WO2015141338A1 - 光電変換素子および光電変換素子の製造方法 - Google Patents

光電変換素子および光電変換素子の製造方法 Download PDF

Info

Publication number
WO2015141338A1
WO2015141338A1 PCT/JP2015/053801 JP2015053801W WO2015141338A1 WO 2015141338 A1 WO2015141338 A1 WO 2015141338A1 JP 2015053801 W JP2015053801 W JP 2015053801W WO 2015141338 A1 WO2015141338 A1 WO 2015141338A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor film
type semiconductor
film
type
photoelectric conversion
Prior art date
Application number
PCT/JP2015/053801
Other languages
English (en)
French (fr)
Inventor
親扶 岡本
賢治 木本
督章 國吉
敏彦 酒井
剛 常深
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015141338A1 publication Critical patent/WO2015141338A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer or HIT® solar cells; solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photoelectric conversion element and a method for manufacturing the photoelectric conversion element.
  • the most manufactured and sold solar cells have a structure in which electrodes are formed on a light receiving surface that is a surface on which sunlight is incident and a back surface that is opposite to the light receiving surface, respectively.
  • FIG. 33 shows a schematic cross-sectional view of a solar cell in which electrodes are formed only on the back surface described in Patent Document 1 of the related art.
  • an IP stacked body 114 is provided on a part of the back surface of a semiconductor substrate 100 having n-type or p-type conductivity.
  • a p-side electrode 117 is provided on 114, and an insulating layer 118 is provided so as to cover the stacked body of the IP stacked body 114 and the p-side electrode 117.
  • an IN stacked body 119 is provided so as to cover another part of the back surface of the semiconductor substrate 100 and the insulating layer 118, and an n-side electrode 122 is provided so as to cover the entire surface of the IN stacked body 119.
  • An i-type amorphous semiconductor layer 112 and an n-type amorphous semiconductor layer 113 on the i-type amorphous semiconductor layer 112 are provided on the light receiving surface of the semiconductor substrate 100.
  • the IP stacked body 114 is composed of a stacked body of an i-type amorphous semiconductor layer 115 and a p-type amorphous semiconductor layer 116.
  • the p-side electrode 117 is composed of a laminate of a TCO layer 117a and a metal layer 117b provided on the IP laminate 114.
  • the insulating layer 118 is composed of a stacked body of a first insulating layer 118a and a second insulating layer 118b covering the IP stacked body 114 and the p-side electrode 117.
  • the IN stacked body 119 includes a stacked body of an i-type amorphous semiconductor layer 120 and an n-type amorphous semiconductor layer 121 that cover the insulating layer 118.
  • the n-side electrode 122 is composed of a stacked body of a TCO layer 122a and a metal layer 122b covering the IN stacked body 119.
  • carriers are generated inside the semiconductor substrate 100 by causing sunlight 111 to enter from the light receiving surface side of the semiconductor substrate 100, and the p-side electrode 117 and the n-side electrode 122 to the outside.
  • an object of the present invention is to provide a photoelectric conversion element and a method for manufacturing the photoelectric conversion element that can improve characteristics and reliability.
  • a semiconductor substrate a first i-type semiconductor film provided on a part of one surface of the semiconductor substrate, and a first i-type semiconductor film provided on the first i-type semiconductor film
  • a first conductivity type semiconductor film a second i type semiconductor film provided on another part of the surface of the semiconductor substrate; a second conductivity type semiconductor film provided on the second i type semiconductor film;
  • a first conductive type electrode layer provided on the first conductive type semiconductor film; and a second conductive type electrode layer provided on the second conductive type semiconductor film, on one end of the first conductive type semiconductor film.
  • a photoelectric conversion element is provided in which one end of the second i-type semiconductor film is positioned and an intervening layer is provided between one end of the first conductivity type semiconductor film and one end of the second i-type semiconductor film. be able to.
  • the step of forming the first i-type semiconductor film on one surface of the semiconductor substrate and the formation of the first conductive semiconductor film on the first i-type semiconductor film A thickness of a part of the first stacked body including the step, the step of forming an intervening layer on the first conductive semiconductor film, the first i-type semiconductor film, the first conductive semiconductor film, and the intervening layer Removing in the direction, forming a second i-type semiconductor film on the surface of the semiconductor substrate and on the intervening layer, and forming a second conductive semiconductor film on the second i-type semiconductor film,
  • the intervening layer, the second i-type semiconductor film, and the second conductive semiconductor film leave a part of the intervening layer between one end of the first conductive semiconductor film and one end of the second i-type semiconductor film.
  • the present invention it is possible to provide a photoelectric conversion element and a method for manufacturing the photoelectric conversion element that can improve characteristics and reliability.
  • FIG. 3 is a schematic cross-sectional view of the heterojunction back contact cell according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 3 is a schematic cross-sectional view illustrating an example of a method for manufacturing the heterojunction back contact cell of the first embodiment.
  • FIG. 6 is a schematic cross-sectional view of a heterojunction back contact cell according to a second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a method for manufacturing a heterojunction back contact cell according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a method for manufacturing a heterojunction back contact cell according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a method for manufacturing a heterojunction back contact cell according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a method for manufacturing a heterojunction back contact cell according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a method for manufacturing a heterojunction back contact cell according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a method for manufacturing a heterojunction back contact cell according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a method for manufacturing a heterojunction back contact cell according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a method for manufacturing a heterojunction back contact cell according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a method for manufacturing a heterojunction back contact cell according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a method for manufacturing a heterojunction back contact cell according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a method for manufacturing a heterojunction back contact cell according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a method for manufacturing a heterojunction back contact cell according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a method for manufacturing a heterojunction back contact cell according to the second embodiment.
  • FIG. 10 is a schematic cross-sectional view illustrating an example of a method for manufacturing a heterojunction back contact cell according to the second embodiment.
  • 6 is a schematic cross-sectional view of a heterojunction back contact cell according to Embodiment 3.
  • FIG. It is typical sectional drawing of the solar cell in which the electrode was formed only in the back surface of the conventional patent document 1.
  • FIG. 1 is a schematic cross-sectional view of a heterojunction back contact cell according to Embodiment 1, which is an example of the photoelectric conversion element of the present invention.
  • the heterojunction back contact cell according to the first embodiment includes a semiconductor substrate 1 made of an n-type single crystal silicon substrate and an i-type amorphous silicon film provided on a part of one surface of the semiconductor substrate 1.
  • a semiconductor film 5, a first conductivity type electrode layer 11 provided on the first conductivity type semiconductor film 3, and a second conductivity type electrode layer 12 provided on the second conductivity type semiconductor film 5 are provided.
  • the first conductivity type electrode layer 11 and the second conductivity type electrode layer 12 are each composed of a laminate of a first metal layer 9 and a second metal layer 10.
  • the entire back surface of the semiconductor substrate 1 is covered with a first i-type semiconductor film 2 and a second i-type semiconductor film 4.
  • One end of the stacked body with the two-conductivity-type semiconductor film 5 is sandwiched between the first i-type semiconductor film 2 and the first conductive-type semiconductor film 3 via the intervening layer 8 made of an n-type amorphous silicon film. Covers one end of That is, the intervening layer 8 is provided between one end of the first conductive semiconductor film 3 and one end of the second i-type semiconductor film 4.
  • the first conductivity type electrode layer 11 and the second conductivity type electrode layer 12 are electrically insulated.
  • the heterojunction back contact cell of the first embodiment includes a third i-type semiconductor film 6 provided on the unevenness 1a of the light-receiving surface which is the other surface of the semiconductor substrate 1, and a third i-type semiconductor. And a second second-conductivity-type semiconductor film 7 provided on the film 6.
  • the unevenness 1a on the light receiving surface of the semiconductor substrate 1 can be formed, for example, by texture-etching the light receiving surface of the semiconductor substrate 1 after forming a texture mask on the entire back surface of the semiconductor substrate 1.
  • silicon nitride or silicon oxide can be used as the texture mask.
  • an etchant used for texture etching for example, an alkaline solution capable of dissolving silicon can be used.
  • an n-type single crystal silicon substrate can be suitably used, but is not limited to an n-type single crystal silicon substrate, and for example, a conventionally known semiconductor substrate can also be used.
  • a third i-type semiconductor film 6 is formed on the unevenness 1 a of the light receiving surface of the semiconductor substrate 1.
  • the method for forming the third i-type semiconductor film 6 is not particularly limited, but for example, a plasma CVD (Chemical Vapor Deposition) method can be used.
  • an i-type amorphous silicon film can be preferably used, but is not limited to an i-type amorphous silicon film, and for example, a conventionally known i-type semiconductor film is used. You can also.
  • a second second conductive semiconductor film 7 is formed on the third i-type semiconductor film 6.
  • the method for forming the second second conductivity type semiconductor film 7 is not particularly limited, and for example, a plasma CVD method can be used.
  • an n-type amorphous silicon film can be suitably used, but is not limited to an n-type amorphous silicon film, and for example, a conventionally known n-type semiconductor film Can also be used.
  • phosphorus can be used as the n-type impurity contained in the second second conductivity type semiconductor film 7.
  • i-type means not only a completely intrinsic state but also a sufficiently low concentration (the n-type impurity concentration is less than 1 ⁇ 10 15 / cm 3 and the p-type impurity concentration is 1 ⁇ (Less than 10 15 / cm 3 ) means to include those in which n-type or p-type impurities are mixed.
  • amorphous silicon includes not only amorphous silicon in which dangling bonds of silicon atoms are not terminated with hydrogen, but also silicon such as hydrogenated amorphous silicon. Also included are those in which dangling bonds of atoms are terminated with hydrogen.
  • a first i-type semiconductor film 2 is formed on the entire back surface of the semiconductor substrate 1.
  • the formation method of the 1st i-type semiconductor film 2 is not specifically limited, For example, plasma CVD method can be used.
  • an i-type amorphous silicon film can be suitably used, but is not limited to an i-type amorphous silicon film, and for example, a conventionally known i-type semiconductor film is used. You can also.
  • a first conductive semiconductor film 3 is formed on the first i-type semiconductor film 2 on the back surface of the semiconductor substrate 1.
  • the formation method of the 1st conductivity type semiconductor film 3 is not specifically limited, For example, plasma CVD method can be used.
  • a p-type amorphous silicon film can be preferably used as the first conductive semiconductor film 3, but is not limited to a p-type amorphous silicon film.
  • a conventionally known p-type semiconductor film may be used. it can.
  • an intervening layer 8 is formed on the first conductivity type semiconductor film 3.
  • the formation method of the intervening layer 8 is not specifically limited, For example, plasma CVD method can be used.
  • an n-type amorphous silicon film can be preferably used, but is not limited to an n-type amorphous silicon film, and for example, a conventionally known n-type semiconductor film can also be used.
  • a conventionally known n-type semiconductor film can also be used.
  • the n-type impurity contained in the intervening layer 8 for example, phosphorus can be used.
  • the n-type impurity concentration of the n-type semiconductor film such as the n-type amorphous silicon film constituting the intervening layer 8 is set to 1 ⁇ 10 15 pieces / cm 3 or more.
  • the n-type impurity concentration can be measured by secondary ion mass spectrometry (SIMS).
  • the photoresist is formed only on the portion where the stacked body 51 of the first i-type semiconductor film 2, the first conductive semiconductor film 3 and the intervening layer 8 is left on the back surface of the semiconductor substrate 1.
  • Etching mask 21 is formed.
  • a part of the stacked body 51 of the first i-type semiconductor film 2, the first conductive semiconductor film 3, and the intervening layer 8 is formed in the thickness direction. Wet etching. Thereby, the surface of the semiconductor substrate 1 is exposed. Further, instead of wet etching using the etching mask 21 as a mask, a part of the stacked body 51 may be removed by, for example, laser light irradiation.
  • the second i-type semiconductor film 4 is formed so as to cover the exposed portion of the back surface of the semiconductor substrate 1 and the intervening layer 8.
  • the method for forming the second i-type semiconductor film 4 is not particularly limited, but for example, a plasma CVD method can be used.
  • an i-type amorphous silicon film can be preferably used, but is not limited to an i-type amorphous silicon film, and for example, a conventionally known i-type semiconductor film is used. You can also.
  • a second conductivity type semiconductor film 5 is formed on the second i-type semiconductor film 4.
  • the formation method of the 2nd conductivity type semiconductor film 5 is not specifically limited, For example, plasma CVD method can be used.
  • the second conductive type semiconductor film 5 an n-type amorphous silicon film can be suitably used.
  • the second conductive type semiconductor film 5 is not limited to an n-type amorphous silicon film.
  • a conventionally known n-type semiconductor film may be used. it can.
  • an etching mask 22 such as a photoresist is left only in a portion where the stacked body 52 of the second i-type semiconductor film 4 and the second conductive semiconductor film 5 is left on the back surface of the semiconductor substrate 1.
  • the second i-type is left so that a part of the intervening layer 8 is left between one end of the first conductivity type semiconductor film 3 and one end of the second i-type semiconductor film 4.
  • a part of the stacked body 52 composed of the semiconductor film 4 and the second conductive type semiconductor film 5 is wet etched in the thickness direction to expose a part of the first conductive type semiconductor film 3 as shown in FIG.
  • the etching mask 22 is completely removed from the second conductivity type semiconductor film 5.
  • the first metal layer 9 is formed so as to cover the entire surfaces of the first conductive semiconductor film 3 and the second conductive semiconductor film 5.
  • an ITO film can be suitably used, but is not limited thereto.
  • the formation method of the 1st metal layer 9 is not specifically limited, either, For example, a vapor deposition method etc. can be used.
  • the second metal layer 10 is formed on the first metal layer 9.
  • a silver film can be suitably used, but is not limited thereto.
  • the method for forming the second metal layer 10 is not particularly limited, and for example, a vapor deposition method can be used.
  • an etching mask 23 such as a photoresist is formed on the surface of the second metal layer 10 corresponding to the formation region of the first conductivity type electrode layer 11 and the second conductivity type electrode layer 12. Form.
  • the portions of the first metal layer 9 and the second metal layer 10 where the etching mask 23 is not formed are etched.
  • the first metal layer 9 and the second metal layer 10 may be partially removed by, for example, laser light irradiation.
  • an intervening layer 8 made of an n-type amorphous silicon film is formed on the first conductive semiconductor film 3 made of a p-type amorphous silicon film, an i-type amorphous silicon film is formed.
  • the second i-type semiconductor film 4 made of n and the second conductive type semiconductor film 5 made of n-type amorphous silicon film are formed in this order, and then, as shown in FIG. 13, the first conductive type semiconductor film 3, the intermediate layer 8, the second i-type semiconductor film 4, and the second conductive semiconductor film 5 are formed so that a part of the intermediate layer 8 remains between one end of the first i-type semiconductor film 4 and the second i-type semiconductor film 4.
  • the surface of the first conductive type semiconductor film 3 is exposed by wet etching.
  • the second i-type semiconductor film 4 made of the i-type amorphous silicon film is directly formed on the first conductive semiconductor film 3 made of the p-type amorphous silicon film.
  • a clean surface of the first conductive semiconductor film 3 with less residue such as the second i-type semiconductor film 4 made of an i-type amorphous silicon film serving as a resistance.
  • the first conductivity type electrode layer 11 can be formed on the exposed surface of the first conductivity type semiconductor film 3 so that the first conductivity type electrode layer 11 with respect to the first conductivity type semiconductor film 3 is exposed.
  • the contact resistance of the heterojunction back contact cell according to the first embodiment can be improved.
  • the first conductive semiconductor film is formed using an etchant in which the etching rate of the intervening layer 8 made of the n-type amorphous silicon film is larger than that of the first conductive semiconductor film 3 made of the p-type amorphous silicon film. It is preferable to perform the above wet etching using 3 as an etching stop layer. In this case, the surface of the first conductivity type semiconductor film 3 can be exposed in a state where the residue of the second i-type semiconductor film 4 and the like on the surface of the first conductivity type semiconductor film 3 is further reduced. The characteristics and reliability of the heterojunction back contact cell of the first embodiment can be further improved.
  • the etching rate of the intervening layer 8 made of an n-type amorphous silicon film is higher than that of the first conductive semiconductor film 3 made of a p-type amorphous silicon film
  • Mention may be made of alkaline solutions such as aqueous sodium hydroxide and / or aqueous potassium hydroxide.
  • the total thickness of the first i-type semiconductor film 2, the first conductive semiconductor film 3, and the intervening layer 8 is preferably 5 nm or more. More preferably, it is 10 nm or more.
  • the total thickness of the first i-type semiconductor film 2, the first conductivity type semiconductor film 3, and the intervening layer 8 is 5 nm or more, particularly 10 nm or more, it depends on the laminate of these films. Passivation can be improved.
  • FIG. 19 is a schematic cross-sectional view of a heterojunction back contact cell according to Embodiment 2, which is another example of the photoelectric conversion element of the present invention.
  • the heterojunction back contact cell according to the second embodiment includes an intervening layer 31 made of an ITO film between one end of the first conductive semiconductor film 3 and one end of the second i-type semiconductor film 4. It is a feature.
  • the third i-type semiconductor film 6 and the second second-conductivity-type semiconductor film 7 are formed on the unevenness 1a of the light-receiving surface of the semiconductor substrate 1.
  • the first i-type semiconductor film 2 and the first conductive semiconductor film 3 are formed in this order on the back surface of the semiconductor substrate 1.
  • an intervening layer 31 made of an ITO film is formed on the first conductivity type semiconductor film 3.
  • the formation method of the intervening layer 31 made of the ITO film is not particularly limited, and for example, a sputtering method or the like can be used.
  • the stacked body 51 of the first i-type semiconductor film 2, the first conductive semiconductor film 3, and the intervening layer 31 is left on the back surface of the semiconductor substrate 1.
  • An etching mask 21 such as a photoresist is formed only on the portion.
  • the second i-type semiconductor film 4 is formed so as to cover the exposed portion of the back surface of the semiconductor substrate 1 and the intervening layer 31. Subsequently, as shown in the schematic cross-sectional view of FIG. 24, a second conductivity type semiconductor film 5 is formed on the second i-type semiconductor film 4.
  • a photoresist is applied only to a portion where the stacked body 52 of the second i-type semiconductor film 4 and the second conductive semiconductor film 5 is left on the back surface of the semiconductor substrate 1.
  • Etching mask 22 is formed.
  • the second i-type is left so as to leave a part of the intervening layer 31 between one end of the first conductivity type semiconductor film 3 and one end of the second i-type semiconductor film 4.
  • a portion of the stacked body 52 of the semiconductor film 4 and the second conductive type semiconductor film 5 is wet-etched in the thickness direction, so that the first conductive type semiconductor film 3 of the first conductive type semiconductor film 3 is formed as shown in the schematic sectional view of FIG. Expose the surface.
  • hydrofluoric acid As an etchant in which the etching rate of the intervening layer 31 made of the ITO film is larger than that of the first conductive semiconductor film 3 made of the p-type amorphous silicon film, for example, hydrofluoric acid can be mentioned.
  • the etching mask 22 is completely removed from the second conductivity type semiconductor film 5.
  • the first metal layer 9 is formed so as to cover the entire surfaces of the first conductive semiconductor film 3 and the second conductive semiconductor film 5, and subsequently FIG.
  • a second metal layer 10 is formed on the first metal layer 9.
  • a photoresist or the like is formed on the surface of the second metal layer 10 corresponding to the formation region of the first conductivity type electrode layer 11 and the second conductivity type electrode layer 12.
  • the etching mask 23 is formed.
  • the portions of the first metal layer 9 and the second metal layer 10 where the etching mask 23 is not formed are etched.
  • an intervening layer 31 made of an ITO film is formed on the first conductive semiconductor film 3 made of a p-type amorphous silicon film, and then a second made of an i-type amorphous silicon film.
  • An i-type semiconductor film 4 and a second conductive semiconductor film 5 made of an n-type amorphous silicon film are formed in this order, and thereafter, as shown in FIG. 26, one end of the first conductive semiconductor film 3 and
  • the intervening layer 31, the second i-type semiconductor film 4, and the second conductive semiconductor film 5 are wet-etched so that a part of the intervening layer 31 remains between one end of the second i-type semiconductor film 4.
  • the surface of the first conductive type semiconductor film 3 is exposed.
  • the second i-type semiconductor film 4 made of the i-type amorphous silicon film is directly formed on the first conductive semiconductor film 3 made of the p-type amorphous silicon film.
  • a clean surface of the first conductive semiconductor film 3 with less residue such as the second i-type semiconductor film 4 made of an i-type amorphous silicon film serving as a resistance.
  • the first conductivity type electrode layer 11 can be formed on the exposed surface of the first conductivity type semiconductor film 3 so that the first conductivity type electrode layer 11 with respect to the first conductivity type semiconductor film 3 is exposed.
  • the contact resistance of the heterojunction back contact cell according to the second embodiment can be improved.
  • the first conductivity type is used by using an etchant in which the etching rate of the intervening layer 31 made of the ITO film is larger than that of the first conductivity type semiconductor film 3 made of the p-type amorphous silicon film. It is preferable to perform the above-described wet etching with the semiconductor film 3 functioning as an etching stop layer. In this case, the surface of the first conductivity type semiconductor film 3 can be exposed in a state where the residue of the second i-type semiconductor film 4 and the like on the surface of the first conductivity type semiconductor film 3 is further reduced. The characteristics and reliability of the heterojunction back contact cell of the second embodiment can be further improved.
  • the second embodiment is the same as the first embodiment except that an intervening layer 31 made of an ITO film is used instead of the intervening layer 8 made of an n-type amorphous silicon film. Do not repeat.
  • FIG. 32 is a schematic cross-sectional view of a heterojunction back contact cell according to Embodiment 3, which is another example of the photoelectric conversion element of the present invention.
  • the heterojunction back contact cell according to the third embodiment includes an intervening layer 41 made of a silicon oxide film between one end of the first conductive semiconductor film 3 and one end of the second i-type semiconductor film 4. It is characterized by.
  • the heterojunction back contact cell of the third embodiment can be manufactured in the same manner as in the second embodiment except that the intervening layer 41 made of a silicon oxide film is used instead of the intervening layer 31 made of the ITO film.
  • the intervening layer 41 made of a silicon oxide film can be formed by, for example, a CVD method.
  • an intervening layer 41 made of a silicon oxide film is formed on the first conductive semiconductor film 3 made of a p-type amorphous silicon film, and then a second made of an i-type amorphous silicon film.
  • the i-type semiconductor film 4 and the second conductive semiconductor film 5 made of an n-type amorphous silicon film are formed in this order, and then one end of the first conductive semiconductor film 3 and the second i-type semiconductor are formed.
  • wet etching the intervening layer 41, the second i-type semiconductor film 4 and the second conductive semiconductor film 5 so that a part of the intervening layer 41 remains between one end of the film 4, the first conductive type The surface of the semiconductor film 3 is exposed.
  • the first conductive type semiconductor film 3 having a small amount of residue such as the second i type semiconductor film 4 made of an i type amorphous silicon film serving as a resistor has a first surface on a clean surface. Since the conductive type electrode layer 11 can be formed, the contact resistance of the first conductive type electrode layer 11 with respect to the first conductive type semiconductor film 3 can be reduced. As a result, the characteristics of the heterojunction back contact cell can be reduced. And reliability can be improved.
  • the silicon oxide film is compared with the first conductive semiconductor film 3 made of a p-type amorphous silicon film. It is preferable to perform the above-described wet etching using an etchant that increases the etching rate of the intervening layer 41 made of the first conductive type semiconductor film 3 as an etching stop layer.
  • the etching rate of the intervening layer 41 made of the silicon oxide film is larger than that of the first conductive semiconductor film 3 made of the p-type amorphous silicon film
  • hydrofluoric acid is cited. be able to.
  • Embodiment 3 is the same as Embodiment 1 except that an intervening layer 41 made of a silicon oxide film is used in place of the intervening layer 31 made of an ITO film, and the same description will not be repeated.
  • Embodiments 1 to 3 the case where an n-type amorphous silicon film, an ITO film, or a silicon oxide film is used as the intervening layer has been described.
  • the present invention is not limited to this, and the second i-type semiconductor is used.
  • a material whose etching rate of the etchant used for wet etching of the laminate 52 of the film 4 and the second conductive type semiconductor film 5 is larger than that of the first conductive type semiconductor film 3 can be used as appropriate.
  • a silicon oxide film These films may be used in combination like a laminate of ITO and ITO film, or one or more films of materials other than the above may be used.
  • the semiconductor substrate, the first i-type semiconductor film provided on a part of one surface of the semiconductor substrate, and the first i-type semiconductor film are provided.
  • First conductive type semiconductor film, second i type semiconductor film provided on another part of the surface of the semiconductor substrate, and second conductive type semiconductor film provided on the second i type semiconductor film A first conductivity type electrode layer provided on the first conductivity type semiconductor film, and a second conductivity type electrode layer provided on the second conductivity type semiconductor film.
  • One end of the second i-type semiconductor film is located on one end of the first and second photoelectric conversion elements having an intervening layer between one end of the first conductivity type semiconductor film and one end of the second i-type semiconductor film Can be provided.
  • the residue of the second i-type semiconductor film is reduced. Since the first conductivity type electrode layer can be formed on the surface of the first conductivity type semiconductor film, the contact resistance of the first conductivity type electrode layer with respect to the first conductivity type semiconductor film can be reduced. The characteristics and reliability of the photoelectric conversion element can be improved.
  • the first conductivity type semiconductor film is preferably an etching stop layer as an intervening layer.
  • the first conductivity type electrode layer is formed on the surface of the first conductivity type semiconductor film in which residues such as the second i type semiconductor film, the second conductivity type semiconductor film, and the intervening layer are further reduced. be able to.
  • the first conductive semiconductor film includes a p-type amorphous silicon film and the intervening layer includes an n-type amorphous silicon film.
  • the first conductivity type electrode layer is formed on the surface of the first conductivity type semiconductor film in which residues such as the second i type semiconductor film, the second conductivity type semiconductor film, and the intervening layer are further reduced. be able to.
  • the n-type impurity concentration of the n-type amorphous silicon film is preferably 1 ⁇ 10 15 atoms / cm 3 or more.
  • the first conductivity type electrode layer is formed on the surface of the first conductivity type semiconductor film in which residues such as the second i type semiconductor film, the second conductivity type semiconductor film, and the intervening layer are further reduced. be able to.
  • the first conductive semiconductor film preferably includes a p-type amorphous silicon film, and the intervening layer preferably includes an oxide film.
  • the first conductivity type electrode layer is formed on the surface of the first conductivity type semiconductor film in which residues such as the second i type semiconductor film, the second conductivity type semiconductor film, and the intervening layer are further reduced. be able to.
  • the oxide film preferably includes at least one of an ITO film and a silicon oxide film.
  • the first conductivity type electrode layer is formed on the surface of the first conductivity type semiconductor film in which residues such as the second i type semiconductor film, the second conductivity type semiconductor film, and the intervening layer are further reduced. be able to.
  • the total thickness of the first i-type semiconductor film, the first conductive semiconductor film, and the intervening layer is preferably 5 nm or more.
  • the passivation property by the laminated body of the first i-type semiconductor film, the first conductive semiconductor film, and the intervening layer can be improved.
  • the second i-type semiconductor film preferably includes an i-type amorphous silicon film. Also in this case, the characteristics and reliability of the photoelectric conversion element can be improved.
  • the entire surface of the semiconductor substrate is preferably covered with the first i-type semiconductor film and the second i-type semiconductor film.
  • the passivation property of the surface of the semiconductor substrate by the first i-type semiconductor film and the second i-type semiconductor film can be improved.
  • the semiconductor substrate preferably contains n-type single crystal silicon. Also in this case, the characteristics and reliability of the photoelectric conversion element can be improved.
  • the first i-type semiconductor film preferably includes an i-type amorphous silicon film. Also in this case, the characteristics and reliability of the photoelectric conversion element can be improved.
  • the second conductive semiconductor film preferably includes an n-type amorphous silicon film. Also in this case, the characteristics and reliability of the photoelectric conversion element can be improved.
  • the first conductivity type electrode layer and the second conductivity type electrode layer are electrically insulated. Also in this case, the characteristics and reliability of the photoelectric conversion element can be improved.
  • a third i-type semiconductor film provided on the other surface of the semiconductor substrate and a second second conductivity provided on the third i-type semiconductor film It is preferable to further include a type semiconductor film. Also in this case, the characteristics and reliability of the photoelectric conversion element can be improved.
  • the step of forming the first i-type semiconductor film on one surface of the semiconductor substrate, and the first conductive semiconductor film on the first i-type semiconductor film A part of the first stacked body including the step of forming the intermediate layer, the step of forming the intervening layer on the first conductive semiconductor film, the first i-type semiconductor film, the first conductive semiconductor film, and the intervening layer Removing in the thickness direction, forming a second i-type semiconductor film on the surface of the semiconductor substrate and on the intervening layer, and forming a second conductive semiconductor film on the second i-type semiconductor film And the intervening layer, the second i-type semiconductor film, and the second conductive type so as to leave a part of the intervening layer between one end of the first conductive type semiconductor film and one end of the second i-type semiconductor film.
  • a manufacturing method of a photoelectric conversion element and a step of forming a second conductivity type electrode layer on the second conductive type semiconductor layer.
  • the residue such as the second i-type semiconductor film is reduced. Since the first conductivity type electrode layer can be formed on the surface of the first conductivity type semiconductor film, the contact resistance of the first conductivity type electrode layer with respect to the first conductivity type semiconductor film can be reduced. The characteristics and reliability of the photoelectric conversion element can be improved.
  • the wet etching step is performed using an etchant in which the etching rate of the intervening layer is higher than that of the first conductivity type semiconductor film.
  • residues such as the second i-type semiconductor film, the second conductivity-type semiconductor film, and the intervening layer on the surface of the first conductivity-type semiconductor film after the wet etching can be further reduced.
  • the wet etching step is preferably performed using the first conductivity type semiconductor film as an etching stop layer.
  • residues such as the second i-type semiconductor film, the second conductivity-type semiconductor film, and the intervening layer on the surface of the first conductivity-type semiconductor film after the first wet etching can be further reduced.
  • the first conductive semiconductor film includes a p-type amorphous silicon film and the intervening layer includes an n-type amorphous silicon film.
  • wet etching is performed using an etchant that increases the etching rate of the n-type amorphous silicon film as compared with the p-type amorphous silicon film, whereby the first conductive semiconductor film after the wet etching is formed. Residues such as the second i-type semiconductor film, the second conductive semiconductor film, and the intervening layer on the surface can be further reduced.
  • the n-type impurity concentration of the n-type amorphous silicon film is preferably 1 ⁇ 10 15 / cm 3 or more.
  • the first conductive semiconductor film after the wet etching is formed. Residues such as the second i-type semiconductor film, the second conductive semiconductor film, and the intervening layer on the surface can be further reduced.
  • the wet etching step is preferably performed using an etchant containing an alkaline solution.
  • residues such as the second i-type semiconductor film, the second conductivity-type semiconductor film, and the intervening layer on the surface of the first conductivity-type semiconductor film after the wet etching can be further reduced.
  • the first conductive semiconductor film preferably includes a p-type amorphous silicon film
  • the intervening layer preferably includes an oxide film.
  • the second etching on the surface of the first conductivity type semiconductor film after the wet etching is performed by performing wet etching using an etchant whose etching rate of the oxide film is larger than that of the p-type amorphous silicon film. Residues such as the i-type semiconductor film, the second conductivity type semiconductor film, and the intervening layer can be further reduced.
  • the oxide film preferably includes at least one of an ITO film and a silicon oxide film.
  • the second etching on the surface of the first conductivity type semiconductor film after the wet etching is performed by performing wet etching using an etchant whose etching rate of the oxide film is larger than that of the p-type amorphous silicon film. Residues such as the i-type semiconductor film, the second conductivity type semiconductor film, and the intervening layer can be further reduced.
  • the wet etching step is preferably performed using an etchant containing hydrofluoric acid.
  • residues such as the second i-type semiconductor film, the second conductivity-type semiconductor film, and the intervening layer on the surface of the first conductivity-type semiconductor film after the wet etching can be further reduced.
  • the semiconductor substrate preferably contains n-type single crystal silicon. Also in this case, the characteristics and reliability of the photoelectric conversion element can be improved.
  • the first i-type semiconductor film and the second i-type semiconductor film preferably include an i-type amorphous silicon film. Also in this case, the characteristics and reliability of the photoelectric conversion element can be improved.
  • the second conductive semiconductor film preferably includes an n-type amorphous silicon film. Also in this case, the characteristics and reliability of the photoelectric conversion element can be improved.
  • a step of forming a third i-type semiconductor film on the other surface of the semiconductor substrate, and a second second-conductivity-type semiconductor on the third i-type semiconductor film It is preferable to further include a step of forming a film. Also in this case, the characteristics and reliability of the photoelectric conversion element can be improved.
  • the present invention can be used for a photoelectric conversion element and a method for manufacturing the photoelectric conversion element, and can be particularly preferably used for a solar battery such as a heterojunction back contact cell and a method for manufacturing the solar battery.

Abstract

特性および信頼性を向上させることが可能な光電変換素子および光電変換素子の製造方法を提供する。光電変換素子は、半導体基板1の一方の表面の一部に第1のi型半導体膜2と第1導電型半導体膜3とを備え、半導体基板の表面の他の一部に第2のi型半導体膜4と第2導電型半導体膜5とを備えている。第1導電型半導体膜3上には第1導電型用電極層11が設けられており、第2導電型半導体膜5上には第2導電型用電極層12が設けられている。第1導電型半導体膜3の一端上に第2のi型半導体膜4の一端が位置している。第1導電型半導体膜3の一端と第2のi型半導体膜4の一端との間に介在層8を備えている。

Description

光電変換素子および光電変換素子の製造方法
 本発明は、光電変換素子および光電変換素子の製造方法に関する。
 太陽光エネルギを電気エネルギに直接変換する太陽電池は、近年、特に、地球環境問題の観点から、次世代のエネルギ源としての期待が急激に高まっている。太陽電池には、化合物半導体または有機材料を用いたものなど様々な種類のものがあるが、現在、主流となっているのは、シリコン結晶を用いたものである。
 現在、最も多く製造および販売されている太陽電池は、太陽光が入射する側の面である受光面と、受光面の反対側である裏面とにそれぞれ電極が形成された構造のものである。
 しかしながら、受光面に電極を形成した場合には、電極における太陽光の反射および吸収があることから、電極の面積分だけ入射する太陽光の量が減少する。そのため、裏面のみに電極を形成した太陽電池の開発が進められている(たとえば特許文献1参照)。
 図33に、従来の特許文献1に記載の裏面のみに電極が形成された太陽電池の模式的な断面図を示す。図33に示すように、特許文献1に記載の太陽電池においては、n型またはp型の導電性を有する半導体基板100の裏面の一部にIP積層体114が設けられており、IP積層体114上にp側電極117が設けられており、IP積層体114とp側電極117との積層体を覆うようにして絶縁層118が設けられている。また、半導体基板100の裏面の他の一部と絶縁層118とを覆うようにしてIN積層体119が設けられており、IN積層体119の全面を被覆するようにn側電極122が設けられている。また、半導体基板100の受光面上には、i型非晶質半導体層112と、i型非晶質半導体層112上のn型非晶質半導体層113とが設けられている。
 ここで、IP積層体114は、i型非晶質半導体層115とp型非晶質半導体層116との積層体から構成されている。また、p側電極117は、IP積層体114上に設けられたTCO層117aと金属層117bとの積層体から構成されている。また、絶縁層118は、IP積層体114およびp側電極117を被覆する第1の絶縁層118aと第2の絶縁層118bとの積層体から構成されている。また、IN積層体119は、絶縁層118を被覆するi型非晶質半導体層120とn型非晶質半導体層121との積層体から構成されている。さらに、n側電極122は、IN積層体119を被覆するTCO層122aと金属層122bとの積層体から構成されている。
 図33に示される特許文献1に記載の太陽電池は、半導体基板100の受光面側から太陽光111を入射させることにより半導体基板100の内部でキャリアが生成し、p側電極117とn側電極122とから外部に取り出される。
特開2011-204832号公報
 近年、太陽電池等の光電変換素子の技術分野においては、特性および信頼性を向上させることが強く要望されており、その検討が進められている。
 上記の事情に鑑みて、本発明の目的は、特性および信頼性を向上させることが可能な光電変換素子および光電変換素子の製造方法を提供することにある。
 本発明の第1の態様によれば、半導体基板と、半導体基板の一方の表面の一部に設けられた第1のi型半導体膜と、第1のi型半導体膜上に設けられた第1導電型半導体膜と、半導体基板の表面の他の一部に設けられた第2のi型半導体膜と、第2のi型半導体膜上に設けられた第2導電型半導体膜と、第1導電型半導体膜上に設けられた第1導電型用電極層と、第2導電型半導体膜上に設けられた第2導電型用電極層とを備え、第1導電型半導体膜の一端上に第2のi型半導体膜の一端が位置しており、第1導電型半導体膜の一端と第2のi型半導体膜の一端との間に介在層を備えている光電変換素子を提供することができる。
 本発明の第2の態様によれば、半導体基板の一方の表面上に第1のi型半導体膜を形成する工程と、第1のi型半導体膜上に第1導電型半導体膜を形成する工程と、第1導電型半導体膜上に介在層を形成する工程と、第1のi型半導体膜と第1導電型半導体膜と介在層とを含む第1の積層体の一部を厚さ方向に除去する工程と、半導体基板の表面上および介在層上に第2のi型半導体膜を形成する工程と、第2のi型半導体膜上に第2導電型半導体膜を形成する工程と、第1導電型半導体膜の一端と第2のi型半導体膜の一端との間に介在層の一部を残すように介在層と第2のi型半導体膜と第2導電型半導体膜とを含む第2の積層体の一部を厚さ方向にウエットエッチングする工程と、第1導電型半導体膜上に第1導電型用電極層を形成するとともに、第2導電型半導体膜上に第2導電型用電極層を形成する工程とを含む光電変換素子の製造方法を提供することができる。
 本発明によれば、特性および信頼性を向上させることが可能な光電変換素子および光電変換素子の製造方法を提供することができる。
実施の形態1のヘテロ接合型バックコンタクトセルの模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態2のヘテロ接合型バックコンタクトセルの模式的な断面図である。 実施の形態2のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態2のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態2のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態2のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態2のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態2のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態2のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態2のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態2のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態2のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態2のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態2のヘテロ接合型バックコンタクトセルの製造方法の一例を図解する模式的な断面図である。 実施の形態3のヘテロ接合型バックコンタクトセルの模式的な断面図である。 従来の特許文献1に記載の裏面のみに電極が形成された太陽電池の模式的な断面図である。
 以下、本発明の一例である実施の形態について説明する。なお、実施の形態の説明に用いられる図面において、同一の参照符号は、同一部分または相当部分を表わすものとする。
 [実施の形態1]
 <光電変換素子の構成>
 図1に、本発明の光電変換素子の一例である実施の形態1のヘテロ接合型バックコンタクトセルの模式的な断面図を示す。実施の形態1のヘテロ接合型バックコンタクトセルは、n型単結晶シリコン基板からなる半導体基板1と、半導体基板1の一方の表面の一部に設けられたi型非晶質シリコン膜からなる第1のi型半導体膜2と、第1のi型半導体膜2上に設けられたp型非晶質シリコン膜からなる第1導電型半導体膜3と、半導体基板1の当該一方の表面の一部に設けられたi型非晶質シリコン膜からなる第2のi型半導体膜4と、第2のi型半導体膜4上に設けられたn型非晶質シリコン膜からなる第2導電型半導体膜5と、第1導電型半導体膜3上に設けられた第1導電型用電極層11と、第2導電型半導体膜5上に設けられた第2導電型用電極層12とを備えている。第1導電型用電極層11および第2導電型用電極層12は、それぞれ、第1金属層9と第2金属層10との積層体から構成されている。
 図1に示すように、半導体基板1の裏面の全面が、第1のi型半導体膜2と第2のi型半導体膜4とで覆われており、第2のi型半導体膜4と第2導電型半導体膜5との積層体の一端が、n型非晶質シリコン膜からなる介在層8を介して、第1のi型半導体膜2と第1導電型半導体膜3との積層体の一端を覆っている。すなわち、第1導電型半導体膜3の一端と第2のi型半導体膜4の一端との間に介在層8が設けられている。また、第1導電型用電極層11と第2導電型用電極層12とが電気的に絶縁されている。
 また、実施の形態1のヘテロ接合型バックコンタクトセルは、半導体基板1の他方の表面である受光面の凹凸1a上に設けられた第3のi型半導体膜6と、第3のi型半導体膜6上に設けられた第2の第2導電型半導体膜7とを備えている。
 <光電変換素子の製造方法>
 以下、図2~図18の模式的断面図を参照して、実施の形態1のヘテロ接合型バックコンタクトセルの製造方法の一例について説明する。まず、図2に示すように、半導体基板1の受光面に凹凸1aを形成する。
 ここで、半導体基板1の受光面の凹凸1aは、たとえば、半導体基板1の裏面の全面にテクスチャマスクを形成した後に、半導体基板1の受光面をテクスチャエッチングすることにより形成することができる。テクスチャマスクとしては、たとえば、窒化シリコンまたは酸化シリコンを用いることができる。また、テクスチャエッチングに用いられるエッチャントとしては、たとえば、シリコンを溶解可能なアルカリ溶液を用いることができる。
 半導体基板1としては、n型単結晶シリコン基板を好適に用いることができるが、n型単結晶シリコン基板に限定されず、たとえば従来から公知の半導体基板を用いることもできる。
 次に、図3に示すように、半導体基板1の受光面の凹凸1a上に、第3のi型半導体膜6を形成する。第3のi型半導体膜6の形成方法は特に限定されないが、たとえばプラズマCVD(Chemical Vapor Deposition)法を用いることができる。
 第3のi型半導体膜6としては、i型非晶質シリコン膜を好適に用いることができるがi型非晶質シリコン膜に限定されず、たとえば従来から公知のi型半導体膜を用いることもできる。
 次に、図4に示すように、第3のi型半導体膜6上に第2の第2導電型半導体膜7を形成する。第2の第2導電型半導体膜7の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。
 第2の第2導電型半導体膜7としては、n型非晶質シリコン膜を好適に用いることができるが、n型非晶質シリコン膜に限定されず、たとえば従来から公知のn型半導体膜を用いることもできる。なお、第2の第2導電型半導体膜7に含まれるn型不純物としては、たとえばリンを用いることができる。
 なお、本明細書において「i型」とは、完全な真性の状態だけでなく、十分に低濃度(n型不純物濃度が1×1015個/cm未満、かつp型不純物濃度が1×1015個/cm未満)であればn型またはp型の不純物が混入された状態のものも含む意味である。
 また、本明細書において「非晶質シリコン」には、シリコン原子の未結合手(ダングリングボンド)が水素で終端されていない非晶質シリコンだけでなく、水素化非晶質シリコンなどのシリコン原子の未結合手が水素で終端されたものも含まれるものとする。
 次に、図5に示すように、半導体基板1の裏面の全面に第1のi型半導体膜2を形成する。第1のi型半導体膜2の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。
 第1のi型半導体膜2としては、i型非晶質シリコン膜を好適に用いることができるがi型非晶質シリコン膜に限定されず、たとえば従来から公知のi型半導体膜を用いることもできる。
 次に、図6に示すように、半導体基板1の裏面の第1のi型半導体膜2上に第1導電型半導体膜3を形成する。第1導電型半導体膜3の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。
 第1導電型半導体膜3としては、p型非晶質シリコン膜を好適に用いることができるがp型非晶質シリコン膜に限定されず、たとえば従来から公知のp型半導体膜を用いることもできる。なお、第1導電型半導体膜3に含まれるp型不純物としては、たとえばボロンを用いることができる。
 次に、図7に示すように、第1導電型半導体膜3上に介在層8を形成する。介在層8の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。
 介在層8としては、n型非晶質シリコン膜を好適に用いることができるが、n型非晶質シリコン膜に限定されず、たとえば従来から公知のn型半導体膜を用いることもできる。なお、介在層8に含まれるn型不純物としては、たとえばリンを用いることができる。介在層8を構成するn型非晶質シリコン膜等のn型半導体膜のn型不純物濃度は、1×1015個/cm以上とされる。ここで、n型不純物濃度は、二次イオン質量分析法(SIMS;Secondary Ion Mass Spectrometry)によって測定することができる。
 次に、図8に示すように、半導体基板1の裏面上に、第1のi型半導体膜2と第1導電型半導体膜3と介在層8との積層体51を残す部分にのみフォトレジスト等のエッチングマスク21を形成する。
 次に、図9に示すように、エッチングマスク21をマスクとして、第1のi型半導体膜2と第1導電型半導体膜3と介在層8との積層体51の一部を厚さ方向にウエットエッチングする。これにより、半導体基板1の表面を露出させる。また、エッチングマスク21をマスクとして用いたウエットエッチングに代えて、たとえばレーザ光の照射によって積層体51の一部を除去してもよい。
 次に、図10に示すように、半導体基板1の裏面の露出部分および介在層8を覆うように、第2のi型半導体膜4を形成する。第2のi型半導体膜4の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。
 第2のi型半導体膜4としては、i型非晶質シリコン膜を好適に用いることができるがi型非晶質シリコン膜に限定されず、たとえば従来から公知のi型半導体膜を用いることもできる。
 次に、図11に示すように、第2のi型半導体膜4上に第2導電型半導体膜5を形成する。第2導電型半導体膜5の形成方法は特に限定されないが、たとえばプラズマCVD法を用いることができる。
 第2導電型半導体膜5としては、n型非晶質シリコン膜を好適に用いることができるがn型非晶質シリコン膜に限定されず、たとえば従来から公知のn型半導体膜を用いることもできる。なお、第2導電型半導体膜5に含まれるn型不純物としては、たとえばリンを用いることができる。
 次に、図12に示すように、半導体基板1の裏面上の第2のi型半導体膜4と第2導電型半導体膜5との積層体52を残す部分にのみフォトレジスト等のエッチングマスク22を形成する。
 次に、エッチングマスク22をマスクとして、第1導電型半導体膜3の一端と第2のi型半導体膜4の一端との間に介在層8の一部を残すように、第2のi型半導体膜4と第2導電型半導体膜5とからなる積層体52の一部を厚さ方向にウエットエッチングすることによって、図13に示すように、第1導電型半導体膜3の一部を露出させる。
 次に、図14に示すように、第2導電型半導体膜5からエッチングマスク22を完全に除去する。
 次に、図15に示すように、第1導電型半導体膜3および第2導電型半導体膜5の全面を覆うように第1金属層9を形成する。第1金属層9としては、ITO膜を好適に用いることができるが、これに限定されるものではない。第1金属層9の形成方法も特に限定されず、たとえば蒸着法などを用いることができる。
 次に、図16に示すように、第1金属層9上に第2金属層10を形成する。第2金属層10としては、銀膜を好適に用いることができるが、これに限定されるものではない。第2金属層10の形成方法も特に限定されず、たとえば蒸着法を用いることができる。
 次に、図17に示すように、第1導電型用電極層11および第2導電型用電極層12の形成領域に対応する第2金属層10の表面上にフォトレジスト等のエッチングマスク23を形成する。
 次に、図18に示すように、エッチングマスク23が形成されていない第1金属層9および第2金属層10の箇所をエッチングする。なお、エッチングマスク23を用いたエッチングに代えて、たとえばレーザ光の照射によって、第1金属層9および第2金属層10を部分的に除去してもよい。
 その後、エッチングマスク23を除去することによって、図1に示す構成の実施の形態1のヘテロ接合型バックコンタクトセルが完成する。
 <作用効果>
 実施の形態1においては、p型非晶質シリコン膜からなる第1導電型半導体膜3上に、n型非晶質シリコン膜からなる介在層8を形成した後に、i型非晶質シリコン膜からなる第2のi型半導体膜4とn型非晶質シリコン膜からなる第2導電型半導体膜5とをこの順序で形成し、その後、図13に示すように、第1導電型半導体膜3の一端と第2のi型半導体膜4の一端との間に介在層8の一部が残るように、介在層8、第2のi型半導体膜4および第2導電型半導体膜5をウエットエッチングすることによって、第1導電型半導体膜3の表面を露出させている。
 これにより、実施の形態1においては、p型非晶質シリコン膜からなる第1導電型半導体膜3上にi型非晶質シリコン膜からなる第2のi型半導体膜4を直接形成して上記と同様のウエットエッチングを行った場合と比べて、抵抗となるi型非晶質シリコン膜からなる第2のi型半導体膜4等の残留物の少ない第1導電型半導体膜3のきれいな表面を露出させて、当該第1導電型半導体膜3の露出面上に第1導電型用電極層11を形成することができるため、第1導電型半導体膜3に対する第1導電型用電極層11のコンタクト抵抗を低減することができ、ひいては、実施の形態1のヘテロ接合型バックコンタクトセルの特性および信頼性を向上することができる。
 ここで、p型非晶質シリコン膜からなる第1導電型半導体膜3と比べてn型非晶質シリコン膜からなる介在層8のエッチングレートが大きくなるエッチャントを用い、第1導電型半導体膜3をエッチングストップ層として上記のウエットエッチングを行うことが好ましい。この場合には、第1導電型半導体膜3の表面における第2のi型半導体膜4等の残留物をさらに低減した状態で、第1導電型半導体膜3の表面を露出させることができるため、実施の形態1のヘテロ接合型バックコンタクトセルの特性および信頼性をさらに向上することができる。
 なお、実施の形態1において、p型非晶質シリコン膜からなる第1導電型半導体膜3と比べてn型非晶質シリコン膜からなる介在層8のエッチングレートが大きくなるエッチャントとしては、たとえば水酸化ナトリウム水溶液および/または水酸化カリウム水溶液などのアルカリ溶液を挙げることができる。
 また、実施の形態1のヘテロ接合型バックコンタクトセルにおいて、第1のi型半導体膜2と第1導電型半導体膜3と介在層8との厚さの合計は、5nm以上であることが好ましく、10nm以上であることがより好ましい。第1のi型半導体膜2と第1導電型半導体膜3と介在層8との厚さの合計が、5nm以上である場合、特に10nm以上である場合には、これらの膜の積層体によるパッシベーション性を向上させることができる。
 [実施の形態2]
 <光電変換素子の構成>
 図19に、本発明の光電変換素子の他の一例である実施の形態2のヘテロ接合型バックコンタクトセルの模式的な断面図を示す。実施の形態2のヘテロ接合型バックコンタクトセルは、第1導電型半導体膜3の一端と第2のi型半導体膜4の一端との間にITO膜からなる介在層31を備えていることを特徴としている。
 <光電変換素子の製造方法>
 以下、実施の形態2のヘテロ接合型バックコンタクトセルの製造方法の一例について説明する。まず、実施の形態1と同様にして、図6に示すように、半導体基板1の受光面の凹凸1a上に第3のi型半導体膜6および第2の第2導電型半導体膜7をこの順序で形成するとともに、半導体基板1の裏面上に第1のi型半導体膜2および第1導電型半導体膜3をこの順序で形成する。
 次に、図20の模式的断面図に示すように、第1導電型半導体膜3上にITO膜からなる介在層31を形成する。ITO膜からなる介在層31の形成方法は特に限定されず、たとえばスパッタリング法などを用いることができる。
 次に、図21の模式的断面図に示すように、半導体基板1の裏面上に、第1のi型半導体膜2と第1導電型半導体膜3と介在層31との積層体51を残す部分にのみフォトレジスト等のエッチングマスク21を形成する。
 次に、図22の模式的断面図に示すように、エッチングマスク21をマスクとして、第1のi型半導体膜2と第1導電型半導体膜3と介在層31との積層体51の一部を厚さ方向にウエットエッチングする。これにより、半導体基板1の裏面の一部を露出させる。
 次に、図23の模式的断面図に示すように、半導体基板1の裏面の露出部分および介在層31を覆うように、第2のi型半導体膜4を形成する。引き続いて、図24の模式的断面図に示すように、第2のi型半導体膜4上に第2導電型半導体膜5を形成する。
 次に、図25の模式的断面図に示すように、半導体基板1の裏面上の第2のi型半導体膜4と第2導電型半導体膜5との積層体52を残す部分にのみフォトレジスト等のエッチングマスク22を形成する。
 次に、エッチングマスク22をマスクとして、第1導電型半導体膜3の一端と第2のi型半導体膜4の一端との間に介在層31の一部を残すように、第2のi型半導体膜4と第2導電型半導体膜5との積層体52の一部を厚さ方向にウエットエッチングすることによって、図26の模式的断面図に示すように、第1導電型半導体膜3の表面を露出させる。
 ここで、p型非晶質シリコン膜からなる第1導電型半導体膜3と比べてITO膜からからなる介在層31のエッチングレートが大きくなるエッチャントとしては、たとえばフッ酸を挙げることができる。
 次に、図27の模式的断面図に示すように、第2導電型半導体膜5からエッチングマスク22を完全に除去する。
 次に、図28の模式的断面図に示すように、第1導電型半導体膜3および第2導電型半導体膜5の全面を覆うように第1金属層9を形成し、引き続いて、図29の模式的断面図に示すように、第1金属層9上に第2金属層10を形成する。
 次に、図30の模式的断面図に示すように、第1導電型用電極層11および第2導電型用電極層12の形成領域に対応する第2金属層10の表面上にフォトレジスト等のエッチングマスク23を形成する。
 次に、図31の模式的断面図に示すように、エッチングマスク23が形成されていない第1金属層9および第2金属層10の箇所をエッチングする。
 その後、エッチングマスク23を除去することによって、図19に示す構成の実施の形態2のヘテロ接合型バックコンタクトセルが完成する。
 <作用効果>
 実施の形態2においては、p型非晶質シリコン膜からなる第1導電型半導体膜3上に、ITO膜からなる介在層31を形成した後に、i型非晶質シリコン膜からなる第2のi型半導体膜4とn型非晶質シリコン膜からなる第2導電型半導体膜5とをこの順序で形成して、その後、図26に示すように、第1導電型半導体膜3の一端と第2のi型半導体膜4の一端との間に介在層31の一部が残るように、介在層31、第2のi型半導体膜4および第2導電型半導体膜5をウエットエッチングすることによって、第1導電型半導体膜3の表面を露出させている。
 これにより、実施の形態2においても、p型非晶質シリコン膜からなる第1導電型半導体膜3上にi型非晶質シリコン膜からなる第2のi型半導体膜4を直接形成して上記と同様のウエットエッチングを行った場合と比べて、抵抗となるi型非晶質シリコン膜からなる第2のi型半導体膜4等の残留物の少ない第1導電型半導体膜3のきれいな表面を露出させて、当該第1導電型半導体膜3の露出面上に第1導電型用電極層11を形成することができるため、第1導電型半導体膜3に対する第1導電型用電極層11のコンタクト抵抗を低減することができ、ひいては、実施の形態2のヘテロ接合型バックコンタクトセルの特性および信頼性を向上することができる。
 ここで、実施の形態2においても、p型非晶質シリコン膜からなる第1導電型半導体膜3と比べてITO膜からなる介在層31のエッチングレートが大きくなるエッチャントを用い、第1導電型半導体膜3をエッチングストップ層として機能させて上記のウエットエッチングを行うことが好ましい。この場合には、第1導電型半導体膜3の表面における第2のi型半導体膜4等の残留物をさらに低減した状態で、第1導電型半導体膜3の表面を露出させることができるため、実施の形態2のヘテロ接合型バックコンタクトセルの特性および信頼性をさらに向上することができる。
 なお、実施の形態2において、p型非晶質シリコン膜からなる第1導電型半導体膜3と比べてITO膜からなる介在層31のエッチングレートが大きくなるエッチャントとしては、たとえばフッ酸を挙げることができる。
 実施の形態2は、n型非晶質シリコン膜からなる介在層8に代えて、ITO膜からなる介在層31を用いたこと以外は実施の形態1と同様であるため、同様の説明については繰り返さない。
 [実施の形態3]
 <光電変換素子の構成>
 図32に、本発明の光電変換素子の他の一例である実施の形態3のヘテロ接合型バックコンタクトセルの模式的な断面図を示す。実施の形態3のヘテロ接合型バックコンタクトセルは、第1導電型半導体膜3の一端と第2のi型半導体膜4の一端との間に酸化シリコン膜からなる介在層41を備えていることを特徴としている。
 <光電変換素子の製造方法>
 実施の形態3のヘテロ接合型バックコンタクトセルは、ITO膜からなる介在層31に代えて、酸化シリコン膜からなる介在層41を用いること以外は実施の形態2と同様にして製造することができる。なお、酸化シリコン膜からなる介在層41は、たとえばCVD法によって形成することができる。
 <作用効果>
 実施の形態3においては、p型非晶質シリコン膜からなる第1導電型半導体膜3上に、酸化シリコン膜からなる介在層41を形成した後に、i型非晶質シリコン膜からなる第2のi型半導体膜4とn型非晶質シリコン膜からなる第2導電型半導体膜5とをこの順序で形成して、その後、第1導電型半導体膜3の一端と第2のi型半導体膜4の一端との間に介在層41の一部が残るように、介在層41、第2のi型半導体膜4および第2導電型半導体膜5をウエットエッチングすることによって、第1導電型半導体膜3の表面を露出させている。
 これにより、実施の形態3においても、抵抗となるi型非晶質シリコン膜からなる第2のi型半導体膜4等の残留物の少ない第1導電型半導体膜3のきれいな表面上に第1導電型用電極層11を形成することができるため、第1導電型半導体膜3に対する第1導電型用電極層11のコンタクト抵抗を低減することができ、ひいては、ヘテロ接合型バックコンタクトセルの特性および信頼性を向上することができる。
 また、実施の形態3においても、ヘテロ接合型バックコンタクトセルの特性および信頼性をさらに向上する観点からは、p型非晶質シリコン膜からなる第1導電型半導体膜3と比べて酸化シリコン膜からなる介在層41のエッチングレートが大きくなるエッチャントを用い、第1導電型半導体膜3をエッチングストップ層として上記のウエットエッチングを行うことが好ましい。
 なお、実施の形態3において、p型非晶質シリコン膜からなる第1導電型半導体膜3と比べて酸化シリコン膜からなる介在層41のエッチングレートが大きくなるエッチャントとしては、たとえばフッ酸を挙げることができる。
 実施の形態3は、ITO膜からなる介在層31に代えて、酸化シリコン膜からなる介在層41を用いたこと以外は実施の形態1と同様であるため、同様の説明については繰り返さない。
 [その他の実施形態]
 実施の形態1~3において、介在層としては、n型非晶質シリコン膜、ITO膜または酸化シリコン膜を用いる場合について説明したが、これらに限定されるものではなく、第2のi型半導体膜4と第2導電型半導体膜5との積層体52のウエットエッチングに用いられるエッチャントのエッチングレートが第1導電型半導体膜3と比べて大きくなる材質を適宜用いることができ、たとえば酸化シリコン膜とITO膜との積層体のようにこれらの膜を組み合わせて用いてもよく、上記以外の材質の1層以上の膜を用いてもよい。
 [付記]
 (1)本発明の第1の態様によれば、半導体基板と、半導体基板の一方の表面の一部に設けられた第1のi型半導体膜と、第1のi型半導体膜上に設けられた第1導電型半導体膜と、半導体基板の表面の他の一部に設けられた第2のi型半導体膜と、第2のi型半導体膜上に設けられた第2導電型半導体膜と、第1導電型半導体膜上に設けられた第1導電型用電極層と、第2導電型半導体膜上に設けられた第2導電型用電極層とを備え、第1導電型半導体膜の一端上に第2のi型半導体膜の一端が位置しており、第1導電型半導体膜の一端と第2のi型半導体膜の一端との間に介在層を備えている光電変換素子を提供することができる。本発明の第1の態様においては、第1導電型半導体膜上に第2のi型半導体膜を直接形成した場合と比べて、第2のi型半導体膜等の残留物を低減した状態の第1導電型半導体膜の表面上に第1導電型用電極層を形成することができるため、第1導電型半導体膜に対する第1導電型用電極層のコンタクト抵抗を低減することができ、ひいては、光電変換素子の特性および信頼性を向上することができる。
 (2)本発明の第1の態様において、第1導電型半導体膜は、介在層のエッチングストップ層であることが好ましい。この場合には、第2のi型半導体膜、第2導電型半導体膜および介在層等の残留物をさらに低減した第1導電型半導体膜の表面上に第1導電型用電極層を形成することができる。
 (3)本発明の第1の態様において、第1導電型半導体膜は、p型非晶質シリコン膜を含み、介在層は、n型非晶質シリコン膜を含むことが好ましい。この場合には、第2のi型半導体膜、第2導電型半導体膜および介在層等の残留物をさらに低減した第1導電型半導体膜の表面上に第1導電型用電極層を形成することができる。
 (4)本発明の第1の態様において、n型非晶質シリコン膜のn型不純物濃度は、1×1015個/cm以上であることが好ましい。この場合には、第2のi型半導体膜、第2導電型半導体膜および介在層等の残留物をさらに低減した第1導電型半導体膜の表面上に第1導電型用電極層を形成することができる。
 (5)本発明の第1の態様において、第1導電型半導体膜は、p型非晶質シリコン膜を含み、介在層は、酸化膜を含むことが好ましい。この場合には、第2のi型半導体膜、第2導電型半導体膜および介在層等の残留物をさらに低減した第1導電型半導体膜の表面上に第1導電型用電極層を形成することができる。
 (6)本発明の第1の態様において、酸化膜は、ITO膜および酸化シリコン膜の少なくとも一方を含むことが好ましい。この場合には、第2のi型半導体膜、第2導電型半導体膜および介在層等の残留物をさらに低減した第1導電型半導体膜の表面上に第1導電型用電極層を形成することができる。
 (7)本発明の第1の態様において、第1のi型半導体膜と第1導電型半導体膜と介在層との厚さの合計は、5nm以上であることが好ましい。この場合には、第1のi型半導体膜と第1導電型半導体膜と介在層との積層体によるパッシベーション性を向上させることができる。
 (8)本発明の第1の態様において、第2のi型半導体膜は、i型非晶質シリコン膜を含むことが好ましい。この場合にも、光電変換素子の特性および信頼性を向上することができる。
 (9)本発明の第1の態様において、第1のi型半導体膜および第2のi型半導体膜によって半導体基板の表面の全面が覆われていることが好ましい。この場合には、第1のi型半導体膜および第2のi型半導体膜による半導体基板の表面のパッシベーション性を向上させることができる。
 (10)本発明の第1の態様において、半導体基板は、n型単結晶シリコンを含むことが好ましい。この場合にも、光電変換素子の特性および信頼性を向上することができる。
 (11)本発明の第1の態様において、第1のi型半導体膜は、i型非晶質シリコン膜を含むことが好ましい。この場合にも、光電変換素子の特性および信頼性を向上することができる。
 (12)本発明の第1の態様において、第2導電型半導体膜は、n型非晶質シリコン膜を含むことが好ましい。この場合にも、光電変換素子の特性および信頼性を向上することができる。
 (13)本発明の第1の態様において、第1導電型用電極層と第2導電型用電極層とが電気的に絶縁されていることが好ましい。この場合にも、光電変換素子の特性および信頼性を向上することができる。
 (14)本発明の第1の態様において、半導体基板の他方の表面上に設けられた第3のi型半導体膜と、第3のi型半導体膜上に設けられた第2の第2導電型半導体膜とをさらに備えていることが好ましい。この場合にも、光電変換素子の特性および信頼性を向上することができる。
 (15)本発明の第2の態様によれば、半導体基板の一方の表面上に第1のi型半導体膜を形成する工程と、第1のi型半導体膜上に第1導電型半導体膜を形成する工程と、第1導電型半導体膜上に介在層を形成する工程と、第1のi型半導体膜と第1導電型半導体膜と介在層とを含む第1の積層体の一部を厚さ方向に除去する工程と、半導体基板の表面上および介在層上に第2のi型半導体膜を形成する工程と、第2のi型半導体膜上に第2導電型半導体膜を形成する工程と、第1導電型半導体膜の一端と第2のi型半導体膜の一端との間に介在層の一部を残すように介在層と第2のi型半導体膜と第2導電型半導体膜とを含む第2の積層体の一部を厚さ方向にウエットエッチングする工程と、第1導電型半導体膜上に第1導電型用電極層を形成するとともに、第2導電型半導体膜上に第2導電型用電極層を形成する工程とを含む光電変換素子の製造方法を提供することができる。本発明の第2の態様においては、第1導電型半導体膜上に第2のi型半導体膜を直接形成した場合と比べて、第2のi型半導体膜等の残留物を低減した状態の第1導電型半導体膜の表面上に第1導電型用電極層を形成することができるため、第1導電型半導体膜に対する第1導電型用電極層のコンタクト抵抗を低減することができ、ひいては、光電変換素子の特性および信頼性を向上することができる。
 (16)本発明の第2の態様において、ウエットエッチングする工程は、第1導電型半導体膜と比べて介在層のエッチングレートが大きくなるエッチャントを用いて行われることが好ましい。この場合には、ウエットエッチング後の第1導電型半導体膜の表面における第2のi型半導体膜、第2導電型半導体膜および介在層等の残留物をさらに低減することができる。
 (17)本発明の第2の態様において、ウエットエッチングする工程は、第1導電型半導体膜をエッチングストップ層として行われることが好ましい。この場合には、第ウエットエッチング後の第1導電型半導体膜の表面における第2のi型半導体膜、第2導電型半導体膜および介在層等の残留物をさらに低減することができる。
 (18)本発明の第2の態様において、第1導電型半導体膜は、p型非晶質シリコン膜を含み、介在層は、n型非晶質シリコン膜を含むことが好ましい。この場合には、p型非晶質シリコン膜と比べてn型非晶質シリコン膜のエッチングレートが大きくなるエッチャントを用いてウエットエッチングを行うことによって、ウエットエッチング後の第1導電型半導体膜の表面における第2のi型半導体膜、第2導電型半導体膜および介在層等の残留物をさらに低減することができる。
 (19)本発明の第2の態様において、n型非晶質シリコン膜のn型不純物濃度は、1×1015個/cm以上であることが好ましい。この場合には、p型非晶質シリコン膜と比べてn型非晶質シリコン膜のエッチングレートが大きくなるエッチャントを用いたウエットエッチングを行うことによって、ウエットエッチング後の第1導電型半導体膜の表面における第2のi型半導体膜、第2導電型半導体膜および介在層等の残留物をさらに低減することができる。
 (20)本発明の第2の態様において、ウエットエッチングする工程は、アルカリ溶液を含むエッチャントを用いて行われることが好ましい。この場合には、ウエットエッチング後の第1導電型半導体膜の表面における第2のi型半導体膜、第2導電型半導体膜および介在層等の残留物をさらに低減することができる。
 (21)本発明の第2の態様において、第1導電型半導体膜は、p型非晶質シリコン膜を含み、介在層は、酸化膜を含むことが好ましい。この場合には、p型非晶質シリコン膜と比べて酸化膜のエッチングレートが大きくなるエッチャントを用いたウエットエッチングを行うことによって、ウエットエッチング後の第1導電型半導体膜の表面における第2のi型半導体膜、第2導電型半導体膜および介在層等の残留物をさらに低減することができる。
 (22)本発明の第2の態様において、酸化膜は、ITO膜および酸化シリコン膜の少なくとも一方を含むことが好ましい。この場合には、p型非晶質シリコン膜と比べて酸化膜のエッチングレートが大きくなるエッチャントを用いたウエットエッチングを行うことによって、ウエットエッチング後の第1導電型半導体膜の表面における第2のi型半導体膜、第2導電型半導体膜および介在層等の残留物をさらに低減することができる。
 (23)本発明の第2の態様において、ウエットエッチングする工程は、フッ酸を含むエッチャントを用いて行われることが好ましい。この場合には、ウエットエッチング後の第1導電型半導体膜の表面における第2のi型半導体膜、第2導電型半導体膜および介在層等の残留物をさらに低減することができる。
 (24)本発明の第2の態様において、半導体基板は、n型単結晶シリコンを含むことが好ましい。この場合にも、光電変換素子の特性および信頼性を向上することができる。
 (25)本発明の第2の態様において、第1のi型半導体膜および第2のi型半導体膜は、i型非晶質シリコン膜を含むことが好ましい。この場合にも、光電変換素子の特性および信頼性を向上することができる。
 (26)本発明の第2の態様において、第2導電型半導体膜は、n型非晶質シリコン膜を含むことが好ましい。この場合にも、光電変換素子の特性および信頼性を向上することができる。
 (27)本発明の第2の態様は、半導体基板の他方の表面上に第3のi型半導体膜を形成する工程と、第3のi型半導体膜上に第2の第2導電型半導体膜を形成する工程とをさらに含むことが好ましい。この場合にも、光電変換素子の特性および信頼性を向上することができる。
 以上のように本発明の実施の形態について説明を行なったが、上述の各実施の形態の構成を適宜組み合わせることも当初から予定している。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明は、光電変換素子および光電変換素子の製造方法に利用することができ、特に、ヘテロ接合型バックコンタクトセル等の太陽電池およびその製造方法に好適に利用することができる。
 1 半導体基板、1a 凹凸、2 第1のi型半導体膜、3 第1導電型半導体膜、4 第2のi型半導体膜、5 第2導電型半導体膜、6 第3のi型半導体膜、7 第2の第2導電型半導体膜、8,31,41 介在層、9 第1金属層、10 第2金属層、11 第1導電型用電極層、12 第2導電型用電極層、21,22,23 エッチングマスク、51,52 積層体、100 半導体基板、111 太陽光、112 i型非晶質半導体層、113 n型非晶質半導体層、114 IP積層体、115 i型非晶質半導体層、116 p型非晶質半導体層、117 p側電極、117a TCO層、117b 金属層、118 絶縁層、118a 第1の絶縁層、118b 第2の絶縁層、119 IN積層体、120 i型非晶質半導体層、121 n型非晶質半導体層、122 n側電極、122a TCO層、122b 金属層。
 

Claims (27)

  1.  半導体基板と、
     前記半導体基板の一方の表面の一部に設けられた第1のi型半導体膜と、
     前記第1のi型半導体膜上に設けられた第1導電型半導体膜と、
     前記半導体基板の前記表面の他の一部に設けられた第2のi型半導体膜と、
     前記第2のi型半導体膜上に設けられた第2導電型半導体膜と、
     前記第1導電型半導体膜上に設けられた第1導電型用電極層と、
     前記第2導電型半導体膜上に設けられた第2導電型用電極層とを備え、
     前記第1導電型半導体膜の一端上に前記第2のi型半導体膜の一端が位置しており、
     前記第1導電型半導体膜の前記一端と前記第2のi型半導体膜の前記一端との間に介在層を備えている、光電変換素子。
  2.  前記第1導電型半導体膜は、前記介在層のエッチングストップ層である、請求項1に記載の光電変換素子。
  3.  前記第1導電型半導体膜は、p型非晶質シリコン膜を含み、
     前記介在層は、n型非晶質シリコン膜を含む、請求項1または請求項2に記載の光電変換素子。
  4.  前記n型非晶質シリコン膜のn型不純物濃度が、1×1015個/cm以上である、請求項3に記載の光電変換素子。
  5.  前記第1導電型半導体膜は、p型非晶質シリコン膜を含み、
     前記介在層は、酸化膜を含む、請求項1または請求項2に記載の光電変換素子。
  6.  前記酸化膜は、ITO膜および酸化シリコン膜の少なくとも一方を含む、請求項5に記載の光電変換素子。
  7.  前記第1のi型半導体膜と前記第1導電型半導体膜と前記介在層との厚さの合計が、5nm以上である、請求項1~請求項6のいずれか1項に記載の光電変換素子。
  8.  前記第2のi型半導体膜は、i型非晶質シリコン膜を含む、請求項1~請求項7のいずれか1項に記載の光電変換素子。
  9.  前記第1のi型半導体膜および前記第2のi型半導体膜によって前記半導体基板の前記表面の全面が覆われている、請求項1~請求項8のいずれか1項に記載の光電変換素子。
  10.  前記半導体基板は、n型単結晶シリコンを含む、請求項1~請求項9のいずれか1項に記載の光電変換素子。
  11.  前記第1のi型半導体膜は、i型非晶質シリコン膜を含む、請求項1~請求項10のいずれか1項に記載の光電変換素子。
  12.  前記第2導電型半導体膜は、n型非晶質シリコン膜を含む、請求項1~請求項11のいずれか1項に記載の光電変換素子。
  13.  前記第1導電型用電極層と前記第2導電型用電極層とが電気的に絶縁されている、請求項1~請求項12のいずれか1項に記載の光電変換素子。
  14.  前記半導体基板の他方の表面上に設けられた第3のi型半導体膜と、
     前記第3のi型半導体膜上に設けられた第2の第2導電型半導体膜とをさらに備えた、請求項1~請求項13のいずれか1項に記載の光電変換素子。
  15.  半導体基板の一方の表面上に第1のi型半導体膜を形成する工程と、
     前記第1のi型半導体膜上に第1導電型半導体膜を形成する工程と、
     前記第1導電型半導体膜上に介在層を形成する工程と、
     前記第1のi型半導体膜と前記第1導電型半導体膜と前記介在層とを含む第1の積層体の一部を厚さ方向に除去する工程と、
     前記半導体基板の前記表面上および前記介在層上に前記第2のi型半導体膜を形成する工程と、
     前記第2のi型半導体膜上に第2導電型半導体膜を形成する工程と、
     前記第1導電型半導体膜の一端と前記第2のi型半導体膜の一端との間に前記介在層の一部を残すように前記介在層と前記第2のi型半導体膜と前記第2導電型半導体膜とを含む第2の積層体の一部を厚さ方向にウエットエッチングする工程と、
     前記第1導電型半導体膜上に第1導電型用電極層を形成するとともに、前記第2導電型半導体膜上に第2導電型用電極層を形成する工程とを含む、光電変換素子の製造方法。
  16.  前記ウエットエッチングする工程は、前記第1導電型半導体膜と比べて前記介在層のエッチングレートが大きくなるエッチャントを用いて行われる、請求項15に記載の光電変換素子の製造方法。
  17.  前記ウエットエッチングする工程は、前記第1導電型半導体膜をエッチングストップ層として行われる、請求項15または請求項16に記載の光電変換素子の製造方法。
  18.  前記第1導電型半導体膜は、p型非晶質シリコン膜を含み、
     前記介在層は、n型非晶質シリコン膜を含む、請求項15~請求項17のいずれか1項に記載の光電変換素子の製造方法。
  19.  前記n型非晶質シリコン膜のn型不純物濃度が、1×1015個/cm以上である、請求項18に記載の光電変換素子の製造方法。
  20.  前記ウエットエッチングする工程は、アルカリ溶液を含むエッチャントを用いて行われる、請求項18または請求項19に記載の光電変換素子の製造方法。
  21.  前記第1導電型半導体膜は、p型非晶質シリコン膜を含み、
     前記介在層は、酸化膜を含む、請求項15~請求項17のいずれか1項に記載の光電変換素子の製造方法。
  22.  前記酸化膜は、ITO膜および酸化シリコン膜の少なくとも一方を含む、請求項21に記載の光電変換素子の製造方法。
  23.  前記ウエットエッチングする工程は、フッ酸を含むエッチャントを用いて行われる、請求項21または請求項22に記載の光電変換素子の製造方法。
  24.  前記半導体基板は、n型単結晶シリコンを含む、請求項15~請求項23のいずれか1項に記載の光電変換素子の製造方法。
  25.  前記第1のi型半導体膜および前記第2のi型半導体膜は、i型非晶質シリコン膜を含む、請求項15~請求項24のいずれか1項に記載の光電変換素子の製造方法。
  26.  前記第2導電型半導体膜は、n型非晶質シリコン膜を含む、請求項15~請求項25のいずれか1項に記載の光電変換素子の製造方法。
  27.  前記半導体基板の他方の表面上に第3のi型半導体膜を形成する工程と、
     前記第3のi型半導体膜上に第2の第2導電型半導体膜を形成する工程とをさらに含む、請求項15~請求項26のいずれか1項に記載の光電変換素子の製造方法。
     
PCT/JP2015/053801 2014-03-18 2015-02-12 光電変換素子および光電変換素子の製造方法 WO2015141338A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014055130A JP2015177175A (ja) 2014-03-18 2014-03-18 光電変換素子および光電変換素子の製造方法
JP2014-055130 2014-03-18

Publications (1)

Publication Number Publication Date
WO2015141338A1 true WO2015141338A1 (ja) 2015-09-24

Family

ID=54144318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053801 WO2015141338A1 (ja) 2014-03-18 2015-02-12 光電変換素子および光電変換素子の製造方法

Country Status (2)

Country Link
JP (1) JP2015177175A (ja)
WO (1) WO2015141338A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101816189B1 (ko) * 2016-08-18 2018-01-08 엘지전자 주식회사 태양전지 및 그 제조 방법
JP6741626B2 (ja) * 2017-06-26 2020-08-19 信越化学工業株式会社 高効率裏面電極型太陽電池及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113750A1 (ja) * 2009-03-30 2010-10-07 三洋電機株式会社 太陽電池
WO2012017914A1 (ja) * 2010-08-02 2012-02-09 三洋電機株式会社 太陽電池の製造方法
WO2013146271A1 (ja) * 2012-03-30 2013-10-03 三洋電機株式会社 太陽電池及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113750A1 (ja) * 2009-03-30 2010-10-07 三洋電機株式会社 太陽電池
WO2012017914A1 (ja) * 2010-08-02 2012-02-09 三洋電機株式会社 太陽電池の製造方法
WO2013146271A1 (ja) * 2012-03-30 2013-10-03 三洋電機株式会社 太陽電池及びその製造方法

Also Published As

Publication number Publication date
JP2015177175A (ja) 2015-10-05

Similar Documents

Publication Publication Date Title
JP6106403B2 (ja) 光電変換素子及び光電変換素子の製造方法
JP2014075526A (ja) 光電変換素子および光電変換素子の製造方法
US9640673B2 (en) Solar cell and manufacturing method thereof
US20130125964A1 (en) Solar cell and manufacturing method thereof
WO2015064354A1 (ja) 太陽電池
JP2013537364A (ja) 太陽光発電装置及びその製造方法
JPWO2010064549A1 (ja) 薄膜光電変換装置の製造方法
KR101159277B1 (ko) 강유전체를 이용한 태양전지의 제조방법
US10411148B2 (en) Photoelectric conversion element
WO2015141338A1 (ja) 光電変換素子および光電変換素子の製造方法
WO2011118685A1 (ja) 太陽電池及びその製造方法
JP6476015B2 (ja) 光電変換素子およびその製造方法
WO2012090650A1 (ja) 太陽電池
WO2016021267A1 (ja) 光電変換素子
WO2014118863A1 (ja) 光起電力装置
JP2014183073A (ja) 光電変換素子および光電変換素子の製造方法
WO2017038733A1 (ja) 光電変換素子
KR101977927B1 (ko) 광전소자 및 그 제조방법
JP2014072210A (ja) 光電変換素子
KR20180043150A (ko) 태양 전지 및 그 제조 방법
CN107980180B (zh) 太阳能电池
JP6238803B2 (ja) 光電変換素子
KR102423108B1 (ko) 박막형 태양전지와 그의 제조방법
JP6333139B2 (ja) 光電変換素子および光電変換素子の製造方法
WO2015141339A1 (ja) ヘテロ接合型バックコンタクトセルおよびヘテロ接合型バックコンタクトセルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765738

Country of ref document: EP

Kind code of ref document: A1