WO2015146945A1 - 工作機械の制御装置及びこの制御装置を備えた工作機械 - Google Patents

工作機械の制御装置及びこの制御装置を備えた工作機械 Download PDF

Info

Publication number
WO2015146945A1
WO2015146945A1 PCT/JP2015/058825 JP2015058825W WO2015146945A1 WO 2015146945 A1 WO2015146945 A1 WO 2015146945A1 JP 2015058825 W JP2015058825 W JP 2015058825W WO 2015146945 A1 WO2015146945 A1 WO 2015146945A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
machine tool
tool
control device
cutting
Prior art date
Application number
PCT/JP2015/058825
Other languages
English (en)
French (fr)
Inventor
一彦 三宮
松本 仁
孝哲 篠原
篠原 浩
俊成 大山
能吉 今崎
Original Assignee
シチズンホールディングス株式会社
シチズンマシナリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンホールディングス株式会社, シチズンマシナリー株式会社 filed Critical シチズンホールディングス株式会社
Priority to US15/129,238 priority Critical patent/US10268176B2/en
Priority to EP15768422.6A priority patent/EP3124174B1/en
Priority to KR1020167029045A priority patent/KR102344443B1/ko
Priority to ES15768422T priority patent/ES2807617T3/es
Priority to JP2016510362A priority patent/JP6416217B2/ja
Priority to CN201580016409.5A priority patent/CN106232293B/zh
Publication of WO2015146945A1 publication Critical patent/WO2015146945A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/02Arrangements for chip-breaking in turning-machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B29/00Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
    • B23B29/04Tool holders for a single cutting tool
    • B23B29/12Special arrangements on tool holders
    • B23B29/125Vibratory toolholders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/0075Controlling reciprocating movement, e.g. for planing-machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/10Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting speed or number of revolutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/12Arrangements for observing, indicating or measuring on machine tools for indicating or measuring vibration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B1/00Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2250/00Compensating adverse effects during milling
    • B23C2250/16Damping vibrations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49053Break chips, spiral chips, interrupt momentarily in feed during two or more rotations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49055Remove chips from probe, tool by vibration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49277Oscillating, swinging feed drive, for grinding
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49382Movement reciprocating

Definitions

  • the present invention relates to a control device for a machine tool that processes a workpiece while sequentially cutting chips at the time of cutting, and a machine tool provided with the control device.
  • a workpiece holding means for holding a workpiece for holding a workpiece
  • a tool rest for holding a cutting tool for cutting the workpiece
  • a relative movement of the workpiece holding means and the tool rest to fix the cutting tool to the workpiece.
  • the workpiece holding means and the tool post relatively vibrate so that the cutting tool is fed in the machining feed direction while reciprocatingly vibrating along the machining feed direction.
  • a machine tool including a vibrating unit that rotates and a rotating unit that relatively rotates the workpiece and the cutting tool is known (see, for example, Patent Document 1).
  • the machine tool control device drives and controls the rotation unit, the feeding unit, and the vibration unit, and performs a relative rotation between the workpiece and the cutting tool, and the processing feed direction of the cutting tool with respect to the workpiece.
  • the machine tool is caused to perform machining of the workpiece by the feeding operation accompanied with the reciprocating vibration.
  • the operation command by the control device can be given only at a predetermined cycle.
  • the vibration frequency for relatively vibrating the workpiece holding means and the tool rest is a limited value resulting from a period in which an operation command can be issued by the control device.
  • the conventional machine tool does not consider the vibration frequency, the reciprocating vibration cannot be performed under the condition of the relative rotation speed desired by the user and the vibration frequency of the cutting tool with respect to the work per work rotation. There was a problem that there was a case.
  • the present invention solves the problems of the prior art as described above, that is, the object of the present invention is to reciprocate the cutting tool along the machining feed direction based on the conditions set by the user. It is to provide a machine tool control device and a machine tool equipped with the control device that can smoothly cut a workpiece while feeding in the machining feed direction while cutting and cutting chips.
  • the machine tool control device is provided in a machine tool including a workpiece holding means for holding a workpiece and a tool post for holding a cutting tool for cutting the workpiece, and the workpiece holding means.
  • Feeding means for feeding the cutting tool to the workpiece in a predetermined machining feed direction by relative movement with the tool post, and the cutting tool reciprocally oscillating along the machining feed direction in the machining feed direction.
  • the workpiece and the cutting tool are driven and controlled so as to relatively vibrate the workpiece holding means and the tool post, and the rotating means that relatively rotates the workpiece and the cutting tool. And the feed tool with the reciprocating vibration in the feed direction of the cutting tool with respect to the workpiece.
  • the rotational speed of the relative rotation when the workpiece is processed, the frequency of the reciprocating vibration per one rotation of the relative rotation, and an operation command by the control apparatus are possible.
  • the setting means for setting the value of at least one parameter using the vibration frequency caused by the period as a parameter, and the unset parameter is set to a predetermined value, and is set by the setting means based on the value of the parameter
  • the machine tool control device includes the vibration means that includes a cutting portion during forward movement and a cutting during backward movement.
  • the above-described problem is further solved by adopting a configuration in which the workpiece holding means and the tool rest are reciprocally oscillated relatively so as to overlap the machining portion.
  • the correction means is a constant based on the vibration frequency, and An unset parameter is set to a predetermined value and the set parameter value is corrected so that the rotation speed and the vibration frequency are inversely proportional, thereby further solving the above-described problem It is.
  • the machine tool control device is a parameter that is set by the setting means.
  • the number of revolutions is set, and the correction means sets the vibration frequency to a plurality of predetermined values, the vibration frequency is set to a predetermined value inherent in the control device, and is set by the setting means.
  • the above-described problem is further solved by correcting the value of the rotational speed based on the value of each frequency and a predetermined vibration frequency.
  • the machine tool control device is a parameter set by the setting means, The rotation speed and the vibration frequency are set, and the correction unit is configured to correct the set rotation speed and the vibration frequency to values of the rotation speed and the vibration frequency determined based on the vibration frequency.
  • the machine control device is configured so that the setting means includes a predetermined peripheral speed and the workpiece.
  • the machine control device is configured so that the setting means includes a predetermined peripheral speed and the workpiece.
  • the machine tool control device according to claim 7 is configured such that the setting means sets the frequency per vibration. By being configured to be set as the rotation speed, the above-described problem is further solved.
  • the machine tool control device In addition to the configuration of the machine tool control device according to any one of claims 5 to 7, the machine tool control device according to claim 8 is characterized in that the setting means performs machining of the machine tool.
  • the above-described problem is further solved by reading the frequency described as an argument in the program block in the program and setting it as the frequency.
  • the correction unit is configured so that the correction unit includes the vibration frequency and the vibration frequency.
  • the rotation speed set is configured to be corrected to the rotation speed value in the table, and the corrected rotation speed and the rotation speed are The above-described problem is further solved by configuring the workpiece to be executed by the frequency and the vibration frequency in the corresponding table.
  • the correction means includes the order in which the frequency in the table is high and the vibration frequency.
  • the machine tool control device is configured to adjust the feed amount of the cutting tool to the workpiece.
  • Amplitude setting means is provided for proportionally setting the amplitude of the reciprocating vibration, and the amplitude setting means and the vibration means are mutually connected so that the cutting portion at the time of forward movement and the cutting portion at the time of backward movement overlap.
  • the amplitude setting means is described as an argument in a program block of the machining program of the machine tool.
  • the above-described problem is further solved by reading the ratio of the amplitude to the feed amount and calculating and setting the amplitude.
  • the machine tool according to claim 13 is provided with the control device according to any one of claims 1 to 12, thereby solving the above-described problem.
  • the machine tool according to claim 14 includes, in addition to the configuration of the machine tool according to claim 13, a spindle moving mechanism that uses the spindle holding the workpiece as the workpiece holding means and moves the spindle in the axial direction.
  • a turret moving mechanism for moving the turret relative to the spindle, and the feeding means includes the spindle moving mechanism and the turret moving mechanism, and the spindle moving mechanism and the turret moving mechanism.
  • the machine tool according to claim 15 is provided with a spindle for holding the workpiece as the workpiece holding means, and the spindle is fixedly provided on the machine tool side.
  • the machine tool according to claim 16 is provided with the tool post fixedly provided on the machine tool side, and the main spindle for holding the workpiece is the workpiece holding means. And a spindle moving mechanism for moving the spindle in a plurality of directions, and the feeding means is composed of the spindle moving mechanism, and the spindle is moved in the feed machining direction with respect to the tool post positioned in the feed machining direction.
  • the above-described problem is further solved by moving the cutting tool to the workpiece by moving it.
  • the control device for a machine tool of the present invention can correct the parameter value set by the setting means to an approximate value of the parameter value by the correction means, and cause the workpiece to be machined. Smooth cutting of the workpiece while cutting the chip into the machine feed direction while reciprocally vibrating the machine tool along the machining feed direction under the conditions relatively close to the conditions set by Can be made. As a result, the workpiece can be processed under conditions that are relatively close to the parameter values intended by the user.
  • the amplitude setting means and the vibration means are linked to each other so that the cutting portion at the time of forward movement and the cutting portion at the time of backward movement are overlapped, the amplitude is increased even when the feed amount is increased. Therefore, it is possible to divide chips reliably with an appropriate amplitude.
  • the machine tool of the present invention can smoothly cut the workpiece while cutting the chips by the control device of the machine tool.
  • the figure which shows the outline of the machine tool of 1st Example of this invention Schematic which shows the relationship between the cutting tool of 1st Example of this invention, and a workpiece
  • the table of the rotation speed corresponding to the vibration frequency and vibration frequency of 2nd Example of this invention.
  • the present invention is provided in a machine tool having a work holding means for holding a work and a tool post for holding a cutting tool for cutting the work, and the relative movement between the work holding means and the tool post causes the workpiece to move relative to the work.
  • the workpiece holding means and the tool post are relatively moved so that the cutting tool is fed in the machining feed direction and the cutting tool is fed in the machining feed direction while reciprocally oscillating along the machining feed direction.
  • Drive control that drives and controls the vibration means that vibrates and the rotation means that rotates the workpiece and the cutting tool relative to each other, and the relative rotation between the workpiece and the cutting tool and the reciprocating vibration in the machining feed direction of the cutting tool relative to the workpiece.
  • the rotational speed of the relative rotation when the workpiece is processed and the rotation per one rotation of the relative rotation Using the vibration frequency and the vibration frequency resulting from the period in which an operation command can be issued by the control device as parameters, setting means for setting the value of at least one parameter, and setting an unset parameter to a predetermined value,
  • the correction means for correcting the parameter value set by the setting means based on the parameter value is provided, so that the parameter value set by the setting means is corrected by the correction means and the workpiece is processed.
  • the cutting tool is fed to the machine tool in the machining feed direction while being reciprocally oscillated along the machining feed direction under a condition relatively close to the condition set by the setting means. As long as the processing is performed smoothly, any specific embodiment may be used.
  • FIG. 1 is a diagram showing an outline of a machine tool 100 including a control device C according to the first embodiment of the present invention.
  • the machine tool 100 includes a main shaft 110 and a cutting tool table 130A.
  • a chuck 120 is provided at the tip of the main shaft 110.
  • the workpiece W is held on the spindle 110 via the chuck 120, and the spindle 110 is configured as a workpiece holding means for holding the workpiece.
  • the main shaft 110 is supported by the main shaft 110A so as to be rotationally driven by the power of a main shaft motor (not shown).
  • a main spindle motor a conventionally known built-in motor formed between the main spindle 110A and the main spindle 110 in the main spindle 110A can be considered.
  • the headstock 110A is mounted on the bed side of the machine tool 100 so as to be movable in the Z-axis direction, which is the axial direction of the main shaft 110, by the Z-axis direction feed mechanism 160.
  • the spindle 110 is moved in the Z-axis direction by the Z-axis direction feed mechanism 160 via the spindle stock 110A.
  • the Z-axis direction feed mechanism 160 constitutes a main shaft moving mechanism that moves the main shaft 110 in the Z-axis direction.
  • the Z-axis direction feed mechanism 160 includes a base 161 integrated with a fixed side of the Z-axis direction feed mechanism 160 such as the bed, and a Z-axis direction guide rail 162 provided on the base 161 and extending in the Z-axis direction. Yes.
  • a Z-axis direction feed table 163 is slidably supported on the Z-axis direction guide rail 162 via a Z-axis direction guide 164.
  • a mover 165a of the linear servo motor 165 is provided on the Z-axis direction feed table 163 side, and a stator 165b of the linear servo motor 165 is provided on the base 161 side.
  • the headstock 110 ⁇ / b> A is mounted on the Z-axis direction feed table 163, and the Z-axis direction feed table 163 is driven to move in the Z-axis direction by driving the linear servo motor 165. As the Z-axis direction feed table 163 moves, the headstock 110A moves in the Z-axis direction, and the spindle 110 moves in the Z-axis direction.
  • a cutting tool 130 such as a cutting tool for turning the workpiece W is mounted on the cutting tool base 130A.
  • the cutting tool base 130A constitutes a tool post for holding a cutting tool.
  • the cutting tool base 130A is moved to the bed side of the machine tool 100 by an X-axis direction feed mechanism 150 and a Y-axis direction feed mechanism (not shown), an X-axis direction orthogonal to the Z-axis direction, and the Z-axis direction and the X-axis direction. It is provided so as to be movable in the Y-axis direction orthogonal to.
  • the X-axis direction feed mechanism 150 and the Y-axis direction feed mechanism constitute a tool post moving mechanism that moves the cutting tool base 130A in the X-axis direction and the Y-axis direction with respect to the main shaft 110.
  • the X-axis direction feed mechanism 150 includes a base 151 that is integral with the fixed side of the X-axis direction feed mechanism 150, and an X-axis direction guide rail 152 that is provided on the base 151 and extends in the X-axis direction.
  • An X-axis direction feed table 153 is slidably supported on the X-axis direction guide rail 152 via an X-axis direction guide 154.
  • a mover 155a of the linear servo motor 155 is provided on the X-axis direction feed table 153 side, and a stator 155b of the linear servo motor 155 is provided on the base 151 side.
  • the Y-axis direction feed mechanism is a structure in which the X-axis direction feed mechanism 150 is arranged in the Y-axis direction and has the same structure as the X-axis direction feed mechanism 150. Therefore, illustration and detailed description of the structure are omitted. .
  • an X-axis direction feed mechanism 150 is mounted on the bed side via a Y-axis direction feed mechanism (not shown), and a cutting tool table 130A is mounted on the X-axis direction feed table 153.
  • the cutting tool base 130A moves in the X-axis direction by the movement drive of the X-axis direction feed table 153, and the Y-axis direction feed mechanism operates in the same manner as the X-axis direction feed mechanism 150 in the Y-axis direction. To move in the Y-axis direction.
  • a Y-axis direction feed mechanism (not shown) may be mounted on the bed side via the X-axis direction feed mechanism 150, and the cutting tool base 130A may be mounted on the Y-axis direction feed mechanism side. Since the structure in which the cutting tool base 130A is moved in the X-axis direction and the Y-axis direction by the X-axis direction feed mechanism 150 is conventionally known, detailed description and illustration are omitted.
  • the turret moving mechanism (X-axis direction feeding mechanism 150 and Y-axis direction feeding mechanism) and the main shaft moving mechanism (Z-axis direction feeding mechanism 160) cooperate to provide an X-axis direction feeding mechanism 150 and a Y-axis direction feeding mechanism.
  • the cutting tool table 130A is mounted on the cutting tool table 130A by the movement of the cutting tool table 130A in the X-axis direction and the Y-axis direction due to the movement of the main shaft table 110A (main shaft 110) in the Z-axis direction by the Z-axis direction feed mechanism 160.
  • the cutting tool 130 is fed relative to the workpiece W in an arbitrary machining feed direction.
  • the cutting tool 130 is moved with respect to the workpiece W by feeding means composed of the spindle moving mechanism (Z-axis direction feeding mechanism 160) and the tool post moving mechanism (X-axis direction feeding mechanism 150 and Y-axis direction feeding mechanism).
  • the workpiece W is cut into an arbitrary shape by the cutting tool 130 as shown in FIG.
  • both the headstock 110A and the cutting tool base 130A are moved.
  • the headstock 110A is fixed so as not to move to the bed side of the machine tool 100, and the tool post moving mechanism.
  • the cutting tool base 130A may be configured to move in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the feeding means is composed of a tool post moving mechanism that moves the cutting tool base 130A in the X-axis direction, the Y-axis direction, and the Z-axis direction, and is fixedly positioned and rotated relative to the main spindle 110.
  • the cutting tool base 130A may be fixed so as not to move to the bed side of the machine tool 100, and the spindle moving mechanism may be configured to move the spindle base 110A in the X axis direction, the Y axis direction, and the Z axis direction.
  • the feed means is composed of a spindle stock moving mechanism that moves the spindle stock 110A in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the X-axis direction feed mechanism 150, the Y-axis direction feed mechanism, and the Z-axis direction feed mechanism 160 are configured to be driven by a linear servo motor.
  • a linear servo motor conventionally known ball screws and servo motors are used. It is also possible to drive by.
  • the rotating means for relatively rotating the workpiece W and the cutting tool 130 is constituted by the main shaft motor such as the built-in motor, and the relative rotation between the work W and the cutting tool 130 is performed by the main shaft 110. This is done by rotational drive.
  • the workpiece W is rotated with respect to the cutting tool 130.
  • the cutting tool 130 may be rotated with respect to the workpiece W.
  • the cutting tool 130 may be a rotary tool such as a drill.
  • the rotation of the main shaft 110, the Z-axis direction feed mechanism 160, the X-axis direction feed mechanism 150, and the Y-axis direction feed mechanism are driven and controlled by a control unit C1 included in the control device C.
  • the control unit C1 is set in advance so as to control the head stock 110A or the cutting tool base 130A to move in the respective directions while reciprocatingly oscillating along the corresponding moving directions using the respective feeding mechanisms as vibration means. ing.
  • each feed mechanism is controlled by the control unit C ⁇ b> 1 to move the spindle 110 or the cutting tool base 130 ⁇ / b> A forward (forward) by a predetermined advance amount in one reciprocating vibration, and then move to a predetermined position.
  • the cutting tool 130 is fed to the workpiece W in the machining feed direction.
  • the machine tool 100 uses a Z-axis direction feed mechanism 160, an X-axis direction feed mechanism 150, and a Y-axis direction feed mechanism, while the cutting tool 130 reciprocally vibrates along the machining feed direction, that is, one revolution of the spindle, that is, the spindle
  • the workpiece W is machined by being fed in the machining feed direction with the total amount of progress when the phase is changed from 0 degree to 360 degrees as a feed amount.
  • the head stock 110A (main shaft 110) or the cutting tool base 130A (cutting tool 130) moves while reciprocatingly oscillating, and the cutting tool 130 cuts the workpiece W into a predetermined shape.
  • the peripheral surface of the workpiece W is cut into a sinusoidal shape as shown in FIG.
  • the virtual line one-dot chain line
  • the amount of change in position when the main axis phase changes from 0 degrees to 360 degrees indicates the feed amount.
  • the phase of the peripheral shape of the workpiece W to be turned by the n-th rotation (n is an integer of 1 or more) of the main shaft 110 and the n + 1-th cutting tool 130 is shifted in the main-axis phase direction (horizontal axis direction of the graph).
  • the position of the lowest point of the phase valley at the (n + 1) th rotation (the peak of the peak of the dotted waveform graph that is the point most cut in the feed direction by the cutting tool 130) is the lowest point of the valley of the phase at the nth rotation. It shifts in the principal axis phase direction with respect to the position of the point (the peak of the peak of the solid line waveform graph).
  • the cutting part at the time of the forward movement of the cutting tool 130 and the cutting part at the time of the backward movement partially overlap, and the n + 1 rotation cutting part of the peripheral surface of the workpiece W has been cut at the nth rotation.
  • a part is included, and in this part, a so-called idling operation occurs in which the cutting tool 130 performs an idle cutting without performing any cutting on the workpiece W during the cutting. Chips generated from the workpiece W at the time of cutting are sequentially divided by the idling motion.
  • the machine tool 100 can smoothly perform external cutting of the workpiece W and the like while dividing chips by the reciprocating vibration along the cutting feed direction of the cutting tool 130.
  • the n + 1-th cutting portion of the peripheral surface of the workpiece W includes a portion that has been cut at the n-th rotation.
  • the trajectory of the cutting tool during the backward movement at the (n + 1) th rotation of the workpiece circumferential surface reaches the trajectory of the cutting tool at the nth rotation of the workpiece circumferential surface.
  • the shapes of the workpieces rotated by the cutting tool 130 in the (n + 1) -th rotation and the n-th rotation of the workpiece W do not have to coincide with each other (the same phase), and it is not always necessary to reverse 180 degrees.
  • the frequency N can be 1.1, 1.25, 2.6, 3.75, or the like. It is also possible to set so that less than one vibration (0 ⁇ frequency N ⁇ 1.0) is performed by one rotation of the workpiece W. In this case, the main shaft 110 rotates one rotation or more with respect to one vibration. The number of vibrations N can also be set as the number of rotations of the main shaft 110 per vibration.
  • the operation command by the control unit C1 is performed at a predetermined command cycle.
  • the reciprocating vibration of the head stock 110A (main shaft 110) or the cutting tool base 130A (cutting tool 130) can be operated at a predetermined frequency based on the command cycle.
  • the command period is determined based on the reference period, and is generally an integer multiple of the reference period. It is possible to execute reciprocating vibration at a frequency corresponding to the value of the command period. As shown in FIG. 5, for example, when 16 (ms), which is four times the reference period (4 (ms)), is set as a command period, forward and backward movements are executed every 16 (ms).
  • the frequency (vibration frequency) f (Hz) of the reciprocating vibration of the head stock 110A (main shaft 110) or the cutting tool base 130A (cutting tool 130) is determined to a value selected from the above frequencies.
  • the command cycle can be set by a multiple other than an integer multiple of the reference cycle (4 ms). In this case, the frequency according to this command cycle can be set as the vibration frequency.
  • the rotation speed S and the vibration frequency N are inversely proportional with the vibration frequency f being a constant.
  • the main shaft 110 can rotate at a higher speed as the vibration frequency f is increased and the frequency N is decreased.
  • the rotation speed S, the vibration frequency N, and the vibration frequency f are used as parameters, and two of the three parameters, the rotation speed S and the vibration frequency N, are set as numerical value setting units C2 and the like. It is comprised so that it can set to the control part C1 via.
  • the value of the rotation speed S or the vibration frequency N can be input to the control unit C1 as a parameter value.
  • the value can be set in a machining program, or the frequency N can be set as an argument in a program block (one line of the program).
  • the setting means when the setting means is configured so that the frequency N can be set as an argument in the program block of the machining program, the rotational speed S of the spindle 110 generally described in the machining program and the argument in the program block The user can easily set the rotation speed S and the vibration frequency N from the machining program.
  • the setting by the setting means may be made by a program, or may be set by the user via the numerical value setting unit C2.
  • the peripheral speed and the workpiece diameter can be set and inputted via a machining program or the like, and the rotational speed S can be calculated and set based on the peripheral speed and the workpiece diameter.
  • the setting means so as to calculate the rotation speed S based on the peripheral speed set and input via a machining program or the like and the workpiece diameter, the material of the workpiece W, the type, shape, and material of the cutting tool 130 are configured.
  • the rotation speed S can be easily set without the user being aware of the peripheral speed determined according to the above.
  • control unit C1 Based on the set rotation speed S and vibration frequency N, the control unit C1 rotates the main shaft 110 at this rotation speed S, and the cutting tool 130 reciprocally vibrates along the machining feed direction at this vibration frequency N. Control is performed so that the head stock 110A or the cutting tool base 130A is moved while reciprocally oscillating so as to be fed in the machining feed direction.
  • the control unit C1 corrects the set rotation speed S and vibration frequency N based on the vibration frequency f. Is provided.
  • the vibration frequency N and the rotation speed S can be corrected to values close to the set values.
  • the machine tool 100 can perform the Z-axis direction feed mechanism 160, the X-axis direction.
  • the feed mechanism 150 and the Y-axis direction feed mechanism can smoothly cut the workpiece W while feeding the cutting tool 130 in the machining feed direction while reciprocatingly oscillating along the machining feed direction and dividing chips. In some cases, for example, the life of the cutting tool 130 can be extended. Thereby, the workpiece W can be processed under conditions relatively close to the rotation speed S and the vibration frequency N intended by the user.
  • the correction condition can be changed by preferentially correcting either the rotation speed S or the vibration frequency N, or correcting both according to the processing conditions.
  • the vibration frequency f used by the setting means may be set in advance on the user side, and the vibration frequency N and the rotation speed S may be corrected according to the set vibration frequency f.
  • the cutting tool 130 is fed in the machining feed direction while reciprocatingly oscillating along the machining feed direction, and the cutting of the workpiece W is smoothly performed while cutting off chips. And it can be made to perform stably.
  • the setting means to set the vibration frequency N by the rotation speed of the main shaft 110 per vibration, it is possible to easily set the rotation speed S to be increased.
  • the number of rotations of the main shaft 110 per vibration to 1 or more and the frequency N to a number less than 1 greater than 0, the main shaft 110 can be rotated at high speed.
  • the frequency N needs to be set to such an extent that the processing is not adversely affected.
  • the vibration frequency N and the rotation speed S among the three parameters are set in the control unit C1 via the numerical value setting unit C2 or the like.
  • the vibration frequency N is fixed in advance. The user sets only the rotation speed S as one of the three parameters, sets the vibration frequency f according to the rotation speed S and the vibration frequency N, and sets the rotation speed S or vibration. The number N may be corrected.
  • the second embodiment is obtained by changing the parameter conditions and the like of the first embodiment, and since many elements are common to the first embodiment, detailed description of common matters is omitted, and different points are described below. Explained.
  • the rotation speed S is set by the user in the control unit C1 via the numerical value setting unit C2 or the like.
  • the value of the rotational speed S can be input to the control unit C1 as a parameter value.
  • the value of the rotational speed S is set in a machining program. be able to.
  • the control unit C1 rotates the spindle 110 based on the set rotation speed S, and the spindle head 110A or the cutting tool so that the cutting tool 130 is fed in the machining feed direction while reciprocally oscillating along the machining feed direction.
  • the stage 130A is controlled to move while reciprocating.
  • the correction unit of the control unit C1 of the present embodiment corrects the set rotation speed S based on the vibration frequency f. It is configured as follows. As shown in FIG. 7, the correction means of the present embodiment includes the vibration frequencies f1, f2, f3,... Due to the reciprocating vibration frequencies N1, N2, N3,. .., S21..., S31... Table corresponding to the number of rotations S11, S12, S13. The correction means is configured to correct the value of the rotation speed S set by the user to the value of the rotation speed S in the table.
  • the control device C is configured to execute workpiece processing at a vibration frequency and a vibration frequency corresponding to the corrected rotation speed.
  • F2 50 (Hz)
  • f3 41.666 (Hz)
  • the correction means compares the value of the rotational speed S set by the user with the value of the rotational speed in the table, and the difference between the value of the rotational speed S set by the user is within a predetermined range (for example, ⁇ 50 r). / In the range), the rotation speed value in the table is corrected.
  • the correction of the rotational speed S by the correcting means is configured to determine the rotational speed to be corrected in order of increasing frequency value and increasing frequency value in the table.
  • N1 3.5
  • the machine tool 100 is controlled by the Z-axis direction feed mechanism 160, the X-axis direction feed mechanism 150, and the Y-axis direction feed mechanism on the condition based on the rotation speed S set by the setting means by correcting the rotation speed S by the correction means.
  • the workpiece W can be smoothly cut while the cutting tool 130 is reciprocally oscillated along the machining feed direction and fed in the machining feed direction to cut off chips.
  • the vibration frequency N and the vibration frequency f are as large as possible, the machining is performed in the region where the rotation speed S of the main shaft 210 is as high as possible, so that the chip length is shortened and the machining time is reduced. Can be shortened for optimization.
  • the highest possible vibration frequency f is employed, the adverse effect of mechanical vibration on the machining accuracy can be reduced.
  • the correction means can be configured to correct the value of the rotation speed S set by the user to a value of a predetermined rotation speed S11, S12, S13... In the table that minimizes the difference. Accordingly, the rotation speeds S11, S12, S13,... Which are as close as possible to the rotation speed S designated by the user are adopted, and the user's settings can be reflected as much as possible.
  • the user can select two parameters (the rotation speed S and the vibration frequency N) or one (the rotation speed S). ) Is set in the control unit C1, the cutting tool 130 is moved in the machining feed direction under conditions relatively close to the rotation speed S and vibration frequency N intended by the user or under conditions based on the set rotation speed S. It is configured so that the workpiece W can be smoothly cut while being fed in the machining feed direction while reciprocally oscillating along and cutting off chips.
  • FIG. 8A similarly to FIG. 4, the cutting tool 130 vibrates 3.5 by one rotation of the main shaft, and the cutting portion when the cutting tool 130 moves forward and the cutting portion when the cutter moves backward are one.
  • FIG. 8B shows a state in which the n + 1 rotation cutting portion of the circumferential surface of the workpiece W includes a portion that has already been cut in the n rotation, and the cutting tool 130 is swung during the cutting. In this way, if the feed amount is simply increased, the trajectory of the cutting tool 130 during the backward movement in the second rotation does not reach the trajectory of the cutting tool 130 in the first rotation. It may not be divided. 8A to 8C, the vibration of the cutting tool 130 is expressed in a straight line for easy understanding.
  • the control unit C1 includes an amplitude setting unit that sets the amplitude of the reciprocating vibration in proportion to the feed amount of the cutting tool 130 with respect to the workpiece W.
  • the amplitude setting means is a ratio of the amplitude to the feed amount, that is, a ratio between the feed amount and the amplitude of the reciprocating vibration by the vibration means, by the user via the numerical value setting unit C2 or the like.
  • the amplitude is set by multiplying the feed amount set at the time of cutting by the amplitude feed ratio.
  • the amplitude setting means and the vibration means are linked to each other. As shown in FIG.
  • the frequency N and the rotation speed S set by the setting means are obtained by correcting the rotation speed S and the vibration frequency N by the correction means.
  • the control unit C1 sets the amplitude according to the reciprocating vibration along the process feed direction of the cutting tool 130 and the feed amount set in the cutting process under the condition based on
  • the vibration means is controlled so that the trajectory of the cutting tool 130 at the time of backward movement at n is an integer of 1 or more) reaches the trajectory of the cutting tool 130 at the n-th rotation of the workpiece W. In other words, the control is performed so that the cutting part at the time of forward movement and the cutting part at the time of backward movement overlap each other.
  • the amplitude is set according to the feed amount with respect to the vibration condition corrected by the correction means, and the vibration means causes the cutting tool 130 to vibrate so as to cause the above-described idling operation under the control of the control unit C1.
  • the chips can be divided.
  • the setting of the rotation speed S, the vibration frequency N, and the amplitude feed ratio with respect to the control unit C1 is performed by setting the rotation speed S value, the vibration frequency N value, and the amplitude feed ratio value to the numerical value setting unit.
  • the value of the rotational speed S, the value of the vibration frequency N, and the value of the amplitude feed ratio are set in the machining program
  • the value of the frequency N and the amplitude feed ratio can be set as arguments in the program block (one line of the program).
  • control unit C1 is configured to instruct the start of the vibration cutting process in which the cutting tool 130 is reciprocally oscillated along the process feed direction and is fed in the process feed direction with a command of G ⁇ P0 in the machining program.
  • the value of the amplitude feed ratio set for the control unit C ⁇ b> 1 with the value (argument Q) subsequent to Q in the command G ⁇ is the value following D.
  • the value of the frequency set for the control unit C1 can be designated by (argument D).
  • the frequency N and the amplitude feed ratio can be set for the control unit C1.
  • the control unit C ⁇ b> 1 is configured to command the end of vibration cutting by a command of G ⁇ P0 in the machining program.
  • the G1 command for linearly moving the cutting tool 130 described between the G ⁇ P0 command and the G ⁇ P0 command the feed amount is set as a value (argument F) following F.
  • the amplitude setting means reads the amplitude feed ratio 1.5 and calculates and sets the amplitude to 0.015 ⁇ 1.5.
  • the feed amount, the rotation speed S, the vibration frequency N, the amplitude feed ratio, the vibration frequency, and the like may be selected and set from a preset table (vibration cutting condition database) or the like.
  • the control unit C1 indicates the trajectory of the cutting tool 130 during the backward movement at the n + 1-th rotation (n is an integer of 1 or more) of the workpiece W.
  • n is an integer of 1 or more
  • the control is performed so as to intersect with the trajectory of the cutting tool 130 at the n-th rotation of W, it may be achieved without intersecting.
  • the overlap between the cutting portion at the time of forward movement and the cutting portion at the time of backward movement includes a case where the cutting portion at the time of forward movement and the cutting portion at the time of backward movement contact each other.
  • the cutting part at the time of forward movement and the cutting part at the time of backward movement contact each other, the cutting part at the time of backward movement is theoretically “point” in the cutting part of the cutting tool 130 at the time of forward movement in one vibration.
  • the so-called idling motion in which the cutting tool 130 moves away from the workpiece W during the backward movement is generated at “points”, the chips generated from the workpiece W during the cutting process are And the cutting part at the time of backward movement are in contact with each other).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Geometry (AREA)
  • Turning (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

 ユーザの設定した条件に基づいて、切削工具を加工送り方向に沿った往復振動させながら加工送り方向に送り、切屑を分断しながら、ワークの切削加工を円滑に行うことができる工作機械とその制御装置を提供すること。 ワークWの加工を実行する際の相対回転の回転数と、相対回転の1回転当たりの往復振動の振動数と、制御装置(C)による動作指令が可能な周期に起因する振動周波数とをパラメータとし、少なくとも1つのパラメータの値を設定する設定手段(C1、C2)と、未設定のパラメータを所定の値に定め、このパラメータの値に基づいて、設定手段(C1、C2)によって設定されたパラメータの値を補正する補正手段(C1)とを設けたことにより、設定手段(C1、C2)によって設定されたパラメータの値を、補正手段(C1)によって補正し、ワークの加工を実行させる工作機械(100)とその制御装置(C)。

Description

工作機械の制御装置及びこの制御装置を備えた工作機械
 本発明は、切削加工時の切屑を順次分断しながらワークの加工を行う工作機械の制御装置及びこの制御装置を備えた工作機械に関する。
 従来、ワークを保持するワーク保持手段と、前記ワークを切削加工する切削工具を保持する刃物台と、前記ワーク保持手段と前記刃物台との相対移動によって、前記ワークに対して前記切削工具を所定の加工送り方向に送り動作させる送り手段と、前記切削工具が前記加工送り方向に沿って往復振動しながら加工送り方向に送られるように、前記ワーク保持手段と前記刃物台とを相対的に振動させる振動手段と、前記ワークと前記切削工具を相対的に回転させる回転手段とを備えた工作機械が知られている(例えば、特許文献1参照)。
 この工作機械の制御装置は、前記回転手段と、前記送り手段と、前記振動手段とを駆動制御し、前記ワークと前記切削工具との相対回転と、前記ワークに対する前記切削工具の前記加工送り方向への前記往復振動を伴う送り動作とによって前記工作機械に、前記ワークの加工を実行させる。
特許5033929号公報(段落0049参照)
 従来の工作機械において、制御装置による動作指令は、所定の周期でしか行うことができない。
 このため前記ワーク保持手段と前記刃物台とを相対的に振動させる振動周波数は、前記制御装置による動作指令が可能な周期に起因する限られた値となる。
 しかしながら、従来の工作機械は、前記振動周波数が考慮されないため、ユーザが希望する前記相対回転の回転数と、ワーク1回転当たりのワークに対する切削工具の振動数の条件で前記往復振動させることができない場合があるという問題があった。
 そこで、本発明は、前述したような従来技術の問題を解決するものであって、すなわち、本発明の目的は、ユーザの設定した条件に基づいて、切削工具を加工送り方向に沿った往復振動させながら加工送り方向に送り、切屑を分断しながら、ワークの切削加工を円滑に行うことができる工作機械の制御装置及びこの制御装置を備えた工作機械を提供することである。
 本請求項1に係る工作機械の制御装置は、ワークを保持するワーク保持手段と、前記ワークを切削加工する切削工具を保持する刃物台とを備えた工作機械に設けられ、前記ワーク保持手段と前記刃物台との相対移動によって、前記ワークに対して前記切削工具を所定の加工送り方向に送り動作させる送り手段と、前記切削工具が前記加工送り方向に沿って往復振動しながら加工送り方向に送られるように、前記ワーク保持手段と前記刃物台とを相対的に振動させる振動手段と、前記ワークと前記切削工具を相対的に回転させる回転手段とを駆動制御し、前記ワークと前記切削工具との相対回転と、前記ワークに対する前記切削工具の前記加工送り方向への前記往復振動を伴う送り動作とによって、前記工作機械に前記ワークの加工を実行させる工作機械の制御装置において、前記ワークの加工を実行する際の前記相対回転の回転数と、前記相対回転の1回転当たりの前記往復振動の振動数と、前記制御装置による動作指令が可能な周期に起因する振動周波数とをパラメータとし、少なくとも1つのパラメータの値を設定する設定手段と、未設定のパラメータを所定の値に定め、該パラメータの値に基づいて、前記設定手段によって設定されたパラメータの値を補正する補正手段とを設けたことにより、前述した課題を解決するものである。
 本請求項2に係る工作機械の制御装置は、請求項1に記載された工作機械の制御装置の構成に加えて、前記振動手段を、往動時の切削加工部分と、復動時の切削加工部分とが重複するように、前記ワーク保持手段と前記刃物台とを相対的に往復振動させる構成としたことにより、前述した課題をさらに解決するものである。
 本請求項3に係る工作機械の制御装置は、請求項1または請求項2に記載された工作機械の制御装置の構成に加えて、前記補正手段が、前記振動周波数に基づいた定数で、前記回転数と前記振動数とが反比例するように、未設定のパラメータを所定の値に定めるとともに、設定されたパラメータの値を補正するように構成されたことにより、前述した課題をさらに解決するものである。
 本請求項4に係る工作機械の制御装置は、請求項1乃至請求項3のいずれか1つに記載された工作機械の制御装置の構成に加えて、前記設定手段により設定されるパラメータを前記回転数とし、前記補正手段が、前記振動数を予め定められた複数の所定の値に定め、前記振動周波数を、前記制御装置が固有に備える所定の値に定め、前記設定手段によって設定された前記回転数の値を、各振動数の値と定められた振動周波数とに基づき補正するように構成されたことにより、前述した課題をさらに解決するものである。
 本請求項5に係る工作機械の制御装置は、請求項1乃至請求項3のいずれか1つに記載された工作機械の制御装置の構成に加えて、前記設定手段により設定されるパラメータを、前記回転数と前記振動数とし、前記補正手段が、設定された前記回転数と前記振動数を、前記振動周波数に基づいて定まる前記回転数と前記振動数の値に補正するように構成されたことにより、前述した課題をさらに解決するものである。
 本請求項6に係る工作機械の制御装置は、請求項4又は請求項5に記載された工作機械の制御装置の構成に加えて、前記設定手段が、予め定められた周速と前記ワークの直径とに基づき前記回転数を算出して設定するように構成されたことにより、前述した課題をさらに解決するものである。
 本請求項7に係る工作機械の制御装置は、請求項5又は請求項6に記載された工作機械の制御装置の構成に加えて、前記設定手段が、前記振動数を、1振動当たりの前記回転数として設定するように構成されたことにより、前述した課題をさらに解決するものである。
 本請求項8に係る工作機械の制御装置は、請求項5乃至請求項7のいずれか1つに記載された工作機械の制御装置の構成に加えて、前記設定手段が、前記工作機械の加工プログラムにプログラムブロックに引数として記載された振動数を読み込み、前記振動数として設定するように構成されたことにより、前述した課題をさらに解決するものである。
 本請求項9に係る工作機械の制御装置は、請求項4乃至請求項8のいずれか1つに記載された工作機械の制御装置の構成に加えて、前記補正手段が、前記振動数と前記振動周波数と前記回転数とが対応するテーブルに基づき、設定された前記回転数を、前記テーブル内の回転数の値に補正するように構成され、補正された前記回転数と、該回転数に応じた前記テーブル内の前記振動数と前記振動周波数によって、前記ワークの加工を実行させるように構成されたことにより、前述した課題をさらに解決するものである。
 本請求項10に係る工作機械の制御装置は、請求項9に記載された工作機械の制御装置の構成に加えて、前記補正手段が、前記テーブル内の前記振動数の高い順および前記振動周波数の高い順に、補正する回転数を定めるように構成されたことにより、前述した課題をさらに解決するものである。
 本請求項11に係る工作機械の制御装置は、請求項1乃至請求項10のいずれか1つに記載された工作機械の制御装置の構成に加えて、前記ワークに対する前記切削工具の送り量に比例して前記往復振動の振幅を設定する振幅設定手段を設け、往動時の切削加工部分と復動時の切削加工部分とが重複するように、前記振幅設定手段と前記振動手段とを互いに連係させたことにより、前述した課題をさらに解決するものである。
 本請求項12に係る工作機械の制御装置は、請求項11に記載された工作機械の制御装置の構成に加えて、前記振幅設定手段が、前記工作機械の加工プログラムのプログラムブロックに引数として記載された前記送り量に対する前記振幅の比率を読み込み、前記振幅を算出して設定するように構成されたことにより、前述した課題をさらに解決するものである。
 本請求項13に係る工作機械は、請求項1乃至請求項12のいずれかに記載の制御装置を備えたことによって、前述した課題を解決するものである。
 本請求項14に係る工作機械は、請求項13に記載された工作機械の構成に加えて、前記ワークを保持する主軸を前記ワーク保持手段とし、前記主軸を軸線方向に移動させる主軸移動機構と、前記刃物台を主軸に対して移動させる刃物台移動機構とを備え、前記送り手段が、前記主軸移動機構と前記刃物台移動機構とから構成され、前記主軸移動機構と前記刃物台移動機構の協動によって、前記切削工具を前記ワークに対して加工送り動作させることにより、前述した課題をさらに解決するものである。
 本請求項15に係る工作機械は、請求項13に記載された工作機械の構成に加えて、前記ワークを保持する主軸を前記ワーク保持手段とし、前記主軸が工作機械側に固定的に設けられ、前記刃物台を複数方向に移動させる刃物台移動機構を備え、前記送り手段が、前記刃物台移動機構から構成され、送り加工方向に位置決めされる主軸に対して、前記刃物台を送り加工方向に移動させることによって、前記切削工具を前記ワークに対して加工送り動作させることにより、前述した課題をさらに解決するものである。
 本請求項16に係る工作機械は、請求項13に記載された工作機械の構成に加えて、前記刃物台が工作機械側に固定的に設けられ、前記ワークを保持する主軸を前記ワーク保持手段とし、前記主軸を複数方向に移動させる主軸移動機構を備え、前記送り手段が、前記主軸移動機構から構成され、送り加工方向に位置決めされる前記刃物台に対して、前記主軸を送り加工方向に移動させることによって、前記切削工具を前記ワークに対して加工送り動作させることにより、前述した課題をさらに解決するものである。
 本発明の工作機械の制御装置は、設定手段によって設定されたパラメータの値を、補正手段によってこのパラメータの値の近似値に補正し、ワークの加工を実行させることができ、これによって、設定手段により設定された条件に比較的近い条件で、工作機械に、切削工具を前記加工送り方向に沿った往復振動させながら加工送り方向に送り、切屑を分断しながら、ワークの切削加工を円滑に行わせることができる。
 これによりユーザが意図したパラメータの値に比較的近い条件でワークの加工を実行することができる。
 さらに、振幅設定手段と振動手段とが互いに連係して往動時の切削加工部分と復動時の切削加工部分とを重複させるため、送り量が増大した場合であっても、振幅を増大させて適切な振幅とし、切屑を確実に分断することができる。
 また、本発明の工作機械は、上記工作機械の制御装置によって、切屑を分断しながら、ワークの切削加工を円滑に行うことができる。
本発明の第1実施例の工作機械の概略を示す図。 本発明の第1実施例の切削工具とワークとの関係を示す概略図。 本発明の第1実施例の切削工具の往復振動および位置を示す図。 本発明の第1実施例の主軸n回転目、n+1回転目、n+2回転目の関係を示す図。 本発明の第1実施例の指令周期と振動周波数との関係を示す図。 本発明の第1実施例の振動数と回転数と振動周波数との関係を示す図。 本発明の第2実施例の振動数と振動周波数とに対応する回転数のテーブル。 本発明の第3実施例の適切な送り量と振幅との関係について説明する図。 本発明の第3実施例の適切な送り量と振幅との関係について説明する図。 本発明の第3実施例の適切な送り量と振幅との関係について説明する図。 本発明の第3実施例の加工プログラムの一部を示す図。
 本発明は、ワークを保持するワーク保持手段と、ワークを切削加工する切削工具を保持する刃物台とを備えた工作機械に設けられ、ワーク保持手段と刃物台との相対移動によって、ワークに対して切削工具を所定の加工送り方向に送り動作させる送り手段と、切削工具が加工送り方向に沿って往復振動しながら加工送り方向に送られるように、ワーク保持手段と刃物台とを相対的に振動させる振動手段と、ワークと切削工具を相対的に回転させる回転手段とを駆動制御し、ワークと切削工具との相対回転と、ワークに対する切削工具の加工送り方向への往復振動を伴う送り動作とによって、工作機械にワークの加工を実行させる工作機械の制御装置において、ワークの加工を実行する際の相対回転の回転数と、相対回転の1回転当たりの往復振動の振動数と、制御装置による動作指令が可能な周期に起因する振動周波数とをパラメータとし、少なくとも1つのパラメータの値を設定する設定手段と、未設定のパラメータを所定の値に定め、このパラメータの値に基づいて、設定手段によって設定されたパラメータの値を補正する補正手段とを設けたことにより、設定手段によって設定されたパラメータの値を、補正手段によって補正し、ワークの加工を実行させることによって、設定手段により設定された条件に比較的近い条件で、工作機械に、切削工具を加工送り方向に沿った往復振動させながら加工送り方向に送り、切屑を分断しながら、ワークの切削加工を円滑に行わせるものであれば、その具体的な実施態様は、如何なるものであっても構わない。
 図1は、本発明の第1実施例の制御装置Cを備えた工作機械100の概略を示す図である。
 工作機械100は、主軸110と、切削工具台130Aとを備えている。
 主軸110の先端にはチャック120が設けられている。
 チャック120を介して主軸110にワークWが保持され、主軸110は、ワークを保持するワーク保持手段として構成されている。
 主軸110は、図示しない主軸モータの動力によって回転駆動されるように主軸台110Aに支持されている。
 前記主軸モータとして主軸台110A内において、主軸台110Aと主軸110との間に形成される従来公知のビルトインモータ等が考えられる。
 主軸台110Aは、工作機械100のベッド側に、Z軸方向送り機構160によって主軸110の軸線方向となるZ軸方向に移動自在に搭載されている。
 主軸110は、主軸台110Aを介してZ軸方向送り機構160によって、前記Z軸方向に移動する。
 Z軸方向送り機構160は、主軸110をZ軸方向に移動させる主軸移動機構を構成している。
 Z軸方向送り機構160は、前記ベッド等のZ軸方向送り機構160の固定側と一体的なベース161と、ベース161に設けられたZ軸方向に延びるZ軸方向ガイドレール162とを備えている。
 Z軸方向ガイドレール162に、Z軸方向ガイド164を介してZ軸方向送りテーブル163がスライド自在に支持されている。
 Z軸方向送りテーブル163側にリニアサーボモータ165の可動子165aが設けられ、ベース161側にリニアサーボモータ165の固定子165bが設けられている。
 Z軸方向送りテーブル163に主軸台110Aが搭載され、リニアサーボモータ165の駆動によってZ軸方向送りテーブル163が、Z軸方向に移動駆動される。
 Z軸方向送りテーブル163の移動によって主軸台110AがZ軸方向に移動し、主軸110のZ軸方向への移動が行われる。
 切削工具台130Aには、ワークWを旋削加工するバイト等の切削工具130が装着されている。
 切削工具台130Aは、切削工具を保持する刃物台を構成している。
 切削工具台130Aは、工作機械100のベッド側に、X軸方向送り機構150及び図示しないY軸方向送り機構によって、前記Z軸方向に直交するX軸方向と、前記Z軸方向及びX軸方向に直交するY軸方向とに移動自在に設けられている。
 X軸方向送り機構150とY軸方向送り機構とによって、切削工具台130Aを主軸110に対して前記X軸方向及びY軸方向に移動させる刃物台移動機構が構成されている。
 X軸方向送り機構150は、X軸方向送り機構150の固定側と一体的なベース151と、ベース151に設けられたX軸方向に延びるX軸方向ガイドレール152とを備えている。
 X軸方向ガイドレール152に、X軸方向ガイド154を介してX軸方向送りテーブル153がスライド自在に支持されている。
 X軸方向送りテーブル153側にリニアサーボモータ155の可動子155aが設けられ、ベース151側にリニアサーボモータ155の固定子155bが設けられている。
 リニアサーボモータ155の駆動によってX軸方向送りテーブル153が、X軸方向に移動駆動される。
 なおY軸方向送り機構は、X軸方向送り機構150をY軸方向に配置したものであり、X軸方向送り機構150と同様の構造であるため、図示及び構造についての詳細な説明は割愛する。
 図1においては、図示しないY軸方向送り機構を介してX軸方向送り機構150を前記ベッド側に搭載し、X軸方向送りテーブル153に切削工具台130Aが搭載されている。
 切削工具台130Aは、X軸方向送りテーブル153の移動駆動によってX軸方向に移動し、Y軸方向送り機構が、Y軸方向に対して、X軸方向送り機構150と同様の動作をすることによって、Y軸方向に移動する。
 なお図示しないY軸方向送り機構を、X軸方向送り機構150を介して前記ベッド側に搭載し、Y軸方向送り機構側に切削工具台130Aを搭載してもよく、Y軸方向送り機構とX軸方向送り機構150とによって切削工具台130AをX軸方向及びY軸方向に移動させる構造は従来公知であるため、詳細な説明及び図示は割愛する。
 前記刃物台移動機構(X軸方向送り機構150とY軸方向送り機構)と前記主軸移動機構(Z軸方向送り機構160)とが協動し、X軸方向送り機構150とY軸方向送り機構によるX軸方向とY軸方向への切削工具台130Aの移動と、Z軸方向送り機構160による主軸台110A(主軸110)のZ軸方向への移動によって、切削工具台130Aに装着されている切削工具130は、ワークWに対して相対的に任意の加工送り方向に送られる。
 前記主軸移動機構(Z軸方向送り機構160)と前記刃物台移動機構(X軸方向送り機構150とY軸方向送り機構)とから構成される送り手段により、切削工具130を、ワークWに対して相対的に任意の加工送り方向に送ることによって、図2に示すように、ワークWは、前記切削工具130により任意の形状に切削加工される。
 なお本実施形態においては、主軸台110Aと切削工具台130Aの両方を移動するように構成しているが、主軸台110Aを工作機械100のベッド側に移動しないように固定し、刃物台移動機構を、切削工具台130AをX軸方向、Y軸方向、Z軸方向に移動させるように構成してもよい。
 この場合、前記送り手段が、切削工具台130AをX軸方向、Y軸方向、Z軸方向に移動させる刃物台移動機構から構成され、固定的に位置決めされて回転駆動される主軸110に対して、切削工具台130Aを移動させることによって、前記切削工具130をワークWに対して加工送り動作させることができる。
 また切削工具台130Aを工作機械100のベッド側に移動しないように固定し、主軸移動機構を、主軸台110AをX軸方向、Y軸方向、Z軸方向に移動させるように構成してもよい。
 この場合、前記送り手段が、主軸台110AをX軸方向、Y軸方向、Z軸方向に移動させる主軸台移動機構から構成され、固定的に位置決めされる切削工具台130Aに対して、主軸台110Aを移動させることによって、前記切削工具130をワークWに対して加工送り動作させることができる。
 なお本実施形態においては、X軸方向送り機構150、Y軸方向送り機構、Z軸方向送り機構160は、リニアサーボモータによって駆動されるように構成されているが、従来公知のボールネジとサーボモータとによる駆動等とすることもできる。
 本実施形態においては、ワークWと切削工具130とを相対的に回転させる回転手段が、前記ビルトインモータ等の前記主軸モータによって構成され、ワークWと切削工具130との相対回転は、主軸110の回転駆動によって行われる。
 本実施例では、切削工具130に対してワークWを回転させる構成としたが、ワークWに対して切削工具130を回転させる構成としてもよい。
 この場合切削工具130としてドリル等の回転工具が考えられる。
 主軸110の回転、Z軸方向送り機構160、X軸方向送り機構150、Y軸方向送り機構は、制御装置Cが有する制御部C1によって駆動制御される。
 制御部C1は、各送り機構を振動手段として、各々対応する移動方向に沿って往復振動させながら、主軸台110A又は切削工具台130Aを各々の方向に移動させるように制御するように予め設定されている。
 各送り機構は、制御部C1の制御により、図3に示すように、主軸110又は切削工具台130Aを、1回の往復振動において、所定の前進量だけ前進(往動)移動してから所定の後退量だけ後退(復動)移動し、その差の進行量だけ各移動方向に移動させ、協動してワークWに対して前記切削工具130を前記加工送り方向に送る。
 工作機械100は、Z軸方向送り機構160、X軸方向送り機構150、Y軸方向送り機構により、切削工具130が前記加工送り方向に沿った往復振動しながら、主軸1回転分、すなわち、主軸位相0度から360度まで変化したときの前記進行量の合計を送り量として、加工送り方向に送られることによって、ワークWの加工を行う。
 ワークWが回転した状態で、主軸台110A(主軸110)又は切削工具台130A(切削工具130)が、往復振動しながら移動し、切削工具130によって、ワークWを所定の形状に外形切削加工する場合、ワークWの周面は、図4に示すように、正弦曲線状に切削される。
 なお正弦曲線状の波形の谷を通過する仮想線(1点鎖線)において、主軸位相0度から360度まで変化したときの位置の変化量が、前記送り量を示す。
 図4に示されるように、ワークWの1回転当たりの主軸台110A(主軸110)又は切削工具台130Aの振動数Nが、3.5回(振動数N=3.5)を例に説明する。
 この場合、主軸110のn回転目(nは1以上の整数)とn+1回転目の切削工具130により旋削されるワークW周面形状の位相が、主軸位相方向(グラフの横軸方向)でずれる。
 このためn+1回転目の前記位相の谷の最低点(切削工具130によって送り方向に最も切削された点となる点線波形グラフの山の頂点)の位置が、n回転目の前記位相の谷の最低点(実線波形グラフの山の頂点)の位置に対して、主軸位相方向でずれる。
 これにより、切削工具130の往動時の切削加工部分と、復動時の切削加工部分とが一部重複し、ワークW周面のn+1回転目の切削部分に、n回転目に切削済みの部分が含まれ、この部分では、切削中に切削工具130が、ワークWに対して何ら切削を行わずに空削りする所謂、空振り動作が生じる。
 切削加工時にワークWから生じる切屑は、前記空振り動作によって順次分断される。
 工作機械100は、切削工具130の切削送り方向に沿った前記往復振動によって切屑を分断しながら、ワークWの外形切削加工等を円滑に行うことができる。
 切削工具130の前記往復振動によって切屑を順次分断する場合、ワークW周面のn+1回転目の切削部分に、n回転目に切削済みの部分が含まれていればよい。
 言い換えると、ワーク周面のn+1回転目における復動時の切削工具の軌跡が、ワーク周面のn回転目における切削工具の軌跡まで到達すればよい。
 n+1回転目とn回転目のワークWにおける切削工具130により旋削される形状の位相が一致(同位相)とならなければよく、必ずしも180度反転させる必要はない。
 例えば振動数Nは、1.1や1.25、2.6、3.75等とすることができる。
 ワークWの1回転で1回より少ない振動(0<振動数N<1.0)を行うように設定することもできる。
 この場合、1振動に対して1回転以上主軸110が回転する。
 振動回数Nは、1振動当たりの主軸110の回転数として設定することもできる。
 工作機械100において、制御部C1による動作指令は、所定の指令周期で行われる。
 主軸台110A(主軸110)又は切削工具台130A(切削工具130)の往復振動は、前記指令周期に基づく所定の周波数で動作が可能となる。
 例えば、制御部C1によって1秒間に250回の指令を送ることが可能な工作機械100の場合、制御部C1による動作指令は、1÷250=4(ms)周期(基準周期)で行われる。
 前記指令周期は前記基準周期に基づいて定まり、一般的には前記基準周期の整数倍となる。
 前記指令周期の値に応じた周波数で往復振動を実行させることが可能となる。
 図5に示されるように、例えば前記基準周期(4(ms))の4倍の16(ms)を指令周期とすると、16(ms)毎に往動と復動を実行させることになり、1÷(0.004×4)=62.5(Hz)で主軸台110A(主軸110)又は切削工具台130A(切削工具130)を往復振動させることができる。
 その他、1÷(0.004×5)=50(Hz),1÷(0.004×6)=41.666(Hz),1÷(0.004×7)=35.714(Hz),1÷(0.004×8)=31.25(Hz)等の複数の所定の飛び飛びの周波数でのみ、主軸台110A(主軸110)又は切削工具台130A(切削工具130)を往復振動させることができる。
 主軸台110A(主軸110)又は切削工具台130A(切削工具130)の往復振動の周波数(振動周波数)f(Hz)は、上記周波数から選択される値に定まる。
 なお制御装置C(制御部C1)によっては、前記基準周期(4ms)の整数倍以外の倍数で指令周期を設定することができる。
 この場合、この指令周期に応じた周波数を振動周波数とすることができる。
 主軸台110A(主軸110)又は切削工具台130A(切削工具130)を往復振動させる場合、主軸110の回転数をS(r/min)とすると、振動数Nは、N=f×60/Sと定まる。
 図6に示すように、回転数Sと振動数Nとは、振動周波数fを定数として反比例する。
 主軸110は、振動周波数fを高くとるほど、また振動数Nを小さくするほど高速回転することができる。
 本実施例の工作機械100では、回転数Sと振動数Nと振動周波数fとをパラメータとし、ユーザによって、3つのパラメータうちの回転数Sと振動数Nの2つを、数値設定部C2等を介して制御部C1に設定することができるように構成されている。
 回転数S又は振動数Nの制御部C1への設定は、回転数S又は振動数Nの値を、制御部C1にパラメータ値として入力することができる他、例えば回転数Sや振動数Nの値を加工プログラムに記載して設定したり、プログラムブロック(プログラムの1行)において振動数Nを引数として設定したりすることができる。
 特に振動数Nを加工プログラムのプログラムブロックにおいて引数として設定することができるように、設定手段を構成すると、一般的に加工プログラム上に記載される主軸110の回転数Sと、プログラムブロックでの引数として記載される振動数Nとによって、加工プログラムから容易に回転数Sと振動数Nとをユーザが設定することができる。
 なお、前記設定手段による設定は、プログラムによるものでもよいし、ユーザが数値設定部C2を介して設定するものでもよい。
 また周速とワーク径を、加工プログラム等を介して設定入力することができるように構成し、前記周速とワーク径に基づき回転数Sを算出させて設定することもできる。
 加工プログラム等を介して設定入力される周速とワーク径とに基づき回転数Sを算出するように、前記設定手段を構成することで、ワークWの材質や切削工具130の種類や形状、材質等に応じて定められる周速に応じて、ユーザが意識することなく容易に回転数Sを設定することができる。
 制御部C1は、設定された回転数Sと振動数Nとに基づき、この回転数Sで主軸110を回転させ、この振動数Nで切削工具130が前記加工送り方向に沿って往復振動しながら加工送り方向に送られるように、主軸台110Aまたは切削工具台130Aを往復振動しながら移動させるように制御する。
 ただし回転数Sと振動数Nは前述のように振動周波数fに起因して定まるため、制御部C1は、設定された回転数Sと振動数Nとを振動周波数fに基づいて補正する補正手段を備える。
 補正手段は、振動周波数fを、N=60f/Sに基づいて、設定された振動数Nと回転数Sから算出される値に近い値を持つものに設定し、設定された振動周波数fによって、振動数Nと回転数Sとをそれぞれ設定された値に近い値に補正するように構成することができる。
 例えば、ユーザによって、S=3000(r/min)、N=1.5と設定されたとする。
 この場合、S=3000(r/min)、N=1.5から振動周波数の値が75(Hz)となるため、補正手段は、例えば、振動周波数f=62.5(Hz)に設定する。
 補正手段は、設定された振動周波数(62.5Hz)に基づき、例えば、回転数S(3000(r/min))を維持して振動数N=1.25と補正したり、振動数N(1.5)を維持して回転数S=2500(r/min)と補正したりする。
 また振動周波数f=50(Hz)に設定し、回転数S=2400(r/min)、振動数N=1.25と両方を補正することもできる。
 補正手段による回転数Sと振動数Nとの補正によって、設定手段により設定された振動数Nと回転数Sとに基づいた条件で、工作機械100は、Z軸方向送り機構160、X軸方向送り機構150、Y軸方向送り機構により、切削工具130を前記加工送り方向に沿った往復振動させながら加工送り方向に送り、切屑を分断しながら、ワークWの切削加工を円滑に行うことができ、場合によっては、例えば切削工具130の寿命を延長させることも可能となる。
 これによりユーザが意図した回転数Sおよび振動数Nに比較的近い条件でワークWの加工を行うことができる。
 この際、加工条件等に応じて、回転数Sや振動数Nのいずれかを優先して補正したり、両方を補正したりして、補正条件を変更することもできる。
 なお前記設定手段によって使用する振動周波数fを予めユーザ側において設定し、設定された振動周波数fに応じて、振動数Nや回転数Sを補正するように構成することもできる。
 この場合、制御部C1を特に安定した制御状態として、切削工具130を前記加工送り方向に沿った往復振動させながら加工送り方向に送り、切屑を分断しながら、ワークWの外形切削加工を円滑に且つ安定的に行わせることができる。
 一方加工のサイクルタイムを縮めるためには、主軸110の回転をできるだけ高速に設定することが望ましい。
 このためには、振動周波数fをできる限り高くする必要があるが、安定制御等の観点から必要以上に高く設定することは容易ではない。
 このため振動数Nをできる限り小さくすることで、回転数Sを可能な限り大きくすることが可能となる。
 この際、1振動当たりの主軸110の回転数で振動数Nを設定するように前記設定手段を構成することによって、容易に回転数Sを上昇させる設定を行うことができる。
 1振動当たりの主軸110の回転数が1回以上に設定され、振動数Nが0より大きい1未満の数に設定されることによって、主軸110を高速回転させることが可能となる。
 ただし、分断される切屑の長さは比較的長くなるため、振動数Nは、前記加工に悪影響が出ない程度に設定する必要がある。
 なお、本実施例では、3つのパラメータうち振動数Nや回転数Sを、数値設定部C2等を介して制御部C1に設定するように構成したが、例えば予め振動数Nを固定しておき(入力不要にしておき)、3つのパラメータうち1つとして回転数Sのみをユーザが設定して、この回転数Sと振動数Nとに応じて振動周波数fを設定し、回転数S又は振動数Nを補正するようにしてもよい。
 第2実施例は、第1実施例のパラメータの条件などを変更したものであり、多くの要素について第1実施例と共通するので、共通する事項については詳しい説明を省略し、異なる点について以下に説明する。
 第2実施例の工作機械100では、ユーザによって、回転数Sを、数値設定部C2等を介して制御部C1に設定するように構成されている。
 回転数Sの制御部C1への設定は、回転数Sの値を、制御部C1にパラメータ値として入力することができる他、例えば回転数Sの値を加工プログラムに記載して設定したりすることができる。
 制御部C1は、設定された回転数Sに基づき、主軸110を回転させ、切削工具130が前記加工送り方向に沿って往復振動しながら加工送り方向に送られるように、主軸台110Aまたは切削工具台130Aを往復振動しながら移動させるように制御する。
 ただし回転数Sと振動数Nは前述のように振動周波数fに起因して定まるため、本実施例の制御部C1の補正手段は、設定された回転数Sを振動周波数fに基づいて補正するように構成されている。
 本実施例の補正手段は、図7に示すように、主軸1回転当たりの往復振動の振動数N1、N2、N3…と、動作指令が可能な周期に起因する振動周波数f1、f2、f3…とに対応する主軸110の回転数S11、S12、S13…、S21…、S31…のテーブルを有する。
 前記補正手段は、ユーザによって設定された回転数Sの値を、前記テーブル内の回転数Sの値に補正するように構成されている。
 制御装置Cは、この補正された回転数に対応する振動数および振動周波数でワークの加工を実行させるように構成されている。
 図7に示すテーブルは、振動数Nを、N1=3.5、N2=2.5、N3=1.5、N4=0.5とし、振動周波数fを、f1=62.5(Hz)、f2=50(Hz)、f3=41.666(Hz)とし、各振動数Nと各振動周波数fに対応する主軸110の回転数Sを、S11=1071.429(r/min)、S12=857.1429(r/min)、S13=714.2743(r/min)、S21=1500(r/min)、S31=2500(r/min)等として設定した例である。
 前記補正手段は、ユーザによって設定された回転数Sの値とテーブル内の回転数の値とを比較し、ユーザによって設定された回転数Sの値との差が所定範囲内(例えば、±50r/min範囲内)となるようなテーブル内の回転数の値に補正するように構成されている。
 本実施例において、前記補正手段による回転数Sの補正は、前記テーブル内の振動数の値の高い順および振動周波数の値の高い順に補正する回転数を定めるように構成されている。
 例えば、ユーザによって、主軸110の回転数Sが、S=2500(r/min)と設定されたとする。
 この場合、テーブル内の振動数の最も高い値(N1=3.5)に対応する行(S11、S12、S13…)の振動周波数の高い値(f1=62.5(Hz))に対応する回転数の値(S11=1071.429(r/min))から振動周波数の低い値(f2=50(Hz)、f3=41.666(Hz))に対応する回転数の値(S12=857.1429(r/min)、S13=714.2743(r/min))へ向かって順に、S=2500(r/min)と比べる。
 続いて、次に高い値の振動数(N2=2.5)に対応する行(S21、S22、S23…)における振動周波数の高い値(f1=62.5(Hz))に対応する回転数の値(S21=1500(r/min))から振動周波数の低い値(f2=50(Hz)、f3=41.666(Hz))に対応する回転数の値(S22=1200(r/min)、S23=999.984(r/min))へ向かって順に、S=2500(r/min)と比べる。
 さらに続いて、次に高い値の振動数(N3=1.5)に対応する行(S31、S32、S33…)における振動周波数の高い値(f1=62.5(Hz))に対応する回転数の値(S31=2500(r/min))から振動周波数の低い値(f2=50(Hz)、f3=41.666(Hz))に対応する回転数の値(S32=2000(r/min)、S33=1666.64(r/min))へ向かって順に、S=2500(r/min)と比べようとするが、テーブル内のS31=2500(r/min)がユーザによって設定された値と同じ(差が所定範囲内)であるので、前記補正手段は、主軸110の回転数Sをユーザが設定したS=2500(r/min.)と同じ回転数Sに設定する(この例では結果的に補正はされない)。
 制御部C1は、この回転数S31=2500(r/min)の値に前記テーブルにおいて対応する振動数N=1.5および振動周波数f=62.5(Hz)でワークWの加工を実行させる。
 補正手段による回転数Sの補正によって、設定手段により設定された回転数Sに基づいた条件で、工作機械100は、Z軸方向送り機構160、X軸方向送り機構150、Y軸方向送り機構により、切削工具130を前記加工送り方向に沿った往復振動させながら加工送り方向に送り、切屑を分断しながら、ワークWの切削加工を円滑に行うことができる。
 この際、振動数Nと振動周波数fは、できるだけ大きい値が採用されるため、可能な限り主軸210の回転数Sの高い領域で加工が行われるので、切屑の長さを短くするとともに加工時間を短縮して最適化を図ることができる。
 また可能な限り高い振動周波数fが採用されるため、加工精度に対する機械振動の悪影響を小さくすることもできる。
 なおユーザによって設定された回転数Sの値に対して、テーブル内の所定回転数S11、S12、S13…の値がいずれも差が所定範囲内(例えば、±50r/min範囲内)でないとき、前記補正手段は、ユーザによって設定された回転数Sの値を、差が最小となるテーブル内の所定回転数S11、S12、S13…の値に補正するように構成することができる。
 これにより、ユーザが指定した回転数Sに可能な限り近い回転数S11、S12、S13…が採用され、ユーザの設定を可能な限り反映することができる。
 第3実施例は、多くの要素について第1実施例及び第2実施例と共通するので、共通する事項については詳しい説明を省略し、異なる点について以下に説明する。
 第3実施例の工作機械100では、第1実施例又は第2実施例と同様に、ユーザによって、3つのパラメータのうち2つ(回転数Sと振動数N)、又は1つ(回転数S)が制御部C1に設定されると、ユーザが意図した回転数Sおよび振動数Nに比較的近い条件や、設定された回転数Sに基づいた条件で、切削工具130を前記加工送り方向に沿った往復振動させながら加工送り方向に送り、切屑を分断しながら、ワークWの切削加工を円滑に行うことができるように構成されている。
 図8Aに示すように、図4と同様に、主軸1回転で切削工具130が3.5振動し、切削工具130の往動時の切削加工部分と、復動時の切削加工部分とが一部重複し、ワークW周面のn+1回転目の切削部分に、n回転目に切削済みの部分が含まれ、切削中に切削工具130の前記空振り動作が生じている状態から、図8Bに示すように、単に送り量だけ増大させると、2回転目における復動時の切削工具130の軌跡が1回転目における切削工具130の軌跡まで到達しなくなるため、前述した空振り動作ができず、切屑が分断されない場合がある。
 なお図8A乃至図8Cでは、説明をわかり易くするために、切削工具130の振動を直線状にして表現している。
 言い換えると、単に送り量を徐々に増加させていくと、前述した切削工具130の往動時の切削加工部分と復動時の切削加工部分との重複部分が徐々に小さくなり、往動時の切削加工部分と復動時の切削加工部分とが重複しなくなるため、前述した空振り動作ができず、切屑が分断されない場合が発生する。
 そこで、本実施例では、制御部C1が、ワークWに対する切削工具130の送り量に比例して前記往復振動の振幅を設定する振幅設定手段を備える。
 振幅設定手段は、ユーザによって、数値設定部C2等を介して、前記送り量に対する前記振幅の比率、すなわち前記送り量と振動手段による往復振動の振幅との比率であり、前記振幅を前記送り量で割った値が振幅送り比率として制御部C1に設定されると、切削加工の際に設定される前記送り量に前記振幅送り比率を乗じて前記振幅の設定を行うように構成される。
 前記振幅設定手段と前記振動手段とは互いに連係し、図8Cに示すように、補正手段による回転数Sと振動数Nとの補正によって、設定手段により設定された振動数Nと回転数Sとに基づいた条件による、切削工具130の前記加工送り方向に沿った往復振動と、切削加工において設定される送り量に応じた振幅を設定することによって、制御部C1がワークWのn+1回転目(nは1以上の整数)における復動時の切削工具130の軌跡を、ワークWのn回転目における切削工具130の軌跡まで到達させるように前記振動手段を制御する。
 言い換えると、往動時の切削加工部分と復動時の切削加工部分とが重複するように制御する。
 これにより、補正手段によって補正された振動の条件に対して、送り量に応じて振幅が設定され、制御部C1の制御によって振動手段が切削工具130を、前述した空振り動作が生じるように振動させて、切屑を分断することができる。
 本実施例の工作機械100では、回転数S、振動数N、振幅送り比率の制御部C1に対する設定は、回転数Sの値、振動数Nの値、振幅送り比率の値を、数値設定部C2を介して、ユーザによって、制御部C1にパラメータ値として入力することができる他、例えば回転数Sの値や振動数Nの値、振幅送り比率の値を、加工プログラムに記載して設定したり、プログラムブロック(プログラムの1行)において振動数Nの値や振幅送り比率を引数として設定したりすることができる。
 本発明のように切削工具130を前記加工送り方向に沿って往復振動しながら加工送り方向に送る振動切削加工の開始を、加工プログラムにおいてG△△△ P0の命令で指令するように制御部C1を構成する場合、例えば、図9に示すように、G△△△の命令にQに続く値(引数Q)で制御部C1に対して設定される振幅送り比率の値を、Dに続く値(引数D)で制御部C1に対して設定される振動数の値を指定させることができる。
 振幅送り比率「1.5」を設定する場合はG△△△に続けて「Q1.5」と記載し、振動数を「3.5」と設定する場合はG△△△に続けて「D3.5」と加工プログラムに記載することによって、制御部C1に対して振動数Nと振幅送り比率を設定することができる。
 なお図9の例では、振動切削加工の終了を、加工プログラムにおいてG△△△ P0の命令で指令するように制御部C1が構成されている。
 これにより、G△△△ P0の命令とG△△△ P0の命令とのあいだに記載された例えば切削工具130を直線移動させるG1命令で、Fに続く値(引数F)として送り量が「0.015」と設定されると、振幅設定手段が振幅送り比率1.5を読み込み、0.015×1.5と、振幅を算出して設定する。
 なお制御装置C側にディスプレイ等の表示手段を設け、該表示手段に切削条件検索画面を表示させて、ユーザが、切削加工の条件として、材質や真円度、面粗度等を入力することによって、予め設定されたテーブル(振動切削条件のデータベース)等から、送り量や回転数S、振動数N、振幅送り比率、振動周波数等の条件を選択して設定する構成としてもよい。
 本実施例では、上述した図4や図8A乃至図8Cのように、制御部C1がワークWのn+1回転目(nは1以上の整数)における復動時の切削工具130の軌跡を、ワークWのn回転目における切削工具130の軌跡と交差させるように制御したが、交差させずに到達させるだけでもよい。
 言い換えると、往動時の切削加工部分と復動時の切削加工部分との重複は、往動時の切削加工部分と復動時の切削加工部分とが接する場合も含む。
 往動時の切削加工部分と復動時の切削加工部分とが接する場合は、1振動において切削工具130の往動時の切削加工部分に、復動時の切削加工部分が理論上「点」として含まれ、復動中に切削工具130がワークWから離れる所謂、空振り動作が「点」で生じることにより、切削加工時にワークWから生じる切屑は、前記空振り動作(往動時の切削加工部分と、復動時の切削加工部分とが接する点)によって順次分断される。
100 ・・・ 工作機械
110 ・・・ 主軸
110A・・・ 主軸台
120 ・・・ チャック
130 ・・・ 切削工具
130A・・・ 切削工具台
150 ・・・ X軸方向送り機構
151 ・・・ ベース
152 ・・・ X軸方向ガイドレール
153 ・・・ X軸方向送りテーブル
154 ・・・ X軸方向ガイド
155 ・・・ リニアサーボモータ
155a・・・ 可動子
155b・・・ 固定子
160 ・・・ Z軸方向送り機構
161 ・・・ ベース
162 ・・・ Z軸方向ガイドレール
163 ・・・ Z軸方向送りテーブル
164 ・・・ Z軸方向ガイド
165 ・・・ リニアサーボモータ
165a・・・ 可動子
165b・・・ 固定子
C   ・・・ 制御装置
C1  ・・・ 制御部
C2  ・・・ 数値設定部
W   ・・・ ワーク

Claims (16)

  1.  ワークを保持するワーク保持手段と、前記ワークを切削加工する切削工具を保持する刃物台とを備えた工作機械に設けられ、
     前記ワーク保持手段と前記刃物台との相対移動によって、前記ワークに対して前記切削工具を所定の加工送り方向に送り動作させる送り手段と、前記切削工具が前記加工送り方向に沿って往復振動しながら加工送り方向に送られるように、前記ワーク保持手段と前記刃物台とを相対的に振動させる振動手段と、前記ワークと前記切削工具を相対的に回転させる回転手段とを駆動制御し、
     前記ワークと前記切削工具との相対回転と、前記ワークに対する前記切削工具の前記加工送り方向への前記往復振動を伴う送り動作とによって、前記工作機械に前記ワークの加工を実行させる工作機械の制御装置において、
     前記ワークの加工を実行する際の前記相対回転の回転数と、前記相対回転の1回転当たりの前記往復振動の振動数と、前記制御装置による動作指令が可能な周期に起因する振動周波数とをパラメータとし、少なくとも1つのパラメータの値を設定する設定手段と、
     未設定のパラメータを所定の値に定め、該パラメータの値に基づいて、前記設定手段によって設定されたパラメータの値を補正する補正手段とを設けた工作機械の制御装置。
  2.  前記振動手段を、往動時の切削加工部分と、復動時の切削加工部分とが重複するように、前記ワーク保持手段と前記刃物台とを相対的に往復振動させる構成とした請求項1に記載の工作機械の制御装置。
  3.  前記補正手段が、前記振動周波数に基づいた定数で、前記回転数と前記振動数とが反比例するように、未設定のパラメータを所定の値に定めるとともに、設定されたパラメータの値を補正するように構成された請求項1または請求項2に記載の工作機械の制御装置。
  4.  前記設定手段により設定されるパラメータを前記回転数とし、
     前記補正手段が、前記振動数を予め定められた複数の所定の値に定め、前記振動周波数を、前記制御装置が固有に備える所定の値に定め、前記設定手段によって設定された前記回転数の値を、各振動数の値と定められた振動周波数とに基づき補正するように構成された請求項1乃至請求項3のいずれか1つに記載の工作機械の制御装置。
  5.  前記設定手段により設定されるパラメータを、前記回転数と前記振動数とし、
     前記補正手段が、設定された前記回転数と前記振動数を、前記振動周波数に基づいて定まる前記回転数と前記振動数の値に補正するように構成された請求項1乃至請求項3のいずれか1つに記載の工作機械の制御装置。
  6.  前記設定手段が、予め定められた周速と前記ワークの直径とに基づき前記回転数を算出して設定するように構成された請求項4又は請求項5に記載の工作機械の制御装置。
  7.  前記設定手段が、前記振動数を、1振動当たりの前記回転数として設定するように構成された請求項5又は請求項6に記載の工作機械の制御装置。
  8.  前記設定手段が、前記工作機械の加工プログラムにプログラムブロックに引数として記載された振動数を読み込み、前記振動数として設定するように構成された請求項5乃至請求項7のいずれか1つに記載の工作機械の制御装置。
  9.  前記補正手段が、前記振動数と前記振動周波数と前記回転数とが対応するテーブルに基づき、設定された前記回転数を、前記テーブル内の回転数の値に補正するように構成され、補正された前記回転数と、該回転数に応じた前記テーブル内の前記振動数と前記振動周波数によって、前記ワークの加工を実行させるように構成された請求項4乃至請求項8のいずれか1つに記載の工作機械の制御装置。
  10.  前記補正手段が、前記テーブル内の前記振動数の高い順および前記振動周波数の高い順に、補正する回転数を定めるように構成された請求項9に記載の工作機械の制御装置。
  11.  前記ワークに対する前記切削工具の送り量に比例して前記往復振動の振幅を設定する振幅設定手段を設け、
     往動時の切削加工部分と復動時の切削加工部分とが重複するように、前記振幅設定手段と前記振動手段とを互いに連係させたことを特徴とする請求項1乃至請求項10のいずれか1つに記載の工作機械の制御装置。
  12.  前記振幅設定手段が、前記工作機械の加工プログラムのプログラムブロックに引数として記載された前記送り量に対する前記振幅の比率を読み込み、前記振幅を算出して設定するように構成された請求項11に記載の工作機械の制御装置。
  13.  請求項1乃至請求項12のいずれか1つに記載の制御装置を備えた工作機械。
  14.  前記ワークを保持する主軸を前記ワーク保持手段とし、前記主軸を軸線方向に移動させる主軸移動機構と、前記刃物台を主軸に対して移動させる刃物台移動機構とを備え、前記送り手段が、前記主軸移動機構と前記刃物台移動機構とから構成され、前記主軸移動機構と前記刃物台移動機構の協動によって、前記切削工具を前記ワークに対して加工送り動作させる請求項13に記載の工作機械。
  15.  前記ワークを保持する主軸を前記ワーク保持手段とし、前記主軸が工作機械側に固定的に設けられ、前記刃物台を複数方向に移動させる刃物台移動機構を備え、前記送り手段が、前記刃物台移動機構から構成され、送り加工方向に位置決めされる主軸に対して、前記刃物台を送り加工方向に移動させることによって、前記切削工具を前記ワークに対して加工送り動作させる請求項13に記載の工作機械。
  16.  前記刃物台が工作機械側に固定的に設けられ、前記ワークを保持する主軸を前記ワーク保持手段とし、前記主軸を複数方向に移動させる主軸移動機構を備え、前記送り手段が、前記主軸移動機構から構成され、送り加工方向に位置決めされる前記刃物台に対して、前記主軸を送り加工方向に移動させることによって、前記切削工具を前記ワークに対して加工送り動作させる請求項13に記載の工作機械。
PCT/JP2015/058825 2014-03-26 2015-03-24 工作機械の制御装置及びこの制御装置を備えた工作機械 WO2015146945A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/129,238 US10268176B2 (en) 2014-03-26 2015-03-24 Control device for machine tool and machine tool including the control device
EP15768422.6A EP3124174B1 (en) 2014-03-26 2015-03-24 Control device for machine tool, and machine tool provided with said control device
KR1020167029045A KR102344443B1 (ko) 2014-03-26 2015-03-24 공작기계의 제어장치 및 이 제어장치를 구비한 공작기계
ES15768422T ES2807617T3 (es) 2014-03-26 2015-03-24 Dispositivo de control para máquina herramienta y máquina herramienta provista de dicho dispositivo de control
JP2016510362A JP6416217B2 (ja) 2014-03-26 2015-03-24 工作機械の制御装置及びこの制御装置を備えた工作機械
CN201580016409.5A CN106232293B (zh) 2014-03-26 2015-03-24 机床的控制装置以及具备该控制装置的机床

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-063603 2014-03-26
JP2014063603 2014-03-26
JP2014-063604 2014-03-26
JP2014063604 2014-03-26
JP2014192949 2014-09-22
JP2014-192949 2014-09-22

Publications (1)

Publication Number Publication Date
WO2015146945A1 true WO2015146945A1 (ja) 2015-10-01

Family

ID=54195458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058825 WO2015146945A1 (ja) 2014-03-26 2015-03-24 工作機械の制御装置及びこの制御装置を備えた工作機械

Country Status (8)

Country Link
US (1) US10268176B2 (ja)
EP (1) EP3124174B1 (ja)
JP (1) JP6416217B2 (ja)
KR (1) KR102344443B1 (ja)
CN (2) CN106232293B (ja)
ES (1) ES2807617T3 (ja)
TW (1) TWI661892B (ja)
WO (1) WO2015146945A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056526A1 (ja) * 2014-10-08 2016-04-14 シチズンホールディングス株式会社 工作機械及びこの工作機械の制御装置
WO2017204045A1 (ja) * 2016-05-26 2017-11-30 住友電工ハードメタル株式会社 振動切削用インサート
JP2018005423A (ja) * 2016-06-29 2018-01-11 シチズン時計株式会社 工作機械の制御装置および工作機械
JP2018094690A (ja) * 2016-12-15 2018-06-21 シチズン時計株式会社 工作機械の制御装置および工作機械
WO2018117203A1 (ja) * 2016-12-22 2018-06-28 シチズン時計株式会社 工作機械およびその制御装置
JP2018195002A (ja) * 2017-05-16 2018-12-06 ファナック株式会社 揺動切削のための表示装置および加工システム
WO2019073908A1 (ja) 2017-10-13 2019-04-18 シチズン時計株式会社 工作機械
US10379519B2 (en) 2016-05-16 2019-08-13 Fanuc Corporation Servo controller, control method, and non-transitory computer-readable recording medium for machine tool used for oscillating cutting
JP2019136852A (ja) * 2018-02-15 2019-08-22 スター精密株式会社 旋盤
JP2019191857A (ja) * 2018-04-24 2019-10-31 ファナック株式会社 表示装置
CN110475637A (zh) * 2017-03-29 2019-11-19 西铁城时计株式会社 机床的控制装置以及机床
WO2020145213A1 (ja) * 2019-01-10 2020-07-16 シチズン時計株式会社 工作機械の制御装置および工作機械
WO2021245852A1 (ja) * 2020-06-03 2021-12-09 三菱電機株式会社 数値制御装置、制御システムおよび数値制御方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2956678T3 (es) * 2014-08-29 2023-12-26 Citizen Watch Co Ltd Método para mecanizar una pieza de trabajo mediante una máquina herramienta
US10610993B2 (en) 2015-09-24 2020-04-07 Citizen Watch Co., Ltd. Machine tool control device and machine tool equipped with said control device
JP6503000B2 (ja) * 2017-04-18 2019-04-17 ファナック株式会社 揺動切削を行う工作機械の制御装置
JP6595537B2 (ja) * 2017-07-27 2019-10-23 ファナック株式会社 揺動切削を行う工作機械の制御装置
JP6636998B2 (ja) * 2017-08-22 2020-01-29 ファナック株式会社 数値制御装置
KR102702101B1 (ko) * 2017-09-28 2024-09-04 시티즌 마쉬나리 가부시키가이샤 공작기계
JP6784717B2 (ja) * 2018-04-09 2020-11-11 ファナック株式会社 工作機械の制御装置
US20190388977A1 (en) * 2018-06-25 2019-12-26 Hamilton Sundstrand Corporation Hard turning systems and methods
CN109079576B (zh) * 2018-09-29 2021-01-08 北京航空航天大学 一种分离超高速切削高压冷却润滑方法
JP7195110B2 (ja) * 2018-10-26 2022-12-23 シチズン時計株式会社 工作機械及び制御装置
JP6940474B2 (ja) * 2018-12-05 2021-09-29 ファナック株式会社 工作機械
JP6573750B1 (ja) * 2019-02-07 2019-09-11 三菱電機株式会社 制御データ作成装置、制御データ作成方法、および制御データ作成プログラム
CN111716149B (zh) * 2019-03-19 2024-07-30 发那科株式会社 机床
KR20200131586A (ko) 2019-05-14 2020-11-24 두산공작기계 주식회사 공작기계 및 공작기계의 제어방법
JP7214568B2 (ja) * 2019-05-29 2023-01-30 シチズン時計株式会社 工作機械及びこの工作機械の制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270001A (ja) * 1989-04-12 1990-11-05 Hitachi Ltd 自動作業装置
JPH0512354A (ja) * 1991-07-03 1993-01-22 Hitachi Ltd 協調型設計管理方法とその装置並びに協調型設計管理ネツトワークシステム
JP2002001568A (ja) * 2000-06-15 2002-01-08 Amada Wasino Co Ltd Nc制御3次元レーザ加工機におけるレーザ加工ヘッドのパラメータ設定方法およびnc制御3次元レーザ加工機

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1750925A1 (ru) * 1990-10-01 1992-07-30 Саратовский политехнический институт Способ управлени обработкой резанием
US5572430A (en) 1991-07-03 1996-11-05 Hitachi, Ltd. Method and apparatus for cooperated design
JPH0533929A (ja) 1991-07-26 1993-02-09 Noritz Corp 給湯器の制御方法
CN2179220Y (zh) * 1994-01-05 1994-10-12 吉林省白城机床工贸公司 金属短纤维振动切削机床
JPH1015701A (ja) * 1996-07-04 1998-01-20 Mitsubishi Materials Corp 振動バイトによる切削方法
US8240234B2 (en) * 2007-10-16 2012-08-14 University Of North Carolina At Charlotte Methods and systems for chip breaking in turning applications using CNC toolpaths
DE102007053350B4 (de) * 2007-10-30 2013-10-10 Chiron-Werke Gmbh & Co Kg Verfahren zur spanabhebenden Bearbeitung von Werkstücken
GB2480665A (en) * 2010-05-27 2011-11-30 Univ Sheffield Method of Machining using Vibration Prediction
JP5033929B1 (ja) 2011-11-10 2012-09-26 ハリキ精工株式会社 工作機械
JP5908342B2 (ja) * 2012-05-17 2016-04-26 オークマ株式会社 工作機械の加工振動抑制方法及び加工振動抑制装置
CN102717115B (zh) * 2012-06-14 2014-05-14 北京航空航天大学 一种弱刚度零件高速断续超声振动切削加工方法
JP5139592B1 (ja) * 2012-09-12 2013-02-06 ハリキ精工株式会社 工作機械
JP5139591B1 (ja) * 2012-09-12 2013-02-06 ハリキ精工株式会社 工作機械

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270001A (ja) * 1989-04-12 1990-11-05 Hitachi Ltd 自動作業装置
JPH0512354A (ja) * 1991-07-03 1993-01-22 Hitachi Ltd 協調型設計管理方法とその装置並びに協調型設計管理ネツトワークシステム
JP2002001568A (ja) * 2000-06-15 2002-01-08 Amada Wasino Co Ltd Nc制御3次元レーザ加工機におけるレーザ加工ヘッドのパラメータ設定方法およびnc制御3次元レーザ加工機

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016056526A1 (ja) * 2014-10-08 2016-04-14 シチズンホールディングス株式会社 工作機械及びこの工作機械の制御装置
US10379519B2 (en) 2016-05-16 2019-08-13 Fanuc Corporation Servo controller, control method, and non-transitory computer-readable recording medium for machine tool used for oscillating cutting
WO2017204045A1 (ja) * 2016-05-26 2017-11-30 住友電工ハードメタル株式会社 振動切削用インサート
JPWO2017204045A1 (ja) * 2016-05-26 2019-03-22 住友電工ハードメタル株式会社 振動切削用インサート
US10814401B2 (en) 2016-05-26 2020-10-27 Sumitomo Electric Hardmetal Corp. Vibration cutting insert
JP2018005423A (ja) * 2016-06-29 2018-01-11 シチズン時計株式会社 工作機械の制御装置および工作機械
JP2018094690A (ja) * 2016-12-15 2018-06-21 シチズン時計株式会社 工作機械の制御装置および工作機械
WO2018117203A1 (ja) * 2016-12-22 2018-06-28 シチズン時計株式会社 工作機械およびその制御装置
US11084101B2 (en) 2016-12-22 2021-08-10 Citizen Watch Co., Ltd. Machine tool and control device for the machine tool
JPWO2018117203A1 (ja) * 2016-12-22 2019-07-04 シチズン時計株式会社 工作機械およびその制御装置
CN110088698A (zh) * 2016-12-22 2019-08-02 西铁城时计株式会社 机床及其控制装置
CN110088698B (zh) * 2016-12-22 2020-03-06 西铁城时计株式会社 机床及其控制装置
JPWO2018181447A1 (ja) * 2017-03-29 2020-02-06 シチズン時計株式会社 工作機械の制御装置および工作機械
CN110475637B (zh) * 2017-03-29 2021-05-04 西铁城时计株式会社 机床的控制装置以及机床
CN110475637A (zh) * 2017-03-29 2019-11-19 西铁城时计株式会社 机床的控制装置以及机床
TWI789382B (zh) * 2017-03-29 2023-01-11 日商西鐵城時計股份有限公司 工具機的控制裝置以及工具機
JP7046919B2 (ja) 2017-03-29 2022-04-04 シチズン時計株式会社 工作機械の制御装置および工作機械
US11253924B2 (en) * 2017-03-29 2022-02-22 Citizen Watch Co., Ltd. Control device for machine tool and machine tool
US10503141B2 (en) 2017-05-16 2019-12-10 Fanuc Corporation Display device and machining system for oscillation cutting
DE102018003786B4 (de) 2017-05-16 2024-04-18 Fanuc Corporation Anzeigevorrichtung und Bearbeitungssystem zum Oszillationsschneiden
JP2018195002A (ja) * 2017-05-16 2018-12-06 ファナック株式会社 揺動切削のための表示装置および加工システム
US11517991B2 (en) 2017-10-13 2022-12-06 Citizen Watch Co., Ltd. Machine tool including vibration restriction means
WO2019073908A1 (ja) 2017-10-13 2019-04-18 シチズン時計株式会社 工作機械
JP7152649B2 (ja) 2018-02-15 2022-10-13 スター精密株式会社 旋盤
JP2019136852A (ja) * 2018-02-15 2019-08-22 スター精密株式会社 旋盤
WO2019159533A1 (ja) 2018-02-15 2019-08-22 スター精密株式会社 旋盤
US11054805B2 (en) 2018-04-24 2021-07-06 Fanuc Corporation Display device
JP2019191857A (ja) * 2018-04-24 2019-10-31 ファナック株式会社 表示装置
JP2020112985A (ja) * 2019-01-10 2020-07-27 シチズン時計株式会社 工作機械の制御装置および工作機械
WO2020145213A1 (ja) * 2019-01-10 2020-07-16 シチズン時計株式会社 工作機械の制御装置および工作機械
JP7264643B2 (ja) 2019-01-10 2023-04-25 シチズン時計株式会社 工作機械の制御装置および工作機械
TWI808294B (zh) * 2019-01-10 2023-07-11 日商西鐵城時計股份有限公司 工具機的控制裝置以及工具機
US12090596B2 (en) 2019-01-10 2024-09-17 Citizen Watch Co., Ltd. Control device for machine tool and machine tool
WO2021245852A1 (ja) * 2020-06-03 2021-12-09 三菱電機株式会社 数値制御装置、制御システムおよび数値制御方法

Also Published As

Publication number Publication date
CN110561186B (zh) 2021-06-15
KR102344443B1 (ko) 2021-12-27
TWI661892B (zh) 2019-06-11
JP6416217B2 (ja) 2018-10-31
EP3124174B1 (en) 2020-05-27
US10268176B2 (en) 2019-04-23
KR20160130505A (ko) 2016-11-11
EP3124174A4 (en) 2018-01-31
TW201600219A (zh) 2016-01-01
CN110561186A (zh) 2019-12-13
EP3124174A1 (en) 2017-02-01
US20170108846A1 (en) 2017-04-20
ES2807617T3 (es) 2021-02-23
JPWO2015146945A1 (ja) 2017-04-13
CN106232293B (zh) 2020-01-10
CN106232293A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6416217B2 (ja) 工作機械の制御装置及びこの制御装置を備えた工作機械
JP6709163B2 (ja) 工作機械及びこの工作機械の制御装置
WO2017051745A1 (ja) 工作機械の制御装置及びこの制御装置を備えた工作機械
JP6470085B2 (ja) 工作機械及びこの工作機械の制御装置
JP6416218B2 (ja) 工作機械の制御装置及びこの制御装置を備えた工作機械
US10414010B2 (en) Machine tool and control apparatus of the machine tool
JP6289766B2 (ja) 工作機械の制御装置、工作機械
WO2017051705A1 (ja) 工作機械の制御装置及びこの制御装置を備えた工作機械
WO2018181447A1 (ja) 工作機械の制御装置および工作機械
JP2020017249A (ja) 工作機械の制御装置および工作機械
JP6517061B2 (ja) 工作機械及びこの工作機械の制御装置
JP2018043306A (ja) 工作機械およびその制御装置
JP2016182652A (ja) 工作機械及びこの工作機械の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768422

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510362

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15129238

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015768422

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768422

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167029045

Country of ref document: KR

Kind code of ref document: A