WO2015146333A1 - 光電変換素子 - Google Patents

光電変換素子 Download PDF

Info

Publication number
WO2015146333A1
WO2015146333A1 PCT/JP2015/053803 JP2015053803W WO2015146333A1 WO 2015146333 A1 WO2015146333 A1 WO 2015146333A1 JP 2015053803 W JP2015053803 W JP 2015053803W WO 2015146333 A1 WO2015146333 A1 WO 2015146333A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor film
type semiconductor
electrode layer
substrate
photoelectric conversion
Prior art date
Application number
PCT/JP2015/053803
Other languages
English (en)
French (fr)
Inventor
直城 浅野
健 稗田
親扶 岡本
雄太 松本
東 賢一
博昭 重田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/127,221 priority Critical patent/US10411148B2/en
Priority to CN201580012467.0A priority patent/CN106062972A/zh
Publication of WO2015146333A1 publication Critical patent/WO2015146333A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a photoelectric conversion element.
  • Solar cells have a structure in which electrodes are formed on a light-receiving surface on which sunlight is incident and a back surface on the opposite side of the light-receiving surface (double-sided electrode structure), and electrodes on only the back surface. Some have a formed structure (back electrode structure).
  • the solar cell having the back electrode structure is advantageous in that the amount of incident sunlight can be increased by the absence of an electrode on the light receiving surface.
  • Patent Document 1 describes a solar cell having a back electrode structure. According to the solar cell described in Patent Document 1, an in-junction and an ip-junction are formed on the back surface of the semiconductor substrate, an n-side electrode is formed on the in-junction, and a p-side electrode is formed on the ip junction. In this solar cell, when sunlight is incident from the light receiving surface side of the semiconductor substrate, carriers are generated inside the semiconductor substrate, and the carriers are taken out from the p-side electrode and the n-side electrode.
  • an object of the present invention is to provide a photoelectric conversion element and a method for manufacturing the photoelectric conversion element that can improve characteristics and reliability.
  • a semiconductor substrate a first i-type semiconductor film provided on a part of one surface of the semiconductor substrate, and a first i-type semiconductor film provided on the first i-type semiconductor film
  • a substrate having a first conductivity type semiconductor film, a second i type semiconductor film provided on another part of the surface, and a second conductivity type semiconductor film provided on the second i type semiconductor film;
  • An electrode portion having a first electrode layer provided on the first conductivity type semiconductor film and a second electrode layer provided on the second conductivity type semiconductor film, and a first electrode layer and a second electrode layer And a reflective portion provided in a gap region sandwiched between the two.
  • FIG. 3 is a schematic cross-sectional view of the heterojunction back contact cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of the method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of the method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of the method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of the method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of the method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of the method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of the method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of the method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of the method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of the method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of the method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 6 is a schematic cross-sectional view of a heterojunction back contact cell according to a second embodiment. 6 is a schematic cross-sectional view of a heterojunction back contact cell according to Embodiment 3.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a method for manufacturing a heterojunction back contact cell of Embodiment 3.
  • FIG. FIG. 6 is a schematic cross-sectional view of a heterojunction back contact cell according to a fourth embodiment.
  • FIG. 1 is a schematic cross-sectional view of a heterojunction back contact cell according to Embodiment 1, which is an example of the photoelectric conversion element of the present invention.
  • the heterojunction back contact cell according to the first embodiment includes a base 10, an electrode part 20, and a reflection part 30 made of an insulating layer.
  • the base 10 includes a semiconductor substrate 1 made of an n-type single crystal silicon substrate, a first i-type semiconductor film 2 provided on a part of one surface (back surface) of the semiconductor substrate 1, and a first i-type semiconductor. And a first conductivity type semiconductor film 3 made of a p-type amorphous silicon film provided on the film 2.
  • the base 10 includes a second i-type semiconductor film 4 provided on another part of the back surface of the semiconductor substrate 1 and an n-type amorphous silicon film provided on the second i-type semiconductor film 4. And a first second-conductivity-type semiconductor film 5.
  • the base 10 further includes a third i-type semiconductor film 6 provided on the other surface (light-receiving surface) of the semiconductor substrate 1 and a second second conductivity provided on the third i-type semiconductor film 6.
  • Type semiconductor film 7 and antireflection film 8 provided on second second conductive type semiconductor film 7.
  • the first conductive semiconductor film 3 and the first second conductive semiconductor film 5 are located on one surface (back surface) of the base 10, and the other of the base 10 is
  • the antireflection film 8 is located on the surface (light receiving surface).
  • the electrode unit 20 includes a first electrode layer 21 provided on the first conductive semiconductor film 3 of the base 10 and a second electrode layer 22 provided on the first second conductive semiconductor film 5. .
  • the reflection portion 30 is made of an insulating layer provided in the gap region A sandwiched between the first electrode layer 21 and the second electrode layer 22. More specifically, in the first embodiment, the reflection unit 30 is the gap region A, and the surfaces of the first electrode layer 21 and the second electrode layer 22 facing each other, and the first electrode layer 21 and the second electrode. It is provided in a region surrounded by the back surface of the substrate 10 located between the layers 22.
  • an n-type single crystal silicon substrate can be preferably used, but is not limited to an n-type single crystal silicon substrate, and for example, a conventionally known semiconductor substrate can also be used.
  • the thickness of the semiconductor substrate 1 is not particularly limited, and can be, for example, 50 ⁇ m or more and 300 ⁇ m or less, and preferably 100 ⁇ m or more and 200 ⁇ m or less.
  • the specific resistance of the semiconductor substrate 1 is not particularly limited, and can be, for example, 0.1 ⁇ ⁇ cm or more and 10 ⁇ ⁇ cm or less.
  • the impurity concentration of the n-type impurity can be set to 1 ⁇ 10 15 pieces / cm 3 or more and 1 ⁇ 10 16 pieces / cm 3 , for example.
  • an i-type amorphous silicon film can be suitably used, but is not limited to an i-type amorphous silicon film, and for example, a conventionally known i-type semiconductor film is used. You can also.
  • the thickness of the first i-type semiconductor film 2 is not particularly limited, and can be, for example, 5 nm or more and 50 nm or less.
  • i-type means not only a completely intrinsic state but also a sufficiently low concentration (the n-type impurity concentration is less than 1 ⁇ 10 15 / cm 3 and the p-type impurity concentration is 1 ⁇ (Less than 10 15 / cm 3 ) means to include those in which n-type or p-type impurities are mixed.
  • the n-type impurity concentration and the p-type impurity concentration can be measured by secondary ion mass spectrometry (SIMS).
  • amorphous silicon includes not only amorphous silicon in which dangling bonds of silicon atoms are not terminated with hydrogen, but also silicon such as hydrogenated amorphous silicon. Also included are those in which dangling bonds of atoms are terminated with hydrogen.
  • a p-type amorphous silicon film can be preferably used as the first conductive semiconductor film 3, but is not limited to a p-type amorphous silicon film.
  • a conventionally known p-type semiconductor film may be used. it can.
  • the p-type impurity contained in the first conductive type semiconductor film 3 for example, boron can be used, and the concentration of the p-type impurity can be set to, for example, about 5 ⁇ 10 19 atoms / cm 3 .
  • the thickness of the 1st conductivity type semiconductor film 3 is not specifically limited, For example, they are 5 nm or more and 50 nm or less.
  • an i-type amorphous silicon film can be preferably used, but is not limited to an i-type amorphous silicon film, and for example, a conventionally known i-type semiconductor film is used. You can also.
  • the thickness of the second i-type semiconductor film 4 is not particularly limited and can be, for example, 5 nm or more and 50 nm or less.
  • an n-type amorphous silicon film can be preferably used, but is not limited to an n-type amorphous silicon film.
  • a conventionally known n-type semiconductor film is used. It can also be used.
  • phosphorus can be used as the n-type impurity contained in the first second conductivity type semiconductor film 5.
  • the thickness of the first second conductivity type semiconductor film 5 is not particularly limited, and can be, for example, not less than 5 nm and not more than 50 nm.
  • an i-type amorphous silicon film can be preferably used, but is not limited to an i-type amorphous silicon film, and for example, a conventionally known i-type semiconductor film is used. You can also.
  • the thickness of the third i-type semiconductor film 6 is not particularly limited, and can be, for example, 5 nm or more and 50 nm or less.
  • an n-type amorphous silicon film can be suitably used, but is not limited to an n-type amorphous silicon film, and for example, a conventionally known n-type semiconductor film Can also be used.
  • phosphorus can be used as the n-type impurity contained in the second second-conductivity-type semiconductor film 7, and the concentration of the n-type impurity is, for example, about 5 ⁇ 10 19 atoms / cm 3. it can.
  • the thickness of the second second conductivity type semiconductor film 7 is not particularly limited, and can be, for example, not less than 5 nm and not more than 50 nm.
  • the antireflection film 8 for example, at least one of an oxide layer and a nitride layer can be used.
  • the oxide layer for example, a silicon oxide layer or the like can be used.
  • the nitride layer for example, a silicon nitride layer can be used. Therefore, as the antireflection film 8, for example, a single layer of a silicon oxide layer, a single layer of a silicon nitride layer, or a stacked body of a silicon oxide layer and a silicon nitride layer can be used.
  • the thickness of the antireflection film 8 can be, for example, not less than 100 nm and not more than 800 nm.
  • a conductive material can be used without any particular limitation, and it is preferable to use at least one of aluminum and silver.
  • the thickness of the 1st electrode layer 21 and the 2nd electrode layer 22 is not specifically limited, For example, it can be 0.5 micrometer or less.
  • the reflecting portion 30, which is an insulating layer, causes the light reaching between the first electrode layer 21 and the second electrode layer 22 out of the light traveling from the light receiving surface side to the back surface side of the substrate 10 to enter the substrate 10 again. It is a reflective material.
  • the term “insulating layer” as used herein means that even if a part of the insulating layer is in contact with the first electrode layer 21 and the other part of the insulating layer is in contact with the second electrode layer 22, they are not short-circuited. Means a layer having an insulating property of Generally, when the sheet resistance value is 1000 ⁇ / ⁇ or more, the above short circuit is suppressed.
  • the reflection unit 30 is further reflective.
  • the reflectivity of the reflecting portion 30 means that the presence of the reflecting portion 30 increases the reflectance of light that reaches between the first electrode layer 21 and the second electrode layer 22 as compared with the case where the reflecting portion 30 does not exist. Means a characteristic that can be. Therefore, for example, the reflection unit 30 may have a refractive index different from that of the first conductive semiconductor film 3 and the first second conductive semiconductor film 5, and the first conductive semiconductor film 3 and the first conductive semiconductor film 3 The refractive index is preferably lower than the refractive index of the first second conductive semiconductor film 5. In this case, the reflectance of the light can be effectively increased.
  • Examples of the material of the reflecting portion 30 that satisfies such insulation and reflectivity include resins, nitrides, and oxides.
  • the resin is preferably ethylene vinyl acetate
  • the nitride is preferably silicon nitride
  • the oxide is preferably silicon oxide.
  • the thickness of the reflecting portion 30 is not particularly limited, and may be a thickness that can reflect light, in other words, a thickness that does not cause light leakage due to the quantum effect.
  • the thickness of the reflecting portion 30 may be different, but the thinnest position (for example, the first conductive in FIG.
  • the thickness in the region where the type semiconductor film 3 and the first second conductivity type semiconductor film 5 overlap) is preferably 5 nm or more, more preferably 20 nm or more, and further preferably 50 nm or more. preferable. When this thickness is less than 5 nm, the reflection effect of the reflecting portion 30 tends to be low. Moreover, it is preferable that the thickness of the reflection part 30 is 0.5 micrometer or less from the ease of modularization.
  • the third i-type semiconductor film 6 is formed on the entire light receiving surface of the semiconductor substrate 1, and the second second conductivity is formed on the entire light receiving surface of the third i-type semiconductor film 6.
  • a type semiconductor film 7 is formed.
  • the method for forming the third i-type semiconductor film 6 and the method for forming the second second-conductivity-type semiconductor film 7 are not particularly limited.
  • a plasma CVD (Chemical Vapor Deposition) method can be used.
  • irregularities may be formed on the light receiving surface of the semiconductor substrate 1.
  • Such irregularities can be formed, for example, by texture-etching the light-receiving surface of the semiconductor substrate 1 after forming a texture mask on the entire back surface of the semiconductor substrate 1.
  • silicon nitride or silicon oxide can be used as the texture mask.
  • an etchant used for texture etching for example, an alkaline solution capable of dissolving silicon can be used.
  • the first i-type semiconductor film 2 is formed on the entire back surface of the semiconductor substrate 1, and the first conductive semiconductor film 3 is formed on the first i-type semiconductor film 2.
  • the method for forming the first i-type semiconductor film 2 and the first conductive semiconductor film 3 is not particularly limited, and for example, a plasma CVD method can be used.
  • an etching mask 12 such as a photoresist is formed only in a portion where the stacked body 51 of the first i-type semiconductor film 2 and the first conductive semiconductor film 3 is left. Form.
  • a part of the stacked body 51 of the first i-type semiconductor film 2 and the first conductive semiconductor film 3 is wet-etched in the thickness direction. Thereby, the surface of the semiconductor substrate 1 is exposed.
  • a part of the stacked body 51 may be removed by, for example, laser light irradiation.
  • the etching mask 12 is completely removed from the first conductive type semiconductor film 3.
  • the second i-type semiconductor film 4 is formed so as to cover the exposed part on the back surface side of the semiconductor substrate 1, and the first first type semiconductor film 4 is formed on the second i-type semiconductor film 4.
  • a two-conductivity type semiconductor film 5 is formed.
  • the method for forming the second i-type semiconductor film 4 and the first second-conductivity-type semiconductor film 5 is not particularly limited, and for example, a plasma CVD method can be used.
  • a photoresist or the like is used only in a portion where the stacked body 52 of the second i-type semiconductor film 4 and the first second conductive semiconductor film 5 on the back surface side of the semiconductor substrate 1 is left.
  • An etching mask 13 is formed.
  • a part of the stacked body 52 composed of the second i-type semiconductor film 4 and the first second-conductivity-type semiconductor film 5 is formed in the thickness direction. Etching is performed, and then the etching mask 13 is completely removed to expose a part of the first conductivity type semiconductor film 3.
  • a metal layer 14 is formed so as to cover the entire back surfaces of the first conductive semiconductor film 3 and the first second conductive semiconductor film 5.
  • the formation method of the metal layer 14 is not specifically limited, For example, sputtering method or a vapor deposition method etc. can be used.
  • the method for removing the metal layer 14 is not particularly limited.
  • an etching mask is disposed on the first electrode layer 21 and the second electrode layer 22, and dry etching is performed in the thickness direction of the metal layer 14.
  • the metal layer 14 other than the layer 21 and the second electrode layer 22 can be removed.
  • the first electrode layer 21 and the second electrode layer 22 may be formed by, for example, laser light irradiation.
  • the substrate located between the surfaces of the first electrode layer 21 and the second electrode layer 22 facing each other and the first electrode layer 21 and the second electrode layer 22.
  • the reflecting portion 30 made of an insulating layer is formed.
  • the formation method of the reflection part 30 is not specifically limited, It can select suitably with the material which comprises the reflection part 30.
  • the resin may be applied to the gap region A using a blade or the like.
  • the reflecting portion 30 when the reflecting portion 30 is made of a nitride such as silicon nitride, the reflecting portion 30 can be easily formed using, for example, a plasma CVD method, an atmospheric pressure CVD method, or the like.
  • the reflection part 30 consists of oxides, such as a silicon oxide, a plasma CVD method, an atmospheric pressure CVD method, etc. can be used, for example.
  • an antireflection film 8 is formed on the second second conductivity type semiconductor film 7. *
  • the formation method of the antireflection film 8 is not particularly limited, and for example, a steam oxidation method, an atmospheric pressure CVD method, SOG coating / firing, a plasma CVD method or an atmospheric pressure CVD method can be used.
  • a silicon oxide layer can be easily formed by steam oxidation method, atmospheric pressure CVD method, SOG coating and baking, and silicon nitride layer can be easily formed by plasma CVD method or atmospheric pressure CVD method. can do.
  • the reflective portion 30 made of an insulating layer is provided in the gap region A sandwiched between the first electrode layer 21 and the second electrode layer 22. This improves the characteristics and reliability of the heterojunction back contact cell of the first embodiment. This will be described in comparison with a conventional configuration.
  • an in-junction or an ip-junction is exposed to the outside between an n-side electrode and a p-side electrode arranged on the back surface of the semiconductor substrate. It was. That is, in the photoelectric conversion element, a silicon semiconductor such as a semiconductor substrate, an in-junction, and a pn-junction is located in a gap region sandwiched between the n-side electrode and the p-side electrode.
  • the gap region where the electrode is not disposed is the light that has passed through the photoelectric conversion element from the light receiving surface side. It did not have a function of reflecting. For this reason, when the light incident on the photoelectric conversion element from the light receiving surface side reaches the back surface of the photoelectric conversion element, if the position is in the gap region, most of the light escapes from the photoelectric conversion element. It was the current situation.
  • the reflection part 30 is provided in the gap region A, it is located in the gap region A of the substrate 10 from the light receiving surface side of the substrate 10. Light that reaches the back side can be reflected. That is, the light that is about to escape from the gap region A can be reflected into the base 10 by the reflecting portion 30. Therefore, since the heterojunction back contact cell of Embodiment 1 can use light more efficiently than the conventional one, it can have high photoelectric conversion efficiency as a result. The characteristics and reliability of the type back contact cell are improved.
  • the reflection part 30 is provided on the entire surface of the gap region A. That is, it is preferable that the reflecting portion 30 is provided on the entire back surface of the base body 10 located between the first electrode layer 21 and the second electrode layer 22. Thereby, the photoelectric conversion efficiency can be further improved.
  • the reflecting portion 30 is in contact with the base body 10 located in the gap region A. That is, it is preferable that the reflecting portion 30 is in direct contact with the back surface of the base body 10 located in the gap region A without interposing a space such as an air layer. Thereby, the light reflection effect can be enhanced. This is because when there is a space containing a gas such as an air layer between two substances, light tends to attenuate in the space.
  • FIG. 13 is a schematic cross-sectional view of the heterojunction back contact cell according to the second embodiment which is an example of the photoelectric conversion element of the present invention.
  • the heterojunction back contact cell according to the second embodiment is characterized by having a reflecting portion 31 having a step on the surface exposed to the back surface side of the photoelectric conversion element, instead of the reflecting portion 30 according to the first embodiment.
  • the reflection part 31 since it is the same as that of Embodiment 1 about the characteristics other than the shape, the description is not repeated.
  • the heterojunction back contact cell according to the second embodiment can be manufactured by controlling the thickness of the reflective portion 31 in the step of providing the reflective portion 30 using the manufacturing method described in the first embodiment. For example, as shown in FIG. 12, when the back surface of the substrate 10 has a stepped shape, the shape of the back surface of the substrate 10 is reflected by forming a film with a certain thickness using a plasma CVD method or the like. In addition, the reflective portion 31 having a step can be formed.
  • the reflective portion 31 made of an insulating layer is provided in the gap region A sandwiched between the first electrode layer 21 and the second electrode layer 22, and in particular, the back surface side of the photoelectric conversion element in the reflective portion 31. Has a step on the surface exposed to the surface. This improves the characteristics and reliability of the heterojunction back contact cell of the second embodiment.
  • the reflective region 31 is provided in the gap region A as in the first embodiment. It is possible to reflect the light that has reached the back side located in the gap region A. Furthermore, since the surface exposed to the back surface side of the photoelectric conversion element in the reflecting portion 31 has a step, the irregular reflection of light by this step structure is possible. Therefore, since the reflection effect of the reflecting portion 31 is further improved, the characteristics and reliability of the heterojunction back contact cell are further improved.
  • the second embodiment is the same as the first embodiment except that the reflecting unit 31 is provided instead of the reflecting unit 30, and therefore the same description will not be repeated.
  • FIG. 14 is a schematic cross-sectional view of a heterojunction back contact cell according to Embodiment 3, which is an example of the photoelectric conversion element of the present invention.
  • the heterojunction back contact cell according to the third embodiment is characterized in that, instead of the reflector 30, the heterojunction back contact cell has a reflector 32 made of unevenness provided on the back surface of the base body 10 a located in the gap region A.
  • the unevenness is a member located on the back side of the base body 10 a located in the gap region A, that is, the back side of the semiconductor substrate 41, the first i-type semiconductor film 2, and the first conductivity type semiconductor film 3. Any unevenness provided on any of the second i-type semiconductor film 4 and the second conductive semiconductor film 5 may be used. However, in view of ease of manufacture, a texture structure provided on the back surface of the semiconductor substrate 41 is preferable as shown in FIG.
  • each film located on the texture structure provided on the semiconductor substrate 41 also has a similar texture structure, but this is because each film is formed by a general film forming method. This is because the shape of each film reflects the shape of the back surface of the semiconductor substrate 41 located immediately below the film.
  • the structure of the unevenness is not particularly limited, and for example, it can be a shape in which triangular unevenness as shown in FIG. 14 is continuous. In FIG. 14, only the cross-sectional shape is shown, but in a three-dimensional manner, for example, a shape in which a plurality of triangular pyramids are gathered can be used.
  • the depth of the unevenness constituting the reflecting portion 32 is not particularly limited, and at least in an electron microscope observation such as SEM observation, a portion of the base body 10a located in the gap region A has a rougher surface shape than other portions. If you do.
  • the depth of the unevenness means that, among the unevenness, the inner front end portion that protrudes most toward the inner side of the base body 10a (the center side in the thickness direction of the base body 10a) and the outer front end portion that protrudes most in the direction opposite to the inner front end portion. (The distance in the thickness direction of the substrate 10a). When the semiconductor substrate 41 has irregularities, the distance is between the inner tip portion that protrudes most inside the semiconductor substrate 41 and the outer tip portion that protrudes most in the direction opposite to the inner tip portion. Distance.
  • the heterojunction back contact cell of the third embodiment is manufactured by using the manufacturing method described in the first embodiment using the semiconductor substrate 41 shown in FIG. 15 (except for the step of providing the reflecting portion 30). can do.
  • the semiconductor substrate 41 shown in FIG. 15 is in a gap region A sandwiched between the position where the first electrode layer 21 is disposed and the position where the second electrode layer 22 is disposed on the back surface of the semiconductor substrate 1 of the first embodiment. It can be prepared by forming the texture structure 53.
  • the texture structure 53 is formed on the entire light-receiving surface of the semiconductor substrate 1 of the first embodiment, and the texture mask is formed on a region of the back surface of the semiconductor substrate 1 where the texture structure 53 is not formed. Thereafter, the back surface of the semiconductor substrate 1 can be formed by texture etching.
  • texture etching silicon nitride or silicon oxide can be used as the texture mask.
  • an etchant used for texture etching for example, an alkaline solution capable of dissolving silicon can be used. It can also be formed by partially irradiating the gap region A with laser light.
  • the semiconductor substrate 41 Using the semiconductor substrate 41, the first i-type semiconductor film 2, the first conductive semiconductor film 3, the second i-type semiconductor film 4, and the first second conductive semiconductor film 5 were formed on the back surface thereof.
  • the shape of each film formed on the region where the texture structure 53 is formed reflects the shape of the texture structure 53. Therefore, finally, the heterojunction back contact cell of the third embodiment having the configuration shown in FIG. 14 is completed.
  • the reflection part 32 made of unevenness is provided in the gap region A sandwiched between the first electrode layer 21 and the second electrode layer 22. This improves the characteristics and reliability of the heterojunction back contact cell of the third embodiment.
  • the heterojunction back contact cell of the third embodiment since the reflection part 32 is provided in the gap region A, the back surface side located in the gap region A of the substrate 10a from the light receiving surface side of the substrate 10a. The light that reaches can be reflected. More specifically, since light that has entered the substrate 10a from the light receiving surface side of the photoelectric conversion element and reached the unevenness can be irregularly reflected, it is possible to prevent light from escaping from the gap region A. . Therefore, since the heterojunction back contact cell of Embodiment 3 can use light more efficiently than the conventional one, as a result, it can have high photoelectric conversion efficiency, and thus the heterojunction. The characteristics and reliability of the type back contact cell are improved.
  • the reflecting portion 32 is provided on the entire surface of the gap region A. That is, it is preferably provided on the entire back surface of the base body 10 a located between the first electrode layer 21 and the second electrode layer 22. Thereby, the photoelectric conversion efficiency can be further improved.
  • the manufacturing cost is reduced. Can be reduced.
  • the third embodiment is the same as the first embodiment except that the reflecting unit 32 is provided instead of the reflecting unit 30, and therefore the same description will not be repeated.
  • FIG. 16 is a schematic cross-sectional view of a heterojunction back contact cell according to Embodiment 4 which is an example of the photoelectric conversion element of the present invention.
  • the heterojunction back contact cell of Embodiment 4 is characterized by having a reflective portion 30 made of an insulating layer and a reflective portion 32 made of unevenness. That is, the heterojunction back contact cell according to the fourth embodiment includes the reflective portion 30 according to the first embodiment and the reflective portion 32 according to the third embodiment.
  • the heterojunction back contact cell of the fourth embodiment can be manufactured by using the manufacturing method described in the first embodiment using the semiconductor substrate 41 shown in FIG.
  • a reflective portion 30 made of an insulating layer and a reflective portion 32 made of unevenness are provided in a gap region A sandwiched between the first electrode layer 21 and the second electrode layer 22. More specifically, in the fourth embodiment, the gap region A, between the surfaces of the first electrode layer 21 and the second electrode layer 22 facing each other and the first electrode layer 21 and the second electrode layer 22.
  • the reflection part 30 is provided in the area
  • the back contact cell since the light that has reached the back surface side located in the gap region A of the base body 10a from the light receiving surface side of the base body 10a can be reflected by the reflecting section 32 and the reflecting section 30, the heterojunction of the fourth embodiment The characteristics and reliability of the back contact cell are further improved.
  • the first conductivity type is the p-type and the second conductivity type is the n-type has been described. However, the first conductivity type and the second conductivity type are opposite in conductivity. If the first conductivity type is n-type, the first conductivity type is p-type.
  • the semiconductor substrate, the first i-type semiconductor film provided on a part of one surface of the semiconductor substrate, and the first i-type semiconductor film are provided.
  • interposed into 2 electrode layers can be provided.
  • the reflecting portion is provided in the gap region, it is possible to reflect the light that has reached the back surface side located in the gap region of the substrate from the light receiving surface side of the substrate. Therefore, the characteristics and reliability of the heterojunction back contact cell are improved.
  • the reflecting portion is preferably an insulating layer provided in the gap region. Thereby, the light reflection effect in the gap region can be enhanced.
  • the reflecting portion is an unevenness provided on one surface of the substrate located in the gap region, whereby the light in the gap region can be irregularly reflected.
  • the unevenness is preferably a textured structure provided on the semiconductor substrate.
  • corrugation of a desired shape can be formed easily.
  • the present invention can be used for a photoelectric conversion element and a method for manufacturing the photoelectric conversion element, and can be particularly preferably used for a solar battery such as a heterojunction back contact cell and a method for manufacturing the solar battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

従来よりも特性および信頼性を向上させることが可能な光電変換素子および光電変換素子の製造方法を提供する。光電変換素子は、半導体基板1と、半導体基板1の一方の表面の一部に設けられた第1のi型半導体膜2と、第1のi型半導体膜2上に設けられた第1導電型半導体膜3と、表面の他の一部に設けられた第2のi型半導体膜4と、第2のi型半導体膜4上に設けられた第2導電型半導体膜5と、を有する基体10と、第1導電型半導体膜3上に設けられた第1電極層21と、第1の第2導電型半導体膜5上に設けられた第2電極層22と、を有する電極部20と、第1電極層21および第2電極層22に挟まれたギャップ領域Aに設けられた反射部30とを備える。

Description

光電変換素子
 本発明は、光電変換素子に関する。
 太陽光エネルギを電気エネルギに直接変換する太陽電池は、近年、特に、地球環境問題の観点から、次世代のエネルギ源としての期待が急激に高まっている。太陽電池には、化合物半導体または有機材料を用いたものなど様々な種類のものがあるが、現在、主流となっているのは、シリコン結晶を用いたものである。
 太陽電池には、太陽光が入射する側の面である受光面と、受光面の反対側である裏面とにそれぞれ電極が形成された構造(両面電極構造)のものと、裏面のみに電極が形成された構造(裏面電極構造)のものとがある。裏面電極構造の太陽電池は、受光面に電極がない分、入射される太陽光の量を増加できる点で有利である。
 たとえば、特許文献1には、裏面電極構造の太陽電池が記載されている。特許文献1に記載の太陽電池によれば、半導体基板の裏面に、in接合およびip接合がそれぞれ形成され、in接合上にn側電極が、ip接合上にp側電極が形成されている。この太陽電池では、半導体基板の受光面側から太陽光が入射されることにより、半導体基板の内部でキャリアが生成され、このキャリアがp側電極とn側電極とから外部に取り出される。
特開2010-80887号公報
 しかしながら、近年、太陽電池等の光電変換素子の技術分野においては、特性および信頼性を向上させることが強く要望されており、その検討が進められている。
 上記の事情に鑑みて、本発明の目的は、特性および信頼性を向上させることが可能な光電変換素子および光電変換素子の製造方法を提供することにある。
 本発明の第1の態様によれば、半導体基板と、半導体基板の一方の表面の一部に設けられた第1のi型半導体膜と、第1のi型半導体膜上に設けられた第1導電型半導体膜と、表面の他の一部に設けられた第2のi型半導体膜と、第2のi型半導体膜上に設けられた第2導電型半導体膜と、を有する基体と、第1導電型半導体膜上に設けられた第1電極層と、第2導電型半導体膜上に設けられた第2電極層と、を有する電極部と、第1電極層および第2電極層に挟まれたギャップ領域に設けられた反射部と、を備える光電変換素子を提供することができる。
 本発明によれば、従来よりも特性および信頼性を向上させることが可能な光電変換素子を提供することができる。
実施の形態1のヘテロ接合型バックコンタクトセルの模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例について図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例について図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例について図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例について図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例について図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例について図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例について図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例について図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例について図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例について図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例について図解する模式的な断面図である。 実施の形態2のヘテロ接合型バックコンタクトセルの模式的な断面図である。 実施の形態3のヘテロ接合型バックコンタクトセルの模式的な断面図である。 実施の形態3のヘテロ接合型バックコンタクトセルの製造方法の一例について図解する模式的な断面図である。 実施の形態4のヘテロ接合型バックコンタクトセルの模式的な断面図である。
 以下、本発明の一例である実施の形態について説明する。なお、実施の形態の説明に用いられる図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。
 [実施の形態1]
 <光電変換素子の構成>
 図1に、本発明の光電変換素子の一例である実施の形態1のヘテロ接合型バックコンタクトセルの模式的な断面図を示す。
 実施の形態1のヘテロ接合型バックコンタクトセルは、基体10と、電極部20と、絶縁層からなる反射部30とを備える。
 基体10は、n型単結晶シリコン基板からなる半導体基板1と、半導体基板1の一方の表面(裏面)の一部に設けられた第1のi型半導体膜2と、第1のi型半導体膜2上に設けられたp型非晶質シリコン膜からなる第1導電型半導体膜3とを備える。また、基体10は、半導体基板1の裏面の他の一部に設けられた第2のi型半導体膜4と、第2のi型半導体膜4上に設けられたn型非晶質シリコン膜からなる第1の第2導電型半導体膜5とを備える。
 基体10は、さらに、半導体基板1の他方の表面(受光面)に設けられた第3のi型半導体膜6と、第3のi型半導体膜6上に設けられた第2の第2導電型半導体膜7と、第2の第2導電型半導体膜7上に設けられた反射防止膜8とを備える。
 すなわち、図1に示すように、基体10の一方の表面(裏面)には、第1導電型半導体膜3および第1の第2導電型半導体膜5が位置しており、基体10の他方の表面(受光面)には、反射防止膜8が位置している。
 電極部20は、基体10の第1導電型半導体膜3上に設けられた第1電極層21と、第1の第2導電型半導体膜5上に設けられた第2電極層22とを備える。
 反射部30は、第1電極層21および第2電極層22に挟まれたギャップ領域Aに設けられた絶縁層からなる。より具体的には、実施の形態1において、反射部30は、ギャップ領域Aであって、第1電極層21および第2電極層22の互いに向かい合う面と、第1電極層21および第2電極層22の間に位置する基体10の裏面によって囲まれる領域に設けられる。
 半導体基板1としては、n型単結晶シリコン基板を好適に用いることができるが、n型単結晶シリコン基板に限定されず、たとえば従来から公知の半導体基板を用いることもできる。半導体基板1の厚さは、特に限定されず、たとえば50μm以上300μm以下とすることができ、好ましくは100μm以上200μm以下とすることができる。また、半導体基板1の比抵抗も、特に限定されず、たとえば0.1Ω・cm以上10Ω・cm以下とすることができる。また、n型不純物の不純物濃度は、たとえば、1×1015個/cm以上1×1016個/cmとすることができる。
 第1のi型半導体膜2としては、i型非晶質シリコン膜を好適に用いることができるがi型非晶質シリコン膜に限定されず、たとえば従来から公知のi型半導体膜を用いることもできる。第1のi型半導体膜2の厚さは特に限定されず、たとえば5nm以上50nm以下とすることができる。
 なお、本明細書において「i型」とは、完全な真性の状態だけでなく、十分に低濃度(n型不純物濃度が1×1015個/cm未満、かつp型不純物濃度が1×1015個/cm未満)であればn型またはp型の不純物が混入された状態のものも含む意味である。n型不純物濃度およびp型不純物濃度は、二次イオン質量分析法(SIMS;Secondary Ion Mass Spectrometry)によって測定することができる。
 また、本明細書において「非晶質シリコン」には、シリコン原子の未結合手(ダングリングボンド)が水素で終端されていない非晶質シリコンだけでなく、水素化非晶質シリコンなどのシリコン原子の未結合手が水素で終端されたものも含まれるものとする。
 第1導電型半導体膜3としては、p型非晶質シリコン膜を好適に用いることができるがp型非晶質シリコン膜に限定されず、たとえば従来から公知のp型半導体膜を用いることもできる。なお、第1導電型半導体膜3に含まれるp型不純物としては、たとえばボロンを用いることができ、p型不純物の濃度は、たとえば5×1019個/cm程度とすることができる。第1導電型半導体膜3の厚さは特に限定されず、たとえば5nm以上50nm以下とすることができる。
 第2のi型半導体膜4としては、i型非晶質シリコン膜を好適に用いることができるがi型非晶質シリコン膜に限定されず、たとえば従来から公知のi型半導体膜を用いることもできる。第2のi型半導体膜4の厚さは特に限定されず、たとえば5nm以上50nm以下とすることができる。
 第1の第2導電型半導体膜5としては、n型非晶質シリコン膜を好適に用いることができるがn型非晶質シリコン膜に限定されず、たとえば従来から公知のn型半導体膜を用いることもできる。なお、第1の第2導電型半導体膜5に含まれるn型不純物としては、たとえばリンを用いることができる。第1の第2導電型半導体膜5の厚さは特に限定されず、たとえば5nm以上50nm以下とすることができる。
 第3のi型半導体膜6としては、i型非晶質シリコン膜を好適に用いることができるがi型非晶質シリコン膜に限定されず、たとえば従来から公知のi型半導体膜を用いることもできる。第3のi型半導体膜6の厚さは特に限定されず、たとえば5nm以上50nm以下とすることができる。
 第2の第2導電型半導体膜7としては、n型非晶質シリコン膜を好適に用いることができるが、n型非晶質シリコン膜に限定されず、たとえば従来から公知のn型半導体膜を用いることもできる。なお、第2の第2導電型半導体膜7に含まれるn型不純物としては、たとえばリンを用いることができ、n型不純物の濃度は、たとえば5×1019個/cm程度とすることができる。また、第2の第2導電型半導体膜7の厚さは特に限定されず、たとえば5nm以上50nm以下とすることができる。
 反射防止膜8としては、たとえば、酸化物層および窒化物層の少なくとも一方を用いることができる。酸化物層としては、たとえば酸化シリコン層などを用いることができる。また、窒化物層としては、たとえば窒化シリコン層などを用いることができる。したがって、反射防止膜8としては、たとえば、酸化シリコン層の単層、窒化シリコン層の単層、または酸化シリコン層と窒化シリコン層との積層体などを用いることができる。反射防止膜8の厚さは、たとえば100nm以上800nm以下とすることができる。
 第1電極層21および第2電極層22としては、導電性を有する材料を特に限定なく用いることができ、なかでも、アルミニウムおよび銀の少なくとも一方を用いることが好ましい。また、第1電極層21および第2電極層22の厚さは特に限定されず、たとえば0.5μm以下とすることができる。
 絶縁層である反射部30は、基体10の受光面側から裏面側に向かう光のうち、第1電極層21および第2電極層22の間に到達した光を再び基体10内に入射させるための反射材である。ここでの絶縁層とは、絶縁層の一部が第1電極層21と接触し、絶縁層の他の一部が第2電極層22と接触した場合であっても、これらを短絡させない程度の絶縁性を有する層を意味する。一般的に、シート抵抗値が1000Ω/□以上であれば、上記のような短絡は抑制される。
 反射部30は、さらに反射性を有する。反射部30の反射性とは、反射部30が存在することにより、反射部30が存在しない場合よりも、第1電極層21および第2電極層22の間に到達した光の反射率を上げることができる特性を意味する。したがって、たとえば、反射部30は、第1導電型半導体膜3および第1の第2導電型半導体膜5と異なる屈折率を有していればよく、また、第1導電型半導体膜3および第1の第2導電型半導体膜5の屈折率よりも低い屈折率を有していることが好ましい。この場合、効果的に上記光の反射率を上げることができる。
 このような絶縁性および反射性を満たす反射部30の材料としては、樹脂、窒化物、酸化物などを挙げることができる。樹脂としては、エチレンビニルアセテートなどが好ましく、窒化物としては窒化シリコンなどが好ましく、酸化物としては酸化シリコンなどが好ましい。
 反射部30の厚さは特に限定されず、光の反射が可能な厚さ、換言すれば量子効果による光の抜けが起こらない程度の厚さ以上であればよい。基体10の裏面の面内方向(図1中左右方向および紙面の表裏に貫く方向)において、反射部30の厚さは異なってもよいが、最も薄い位置(たとえば、図1においては第1導電型半導体膜3と第1の第2導電型半導体膜5とが重なる領域上)での厚さが5nm以上であることが好ましく、20nm以上であることがより好ましく、50nm以上であることがさらに好ましい。この厚さが5nm未満の場合、反射部30の反射効果が低くなる傾向にある。また、モジュール化の容易性から、反射部30の厚さは0.5μm以下であることが好ましい。
 <光電変換素子の製造方法>
 以下、図2~図11の模式的断面図を参照して、実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例について説明する。
 まず、図2に示すように、半導体基板1の受光面の全面に第3のi型半導体膜6を形成し、第3のi型半導体膜6の受光面の全面に第2の第2導電型半導体膜7を形成する。
 第3のi型半導体膜6の形成方法および第2の第2導電型半導体膜7の形成方法は特に限定されず、たとえばプラズマCVD(Chemical Vapor Deposition)法を用いることができる。
 なお、半導体基板1の受光面に第3のi型半導体膜6を形成する前に、半導体基板1の受光面に凹凸を形成してもよい。このような凹凸は、たとえば、半導体基板1の裏面の全面にテクスチャマスクを形成した後に、半導体基板1の受光面をテクスチャエッチングすることにより形成することができる。テクスチャマスクとしては、たとえば、窒化シリコンまたは酸化シリコンを用いることができる。また、テクスチャエッチングに用いられるエッチャントとしては、たとえば、シリコンを溶解可能なアルカリ溶液を用いることができる。
 次に、図3に示すように、半導体基板1の裏面の全面に第1のi型半導体膜2を形成し、第1のi型半導体膜2上に第1導電型半導体膜3を形成する。第1のi型半導体膜2のおよび第1導電型半導体膜3の形成方法は特に限定されず、たとえばプラズマCVD法を用いることができる。
 次に、図4に示すように、半導体基板1の裏面において、第1のi型半導体膜2と第1導電型半導体膜3との積層体51を残す部分にのみフォトレジスト等のエッチングマスク12を形成する。
 次に、図5に示すように、エッチングマスク12をマスクとして、第1のi型半導体膜2と第1導電型半導体膜3との積層体51の一部を厚さ方向にウエットエッチングする。これにより、半導体基板1の表面を露出させる。なお、エッチングマスク12をマスクとして用いたエッチングに代えて、たとえばレーザ光の照射によって積層体51の一部を除去してもよい。
 次に、図6に示すように、第1導電型半導体膜3からエッチングマスク12を完全に除去する。
 次に、図7に示すように、半導体基板1の裏面側の露出部分を覆うように、第2のi型半導体膜4を形成し、第2のi型半導体膜4上に第1の第2導電型半導体膜5を形成する。第2のi型半導体膜4および第1の第2導電型半導体膜5の形成方法は特に限定されず、たとえばプラズマCVD法を用いることができる。
 次に、図8に示すように、半導体基板1の裏面側の第2のi型半導体膜4と第1の第2導電型半導体膜5との積層体52を残す部分にのみフォトレジスト等のエッチングマスク13を形成する。
 次に、図9に示すように、エッチングマスク13をマスクとして、第2のi型半導体膜4と第1の第2導電型半導体膜5とからなる積層体52の一部を厚さ方向にエッチングし、その後エッチングマスク13を完全に除去することによって、第1導電型半導体膜3の一部を露出させる。
 次に、図10に示すように、第1導電型半導体膜3および第1の第2導電型半導体膜5のそれぞれの裏面の全面を覆うように金属層14を形成する。金属層14の形成方法は特に限定されず、たとえばスパッタリング法または蒸着法などを用いることができる。
 次に、図11に示すように、金属層14の一部を除去して、第1電極層21および第2電極層22を形成する。
 金属層14の除去方法は特に限定されず、たとえば、第1電極層21および第2電極層22上にエッチングマスクを配置し、金属層14の厚み方向にドライエッチングを行うことにより、第1電極層21および第2電極層22以外の金属層14を除去することができる。また、たとえばレーザ光の照射によって、第1電極層21および第2電極層22を形成してもよい。
 次に、図12に示すように、ギャップ領域Aのうち、第1電極層21および第2電極層22の互いに向かい合う面と、第1電極層21および第2電極層22の間に位置する基体10の裏面によって囲まれる領域に、絶縁層からなる反射部30を形成する。
 反射部30の形成方法は特に限定されず、反射部30を構成する材料によって適宜選択することができる。たとえば、反射部30が樹脂からなる場合、ブレード等を用いてギャップ領域Aに樹脂を塗布してもよい。また、たとえば、反射部30が窒化シリコンなどの窒化物からなる場合、たとえば、プラズマCVD法、常圧CVD法などを用いて、反射部30を容易に形成することができる。また、たとえば、反射部30が酸化シリコンなどの酸化物からなる場合、たとえば、プラズマCVD法、常圧CVD法などを用いることができる。
 次に、図1に示すように、第2の第2導電型半導体膜7上に反射防止膜8を形成する。   
 反射防止膜8の形成方法は特に限定されず、たとえばスチーム酸化法、常圧CVD法、SOGの塗布・焼成、プラズマCVD法または常圧CVD法を用いることができる。具体的には、たとえば、スチーム酸化法、常圧CVD法、SOGの塗布・焼成により酸化シリコン層を容易に形成することができ、プラズマCVD法または常圧CVD法により窒化シリコン層を容易に形成することができる。
 以上により、図1に示す構成である実施の形態1のヘテロ接合型バックコンタクトセルが完成する。
 <作用効果>
 実施の形態1においては、第1電極層21および第2電極層22に挟まれるギャップ領域Aに絶縁層からなる反射部30が設けられる。これにより、実施の形態1のヘテロ接合型バックコンタクトセルの特性および信頼性が向上する。これについて、従来の構成と比較しながら説明する。
 ヘテロ接合型バックコンタクトセルに関し、特許文献1に開示されるように、半導体基板の裏面に配置されるn側電極とp側電極との間にはin接合やip接合が外部に向けて露出していた。すなわち、光電変換素子において、n側電極およびp側電極に挟まれるギャップ領域に位置するのは、半導体基板、in接合およびpn接合といったシリコン半導体であった。
 シリコン半導体の光の透過率は、電極を構成する金属の光の透過率と比して極めて高いため、電極が配置されていないギャップ領域は、受光面側から光電変換素子内を通過してきた光を反射する機能を有していなかった。このため、受光面側から光電変換素子内に入射した光が、光電変換素子の裏面に到達した際に、その位置がギャップ領域である場合には、その光のほとんどが光電変換素子から抜けてしまうのが現状であった。
 これに対し、実施の形態1のヘテロ接合型バックコンタクトセルによれば、ギャップ領域Aには反射部30が設けられているため、基体10の受光面側から基体10のギャップ領域Aに位置する裏面側に到達した光を反射することができる。すなわち、ギャップ領域Aから抜けようとする光を反射部30によって基体10内に反射させることができる。したがって、実施の形態1のヘテロ接合型バックコンタクトセルは、従来と比して、より効率的に光を利用することできるため、結果的に高い光電変換効率を有することができ、もって、ヘテロ接合型バックコンタクトセルの特性および信頼性が向上する。
 実施の形態1において、反射部30は、ギャップ領域Aの全面に設けられていることが好ましい。すなわち、反射部30は、第1電極層21および第2電極層22の間に位置する基体10の裏面の全面に設けられることが好ましい。これにより、光電変換効率をさらに向上させることができる。
 実施の形態1において、反射部30はギャップ領域Aに位置する基体10と接することが好ましい。すなわち、反射部30はギャップ領域Aに位置する基体10の裏面と、空気層などの空間を介在することなく直接接触することが好ましい。これにより、光の反射効果を高めることができる。これは、2つの物質間に空気層などの気体を含む空間が介在する場合には、空間内で光が減衰する傾向にあるためである。
 [実施の形態2]
 <光電変換素子の構成>
 図13に、本発明の光電変換素子の一例である実施の形態2のヘテロ接合型バックコンタクトセルの模式的な断面図を示す。
 実施の形態2のヘテロ接合型バックコンタクトセルは、実施の形態1の反射部30の代わりに、光電変換素子の裏面側に露出する面において段差を有する反射部31を有することを特徴とする。なお、反射部31に関し、その形状以外の特徴については、実施の形態1と同様であるため、その説明は繰り返さない。
 <光電変換素子の製造方法>
 実施の形態2のヘテロ接合型バックコンタクトセルは、実施の形態1で説明した製造方法を用い、反射部30を設ける工程において、反射部31の厚みを制御することにより製造することができる。たとえば、図12に示すように、基体10の裏面が段差を有する形状の場合には、プラズマCVD法等を用いて一定の厚みの膜を形成することにより、基体10の裏面の形状を反映させた、段差を有する反射部31を形成することができる。
 <作用効果>
 実施の形態2においては、第1電極層21および第2電極層22に挟まれるギャップ領域Aに絶縁層からなる反射部31が設けられ、特に、反射部31のうちの光電変換素子の裏面側に露出する面において段差を有する。これにより、実施の形態2のヘテロ接合型バックコンタクトセルの特性および信頼性が向上する。
 すなわち、実施の形態2のヘテロ接合型バックコンタクトセルによれば、実施の形態1と同様に、ギャップ領域Aには反射部31が設けられているため、基体10の受光面側から基体10のギャップ領域Aに位置する裏面側に到達した光を反射することができる。さらに、反射部31のうちの光電変換素子の裏面側に露出する面は段差を有するため、この段差構造による光の乱反射が可能となる。したがって、反射部31の反射効果がさらに向上するために、もって、ヘテロ接合型バックコンタクトセルの特性および信頼性がさらに向上する。
 なお、実施の形態2は、反射部30の代わりに反射部31を有すること以外は実施の形態1と同様であるため、同様の説明については繰り返さない。
 [実施の形態3]
 <光電変換素子の構成>
 図14に、本発明の光電変換素子の一例である実施の形態3のヘテロ接合型バックコンタクトセルの模式的な断面図を示す。
 実施の形態3のヘテロ接合型バックコンタクトセルは、反射部30の代わりに、ギャップ領域Aに位置する基体10aの裏面に設けられた凹凸からなる反射部32を有することを特徴とする。
 実施の形態3において、上記凹凸は、ギャップ領域Aに位置する基体10aの裏面側に位置する部材、すなわち、半導体基板41の裏面、第1のi型半導体膜2、第1導電型半導体膜3、第2のi型半導体膜4、および第2導電型半導体膜5のいずれかに設けられた凹凸であればよい。ただし、製造の容易性から、図14に示すように、半導体基板41の裏面に設けられたテクスチャ構造であることが好ましい。
 なお、図14においては、半導体基板41に設けられたテクスチャ構造上に位置する各膜も、同様のテクスチャ構造を有しているが、これは、一般的な製膜方法によって各膜を形成した場合、各膜の形状はその直下に位置する半導体基板41の裏面の形状が反映されるためである。
 凹凸の構造は特に限定されず、たとえば、図14に示すような三角形状の凹凸が連続する形状とすることができる。なお、図14においては断面形状しか示されていないが、3次元的には、たとえば三角錐が複数集合している形状とすることができる。
 また、反射部32を構成する凹凸の深さも特に限定されず、少なくともSEM観察などの電子顕微鏡観察において、基体10aのうち、ギャップ領域Aに位置する部分が他の部分よりも粗い表面形状を有していればよい。ここで、凹凸の深さとは、凹凸のうち、基体10aの内部側(基体10aの厚み方向の中心側)に最も突出する内側先端部と、内側先端部と反対方向に最も突出する外側先端部との距離(基体10aの厚み方向における距離)を意味する。上記距離は、半導体基板41に凹凸が形成されている場合には、半導体基板41のうち、内部側に最も突出する内側先端部と、内側先端部と反対方向に最も突出する外側先端部との距離である。
 半導体基板41に関し、その形状以外の特徴については、実施の形態1と同様であるため、その説明は繰り返さない。
 <光電変換素子の製造方法>
 実施の形態3のヘテロ接合型バックコンタクトセルは、図15に示す半導体基板41を用いて実施の形態1で説明した製造方法(ただし、反射部30を設ける工程は除く)を用いることにより、製造することができる。
 図15に示す半導体基板41は、実施の形態1の半導体基板1の裏面のうち、第1電極層21が配置される位置および第2電極層22が配置される位置に挟まれるギャップ領域Aに、テクスチャ構造53を形成することにより準備することができる。
 テクスチャ構造53は、たとえば、実施の形態1の半導体基板1の受光面の全面にテクスチャマスクを形成し、さらに、半導体基板1の裏面のうち、テクスチャ構造53を形成しない領域にテクスチャマスクを形成した後、半導体基板1の裏面をテクスチャエッチングすることにより形成することができる。テクスチャマスクとしては、たとえば、窒化シリコンまたは酸化シリコンを用いることができる。また、テクスチャエッチングに用いられるエッチャントとしては、たとえば、シリコンを溶解可能なアルカリ溶液を用いることができる。また、ギャップ領域Aに対しレーザ光を部分的に照射することによっても形成することができる。
 半導体基板41を用いて、その裏面に第1のi型半導体膜2、第1導電型半導体膜3、第2のi型半導体膜4、および第1の第2導電型半導体膜5を形成した場合、テクスチャ構造53が形成されている領域上に形成される各膜の形状は、テクスチャ構造53の形状を反映する。したがって、最終的に、図14に示す構成である実施の形態3のヘテロ接合型バックコンタクトセルが完成する。
 <作用効果>
 実施の形態3においては、第1電極層21および第2電極層22に挟まれるギャップ領域Aに凹凸からなる反射部32が設けられる。これにより、実施の形態3のヘテロ接合型バックコンタクトセルの特性および信頼性が向上する。
 すなわち、実施の形態3のヘテロ接合型バックコンタクトセルによれば、ギャップ領域Aには反射部32が設けられているため、基体10aの受光面側から基体10aのギャップ領域Aに位置する裏面側に到達した光を反射することができる。より具体的には、光電変換素子の受光面側から基体10a内に入射してこの凹凸に到達した光を乱反射させることができるため、ギャップ領域Aから光が抜けでるのを抑制することができる。したがって、実施の形態3のヘテロ接合型バックコンタクトセルは、従来と比して、より効率的に光を利用することできるため、結果的に高い光電変換効率を有することができ、もって、ヘテロ接合型バックコンタクトセルの特性および信頼性が向上する。
 実施の形態3において、反射部32はギャップ領域Aの全面に設けられていることが好ましい。すなわち、第1電極層21および第2電極層22の間に位置する基体10aの裏面の全面に設けられることが好ましい。これにより、光電変換効率をさらに向上させることができる。
 また、実施の形態3によれば、実施の形態1および実施の形態2と比して、構成部材が少ないため(従来の構成の光電変換素子から部品を増やす必要がないため)、製造コストを低減させることができる。
 なお、実施の形態3は、反射部30の代わりに反射部32を有すること以外は実施の形態1と同様であるため、同様の説明については繰り返さない。
 [実施の形態4]
 <光電変換素子の構成>
 図16に、本発明の光電変換素子の一例である実施の形態4のヘテロ接合型バックコンタクトセルの模式的な断面図を示す。
 実施の形態4のヘテロ接合型バックコンタクトセルは、絶縁層からなる反射部30と、凹凸からなる反射部32とを有することを特徴とする。すなわち、実施の形態4のヘテロ接合型バックコンタクトセルは、実施の形態1の反射部30と、実施の形態3の反射部32とを有する。
 <光電変換素子の製造方法>
 実施の形態4のヘテロ接合型バックコンタクトセルは、図15に示す半導体基板41を用いて実施の形態1で説明した製造方法を用いることにより、製造することができる。
 <作用および効果>
 実施の形態4においては、第1電極層21および第2電極層22に挟まれるギャップ領域Aに、絶縁層からなる反射部30と、凹凸からなる反射部32が設けられる。より具体的には、実施の形態4においては、ギャップ領域Aであって、第1電極層21および第2電極層22の互いに向かい合う面と、第1電極層21および第2電極層22の間に位置する基体10aの裏面によって囲まれる領域に反射部30が設けられる。さらに、ギャップ領域Aに位置する半導体基板41の裏面側に設けられた凹凸からなる反射部32が設けられる。これにより、基体10aの受光面側から基体10aのギャップ領域Aに位置する裏面側に到達した光を反射部32および反射部30によって反射することができるため、もって、実施の形態4のヘテロ接合型バックコンタクトセルの特性および信頼性がさらに向上する。
 以上、実施の形態1~実施の形態4において、第1導電型をp型、第2導電型をn型とした場合について説明したが、第1導電型と第2導電型とは逆の導電型であればよく、第1導電型がn型となる場合には、第1導電型はp型となる。
 [付記]
 (1)本発明の第1の態様によれば、半導体基板と、半導体基板の一方の表面の一部に設けられた第1のi型半導体膜と、第1のi型半導体膜上に設けられた第1導電型半導体膜と、表面の他の一部に設けられた第2のi型半導体膜と、第2のi型半導体膜上に設けられた第2導電型半導体膜と、を有する基体と、第1導電型半導体膜上に設けられた第1電極層と、第2導電型半導体膜上に設けられた第2電極層と、を有する電極部と、第1電極層および第2電極層に挟まれたギャップ領域に設けられた反射部とを備える光電変換素子を提供することができる。本発明の第1の態様においては、ギャップ領域には反射部が設けられているため、基体の受光面側から基体のギャップ領域に位置する裏面側に到達した光を反射することができる。したがって、ヘテロ接合型バックコンタクトセルの特性および信頼性が向上する。
 (2)本発明の第1の態様においては、反射部は、ギャップ領域に設けられた絶縁層であることが好ましい。これにより、ギャップ領域における光の反射効果を高めることができる。
 (3)本発明の第1の態様においては、反射部は、ギャップ領域に位置する基体の一方の表面に設けられた凹凸であることが好ましいこれによりギャップ領域における光を乱反射させることができる。
 (4)本発明の第1の態様においては、凹凸は、半導体基板に設けられたテクスチャ構造であることが好ましい。これにより、所望の形状の凹凸を容易に形成することができる。
 以上のように本発明の実施の形態について説明を行なったが、上述の各実施の形態の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明は、光電変換素子および光電変換素子の製造方法に利用することができ、特に、ヘテロ接合型バックコンタクトセル等の太陽電池およびその製造方法に好適に利用することができる。
 1,41 半導体基板、2 第1のi型半導体膜、3 第1導電型半導体膜、4 第2のi型半導体膜、5 第1の第2導電型半導体膜、6 第3のi型半導体膜、7 第2の第2導電型半導体膜、8 反射防止膜、10,10a 基体、12,13 エッチングマスク、14 金属層、20 電極部、21 第1電極層、22 第2電極層、30,31,32 反射部、51,52 積層体、53 テクスチャ構造。
 

Claims (5)

  1.  半導体基板と、
     前記半導体基板の一方の表面の一部に設けられた第1のi型半導体膜と、
     前記第1のi型半導体膜上に設けられた第1導電型半導体膜と、
     前記表面の他の一部に設けられた第2のi型半導体膜と、
     前記第2のi型半導体膜上に設けられた第2導電型半導体膜と、を有する基体と、
     前記第1導電型半導体膜上に設けられた第1電極層と、
     前記第2導電型半導体膜上に設けられた第2電極層と、を有する電極部と、
     前記第1電極層および前記第2電極層に挟まれたギャップ領域に設けられた反射部と、を備える、光電変換素子。
  2.  前記反射部は、前記ギャップ領域に設けられた絶縁層である、請求項1に記載の光電変換素子。
  3.  前記絶縁層は、前記ギャップ領域に位置する前記基体の一方の表面と接する、請求項2に記載の光電変換素子。
  4.  前記反射部は、前記ギャップ領域に位置する前記基体の一方の表面に設けられた凹凸である、請求項1から請求項3のいずれか1項に記載の光電変換素子。
  5.  前記凹凸は、前記半導体基板に設けられたテクスチャ構造である、請求項4に記載の光電変換素子。
     
PCT/JP2015/053803 2014-03-25 2015-02-12 光電変換素子 WO2015146333A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/127,221 US10411148B2 (en) 2014-03-25 2015-02-12 Photoelectric conversion element
CN201580012467.0A CN106062972A (zh) 2014-03-25 2015-02-12 光电转换元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014061818A JP2015185743A (ja) 2014-03-25 2014-03-25 光電変換素子
JP2014-061818 2014-03-25

Publications (1)

Publication Number Publication Date
WO2015146333A1 true WO2015146333A1 (ja) 2015-10-01

Family

ID=54194871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053803 WO2015146333A1 (ja) 2014-03-25 2015-02-12 光電変換素子

Country Status (4)

Country Link
US (1) US10411148B2 (ja)
JP (1) JP2015185743A (ja)
CN (1) CN106062972A (ja)
WO (1) WO2015146333A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129481A1 (ja) * 2015-02-09 2016-08-18 シャープ株式会社 光電変換素子

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019116665A1 (ja) * 2017-12-14 2019-06-20 株式会社カネカ 光電変換素子および光電変換装置
CN113921626A (zh) * 2021-09-30 2022-01-11 泰州隆基乐叶光伏科技有限公司 一种背接触电池的制作方法
CN116053331B (zh) * 2023-03-31 2023-06-20 福建金石能源有限公司 一种背接触电池及其制作方法和光伏组件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007085072A1 (en) * 2006-01-26 2007-08-02 Arise Technologies Corporation Solar cell
WO2012029847A1 (ja) * 2010-08-31 2012-03-08 三洋電機株式会社 太陽電池セルの製造方法および太陽電池モジュールの製造方法
JP2012099566A (ja) * 2010-10-29 2012-05-24 Sharp Corp 半導体装置、配線基板付き裏面電極型太陽電池セル、太陽電池モジュールおよび半導体装置の製造方法
JP2012109413A (ja) * 2010-11-17 2012-06-07 Toppan Printing Co Ltd 太陽電池モジュール
JP2012119537A (ja) * 2010-12-01 2012-06-21 Ulvac Japan Ltd 光電変換装置の製造方法
JP2012238853A (ja) * 2011-04-29 2012-12-06 Semiconductor Energy Lab Co Ltd 光電変換装置、及びその作製方法
JP2013513966A (ja) * 2009-12-21 2013-04-22 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド 裏面電界型のヘテロ接合太陽電池及びその製造方法
JP2014022544A (ja) * 2012-07-18 2014-02-03 Sharp Corp 光電変換素子および光電変換素子の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641362A (en) * 1995-11-22 1997-06-24 Ebara Solar, Inc. Structure and fabrication process for an aluminum alloy junction self-aligned back contact silicon solar cell
US7164056B2 (en) * 2002-05-03 2007-01-16 Pioneer Hi-Bred International, Inc. Gene targeting using replicating DNA molecules
US7339110B1 (en) * 2003-04-10 2008-03-04 Sunpower Corporation Solar cell and method of manufacture
FR2880989B1 (fr) * 2005-01-20 2007-03-09 Commissariat Energie Atomique Dispositif semi-conducteur a heterojonctions et a structure inter-digitee
JP5347409B2 (ja) 2008-09-29 2013-11-20 三洋電機株式会社 太陽電池及びその製造方法
WO2011021472A1 (ja) * 2009-08-19 2011-02-24 シャープ株式会社 光センサ、半導体装置、及び液晶パネル
US20130233378A1 (en) * 2009-12-09 2013-09-12 Solexel, Inc. High-efficiency photovoltaic back-contact solar cell structures and manufacturing methods using semiconductor wafers
TW201143113A (en) * 2010-02-26 2011-12-01 Sanyo Electric Co Solar cell and method for manufacturing solar cell
CN102591169A (zh) * 2011-01-13 2012-07-18 李华容 一种基于显示模块的显影装置以及电子照相成像设备
TW201310690A (zh) 2011-08-05 2013-03-01 Imec 背面接觸式太陽電池的製造方法
JP5917082B2 (ja) 2011-10-20 2016-05-11 株式会社半導体エネルギー研究所 光電変換装置の作製方法
US8679889B2 (en) * 2011-12-21 2014-03-25 Sunpower Corporation Hybrid polysilicon heterojunction back contact cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007085072A1 (en) * 2006-01-26 2007-08-02 Arise Technologies Corporation Solar cell
JP2013513966A (ja) * 2009-12-21 2013-04-22 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド 裏面電界型のヘテロ接合太陽電池及びその製造方法
WO2012029847A1 (ja) * 2010-08-31 2012-03-08 三洋電機株式会社 太陽電池セルの製造方法および太陽電池モジュールの製造方法
JP2012099566A (ja) * 2010-10-29 2012-05-24 Sharp Corp 半導体装置、配線基板付き裏面電極型太陽電池セル、太陽電池モジュールおよび半導体装置の製造方法
JP2012109413A (ja) * 2010-11-17 2012-06-07 Toppan Printing Co Ltd 太陽電池モジュール
JP2012119537A (ja) * 2010-12-01 2012-06-21 Ulvac Japan Ltd 光電変換装置の製造方法
JP2012238853A (ja) * 2011-04-29 2012-12-06 Semiconductor Energy Lab Co Ltd 光電変換装置、及びその作製方法
JP2014022544A (ja) * 2012-07-18 2014-02-03 Sharp Corp 光電変換素子および光電変換素子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129481A1 (ja) * 2015-02-09 2016-08-18 シャープ株式会社 光電変換素子

Also Published As

Publication number Publication date
JP2015185743A (ja) 2015-10-22
US10411148B2 (en) 2019-09-10
US20170125622A1 (en) 2017-05-04
CN106062972A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
US8558341B2 (en) Photoelectric conversion element
US8569614B2 (en) Solar cell and method of manufacturing the same
CN107710419B (zh) 太阳能电池和太阳能电池模块
JP2008181965A (ja) 積層型光電変換装置及びその製造方法
KR101738000B1 (ko) 태양 전지 및 그 제조 방법
JP2014075526A (ja) 光電変換素子および光電変換素子の製造方法
US20120000506A1 (en) Photovoltaic module and method of manufacturing the same
WO2015146333A1 (ja) 光電変換素子
US9997647B2 (en) Solar cells and manufacturing method thereof
JP2016122749A (ja) 太陽電池素子および太陽電池モジュール
JP2013120863A (ja) 太陽電池の製造方法
TWI453932B (zh) 光伏模組和製造ㄧ具有電極擴散層之光伏模組的方法
US20110253210A1 (en) Solar cell and method for manufacturing the same
WO2012169123A1 (ja) 光電変換素子
WO2012132835A1 (ja) 太陽電池
TWI483410B (zh) 太陽能電池、其製造方法及其模組
JP2014072209A (ja) 光電変換素子および光電変換素子の製造方法
WO2015141338A1 (ja) 光電変換素子および光電変換素子の製造方法
WO2012090650A1 (ja) 太陽電池
WO2012160862A1 (ja) 太陽電池およびその製造方法
US20110259398A1 (en) Thin film solar cell and method for manufacturing the same
JP2014183073A (ja) 光電変換素子および光電変換素子の製造方法
JP6143520B2 (ja) 結晶シリコン系太陽電池およびその製造方法
WO2015141326A1 (ja) 光電変換素子および光電変換素子の製造方法
US20120295391A1 (en) Method of manufacturing a solar cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15127221

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768382

Country of ref document: EP

Kind code of ref document: A1