WO2015147048A1 - ナノバブル製造装置 - Google Patents

ナノバブル製造装置 Download PDF

Info

Publication number
WO2015147048A1
WO2015147048A1 PCT/JP2015/059107 JP2015059107W WO2015147048A1 WO 2015147048 A1 WO2015147048 A1 WO 2015147048A1 JP 2015059107 W JP2015059107 W JP 2015059107W WO 2015147048 A1 WO2015147048 A1 WO 2015147048A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
nanobubble
tank
bubble
containing liquid
Prior art date
Application number
PCT/JP2015/059107
Other languages
English (en)
French (fr)
Inventor
順次 中尾
Original Assignee
トスレック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トスレック株式会社 filed Critical トスレック株式会社
Priority to KR1020167025356A priority Critical patent/KR101886944B1/ko
Priority to US15/127,372 priority patent/US10596528B2/en
Priority to EP15769582.6A priority patent/EP3124109A4/en
Publication of WO2015147048A1 publication Critical patent/WO2015147048A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/29Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2323Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles by circulating the flow in guiding constructions or conduits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • B01F23/2375Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm for obtaining bubbles with a size below 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/238Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using vibrations, electrical or magnetic energy, radiations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4335Mixers with a converging-diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/434Mixing tubes comprising cylindrical or conical inserts provided with grooves or protrusions
    • B01F25/4341Mixing tubes comprising cylindrical or conical inserts provided with grooves or protrusions the insert being provided with helical grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/434Mixing tubes comprising cylindrical or conical inserts provided with grooves or protrusions
    • B01F25/4342Mixing tubes comprising cylindrical or conical inserts provided with grooves or protrusions the insert being provided with a labyrinth of grooves or a distribution of protrusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4521Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through orifices in elements, e.g. flat plates or cylinders, which obstruct the whole diameter of the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4521Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through orifices in elements, e.g. flat plates or cylinders, which obstruct the whole diameter of the tube
    • B01F25/45211Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through orifices in elements, e.g. flat plates or cylinders, which obstruct the whole diameter of the tube the elements being cylinders or cones which obstruct the whole diameter of the tube, the flow changing from axial in radial and again in axial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/53Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is discharged from and reintroduced into a receptacle through a recirculation tube, into which an additional component is introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/85Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations with a vibrating element inside the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/87Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations transmitting the vibratory energy by means of a fluid, e.g. by means of air shock waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/91Direction of flow or arrangement of feed and discharge openings
    • B01F2025/915Reverse flow, i.e. flow changing substantially 180° in direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237613Ozone

Definitions

  • the present invention relates to a nanobubble production apparatus for producing a nanobubble-containing liquid.
  • the technology for making the bubble particle size homogeneous (fine and uniform) at the nanobubble level is not possible with the existing technology. Therefore, in the prior art, if it is intended to generate fine uniform and high concentration nanobubbles, it is inevitably necessary to shear and collapse in a high-pressure water environment. For this reason, nanobubbles such as ozone and hydrogen that have extremely high oxidation / reduction reactions. However, there were significant restrictions in terms of safety and quality due to the occurrence of stainless steel ozone corrosion and hydrogen embrittlement.
  • ⁇ P 4 ⁇ / D ( ⁇ P: pressure increase change, ⁇ : surface tension, D: Bubble diameter 100 nm: 30 Atom, 10 nm: 300 Atom)
  • ⁇ P pressure increase change
  • surface tension
  • D Bubble diameter 100 nm: 30 Atom
  • 10 nm 300 Atom
  • the present invention focuses on the above-mentioned problems included in the prior art, and an object of the present invention is to provide a nanobubble production apparatus that can obtain high-concentration nanobubbles that are fine and have a uniform diameter.
  • the nanobubble production apparatus includes a liquid tank in which a bubble-containing liquid introduction port is arranged at the top and a bubble-containing liquid outlet is arranged at the bottom, and a microbubble is formed in the bubble-containing liquid introduction port of the liquid tank.
  • a microbubble-containing liquid supply unit that supplies a liquid containing microbubbles, and a microscopic ultrasonic wave where the microbubble-containing liquid supplied into the liquid tank through the bubble-containing liquid introduction port flows downward.
  • the present invention is the first time that the inventor of the present application forms an ultrasonic crushing field in which microbubbles are collapsed by ultrasonic waves and nanobubbles are generated, and nanobubbles are concentrated downward in a liquid tank. This can be realized by conceiving.
  • the bubble-containing liquid inlet is arranged in the center of the liquid tank in plan view, and the ultrasonic crushing portion is in plan view of the liquid tank.
  • the aspect of forming an ultrasonic crushing field in the center can be mentioned.
  • the ultrasonic oscillation frequency be 20 KHz to 1.5 MHz.
  • the ultrasonic crushing part has an ultrasonic oscillator that can oscillate ultrasonic waves, and the liquid tank fixes the ultrasonic oscillator.
  • An outer peripheral tank and an inner peripheral tank that is formed inside the outer peripheral tank and in which a bubble-containing liquid and a bubble-containing liquid outlet are disposed, and an ultrasonic wave is transmitted between the outer peripheral tank and the inner peripheral tank.
  • region which stores the propagation liquid for propagating to can be mentioned.
  • the liquid tank according to the present invention is of course not limited to the configuration including the outer peripheral tank and the inner peripheral tank, but may be a single structure having only the outer peripheral tank and may not use the propagation liquid.
  • the ultrasonic crushing portion has a plurality of ultrasonic oscillators.
  • the inner peripheral tank has a circular shape in plan view, and a plurality of ultrasonic oscillators oscillate ultrasonic waves toward the center of the inner peripheral tank. As shown in the drawing, there may be mentioned those arranged radially in plan view.
  • a plurality of ultrasonic oscillators be arranged so as to oscillate ultrasonic waves in a downwardly inclined direction.
  • the inner peripheral tank has a sealed structure that is cut off from the atmosphere.
  • a microbubble-containing liquid supply unit mixes a liquid and a gas.
  • a microbubble generator that uses a liquid mixed with gas by a gas-liquid mixer as a microbubble-containing liquid, and a pump that operates so that the microbubble-containing liquid is discharged to the bubble-containing liquid inlet. It is desirable that
  • gas-liquid gas-liquid mixer described above is an aspect provided between the pump and the microbubble generator, even in an aspect provided upstream of the liquid flow than the pump. Also, a nanobubble-containing liquid can be obtained efficiently.
  • a swirling member that spirally swirls the bubble-containing liquid that has passed through the gas-liquid mixer, and a protrusion crush that allows the bubble-containing liquid that has passed through the swirling member to pass through while colliding with the protrusion.
  • the microbubble-containing liquid supply unit has a livestock pressurizer that pressurizes the liquid in the livestock member.
  • the microbubble generator is modularized so as to be replaceable.
  • the nanobubble generator selects any one module from a plurality of modules that differ in the amount of liquid that passes through per hour. It is preferable that it is configured so that it can be attached.
  • the microbubble-containing liquid supply unit has a liquid extraction path for extracting liquid from the upper side of the liquid tank to the microbubble generator by a pump. It is preferable.
  • liquid temperature control unit that controls the temperature of the liquid in the liquid tank within a predetermined temperature range. It is desirable that
  • the central nanobubble particle size is about 100 nm or less (hereinafter referred to as homogeneous nanobubble).
  • Mechanically generated microbubbles of about 0.2-2 ⁇ m are obtained by the simultaneous ultrasonic crushing method. Since the nanobubbles are formed simultaneously and continuously, since the bubble particle diameters are uniform, the physical characteristics of the bubbles such as the amount of charge held and the zeta potential are almost the same. For this reason, since the dispersing action works between the bubbles, a further higher concentration can be achieved, the reproducibility of the cleaning effect and sterilization effect of the bubbles becomes extremely high, and a high throughput can be obtained.
  • a fluorine-based resin such as vinyl chloride resin, PVDF, or PTFE can be used for the wetted part, and a completely sealed structure bubble generation system without gas contact with the atmosphere can be constructed by adopting resin welding or an adhesive structure. It is possible to construct a safe nanobubble generation system that does not select the species and the type of the stock solution. Moreover, the concentration of microbubbles is increased while suppressing the particle size range to about 0.2 to 2 ⁇ m, and the bubbles are simultaneously crushed by an ultrasonic crushing field, resulting in a bubble size of about 100 nm or less and a nanobubble concentration of 300 million. Can achieve more than / ml.
  • nanobubble manufacturing apparatus capable of obtaining high concentration nanobubbles having a fine and uniform diameter.
  • FIG. 9 is a configuration explanatory diagram of a main part based on a cross-sectional view along line BB in FIG. Explanatory drawing corresponding to FIG. 2 which concerns on the modification 1 of the embodiment. Structure explanatory drawing which concerns on the modification 2 of the embodiment. The typical top view of the principal part concerning the modification 3 of the embodiment. Explanatory drawing corresponding to FIG. 2 which concerns on the modification 4 of the embodiment. Explanatory drawing corresponding to FIG. 9 which concerns on the modification.
  • the nanobubble manufacturing apparatus uses, for example, pure water as a stock solution and uses bubbling target gas as ozone. That is, it is for manufacturing the nano bubble containing liquid which made the pure water contain the nano bubble by ozone.
  • FIG. 1 shows the appearance of the nanobubble manufacturing apparatus. In the nanobubble manufacturing apparatus, almost all the components of the apparatus are arranged in the upper part 1a, and the ozone generating unit 6 that generates ozone, which is a gas to be bubbled, and the power source apparatus that is the driving source E are arranged in the lower part 1b. is doing. Further, an operation panel 00 of the control unit 0 is exposed to the front of the nanobubble casing 1 on the upper part of the casing 1 so that the user can arbitrarily operate the nanobubble manufacturing apparatus via the operation panel 00. I have to.
  • the nanobubble manufacturing apparatus has a liquid tank 2 in which an introduction port 21a that is a bubble-containing liquid introduction port is arranged at the top and a discharge port 21b that is a bubble-containing liquid lead-out port is arranged at the bottom, and this liquid
  • the microbubble containing liquid supply part 3 which supplies the microbubble containing liquid MB containing a microbubble to the inlet 21a of the tank 2 and the microbubble containing liquid MB supplied into the liquid tank 2 through the inlet 21a are directed downward.
  • An ultrasonic crushing unit 4 that irradiates the ultrasonic wave ss into the liquid tank 2 to form an ultrasonic crushing field X in which microbubbles collapse due to the ultrasonic ss are concentrated in the flowing place and nanobubbles are generated;
  • a nanobubble-containing liquid lead-out part 5 for taking out the nanobubble-containing liquid NB containing nanobubbles generated by the ultrasonic crushing part 4 to the outside of the liquid tank 2 through the lead-out port 21b; It is characterized by comprising.
  • the nanobubble manufacturing apparatus includes a stock solution introduction unit 7 that introduces a stock solution such as pure water, a liquid tank 2 that stores the stock solution from the stock solution introduction unit 7, and a liquid circulation.
  • Microbubble-containing liquid supply unit 3 connected to liquid tank 2 via mechanism 9, ozone generation unit 6 connected to this microbubble-containing liquid supply unit 3, and ultrasonic waves provided in liquid tank 2
  • Valves V1 to V4, V6, V7 and a switch V5 are arranged in various places in the nanobubble manufacturing apparatus, and these valves V1 to V4, V6, V7 and the switch V5 are controlled by the control unit 0.
  • the liquid extraction path 91 from which the microbubble containing liquid supply part 3 extracts a liquid to the microbubble generator by the pump 39 from the upper side of the liquid tank 2 is provided.
  • the liquid circulation mechanism 9 which can circulate a liquid with the said liquid extraction path 91, the supply flow path 92 interposed between the microbubble containing liquid supply part 3 and the liquid tank 2 is comprised.
  • the stock solution introduction unit 7 is for introducing pure water as an example of a stock solution generated outside the apparatus into the liquid tank 2.
  • the stock solution introduction unit 7 is provided with a valve V1 that is controlled to be opened and closed by the control unit 0.
  • the nanobubble-containing liquid deriving unit 5 is for taking out the nanobubble-containing liquid NB generated by the ultrasonic crushing unit 4 to the outside of the liquid tank 2 and eventually to the outside of the apparatus through the outlet port 21b.
  • the nanobubble-containing liquid deriving unit 5 is provided with a valve V4 that is controlled to be opened and closed by the control unit 0.
  • the ozone generator 6 includes an ozone generator 61 that generates ozone, a pressure gauge 62, a flow meter 63, and a check valve 64 provided on the flow path from the ozone generator 61 to the microbubble-containing liquid supply unit 3. have.
  • the ozone generator 61 uses an existing device for generating ozone that is a target for bubbling.
  • the nanobubble production liquid NB can be replaced with this existing ozone gas generator 61 to provide another nanobubble-containing liquid NB containing other gases such as oxygen, nitrogen, ammonia, hydrogen, or carbon dioxide. Can also be manufactured.
  • the ozone generator 6 is provided with a valve V7 that is controlled to open and close by the controller 0.
  • the liquid tank 2 has a two-layer structure mainly composed of the outer peripheral tank 22 and the inner peripheral tank 21.
  • the inner peripheral tank 21 has a circular shape in plan view and has a sealed structure that is cut off from the atmosphere.
  • the upper part of the inner peripheral tank 21 is an inlet 21a that is a bubble-containing liquid inlet, the raw liquid supply port 21c that is supplied with the raw liquid from the raw liquid supply unit, and the upper layer of the inner peripheral tank 21 (from the bottom to the depth direction of the tank 3
  • a liquid discharge outlet 21d is provided for extracting the liquid in the upper portion of / 4 or more.
  • a discharge port 21b through which the nanobubble-containing liquid NB is led out to the outside of the apparatus by the nanobubble-containing liquid lead-out unit 5 is provided at the bottom or bottom of the inner peripheral tank 21.
  • the outer peripheral tank 22 has a hexagonal shape in a plan view made of a material that can reflect ultrasonic ss such as stainless steel.
  • the outer peripheral tank 22 has a propagation liquid supply port 22a for supplying the propagation liquid to the upper part and a propagation liquid discharge port 22b for discharging the propagation liquid to the lower part.
  • a propagation liquid storage region 22 c that stores a propagation liquid for propagating the ultrasonic wave ss to the inner periphery tank 21 is formed between the outer periphery tank 22 and the inner periphery tank 21.
  • the inner peripheral tank 21 is preferably made of a resin material such as vinyl chloride resin or fluorine resin such as PVDF, or quartz.
  • a resin material such as vinyl chloride resin or fluorine resin such as PVDF, or quartz.
  • the upper part has a completely sealed structure by resin welding or adhesion.
  • quartz a sealed structure is adopted through a sealing material such as PTFE or Viton.
  • the reason is a measure for preventing the trace gas generated during the ultrasonic crushing of the microbubbles from coming into contact with the atmosphere. This is to prevent human danger due to ozone leak when ozone nanobubbles are generated, and to prevent explosion hazard due to contact between hydrogen and oxygen in hydrogen nanobubbles.
  • even when the organic synthesis reaction by the bubble is handled by this treatment, since a gas component in the air is not mixed, a stable organic synthesis reaction can be obtained.
  • the propagation liquid flow path 8 functions as a liquid temperature control unit that controls the temperature of the liquid in the liquid tank 2 within a predetermined temperature range together with the temperature sensor TS1 provided in the outer peripheral tank 22.
  • the propagation liquid flow path 8 discharges the propagation liquid from the outside of the apparatus to the outside of the apparatus from the propagation liquid supply part 81 for supplying the propagation liquid to the propagation liquid supply port 22 a of the outer peripheral tank 22 and the propagation liquid discharge port 22 b of the outer peripheral tank 22.
  • a propagating liquid discharge portion 82 is provided.
  • the propagation liquid supply part 81 is provided with a valve V2 and the propagation liquid discharge part 82 is provided with a valve V3. Both of these valves V2 and V3 are controlled by the control part 0.
  • the microbubble-containing liquid supply unit 3 supplies the microbubble-containing liquid MB containing microbubbles to the bubble-containing liquid introduction port of the liquid tank 2 through the supply channel 92. It is for supply.
  • the microbubble-containing liquid supply unit 3 includes a gas-liquid mixer 31 that mixes liquid and gas, a microbubble generator that uses a gas-containing liquid mixed with gas by the gas-liquid mixer 31 as a microbubble-containing liquid MB, And a pump 39 that operates so that the microbubble-containing liquid MB is discharged to the introduction port 21a. Since the existing pump 39 is used, a detailed description thereof will be omitted. For example, an air-driven positive displacement pump is applied as the pump 39, but a non-positive displacement pump such as a magnet pump or an axial flow pump is used. May be applied, and the type of pump is not selected.
  • the gas-liquid mixer 31 is provided with a gas inlet near the liquid inlet of the pump 39 provided upstream of the pump 39 in the liquid flow. A gas is also sucked at the same time as the liquid by using the suction force to generate a bubble-containing liquid as a gas-liquid mixture in the pump 39.
  • the reason why such a configuration is applied is that it is intended to facilitate gas-liquid mixing by following the flow direction on the liquid side. When this position is opposite to the flow direction of the liquid, the pressure of the liquid is directly affected, so the gas introduction flow rate is not constant, and gas-liquid mixing cannot be performed smoothly.
  • the gas introduction amount becomes constant only by supplying the gas introduction pressure at a constant pressure, and a stable gas introduction amount can be maintained.
  • the microbubble generator 32 has a swirl member 34 that spirally swirls the bubble-containing liquid that has passed through the gas-liquid mixer 31, and a protrusion crushing member that allows the bubble-containing liquid that has passed through the swivel member 34 to pass through while colliding with the protrusion 35a. 35, a livestock member 36 that convects the bubble-containing liquid that has passed through the protrusion crushing member 35 for a certain period of time, and a foaming member 37 that foams the bubble-containing liquid that has passed through the livestock member 36 into a microbubble-containing liquid MB.
  • the microbubble generator 32 has a modularized structure so as to be replaceable.
  • the microbubble generator 32 is configured so that any one module can be selected and attached from a plurality of modules having different amounts of passing liquid to pass per time, but the amount of passing liquid is different.
  • the microbubble generator 32 having the configuration will be described in detail in a later-described modification.
  • the swiveling member 34 allows liquid to flow along a swirling surface 34a formed in a spiral shape. It is desirable that the swivel surface 34a can obtain at least 1.5 or more circular rotations in the axial direction.
  • the flow velocity can be accelerated by applying a swirling flow action to the bubble-containing liquid mixed in the liquid by the gas-liquid mixer 31 using the discharge pressure of the pump 39. If the rotational speed in the direction of the circular axis is increased, the flow velocity increases, but the pressure loss increases accordingly, so the optimal rotational speed is determined from the head capacity of the pump 39 and the required bubble concentration.
  • the swirling member 34 is not a swirling flow that swirls only the liquid as disclosed in Patent Document 1, but is used as a means for accelerating the flow rate of the bubble-containing liquid. For this reason, microbubbles are not generated in this portion.
  • the protrusion crushing member 35 is disposed at the subsequent stage of the turning member 34.
  • the protrusion crushing member 35 has a role of improving the bubble concentration by shearing and crushing the bubble-containing liquid that has passed through the turning member 34 with the protrusion 35a.
  • the protrusion crushing member 35 has a columnar structure, and is provided with multi-stage protrusions 35a perpendicular to the cylindrical direction, and the protrusions 35a are arranged in opposite directions.
  • the liquid flow path is a nonexistent cavity.
  • the protrusions 35a have at least six steps or more and are alternately arranged at an angle of 36 degrees or more in the longitudinal direction. Further, the protrusion crushing member 35 is configured to be continuous with and integrally formed with the turning member 34.
  • the bubble-containing liquid accelerated by the turning member 34 is crushed while hitting the protrusions 35a, and the gas is further refined.
  • resin welding is used.
  • the protrusion 35a may be screwed, and the protrusion 35a is arranged in four directions with an angle phase of 90 degrees in addition to the embodiment shown in FIG.
  • the reason why the angle phase is different by 36 degrees between the protrusions 35a is that the bubble-containing liquid can be sheared by the protrusions 35a at the tip when the protrusions 35a continue in parallel, but the tip portion of the protrusion 35a at the rear stage can be sheared.
  • the animal husbandry member 36 is for temporarily storing a bubble-containing liquid that is a liquid that has passed through the protrusion crushing member 35.
  • This animal rearing member 36 is a container capable of storing 1/20 KHz to 1/5 of the discharge flow rate per minute of the pump 39, for example.
  • the livestock member 36 accommodates the downstream end portion of the protrusion crushing member 35 and the upstream end portion of the foam member 37.
  • the foam member 37 includes a slit plate 37a having a plurality of offset holes 37a1, a re-pressurizing portion 37b having a cylindrical shape for pressurizing a liquid, and a tapered conical structure. And a tapered portion 37c.
  • the slit plate 37a has, for example, three offset holes 37a1 at a position offset from the center so as to form an equilateral triangle.
  • the offset hole 37a1 is formed so as to be inclined at a predetermined angle with respect to the liquid flow path and to extend in the direction of diffusion.
  • the re-pressurizing unit 37b has an outlet 37b2 for allowing the liquid to flow out with an opening area smaller than the opening area of the offset hole 37a1 in order to pressurize the bubble-containing liquid that is the liquid that has passed through the offset hole 37a1, and the outlet 37b2. And a collision wall 37b1 located on the back side of the slit plate 37a.
  • the tapered portion 37c has a tapered surface 37c1 that diffuses in a conical shape at an angle smaller than, for example, 15 degrees from the outlet 37b2. With such a configuration, the liquid that has passed through the offset hole 37a1 flows in the inclined direction while being pressurized, and collides with the front and rear collision walls 37b1, whereby the gas is further crushed.
  • the liquid which passed through the outflow port 37b2 reaches the taper part 37c, it will be pressure-reduced rapidly, and bubble containing liquid turns into microbubble containing liquid MB. More specifically, the pressure in the repressurizing part 37b is around 3 MPa, but the pressure in the tapered part 37c is 1 MPa, and since the pressure is rapidly reduced, the liquid that has passed through the foaming member 37 contains uniform microbubbles. It becomes the microbubble containing liquid MB.
  • the rapid decompression of the foamed member 37 makes it possible to obtain fine and uniform microbubbles even with resins such as PVDF, PTFE, PVC, etc. that do not use stainless steel, which is impossible with known techniques. Note that the above-described repressurizing function cannot be obtained with the known venturi structure tube.
  • the microbubble-containing liquid supply unit 3 adds a constant pressure (0.8 MPa to 2 MPa) to the pressure in the animal breeding member 36 in addition to the gas-liquid mixer 31, the microbubble generator 32, and the pump 39. ) By raising it to the extent, it has an animal husbandry pressurizer 33 for ensuring the function of improving the bubble concentration.
  • This animal husbandry pressurizer 33 is one of the most important functions for making the microbubbles according to the present invention fine and uniform.
  • the pump 39 can generate fine, uniform and ultra-high concentration microbubbles even with a positive displacement pump (air driven bellows pump, diaphragm pump, etc.) having a low head capacity, In a non-volumetric transfer type pump (magnet pump, axial flow pump, etc.), the head pressure is increased, so that further concentration improvement is possible.
  • a positive displacement pump air driven bellows pump, diaphragm pump, etc.
  • a non-volumetric transfer type pump magnet pump, axial flow pump, etc.
  • microbubble containing liquid supply part 3 which does not choose the kind of pump 39 is implement
  • the bubble-containing liquid pressurized in the animal breeding member 36 by the animal breeding pressurizer 33 is pressurized again by the repressurizing part 37 b of the foaming member 37.
  • the ultrasonic crushing section 4 has a plurality of ultrasonic oscillators 41 attached to the outer peripheral tank 22.
  • six ultrasonic oscillators 41 are radially attached to the outer peripheral tank 22 having a hexagonal shape in plan view. That is, the ultrasonic oscillator 41 is arranged so as to be able to oscillate the ultrasonic wave ss toward the center of the inner peripheral tank 21.
  • the oscillation frequency of the ultrasonic ss by the ultrasonic crushing portion 4 is set to 20 KHz to 1.5 MHz. Specifically, the range is 28 KHz to 1.5 MHz.
  • These six ultrasonic oscillators 41 are arranged so as to oscillate ultrasonic ss in a direction inclined downward by about 15 degrees, for example.
  • the microbubble-containing liquid MB supplied into the liquid tank 2 through the bubble-containing liquid introduction port at the center of the inner peripheral tank 21 by the operation of the ultrasonic crushing unit 4 is supplied.
  • the ultrasonic crushing field X in which nanobubbles are generated by collapsing the microbubbles by the ultrasonic wave ss in the portion flowing downward is formed.
  • the ultrasonic energy propagated from the ultrasonic oscillator 41 is reflected by the wall surface of the outer peripheral tank 22 such as a stainless steel plate, and the reflected energy is combined to form the ultrasonic collapse field X in the inner peripheral tank 21. It is the composition to do.
  • the ultrasonic ss in the liquid tank 2 by the ultrasonic crushing portion 4 concentrates the ultrasonic ss in the central portion of the prism or column, that is, the ultrasonic crushing field X, and eliminates the escape space of the microbubbles. Crush. Thereby, nanobubbles are formed. For this reason, it is possible to obtain a desirable nanobubble-containing liquid NB having a central particle size of about 100 nm or less and a bubble concentration of 300 million / ml or more by appropriately selecting the energy and frequency of the ultrasonic ss.
  • Japanese Patent Application Laid-Open No. 2011-218308 and the like devise a method of applying ultrasonic waves from the bottom to the top of the storage chamber. In this method, microbubbles and nanobubbles are applied in the opposite direction to which ultrasonic waves are applied. However, high-density nanobubbles could not be generated because it moves with its vibrational energy.
  • the valve V2 is opened and the propagation liquid is supplied to the outer peripheral tank 22.
  • the propagation liquid continues to be supplied to the outer peripheral tank 22 until a water level sensor (not shown) detects that the propagation liquid reaches a certain amount in the propagation liquid storage region 22 c in the outer peripheral tank 22.
  • the control unit 0 issues a command to close the valve V2, the valve V2 is closed, and the supply of the propagation liquid is stopped.
  • the valve V1 is opened to supply the stock solution from the stock solution introducing unit 7. Start. This operation continues until the water level sensor senses that the amount of liquid in the inner peripheral tank 21 is the upper limit. That is, when the water level sensor detects that the stock solution is sufficiently stored in the inner circumferential tank 21, the control unit 0 issues a close command to the valve V1, and the stock solution supply is stopped.
  • an opening command is issued from the control unit 0 to the switch V5, and the pump 39 starts operating.
  • an air-driven pump is used as the pump 39.
  • the power is turned on by a relay or the like to start supplying power to the electric pump. You can do that.
  • the valve V6 is kept closed for a certain period of time.
  • the ozone to be bubbled is not supplied to the gas-liquid mixer 31 and the idling operation is executed.
  • the idling time is set in advance to the controller 0 at an appropriate time.
  • the controller 0 issues an opening command to the valve V6, whereby ozone is supplied to the gas-liquid mixer 31.
  • the supplied ozone is supplied to the pump 39 through the gas-liquid mixer 31, generates the microbubble-containing liquid MB through the microbubble generator 32, and the nanobubble-containing liquid NB by the ultrasonic crushing unit 4 in the liquid tank 2. Is converted to
  • the upper part of the inner peripheral tank 21 is controlled by the microbubble-containing liquid MB
  • the middle layer is controlled by the microbubble / nanobubble mixed liquid MN
  • the lower layer is controlled by the nanobubble-containing liquid NB.
  • the nanobubble-containing liquid NB generated in the lower part of the inner peripheral tank 21 obtains the required amount of nanobubble-containing liquid NB from the nanobubble-containing liquid deriving unit 5. be able to.
  • the propagation liquid temperature gradually rises.
  • the temperature sensor TS1 senses this liquid temperature. That is, when the propagation liquid temperature reaches the set temperature by the temperature sensor TS1, the control unit 0 opens the valve V3, discharges a part of the propagation liquid, and opens the valve V2 to open a part of the propagation liquid.
  • the propagation liquid supplied here is in a temperature range suitable for use.
  • the nanobubble manufacturing apparatus which concerns on this embodiment can obtain the nanobubble containing liquid NB with a fine and uniform diameter and high concentration.
  • a microbubble-containing liquid MB having a diameter of about 200 nm to 2 ⁇ m is generated by the microbubble-containing liquid supply unit 3, and an ultrasonic crushing field X shown in FIG.
  • a homogeneous nanobubble production apparatus capable of achieving a center particle size of around 100 nm or less and a bubble concentration of 300 million / ml or more is realized.
  • the introduction port 21 a is arranged in the center of the liquid tank 2 in plan view, and the ultrasonic crushing portion 4 is the liquid tank 2.
  • a configuration in which an ultrasonic crushing field X is formed in the center in plan view is applied.
  • the ultrasonic oscillation frequency is set to 20 KHz to 1.5 MHz in order to generate nanobubbles more suitably.
  • the ultrasonic crushing unit 4 includes an ultrasonic oscillator 41 that can oscillate ultrasonic waves as a configuration for obtaining the nanobubble-containing liquid NB more suitably from the ultrasonic crushing unit 4.
  • a mode in which a propagation liquid storage region 22c for storing a propagation liquid for propagating ultrasonic waves to the inner circumference tank 21 is formed between the peripheral tanks 21 is applied.
  • the ultrasonic crushing part 4 is assumed to have a plurality of ultrasonic oscillators 41 in this embodiment.
  • the specific configuration of the liquid tank 2 and the ultrasonic crushing unit 4 is such that the inner peripheral tank 21 has a circular shape in plan view, and a plurality of ultrasonic oscillators 41 are provided on the inner peripheral tank 21.
  • a configuration is used that is arranged radially in plan view so that ultrasonic waves can be oscillated toward the center.
  • the plurality of ultrasonic oscillators 41 are arranged so as to oscillate ultrasonic waves in a downwardly inclined direction.
  • the inner peripheral tank 21 has a sealed structure that is cut off from the atmosphere. .
  • the microbubble-containing liquid supply unit 3 includes liquid and gas.
  • moves like this is employ
  • the microbubble generator 32 swirls the bubble-containing liquid that has passed through the gas-liquid mixer 31 in a spiral manner.
  • a configuration including a foaming member 37 that foams the bubble-containing liquid that has passed through 36 to form a microbubble-containing liquid MB is applied.
  • the microbubble-containing liquid supply unit 3 is provided with a livestock pressurizer 33 that pressurizes the liquid in the livestock member 36.
  • the microbubble-containing liquid supply unit 3 extracts the liquid from the upper side of the liquid tank 2 to the microbubble generator 32 by the pump 39.
  • a liquid extraction path 91 is provided to constitute the liquid circulation mechanism 9, and a high concentration nanobubble-containing liquid NB can be generated in the lower part of the inner peripheral tank 21. If it is 3/4 or more from the bottom in the depth direction of the remaining amount of the actual liquid in the inner peripheral tank 21, it becomes a microbubble dominating region, so the nanobubbles are increased in concentration without discharging the nanobubbles to the pump 39 side. it can.
  • the liquid is drawn out from the upper part of the inner peripheral tank 21 that is the microbubble dominating region and circulated to the pump 39 side without discharging the nanobubbles already existing in the inner peripheral tank 21 to the pump 39 side, Since only the microbubbles are discharged to the pump 39 side, the nanobubbles have a higher concentration due to the dispersion effect of the nanobubbles.
  • the user can stably obtain the nanobubble-containing liquid NB having a particle size of about 100 nm or less and a high concentration of 300 million / ml or more due to the synergistic effect of each configuration according to the present embodiment. .
  • the temperature of the liquid in the liquid tank 2 is kept within a predetermined temperature range by appropriately replacing the propagation liquid. I try to control it.
  • Japanese Patent Application Laid-Open No. 2005-246293 or the like uses a circulation pump and a porous plate such as an orifice to circulate and provide physical stimulation.
  • a technique has been devised in which nanobubbles are circulated through a microbubble generator while using sonic crushing to increase the concentration.
  • nanobubbles can be made into nanobubbles to a certain limit, nanobubbles having a particle size of 100 nm or less cannot be generated at a high concentration.
  • the modification 1 is obtained by changing the configuration of part A in FIG. 2 of the above embodiment as shown in FIG. That is, in this modification, the gas-liquid mixer 31 is arranged on the downstream side of the discharge part of the pump 39 to form a bubble-containing liquid, and this bubble-containing liquid is introduced into the swivel member 34 of the microbubble generator 32. The microbubble-containing liquid MB is generated. As shown in FIG. 10, even if the gas-liquid mixer 31 is provided between the pump 39 and the microbubble generator 32, the same effect as in the above embodiment can be obtained.
  • the configuration of the swivel member 34 may be changed to introduce gas from the middle part of the swivel member 34.
  • the same effect can be obtained when the swivel member 34 also serves as the configuration of the gas-liquid mixer 31.
  • the microbubble generator 32 is modularized in a replaceable manner, specifically, the nanobubble generator is arbitrarily selected from a plurality of modules having different amounts of liquid to be passed per time.
  • a microbubble generator 32 as shown in FIG. 11 can be applied instead of the microbubble generator 32 shown in FIG.
  • the microbubble generator 32 shown in the figure is used when it is desired to increase the production amount of the microbubble-containing liquid MB per unit time as compared with the above embodiment.
  • a plurality of swiveling members 34, protrusion crushing members 35, and foaming members 37 are connected to the common animal rearing member 36 having a capacity larger than that of the above-described embodiment, and the flow paths are formed on the upstream side and the downstream side.
  • the plurality of swiveling members 34, the protrusion crushing members 35, and the foaming members 37 are illustrated as being arranged in a straight line, but of course, they may be arranged in a bundle to contribute to effective use of the space in the housing 1. .
  • the liquid tank 2 having the outer peripheral tank 22 having a hexagonal shape in plan view and the aspect in which the ultrasonic crushing portion 4 to which the six ultrasonic oscillators 41 are applied are applied to the liquid tank 2 are disclosed. 12 may be used.
  • both the outer peripheral tank 22 and the inner peripheral tank 21 have a rectangular shape in plan view. And it has the ultrasonic crushing part 4 which has the ultrasonic oscillator 41 which makes the pair arrange
  • Such a configuration has a structure in which vibration energy generated by the ultrasonic wave ss is propagated into the inner peripheral tank 21 through the propagation liquid, and the ultrasonic crushing field X is formed in the inner peripheral tank 21. It is the same.
  • the ultrasonic wave ss propagated from the ultrasonic oscillator 41 is reflected by the wall surface of the outer peripheral tank 22, and the ultrasonic wave collapses in the inner peripheral tank 21 due to the overlapping of the reflected ultrasonic wave rw and the ultrasonic wave ss.
  • the field X is formed. That is, this configuration is characterized in that the ultrasonic oscillators 41 are arranged on at least two axes of the X axis and the Y axis. Even in such a configuration, an ultrasonic crushing field X having a prismatic or cylindrical shape can be formed by reflection or irradiation of ultrasonic waves as in the above embodiment.
  • a so-called circulation type nanobubble manufacturing apparatus that circulates liquid between the liquid tank 2 and the microbubble-containing liquid supply unit 3 by providing the liquid circulation mechanism 9 has been disclosed.
  • a so-called one-pass system in which a microbubble-containing liquid supply section 9, a supply flow path 92, a liquid tank 2, and an ultrasonic crushing section 4 are provided in order from the stock solution supply section 7 to the nanobubble-containing liquid outlet section 5 on a single passage.
  • You may comprise a type of nanobubble manufacturing apparatus.
  • the nanobubble production apparatus shown in this modification is not directly connected to the liquid tank, but the raw liquid introduction part 7 is directly connected to the gas-liquid mixer 31 of the microbubble-containing liquid supply part 3 while providing the valve V1. is doing.
  • the liquid tank 2 is provided with only the inlet 21a and the outlet 21b without providing the stock solution inlet 21c and the liquid outlet 21d on the inner peripheral tank 21 side. It is configured.
  • the aspect of taking out the nanobubble-containing liquid directly from the inner peripheral tank has been disclosed, but, of course, a different tank for storing only the nanobubble-containing liquid downstream from the inner peripheral tank.
  • the liquid tank has a double structure including an outer peripheral tank and an inner peripheral tank.
  • the liquid tank is not limited to such a structure. It is good also as an aspect which does not use the aspect which produces
  • specific modes of the pump and the ultrasonic oscillator are not limited to those of the above-described embodiment, and various modes including the existing ones can be applied.
  • the present invention can be used as a nanobubble production apparatus for producing a nanobubble-containing liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Water Treatments (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Accessories For Mixers (AREA)

Abstract

 本発明は、微細で径が均一な高濃度ナノバブルを得ることができるナノバブル製造装置を提供するためのものであり、本発明に係るナノバブル製造装置は、上部にバブル含有液導入口を配するとともに底部にバブル含有液導出口を配してなる液槽と、この液槽の前記バブル含有液導入口にマイクロバブルを含有するマイクロバブル含有液を供給するマイクロバブル含有液供給部と、前記バブル含有液導入口を通して前記液槽内に供給された前記マイクロバブル含有液が下方へ向けて流れる箇所に超音波によるマイクロバブルの圧壊が集中して起こりナノバブルが生成される超音波圧壊場を形成するために前記液槽内へ超音波を照射する超音波圧壊部と、この超音波圧壊部により生成されたナノバブルを含有するナノバブル含有液を、前記バブル含有液導出口を通して前記液槽外に取り出すナノバブル含有液導出部とを具備する。

Description

ナノバブル製造装置
 本発明は、ナノバブル含有液を製造するナノバブル製造装置に関するものである。
 近年、マイクロ・ナノバブルが有する様々な効果がエコ環境活用技術として洗浄・殺菌効果の活用、有機合成への活用等様々な分野に活用することが検討され始めている。このため、その発生装置に於いても様々な方式が考案されている。例えば、特許文献1に記されている旋回流方式を適用しているものや、特許文献2、特許文献3及び特許文献4に記されている、加圧剪断方式を適用しているもの等、さまざまな手法が考案されている。
特開2006-116365号公報 特開2006-272232号公報 特許第3762206号公報 特許第4094633号公報
 しかしながら、いずれの方式ともナノバブルの微細均一化を可能とするものではなく、様々なバブル粒径が混在するため、バブルの保有電荷量やゼータ電位の違いによりバブル相互間に凝集作用が生じてバブル濃度を飛躍的に向上させることが困難であった。又、既発明考案によるナノバブル製造装置では、ほとんどの装置が加圧剪断方式のため、その圧力構造に耐えうるよう接液部にステンレス等の金属を使用せざるを得ない。一部の発明考案(旋回流方式)ではPVC等の樹脂を使用している例もあるが、その装置はマイクロ・ナノバブルを混在する発生装置であって、微細均一高濃度ナノバブル製造装置とはなっていないのが実情である。特に、ナノバブルレベルでのバブル粒径をホモジニアス(微細均一)化する技術は、既存技術では不可能であった。従って、従来技術においては、微細均一高濃度ナノバブルを発生させようとすれば必然的に高圧水環境下で剪断圧壊する必要があり、このため、酸化・還元反応の極めて高いオゾンや水素等のナノバブルがステンレスのオゾン腐食や水素脆性の発生などにより安全上や品質上からも大きな制約があった。
 また、微細なバブルは下記のYoung-Laplaceの式からも導かれる通りバブル内圧が高く、ナノバブルではいずれもバブルの内側に向かう力=内圧のため、より小さ
くなる傾向となることが判明している。
 ΔP=4σ/D
(ΔP:圧力上昇変化、σ:表面張力、
D:バブル直径 100nm:30Atom、10nm:300Atom)
 そしてバブル粒径が微細均一でない場合、バブル固有の保有電荷量、ゼータ電位が異なるため大きなバブルに微細なバブルが吸着し、バブルがより大きくなる傾向にあり、粒径の異なるバブルは、凝集作用が働き、より大きなバブルとなって浮上崩壊する結果、バブル寿命も短命で、酸化還元反応やウイルス等の殺滅菌作用等の再現性も大変低くなる欠点があった。
 本発明は、従来技術が包含している上記不具合に着目したものであり、微細で径が均一な高濃度ナノバブルを得ることができるナノバブル製造装置を提供することを目的としている。
 本発明は、このような目的を達成するために、次のような手段を講じたものである。
 すなわち本発明に係るナノバブル製造装置は、上部にバブル含有液導入口を配するとともに底部にバブル含有液導出口を配してなる液槽と、この液槽の前記バブル含有液導入口にマイクロバブルを含有するマイクロバブル含有液を供給するマイクロバブル含有液供給部と、前記バブル含有液導入口を通して前記液槽内に供給された前記マイクロバブル含有液が下方へ向けて流れる箇所に超音波によるマイクロバブルの圧壊が集中して起こりナノバブルが生成される超音波圧壊場を形成するために前記液槽内へ超音波を照射する超音波圧壊部と、この超音波圧壊部により生成されたナノバブルを含有するナノバブル含有液を、前記バブル含有液導出口を通して前記液槽外に取り出すナノバブル含有液導出部とを具備することを特徴とする。
 本発明は、本願発明者が、超音波によるマイクロバブルの圧壊が集中して起こりナノバブルが生成される超音波圧壊場を形成する点と、液槽中においてナノバブルが下方へ集中する点とにはじめて想到することにより実現し得たものである。
 このようなものであれば、微細で径が均一な高濃度ナノバブルを得ることができるナノバブル製造装置を実現することが可能となる。
 また、より好適な超音波圧壊場を形成するための具体的な構成として、バブル含有液導入口が液槽の平面視中央に配されたものであり、超音波圧壊部が液槽の平面視中央に超音波圧壊場を形成するという態様を挙げることができる。
 ナノバブルをより好適に生成し得るためには、超音波の発振周波数を20KHz~1.5MHzとすることが望ましい。
 また、超音波圧壊部からナノバブル含有液をより好適に得るための構成としては、超音波圧壊部が超音波を発振し得る超音波発振子を有し、液槽が、超音波発振子を固定した外周タンクと、この外周タンクよりも内側に形成されバブル含有液及びバブル含有液導出口を配する内周タンクとを有し、これら外周タンク及び内周タンクの間に超音波を内周タンクへ伝搬するための伝搬液を貯留する伝搬液貯留領域を形成している態様を挙げることができる。
 他方、本発明に係る液槽は勿論、上記外周タンク及び内周タンクを具備する構成に限られず、外周タンクのみの一重構造のものとし、伝搬液を使用しないものとしても良い。
 さらに効率良く超音波圧壊場を形成するためには超音波圧壊部が超音波発振子を複数有しているものであることが望ましい。
 また、液槽及び超音波圧壊部の具体的な構成として、内周タンクが平面視円形状をなすものであり、複数の超音波発振子が内周タンクの中央へ向けて超音波を発振し得るように平面視放射状に配されているものを挙げることができる。
 そして均一な径を有するナノバブル含有液をより効率良く得るためには、複数の超音波発振子が、下方へ傾斜した方向に超音波を発振するように配されているようにすることが望ましい。
 そして、ナノバブル含有液を構成する気体並びに液体の種類に依存することなく効率良くナノバブル含有液を得るためには、内周タンクを、大気とは遮断された密閉構造としておくことが望ましい。
 そして、効率よくナノバブル含有液を得るべく、ナノバブルを生成し易いマイクロバブル含有液を液槽に効率よく供給するためには、マイクロバブル含有液供給部が、液体及び気体を混合させる気液混合器と、気液混合器により気体が混合された液体をマイクロバブル含有液とするマイクロバブル生成器と、マイクロバブル含有液がバブル含有液導入口へ吐出されるように作動するポンプとを有しているものであることが望ましい。
 また、上述した気液気液混合器は、ポンプよりも液体の流れにおける上流側に設けられている態様であっても、ポンプとマイクロバブル生成器との間に設けられている態様であっても、効率よくナノバブル含有液を得ることができる。
 そしてマイクロバブル生成器の具体的な構成として、気液混合器を経た気泡含有液を螺旋状に旋回動作させる旋回部材と、この旋回部材を経た気泡含有液を突起に衝突させながら通過させる突起圧壊部材と、この突起圧壊部材を経た気泡含有液を一定時間対流させる畜養部材と、畜養部材を経た気泡含有液を発泡させてマイクロバブル含有液とする発泡部材とを有しているものを挙げることができる。
 さらに効率よくマイクロバブル含有液を得るためには、マイクロバブル含有液供給部が、畜養部材内の液体を加圧する畜養加圧器を有しているものであることが望ましい。
 また、所要量のナノバブル含有液を確実に得るための構成として、マイクロバブル生成器が、交換可能にモジュール化されたものであることが望ましい。
 特に使用者によるナノバブルの所要量の変更にも速やかに対応し得るようにするためには、ナノバブル生成器が、時間当たりに通過させる液量が異なる複数のモジュールから任意の一のモジュールを選択して取り付け得るように構成しているものであることが好ましい。
 また、液槽に効率よくマイクロバブル含有液を供給するためには、マイクロバブル含有液供給部が、液槽の上側からポンプによりマイクロバブル生成器へ液体を抽出する液抽出路を有しているものであることが好ましい。
 そして、継続的な使用においてもナノバブル含有液の製造効率を高く維持しておくためには、液槽内の液体の温度を所定の温度範囲内に制御する液温制御部を有しているものであることが望ましい。
 上述した本発明は、中心ナノバブル粒径100nm前後以下(以下ホモジニアスナノバブルと呼称する。)
 機械的に生成した0.2~2μm程度のマイクロバブルを超音波同時圧壊法によって、
同時且つ連続的にナノバブル化することを特徴としているため、バブル粒径が揃っていることからバブル保有電荷量、ゼータ電位等バブルの物理的特性がほぼ同一となる。このため、バブル相互間に分散作用が働くことから、更なる高濃度化が達成でき、バブルの有する洗浄効果、殺菌効果等の再現性が極めて高くなり、高スループットを得ることが可能となる。しかも、接液部に塩化ビニル樹脂やPVDF、PTFE等のフッ素系樹脂を使用でき、樹脂溶接や接着構造などの採用により大気との気体接触のない完全密閉構造バブル発生システムが構築できるため、ガス種を選ばず、且つ原液の種類も選ばない安全なナノバブル発生システムが構築できる。しかも、マイクロバブルの粒径幅を0.2~2μm程度に抑制しながら高濃度化を図り、更に超音波圧壊場によってこのバブルを同時圧壊させ、バブル粒径100nm前後以下且つナノバブル濃度3億個/ml以上を達成できる。このため、水酸基や水素基等のラジカル反応やナノバブルとParticle(微細なゴミ)やウイルス等との微粒子間相互作用による選択的吸着酸化脱離洗浄・殺菌効果を活用し、次亜塩素酸等の薬品を使用しない食品洗浄装置、有機合成装置、半導体洗浄装置、医療・治療器具等の殺菌・洗浄装置等への活用を可能とする高スループットを達成する。この達成により環境や人体等に優しいエコ常温殺・滅菌洗浄装置の実現が可能となる。併せて、オゾンナノバブルによる有機物分解、スケール分解や消臭効果を活用した配管・ボイラタンク等の洗浄や洗浄後の水素ナノバブルを活用した還元効果による赤錆を黒錆に転換し、皮膜によって管の寿命を延命するなどの効果も可能となる。
 本発明によれば微細で径が均一な高濃度ナノバブルを得ることができるナノバブル製造装置を提供することができる。
本発明の一実施形態に係る正面図。 同実施形態に係る機能ブロック図。 同実施形態に係る正面側から見た構成説明図。 同平面側から見た構成説明図。 同右側面側から見た構成説明図。 同実施形態に係るマイクロバブル発生部の構成図。 図6に係る要部拡大図。 同実施形態に係る超音波圧壊部の平面図。 図8のB-B線断面図に基づく要部の構成説明図。 同実施形態の変形例1に係る図2に対応した説明図。 同実施形態の変形例2に係る構成説明図。 同実施形態の変形例3に係る要部の模式的な平面図。 同実施形態の変形例4に係る図2に対応した説明図。 同変形例に係る図9に対応した説明図。
 以下、本発明の一実施の形態について図面を参照して説明する。
 本実施形態に係るナノバブル製造装置は、例えば純水を原液として用い、バブル化対象気体をオゾンとしたものである。すなわち、純水にオゾンによるナノバブルを含有させたナノバブル含有液を製造するためのものである。図1は、当該ナノバブル製造装置の外観を示している。当該ナノバブル製造装置は上部1aに当該装置のほぼ全ての構成要素を配置するとともに、下部1bにはバブル化対象気体であるオゾンを発生させるオゾン発生部6や、駆動原Eである電源装置を配置している。また筐体1の上部には、当該ナノバブル筐体1の外部に制御部0の操作パネル00を前面に露出させ、当該操作パネル00を介してユーザがこのナノバブル製造装置を任意に操作し得るようにしている。
 しかして本実施形態に係るナノバブル製造装置は、上部にバブル含有液導入口たる導入口21aを配するとともに底部にバブル含有液導出口たる導出口21bを配してなる液槽2と、この液槽2の導入口21aにマイクロバブルを含有するマイクロバブル含有液MBを供給するマイクロバブル含有液供給部3と、導入口21aを通して液槽2内に供給されたマイクロバブル含有液MBが下方へ向けて流れる箇所に超音波ssによるマイクロバブルの圧壊が集中して起こりナノバブルが生成される超音波圧壊場Xを形成するために液槽2内へ超音波ssを照射する超音波圧壊部4と、この超音波圧壊部4により生成されたナノバブルを含有するナノバブル含有液NBを、導出口21bを通して液槽2外に取り出すナノバブル含有液導出部5とを具備することを特徴としている。
 <構成説明>
 以下、当該ナノバブル製造装置の構成について説明する。図2~図9に示して説明する。図3~図5は主に、筐体1内における液槽2、マイクロバブル含有液供給部3及び超音波圧壊部4の配置を図示している。ナノバブル製造装置は、筐体1内においては図2に示すように、例えば純水といった原液を導入する原液導入部7と、この原液導入部7からの原液を貯留する液槽2と、液循環機構9を介して液槽2に接続しているマイクロバブル含有液供給部3と、このマイクロバブル含有液供給部3に接続しているオゾン発生部6と、液槽2に設けられた超音波圧壊部4と、液槽2内にて生成されたナノバブル含有液NBを取り出すためのナノバブル含有液導出部5と、原液とは別異に液槽2へ導入或いは液槽2から導出される伝搬液を案内するための伝搬液流路8とを具備している。そして当該ナノバブル製造装置内には各所にバルブV1~V4、V6、V7及びスイッチV5が配置されるとともに、これらバルブV1~V4、V6、V7及びスイッチV5は制御部0によりコントロールされる。また本実施形態では、マイクロバブル含有液供給部3が液槽2の上側からポンプ39によりマイクロバブル生成器へ液体を抽出する液抽出路91が設けられている。そして当該液抽出路91と、マイクロバブル含有液供給部3と液槽2との間に介在する供給流路92とともに液体を循環させ得る液循環機構9を構成している。
 原液導入部7は、装置外にて生成された原液の一例としての純水を液槽2内に導入するためのものである。この原液導入部7には制御部0により開閉制御されるバルブV1が設けられている。
 ナノバブル含有液導出部5は、超音波圧壊部4により生成されたナノバブル含有液NBを、導出口21bを通して液槽2外、ひいては装置外部に取り出すためのものである。このナノバブル含有液導出部5には制御部0により開閉制御されるバルブV4が設けられている。
 オゾン発生部6は、オゾンを発生させるオゾン発生機61と、このオゾン発生機61からマイクロバブル含有液供給部3に至る流路上に設けられた圧力計62と流量計63と逆止弁64とを有している。オゾン発生機61は、バブル化対象であるオゾンを発生させるための既存装置を適用している。また当該ナノバブル製造装置は勿論、このオゾン発生機61に代えて既存の別異の機材を搭載することで、酸素、窒素、アンモニア、水素、或いは二酸化炭素といった他の気体を含有するナノバブル含有液NBを製造することも可能である。そしてこのオゾン発生部6には制御部0により開閉制御されるバルブV7が設けられている。
 液槽2は、図2、図8及び図9に示すように、外周タンク22及び内周タンク21を主体とした二層構造をなす。内周タンク21は平面視円形状をなし、大気とは遮断された密閉構造としている。この内周タンク21の上部にバブル含有液導入口たる導入口21a、原液供給部から原液が供給される原液供給口21c及び内周タンク21の上層(タンクの深さ方向に対して底面から3/4以上の上方部)にある液体を抜き出すための液抜出口21dが設けられている。内周タンク21の下部すなわち底面にはナノバブル含有液導出部5により装置外部へナノバブル含有液NBを導出する導出口21bが設けられている。外周タンク22は、例えばステンレスといった超音波ssを反射できる材質で構成された平面視六角形状をなす。外周タンク22は、上部に伝搬液を供給するための伝搬液供給口22aを有するとともに下部に伝搬液を排出するための伝搬液排出口22bを有している。そして外周タンク22及び内周タンク21の間に超音波ssを内周タンク21へ伝搬するための伝搬液を貯留する伝搬液貯留領域22cが形成される。
 ここで内周タンク21の材質について詳述する。内周タンク21は塩化ビニル樹脂かPVDF等のフッ素系樹脂など樹脂材料又は、石英で構成されることが望ましい。樹脂材料の場合には上部を樹脂溶接や接着などで完全密閉構造とする。石英の場合には、PTFE、バイトン等のシール材を介して密閉構造を採るものとする。その理由は、マイクロバブルの超音波圧壊時に発生する微量ガスを大気と接触させないための処置である。オゾンナノバブル発生時にはオゾンリークによる人体危険を防止するためであり、水素ナノバブルでは、水素と酸素の接触による爆発危険を防止するためである。しかも、この処置によってバブルによる有機合成反応対応でも、気中ガス成分の混入がないため、安定した有機合成反応を得ることが可能となる。
 伝搬液流路8は、外周タンク22内に設けられた温度センサTS1とともに液槽2内の液体の温度を所定の温度範囲内に制御する液温制御部として機能する。この伝搬液流路8は装置外部から外周タンク22の伝搬液供給口22aへと伝搬液を供給する伝搬液供給部81と、外周タンク22の伝搬液排出口22bから装置外部へ伝搬液を排出する伝搬液排出部82とを有している。伝搬液供給部81にはバルブV2が、伝搬液排出部82にはバルブV3が設けられ、これらバルブV2、V3はともに制御部0により制御される。
 マイクロバブル含有液供給部3は、図2、図6及び図7に示すように、液槽2のバブル含有液導入口に供給流路92を介してマイクロバブルを含有するマイクロバブル含有液MBを供給するためのものである。マイクロバブル含有液供給部3は、液体及び気体を混合させる気液混合器31と、気液混合器31により気体が混合された気泡含有液をマイクロバブル含有液MBとするマイクロバブル生成器と、マイクロバブル含有液MBが導入口21aへ吐出されるように作動するポンプ39とを有している。ポンプ39については既存のものを使用しているため、その詳細な説明を省略するが、ポンプ39として、例えばエアー駆動型容積式ポンプを適用するが、マグネットポンプや軸流ポンプ等非容積式ポンプを適用しても良く、ポンプの種類を選ばない。
 気液混合器31は、本実施形態では気液混合器31が、ポンプ39よりも液体の流れにおける上流側に設けられているポンプ39の液体取り入れ口近傍に気体取り入れ口を設け、ポンプ39の吸引力を利用して液体と同時に気体も吸引させポンプ39内で気液混合体たる気泡含有液を生じさせるようにしている。斯かる構成を適用している理由は、液体側の流れ方向に添うことで、気液混合を円滑にできるようにすることを目的としているからである。この位置が液体の流れ方向と逆らう場合には、液体の圧力変動を直接受けるため、気体の導入流量が一定せず、気液混合を円滑に行うことができないため、多量の気体が導入されポンプ39が空運転する場合や気体がほとんど入らずバブル発生が定量化しない現象が発生する。これに対して、本実施形態によれば、気体導入圧力が一定圧力で供給することのみで気体導入量が一定となり、安定した気体導入量を維持することが可能となる。
 マイクロバブル生成器32は、気液混合器31を経た気泡含有液を螺旋状に旋回動作させる旋回部材34と、この旋回部材34を経た気泡含有液を突起35aに衝突させながら通過させる突起圧壊部材35と、この突起圧壊部材35を経た気泡含有液を一定時間対流させる畜養部材36と、畜養部材36を経た気泡含有液を発泡させてマイクロバブル含有液MBとする発泡部材37とを有している。また本実施形態では、このマイクロバブル生成器32が、交換可能にモジュール化された構造をなす。詳述すれば、マイクロバブル生成器32は、時間当たりに通過させる通過液量が異なる複数のモジュールから任意の一のモジュールを選択して取り付け得るように構成しているが、通過液量が異なる構成をなすマイクロバブル生成器32については後述する変形例において詳述する。
 旋回部材34は、内部に螺旋状に形成された旋回面34aに沿って液体を流すものである。この旋回面34aは、少なくとも円軸方向に対して1.5回転以上の円軸回転が得られることが望ましい。気液混合器31によって液中に混入された気泡含有液に、ポンプ39の吐出圧力を利用して旋回流作用を加えることで、流速を加速することができる。円軸方向に対する回転数を上げれば流速は増大するが、その分圧力損失が増大するため、ポンプ39の揚程能力と必要とするバブル濃度から最適回転数は決定される。なお、当該旋回部材34は、特許文献1に示されているような液体のみを旋回させる旋回流ではなく、あくまでも気泡含有液の流速を加速する手段として用いることを特徴としている。このため、この部分でマイクロバブルを発生させるのではない。
 突起圧壊部材35は、旋回部材34の後段に配置されるものである。突起圧壊部材35は、旋回部材34を通過した気泡含有液を突起35aにより剪断圧壊することによりバブル濃度を向上させる役割を有する。この突起圧壊部材35は円柱構造をなし、円筒方向に対して垂直方向に多段の突起35aを設け、突起35aの先端がそれぞれ対向する方向に配置されたものであって、中心部分に突起35aが存在しない空洞である液流路になるようにしている。また突起35aは少なくとも6段以上の段数になっており、長手方向に36度以上の角度で交互に配置される。さらにこの突起圧壊部材35は旋回部材34と連続し一体的に構成されるものとしている。旋回部材34によって加速された気泡含有液はこの突起35aに当たりながら粉砕され気体がさらに微細化する。本実施形態では、樹脂溶接を用いた構成であるが、突起35aはねじ込み式で構成しても差し支えなく、突起35aの配置は同図の態様の他、90度の角度位相をもって4方向に配置する態様、60度の角度位相をもって6方向に配置する態様でも差し支えはない。また、本実施形態において各突起35a間で36度角度位相を異ならせている理由は、突起35aが並行連続すると先端の突起35aでは気泡含有液を剪断圧壊できるが、後段の突起35aでは先端部分の陰に隠れてその機能を果たすことができないからである。このため、前後の突起35aの角度位相を異ならせることで、後段に位置付けた突起35aも均等に剪断圧壊させることができる。この配列構成により突起35a後方に空間が得られることで、突起35a後方に発生するカルマン流と流れ方向の流体衝突による剪断圧壊効果も得られる(突起35a後方に発生するカルマン流については流体の力学 須藤 浩三他著 コロナ社版 P196に説明されている。)。
 畜養部材36は、突起圧壊部材35を通過した液体である気泡含有液を一時的に貯留するためのものである。この畜養部材36は、例えばポンプ39の1分間当たりの吐出流量の1/20KHz~1/5の貯留が可能な容器である。この畜養部材36は、突起圧壊部材35の下流側端部及び発泡部材37の上流側端部が収納されている。
 発泡部材37は、特に図7に示すように、発泡部材37は、例えば複数のオフセット孔37a1を有するスリット板37aと、液体を加圧する円筒形状をなす再加圧部37bと、テーパ円錐構造をなすテーパ部37cとを有している。スリット板37aは、中心からオフセットさせた位置に、例えば正三角形状をなすように3つのオフセット孔37a1を有している。またこのオフセット孔37a1は、液体の流路に対し所定角度傾斜し、拡散する方向に延出するよう穿たれている。再加圧部37bはオフセット孔37a1を通過した液体である気泡含有液を内部で加圧するためにオフセット孔37a1の開口面積よりも小さい開口面積で液体を流出させる流出口37b2と、この流出口37b2の周囲並びにスリット板37aの裏面側に位置する衝突壁37b1とを有している。テーパ部37cは、流出口37b2から例えば15度よりも小さい角度で円錐状に拡散するテーパ面37c1を有している。斯かる構成により、オフセット孔37a1を通過した液体は加圧されながら傾斜方向に流れて且つ前後の衝突壁37b1に衝突することにより気体がさらに圧壊される。そして流出口37b2を経た液体がテーパ部37cに至ると急速に減圧されることで、気泡含有液がマイクロバブル含有液MBになる。具体的に説明すると、再加圧部37b内の圧力は3MPa前後となっているがテーパ部37cでは1MPaとなり、急激に減圧されることから、発泡部材37を経た液体は均一なマイクロバブルを含有するマイクロバブル含有液MBとなる。
 とくにこの発泡部材37の急速な減圧により、既知技術では不可能とされたステンレス等を使用しないPVDF、PTFE、PVC等の樹脂でも微細且つ均一なマイクロバブルを得ることが可能となる。なお、既知ベンチュリー構造管では上述のような再加圧機能は得られない。
 しかして本実施形態では、マイクロバブル含有液供給部3は、上記の気液混合器31、マイクロバブル生成器32及びポンプ39に加え、畜養部材36内の圧力を一定圧力(0.8MPa~2MPa)程度に高めることで、バブル濃度を向上させる機能を担保するための畜養加圧器33を有している。この畜養加圧器33は、本発明に係るマイクロバブルを微細均一化するための最重要機能の一つであり、剪断圧壊したバブル核内の保有電荷量、ゼータ電位を均一にするため、一定時間滞留をさせること及び余剰気体による加圧圧縮効果を活用して、畜養部材36内の圧力を一定圧力(0.8MPa~2MPa)程度に高めることで、バブル濃度を向上させる機能を有する。これらの機能によって、ポンプ39が例えば低揚程能力である容積移送型ポンプ(エヤー駆動型ベローズポンプ、同式ダイヤフラムポンプ等)でも微細均一化超高濃度マイクロバブルを発生させることが可能となり、しかも、非容積移送型ポンプ(マグネットポンプや軸流ポンプ等)では、揚程圧が高くなるため、さらなる濃度向上が可能となる。このため、この機能により、ポンプ39の種類を選ばないマイクロバブル含有液供給部3が実現される。なお当該畜養加圧器33により畜養部材36内で加圧された気泡含有液は発泡部材37の再加圧部37bにて再び加圧されている。
 超音波圧壊部4は、外周タンク22に取り付けられた複数の超音波発振子41を有する。本実施形態では、平面視六角形状をなす外周タンク22にそれぞれ放射状に6つの超音波発振子41を取り付けている。すなわちこの超音波発振子41は内周タンク21の中央へ向けて超音波ssを発振し得るように配置されている。そしてこの超音波圧壊部4による超音波ssの発振周波数を20KHz~1.5MHzとしている。具体的には、28KHz~1.5MHzの範囲としている。そしてこれら6つの超音波発振子41は、例えば15度程度下方へ傾斜した方向に超音波ssを発振するように配されている。
 <作用説明>
 しかして本実施形態に係るナノバブル製造装置では、超音波圧壊部4の作動により内周タンク21の平面視中央において、バブル含有液導入口を通して液槽2内に供給されたマイクロバブル含有液MBが下方へ向けて流れる箇所に超音波ssによるマイクロバブルの圧壊が集中して起こりナノバブルが生成される超音波圧壊場Xが形成される。具体的に説明すると、超音波発振子41から伝搬された超音波エネルギーは外周タンク22のステンレス板等の壁面で反射し、その反射エネルギーも相まって内周タンク21内で超音波圧壊場Xを形成する構成となっている。換言すれば、超音波圧壊部4によって液槽2内の超音波ssは、角柱又は円柱状をなす中心部分すなわち超音波圧壊場X内に超音波ssを集中させてマイクロバブルの逃げ場をなくしながら圧壊する。これにより、ナノバブルを形成することを特徴とする。このため、超音波ssのエネルギーと周波数を適宜選択することで、中心粒径100nm前後以下且つバブル濃度3億個/ml以上の望ましいナノバブル含有液NBを得ることが可能となる。
 他方、従来も超音波で新たなナノバブルを得る技術としてはナノバブルの発生と機能に関する研究等があるが、濃度が低くナノバブルの寿命が短命で高濃度できないものであった(筑波大学大学院博士課程 システム情報工学研究科修士論文ナノバブルの発生と機能に関する研究 後藤 瑞希 2004年1月)。また、マイクロバブルから圧壊法でナノバブルを得る方法は特開2005-246293号公報、特開2011-218308号公報記載の技術が考案されている。しかしながら、前者では、単に超音波を当てることやオリフィス構造多孔板を用いて物理的刺激を与えること。電圧印加による物理的刺激を加えることのみであり、500nm以下のナノバブルはそれ以上微細化できないことをYoung-Laplaceの式を用いて説明をしている。さらに、特開2011-218308号公報等では、収容室の底面から上部に向かって超音波を印加する手法が考案されているが、この手法では超音波を印加する反対側方向にマイクロバブルやナノバブルがその振動エネルギーで移動するため、高濃度ナノバブルを生成することはできなかった。
 <動作説明>
 以下、本実施形態に係るナノバブル製造装置の動作フローについて説明する。
 まず、筐体1に露出している操作パネル00によりユーザが動作開始指令を入力すると、バルブV2が開かれ、外周タンク22に伝搬液が供給される。そして図示しない水位センサが外周タンク22における伝搬液貯留領域22c内で伝搬液が一定量に至ることを検知するまで外周タンク22に伝搬液が供給され続ける。続いて伝搬液が一定量に至ること検知すると、制御部0よりバルブV2閉の指令を出し、バルブV2が閉となって伝搬液の供給を停止する。そして内周タンク21内の図示しない水位センサにより内周タンク21内の液体が十分量に至っていないことを制御部0が確認すると、バルブV1を開にして、原液導入部7からの原液供給を開始する。内周タンク21内の液量が上限であると水位センサがセンシングするまで、この動作は継続する。つまり水位センサが内周タンク21に十分原液が貯留された旨を検知すると制御部0がバルブV1に対し閉指令を出し、原液供給は停止となる。
 しかる後、制御部0よりスイッチV5へ開指令を出され、ポンプ39が動作を開始する。なお本実施形態ではポンプ39として、例えばエアー駆動式ポンプを適用するが、軸流式、マグネットポンプを適用する場合には、リレー等で電源をONにして電気ポンプへの電源供給が開始されるようにすれば良い。この時、バルブV6は、閉のまま一定時間維持される。このときバブル化対象気体たるオゾンは気液混合器31へは供給されずアイドリング運転が実行される。アイドリング時間の設定は、制御部0に予め適宜の時間に設定されている。そして設定されたアイドリング時間終了後、制御部0よりバルブV6へ開指令を出し、これによりオゾンが気液混合器31に供給される。供給されたオゾンは気液混合器31を経てポンプ39へ供給され、マイクロバブル生成器32を経て、マイクロバブル含有液MBを生成し、液槽2内において超音波圧壊部4によりナノバブル含有液NBに変換される。
 液槽2内では、内周タンク21の上部はマイクロバブル含有液MB、中層部はマイクロバブル・ナノバブル混在液MN、下層部分はナノバブル含有液NBの支配域となる。この動作の繰り返しにより、ナノバブルを下層域より高濃度化していくことが可能となる。すなわち運転中、液循環機構9により液体が内周タンク21とマイクロバブル含有液供給部3との間を循環していくことにより、内周タンク21内下層部分に生成されるナノバブル含有液NBのナノバブル濃度は逓増していく。
 そして内周タンク21下層部分に生成されたナノバブル含有液NBはユーザが操作パネル00を操作することによりバルブV4を開とすれば、ナノバブル含有液導出部5から所要量のナノバブル含有液NBを得ることができる。
 ここで、継続運転中、伝搬液貯留領域22cでは、伝搬液に対し連続的に超音波ssが印加され続けると、徐々に伝搬液温が上昇する。この液温を温度センサTS1がセンシングするようにしている。つまり、温度センサTS1により伝搬液温がその設定温度に達した場合、制御部0がバルブV3を開にして、一部の伝搬液を排出するとともにバルブV2を開にして、伝搬液の一部を入れ替え、伝搬液温の温度上昇を抑制する。ここで供給される伝搬液は使用に適した温度範囲内にあることはいうまでもない。
 以上のようなものとすることにより、本実施形態に係るナノバブル製造装置は、微細で径が均一であり且つ高濃度のナノバブル含有液NBを得ることができる。具体的にはマイクロバブル含有液供給部3により200nm~2μm前後のマイクロバブル含有液MBを生成するとともに、このマイクロバブル含有液MBに対し図9に示した超音波圧壊場Xを形成しさらに圧壊することで、中心粒径100nm前後以下且つバブル濃度3億個/ml以上の達成ができるホモジニアスナノバブル製造装置を実現するものである。
 また、より好適な超音波圧壊場Xを形成するための具体的な構成として本実施形態では、導入口21aが液槽2の平面視中央に配し、超音波圧壊部4が液槽2の平面視中央に超音波圧壊場Xを形成する構成を適用している。
 そしてナノバブルをより好適に生成し得るために本実施形態では、超音波の発振周波数を20KHz~1.5MHzとしている。
 また、超音波圧壊部4からナノバブル含有液NBをより好適に得るための構成として本実施形態では、超音波圧壊部4が超音波を発振し得る超音波発振子41を有し、液槽2が、超音波発振子41を固定した外周タンク22と、この外周タンク22よりも内側に形成されバブル含有液及び導出口21bを配する内周タンク21とを有し、これら外周タンク22及び内周タンク21の間に超音波を内周タンク21へ伝搬するための伝搬液を貯留する伝搬液貯留領域22cを形成している態様を適用している。
 さらに効率良く超音波圧壊場Xを形成するために本実施形態では超音波圧壊部4が超音波発振子41を複数有しているものとしている。
 また、液槽2及び超音波圧壊部4の具体的な構成として本実施形態では、内周タンク21が平面視円形状をなすものであり、複数の超音波発振子41が内周タンク21の中央へ向けて超音波を発振し得るように平面視放射状に配されている構成を適用している。
 そして均一な径を有するナノバブル含有液NBをより効率良く得るために本実施形態では、複数の超音波発振子41を、下方へ傾斜した方向に超音波を発振するように配している。
 そして、ナノバブル含有液NBを構成する気体並びに液体の種類に依存することなく効率良くナノバブル含有液NBを得るために本実施形態では、内周タンク21を、大気とは遮断された密閉構造としている。
 そして、効率よくナノバブル含有液NBを得るべく、ナノバブルを生成し易いマイクロバブル含有液MBを液槽2に効率よく供給するために本実施形態では、マイクロバブル含有液供給部3が、液体及び気体を混合させる気液混合器31と、気液混合器31により気体が混合された液体をマイクロバブル含有液MBとするマイクロバブル生成器32と、マイクロバブル含有液MBが導入口21aへ吐出されるように作動するポンプ39とを有している態様を採用している。
 そしてより性能が高いマイクロバブル生成器32を実現するための具体的な構成として本実施形態では、マイクロバブル生成器32が、気液混合器31を経た気泡含有液を螺旋状に旋回動作させる旋回部材34と、この旋回部材34を経た気泡含有液を突起35aに衝突させながら通過させる突起圧壊部材35と、この突起圧壊部材35を経た気泡含有液を一定時間対流させる畜養部材36と、畜養部材36を経た気泡含有液を発泡させてマイクロバブル含有液MBとする発泡部材37とを有している構成を適用している。
 特に本実施形態では、効率よくマイクロバブル含有液MBを得るために、マイクロバブル含有液供給部3が、畜養部材36内の液体を加圧する畜養加圧器33を設けている。
 また、液槽2に効率よくマイクロバブル含有液MBを供給するために本実施形態では、マイクロバブル含有液供給部3が、液槽2の上側からポンプ39によりマイクロバブル生成器32へ液体を抽出する液抽出路91を設けて液循環機構9を構成し、内周タンク21の下部に高濃度ナノバブル含有液NBを生成し得るものとしている。内周タンク21の実液残量の深さ方向で、底面より3/4以上であれば、マイクロバブル支配域となるため、ナノバブルをポンプ39側へ排出することもなく、ナノバブルを高濃度化できる。つまり本実施形態では、マイクロバブル支配域である内周タンク21上部から液体を抜き出してポンプ39側へ環流させることで既に内周タンク21内に存在するナノバブルをポンプ39側へ排出させることなく、マイクロバブルのみをポンプ39側へ排出させるため、ナノバブルの有する分散効果によって更なるナノバブルの高濃度化が実現されている。
 これら本実施形態に係る各構成による相乗効果により、結果として粒径100nm前後以下であり、且つ3億個/ml以上に高濃度化されたナノバブル含有液NBをユーザは安定して得ることができる。
 そして、継続的な使用においてもナノバブル含有液NBの製造効率を高く維持しておくために本実施形態では、伝搬液を適宜入れ替えることにより液槽2内の液体の温度を所定の温度範囲内に制御するようにしている。
 なお本発明とは異なり、タンクを用いてナノバブルの高濃度化を図る場合、特開2005-246293等では、循環ポンプとオリフィス等の多孔板を用いて、循環させ物理的刺激を与える手法や超音波圧壊を使用しながらナノバブルを微細気泡発生装置に環流させ高濃度化を図る手法が考案されている。しかしながら、これらの手法では、マイクロバブルを一定限度ナノバブル化はできるものの、粒径100nm以下のナノバブルを高濃度に生成することはできないことが明細書中に記述されており、特に、ナノバブルを微細気泡発生装置側に環流させるとバブル粒径の違いによる保有電荷量とゼータ電位の違いによりバブル凝集現象が生じること及びタンク内のナノバブルを排出するため、更なる高濃度化を得ることができない。特許第3762206号公報、同4094633号公報についても上記同様である。
 <変形例1>
 以下、本実施形態の各変形例について説明する。以下の各変形例について、上記実施形態の構成要素に相当するものに対しては同じ符号を付すとともに、その詳細な説明を省略する。
 当該変形例1は上記実施形態の図2におけるA部の構成を、図10の如く変更したものである。つまり、本変形例は、ポンプ39の吐出部後段側に気液混合器31を配置して気泡含有液を形成し、この気泡含有液をマイクロバブル生成器32の旋回部材34へ導入することでマイクロバブル含有液MBを生成するものである。当該図10に示すように、気液混合器31が、ポンプ39とマイクロバブル生成器32との間に設けられているものであっても上記実施形態同様の効果を得ることができる。
 なお図示しないが、旋回部材34の構成を変更し、旋回部材34の中段部分から気体を導入する態様としても良い。つまり旋回部材34が気液混合器31の構成を兼ねる態様としても、同様の効果を奏し得る。
 <変形例2>
 上記実施形態においてはマイクロバブル生成器32を、交換可能にモジュール化されたものである態様、具体的にはナノバブル生成器が、時間当たりに通過させる液量が異なる複数のモジュールから任意の一のモジュールを選択して取り付け得る構成を開示したが、上記図6に示したマイクロバブル生成器32に代えて、図11に示すようなマイクロバブル生成器32を適用することができる。
 すなわち同図に示すマイクロバブル生成器32は、上記実施形態のものよりも単位時間当たりのマイクロバブル含有液MBの生成量を増大させたい場合に使用する。このように、上記実施形態のものよりも容量が大きな共通の畜養部材36に対し、旋回部材34、突起圧壊部材35及び発泡部材37を複数組接続するとともに、上流側及び下流側で流路を合流させる形状とすることで、図6に示したものと選択的に交換し得るようにしたものである。また図11では複数の旋回部材34、突起圧壊部材35及び発泡部材37を直線状に並列させて図示したが勿論、筐体1内のスペースの有効利用に資するべく束状に配置しても良い。
 <変形例3>
 上記実施形態では平面視六角形状をなす外周タンク22を有する液槽2及び当該液槽2に対し6つの超音波発振子41を適用した超音波圧壊部4を適用した態様を開示したが、図12に示す態様のものであっても良い。
 図12に示すように、液槽2は上記実施形態同様2重構造であるものの外周タンク22、内周タンク21ともに平面視矩形状をなしている。そして外周タンク22の対抗軸2軸に配置された対をなす超音波発振子41を有する超音波圧壊部4を有する。斯かる構成のものは超音波ssによる振動エネルギーを、伝搬液を介して内周タンク21内へ伝搬し、内周タンク21内で超音波圧壊場Xを形成する構造である点は上記実施形態同様である。
 同図では超音波発振子41から伝搬された超音波ssは外周タンク22部の壁面で反射し、その反射超音波rwと超音波ssとの波形の重なりにより内周タンク21内で超音波圧壊場Xを形成する構成となっている。すなわちこの構成は少なくともX軸、Y軸の2軸に超音波発振子41を配置したことを特徴とするものである。斯かる構成であっても上記実施形態同様、超音波の反射や照射により、角柱又は円柱形状をなす超音波圧壊場Xを形成できる。
 なお上記構成に対し、既知技術である特開2005-246293号公報、特開2011-218308号公報による超音波印加によるマイクロバブル状態はいずれも超音波エネルギーの印加によって印加方向にマイクロバブルが移動する結果、気液界面に浮上して崩壊するため、ナノバブル濃度が飛躍的に向上することはない。
 <変形例4>
 さらに、上記実施形態では液循環機構9を設ける事により、液槽2・マイクロバブル含有液供給部3間で液体を循環させる、所謂循環タイプのナノバブル製造装置を開示したが、本変形例の通り、原液供給部7からナノバブル含有液導出部5までを単一の通路上に順に、マイクロバブル含有液供給部9、供給流路92、液槽2、超音波圧壊部4を設けた、所謂ワンパス式のナノバブル製造装置を構成しても良い。
 同変形例に示すナノバブル製造装置は図13に示す通り、原液導入部7が液槽には接続せず、マイクロバブル含有液供給部3の気液混合器31へ、バルブV1を設けながら直接接続している。そして図14に示すように、液槽2には上記実施形態とは異なり、内周タンク21側に原液導入口21c及び液抜出口21dを設けず、導入口21a及び導出口21bのみを設けた構成としている。
 このようなものであっても、上記実施形態同様の効果、すなわち所要の濃度のナノバブルを含むナノバブル含有液NBを安定して得ることができる。
 以上、本発明の実施形態及び各変形例について説明したが、各部の具体的な構成は、上述した実施形態のみに限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
 例えば、上記実施形態では内周タンクから直接的にナノバブル含有液を取り出す態様を開示したが、勿論、内周タンクよりも下流側に、ナノバブル含有液のみを貯留しておくための別異のタンクを設けたものであってもよい。また上記実施形態では液槽は、外周タンク及び内周タンクを具備する二重構造としたが勿論、斯かる構成に限られず、外周タンクのみの一重構造のものとして外周タンク内で直接超音波圧壊場を生成する態様、換言すれば伝搬液を使用しない態様としても良い。またポンプや超音波発振子の具体的な態様は上記実施形態のものに限定されることはなく、既存のものを含め、種々の態様のものを適用することができる。
 その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。
 本発明はナノバブル含有液を製造するナノバブル製造装置として利用することができる。
 2…液槽
 21…内周タンク
 21a…バブル含有液導入口(導入口)
 21b…バブル含有液導出口(導出口)
 22…外周タンク
 22c…伝搬液貯留領域
 3…マイクロバブル含有液供給部
 31…気液混合器
 32…マイクロバブル生成器
 33…畜養加圧器
 34…旋回部材
 35…突起圧壊部材
 36…畜養部材
 37…発泡部材
 39…ポンプ
 4…超音波圧壊部
 41…超音波発振子
 5…ナノバブル含有液導出部
 MB…マイクロバブル含有液
 NB…ナノバブル含有液
 X…超音波圧壊場

Claims (17)

  1. 上部にバブル含有液導入口を配するとともに底部にバブル含有液導出口を配してなる液槽と、
    この液槽の前記バブル含有液導入口にマイクロバブルを含有するマイクロバブル含有液を供給するマイクロバブル含有液供給部と、
    前記バブル含有液導入口を通して前記液槽内に供給された前記マイクロバブル含有液が下方へ向けて流れる箇所に超音波によるマイクロバブルの圧壊が集中して起こりナノバブルが生成される超音波圧壊場を形成するために前記液槽内へ超音波を照射する超音波圧壊部と、
    この超音波圧壊部により生成されたナノバブルを含有するナノバブル含有液を、前記バブル含有液導出口を通して前記液槽外に取り出すナノバブル含有液導出部とを具備するナノバブル製造装置。
  2. 前記バブル含有液導入口が前記液槽の平面視中央に配されたものであり、
    前記超音波圧壊部が前記液槽の平面視中央に前記超音波圧壊場を形成するものである請求項1記載のナノバブル製造装置。
  3. 超音波の発振周波数を20KHz~1.5MHzとしている請求項1又は2記載のナノバブル製造装置。
  4. 前記超音波圧壊部が超音波を発振し得る超音波発振子を有し、
    前記液槽が、前記超音波発振子を固定した外周タンクと、この外周タンクよりも内側に形成され前記バブル含有液及びバブル含有液導出口を配する内周タンクとを有し、これら外周タンク及び内周タンクの間に超音波を前記内周タンクへ伝搬するための伝搬液を貯留する伝搬液貯留領域を形成している請求項1、2又は3記載のナノバブル製造装置。
  5. 前記超音波圧壊部が前記超音波発振子を複数有している請求項4記載のナノバブル製造装置。
  6.  前記内周タンクが平面視円形状をなすものであり、複数の前記超音波発振子が前記内周タンクの中央へ向けて超音波を発振し得るように平面視放射状に配されている請求項5記載のナノバブル製造装置。
  7.  複数の前記超音波発振子が、下方へ傾斜した方向に超音波を発振するように配されている請求項5又は6記載のナノバブル製造装置。
  8. 前記内周タンクを、大気とは遮断された密閉構造としている請求項4、5、6又は7記載のナノバブル製造装置。
  9. 前記マイクロバブル含有液供給部が、液体及び気体を混合させる気液混合器と、気液混合器により気体が混合された液体を前記マイクロバブル含有液とするマイクロバブル生成器と、前記マイクロバブル含有液が前記バブル含有液導入口へ吐出されるように作動するポンプとを有している請求項1、2、3、4、5、6、7又は8記載のナノバブル製造装置。
  10. 前記気液混合器が、前記ポンプよりも液体の流れにおける上流側に設けられている請求項9記載のナノバブル製造装置。
  11. 前記気液混合器が、前記ポンプと前記マイクロバブル生成器との間に設けられている請求項9又は10記載のナノバブル製造装置。
  12. 前記マイクロバブル生成器が、前記気液混合器を経た前記気泡含有液を螺旋状に旋回動作させる旋回部材と、この旋回部材を経た前記気泡含有液を突起に衝突させながら通過させる突起圧壊部材と、この突起圧壊部材を経た前記気泡含有液を一定時間対流させる畜養部材と、畜養部材を経た前記気泡含有液を発泡させて前記マイクロバブル含有液とする発泡部材とを有している請求項9、10又は11記載のナノバブル製造装置。
  13. 前記マイクロバブル含有液供給部が、前記畜養部材内の液体を加圧する畜養加圧器を有している請求項12記載のナノバブル製造装置。
  14. 前記マイクロバブル生成器が、交換可能にモジュール化されたものである請求項9、10、11、12又は13記載のナノバブル製造装置。
  15. 前記ナノバブル生成器が、時間当たりに通過させる液量が異なる複数のモジュールから任意の一のモジュールを選択して取り付け得るように構成している請求項14記載のナノバブル製造装置
  16. 前記マイクロバブル含有液供給部が前記液槽の上側から前記ポンプにより前記マイクロバブル生成器へ液体を抽出する液抽出路を有している請求項9、10、11,12、13、14又は15記載のナノバブル製造装置。
  17. 前記液槽内の液体の温度を所定の温度範囲内に制御する液温制御部を有している請求項1、2、3、4、5、6、7、8、9、10、11、12、13、14、15又は16記載のナノバブル製造装置。
PCT/JP2015/059107 2014-03-26 2015-03-25 ナノバブル製造装置 WO2015147048A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167025356A KR101886944B1 (ko) 2014-03-26 2015-03-25 나노 버블 제조 장치
US15/127,372 US10596528B2 (en) 2014-03-26 2015-03-25 Nanobubble-producing apparatus
EP15769582.6A EP3124109A4 (en) 2014-03-26 2015-03-25 Nanobubble-producing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014064892A JP6210917B2 (ja) 2014-03-26 2014-03-26 ナノバブル製造装置
JP2014-064892 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015147048A1 true WO2015147048A1 (ja) 2015-10-01

Family

ID=54195559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059107 WO2015147048A1 (ja) 2014-03-26 2015-03-25 ナノバブル製造装置

Country Status (5)

Country Link
US (1) US10596528B2 (ja)
EP (1) EP3124109A4 (ja)
JP (1) JP6210917B2 (ja)
KR (1) KR101886944B1 (ja)
WO (1) WO2015147048A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073987A1 (ja) * 2016-10-19 2018-04-26 トスレック株式会社 飲料等バブル含有液の製造方法および製造システム
GR20170100128A (el) * 2017-03-30 2018-10-31 Ευαγγελος Παναγη Φαβας Μεθοδος και συσκευη παραγωγης νανοφυσαλιδων
JP2019122904A (ja) * 2018-01-15 2019-07-25 株式会社三進製作所 マイクロバブル発生具及びマイクロバブル発生装置
CN110073050A (zh) * 2017-04-13 2019-07-30 东芝生活电器株式会社 清洁方法、洗衣机、餐具清洁机以及便器
US10596528B2 (en) * 2014-03-26 2020-03-24 Tosslec Co., Ltd. Nanobubble-producing apparatus

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132412B2 (ja) 2015-09-24 2017-05-24 株式会社Subaru 車外環境認識装置
CN107486093A (zh) * 2016-06-13 2017-12-19 临萃(上海)实业有限公司 超声波切割微纳米气泡发生装置
JP6123013B1 (ja) * 2016-10-19 2017-04-26 トスレック株式会社 バブル含有液製造装置およびバブル含有液製造方法
KR101916455B1 (ko) * 2016-11-11 2018-11-07 대구대학교 산학협력단 복합 산화 미스트 분무에 의한 탈취 장치 및 이를 이용한 탈취 방법
JP2018122294A (ja) * 2017-02-03 2018-08-09 トスレック株式会社 バブル生成ノズルおよび、これを備えるバブル含有液製造システム
JP6884955B2 (ja) * 2017-02-21 2021-06-09 トスレック株式会社 水素水の製造システムおよび水素水の製造方法
JP6630922B2 (ja) * 2017-02-22 2020-01-15 トスレック株式会社 水素水、その製造システムおよび製造方法
JP2018065124A (ja) * 2017-04-03 2018-04-26 トスレック株式会社 バブル含有液製造装置およびバブル含有液製造方法
JP7309826B2 (ja) * 2017-04-13 2023-07-18 東芝ライフスタイル株式会社 洗浄方法、洗濯機、食器洗浄機、及び便器
JP7106089B2 (ja) * 2017-09-22 2022-07-26 トスレック株式会社 微細気泡殺菌システム、ならびに、魚介類、飲料および食品の殺菌方法
CN108745012B (zh) * 2018-06-14 2021-04-20 四川大学 一种可模块化组合的微型文丘里式气泡发生装置
US11904366B2 (en) * 2019-03-08 2024-02-20 En Solución, Inc. Systems and methods of controlling a concentration of microbubbles and nanobubbles of a solution for treatment of a product
EP3970574A4 (de) * 2019-05-17 2023-01-25 Severin Asia Limited Vorrichtung und verfahren zur extraktion von komponenten in feststoffen mittels nanoblasen
JP7240260B2 (ja) * 2019-06-04 2023-03-15 株式会社荏原製作所 ガス溶解液供給装置およびガス溶解液供給方法
CN114641343A (zh) * 2019-10-31 2022-06-17 佳能株式会社 含有超细气泡的液体的制造方法、含有超细气泡的液体、利用超细气泡的方法以及利用超细气泡的装置
TWI727524B (zh) * 2019-11-27 2021-05-11 國家中山科學研究院 多維震動研磨腔體
KR102315756B1 (ko) * 2019-12-23 2021-10-21 임은정 나노 버블수 생성 장치
JP2021126601A (ja) * 2020-02-12 2021-09-02 キヤノン株式会社 Ufb含有液作製装置、及びufb含有液作製方法
WO2021236972A1 (en) * 2020-05-21 2021-11-25 Arbela Laboratories, Inc. Aerobic fermentation systems and methods of using the same
US11344852B1 (en) 2021-06-15 2022-05-31 Enrichment Systems Llc Hydroponic system and method for enriching a liquid with gas-bubbles
CN113926352A (zh) * 2021-10-29 2022-01-14 四川大学华西医院 微泡制备仪和微泡制备方法
KR102627552B1 (ko) * 2022-01-24 2024-01-19 금오공과대학교 산학협력단 가스 포화도 조절 시스템 및 이를 포함하는 초음파 캐비테이션 조사 시스템
IT202200005246A1 (it) * 2022-03-17 2023-09-17 Yvonne Massari Dispositivo mobile per la produzione di acqua ozonizzata per sanificazione ambientale
KR102596925B1 (ko) 2022-08-18 2023-11-01 주식회사 알티자동화 반도체 세정용 나노 버블수 발생장치

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3762206B2 (ja) * 2000-09-13 2006-04-05 株式会社アスプ 超微細気泡発生装置
JP2006136777A (ja) * 2004-11-11 2006-06-01 Maruwa Biochemical Co Ltd 微細気泡の混合装置
JP2006289183A (ja) * 2005-04-06 2006-10-26 Nano Bubble Kk ナノバブル生成方法とその装置
JP2007136255A (ja) * 2005-11-14 2007-06-07 Chiken Kk ナノバブル発生装置
JP2008264771A (ja) * 2007-03-22 2008-11-06 Shunsuke Miyao マイクロバブル水及びナノバブル水製造装置
JP2008296183A (ja) * 2007-06-01 2008-12-11 Shinwa:Kk 微細気泡の選別採取装置
JP2009178683A (ja) * 2008-01-31 2009-08-13 Powrex Corp 懸濁液製造装置および懸濁液製造方法
WO2010134551A1 (ja) * 2009-05-19 2010-11-25 パナソニック電工株式会社 気液混合液
JP2011020005A (ja) * 2009-07-13 2011-02-03 Dainichi Kogyo:Kk ナノバブル発生装置
JP2011218308A (ja) * 2010-04-12 2011-11-04 Asupu:Kk 気体溶解液生成装置及び生成方法
JP2014050817A (ja) * 2012-09-10 2014-03-20 Panasonic Corp 微細気泡の粒径制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001225060A (ja) * 1999-12-08 2001-08-21 Mitsubishi Heavy Ind Ltd 水処理方法とその装置
DE10243837A1 (de) 2002-09-13 2004-03-25 Dr. Hielscher Gmbh Verfahren und Durchflusszelle zur kontinuierlichen Bearbeitung von fließfähigen Zusammensetzungen mittels Ultraschall
JP4059506B2 (ja) 2004-03-05 2008-03-12 独立行政法人産業技術総合研究所 オゾン水およびその製造方法
JP4725707B2 (ja) 2004-09-27 2011-07-13 株式会社 ナノプラネット研究所 旋回式微細気泡発生装置及び同気泡発生方法
JP2006272232A (ja) 2005-03-30 2006-10-12 Hitachi Ltd 超微細気泡の生成方法、生成装置及びそれを利用した殺菌・消毒設備
JP4094633B2 (ja) 2005-11-30 2008-06-04 ナノバブル株式会社 超微細気泡発生装置
US9266073B2 (en) * 2007-03-28 2016-02-23 William B. Kerfoot Treatment for recycling fracture water—gas and oil recovery in shale deposits
JP2015037765A (ja) * 2011-12-16 2015-02-26 パナソニック株式会社 ナノバブル含有液体
JP6270402B2 (ja) * 2013-10-17 2018-01-31 株式会社アスプ 気体含有液生成装置および気体含有液噴射機構
JP6210917B2 (ja) * 2014-03-26 2017-10-11 トスレック株式会社 ナノバブル製造装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3762206B2 (ja) * 2000-09-13 2006-04-05 株式会社アスプ 超微細気泡発生装置
JP2006136777A (ja) * 2004-11-11 2006-06-01 Maruwa Biochemical Co Ltd 微細気泡の混合装置
JP2006289183A (ja) * 2005-04-06 2006-10-26 Nano Bubble Kk ナノバブル生成方法とその装置
JP2007136255A (ja) * 2005-11-14 2007-06-07 Chiken Kk ナノバブル発生装置
JP2008264771A (ja) * 2007-03-22 2008-11-06 Shunsuke Miyao マイクロバブル水及びナノバブル水製造装置
JP2008296183A (ja) * 2007-06-01 2008-12-11 Shinwa:Kk 微細気泡の選別採取装置
JP2009178683A (ja) * 2008-01-31 2009-08-13 Powrex Corp 懸濁液製造装置および懸濁液製造方法
WO2010134551A1 (ja) * 2009-05-19 2010-11-25 パナソニック電工株式会社 気液混合液
JP2011020005A (ja) * 2009-07-13 2011-02-03 Dainichi Kogyo:Kk ナノバブル発生装置
JP2011218308A (ja) * 2010-04-12 2011-11-04 Asupu:Kk 気体溶解液生成装置及び生成方法
JP2014050817A (ja) * 2012-09-10 2014-03-20 Panasonic Corp 微細気泡の粒径制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124109A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10596528B2 (en) * 2014-03-26 2020-03-24 Tosslec Co., Ltd. Nanobubble-producing apparatus
WO2018073987A1 (ja) * 2016-10-19 2018-04-26 トスレック株式会社 飲料等バブル含有液の製造方法および製造システム
CN108207109A (zh) * 2016-10-19 2018-06-26 拓斯雷克株式会社 饮料等含气泡液体的制造方法及制造系统
GR20170100128A (el) * 2017-03-30 2018-10-31 Ευαγγελος Παναγη Φαβας Μεθοδος και συσκευη παραγωγης νανοφυσαλιδων
CN110073050A (zh) * 2017-04-13 2019-07-30 东芝生活电器株式会社 清洁方法、洗衣机、餐具清洁机以及便器
JP2019122904A (ja) * 2018-01-15 2019-07-25 株式会社三進製作所 マイクロバブル発生具及びマイクロバブル発生装置
JP7018610B2 (ja) 2018-01-15 2022-02-14 株式会社三進製作所 マイクロバブル発生具及びマイクロバブル発生装置

Also Published As

Publication number Publication date
JP6210917B2 (ja) 2017-10-11
KR101886944B1 (ko) 2018-08-08
US10596528B2 (en) 2020-03-24
US20180178173A1 (en) 2018-06-28
EP3124109A4 (en) 2017-11-22
KR20160120766A (ko) 2016-10-18
EP3124109A1 (en) 2017-02-01
JP2015186781A (ja) 2015-10-29

Similar Documents

Publication Publication Date Title
JP6210917B2 (ja) ナノバブル製造装置
JP2015186781A5 (ja)
JP6123013B1 (ja) バブル含有液製造装置およびバブル含有液製造方法
JP2006289183A (ja) ナノバブル生成方法とその装置
KR101969772B1 (ko) 기체 용존수 생성장치
KR101192809B1 (ko) 극미세 버블수 발생장치
JP7116462B2 (ja) 飲料製造システムおよび飲料製造方法
JP2022023974A (ja) バブル含有液製造装置およびバブル含有液製造方法
JP2017217585A (ja) ファインバブル液製造装置
JP2011218343A (ja) 気液混合用のノズル、気液混合機構およびその用途
KR101792157B1 (ko) 기체 용존율을 증가시키며 초미세기포를 발생시키기 위한 기체용존장치
JP2007185576A (ja) ガス溶解装置およびガス溶解水生成装置
WO2015072461A1 (ja) 殺菌液生成装置
JP2010115586A (ja) 微細気泡発生装置
JP6968405B2 (ja) 気液混合ノズル
JPS6148970B2 (ja)
KR101241760B1 (ko) 하이브리드 미세유체를 이용한 친환경 무약품 살균시스템
TW201943453A (zh) 氣泡生成裝置
KR101190788B1 (ko) 마이크로 버블 헤드 및 이를 구비하는 마이크로 버블 생성장치
JP2011183350A (ja) 気液混合装置
JP2018122294A (ja) バブル生成ノズルおよび、これを備えるバブル含有液製造システム
JP2008274394A (ja) 酸洗装置及び方法
JP7121879B2 (ja) バブル含有液製造装置およびバブル含有液製造方法
KR20220115669A (ko) 피코버블 발생장치
KR102114800B1 (ko) 나노기포 발생 장치 및 이를 이용한 구조체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167025356

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15127372

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015769582

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769582

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE