체 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나로 대체된 것을 의미한다.
본 명세서에서 화학식의 양 말단에 표시된 *는 인접하는 다른 화학식과 연결됨을 표시한 것이다.
본 발명의 일 실시예에 따른 고분자 전해질막은, 하기 화학식 1 내지 3으로 표시되는 반복 단위들을 포함하는 중합체를 포함한다. 상기 중합체는 주쇄에 함질소 방향족 고리기를 포함하고 있어 라디칼 공격에 대한 내구성 및 산-염기의 상호 작용(interaction)이 향상된다. 이에 따라, 상기 고분자 전해질막은 연료전지 운전시 캐소드 쪽에서 형성된 라디칼들의 공격에 의하여 상기 고분자 전해질막의 방향족 고리에 첨가 반응이 일어나거나 방향족 고리가 끊어지는 현상이 발생하지 않으며, 이온 전도성기의 기능을 극대화함으로써, 저가습 상태에서의 연료전지 운전 성능을 개선시킬 수 있다.
[화학식 1]
Figure PCTKR2015002932-appb-I000009
[화학식 2]
Figure PCTKR2015002932-appb-I000010
[화학식 3]
Figure PCTKR2015002932-appb-I000011
상기 화학식 1 내지 3에서, 상기 A는 이온 전도성기이다. 상기 이온 전도성기는 술폰산기, 카르복실산기 및 인산기로 이루어진 군에서 선택되는 어느 하나의 이온 전도성기일 수 있으며, 바람직하게 술폰산기일 수 있다.
상기 Z는 -O- 또는 S-이고, 바람직하게 -O-일 수 있다.
상기 X는 단일 결합, -CO-, -SO2-, -CONH-, -COO-, -CR'2-, 시클로헥실리덴기, 플루오레닐리덴기, -O- 및 -S-로 이루어진 군에서 선택되는 어느 하나일 수 있고, 여기서 상기 R'는 수소 원자, 할로겐 원자, 알킬기, 할로겐화 알킬기, 알릴기, 아릴기, 니트로기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나일 수 있다. 상기 X가 단일 결합인 경우 상기 X의 양 옆에 존재하는 페닐기가 직접 연결됨을 의미하여, 대표적으로 바이페닐기를 예로 들 수 있다.
상기 R1 내지 R14는 각각 독립적으로 술폰산기, 카르복실산기, 인산기, 수소 원자, 할로겐 원자, 알킬기, 할로겐화 알킬기, 알릴기, 아릴기, 니트로기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 할로겐 원자는 브롬, 불소 및 염소로 이루어진 군에서 선택되는 어느 하나이고, 상기 알킬기는 메틸기, 에틸기, 프로필기, 부틸기, 이소부틸기, 아밀기, 헥실기, 사이클로헥실기, 옥틸기 등일 수 있고, 상기 할로겐화 알킬기는 트리플루오로메틸기, 펜타플루오로에틸기, 퍼플루오로프로필기, 퍼플루오로부틸기, 퍼플루오로펜틸기, 퍼플루오로헥실기 등일 수 있고, 상기 알릴기는 프로페닐기 등일 수 있고, 상기 아릴기는 페닐기, 펜타플루오로페닐기 등일 수 있다. 상기 퍼플루오로알킬기는 일부의 수소 원자 또는 전체 수소 원자가 플루오르로 치환된 알킬기를 의미한다.
상기 n은 0 내지 4의 정수이고, 바람직하게 0 또는 1의 정수일 수 있다.
상기 Y는 2가의 함질소 방향족 고리기이다. 상기 함질소 방향족 고리기는 방향족 고리에 헤테로 원자로서 질소 원자를 적어도 하나 포함하는 것을 의미한다. 또한, 상기 질소 원자와 함께 다른 헤테로 원자로서 산소 원자, 황 원자 등을 포함할 수도 있다.
구체적으로, 상기 2가의 함질소 방향족 고리기는 피롤, 티아졸, 이소티아졸, 옥사졸, 이소옥사졸, 이미다졸, 이미다졸린, 이미다졸리딘, 피라졸, 트리아진, 피리딘, 피리미딘, 피리다진, 피라진, 인돌, 퀴놀린, 이소퀴놀린, 테트라졸, 테트라진, 트리아졸, 카르바졸, 퀴녹살린, 퀴나졸린, 인돌리진, 이소인돌, 인다졸, 프탈라진, 나프티리딘, 바이피리딘, 벤즈이미다졸, 이미다졸, 피롤리딘, 피롤린, 피라졸린, 피라졸리딘, 피페리딘, 피페라진 및 인돌린으로 이루어진 군에서 선택되는 어느 하나의 함질소 방향족 고리 화합물의 2가기일 수 있다.
상기 중합체는 상기 화학식 3으로 표시되는 반복 단위를 100 몰부, 상기 화학식 1로 표시되는 반복 단위를 1 내지 200 몰부, 상기 화학식 2로 표시되는 반복 단위를 1 내지 200 몰부로 포함할 수 있고, 바람직하게 상기 화학식 3으로 표시되는 반복 단위를 100 몰부, 상기 화학식 1로 표시되는 반복 단위를 30 내지 70 몰부, 상기 화학식 2로 표시되는 반복 단위를 30 내지 70 몰부로 포함할 수 있다. 상기 화학식 3으로 표시되는 반복 단위 100 몰부에 대하여 상기 화학식 2로 표시되는 반복 단위가 상기 함량 범위를 벗어나는 경우 상기 고분자 전해질막의 함습시 팽윤도가 극대화되어 기계적 물성이 저하되고 장기적으로 내구성이 취약해질 수 있고, 상기 화학식 3으로 표시되는 반복 단위 100 몰부에 대하여 상기 화학식 1로 표시되는 반복 단위가 상기 함량 범위를 벗어나는 경우 상기 고분자 전해질막의 이온전도도나 셀 성능이 낮아 연료전지용 전해질막으로서의 기능을 다 하지 못할 수 있다.
상기 중합체는 하기 화학식 4로 표시되는 반복 단위를 더 포함할 수 있다. 이 경우 상기 화학식 3으로 표시되는 반복 단위에서 상기 X는 -SO2-가 아닐 수 있다.
[화학식 4]
Figure PCTKR2015002932-appb-I000012
상기 화학식 4에서, 상기 Z는 -O- 또는 -S-이고, 상기 R15 내지 R22는 각각 독립적으로 술폰산기, 카르복실산기, 인산기, 수소 원자, 할로겐 원자, 알킬기, 할로겐화 알킬기, 알릴기, 아릴기, 니트로기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나일 수 있다.
상기 중합체가 상기 화학식 4로 표시되는 반복 단위를 더 포함하는 경우, 상기 화학식 3으로 표시되는 화합물 100 몰부, 상기 화학식 1로 표시되는 반복 단위를 1 내지 200 몰부, 상기 화학식 2로 표시되는 반복 단위를 1 내지 200 몰부, 상기 화학식 4로 표시되는 반복 단위를 1 내지 200 몰부로 포함할 수 있고, 바람직하게 상기 화학식 3으로 표시되는 화합물 100 몰부, 상기 화학식 1로 표시되는 반복 단위를 50 내지 150 몰부, 상기 화학식 2로 표시되는 반복 단위를 50 내지 150 몰부, 상기 화학식 4로 표시되는 반복 단위를 50 내지 150 몰부로 포함할 수 있다. 상기 화학식 3으로 표시되는 반복 단위 100 몰부에 대하여 상기 화학식 4로 표시되는 반복 단위의 함량이 상기 범위를 벗어나는 경우 상기 고분자 전해질막의 이온전도도나 셀 성능이 저하될 수 있다.
상기 중합체는 보다 구체적으로 하기 화학식 5 및 6으로 표시되는 반복 단위들을 포함하는 형태일 수 있다. 즉, 상기 중합체는 상기 화학식 3으로 표시되는 반복 단위가 상기 화학식 1 및 4로 표시되는 반복 단위들과 각각 결합된 형태의 반복 단위들을 포함하는 경우로서, 이 경우 상기 화학식 1로 표시되는 반복 단위와 상기 화학식 4로 표시되는 반복 단위는 직접 결합되지는 않는다.
[화학식 5]
Figure PCTKR2015002932-appb-I000013
[화학식 6]
Figure PCTKR2015002932-appb-I000014
상기 화학식 5 및 6에서, 상기 A, Y, Z, R1 내지 R6 및 R15 내지 R22의 정의는 상술한 바와 같다.
상기 중합체가 상기 화학식 5 및 6으로 표시되는 반복 단위들을 포함하는 형태인 경우, 상기 중합체는 상기 화학식 5와 화학식 6으로 표시되는 반복 단위들이 무작위적으로 결합된 랜덤(random) 공중합체일 수 있고, 상기 화학식 5로 표시되는 반복 단위들이 결합된 제1 블록(block)과 상기 화학식 6으로 표시되는 반복 단위들이 결합된 제2 블록(block)을 포함하는 블록 공중합체일 수도 있다.
또한, 상기 중합체는 상기 화학식 5 및 6으로 표시되는 반복 단위들과 함께 하기 화학식 7 및 8로 표시되는 반복 단위들을 더 포함할 수 있다.
[화학식 7]
Figure PCTKR2015002932-appb-I000015
[화학식 8]
Figure PCTKR2015002932-appb-I000016
상기 화학식 7 및 8에서, 상기 A, X, Z, R1 내지 R22의 정의는 상술한 바와 같다. 다만, 이 경우 상기 X는 -SO2-는 아닐 수 있다.
상기 중합체는 상기 화학식 1 또는 상기 화학식 2로 표시되는 반복 단위들의 활성 디할라이드 단량체와 상기 화학식 3으로 표시되는 반복 단위의 디하이드록사이드 단량체의 방향족 구핵 치환 반응, 또는 상기 화학식 1 또는 상기 화학식 2로 표시되는 반복 단위들의 디하이드록사이드 단량체와 상기 화학식 3으로 표시되는 반복 단위의 활성 디할라이드 단량체의 방향족 구핵 치환 반응에 의해 중합할 수 있다.
일례로, 하기 화학식 1로 표시되는 반복 단위의 활성 디할라이드 단량체는 SDCDPS(sulfonated dichlorodiphenyl sulfone) 또는 SDFDPS(sulfonated difluorodiphenyl sulfone)일 수 있고, 상기 화학식 4로 표시되는 반복 단위의 활성 디할라이드 단량체는 DCDPS(dichlorodiphenyl sulfone) 또는 DFDPS(difluorodiphenyl sulfone)일 수 있고, 상기 화학식 3으로 표시되는 반복 단위의 디하이드록사이드 단량체는 2개의 -OH 치환기를 포함하는 함질소 방향족 고리 화합물일 수 있다.
이때, 상기 중합 반응은 알칼리성 화합물의 존재하에서 실시되는 것이 바람직할 수 있다. 상기 알칼리성 화합물은 구체적으로 수산화나트륨, 수산화칼륨, 탄산나트륨, 탄산칼륨 또는 탄산수소나트륨 등일 수 있으며, 이들 중 1종 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.
또한 상기 중합 반응은 용매 중에서 실시될 수 있는데, 이때 상기 용매로서 구체적으로, N,N-디메틸 아세트아미드(dimethyl acetamide), N,N-디메틸 포름아미드(dimethyl formamide), N-메틸(methyl)-2-피롤리돈(pyrrolidone), 디메틸 술폭시드(dimethyl sulfoxide), 술포란(sulfolane), 또는 1,3-디메틸(dimethyl)-2-이미다졸리디논 등의 비양성자성 극성용매를 들 수 있으며, 이들 중 1종 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다.
상기에서는 상기 화학식 1로 표시되는 반복 단위의 이온 전도성기가 이미 이온 전도성기를 포함하는 단량체를 이용하여 중합함으로써 도입되는 것으로 설명하였으나, 본 발명이 이에 한정되는 것은 아니며, 일예로 상기 이온 전도성기를 포함하지 않는 단량체를 이용하여 중합체를 제조한 후, 술폰화제를 이용하여 술폰화함으로써, 상기 화학식 1로 표시되는 반복 단위에 이온 전도성기를 도입할 수도 있다.
상기 중합체가 이온 전도성기로 술폰산기를 포함하는 경우, 상기 중합체는 술폰화도가 1 내지 40몰%, 바람직하게는 5 내지 40몰%일 수 있다. 상기 중합체가 상기와 같은 범위의 술포화도를 가질 때 치수안정성 저하없이 우수한 이온 전도도를 나타낼 수 있다.
한편, 상기 고분자 전해질막은 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 다공성 지지체, 그리고 상기 다공성 지지체의 기공을 채우고 있는 상기 중합체를 포함할 수 있다.
상기한 고분자 전해질막에 있어서, 상기 다공성 지지체는 고분자 전해질막의 기계적 강도를 증진시키고 수분에 의한 부피팽창을 억제함으로써 치수안정성을 증진시키는 역할을 한다.
또한, 상기 다공성 지지체가 최적화된 직경을 갖는 나노 섬유에 의해 제조되어 최적화된 다공도 및 두께를 가지고, 제조가 용이하며, 함습 후에도 우수한 기계적 물성을 나타내기 위해서는 상기 중합체가 30,000 내지 500,000g/mol의 중량 평균 분자량을 갖는 것이 바람직하다. 만일, 상기 중합체의 중량평균 분자량이 30,000g/mol 미만일 경우 상기 다공성 지지체의 다공도 및 두께를 용이하게 제어할 수 있으나, 다공도 및 함습시 기계적 물성이 저하될 수 있다. 반면, 상기 중합체의 중량 평균 분자량이 500,000g/mol을 초과할 경우 제조 공정이 원활하게 진행되지 않고 다공도가 저하될 수 있다.
상기 다공성 지지체는 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 것으로서, 바람직하게 상기 다공성 지지체는 전기 방사에 의해 제조된 나노 섬유가 3차원적으로 불규칙하고 불연속적으로 배열된 고분자 나노 섬유의 집합체이다.
구체적으로, 상기 나노 섬유는 상기 다공성 지지체의 다공도 및 두께를 고려하여, 전자주사현미경(Scanning Electron Microscope, JSM6700F, JEOL)을 이용하여 50개의 섬유 직경을 측정하여 그 평균으로부터 계산했을 때, 0.01 내지 5㎛의 평균 직경을 갖는 것이 바람직할 수 있다. 만일 상기 나노 섬유의 평균 직경이 0.01㎛ 미만일 경우 상기 다공성 지지체의 기계적 강도가 저하될 수 있고, 상기 나노 섬유의 평균 직경이 5㎛를 초과할 경우 다공도가 감소되고 두께가 두꺼워질 수 있다.
또한, 상기 다공성 지지체는 상기한 바와 같은 직경을 갖는 나노 섬유들의 임의 배열에 의해 이루어짐으로써, 균일하게 분포된 다수의 기공을 포함할 수 있다. 이렇게 균일하게 분포된 다수의 기공으로 이루어진 상기 다공성 지지체는 우수한 다공도와 이온 전도체의 물성을 보완할 수 있는 특성(치수안정성 등)을 가지게 된다. 구체적으로, 상기 다공성 지지체에 형성되는 기공의 직경인 공경은 0.05 내지 30㎛의 범위 내로 형성될 수 있는데, 상기 공경이 0.05㎛ 미만으로 형성될 경우 상기 고분자 전해질막의 이온 전도도가 떨어질 수 있고, 상기 공경이 30㎛를 초과할 경우 상기 고분자 전해질막의 기계적 강도가 떨어질 수 있다.
또한, 상기 다공성 지지체의 기공의 형성 정도를 나타내는 다공도는 80 내지 95%일 수 있다. 이와 같이 높은 다공도를 가짐에 따라, 상기 다공성 지지체의 비표면적이 커지기 때문에 상기 중합체를 상기 기공 내에 충진하는 것이 용이하고, 그 결과로 우수한 이온 전도도를 나타낼 수 있다. 만약, 상기 다공성 지지체의 다공도가 80% 미만일 경우 충분한 이온 전도도를 얻기 어렵고, 상기 다공성 지지체의 다공도가 95%를 초과할 경우 기계적 강도 및 형태 안정성이 저하될 수 있다.
상기 다공도(%)는 하기 수학식 1과 같이, 상기 다공성 지지체의 전체 부피 대비 공기 부피의 비율에 의하여 계산할 수 있다.
[수학식 1]
다공도(%) = (공기 부피/전체 부피)×100
이때, 상기 다공성 지지체의 전체 부피는 직사각형 형태의 다공성 지지체의 샘플을 제조하여 가로, 세로 및 두께를 측정하여 계산하고, 상기 다공성 지지체의 공기 부피는 상기 다공성 지지체 샘플의 질량을 측정한 후 밀도로부터 역산한 고분자 부피를 상기 다공성 지지체의 전체 부피에서 빼서 얻을 수 있다.
또한, 상기 다공성 지지체는 5 내지 50㎛의 평균 두께를 가질 수 있다. 상기 다공성 지지체의 두께가 5㎛ 미만이면 상기 고분자 전해질막의 기계적 강도 및 치수안정성이 저하될 우려가 있고, 반면 두께가 50㎛를 초과하면 저항 손실이 증가하여, 경량화 및 집적화가 어려울 수 있다. 보다 바람직한 상기 다공성 지지체의 두께는 10 내지 30㎛의 범위이다.
상기 중합체는 상기 고분자 전해질막 총 중량에 대하여 50 내지 99 중량%로 포함될 수 있다. 상기 중합체의 함량이 50 중량% 미만이면 상기 고분자 전해질막의 이온 전도도가 저하될 우려가 있고, 상기 중합체의 함량이 99 중량%를 초과하면 상기 고분자 전해질막의 기계적 강도 및 치수안정성이 저하될 수 있다.
또한, 상기 고분자 전해질막은 상기 고다공성의 다공성 지지체 내에 상기 중합체가 균일하고 조밀하게 충진됨으로써 높은 이온전도성과 함께 우수한 기계적 강도, 구체적으로는 10MPa 이상의 우수한 기계적 강도를 나타낸다. 이와 같이 이온전도도 및 기계적 강도가 증진됨에 따라 상기 고분자 전해질막 전체의 두께를 감소시킬 수 있으며, 구체적으로는 80㎛ 이하로 줄일 수 있다. 그 결과 재료비 절약과 함께 이온 전도 속도가 증가되고 저항손실이 감소된다.
또한, 상기 고분자 전해질막은 소수성의 다공성 지지체를 포함함으로써 우수한 치수안정성을 나타낼 수 있다. 구체적으로는 물에 팽윤시켰을 때 8% 이하, 바람직하게는 1% 이하의 우수한 치수안정성을 나타낸다. 상기 치수안정성은 상기 고분자 전해질막을 물에 팽윤시켰을 때 팽윤 전후의 길이 변화로부터 하기 수학식 2에 따라 평가되는 물성이다.
[수학식 2]
치수안정성=[(팽윤 후 길이-팽윤 전 길이)/팽윤 전 길이]×100
상기 다공성 지지체의 기공에 상기 중합체가 충진된 고분자 전해질막은 전기 방사 용액을 전기 방사하여 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 다공성 지지체를 제조하는 제1 단계, 및 상기 다공성 지지체에 포함된 기공 내에 상기 중합체를 충진하는 제2 단계를 통하여 제조될 수 있다.
이하 각 단계별로 살펴보면, 상기 전기 방사 용액은 상기 나노 섬유를 형성하기 위한 단량체들을 포함하는 용액으로서, 상기 나노 섬유를 형성하기 위한 단량체들은 우수한 내화학성을 나타내고, 소수성을 가져 고습의 환경에서 수분에 의한 형태 변형 우려가 없는 탄화수소계 고분자를 바람직하게 사용할 수 있다.
구체적으로 상기 탄화수소계 고분자로는 나일론, 폴리이미드, 폴리아라미드, 폴리에테르이미드, 폴리아크릴로니트릴, 폴리아닐린, 폴리에틸렌옥사이드, 폴리에틸렌나프탈레이트, 폴리부틸렌테레프탈레이트, 스티렌 부타디엔 고무, 폴리스티렌, 폴리비닐 클로라이드, 폴리비닐알코올, 폴리비닐리덴 플루오라이드, 폴리비닐 부틸렌, 폴리우레탄, 폴리벤즈옥사졸, 폴리벤즈이미다졸, 폴리아미드이미드, 폴리에틸렌테레프탈레이트, 폴리에틸렌, 폴리프로필렌, 이들의 공중합체, 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 사용할 수 있으며, 이중에서도 내열성, 내화학성, 및 형태안정성이 보다 우수한 폴리이미드를 사용하는 것이 바람직하다. 이하, 상기 나노 섬유가 소수성 폴리머인 폴리이미드로 이루어진 경우에 대하여 구체적으로 설명한다.
상기 나노 섬유가 소수성 폴리머인 폴리이미드로 이루어진 경우 상기 다공성 지지체의 제조 방법은 디아민(diamine) 및 디언하이드라이드(dianhydride)를 용매에 첨가하여 전기 방사 용액을 제조하는 단계, 상기 제조된 전기 방사 용액을 전기 방사하여 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 폴리아믹산 나노웹을 제조하는 단계, 그리고 상기 폴리아믹산 나노웹을 이미드화시켜 폴리이미드 나노웹을 제조하는 단계를 포함한다.
상기 디언하이드라이드로는 피로멜리트산 무수물(pyromellyrtic dianhydride, PMDA), 3,3',4,4'-벤조페논 테트라카르복실산 이무수물(3,3',4,4'-benzophenonetetracarboxylic dianhydride, BTDA), 4,4'-옥시디프탈산무수물(4,4'-oxydiphthalic anhydride, ODPA), 3,4,3',4'-비페닐테트라카르복실산 무수물(3,4,3',4'-biphenyltetracarboxylic dianhydride, BPDA), 및 비스(3,4-카르복시페닐)디메틸실란 이무수물(bis(3,4-dicarboxyphenyl)dimethylsilane dianhydride, SiDA) 및 이들의 혼합물로 이루어진 군에서 선택되는 화합물을 사용할 수 있다.
또한, 상기 디아민으로는 4,4'-옥시디아닐린(4,4-oxydianiline, ODA), 1,3-비스(4-아미노페녹시)벤젠(1,3-bis(4-aminophenoxy)benzene, RODA), p-페닐렌 디아민(p-phenylene diamine, p-PDA), o-페닐렌 디아민(o-phenylene diamine, o-PDA) 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 용매로는 m-크레졸, N-메틸-2-피롤리돈(NMP), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 디메틸설폭사이드(DMSO), 아세톤, 디에틸아세테이트, 테트라하이드로퓨란(THF), 클로로포름, γ-부티로락톤 및 이들의 혼합물로 이루어진 군에서 선택되는 용매를 사용할 수 있다.
상기 나노 섬유를 형성하기 위한 단량체들은 상기 전기 방사 용액 전체 중량에 대하여 5 내지 20중량%로 포함되는 것이 바람직하다. 만일, 상기 단량체들의 함량이 5중량% 미만일 경우 방사가 원활하게 진행되지 않기 때문에 섬유 형성이 이루어지지 않거나 균일한 직경을 갖는 섬유를 제조할 수 없고, 반면 상기 단량체들의 함량이 20중량%를 초과할 경우 토출 압력이 급격히 증가함에 따라 방사가 이루어지지 않거나 공정성이 저하될 수 있다.
다음으로, 상기 전기 방사 용액을 방사하여 나노웹 전구체, 즉 폴리아믹산 나노웹을 제조한다. 상기 방사는 본 발명에서 특별히 한정되지 않으나, 전기 방사(electrospinning), 일렉트로-블로운 방사(electro-blown spinning), 원심 방사(centrifugal spinning) 또는 멜트 블로잉(melt blowing) 등일 수 있고, 바람직하게는 전기 방사를 이용할 수 있다.
이하에서는 전기 방사를 이용하는 경우에 대하여 상세하게 설명한다.
도 1은 노즐형 전기 방사 장치의 개략도이다. 상기 도 1을 참조하면, 상기 전기 방사는 상기 나노 섬유 전구체 용액이 보관된 용액 탱크(1)에서 정량 펌프(2)를 이용하여 노즐(3)로 상기 전구체 용액을 일정량으로 공급하고, 고전압 발생부(6)에서 발생된 고전압을 전압 전달 로드(5)를 통하여 상기 노즐(3)에 가하면서, 상기 노즐(3)을 통해 상기 나노 섬유 전구체 용액을 토출한 후 비산과 동시에 응고된 나노 섬유 전구체를 형성하고, 추가적으로 이러한 응고된 나노 섬유 전구체를 콜렉터(4)에서 집속시켜 다공성 지지체의 전구체 나노 섬유를 제조할 수 있다.
이때, 상기 고전압 발생부(6) 및 상기 전압 전달 로드(5)에 의해 인가된 상기 노즐(3)과 콜렉터(4) 사이의 전기장의 세기는 850 내지 3,500V/cm인 것이 바람직하다. 만일, 상기 전기장의 세기가 850V/cm 미만일 경우 연속적으로 전구체 용액이 토출되지 않기 때문에 균일한 두께의 나노 섬유를 제조하기 어렵고, 또한 방사된 후 형성된 나노 섬유가 콜렉터에 원활하게 집속될 수 없기 때문에 나노웹의 제조가 곤란할 수 있고, 전기장의 세기가 3,500V/cm를 초과하는 경우 나노 섬유가 콜렉터(4)에 정확하게 안착되지 않기 때문에 정상적인 형태를 갖는 나노웹이 얻어질 수 없다.
상기 방사 공정을 통해 균일한 섬유 직경, 바람직하게는 0.01 내지 5㎛의 평균 직경을 갖는 나노 섬유 전구체가 제조되며, 상기 나노 섬유 전구체는 일정 방향 또는 랜덤하게 배열되어 부직포 형태를 가진다.
마지막으로, 상기 나노웹 전구체의 나노 섬유 전구체를 경화시켜 다공성 지지체를 제조할 수 있다. 상기 나노 섬유 전구체를 상기 나노 섬유로 전환시키기 위해서는 상기 나노 섬유 전구체에 대한 추가의 공정으로서 경화 공정을 실시한다. 예를 들어, 상기 전기 방사를 통해 제조된 나노 섬유 전구체가 폴리아믹산으로 이루어진 경우, 경화 공정 동안의 이미드화를 통해 폴리이미드로 변환 된다.
이에 따라, 상기 경화 공정시 온도는 상기 나노 섬유 전구체의 변환율을 고려하여 적절히 조절하는 것이 바람직하다. 구체적으로는 80 내지 650℃에서의 경화 공정이 수행되는 것이 바람직하다. 상기 경화시 온도가 80℃ 미만인 경우 변환율이 낮아지고, 그 결과로 나노웹의 내열성 및 내화학성이 저하될 우려가 있으며, 경화 온도가 650℃를 초과하는 경우에는 상기 나노 섬유의 분해로 인하여 나노웹의 물성이 저하될 우려가 있다.
상기 제2 단계는 상기 단계 1에서 제조된 다공성 지지체에 포함된 기공 내에 상기 중합체를 충진하는 단계이다.
상기 중합체의 충진 방법은 상기 중합체를 용매 중에 용해시켜 제조한 이온전도체 용액에 상기 다공성 지지체를 담지하거나, 또는 스프레이 공정, 스크린 프린팅 공정, 닥터 블레이드 공정 등 당업계에 공지된 다양한 도포 방법을 이용하여 상기 이온전도체 용액을 다공성 지지체에 도포하는 방법을 이용할 수 있다. 상기 담지 공정을 이용할 경우에는 상온(20 내지 25℃)에서 5 내지 30분 동안 2 내지 5회 담지 공정을 수행하는 것이 바람직하다.
상기 이온전도체 용액은 상기 중합체를 유기 용매 중에 용해시켜 제조할 수 있다. 이때 상기 유기 용매로는 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidinone; NMP), 디메틸포름아마이드(dimethylformamide; DMF), 또는 디메틸 아세트아마이드(dimethyl acetamide; DMA)를 이용할 수 있지만, 반드시 이에 한정되는 것은 아니다.
상기 이온전도체 용액 내의 상기 중합체의 함량은 상기 고분자 전해질막 중에 포함되는 상기 중합체의 함량을 고려하여 적절히 결정될 수 있다. 구체적으로는 상기 이온전도체 용액 중에 5 내지 40 중량%로 포함될 수 있다. 상기 중합체가 상기 이온전도체 용액 전체에 대하여 5 중량% 미만으로 포함될 경우는 상기 중합체가 상기 다공성 지지체의 기공 내에 충분히 충진되고 않고 빈 공간을 형성할 수 있고, 상기 중합체가 40 중량%를 초과할 경우는 이온전도체 용액의 점도가 너무 높아 상기 다공성 지지체의 기공 내로 용이하게 충진되지 못할 수 있다.
상기 이온전도체 용액을 충진한 후에는 상기 이온전도체 용액에 포함된 유기용매를 제거하여, 상기 다공성 지지체의 기공 내에 상기 중합체가 채워지도록 한다. 따라서, 상기 고분자 전해질막의 제조 방법은 상기 중합체의 충진 후 유기용매를 제거하는 공정을 더 포함할 수 있으며, 상기 유기용매 제거 공정은 60 내지 150℃의 진공오븐에서 2 내지 15시간 동안 건조하는 공정으로 이루어질 수 있다.
본 발명의 다른 일 실시예에 따르면 상기한 고분자 전해질막을 포함하는 연료전지용 막-전극 어셈블리 및 연료전지를 제공한다.
구체적으로, 상기 막-전극 어셈블리는 서로 대향하여 위치하는 애노드 전극과 캐소드 전극, 및 상기 애노드 전극과 캐소드 전극 사이에 위치하는 상기한 고분자 전해질막을 포함한다.
도 2는 본 발명의 일 실시예에 따른 막-전극 어셈블리를 개략적으로 나타낸 단면도이다. 도 2를 참조하여 설명하면, 본 발명의 일 구현예에 따른 막-전극 어셈블리(100)는 상기 고분자 전해질막(50) 및 상기 고분자 전해질막(50)의 양면에 각각 배치되는 상기 연료 전지용 전극(20, 20')을 포함한다. 상기 전극(20, 20')은 전극기재(40, 40')와 상기 전극기재(40, 40') 표면에 형성된 촉매층(30, 30')을 포함하며, 상기 전극 기재(40, 40')와 상기 촉매층(30, 30') 사이에 상기 전극기재(40, 40')에서의 물질 확산을 용이하게 하기 위해 탄소분말, 카본 블랙 등의 도전성 미세 입자를 포함하는 미세기공층(미도시)을 더 포함할 수도 있다.
상기 막-전극 어셈블리(100)에 있어서, 상기 고분자 전해질막(50)의 일면에 배치되어 상기 전극기재(40)를 지나 상기 촉매층(30)으로 전달된 연료로부터 수소 이온과 전자를 생성시키는 산화 반응을 일으키는 전극(20)을 애노드 전극이라 하고, 상기 고분자 전해질막(50)의 다른 일면에 배치되어 상기 고분자 전해질막(50)을 통해 공급받은 수소 이온과 전극기재(40')를 지나 상기 촉매층(30')으로 전달된 산화제로부터 물을 생성시키는 환원 반응을 일으키는 전극(20')을 캐소드 전극이라 한다.
상기 애노드 및 캐소드 전극(20, 20')의 촉매층(30, 30')은 촉매를 포함한다. 상기 촉매로는 전지의 반응에 참여하여, 통상 연료전지의 촉매로 사용 가능한 것은 어떠한 것도 사용할 수 있다. 구체적으로는 백금계 촉매를 사용할 수 있으며, 상기 백금계 촉매로는 백금, 루테늄, 오스뮴, 백금-루테늄 합금, 백금-오스뮴 합금, 백금-팔라듐 합금 또는 백금-M 합금(M은 Ga, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sn, Mo, W 및 Rh으로 이루어진 군으로부터 선택되는 1종 이상의 전이 금속) 중에서 선택되는 1종 이상의 촉매를 사용할 수 있다. 구체적인 예로는 Pt, Pt/Ru, Pt/W, Pt/Ni, Pt/Sn, Pt/Mo, Pt/Pd, Pt/Fe, Pt/Cr, Pt/Co, Pt/Ru/W, Pt/Ru/Mo, Pt/Ru/V, Pt/Fe/Co, Pt/Ru/Rh/Ni 및 Pt/Ru/Sn/W으로 이루어진 군에서 선택되는 1종 이상의 것을 사용할 수 있다. 이러한 촉매는 촉매 자체(black)로 사용할 수도 있고, 담체에 담지시켜 사용할 수도 있다. 이 담체로는 흑연, 덴카블랙, 케첸블랙, 아세틸렌 블랙, 카본나노튜브, 카본나노파이버, 카본나노와이어, 카본나노볼, 또는 활성탄소 등의 탄소계 물질을 사용할 수도 있고, 알루미나, 실리카, 지르코니아, 또는 티타니아 등의 무기물 미립자를 사용할 수도 있다.
또한, 상기 촉매층(30, 30')은 촉매층과 고분자 전해질막과의 접착력 향상 및 수소 이온의 전달을 위하여 바인더 수지를 더 포함할 수도 있다. 상기 바인더 수지로는 상기 고분자 전해질막의 제조시 사용된 이온전도체와 동일한 것을 사용할 수 있다.
상기 전극기재(40, 40')로는 수소 또는 산소의 원활한 공급이 이루어질 수 있도록 다공성의 도전성 기재가 사용될 수 있다. 그 대표적인 예로 탄소 페이퍼(carbon paper), 탄소 천(carbon cloth), 탄소 펠트(carbon felt) 또는 금속천(섬유 상태의 금속천으로 구성된 다공성의 필름 또는 고분자 섬유로 형성된 천의 표면에 금속 필름이 형성된 것을 말함)이 사용할 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 전극기재(40, 40')는 불소 계열 수지로 발수 처리한 것을 사용하는 것이 연료 전지의 구동시 발생되는 물에 의하여 반응물 확산 효율이 저하되는 것을 방지할 수 있어 바람직하다. 상기 불소 계열 수지로는 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리헥사플루오로프로필렌, 폴리퍼플루오로알킬비닐에테르, 폴리퍼플루오로술포닐플루오라이드알콕시비닐 에테르, 플루오리네이티드 에틸렌 프로필렌(Fluorinated ethylene propylene), 폴리클로로트리플루오로에틸렌 또는 이들의 코폴리머를 사용할 수 있다.
상기 막-전극 어셈블리(100)는 상기 고분자 전해질막(50)으로서 본 발명에 따른 고분자 전해질막을 사용하는 것을 제외하고는 통상의 연료전지용 막-전극 어셈블리의 제조방법에 따라 제조할 수 있다.
본 발명의 또 다른 일 실시예에 따른 연료전지는 상기한 막-전극 어셈블리(100)를 포함하는 연료전지를 제공한다.
구체적으로, 상기 연료전지는 연료의 산화 반응 및 산화제의 환원 반응을 통하여 전기를 발생시키는 적어도 하나의 전기 발생부; 연료를 상기 전기 발생부로 공급하는 연료 공급부; 및 산소 또는 공기와 같은 산화제를 상기 전기 발생부로 공급하는 산화제 공급부를 포함하며, 상기 전기 발생부는 상기 막-전극 어셈블리(100) 및 상기 막-전극 어셈블리(100)의 양측에 연료와 산화제를 공급하기 위한 세퍼레이터를 포함한다. 본 발명에서 연료로는 기체 또는 액체 상태의 수소 또는 탄화수소 연료를 사용할 수 있으며, 상기 탄화수소 연료의 대표적인 예로는 메탄올, 에탄올, 프로판올, 부탄올 또는 천연 가스를 들 수 있다.
상기 연료전지에 있어서, 본 발명의 일 실시예에 따른 막-전극 어셈블리(100)가 사용되는 것을 제외하고는 상기 전기 발생부를 구성하는 세퍼레이터, 연료 공급부 및 산화제 공급부는 통상의 연료전지에서 사용되는 것이므로, 본 명세서에서 상세한 설명은 생략한다.
[부호의 설명]
1 : 용액 탱크
2 : 정량 펌프
3 : 노즐
4 : 콜렉터
5 : 전압 전달 로드
6 : 고전압 발생부
20, 20' : 전극
30, 30' : 촉매층
40, 40' : 전극기재
50 : 고분자 전해질막
100 : 막-전극 어셈블리
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
[제조예 1: 중합체의 제조]
(비교예 1-1)
4구의 둥근 플라스크와 딘 스탁 트랩을 설치한 후 4,4'-바이페놀(BP, 하기 SDCDPS 50 몰부에 대한 100 몰부로 첨가됨)와 K2CO3를 NMP 및 톨루엔과 함께 넣고 기계식 교반기로 교반하며 약 2시간 동안에 걸쳐 온도를 150℃까지 서서히 올려주었다. 150℃ 온도에서 톨루엔이 딘 스탁 트랩을 통해 환류되는데 4시간 정도 환류 상태를 유지한 후 톨루엔을 제거하였다. 건조된 SDCDS(3,3'-disulfonated-4,4'-dichlorodiphenyl sulfone) 및 DCDPS(4,4'-dichlorodiphenyl sulfone)를 50:50의 몰비로 글로브 박스 안에서 계량하여 NMP와 함께 반응기에 넣어주었다. 온도를 195℃까지 천천히 올려주고 16hr 동안 교반하였다. 중합이 끝나면 물에 침전하여 100℃에서 2시간 동안 염을 제거하고 필터링한 후 결과로 수득된 여과물을 건조하여 중합체를 제조하였다.
(실시예 1-1)
4구의 둥근 플라스크(4-neck round flask)와 딘 스탁 트랩(Dean Stark Trap)을 설치한 후 디하이드록시 바이피리딘(하기 SDCDS 50 몰부에 대한 100 몰부로 첨가됨)과 K2CO3를 N-메틸-2-피롤리돈(NMP) 및 톨루엔(Toluen)와 함께 넣고 기계식 교반기(mechanical stirrer)로 교반하며 약 2시간 동안에 걸쳐 온도를 150℃까지 서서히 올려주었다. 150℃ 온도에서 톨루엔이 딘 스탁 트랩을 통해 환류되는데 4시간 정도 환류 상태를 유지한 후 톨루엔을 제거하였다. 건조된 SDCDS 및 DCDPS를 50:50의 몰비로 글로브 박스(glove box)안에서 계량하여 NMP와 함께 반응기에 넣어주었다. 온도를 195℃까지 천천히 올려주고 16시간 동안 교반하였다. 중합이 끝나면 물에 침전하여 100℃에서 2시간동안 염을 제거하고 필터링한 후 결과로 수득된 여과물을 건조하여 중합체를 수득하였다.
[제조예 2: 고분자 전해질막의 제조]
(비교예 2-1)
상기 비교예 1-1에서 제조된 중합체를 DMAc에 20 중량%로 용해시킨 후 제막하여 단일막 형태의 고분자 전해질막을 제조하였다.
(실시예 2-1)
상기 비교예 2-1에서 상기 비교예 1-1에서 제조된 중합체 대신에 상기 실시예 1-1에서 제조된 중합체를 사용하는 것을 제외하고는 비교예 2-1에서와 동일한 방법으로 실시하여 고분자 전해질막을 제조하였다.
(비교예 2-2)
폴리아믹산(polyamic acid)을 디메틸포름아마이드에 용해시켜 480poise의 방사용액 5L를 제조하였다. 제조된 방사용액을 용액 탱크에 이송한 후, 이를 정량 기어펌프를 통해 노즐이 20개로 구성되고 고전압이 3kV로 인가된 방사챔버로 공급하여 방사하여 나노섬유 전구체의 웹을 제조하였다. 이때 용액 공급량은 1.5ml/min이었다. 제조된 나노섬유 전구체의 웹을 350℃에서 열처리하여 다공성 지지체(다공도: 40 부피%)를 제조하였다.
상기에서 제조된 다공성 지지체를 상기 비교예 1-1에서 제조한 중합체를 DMAc에 20 중량%로 용해시켜 제조한 이온전도체 용액 중에 2회에 걸쳐 30분 동안 함침시킨 후, 감압 하에서 1시간 동안 방치하고, 80℃의 진공에서 10시간 동안 건조하여 고분자 전해질막을 제조하였다. 이때 폴리이미드 나노섬유의 단위면적당 중량은 6.8gsm이고, 상기 중합체의 중량은 65mg/cm2이었다.
(실시예 2-2)
상기 비교예 2-2에서 비교예 1-1에서 제조된 중합체 대신에 상기 실시예 1-1에서 제조된 중합체를 사용하는 것을 제외하고는 비교예 2-2에서와 동일한 방법으로 실시하여 고분자 전해질막을 제조하였다.
[실시예 1: 제조된 고분자 전해질막의 NMR 데이터 측정]
상기 비교예 1-1 및 실시예 1-1에서 제조된 중합체를 각각 DMAc 용매를 사용하여 1 내지 10 중량%의 용액을 조액한 후, 상기 제조된 용액을 이용하여 NMR 분석하였다. 그 결과, 상기 비교예 1-1 및 실시예 1-1에서 제조된 중합체 모두 페닐기의 프로톤(proton) 피크(peak)는 7.1ppm, 7.65ppm, 7.9ppm 영역에서 관찰되었으며, 특히 상기 실시예 1-1에서 제조된 중합체의 경우 상기 비교예 1-1에서 제조된 중합체 대비 추가로 8.2ppm, 8.5ppm 영역에서 피크가 관찰되었으며, 7.0 내지 7.3ppm 사이에서 페닐기의 프로톤과 겹쳐 나타나는 피크가 관찰되었다. 즉, 상기 실시예 1-1에서 제조된 중합체의 경우 상기 8.0 내지 8.7ppm 영역에서 추가로 관찰된 피크에 의하여 피리딘기의 프로톤을 확인할 수 있었다.
[실시예 2: 제조된 고분자 전해질막의 성능 측정]
상기 비교예 2-1 내지 2-2 및 실시예 2-1 내지 2-2에서 제조된 고분자 전해질 막에 대하여 물성을 평가하였다. 상기 물성은 3 중량%의 H2O2 수용액에 2ppm의 FeSO4를 넣고 3X3cm2로 재단한 상기 고분자 전해질막을 넣고 80℃에서 유지시키면서 막의 상태를 측정하였다. 육안상으로 확인했을 때, 구멍이나 조각이 발생한 시간을 1차 분해 시간(degradation time)이라 기록하고, 완전히 녹은 시간을 완전 분해 시간이라 명명하고 시간을 기록하였다. 또한, 80℃, 상대습도 95%인 조건과 80℃, 상대습도 50%인 조건에서 각각 이온전도도를 측정하였다. 그 결과를 하기 표 1에 나타내었다.
표 1
비교예 2-1 비교예 2-2 실시예 2-1 실시예 2-2
1차 분해 시간 8hrs 24hrs 36hrs 40hrs
완전 분해 시간 25hrs 100hrs 100hrs 초과 100hrs 초과
이온전도도(80℃, 95RH%) 0.12S/cm 0.12S/cm 0.12S/cm 0.12S/cm
이온전도도(80℃, 50RH%) 0.04S/cm 0.04S/cm 0.08S/cm 0.08S/cm
상기 표 1에 나타난 바와 같이, 실시예에서 제조된 고분자 전해질막은 비교예에서 제조된 고분자 전해질막에 비하여 라디칼 공격에 대한 내구성이 향상되어 분해 시간이 매우 향상된 것을 알 수 있다.
또한, 실시예에서 제조된 고분자 전해질막은 비교예에서 제조된 고분자 전해질막에 비하여 산-염기의 상호 작용(interaction)이 향상되어 이온 전도성기의 기능을 극대화함으로써, 저가습 상태에서의 연료전지 운전 성능이 개선된 것을 알 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
본 발명은 고분자 전해질막은 막-전극 어셈블리 및 연료전지에 적용될 수 있다.
상기 고분자 전해질막은 라디칼 공격에 대한 내구성이 향상되어, 연료전지 운전시 캐소드 쪽에서 형성된 라디칼들의 공격에 의하여 상기 고분자 전해질막의 방향족 고리에 첨가 반응이 일어나거나 방향족 고리가 끊어지는 현상이 발생하지 않으며, 산-염기의 상호 작용(interaction)이 향상되어 이온 전도성기의 기능을 극대화함으로써, 저가습 상태에서의 연료전지 운전 성능을 개선시킬 수 있다.

Claims (10)

  1. 하기 화학식 1 내지 3으로 표시되는 반복 단위들을 포함하는 중합체를 포함하는 고분자 전해질막.
    [화학식 1]
    Figure PCTKR2015002932-appb-I000017
    [화학식 2]
    Figure PCTKR2015002932-appb-I000018
    [화학식 3]
    Figure PCTKR2015002932-appb-I000019
    (상기 화학식 1 내지 3에서,
    상기 A는 술폰산기, 카르복실산기 및 인산기로 이루어진 군에서 선택되는 어느 하나의 이온 전도성기이고,
    상기 X는 단일 결합, -CO-, -SO2-, -CONH-, -COO-, -CR'2-, 시클로헥실리덴기, 플루오레닐리덴기, -O- 및 -S-로 이루어진 군에서 선택되는 어느 하나이고, 상기 R'는 수소 원자, 할로겐 원자, 알킬기, 할로겐화 알킬기, 알릴기, 아릴기, 니트로기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나이고,
    상기 Y는 2가의 함질소 방향족 고리기이고,
    상기 Z는 -O- 또는 S-이고,
    상기 R1 내지 R14는 각각 독립적으로 술폰산기, 카르복실산기, 인산기, 수소 원자, 할로겐 원자, 알킬기, 할로겐화 알킬기, 알릴기, 아릴기, 니트로기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나이고,
    상기 n은 0 내지 4의 정수이다)
  2. 제1항에 있어서,
    상기 중합체는 상기 화학식 3으로 표시되는 반복 단위를 100 몰부, 상기 화학식 1로 표시되는 반복 단위를 1 내지 200 몰부, 상기 화학식 2로 표시되는 반복 단위를 1 내지 200 몰부로 포함하는 것인 고분자 전해질막.
  3. 제1항에 있어서,
    상기 2가의 함질소 방향족 고리기는 피롤, 티아졸, 이소티아졸, 옥사졸, 이소옥사졸, 이미다졸, 이미다졸린, 이미다졸리딘, 피라졸, 트리아진, 피리딘, 피리미딘, 피리다진, 피라진, 인돌, 퀴놀린, 이소퀴놀린, 테트라졸, 테트라진, 트리아졸, 카르바졸, 퀴녹살린, 퀴나졸린, 인돌리진, 이소인돌, 인다졸, 프탈라진, 나프티리딘, 바이피리딘, 벤즈이미다졸, 이미다졸, 피롤리딘, 피롤린, 피라졸린, 피라졸리딘, 피페리딘, 피페라진 및 인돌린으로 이루어진 군에서 선택되는 어느 하나의 함질소 방향족 고리 화합물의 2가기인 것인 고분자 전해질막.
  4. 제1항에 있어서,
    상기 중합체는 하기 화학식 4로 표시되는 반복단위를 더 포함하는 것인 고분자 전해질막.
    [화학식 4]
    Figure PCTKR2015002932-appb-I000020
    (상기 화학식 4에서,
    상기 Z는 -O- 또는 S-이고,
    상기 R15 내지 R22는 각각 독립적으로 술폰산기, 카르복실산기, 인산기, 수소 원자, 할로겐 원자, 알킬기, 할로겐화 알킬기, 알릴기, 아릴기, 니트로기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나이다)
  5. 제4항에 있어서,
    상기 중합체는 상기 화학식 3으로 표시되는 반복 단위를 100 중량부, 상기 화학식 1로 표시되는 반복 단위를 1 내지 200 몰부, 상기 화학식 2로 표시되는 반복 단위를 1 내지 200 몰부, 상기 화학식 4로 표시되는 반복 단위를 1 내지 200 몰부로 포함하는 것인 고분자 전해질막.
  6. 제1항에 있어서,
    상기 중합체는 하기 화학식 5 및 6으로 표시되는 반복 단위들을 포함하는 것인 고분자 전해질막.
    [화학식 5]
    Figure PCTKR2015002932-appb-I000021
    [화학식 6]
    Figure PCTKR2015002932-appb-I000022
    (상기 화학식 5 및 6에서,
    상기 A는 술폰산기, 카르복실산기 및 인산기로 이루어진 군에서 선택되는 어느 하나의 이온 전도성기이고,
    상기 Y는 2가의 함질소 방향족 고리기이고,
    상기 Z는 -O- 또는 S-이고,
    상기 R1 내지 R6 및 R15 내지 R22는 각각 독립적으로 술폰산기, 카르복실산기, 인산기, 수소 원자, 할로겐 원자, 알킬기, 할로겐화 알킬기, 알릴기, 아릴기, 니트로기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나이다)
  7. 제6항에 있어서,
    상기 중합체는 하기 화학식 7 및 8로 표시되는 반복 단위들을 더 포함하는 것인 고분자 전해질막.
    [화학식 7]
    Figure PCTKR2015002932-appb-I000023
    [화학식 8]
    Figure PCTKR2015002932-appb-I000024
    (상기 화학식 7 및 8에서,
    상기 A는 술폰산기, 카르복실산기 및 인산기로 이루어진 군에서 선택되는 어느 하나의 이온 전도성기이고,
    상기 X는 단일 결합, -CO-, -SO2-, -CONH-, -COO-, -CR'2-, 시클로헥실리덴기, 플루오레닐리덴기, -O- 및 -S-로 이루어진 군에서 선택되는 어느 하나이고, 상기 R'는 수소 원자, 할로겐 원자, 알킬기, 할로겐화 알킬기, 알릴기, 아릴기, 니트로기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나이고,
    상기 Z는 -O- 또는 S-이고,
    상기 R1 내지 R22는 각각 독립적으로 술폰산기, 카르복실산기, 인산기, 수소 원자, 할로겐 원자, 알킬기, 할로겐화 알킬기, 알릴기, 아릴기, 니트로기 및 니트릴기로 이루어진 군에서 선택되는 어느 하나이고,
    상기 n은 0 내지 4의 정수이다)
  8. 제1항에 있어서,
    상기 고분자 전해질막은 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 다공성 지지체, 그리고
    상기 다공성 지지체의 기공을 채우고 있는 제1항에 따른 중합체를 포함하는 것인 고분자 전해질막.
  9. 서로 대향하여 위치하는 애노드 전극과 캐소드 전극, 그리고
    상기 애노드 전극과 캐소드 전극 사이에 위치하는 제1항 또는 제8항에 따른 고분자 전해질막
    을 포함하는 막-전극 어셈블리.
  10. 제9항에 따른 막-전극 어셈블리를 포함하는 연료전지.
PCT/KR2015/002932 2014-03-28 2015-03-25 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지 WO2015147550A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15768211.3A EP3125349B1 (en) 2014-03-28 2015-03-25 Polymer electrolyte membrane, and membrane-electrode assembly and fuel cell containing same
CN201580014087.0A CN106104887B (zh) 2014-03-28 2015-03-25 聚合物电解质膜、包括该膜的膜电极组件及燃料电池
JP2017500789A JP6205519B2 (ja) 2014-03-28 2015-03-25 高分子電解質膜、それを含む膜−電極アセンブリ及び燃料電池
US15/127,825 US10003096B2 (en) 2014-03-28 2015-03-25 Polymer electrolyte membrane, membrane-electrode assembly comprising the same and fuel cell comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140036467A KR101993238B1 (ko) 2014-03-28 2014-03-28 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지
KR10-2014-0036467 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015147550A1 true WO2015147550A1 (ko) 2015-10-01

Family

ID=54195981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002932 WO2015147550A1 (ko) 2014-03-28 2015-03-25 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지

Country Status (6)

Country Link
US (1) US10003096B2 (ko)
EP (1) EP3125349B1 (ko)
JP (1) JP6205519B2 (ko)
KR (1) KR101993238B1 (ko)
CN (1) CN106104887B (ko)
WO (1) WO2015147550A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7143559B2 (ja) * 2017-08-28 2022-09-29 ディーエスエム アイピー アセッツ ビー.ブイ. フッ素化ポリウレタンを含む合成膜組成物
CN109119662B (zh) * 2018-07-16 2022-01-04 大连理工大学 一种长支链双梳状聚芳基吲哚阴离子交换膜及其制备方法
KR20210057114A (ko) 2018-09-14 2021-05-20 유니버시티 오브 싸우스 캐롤라이나 산화환원 유동 배터리용 저투과도 폴리벤즈이미다졸 (pbi) 멤브레인
JP7533963B2 (ja) 2018-09-14 2024-08-14 ユニバーシティー オブ サウス カロライナ 有機溶媒なしでpbiフィルムを製造するための新規な方法
CN112955498B (zh) 2018-09-14 2024-05-10 南卡罗来纳大学 用于氧化还原液流电池的聚苯并咪唑(pbi)膜
US11777124B2 (en) 2020-03-06 2023-10-03 University Of South Carolina Proton-conducting PBI membrane processing with enhanced performance and durability
JP7528225B2 (ja) * 2020-09-29 2024-08-05 コーロン インダストリーズ インク 高分子電解質膜の製造方法及びそれにより製造された電解質膜
KR20240018651A (ko) * 2021-06-15 2024-02-13 엔테그리스, 아이엔씨. 폴리(퀴놀린) 막

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020091225A1 (en) * 2000-09-20 2002-07-11 Mcgrath James E. Ion-conducting sulfonated polymeric materials
KR20090088646A (ko) * 2008-02-15 2009-08-20 제일모직주식회사 양이온 전도성 폴리술폰계 가교 고분자막, 막-전극 접합체및 연료전지
KR20100021468A (ko) * 2007-05-18 2010-02-24 제이에스알 가부시끼가이샤 신규한 방향족 화합물 및 측쇄에 술폰산기를 포함하는 질소 함유 복소환을 갖는 폴리아릴렌계 공중합체
KR20100050423A (ko) * 2008-11-04 2010-05-13 주식회사 엘지화학 고분자 전해질막
JP4590824B2 (ja) * 2003-02-10 2010-12-01 東洋紡績株式会社 スルホン化芳香族ポリエーテル系化合物、その複合体、およびそれらの製造方法。

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60329518D1 (de) * 2002-10-08 2009-11-12 Toyo Boseki SULFONSuUREGRUPPENHALTIGE POLYARYLENETHER-VERBINDUNG, DIESE ENTHALTENDE ZUSAMMENSETZUNG UND VERFAHREN ZU DEREN HERSTELLUNG
CN1292015C (zh) * 2002-10-08 2006-12-27 东洋纺织株式会社 含有磺酸基的聚亚芳基醚系化合物、含有其的组合物及其制备方法
KR100660572B1 (ko) 2005-01-14 2006-12-22 한국과학기술연구원 연료전지용 불균일 고분자 전해질 복합막 및 그 제조 방법
KR100660573B1 (ko) 2005-01-14 2006-12-22 한국과학기술연구원 연료전지용 비대칭 고분자 전해질 복합막, 그 제조 방법,연료전지용 불균일 고분자 전해질 복합막 및 그 제조 방법
CN100505404C (zh) * 2005-05-13 2009-06-24 富士胶片株式会社 固体电解质、电极膜接合体及燃料电池
JP2007126645A (ja) * 2005-10-04 2007-05-24 Sumitomo Chemical Co Ltd イオン交換性基を有する重合体およびその用途
EP2221302B1 (en) * 2007-11-06 2012-03-21 Samsung Electronics Co., Ltd. Pyrido-oxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode
KR101004680B1 (ko) 2008-11-25 2011-01-04 한국화학연구원 분자 내 이온가교가 가능한 공중합체, 그를 이용한 고분자 전해질 막의 제조방법 및 그로부터 제조된 고분자 전해질 막을 구비한 연료전지
JP4864107B2 (ja) 2009-02-17 2012-02-01 株式会社日立製作所 ブロック共重合体並びにこれを用いた燃料電池用固体高分子電解質、燃料電池用固体高分子電解質膜、膜電極接合体及び燃料電池
JP2011084728A (ja) * 2009-09-17 2011-04-28 Kaneka Corp 高分子電解質およびその利用
JP5350974B2 (ja) 2009-10-22 2013-11-27 本田技研工業株式会社 固体高分子型燃料電池用膜−電極構造体
KR101376362B1 (ko) 2010-04-28 2014-03-26 코오롱패션머티리얼 (주) 연료전지용 고분자 전해질막 및 그 제조방법
CN102643421B (zh) 2012-04-23 2013-09-18 天津师范大学 含有膦酸酯基团的聚合物及其制备方法与应用
CN103059300B (zh) * 2013-01-23 2015-01-14 中国科学技术大学 一种侧链磺酸化的聚吡咙及其制备方法
KR20150002932A (ko) 2013-06-26 2015-01-08 삼성전자주식회사 초음파 영상 디스플레이 방법 및 장치
CN103467396A (zh) 2013-09-12 2013-12-25 长春工业大学 含1,2,4-三唑环的化合物、含1,2,4-三唑环的聚合物质子交换膜和制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020091225A1 (en) * 2000-09-20 2002-07-11 Mcgrath James E. Ion-conducting sulfonated polymeric materials
JP4590824B2 (ja) * 2003-02-10 2010-12-01 東洋紡績株式会社 スルホン化芳香族ポリエーテル系化合物、その複合体、およびそれらの製造方法。
KR20100021468A (ko) * 2007-05-18 2010-02-24 제이에스알 가부시끼가이샤 신규한 방향족 화합물 및 측쇄에 술폰산기를 포함하는 질소 함유 복소환을 갖는 폴리아릴렌계 공중합체
KR20090088646A (ko) * 2008-02-15 2009-08-20 제일모직주식회사 양이온 전도성 폴리술폰계 가교 고분자막, 막-전극 접합체및 연료전지
KR20100050423A (ko) * 2008-11-04 2010-05-13 주식회사 엘지화학 고분자 전해질막

Also Published As

Publication number Publication date
EP3125349B1 (en) 2018-10-31
EP3125349A1 (en) 2017-02-01
EP3125349A4 (en) 2017-09-27
JP6205519B2 (ja) 2017-09-27
US20170098845A1 (en) 2017-04-06
KR20150112389A (ko) 2015-10-07
US10003096B2 (en) 2018-06-19
CN106104887B (zh) 2019-04-30
CN106104887A (zh) 2016-11-09
KR101993238B1 (ko) 2019-06-26
JP2017511589A (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
WO2015147550A1 (ko) 고분자 전해질막, 이를 포함하는 막-전극 어셈블리 및 연료전지
WO2015130066A1 (ko) 다공성 지지체, 이의 제조방법, 및 이를 포함하는 강화막
WO2015047008A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
KR101995527B1 (ko) 연료전지용 강화복합막 및 이를 포함하는 연료전지용 막-전극 어셈블리
WO2013147520A1 (ko) 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리
WO2017171285A2 (ko) 이온 교환막, 이의 제조 방법 및 이를 포함하는 에너지 저장 장치
WO2011078465A4 (ko) 강도가 개선된 다공성 지지체, 그를 이용한 강화 복합전해질 막, 그 막을 구비한 막-전극 어셈블리 및 연료전지
WO2014178619A1 (ko) 고분자 전해질막, 고분자 전해질막을 포함하는 막전극 접합체 및 막 전극 접합체를 포함하는 연료전지
WO2012134254A2 (ko) 고분자 전해질 및 이의 제조 방법
WO2020005018A1 (ko) 고분자 전해질 막, 이의 제조 방법 및 이를 포함하는 막 전극 어셈블리
WO2022270934A1 (ko) 음이온교환 복합막, 그 제조방법 및 이를 포함하는 알칼리 연료전지
KR20160038851A (ko) 이온 전도체, 및 이를 포함하는 이온 교환막, 막-전극 어셈블리 및 연료전지
WO2021066544A1 (ko) 높은 분산 안정성을 갖는 이오노머 분산액, 그 제조방법, 및 그것을 이용하여 제조된 고분자 전해질막
WO2016089155A1 (ko) 고분자 전해질막
WO2017142344A1 (ko) 코어-쉘 입자, 이를 포함하는 고분자 전해질막, 상기 고분자 전해질막을 포함하는 연료 전지 또는 전기화학 전지 및 코어-쉘 입자의 제조방법
WO2016163773A1 (ko) 고분자 전해질막, 이를 포함하는 전기화학 전지 및 흐름전지, 고분자 전해질막의 제조방법 및 흐름 전지용 전해액
WO2012134095A2 (ko) 술폰산기가 도입된 디페닐플루오렌기를 포함하는 수소이온 전도성 공중합체, 그의 제조방법, 그로부터 제조된 고분자 전해질 막, 이를 이용한 막-전극 접합체 및 이를 채용한 고분자 전해질 막 연료전지
KR101666887B1 (ko) 가교 고분자, 이를 포함하는 고분자 전해질 막, 및 이를 포함하는 고분자 전해질 막의 제조 방법
WO2016105008A1 (ko) 이온전도체의 충진 특성이 우수한 다공성 지지체, 이의 제조방법, 및 이를 포함하는 강화막
KR101513076B1 (ko) 연료전지용 고분자 전해질막 및 이를 포함하는 연료전지
KR101424850B1 (ko) 폴리이미드 다공성 나노섬유 웹 및 그 제조방법
WO2015130061A1 (ko) 다공성 지지체, 이의 제조방법 및 이를 포함하는 강화막
WO2016122195A1 (ko) 방향족 고리를 포함하는 화합물, 이를 포함하는 고분자 및 이를 이용한 고분자 전해질막
WO2021133045A1 (ko) 고분자 전해질막, 그 제조방법, 및 그것을 포함하는 전기화학 장치
KR101560422B1 (ko) 다공성 나노섬유 웹

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017500789

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15127825

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015768211

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768211

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE