WO2015146464A1 - 自動変速機の変速制御装置 - Google Patents

自動変速機の変速制御装置 Download PDF

Info

Publication number
WO2015146464A1
WO2015146464A1 PCT/JP2015/055674 JP2015055674W WO2015146464A1 WO 2015146464 A1 WO2015146464 A1 WO 2015146464A1 JP 2015055674 W JP2015055674 W JP 2015055674W WO 2015146464 A1 WO2015146464 A1 WO 2015146464A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
inter
shift
vehicle distance
downshift
Prior art date
Application number
PCT/JP2015/055674
Other languages
English (en)
French (fr)
Inventor
野口 智之
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CA2941092A priority Critical patent/CA2941092A1/en
Priority to CN201580015357.XA priority patent/CN106104097B/zh
Priority to JP2016510163A priority patent/JP6171086B2/ja
Priority to US15/127,269 priority patent/US10337606B2/en
Publication of WO2015146464A1 publication Critical patent/WO2015146464A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18136Engine braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H2059/6815Post shift value of gearing, i.e. calculated or estimated parameters after shift is completed, e.g. estimated output torque after shift is performed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • F16H2061/022Calculation or estimation of optimal gear ratio, e.g. best ratio for economy drive or performance according driver preference, or to optimise exhaust emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/44Inputs being a function of speed dependent on machine speed of the machine, e.g. the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/60Inputs being a function of ambient conditions

Definitions

  • the present invention relates to a shift control device for an automatic transmission having an automatic shift mode and a manual shift mode.
  • an automatic shift mode in which a shift stage or a gear ratio to be set is determined based on a running state and a shift operation is performed, and a shift operation instructed by a user's manual operation is performed.
  • One having a manual shift mode is known.
  • Such an automatic transmission is, for example, instructed to shift up or down one step at a time by operating a shift lever in a manual range, or up one step each time a paddle switch provided on the steering wheel is pressed.
  • a shift or downshift a shift operation can be instructed by manual operation (for example, see Patent Document 1 below).
  • Patent Document 2 acquires information such as the relative position and relative distance from the preceding vehicle using a radar device, and the inter-vehicle distance is constant based on the information.
  • the vehicle speed is controlled so as to follow the vehicle ahead while keeping the vehicle.
  • Patent Document 3 discloses a collision reduction brake control that avoids or reduces a collision by automatically operating a brake when an external sensor such as a camera or a radar device detects an object in front of the vehicle. Yes.
  • the present invention has been made in view of the above points, and in a shift control device for an automatic transmission having an automatic shift mode and a manual shift mode, a multi-stage downshift can be performed only by performing a downshift instruction by a manual operation once. It is an object of the present invention to provide a shift control device for an automatic transmission that can shift.
  • the shift control device for an automatic transmission includes an automatic shift mode in which a shift stage or a gear ratio to be set is determined based on a running state and a shift operation is performed, and manual operation by a driver (12, 14, 16). , 18)
  • the target gear position based on the inter-vehicle distance is set. Since it is configured to determine, a multi-stage downshift according to the determined target shift speed, such as a downshift of two speeds, can be executed only by performing a manual downshift instruction once. Further, since the target shift speed is determined based on the inter-vehicle distance, it is possible to determine the optimum target shift speed corresponding to the inter-vehicle distance from the preceding vehicle. Therefore, it is possible to automatically obtain the intended engine brake amount only by performing a manual downshift instruction once.
  • the target shift speed determining means is configured to execute the predetermined target after the downshift is performed based on the vehicle speed of the host vehicle and the preceding vehicle, the inter-vehicle distance, and the predetermined target inter-vehicle distance.
  • the vehicle is further provided with a deceleration calculation means (36) for calculating a deceleration required to realize the inter-vehicle distance, and the target shift speed is determined based on the calculated deceleration.
  • the predetermined set value is a predetermined target inter-vehicle distance that is desired to be realized after the downshift is performed.
  • a downshift by two steps for example, a downshift by two steps is determined only by a single manual shift down instruction. Multiple downshifts according to the target shift speed can be executed. For this reason, there is an excellent effect that the intended engine brake can be obtained without taking time.
  • the functional block diagram which shows the structure of the transmission control apparatus of the automatic transmission which concerns on one Embodiment of this invention.
  • the flowchart which shows an example of the procedure which performs a downshift according to manual operation.
  • the figure explaining the calculation method of required deceleration The figure explaining the comparison of the calculated required deceleration and the expected deceleration of each gear stage.
  • FIG. 1 is a functional block diagram showing a configuration of a shift control device for an automatic transmission according to an embodiment of the present invention.
  • the automatic transmission 100 is mounted on an automobile (vehicle) and transmits the output of an engine (not shown) to drive wheels (not shown).
  • the automatic transmission 100 includes a torque converter and a multi-stage transmission gear mechanism. And one shift stage is selected from the plurality of shift stages by the shift operation.
  • the speed change control device 10 includes a CPU, a memory, an A / D converter, a D / A converter, and a microcomputer having an interface for capturing various information including detection signals of various sensors and input signals by various user operations.
  • the CPU executes the software program stored in the memory to control the shift operation of the automatic transmission 100.
  • the shift control device 10 determines an automatic shift mode in which a shift stage or a gear ratio to be set is determined based on a running state and a shift operation is performed, and a manual shift mode in which a shift operation instructed by a driver's manual operation is performed. Prepare.
  • the shift control device 10 includes a shift lever 12, a paddle switch (“paddle SW” in the figure) 14, an engine brake switch (“engine brake SW” in the figure) as means for instructing a shift operation by manual operation of the driver (user). ) 16 and voice recognition means (“voice recognition” in the figure) 18, and an instruction signal input using these shift lever 12, paddle switch 14, engine brake switch 16 or voice recognition means 18 is a shift control device. 10 is output.
  • the shift lever 12 includes shift positions such as a parking range, a reverse range, a neutral range, a drive range, and a sports range (or manual shift range). When the shift lever 12 is in the drive range, the automatic transmission mode is selected, and when it is in the sports range, the manual transmission mode is selected.
  • the user can issue a shift stage upshift instruction or a shift stage downshift instruction by manual operation using the shift lever 12, paddle switch 14, engine brake switch 16 or voice recognition means 18.
  • the shift lever 12 can input an upshift instruction or a downshift instruction by manual operation when in the sports range.
  • the paddle switch 14 includes an upshift switch and a downshift switch provided on the steering wheel, and inputs an upshift instruction by manually operating the upshift switch, and inputs a downshift instruction by manually operating the downshift switch. Configured to do.
  • the engine brake switch 16 is a switch for giving an instruction to apply the engine brake, and inputs a downshift instruction to the transmission control device 10 according to a manual operation.
  • the voice recognizing means 18 is a means for inputting various instructions including an upshift instruction and a downshift instruction to the transmission control device 10 according to the voice uttered by the driver, and a microphone for acquiring the voice and the acquired voice.
  • a voice recognition module that performs processing for recognizing and supplying an instruction signal corresponding to the voice to the shift control device 10 is configured.
  • the voice processing module includes, for example, a computer including a CPU and a memory and a software program that causes the computer to execute a voice recognition function.
  • the shift control device 10 is connected to a radar device 20, an accelerator opening sensor 22, and a vehicle state detection sensor 24.
  • the radar device 20 is an example of means for acquiring information related to the traveling state of the front vehicle such as the vehicle speed and the inter-vehicle distance of the front vehicle.
  • the radar device 20 emits an electromagnetic wave such as a laser beam or a millimeter wave toward an appropriate detection direction (for example, in front of the host vehicle), and the transmitted electromagnetic wave is reflected by a vehicle in front of the host vehicle.
  • the reflected wave is received and a detection signal corresponding to the reflected wave is output to the shift control device 10.
  • the shift control device 10 can acquire information on the traveling state of the front vehicle such as the vehicle speed of the front vehicle and the inter-vehicle distance between the host vehicle and the front vehicle.
  • the accelerator opening sensor 22 detects the accelerator opening of the engine according to the accelerator pedal operation by the driver, and outputs a detection signal to the shift control device 10.
  • the vehicle state detection sensor 24 is for detecting information on the traveling state of the host vehicle, and includes, for example, a vehicle speed sensor that detects the speed of the host vehicle, and outputs the detected vehicle speed to the transmission control device 10.
  • the vehicle state detection sensor 24 may include a yaw rate sensor, a steering angle sensor, a navigation device using a GPS measurement signal, and the like in addition to the vehicle speed sensor.
  • the shift control device 10 includes an inter-vehicle distance measuring unit 30, an accelerator opening measuring unit 32, an inter-vehicle distance determining unit 34, a deceleration calculating unit 36, and a target shift stage determining unit 38 as functional modules realized by software processing.
  • the inter-vehicle distance measuring means 30 measures the inter-vehicle distance between the host vehicle and the preceding vehicle based on the detection signal of the radar device 20.
  • the accelerator opening measuring means 32 measures the accelerator opening of the engine based on the detection signal input from the accelerator opening sensor 22.
  • the inter-vehicle distance determination means 34 is used when a downshift instruction is manually performed using the shift lever 12, paddle switch 14, engine brake switch 16 or voice recognition means 18, and the accelerator opening of the engine is fully closed.
  • the deceleration calculation means 36 calculates a deceleration necessary for realizing a predetermined target inter-vehicle distance after executing the downshift, based on the traveling state of the host vehicle and the preceding vehicle including the inter-vehicle distance.
  • the target shift speed determining means 38 determines a target shift speed that is a target of downshift control according to the calculated deceleration. Then, the shift control device 10 controls the shift operation of the automatic transmission 100 so as to downshift to the determined target shift stage.
  • step S1 the CPU of the transmission control device 10 determines whether or not the instruction is a downshift instruction based on the instruction signal input from the shift lever 12, the paddle switch 14, the engine brake switch 16 or the voice recognition means 18. In addition, it is determined whether or not the accelerator opening ("AP" in the figure) of the engine measured by the accelerator opening measuring means 32 is in a fully closed state. When an upshift is instructed by a manual operation, or when the accelerator opening is not in a fully closed state (NO in step S1), the CPU of the transmission control device 10 ends the process.
  • AP accelerator opening
  • the CPU of the speed change control device 10 in step S2 determines the current inter-vehicle distance measured by the inter-vehicle distance measuring means 30. It is determined whether the distance is equal to or less than a predetermined set value (operation of the inter-vehicle distance determination means 34).
  • the predetermined set value can be set to an inter-vehicle distance that allows the user to feel that the inter-vehicle distance from the preceding vehicle is approaching and to decelerate to increase the inter-vehicle distance.
  • this set value can be set to the same value as a target inter-vehicle distance described later.
  • the CPU of the transmission control device 10 determines that the CPU of the transmission control device 10 is set to the inter-vehicle distance in step S3. Based on the target gear position, the target gear position determining means 38 operates.
  • step S3 the CPU of the speed change control device 10 calculates a deceleration (referred to as “necessary deceleration”) necessary for realizing a predetermined target inter-vehicle distance after the downshift is performed by the deceleration calculation means 36. Then, the calculated required deceleration is compared with each deceleration assumed to be realized when shifting to each gear (referred to as “expected deceleration”), and the expected change of each gear is compared. Of the speeds, a shift speed that is equal to or higher than the required deceleration and has an expected deceleration closest to the required deceleration is selected as the target shift speed. As an example, the selection of the target shift stage can be configured to limit the number of stages that are allowed to be downshifted in response to a single instruction, for example, allowing up to a maximum of 3 downshifts.
  • the predetermined target inter-vehicle distance is set as the inter-vehicle distance that is desired to be realized after the downshift is performed, and can be set to the same value as the predetermined set value used for the determination in step S2. That is, the predetermined target inter-vehicle distance can also be set to an inter-vehicle distance that allows the user to feel that the inter-vehicle distance from the preceding vehicle is approaching and to decelerate to widen the inter-vehicle distance, as in the set value.
  • the necessary deceleration is calculated based on the vehicle speed at the time when the downshift instruction is given (current), the target speed to be realized after execution of the downshift, the current inter-vehicle distance, and the predetermined target inter-vehicle distance.
  • the current vehicle speed can be acquired from the vehicle state detection sensor 24.
  • the target speed is, for example, the vehicle speed of the preceding vehicle.
  • the vehicle speed of the preceding vehicle can be acquired from the radar device 20.
  • the acquisition of the vehicle speed and the inter-vehicle distance of the preceding vehicle from the radar device 20 has been conventionally performed in the following vehicle follow-up control function, etc. Data on the vehicle speed and distance between the vehicles ahead can be used.
  • FIG. 3 is a graph for explaining a method of calculating the required deceleration, where the vertical axis represents the vehicle speed and the horizontal axis represents time.
  • the amount of change necessary to expand the current inter-vehicle distance to the target inter-vehicle distance after executing the downshift (that is, the difference between the current inter-vehicle distance and the target inter-vehicle distance) is ⁇ S, and the current vehicle speed and the current inter-vehicle distance are Let ⁇ t be the time required to change the target vehicle speed and the target inter-vehicle distance.
  • the change amount ⁇ S of the inter-vehicle distance can be calculated by subtracting the target inter-vehicle distance from the current inter-vehicle distance.
  • the time ⁇ t can be calculated based on the change amount ⁇ S and the speed change ⁇ v from the current vehicle speed to the target vehicle speed.
  • the necessary deceleration is represented as a ratio (inclination) for decelerating the vehicle speed from the current vehicle speed to the target speed after the current time ⁇ t. Accordingly, the necessary deceleration can be calculated from the speed change ⁇ v from the current vehicle speed to the target vehicle speed and the time ⁇ t.
  • the expected deceleration of each gear can be calculated by the following equation (1) based on, for example, the ratio of the gear, the engine friction torque, the tire radius, and the running resistance.
  • the ratio is represented by the ratio of the transmission input rotational speed to the transmission output rotational speed at the gear stage.
  • Expected deceleration ⁇ friction torque * ratio / (2 * tire radius) + running resistance ⁇ / vehicle weight (1)
  • step S4 the CPU of the shift control device 10 controls the shift operation of the automatic transmission 100 so as to downshift to the target shift stage determined in step S3.
  • the CPU of the transmission control device 10 performs a downshift for two steps from the eighth forward speed to the sixth forward speed. Therefore, a multi-stage downshift according to the determined target shift stage, such as a downshift of two stages, can be executed only by performing a manual downshift instruction once.
  • the multi-stage downshift control is, for example, from the current 8th forward speed to the 7th forward speed, from the 7th forward speed to the target 6th forward speed, etc.
  • the shift may be performed by sequentially downshifting, or directly downshifting from the current shift speed to the target shift speed, for example, from the current eighth forward speed to the target forward sixth speed. You may go. Further, in step S3, the necessary deceleration based on various vehicle traveling conditions including the inter-vehicle distance is calculated, and the target shift stage corresponding to the necessary deceleration speed is determined. Therefore, the optimum speed corresponding to the inter-vehicle distance from the preceding vehicle is determined. A target speed can be determined. Therefore, it is possible to automatically obtain the intended engine brake amount only by performing a manual downshift instruction once.
  • the CPU of the shift control device 10 displays the determined target shift speed on an appropriate display such as a meter, and also displays the target shift speed.
  • a warning display may be made to downshift to the stage. The warning display is performed by, for example, a blinking interval when blinking the gear position, or other appropriate display functions.
  • step S1 if a downshift instruction is issued by manual operation and the accelerator opening is fully closed (YES in step S1), but the current inter-vehicle distance is equal to or greater than a predetermined set value (NO in step S2), That is, when the inter-vehicle distance is large, in step S5, the CPU of the transmission control device 10 performs a normal downshift. That is, the CPU of the shift control device 10 controls the shift operation of the automatic transmission 100 so as to shift down by one step in response to a downshift instruction by one manual operation.
  • D paddle function that accepts an upshift instruction and a downshift instruction by manual operation of the paddle switch 14 even when the automatic transmission mode is selected. Also in the D paddle function, it is possible to perform the downshift control to the determined target gear position by executing the processing of steps S1 to S4 in accordance with the manual downshift instruction.
  • the selected state of the target shift stage is released by a predetermined D paddle release condition (cruise determination or the like) as in the normal D paddle function. After the release, the control returns to the shift operation control in the normal automatic shift mode.
  • the downshift control corresponding to the manual operation shown in FIG. 2 is executed. Further, when safety functions such as the collision reduction brake control and the VSA function are enabled, the downshift instruction by these functions has priority over the downshift instruction according to the manual operation.
  • the CPU of the shift control device 10 determines the target shift stage determined in step S3 and the automatic follow-up running function. By comparing the gears required by the above, the smaller one is selected.
  • step S3 After the target shift speed is determined in step S3, before the downshift is executed in step S4, even if the inter-vehicle distance is increased due to, for example, the preceding vehicle leaving the lane.
  • a downshift to the target gear determined in step S3 may be executed.
  • step S3 the shift control device 10
  • the CPU may determine the target shift speed in consideration of the brake operation and / or the deceleration due to the brake cooperative control.
  • the shift control device It is assumed that the CPU 10 does not perform the downshift control of FIG.
  • the method for calculating the deceleration is not limited to the method described above.
  • the rules for determining the target shift speed can be changed, added, and combined as appropriate.
  • the means for instructing the downshift by manual operation may include only one of the shift lever 12, the paddle switch 14, the engine brake switch 16, and the voice recognition means 18, or the shift lever 12, the paddle switch 14,
  • the device is not limited to the engine brake switch 16 and the voice recognition means 18 and may be any device as long as it can input a downshift instruction by manual operation.
  • the automatic transmission 100 may have any mechanism as long as it has multiple speeds and has an automatic speed change mode and a dynamic speed change mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Control Of Transmission Device (AREA)

Abstract

自動変速モードと、運転者の手動操作によって指示された変速動作を行う手動変速モードとを備えた自動変速機(100)の変速制御装置(10)であって、自車両と前方車両との車間距離を測定する車間距離測定手段と(30)、エンジンのアクセル開度を測定するアクセル開度測定手段(32)と、前記運転者の手動操作によりダウンシフトが指示され、且つ、前記測定されたアクセル開度が全閉状態である場合に(S1)、前記測定された車間距離が所定の設定値以下であるかどうか判定する車間距離判定手段と(34、S2)、前記車間距離が前記設定値以下である場合、前記車間距離に基づく目標変速段を決定する目標変速段決定手段と(38、S3)を備え、決定した目標変速段にダウンシフトする。

Description

自動変速機の変速制御装置
 本発明は、自動変速モードと手動変速モードとを備えた自動変速機の変速制御装置に関する。
 車両用の自動変速機の変速制御装置として、設定すべき変速段若しくは変速比を走行状態に基づいて判断して変速動作を行う自動変速モードと、ユーザの手動操作によって指示された変速動作を行う手動変速モードとを備えるものが知られる。このような自動変速機は、例えば、マニュアルレンジでのシフトレバー操作により、1段ずつアップシフト又はダウンシフトを指示したり、或いは、ステアリングホイールに設けられたパドルスイッチを押す毎に1段ずつアップシフト又はダウンシフトを指示したりすることにより、手動操作によって変速動作を指示できるように構成されている(例えば、下記特許文献1を参照)。
 上記の通り、従来の自動変速機の手動変速モードにおいては、ダウンシフト操作を行う場合、1回の操作毎に1段ずつダウンシフト指示することしかできなった。このため、多段のダウンシフトを行いたい場合は、複数回ダウンシフト操作を行わなければならず、多段のダウンシフトを行うのに時間がかかる。手動操作によるダウンシフトは、1回に約500ミリ秒~1秒ほどの時間を要するため、例えば4段分のダウンシフトを行いたい場合は、少なくとも2秒ほどの時間がかかってしまう。
 近年の自動変速機は多段化著しく、ギヤ比の段階差が小さいため、1回の操作毎に1段ずつダウンシフトするだけでは、エンジンブレーキの作用が不十分なことがある。このため、手動のダウンシフト操作によりエンジンブレーキをかける場合に、意図するエンジンブレーキ量を得るまでに複数回のダウンシフト操作が必要となり、時間がかかってしまうことがある。そのため、例えば前方車両との車間距離が近づいたことに反応してユーザがエンジンブレーキをかけようとした場合、車間距離を保つことができず不用意に、自車両が前方車両に近づいてしまう恐れがあるなど、手動操作によるエンジンブレーキの使い勝手が悪かった。
 前方車両との車間距離を保つための従来技術として、例えば特許文献2は、レーダー装置により前方車両との相対位置や相対距離等の情報を取得して、それら情報に基づいて、車間距離を一定に保ちつつ前方車両に追従走行するよう車速を制御することを開示している。
 また、例えば特許文献3は、カメラやレーダー装置等の外界センサにより車両前方の物体を検出した場合に、自動的にブレーキを作動させることで衝突を回避乃至軽減する衝突軽減ブレーキ制御を開示している。
特開2007-132385号公報 特開2007-62711号公報 特開2007-91207号公報
 本発明は上述の点に鑑みてなされたもので、自動変速モードと手動変速モードとを備えた自動変速機の変速制御装置において、手動操作によるダウンシフト指示を1回行うだけで、多段のダウンシフトを行えるようにした自動変速機の変速制御装置を提供することを目的とする。
 本発明に係る自動変速機の変速制御装置は、設定すべき変速段若しくは変速比を走行状態に基づいて判断して変速動作を行う自動変速モードと、運転者の手動操作(12、14、16、18)によって指示された変速動作を行う手動変速モードとを備えた自動変速機(100)の変速制御装置(10)であって、自車両と前方車両との車間距離を測定する車間距離測定手段と(30)、エンジンのアクセル開度を測定するアクセル開度測定手段(32)と、前記運転者の手動操作によりダウンシフトが指示され、且つ、前記測定されたアクセル開度が全閉状態である場合に(S1)、前記測定された車間距離が所定の設定値以下であるかどうか判定する車間距離判定手段と(34、S2)、前記車間距離が前記設定値以下である場合、前記車間距離に基づく目標変速段を決定する目標変速段決定手段と(38、S3)を備え、前記決定した目標変速段にダウンシフトすること(S4)を特徴とする。
 アクセル開度が全閉状態で運転者の手動操作によりダウンシフトが指示されたときに、前方車両との車間距離が所定の設定値以下である場合には、その車間距離に基づく目標変速段を決定するように構成されるので、手動操作によるシフトダウン指示を1回行うだけで、例えば2段分のダウンシフトなど、決定された目標変速段に応じた多段のダウンシフトを実行できる。また、車間距離に基づいて目標変速段を決定するので、前方車両との車間距離に応じた最適な目標変速段を決定できる。従って、手動操作によるシフトダウン指示を1回行うだけで、自動的に、意図するエンジンブレーキ量を得ることができる。
 一実施形態において、前記目標変速段決定手段は、前記自車両及び前記前方車両のそれぞれの車速と、前記車間距離と、所定の目標車間距離とに基づいて、該ダウンシフト実行後に該所定の目標車間距離を実現するために必要な減速度を算出する減速度算出手段(36)を更に備え、該算出した減速度に基づいて前記目標変速段を決定することを特徴とする。これにより、ダウンシフト実行後の車間距離が所定の目標車間距離となるような、目標変速段を決定することができる。従って、手動操作によるシフトダウン指示を1回行うだけで、車間距離を前記目標車間距離に広げるようなエンジンブレーキをかけることができる。このため、自動変速機において、手動操作によるエンジンブレーキの使い勝手が向上する。
 また、一実施形態に係る前記車間距離判定手段において、前記所定の設定値は、前記ダウンシフト実行後に実現したい所定の目標車間距離であることを特徴とする。これにより、前方車両との車間距離が目標車間距離以下にまで狭まっている場合に、目標変速段の決定と、その目標変速段へのダウンシフトを実行できるようになる。従って、手動操作によるシフトダウン指示を1回行うだけで、適切なエンジンブレーキをかけて、適切な車両間隔に保つことができる。
 なお、上記で括弧内に記した図面参照符号は、後述する実施形態において対応する構成要素等を参考のために例示したものである。
 本発明によれば、自動変速モードと手動変速モードとを備えた自動変速機の変速制御装置において、手動操作によるシフトダウン指示を1回行うだけで、例えば2段分のダウンシフトなど、決定された目標変速段に応じた多段のダウンシフトを実行できる。このため、時間をかけずに意図するエンジンブレーキを得ることができる、という優れた効果を奏する。
本発明の一実施形態に係る自動変速機の変速制御装置の構成を示す機能ブロック図。 手動操作に応じてダウンシフトを実行する手順の一例を示すフローチャート。 必要減速度の算出方法を説明する図。 算出された必要減速度と各変速段の期待減速度の比較を説明する図。
 以下、この発明の実施の形態を添付図面に従って詳細に説明する。
 図1は、本発明の一実施形態に係る自動変速機の変速制御装置の構成を示す機能ブロック図である。自動変速機100は、自動車(車両)に搭載され、図示しないエンジンの出力を図しない駆動輪に伝達するもので、トルクコンバータと多段変速歯車機構とからなり、変速制御装置10の制御により変速動作を行い、該変速動作により複数変速段のうち1つの変速段を選択するように構成される。
 変速制御装置10は、CPU、メモリ、A/D変換器、D/A変換器、及び、各種センサの検出信号や各種ユーザ操作による入力信号等を含む各種情報を取り込むインタフェースを備えるマイクロコンピュータからなり、メモリに記憶されたソフトウェアプログラムをCPUが実行することにより、前記自動変速機100の変速動作を制御する。変速制御装置10は、設定すべき変速段若しくは変速比を走行状態に基づいて判断して変速動作を行う自動変速モードと、運転者の手動操作によって指示された変速動作を行う手動変速モードとを備える。
 変速制御装置10は、運転者(ユーザ)の手動操作よって変速動作を指示する手段として、シフトレバー12、パドルスイッチ(図において「パドルSW」)14、エンジンブレーキスイッチ(図において「エンジンブレーキSW」)16及び音声認識手段(図において「音声認識」)18を備えており、これらシフトレバー12、パドルスイッチ14、エンジンブレーキスイッチ16又は音声認識手段18を用いて入力された指示信号が変速制御装置10へ出力される。シフトレバー12は、例えば駐車レンジ、後進レンジ、中立レンジ、ドライブレンジ及びスポーツレンジ(又はマニュアルシフトレンジ)といったシフト位置を備えている。シフトレバー12がドライブレンジにあるときは、自動変速モードが選択され、スポーツレンジにあるときは、手動変速モードが選択される。
 手動変速モードにおいて、ユーザは、シフトレバー12、パドルスイッチ14、エンジンブレーキスイッチ16又は音声認識手段18を用いた手動操作によって、変速段のアップシフト指示又は変速段のダウンシフト指示を変速制御装置10に入力できる。シフトレバー12は、スポーツレンジにあるとき手動操作によってアップシフト指示又はダウンシフト指示を入力できる。パドルスイッチ14は、ステアリングホイールに設けられたアップシフトスイッチ及びダウンシフトスイッチとからなり、アップシフトスイッチの手動操作によってアップシフト指示を入力し、また、ダウンシフトスイッチの手動操作によってダウンシフト指示を入力するように構成される。エンジンブレーキスイッチ16は、エンジンブレーキをかける指示を行うためのスイッチであり、手動操作に応じてダウンシフト指示を変速制御装置10に入力する。音声認識手段18は、運転者の発話する音声によってアップシフト指示及びダウンシフト指示を含む各種指示を変速制御装置10に入力するための手段であり、該音声を取得するマイクと、取得した音声を認識して、その音声に応じた指示信号を変速制御装置10へ供給する処理を行う音声認識モジュールを含んで構成される。音声処理モジュールは、例えばCPU及びメモリを含むコンピュータと該コンピュータに音声認識機能を実行させるソフトウェアプログラムとからなる。
 変速制御装置10には、レーダー装置20、アクセル開度センサ22及び車両状態検出センサ24が接続される。
 レーダー装置20は、前方車両の車速や車間距離など前方車両の走行状況に関する情報を取得するための手段の一例である。レーダー装置20は、例えばレーザ光やミリ波等の電磁波を適宜の検知方向(例えば、自車両の前方)に向けて発信すると共に、この発信した電磁波が自車両の前方の車両によって反射されたときに、その反射波を受信し、反射波に応じた検出信号を変速制御装置10へ出力する。レーダー装置20の検出信号に基づいて、変速制御装置10は、前方車両の車速や、自車両と前方車両との車間距離など、前方車両の走行状況に関する情報を取得できる。
 アクセル開度センサ22は、運転者によるアクセルペダル操作に応じたエンジンのアクセル開度を検出し、検出信号を変速制御装置10へ出力する。
 車両状態検出センサ24は、自車両の走行状況の情報を検出するためのもので、例えば自車両の速度を検出する車速センサからなり、検出した車速を変速制御装置10へ出力する。車両状態検出センサ24は、車速センサの他にも、ヨーレートセンサ、舵角センサ、GPS測定信号を使ったナビゲーション装置などを含み得る。
 変速制御装置10は、ソフトウェア処理により実現される機能モジュールとして、車間距離測定手段30、アクセル開度測定手段32、車間距離判定手段34、減速度算出手段36、及び、目標変速段決定手段38を備える。車間距離測定手段30は、レーダー装置20の検出信号に基づいて、自車両と前方車両の車間距離を測定する。アクセル開度測定手段32は、アクセル開度センサ22から入力された検出信号に基づいて、エンジンのアクセル開度を測定する。車間距離判定手段34は、シフトレバー12、パドルスイッチ14、エンジンブレーキスイッチ16又は音声認識手段18を用いて手動操作でダウンシフト指示が行われ、且つ、エンジンのアクセル開度が全閉の場合に、車間距離測定手段30により測定した車間距離が所定の設定値よりも小さいかどうか判定する。減速度算出手段36は、車間距離を含む自車両及び前方車両の走行状態に基づいて、ダウンシフト実行後に所定の目標車間距離を実現するために必要な減速度を算出する。目標変速段決定手段38は、算出された減速度に応じて、ダウンシフト制御の目標となる目標変速段を決定する。そして、変速制御装置10は、決定した目標変速段にダウンシフトするよう、自動変速機100の変速動作を制御する。
 次に図2のフローチャートを参照して、手動操作によるダウンシフト指示に応じたダウンシフト実行手順の一例を説明する。ユーザが、シフトレバー12、パドルスイッチ14、エンジンブレーキスイッチ16又は音声認識手段18を用いた手動操作により、ダウンシフト指示を入力すると、変速制御装置10のCPUは、その手動操作による1回のダウンシフト指示に応じて、図2に示す処理を起動する。
 ステップS1において、変速制御装置10のCPUは、シフトレバー12、パドルスイッチ14、エンジンブレーキスイッチ16又は音声認識手段18から入力された指示信号に基づき、その指示がダウンシフト指示であるかどうかを判定し、且つ、前記アクセル開度測定手段32により測定されたエンジンのアクセル開度(図において「AP」)が全閉状態かどうかを判定する。手動操作によりアップシフトが指示された場合、又は、アクセル開度が全閉状態でない場合(ステップS1のNO)、変速制御装置10のCPUは、当該処理を終了する。
 手動操作によりダウンシフトが指示され、且つ、アクセル開度が全閉状態の場合(ステップS1のYES)、ステップS2において、変速制御装置10のCPUは、車間距離測定手段30により測定した現在の車間距離が、所定の設定値以下かどうかを判定する(車間距離判定手段34の動作)。所定の設定値は、例えば、ユーザが、前方車両との車間距離が近づいてきたと感じ、車間距離を広げるために減速したいと感じる程度の車間距離に設定できる。この設定値は、一例として、後述する目標車間距離と同じ値に設定できる。
 現在の車間距離が所定の設定値以下である場合(ステップS2のYES)、すなわち車間距離が狭い場合、変速制御装置10のCPUは、ステップS3において、変速制御装置10のCPUは、車間距離に基づく目標変速段を決定する(目標変速段決定手段38の動作)。
 前記ステップS3の処理例を詳しく説明する。変速制御装置10のCPUは、先ず、減速度算出手段36により、ダウンシフト実行後に所定の目標車間距離を実現するために必要な減速度(「必要減速度」と呼ぶ)を算出する。そして、該算出した必要減速度と、各変速段にシフトした場合に実現されるものと想定される各減速度(「期待減速度」と呼ぶ)とを比較して、各変速段の期待変速度のうち、該必要減速度以上であり、且つ、該必要減速度に最も近い期待減速度を持つ変速段を、目標変速段として選択する。一例として、目標変速段の選択は、例えば、最大で3段分のダウンシフトまでは許可する等、1回の指示に応じてダウンシフト許可する段数に制限を設けるように構成できる。
 所定の目標車間距離は、ダウンシフト実行後に実現したい車間距離として設定されるものであり、これは前記ステップS2の判定に用いる所定の設定値と同じ値に設定できる。すなわち、所定の目標車間距離も、前記設定値と同様に、ユーザが、前方車両との車間距離が近づいてきたと感じ、車間距離を広げるために減速したいと感じる程度の車間距離に設定され得る。
 必要減速度の算出方法の一例を説明する。必要減速度は、ダウンシフト指示が行われた時点(現在)の車速と、ダウンシフト実行後に実現したい目標速度と、現在の車間距離と、所定の目標車間距離とに基づいて、算出される。現在の車速は車両状態検出センサ24から取得できる。目標速度は、例えば前方車両の車速である。前方車両の車速は、レーダー装置20から取得できる。なお、レーダー装置20から前方車両の車速や車間距離を取得することは、従来から、前方車両の追従走行制御機能などにおいて行われており、必要減速度の算出処理においても、それら従来の機能で使用される前方車両の車速や車間距離のデータを利用できる。
 図3は必要減速度の算出方法を説明するグラフであり、縦軸が車速、横軸が時間を表す。現在の車間距離をダウンシフト実行後に目標車間距離まで広げるために必要な変化量(すなわち、現在の車間距離と目標車間距離の差分)をΔSとし、また、現在の車速及び現在の車間距離を、目標車速及び目標車間距離に変化させるためにかかる時間をΔtとする。
 車間距離の変化量ΔSは、現在の車間距離から目標車間距離を減算することで算出できる。従って、変化量ΔSと、現在の車速から目標車速までの速度変化Δvとに基づいて、時間Δtを算出できる。
 図3において、必要減速度は、現在の時間Δt後に車速を現在車速から目標速度まで減速させるための比率(傾き)として表される。従って、必要減速度は、現在の車速から目標車速までの速度変化Δvと時間Δtから算出できる。
 また、各変速段の期待減速度は、例えば、その変速段のレシオ、エンジンフリクショントルク、タイヤ半径及び走行抵抗に基づいて、下記式(1)により算出できる。なお、式(1)においてレシオは、その変速段における変速機出力回転数に対する変速機入力回転数の比より表される。
   期待減速度={フリクショントルク*レシオ/(2*タイヤ半径)+走行抵抗}/車重・・・・・・式(1)
 例えば、前進8速段にて走行中にダウンシフト操作が行われた場合に、図4に示す前進5速段(5TH)、前進6速段(6TH)、前進7速段(7TH)の各変速段の減速段と、算出された必要減速度Dを比較すると、この場合、必要減速度Dに最も近いのは、前進5速段の減速度であるが、前進5速段の減速度は必要減速度Dよりも小さく、前述の条件に合わない。仮に前進5速段を選択すると、減速度が出すぎてしまう。従って、該必要減速度D以上であり、且つ、該必要減速度に最も近い減速度を持つ前進6速段が目標変速段として選択される。
 ステップS4において、変速制御装置10のCPUは、前記ステップS3により決定した目標変速段にダウンシフトするよう自動変速機100の変速動作を制御する。例えば、図4に例示する状況では、変速制御装置10のCPUは、前進8速段から前進6速段へ、2段分のダウンシフトを行う。従って、手動操作によるシフトダウン指示を1回行うだけで、例えば2段分のダウンシフトなど、決定された目標変速段に応じた多段のダウンシフトを実行できる。多段のダウンシフト変速制御は、例えば現在の前進8速段から前進7速段へそして前進7速段から目標の前進6速段へ、という具合に、現在の変速段から目標変速段まで1段ずつ順次ダウンシフトするように行ってもよいし、或いは、例えば現在の前進8速段から目標の前進6速段へ、という具合に、現在の変速段から目標変速段まで直接ダウンシフトするように行ってもよい。
 また、前記ステップS3において車間距離を含む各種車両走行状況に基づく必要減速度を算出し、その必要減速速度に応じた目標変速段を決定しているので、前方車両との車間距離に応じた最適な目標変速段を決定できる。従って、手動操作によるシフトダウン指示を1回行うだけで、自動的に、意図するエンジンブレーキ量を得ることができる。
 また、必要減速度はダウンシフト実行後に目標車間距離を実現できるように算出されるので、車間距離を目標車間距離に広げるようなエンジンブレーキをかけることができる。このため、自動変速機において、手動操作によるエンジンブレーキの使い勝手が向上する。
 更に、前記ステップS3において車間距離に基づく目標変速段を決定した後、変速制御装置10のCPUは、決定した目標変速段を、例えばメーター上など、適宜の表示器に表示すると共に、該目標変速段にダウンシフトする旨の警告表示を行ってよい。警告表示は、例えば、変速段を点滅表示する際の点滅間隔や、その他適宜の表示機能によって行う。
 一方、手動操作によりダウンシフト指示が行われ、且つ、アクセル開度が全閉状態であるが(ステップS1のYES)、現在の車間距離が所定の設定値以上の場合(ステップS2のNO)、すなわち車間距離が広い場合、ステップS5において、変速制御装置10のCPUは、通常のダウンシフトを実行する。すなわち、変速制御装置10のCPUは、1回の手動操作によるダウンシフト指示に応じて1段だけダウンシフトするように、自動変速機100の変速動作を制御する。
 前述したユーザ操作に応じたダウンシフト制御を、変速制御装置10によるその他の変速制御機能と併用する場合のルールの一例を説明する。
 自動変速モードが選択されている場合でも、パドルスイッチ14の手動操作によるアップシフト指示及びダウンシフト指示を受け付ける「Dパドル機能」というものが、従来からある。Dパドル機能においても、手動操作のダウンシフト指示に応じて前記ステップS1~S4の処理を実行して、決定した目標変速段へダウンシフト制御することが可能である。この目標変速段の選択状態は、通常のDパドル機能と同様に、所定のDパドル解除条件(クルーズ判定等)により解除される。解除後は通常の自動変速モードによる変速動作制御に戻る。
 また、衝突軽減ブレーキ制御やVSA機能等の安全機能が無効化されている場合であっても、図2に示す手動操作に応じたダウンシフト制御は実行される。また、衝突軽減ブレーキ制御やVSA機能等の安全機能が有効化されている場合は、これら機能によるダウンシフト指示が、手動操作に応じたダウンシフト指示よりも優先される。
 また、自動追従走行機能の実行中に、手動操作のダウンシフト指示に応じてダウンシフトを行う場合は、変速制御装置10のCPUは、前記ステップS3で決定した目標変速段と、自動追従走行機能により要求される変速段を比較して、小さい方を選択する。
 また、前記ステップS3において目標変速段を決定した後、ステップS4にてダウンシフトを実行するより前に、例えば前方車両が車線から離脱する等して車間距離が拡大さてしまった場合であっても、前記ステップS3で決定した目標変速段へのダウンシフトが実行されるように構成してよい。
 また、手動操作のダウンシフト指示に加えて、運転者によるブレーキ操作、及び/又は、自動追従走行機能やVSA機能等によるブレーキ協調制御が行われた場合、前記ステップS3において、変速制御装置10のCPUは、それらブレーキ操作、及び/又は、ブレーキ協調制御による減速度を加味して、目標変速段を決定してよい。
 なお、レーダー装置20等のセンサが故障してしまい、前方車両との車間距離や前方車両の車速が測定できない場合は、ユーザの手動操作によりダウンシフト指示された場合であっても、変速制御装置10のCPUは、図2のダウンシフト制御を実施しないものとする。
 以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。例えば、減速度を算出する方法は前述の方法に限定されない。また、目標変速段を決定するルールも適宜変更、追加、組み合わせが可能である。手動操作によりダウンシフト指示する手段は、シフトレバー12、パドルスイッチ14、エンジンブレーキスイッチ16及び音声認識手段18の何れか1つのみ具備する構成でもよいし、また、シフトレバー12、パドルスイッチ14、エンジンブレーキスイッチ16及び音声認識手段18に限らず、手動操作によりダウンシフト指示を入力できるのであれば、どのような機器でもよい。また、自動変速機100は、多段の変速段を有し、自動変速モードと動変速モードとを備えていれば、どのような機構を有するものでもよい。

Claims (3)

  1.  設定すべき変速段若しくは変速比を走行状態に基づいて判断して変速動作を行う自動変速モードと、運転者の手動操作によって指示された変速動作を行う手動変速モードとを備えた自動変速機の変速制御装置であって、
     自車両と前方車両との車間距離を測定する車間距離測定手段と、
     エンジンのアクセル開度を測定するアクセル開度測定手段と、
     前記運転者の手動操作によりダウンシフトが指示され、且つ、前記測定されたアクセル開度が全閉状態である場合に、前記測定された車間距離が所定の設定値以下であるかどうか判定する車間距離判定手段と、
     前記車間距離が前記設定値以下である場合、前記車間距離に基づく目標変速段を決定する目標変速段決定手段と、
    を備え、前記決定した目標変速段にダウンシフトすることを特徴とする変速制御装置。
  2.  前記目標変速段決定手段は、
     前記自車両及び前記前方車両のそれぞれの車速と、前記車間距離と、所定の目標車間距離とに基づいて、該ダウンシフト実行後に該所定の目標車間距離を実現するために必要な減速度を算出する減速度算出手段を更に備え、
     該算出した減速度に基づいて前記目標変速段を決定することを特徴とする請求項1に記載の自動変速機の変速制御装置。
  3.  前記車間距離判定手段において、前記所定の設定値は、前記ダウンシフト実行後に実現したい所定の目標車間距離であることを特徴とする請求項1又は2に記載の変速制御装置。
PCT/JP2015/055674 2014-03-27 2015-02-26 自動変速機の変速制御装置 WO2015146464A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2941092A CA2941092A1 (en) 2014-03-27 2015-02-26 Shift control device for automatic transmission
CN201580015357.XA CN106104097B (zh) 2014-03-27 2015-02-26 自动变速器的变速控制装置
JP2016510163A JP6171086B2 (ja) 2014-03-27 2015-02-26 自動変速機の変速制御装置
US15/127,269 US10337606B2 (en) 2014-03-27 2015-02-26 Shift control device for automatic transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-067010 2014-03-27
JP2014067010 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015146464A1 true WO2015146464A1 (ja) 2015-10-01

Family

ID=54194995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055674 WO2015146464A1 (ja) 2014-03-27 2015-02-26 自動変速機の変速制御装置

Country Status (5)

Country Link
US (1) US10337606B2 (ja)
JP (1) JP6171086B2 (ja)
CN (1) CN106104097B (ja)
CA (1) CA2941092A1 (ja)
WO (1) WO2015146464A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158340A1 (ja) * 2015-03-27 2016-10-06 アイシン・エィ・ダブリュ株式会社 無段変速機の制御装置および制御方法
JP2018009635A (ja) * 2016-07-13 2018-01-18 スズキ株式会社 車両制御装置
US10400885B2 (en) 2015-03-27 2019-09-03 Aisin Aw Co., Ltd. Control device and control method for continuously variable transmission
KR20200045057A (ko) * 2018-10-19 2020-05-04 현대자동차주식회사 차량의 자동변속기 제어 시스템 및 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10336334B2 (en) * 2016-11-23 2019-07-02 Ford Global Technologies, Llc Regenerative braking downshift control using predictive information
KR102645059B1 (ko) * 2019-06-11 2024-03-08 현대자동차주식회사 차량의 변속 제어 장치 및 방법
CN114228719B (zh) * 2022-02-11 2024-05-07 同济大学 车辆辅助制动方法、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054395A (ja) * 2001-08-20 2003-02-26 Honda Motor Co Ltd 車両の減速制御装置
JP2005147292A (ja) * 2003-11-17 2005-06-09 Toyota Motor Corp 変速機の変速制御装置及び変速機の変速制御方法
JP2006242266A (ja) * 2005-03-02 2006-09-14 Toyota Motor Corp 車輌用の変速制御装置
JP2009156433A (ja) * 2007-12-27 2009-07-16 Aisin Aw Co Ltd 自動変速機の制御装置
JP2009156435A (ja) * 2007-12-27 2009-07-16 Aisin Aw Co Ltd 自動変速機の制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6405132B1 (en) * 1997-10-22 2002-06-11 Intelligent Technologies International, Inc. Accident avoidance system
JP3239727B2 (ja) * 1995-12-05 2001-12-17 トヨタ自動車株式会社 車両の自動運転制御装置
JPH10306872A (ja) * 1997-04-30 1998-11-17 Mitsubishi Motors Corp 車両の自動シフトダウン装置
KR100354032B1 (ko) * 2000-08-21 2002-09-27 현대자동차주식회사 차량용 자동 변속기의 변속 제어방법
JP2003034240A (ja) * 2001-07-25 2003-02-04 Honda Motor Co Ltd 車両の制動制御装置
JP2005164010A (ja) * 2003-12-05 2005-06-23 Toyota Motor Corp 車両の減速制御装置
JP2005162175A (ja) * 2003-12-05 2005-06-23 Toyota Motor Corp 車両の減速制御装置
JP4084359B2 (ja) * 2005-01-25 2008-04-30 リンナイ株式会社 液々熱交換器
JP4689486B2 (ja) 2005-08-01 2011-05-25 本田技研工業株式会社 車両用制御装置
JP4684954B2 (ja) 2005-08-31 2011-05-18 本田技研工業株式会社 車両の走行安全装置
JP4417320B2 (ja) 2005-11-08 2010-02-17 本田技研工業株式会社 自動変速機の変速制御装置
JP2010266045A (ja) * 2009-05-18 2010-11-25 Toyota Motor Corp 変速機の制御装置
JP5510173B2 (ja) * 2010-08-11 2014-06-04 トヨタ自動車株式会社 車両制御装置
JP5786648B2 (ja) * 2011-10-28 2015-09-30 トヨタ自動車株式会社 変速制御装置および変速制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003054395A (ja) * 2001-08-20 2003-02-26 Honda Motor Co Ltd 車両の減速制御装置
JP2005147292A (ja) * 2003-11-17 2005-06-09 Toyota Motor Corp 変速機の変速制御装置及び変速機の変速制御方法
JP2006242266A (ja) * 2005-03-02 2006-09-14 Toyota Motor Corp 車輌用の変速制御装置
JP2009156433A (ja) * 2007-12-27 2009-07-16 Aisin Aw Co Ltd 自動変速機の制御装置
JP2009156435A (ja) * 2007-12-27 2009-07-16 Aisin Aw Co Ltd 自動変速機の制御装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158340A1 (ja) * 2015-03-27 2016-10-06 アイシン・エィ・ダブリュ株式会社 無段変速機の制御装置および制御方法
US10400885B2 (en) 2015-03-27 2019-09-03 Aisin Aw Co., Ltd. Control device and control method for continuously variable transmission
US10400886B2 (en) 2015-03-27 2019-09-03 Aisin Aw Co., Ltd. Control device and control method for continuously variable transmission
JP2018009635A (ja) * 2016-07-13 2018-01-18 スズキ株式会社 車両制御装置
KR20200045057A (ko) * 2018-10-19 2020-05-04 현대자동차주식회사 차량의 자동변속기 제어 시스템 및 방법
KR102663666B1 (ko) * 2018-10-19 2024-05-08 현대자동차주식회사 차량의 자동변속기 제어 시스템 및 방법

Also Published As

Publication number Publication date
JP6171086B2 (ja) 2017-07-26
US20180100579A1 (en) 2018-04-12
JPWO2015146464A1 (ja) 2017-04-13
CN106104097A (zh) 2016-11-09
US10337606B2 (en) 2019-07-02
CA2941092A1 (en) 2015-10-01
CN106104097B (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
JP6171086B2 (ja) 自動変速機の変速制御装置
JP6330731B2 (ja) 車両の制御装置
US10202121B2 (en) Stop control device
JP5076363B2 (ja) 変速操作指示装置
KR101566731B1 (ko) 차량용 변속 제어 방법 및 장치
KR101745152B1 (ko) 전자동 주차 시스템 및 그 동작 방법
JP2015000717A (ja) 運転者の短期運転性向を判断する装置および方法
JP2006207652A (ja) 車両の制御装置
JP6389602B2 (ja) 運転者の短期運転性向を判断する装置及び方法
US9387858B2 (en) System and method of controlling shift for vehicle
JP2018158678A (ja) 走行制御装置、車両および走行制御方法
US20210221379A1 (en) Control device for vehicles
CN106468352B (zh) 基于本车辆和前方车辆间相对速度控制换档的方法和装置
JP2006224882A (ja) 車両の減速制御装置
JP6368803B2 (ja) 自動変速機の変速制御装置
JP7276177B2 (ja) 運転支援装置、車両、及び運転支援方法
US10288168B2 (en) Transmission control device for automatic transmission
WO2013046959A1 (ja) 走行制御装置
KR20130044088A (ko) 차량의 사고 발생 시 변속기를 제어하는 장치 및 그 방법
JP2006071084A (ja) 車両用駆動力制御装置
JP4525364B2 (ja) 車輌用駆動力制御装置
JP2014211177A (ja) 運転支援装置
JP2005308179A (ja) 変速機の制御装置
JP2017218100A (ja) 車両の降坂速度制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15767868

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510163

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2941092

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15127269

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15767868

Country of ref document: EP

Kind code of ref document: A1