WO2015146231A1 - 蛍光体及びその用途 - Google Patents

蛍光体及びその用途 Download PDF

Info

Publication number
WO2015146231A1
WO2015146231A1 PCT/JP2015/050916 JP2015050916W WO2015146231A1 WO 2015146231 A1 WO2015146231 A1 WO 2015146231A1 JP 2015050916 W JP2015050916 W JP 2015050916W WO 2015146231 A1 WO2015146231 A1 WO 2015146231A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
sulfur
glass
light
particles
Prior art date
Application number
PCT/JP2015/050916
Other languages
English (en)
French (fr)
Inventor
稲村 昌晃
春香 清水
崇好 森
正徳 佐藤
純一 伊東
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2015515059A priority Critical patent/JP5796148B1/ja
Priority to US15/129,188 priority patent/US10550321B2/en
Priority to KR1020167023125A priority patent/KR101850755B1/ko
Priority to EP15769303.7A priority patent/EP3124572B1/en
Priority to CN201580016812.8A priority patent/CN106164217B/zh
Publication of WO2015146231A1 publication Critical patent/WO2015146231A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7716Chalcogenides
    • C09K11/7718Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7786Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a phosphor containing sulfur as a matrix and its use.
  • red phosphors include sulfur-containing phosphors containing sulfur in the base material, such as (Ca, Sr) S: Eu, (Zn, Cd) (S, Se): Ag, Ba 2 ZnS 3 : Mn. It has been.
  • sulfur-containing phosphors containing sulfur in the base material such as (Ca, Sr) S: Eu, (Zn, Cd) (S, Se): Ag, Ba 2 ZnS 3 : Mn. It has been.
  • calcium sulfide (CaS) is used as a base material
  • Eu is used as a luminescent center (activator)
  • Mn, Li, Cl, Ce, Gd and the like are used as sensitizers (co-activator).
  • a sulfur-containing red phosphor that is contained as an agent is disclosed.
  • sulfide-based thiogallate phosphors represented by (Ca, Sr, Ba) (Al, Ga, In) 2 S 4 : Eu are known as green phosphors (Patent Documents 3 and 4).
  • sulfur-containing phosphors such as SrS: Ce, (Sr, Ca) Ga 2 S 4 : Ce, BaAl 2 S 4 : Eu, Ba 2 SiS 4 : Ce are known as blue phosphors. It has been.
  • a core-shell type CdSe / ZnS that is a quantum dot phosphor capable of adjusting the emission wavelength by controlling the size of the nanoparticles is also known (Patent Document 6).
  • the sulfur containing fluorescent substance which contains sulfur in a base material is excited by LED etc. and can light-emit various colors with a composition
  • this type of sulfur-containing phosphor generates hydrogen sulfide gas due to sulfur in the sulfur-containing phosphor, and this hydrogen sulfide gas is mixed with the phosphor particularly when used in white LED elements.
  • Corrosion of the metal member inside the element such as an Ag plating film (hereinafter referred to as “Ag reflection film”) applied to inhibit the curing of the silicone resin, or to increase the reflectivity of the lead frame, and its reflection Problems have been pointed out such as performance degradation and electrical failure such as disconnection.
  • Patent Document 7 Patent Document 8, Patent Document 9, Patent Document 10, Patent Document 11
  • Patent Document 12 A method of coating the surface of particles by a chemical vapor reaction method
  • Patent Document 13 A method of attaching metal compound particles
  • Patent Document 14 discloses a ZnO compound-coated sulfur-containing phosphor having a configuration in which a ZnO compound containing Zn and O is present on the surface side of a sulfur-containing phosphor containing sulfur as a base material. .
  • the present invention relates to a sulfur-containing phosphor containing sulfur in the base material, and can effectively prevent corrosion of a metal member for a long period of time due to the adverse effect of sulfur-based gas while improving the water resistance (humidity resistance) of the phosphor.
  • a phosphor is proposed.
  • particles containing a crystalline metal borate containing a group IIA element, boron and oxygen on the surface of a sulfur-containing phosphor containing sulfur as a base material.
  • a phosphor having an existing structure is proposed.
  • particles containing a crystalline metal borate containing zinc, boron and oxygen are present on the surface of a sulfur-containing phosphor containing sulfur as a base material.
  • a phosphor having the structure as described above is proposed.
  • the present invention also proposes a phosphor comprising a layer containing the crystalline metal borate on the surface of a sulfur-containing phosphor containing sulfur as a base material.
  • Crystalline metal borates containing Group IIA elements, boron and oxygen, and crystalline metal borates containing zinc, boron and oxygen all have the property of chemically adsorbing sulfur-based gases. Therefore, when the particle or layer containing the crystalline metal borate is present on the surface of the sulfur-containing phosphor, even if sulfur-based gas is generated, the crystalline metal borate efficiently absorbs this, Corrosion of the metal member due to sulfur-based gas can be effectively suppressed. In addition, since the crystalline metal borate does not absorb light from an LED or the like, the luminance of the phosphor itself can be kept high.
  • FIG. 6 is a graph showing changes with time in luminous flux maintenance factor (%) evaluated by LED packages for the phosphor powders obtained in Example 1-1-1 and Comparative Example 1-2-2.
  • FIG. 3 is a powder X-ray diffraction pattern of BaB 4 O 7 obtained in Example 1-3.
  • the phosphor according to the present embodiment (hereinafter referred to as “the present phosphor”) has a group IIA element or zinc, boron, and oxygen on the surface of a sulfur-containing phosphor containing sulfur in the matrix (referred to as “phosphor matrix”).
  • a phosphor having a structure in which particles (referred to as “crystalline metal borate particles”) or layers (referred to as “crystalline metal borate layer”) containing crystalline metal borate containing It is a powder (hereinafter referred to as “the present phosphor powder”) composed of particles (hereinafter referred to as “the present phosphor particles”).
  • the crystalline metal borate particles or the crystalline metal borate layer is present on the surface of the phosphor matrix.
  • the crystalline metal borate particles or the crystalline metal borate is present on the surface of the phosphor matrix. It means that the layers are in contact.
  • the phosphor matrix of the present phosphor that is, the matrix of the sulfur-containing phosphor is not particularly limited as long as it contains sulfur.
  • the luminescent center (luminescent ion) of the activator element or coactivator element combined with such a phosphor matrix for example, Sc, Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er , Ions of rare earth metals such as Tm and Yb, and ions of transition metals such as Cr, Ti, Ag, Cu, Au, Al, Mn, and Sb.
  • a phosphor matrix for example, Sc, Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er , Ions of rare earth metals such as Tm and Yb, and ions of transition metals such as Cr, Ti, Ag, Cu, Au, Al, Mn, and Sb.
  • transition metals such as Cr, Ti, Ag, Cu, Au, Al, Mn, and Sb.
  • the sulfur-containing phosphor include, for example, Ba 2 (Si 1-x Al x ) S 4 : Ce (where x is 0 ⁇ x ⁇ 1), SrS: Ce, green as a blue phosphor.
  • the particle size of the phosphor matrix of the present phosphor is not particularly limited.
  • D50 by the volume-based particle size distribution obtained by measurement by a laser diffraction / scattering particle size distribution measurement method is 0.1 ⁇ m to 50 ⁇ m. From the same viewpoint, it is more preferably 1 ⁇ m or more or 30 ⁇ m or less, and particularly preferably 2 ⁇ m or more or 20 ⁇ m or less. If D50 of the phosphor matrix is 0.1 ⁇ m or more, the luminous efficiency does not decrease, and the phosphor particles do not aggregate. Moreover, if it is 50 micrometers or less, the dispersibility in resin is maintained, application
  • Crystalline metal borate is present on the surface of the phosphor matrix as a crystalline metal borate layer formed by continuous connection of crystalline metal borate particles, that is, as a crystalline metal borate layer. May be. Further, it may exist as particles containing crystalline metal borate on the surface of the phosphor matrix, that is, as crystalline metal borate particles. Moreover, the part in which the crystalline metal borate particle or the crystalline metal borate layer does not exist may exist on the surface of the phosphor matrix.
  • metal borate is crystalline, sulfur-based gas such as hydrogen sulfide gas is easily trapped between crystal lattices, and it is easy to produce a complex compound of metal and sulfur. ing. Whether the metal borate is crystalline or not is observed, for example, in the diffraction angle-diffraction intensity chart in the powder X-ray diffraction analysis general rule (JIS K0131-1996), a diffraction peak derived from the crystalline metal borate is recognized. It is possible to determine whether or not.
  • the crystalline metal borate may be a crystalline metal borate containing a Group IIA element, boron, and oxygen. Further, instead of the group IIA element or together with the group IIA element, a crystalline metal borate containing zinc (also referred to as “crystalline metal borate”) may be used. Examples of the group IIA element include Be, Mg, Ca, Sr, Ba, and Ra. Therefore, examples of the crystalline metal borate include metal borates such as Ba—B—O, Sr—B—O, Ca—B—O, Mg—B—O, and Zn—B—O.
  • metal boric acid such as Ba—B—O, Sr—B—O, Ca—B—O, and Zn—B—O from the viewpoint that a more stable compound can be formed with sulfur.
  • a salt is preferable, and Ba—B—O is particularly preferable from the viewpoint that the influence of sulfur-based gas can be further reduced.
  • the “Ba—B—O” means a metal borate composed of Ba, B, and O, and the same applies to the other examples listed above.
  • z / x indicating the molar ratio of M and O is preferably 1.3 to 11, and more preferably 2.0 or more and 10.0 or less, and particularly preferably 2.5 or more and 7.0 or less. Is more preferable.
  • Y / x indicating the molar ratio of M and B is preferably 0.5 to 6.0, more preferably 0.6 or more and 5.0 or less, and particularly preferably 1.0 or more and 4.0 or less. Is more preferable.
  • Z / y indicating the molar ratio of B and O is preferably 1.3 to 7.0, particularly 1.70 or more and 3.0 or less, and particularly 1.75 or more and 2.5 or less. Is more preferable.
  • z / x indicating the molar ratio of Ba and O is preferably 1.3 to 7.0, more preferably 2.0 or more and 7.0 or less, and particularly preferably 2.5 or more or 7.0 or less. More preferably.
  • Y / x indicating the molar ratio of Ba and B is preferably 0.5 to 4.0, more preferably 0.6 or more and 4.0 or less, and more preferably 1.0 or more and 4.0 or less. Is more preferable.
  • Z / y indicating the molar ratio of B and O is preferably 1.3 to 3.5, particularly 1.70 or more and 3.0 or less, particularly 1.75 or more and 2.5 or less. Is more preferable.
  • 1, 5, 6, and 7 are schematic cross-sectional views when the crystalline metal borate is present as crystalline metal borate particles on the surface of the phosphor matrix.
  • the crystalline metal borate particles are preferably fine particles having an average particle size of 10 ⁇ m or less by SEM observation.
  • An average particle size of 10 ⁇ m or less is preferred because the crystalline metal borate particles do not scatter the light from the LED and impair the luminance. From this viewpoint, it is more preferably 1 nm or more and 5 ⁇ m or less, and more preferably 10 nm or more or 1 ⁇ m or less.
  • the thickness is 0.5 ⁇ m or less.
  • the average particle diameter by SEM observation is defined as the average diameter of arbitrary 100 particles observed in arbitrary 10 fields of view.
  • This average particle diameter can be defined by, for example, a projected area equivalent circle diameter obtained using image processing software.
  • the average value of the major axis and the minor axis is defined as the particle size of the particle.
  • An example of a production method in which the crystalline metal borate particles are present on the surface of the sulfur-containing phosphor is a solvent drying method. Specifically, a crystalline metal borate powder is added to an organic solvent (for example, ethanol) and ultrasonically dispersed, and after adding a sulfur-containing phosphor powder and stirring, the solvent is evaporated to contain sulfur. Crystalline metal borate particles are adhered to the surface of the phosphor particles.
  • a method of dry-mixing the sulfur-containing phosphor powder and the crystalline metal borate powder with a blender or the like can also be employed. However, it is not limited to these methods.
  • the temperature in the heat treatment is preferably 500 ° C. or lower, and more preferably 300 ° C. or lower.
  • the crystalline metal borate layer may completely cover the surface of the phosphor matrix, or may be coated so that a part of the surface of the phosphor matrix is exposed.
  • the coverage of the crystalline metal borate layer is preferably 20% or less, and more preferably 10% or less.
  • the thickness of the crystalline metal borate layer is preferably 5 nm to 300 nm.
  • a chemical vapor reaction method such as a plasma CVD method, a metal organic chemical vapor deposition method (MOCVD method), a laser CVD method, or an atomic layer growth method (ALE) is used.
  • a plasma CVD method a metal organic chemical vapor deposition method
  • MOCVD method metal organic chemical vapor deposition method
  • ALE atomic layer growth method
  • the present phosphor may further include a glass coat layer on the surface of the phosphor matrix.
  • 3 to 6 are schematic cross-sectional views showing a state in which such a glass coat layer is provided. This glass coat layer can impart further moisture resistance to the phosphor.
  • a glass coat layer for example, there is a crystalline metal borate particle or a crystalline metal borate layer on the surface of a phosphor matrix, and a glass coat layer is present so as to cover this.
  • a glass coat layer is present on the surface of the phosphor matrix, and crystalline metal borate particles or crystalline metal borate layer is present on the surface of the glass coat layer. It may have a configuration. Further, the phosphor may have three or more coating layers.
  • the structure by which a crystalline metal borate particle exists in a glass coat layer may be sufficient.
  • the glass coat layer may be a layer containing a glass composition.
  • it may be a layer containing a glass composition containing an amorphous oxide.
  • “Ma” represents at least one selected from the group consisting of Group IIIA metals of the aluminum group such as B and Al, Group IIIB metals of the rare earth group or Bi, and “Mb” represents at least selected from alkaline earth metals or Zn.
  • One or more combinations, “Mc” represents at least one combination selected from alkali metals, and “Md” represents at least one combination selected from titanium group IVB) Contains Scan composition, etc. can be mentioned. However, it is not limited to these.
  • the glass coat layer may contain B 2 O 3, an alkali metal, an alkaline earth metal, fluorine, or fluoride as a component that lowers the softening point or glass transition temperature of the glass composition.
  • the fluoride at this time may preferably contain one or more fluorides selected from the group consisting of Ca, Sr, Ba, Mg, Zn, Al and Ga, and more preferably May contain one or more fluorides selected from the group consisting of Ca, Sr, Ba, and Mg. However, it is not limited to these.
  • a glass coat layer made of an aggregate of glass particles can be given. Specifically, after dispersing phosphor particles and glass particles in ethanol, the glass coat layer can be formed on the surface of the phosphor particles by evaporating ethanol.
  • the glass coat layer can be formed on the surface of the phosphor particles by evaporating ethanol.
  • An example of a specific method for producing glass particles is, for example, SiO 2 , BaO, B 2 O 3 and Al 2 O 3 as main raw materials, and BaF 2 , AlF 3 , and Na 3 AlF as fluorine-added components. 6 , at least one selected from (NH 4 ) 3 AlF 6 , and the resulting mixture is heated in the temperature range of 1050 ° C. to 1400 ° C. for 30 minutes to 120 minutes, and rapidly in air or water
  • a method for obtaining glass particles by cooling and pulverizing the obtained glass composition until the particle diameter becomes 1 ⁇ m or less can be mentioned.
  • the pulverization method is not particularly limited. For example, dry, wet or a combination thereof can be performed.
  • a pulverizer for example, a vibration mill, a bead mill, an attritor, a jet mill or the like can be used in combination. However, it is not limited to such a manufacturing method.
  • Another form of the glass coat layer is a glass film.
  • a precursor mixture containing a precursor of a glass coat layer, water, and a solvent is prepared, and the precursor mixture and phosphor particles are mixed to form a sol-gel. After inducing the reaction, coating the surface of the phosphor matrix with glass, and then separating and obtaining only the phosphor particles with the glass coat layer formed by filtering, the phosphor particles can be dried. Good. Moreover, it is also possible to add heat processing after drying as needed.
  • the phosphor particles and the glass composition powder are mixed, and the glass composition powder is melted to surround the phosphor particles.
  • the mixture of phosphor and phosphor particles may be cooled.
  • the powder of the glass composition in this case, SiO 2 —B 2 O 3 , ZnO—B 2 O 3 , Bi 2 O 3 —B 2 O 3 , ZnO—SiO 2 —B 2 O 3 , Bi 2 O
  • the composition of 3- ZnO—B 2 O 3 , SiO 2 —B 2 O 3 —Al 2 O 3 , SiO 2 —B 2 O 3 —BaO, SiO 2 —B 2 O 3 —BaO—Al 2 O 3, etc. Can be mentioned.
  • the glass coat layer is more preferably continuous in order to maintain the light emission of the phosphor. Moreover, if it is continuous, a part where the glass coat layer is not attached and the surface of the phosphor is exposed may be present on a part of the surface of the phosphor. In addition, it is possible for a glass coat layer to show the effect of inhibiting corrosion of an Ag reflective film only by one layer. Furthermore, by forming a layer in combination with a crystalline metal borate or a metal oxide layer including a crystalline ZnO compound, which will be described later, on the surface of the phosphor, the corrosion suppressing effect of the Ag reflection film is further enhanced. be able to.
  • the glass coat layer may be a porous glass coat layer.
  • the phosphor may further include particles (referred to as “ZnO compound particles”) or layers (referred to as “ZnO compound layers”) containing a crystalline ZnO compound on the surface of the phosphor matrix.
  • the ZnO compound layer on the surface of the phosphor matrix for example, there are crystalline metal borate particles or crystalline metal borate particle layer on the surface of the phosphor matrix, and ZnO compound particles or A ZnO compound layer may be provided, and if necessary, a glass coat layer may be further provided so as to cover the ZnO compound layer. Further, ZnO compound particles or a ZnO compound layer may be provided on the surface of the phosphor matrix. In which a crystalline metal borate particle or a crystalline metal borate particle layer is present on the outer side, and a glass coat layer is further provided as necessary to cover it. It may be a thing.
  • a glass coat layer is present so as to cover the surface of the phosphor matrix, crystalline metal borate particles or crystalline metal borate particle layers are present on the surface, and ZnO compound particles or ZnO are present on the outside thereof. It may have a structure in which a compound layer is present, or a glass coat layer is present so as to cover the surface of the phosphor matrix, and ZnO compound particles or ZnO compound layers are present on the surface, and It may have a configuration in which crystalline metal borate particles or crystalline metal borate particle layers are present on the outside thereof.
  • a ZnO compound containing Zn and O includes ZnO, Zn (OH) 2 , ZnSO 4 .nH 2 O (0 ⁇ n ⁇ 7), ZnTi 2 O 4 , Zn 2 Ti 3 O 8 , Zn 2 TiO 4 ZnTiO.
  • One or two or more kinds of crystalline fine particles selected from the group consisting of 6 to 10 , ZnSnO 3 , and Zn 2 SnO 4 may be mentioned, and those having other compositions may also be used.
  • the ZnO compound may be present on the surface of the phosphor base as a ZnO compound layer formed by continuously connecting ZnO compound particles, or may be present as ZnO compound particles on the surface of the phosphor base. It has been confirmed that the influence of hydrogen sulfide gas can be reduced if it is present as ZnO compound particles on the surface of the phosphor matrix. Moreover, the part in which the ZnO compound particle or ZnO compound layer does not exist may exist on the surface of the phosphor matrix.
  • the ZnO compound is preferably physically attached to the surface of the phosphor matrix.
  • the ZnO compound particles are preferably fine particles having an average particle diameter of 300 nm or less as observed by SEM, and more preferably the average particle diameter is 1 nm or more, or 100 nm or less.
  • the average particle size of 300 nm or less is preferable because the ZnO compound particles do not scatter the light emitted from the LED and do not prevent the phosphor from absorbing the light emitted from the LED.
  • the specific surface area of the ZnO compound is large from this point as well, and it is more preferable that the average particle diameter is 100 nm or less. I can say that.
  • the average particle diameter by SEM observation is an average diameter of arbitrary 100 particles observed in arbitrary 10 fields of view.
  • This average particle diameter can be defined by, for example, a projected area equivalent circle diameter obtained using image processing software.
  • the average value of the major axis and the minor axis is taken as the particle size of the particles.
  • the sulfur-containing phosphor As a production method for allowing ZnO compound particles to be present on the surface of the sulfur-containing phosphor, ultrasonically disperse ZnO compound powder in a solvent (for example, ethanol), and after adding and stirring the sulfur-containing phosphor powder, The ZnO compound may be attached to the surface of the sulfur-containing phosphor particles by evaporation. Further, even if the sulfur-containing phosphor powder and the ZnO compound powder are dry-mixed using a blender or the like, it is possible to make the sulfur-containing phosphor particles adhere to the ZnO compound particles and exist on the surface. Further, as another production method for forming the ZnO compound layer on the surface of the sulfur-containing phosphor, a method such as a chemical vapor reaction method can be exemplified.
  • the surface of the phosphor may be surface-treated with an organic coupling agent, or may be surface-treated with a substance having intermediate physical properties between inorganic silica and organic silicone such as silsesquioxane.
  • the phosphor is optionally added with various additives such as plasticizers, pigments, antioxidants, heat stabilizers, UV absorbers, light stabilizers, flame retardants, lubricants, foaming agents, fillers, antistatic agents, You may mix suitably reinforcing agents, such as a fiber.
  • sulfur-containing phosphor particles that is, the phosphor matrix of the phosphor, crystalline metal borate, glass particles as necessary, and ZnO compound particles as necessary. It is possible to assume the case of a mixed aggregate.
  • the phosphor may be a powder or a molded body. However, it is preferably a powder so that it can be mixed with a resin to form a molded body. Moreover, the thing provided with the structure by which the fluorescent substance layer containing this fluorescent substance is arrange
  • positioned in the sealing layer which consists of a transparent resin composition or a glass composition may be provided.
  • the central particle size (D50) based on the volume-based particle size distribution obtained by measuring by the laser diffraction / scattering particle size distribution measurement method is 0.1 ⁇ m to 100 ⁇ m. Preferably, it is 1 ⁇ m or more or 50 ⁇ m or less, more preferably 2 ⁇ m or more or 20 ⁇ m or less. If D50 is 0.1 ⁇ m or more, the luminous efficiency does not tend to decrease, and the phosphor particles do not aggregate. Moreover, if it is 100 micrometers or less, a dispersibility can be maintained and the obstruction
  • the present phosphor can be suitably used as a wavelength conversion material in, for example, an LED, a laser, or a diode.
  • a light emitting element and a light source device can be configured by being arranged near a light emitting source such as an LED, a laser, or a diode, and can be used for various applications.
  • a backlight of an image display device such as a liquid crystal display device in addition to a lighting device and a special light source.
  • the LED or the like of the light emitting source can be replaced with an organic EL (OLED).
  • the vicinity of the light emitter refers to a position where the light emitted by the light emitter can be received.
  • the present phosphor is effective in that the adverse effect of hydrogen sulfide gas can be effectively suppressed, and the luminous efficiency can be kept high by arranging it as a phosphor-containing layer on a metal member that is a reflective film.
  • the solid light emitting element include LEDs, lasers, diodes, etc.
  • the metal member that is a reflective film include silver, copper, nickel, iron, and alloys containing these as constituent elements. .
  • silver and copper are preferable in that high thermal conductivity is maintained, and silver is more preferable in terms of maintaining high thermal conductivity and visible light reflectance.
  • the phosphor-containing layer include those in which the present phosphor is contained in a resin, and examples in which the present phosphor and a ZnO compound are dispersed in the resin.
  • a phosphor molded body having a configuration in which a phosphor layer containing the present phosphor is disposed in a sealing layer made of a transparent resin composition or glass composition can be produced.
  • a plurality of groove portions are provided at appropriate intervals on the back side of a sheet body made of a transparent resin composition or glass composition, and the phosphor is contained in a transparent resin in each groove portion.
  • a light source device such as an LED can be arranged on the back side of the light source device, and can be used for an image display device or the like.
  • the phosphor is used to receive at least light in the ultraviolet region or light including light in the near ultraviolet region of sunlight, or a phosphor molded body including the phosphor and visible light emitted by the phosphor. It is also possible to configure a solar power generation device including a solar cell that receives light in the light region and converts it into an electrical signal. In other words, depending on the composition, the phosphor is excited by light having a wavelength in the ultraviolet region to visible light region (for example, 250 nm to 610 nm) as described above, and can emit light in the visible light region, particularly red light. The present phosphor can be used for a solar power generation device using this characteristic.
  • the present phosphor that receives at least light in the ultraviolet region or light in the near ultraviolet region of sunlight and emits light in the visible light region, and light in the visible light region emitted by the phosphor.
  • a solar battery that receives the light and converts it into an electrical signal.
  • a solar cell made of single crystal silicon or the like it is excited when it receives light in the visible light region, but it is not excited when receiving light in the ultraviolet region or light in the near ultraviolet region.
  • the power generation efficiency can be improved by converting the light in the ultraviolet region or the light in the near ultraviolet region into visible light by using and supplying the light to the solar cell.
  • a solar power generation apparatus including a filter mirror, the present phosphor, a semiconductor thermoelectric element, and a solar cell is configured, and sunlight is reflected by an infrared region (for example, 1000 nm or more) and visible light by the filter mirror.
  • an infrared region for example, 1000 nm or more
  • visible light by the filter mirror.
  • the light in the infrared region irradiates and heats the semiconductor thermoelectric element
  • the solar power generation device can be configured such that the light is irradiated to the phosphor, converted into light in the visible light region, and irradiated to the solar cell together with the light in the visible light region dispersed by the filter mirror.
  • the fluorescent material can be applied to a light collecting surface or a heat collecting pipe to form a filter mirror.
  • the “light-emitting element” means a light-emitting device that emits light, and includes at least a phosphor such as a red phosphor and a light-emitting source or an electron source as an excitation source thereof.
  • the “light-emitting device” is intended to be a light-emitting device that emits a relatively large light, and includes at least a phosphor and a light-emitting source or an electron source as an excitation source of the light-emitting elements.
  • the arrangement of the internal phosphor is not limited to a specific one.
  • X is preferably greater than X” and “preferably Y”, with the meaning of “X to Y” unless otherwise specified It means “smaller”.
  • X or more when expressed as “X is an arbitrary number), it means “preferably larger than X” unless otherwise specified, and “Y or less” (Y is an arbitrary number). ) Includes the meaning of “preferably smaller than Y” unless otherwise specified.
  • Comparative Example 1 Synthesis of CaS: Eu 2+ (Ca 0.99 Eu 0.01 S) Phosphor> CaS and EuS as starting materials were weighed and mixed so as to have a target composition, and mixed using a zirconia ball having a diameter of 3 mm for 100 minutes with a paint shaker. The resulting mixture was calcined at 1100 ° C. for 6 hours in a hydrogen sulfide atmosphere. Next, the fired product is pulverized for 1 minute with a raibai machine (“ALM-360T” manufactured by Nisto Kagaku Co., Ltd.), and sieved with a mesh of 140 mesh and 440 mesh. In addition, the screen having a mesh size of 440 mesh was collected to obtain a phosphor powder (sample) made of CaS: Eu 2+ .
  • ⁇ Comparative Example 1-1 Coating of ZnO-B 2 O 3 glass> ZnO and B 2 O 3 were weighed and mixed in a mortar, and then transferred to a platinum crucible. After the mixture was sufficiently melted in an electric furnace at 1600 ° C., the crucible was taken out of the furnace, the melt was poured onto a stainless steel plate, and cooled to obtain ZnO—B 2 O 3 glass. The obtained glass was pulverized with a tungsten mortar and further pulverized with an alumina mortar. The obtained glass powder was put in a polyethylene pot together with zirconia beads and ethanol and further pulverized by a bead mill.
  • the slurry was taken out from the pot together with the beads, and the beads were removed to obtain a slurry in which the glass powder was suspended in ethanol.
  • the CaS: Eu phosphor (100 parts by mass) obtained in Comparative Example 1 was put, and the above slurry was further added so that the glass powder became 10 parts by mass.
  • a CaS: Eu phosphor coated with B 2 O 3 glass powder was obtained.
  • a phosphor coated with glass powder is filled in an alumina boat and baked at 750 ° C. in the atmosphere to obtain a ZnO—B 2 O 3 glass coat CaS: Eu phosphor (“Comparative Example 1-1 Glass Coat Fluorescence”).
  • a sample called “body” was obtained.
  • ⁇ Comparative Example 1-1-1 Coating of Na 2 B 4 O 7 > NaCO 3 and B 2 O 3 were weighed and mixed in a mortar, and then transferred to an alumina boat. The mixture was fired in an electric furnace at 900 ° C. to obtain crystalline Na 2 B 4 O 7 . The obtained Na 2 B 4 O 7 was pulverized in an alumina mortar, and the obtained powder was placed in a PE resin pot together with zirconia beads and ethanol, and further pulverized in a bead mill. The slurry was taken out from the pot together with the beads, and the beads were removed to obtain a slurry in which Na 2 B 4 O 7 powder was suspended in ethanol.
  • Comparative Example 1-2-2 Coating of SiO 2 Glass / ZnO Compound> Comparative Example 1-2-1 10 parts by mass of crystalline ZnO particles (average particle size of 30 nm) with respect to the glass phosphor (100 parts by mass) were placed in an eggplant-shaped flask together with 50 mL of ethanol, and ZnO was removed using an ultrasonic cleaner. Was dispersed in ethanol.
  • SiO 2 glass-coated CaS: Eu phosphor powder was added, ethanol was evaporated by a rotary evaporator, and SiO 2 glass / ZnO-coated CaS: Eu phosphor (“Comparative Example 1-2-2 Glass / ZnO A sample called “coated phosphor” was obtained.
  • ⁇ Comparative Example 1-3 ZnO compound coating> 20 parts by mass of crystalline ZnO particles (average particle size 30 nm) with respect to the CaS: Eu phosphor powder (100 parts by mass) obtained in Comparative Example 1 are placed in an eggplant type flask together with 50 mL of ethanol, and placed in an ultrasonic cleaner. ZnO was dispersed in ethanol. While stirring this with a rotary evaporator, ethanol was evaporated to obtain a ZnO-coated CaS: Eu phosphor (sample).
  • Example 1 Coating of BaB 4 O 7 > BaCO 3 and B 2 O 3 were weighed and mixed in a mortar, and then transferred to an alumina boat. The mixture was fired in an electric furnace at 900 ° C. to obtain crystalline BaB 4 O 7 . The obtained BaB 4 O 7 was pulverized in an alumina mortar, and the obtained powder was placed in a PE resin pot together with zirconia beads and ethanol and further pulverized in a bead mill. The slurry was taken out from the pot together with the beads, and the beads were removed to obtain a slurry in which BaB 4 O 7 powder was suspended in ethanol.
  • Example 1-1-1 Coating of BaB 4 O 7 > BaCO 3 and B 2 O 3 were weighed and mixed in a mortar, and then transferred to an alumina boat. The mixture was fired in an electric furnace at 900 ° C. to obtain crystalline BaB 4 O 7 . The obtained BaB 4 O 7 was pulverized in an alumina mortar, and the obtained powder was placed in a PE resin pot together with zirconia beads and ethanol and further pulverized in a bead mill. The slurry was taken out from the pot together with the beads, and the beads were removed to obtain a slurry in which BaB 4 O 7 powder was suspended in ethanol.
  • the glass-coated phosphor of Comparative Example 1-1 (100 parts by mass) was added, and the slurry was further added so that BaB 4 O 7 was 5 parts by mass, and evaporated to dryness.
  • a ZnO—B 2 O 3 glass-coated phosphor (sample) having BaB 4 O 7 particles deposited on the outermost surface was obtained.
  • Example 1-1-2 Coating of BaB 2 O 4 > BaCO 3 and B 2 O 3 were weighed and mixed in a mortar, and then transferred to an alumina boat. The mixture was fired in an electric furnace at 900 ° C. to obtain crystalline BaB 2 O 4 . The obtained BaB 2 O 4 was pulverized in an alumina mortar, and the obtained powder was placed in a PE resin pot together with zirconia beads and ethanol, and further pulverized in a bead mill. The slurry was taken out from the pot together with the beads, and the beads were removed to obtain a slurry in which BaB 2 O 4 powder was suspended in ethanol.
  • Example 1-1-3 Coating of Ba 2 B 2 O 5 > BaCO 3 and B 2 O 3 were weighed and mixed in a mortar, and then transferred to an alumina boat. The mixture was fired in an electric furnace at 900 ° C. to obtain crystalline Ba 2 B 2 O 5 . The obtained Ba 2 B 2 O 5 was pulverized in an alumina mortar, and the obtained powder was placed in a PE resin pot together with zirconia beads and ethanol, and further pulverized in a bead mill. The slurry was taken out from the pot together with the beads, and the beads were removed to obtain a slurry in which Ba 2 B 2 O 5 powder was suspended in ethanol.
  • Comparative Example 1-1 glass-coated phosphor 100 parts by mass was added, the above slurry was further added so that Ba 2 B 2 O 5 was 5 parts by mass, and evaporated to dryness.
  • a ZnO—B 2 O 3 glass-coated phosphor (sample) having Ba 2 B 2 O 5 particles deposited on the outermost surface was obtained.
  • Example 1-1-4 Coating of Ba 3 B 2 O 6 > BaCO 3 and B 2 O 3 were weighed and mixed in a mortar, and then transferred to an alumina boat. The mixture was fired in an electric furnace at 900 ° C. to obtain crystalline Ba 3 B 2 O 6 . The obtained Ba 3 B 2 O 6 was pulverized in an alumina mortar, and the obtained powder was placed in a PE resin pot together with zirconia beads and ethanol, and further pulverized in a bead mill. The slurry was taken out from the pot together with the beads, and the beads were removed to obtain a slurry in which Ba 3 B 2 O 6 powder was suspended in ethanol.
  • Comparative Example 1-1 glass-coated phosphor 100 parts by mass was added, and the slurry was further added so that Ba 3 B 2 O 6 was 5 parts by mass, and evaporated to dryness.
  • a ZnO—B 2 O 3 glass-coated phosphor (sample) having Ba 3 B 2 O 6 particles deposited on the outermost surface was obtained.
  • Example 1-1-5 Coating of various crystalline metal borates>
  • MgCO 3 and B 2 O 3 were weighed and mixed in a mortar, then transferred to an alumina boat, and the mixture was fired in an electric furnace at 900 ° C. to obtain crystalline Mg 2 B 3 O 11 was obtained.
  • CaCO 3 and B 2 O 3 were weighed and mixed in a mortar, then transferred to an alumina boat, and the mixture was fired in an electric furnace at 900 ° C. to obtain crystalline CaB 2 O 4 . Obtained.
  • Example 1-1-7 SrCO 3 and B 2 O 3 were weighed and mixed in a mortar, then transferred to an alumina boat, and the mixture was fired in an electric furnace at 900 ° C. to obtain crystalline Sr 2 B 2 O. 5 was obtained.
  • the crystalline metal borate obtained as described above was pulverized with an alumina mortar, and the obtained powder was placed in a PE resin pot together with zirconia beads and ethanol, and further pulverized with a bead mill. The slurry was taken out from the pot together with the beads, and the beads were removed to obtain a slurry in which BaB 4 O 7 powder was suspended in ethanol.
  • the glass-coated phosphor of Comparative Example 1-1 (100 parts by mass) is added, and the slurry is further added so that the crystalline metal borate is 5 parts by mass, and evaporated to dryness.
  • a ZnO—B 2 O 3 glass-coated phosphor sample in which the crystalline metal borate particles were deposited on the outermost surface was obtained.
  • Example 1-2 Coating of BaB 4 O 7 > Comparative Example 1-1 Same as Example 1-1-1 except that instead of the glass-coated phosphor used in Comparative Example 1-1-1, a glass of Comparative Example 1-2-2 / ZnO-coated phosphor was used. By the method, a SiO 2 glass / ZnO coated phosphor (sample) having BaB 4 O 7 particles deposited on the outermost surface was obtained.
  • Example 1-3 Coating of BaB 4 O 7 >
  • Comparative Example 1-1 glass-coated phosphor 100 parts by mass
  • SiO 2 glass powder was 5 parts by mass
  • ZnO—B 2 O 3 —SiO 2 glass-coated CaS: Eu phosphor was obtained.
  • ZnO—B 2 O 3 —SiO 2 -based glass-coated CaS: Eu phosphor is put into the evaporator, and the above slurry is further added so that BaB 4 O 7 is 5 parts by mass.
  • a ZnO—B 2 O 3 —SiO 2 glass-coated phosphor (sample) having BaB 4 O 7 particles deposited on the outermost surface was obtained.
  • Example 1-4 A phosphor powder made of SrS: Eu 2+ was obtained in the same manner as in Comparative Example 1 except that SrS was used instead of CaS as a starting material. Next, a ZnO—B 2 O 3 system was used in the same manner as in Comparative Example 1-1 except that the SrS: Eu phosphor (100 parts by mass) was used instead of the CaS: Eu phosphor (100 parts by mass). A glass-coated SrS: Eu phosphor was obtained.
  • the ZnO—B 2 O 3 glass-coated SrS: Eu phosphor (100 parts by mass) is suspended in ethanol in a rotary evaporator so that the SiO 2 glass powder becomes 5 parts by mass.
  • a ZnO—B 2 O 3 —SiO 2 glass-coated SrS: Eu phosphor was obtained.
  • ZnO—B 2 O 3 —SiO 2 -based glass-coated SrS: Eu phosphor (100 parts by mass) is put into the evaporator, and the above slurry is further added so that BaB 4 O 7 becomes 5 parts by mass.
  • a ZnO—B 2 O 3 —SiO 2 glass-coated phosphor (sample) having BaB 4 O 7 particles deposited on the outermost surface was obtained.
  • Example 1-5> A phosphor powder made of Ca 0.2 Sr 0.8 S: Eu 2+ was obtained in the same manner as in Comparative Example 1 except that SrS was used together with CaS as a starting material. Next, SrS: Eu instead of the phosphor (100 parts by weight), the Ca 0.2 Sr 0.8 S: except for using Eu phosphor (100 parts by weight), in the same manner as in Example 1-4 A ZnO—B 2 O 3 —SiO 2 glass-coated phosphor (sample) having BaB 4 O 7 particles deposited on the outermost surface was obtained.
  • Example 1-6 ZnCO 3 and B 2 O 3 were weighed and mixed in a mortar, then transferred to an alumina boat, and the mixture was baked in an electric furnace at 900 ° C. to obtain crystalline ZnB 6 O 11 .
  • a phosphor (sample) in which ZnB 6 O 11 particles were deposited on the outermost surface was obtained in the same manner as in Example 1 except that ZnB 6 O 11 was used instead of BaB 4 O 7 .
  • Comparative Example 2-1 Coating of ZnO-B 2 O 3 glass> CaS was used in Comparative Example 1-1: Eu instead of the phosphor, SrGa 2 S obtained in Comparative Example 2 4: Eu, except that the phosphor was used, ZnO-B 2 in the same manner as in Comparative Example 1-1 An O 3 glass-coated SrGa 2 S 4 : Eu phosphor (a sample referred to as “Comparative Example 2-1 glass-coated phosphor”) was obtained.
  • Example 2 Coating of BaB 4 O 7 > Instead of the CaS: Eu phosphor used in Example 1, the BaB 4 O 7 particles were formed on the surface in the same manner as in Example 1 except that the SrGa 2 S 4 : Eu phosphor obtained in Comparative Example 2 was used. A deposited SrGa 2 S 4 : Eu phosphor (sample) was obtained.
  • Example 2-1-1 Coating of BaB 4 O 7 >
  • Comparative Example 2-1 glass-coated phosphor was used instead of Comparative Example 1-1 glass-coated phosphor used in Example 1-1-1.
  • a ZnO—B 2 O 3 glass-coated SrGa 2 S 4 : Eu phosphor (sample) having BaB 4 O 7 particles deposited on the outermost surface was obtained.
  • Example 2-1-2 BaB 2 O 4 coating>
  • Comparative Example 2-1 glass-coated phosphor was used instead of Comparative Example 1-1 glass-coated phosphor used in Example 1-1-2
  • a ZnO—B 2 O 3 glass-coated SrGa 2 S 4 : Eu phosphor (sample) having BaB 2 O 4 particles deposited on the outermost surface was obtained.
  • Example 2-1-3 Coating of Ba 2 B 2 O 5 >
  • Comparative Example 2-1 glass-coated phosphor was used instead of Comparative Example 1-1 glass-coated phosphor used in Example 1-1-3
  • a ZnO—B 2 O 3 glass-coated SrGa 2 S 4 : Eu phosphor (sample) having Ba 2 B 2 O 5 particles deposited on the outermost surface was obtained.
  • Example 2-1-4 coating of Ba 3 B 2 O 6>
  • Comparative Example 2-1 glass-coated phosphor was used instead of Comparative Example 1-1 glass-coated phosphor used in Example 1-1-4
  • a ZnO—B 2 O 3 glass-coated SrGa 2 S 4 : Eu phosphor (sample) having Ba 3 B 2 O 6 particles deposited on the outermost surface was obtained.
  • Example 2-2 Coating of BaB 4 O 7 > Comparative Example 2-2 10 parts by mass of crystalline ZnO particles (average particle size 30 nm) with respect to the glass-coated phosphor (100 parts by mass) were placed in an eggplant-shaped flask together with 50 mL of ethanol, and ZnO was added using an ultrasonic cleaner. Dispersed in ethanol. Comparative Example 2-2 Glass-coated phosphor powder was added thereto, and ethanol was evaporated while stirring with a rotary evaporator to obtain a B 2 O 3 —SiO 2 -based glass / ZnO-coated SrGa 2 S 4 : Eu phosphor. It was.
  • This phosphor was used in place of the phosphor of Comparative Example 1 used in Example 1, and B 2 O 3 —SiO 2 having BaB 4 O 7 particles deposited on the outermost surface in the same manner as in Example 1.
  • a glass / ZnO-coated SrGa 2 S 4 : Eu phosphor (sample) was obtained.
  • Example 2-3 Coating of BaB 4 O 7 >
  • Comparative Example 2-1 glass-coated phosphor 100 parts by mass
  • the SiO 2 glass powder was 5 parts by mass, and evaporated to dryness.
  • a ZnO—B 2 O 3 —SiO 2 glass-coated SrGa 2 S 4 : Eu phosphor was obtained.
  • ZnO—B 2 O 3 —SiO 2 -based glass-coated SrGa 2 S 4 : Eu phosphor (100 parts by mass) is put in an evaporator, and the slurry is so added that BaB 4 O 7 is 5 parts by mass.
  • Example 2-4 Coating of various crystalline metal borates>
  • CaCO 3 and B 2 O 3 were weighed and mixed well in a mortar, then transferred to an alumina boat, and the mixture was fired in an electric furnace at 900 ° C. to obtain crystalline CaB 2 O 4 . It was.
  • SrCO 3 and B 2 O 3 were weighed and mixed well in a mortar, then transferred to an alumina boat, the mixture was fired in an electric furnace at 900 ° C., and crystalline Sr 2 B 2 O 5 Got.
  • Example 2 A B 2 O 3 —SiO 2 glass-coated SrGa 2 S 4 : Eu phosphor (sample) was obtained.
  • Example 2-6> A phosphor powder (sample) made of CaGa 2 S 4 : Eu 2+ was obtained in the same manner as in Comparative Example 2 except that CaS was used instead of SrS as a starting material. Next, BaB 4 O 7 particles were deposited on the outermost surface in the same manner as in Example 2-3 except that the CaGa 2 S 4 : Eu phosphor was used instead of the SrGa 2 S 4 : Eu phosphor. ZnO—B 2 O 3 —SiO 2 glass-coated CaGa 2 S 4 : Eu phosphor (sample) was obtained.
  • Example 2-7 As a starting material, Ba 0.2 Sr 0.8 Ga 2 S 4 : In the same manner as in Comparative Example 2, except that BaS, SrS, Ga 2 S 3 and EuS were weighed and mixed so as to have a target composition. A phosphor powder (sample) made of Eu 2+ was obtained.
  • the sample was taken out, the phosphor resin was peeled off from the Ag film, and the reflectance of the Ag film surface was measured.
  • a spectrofluorometer manufactured by JASCO Corporation: FP-6500 was used for the measurement of the reflectance.
  • the reflectance of a BaSO 4 standard white plate was set to 100% as a reference.
  • the reflectance of the Ag film before applying the phosphor resin was approximately 98%.
  • the reflectance of the Ag film after aging for 100 hours was measured, and the value was defined as the reflectance maintenance rate (%) after 100 hours.
  • PCT test ⁇ Evaluation of moisture resistance (PCT test)>
  • the phosphors (samples) obtained in Examples and Comparative Examples were mixed with a silicone resin (manufactured by Toray Dow Corning: OE-6630) at a rate of 40 wt%, and applied to a glass plate with a thickness of about 300 ⁇ m. Then, the light emission efficiency before and after the HAST test was measured for evaluating the moisture resistance of the phosphor.
  • the HAST test was performed in accordance with IEC68-2-66 so that the phosphor (sample) was stored in a saturated PCT container (120 ° C., 100% RH) for 72 hours.
  • Luminous efficiency was measured by measuring the external quantum efficiency (excitation wavelength: 450 nm) with a spectrofluorometer (manufactured by JASCO Corporation: FP-6500), and the retention rate when the external quantum efficiency before the HAST test was taken as 100% (% ) was shown as an evaluation value of moisture resistance. Moreover, based on the said maintenance rate (%), the determination regarding moisture resistance was performed on the following reference
  • Phosphor (sample) is mixed with silicone resin (Toray Dow Corning: OE-6630) at a rate of 8 wt%, and is then potted into an LED package (6 mm ⁇ ) using an Ag electrode and heated at 140 ° C. for 1 hour. After curing, lighting was performed at a current of 60 mA, and “initial luminous flux (unit: Lm)” was measured.
  • the LED package for which the measurement of the initial luminous flux was completed was aged for 1,000 hours in an environmental tester in a high-temperature and high-humidity atmosphere at 85 ° C. and 85% RH, and the luminous flux was measured in the same manner to obtain an initial luminous flux of 100%.
  • the surface of the sulfur-containing phosphor has a structure in which a crystalline metal borate containing a Group IIA element, boron and oxygen is present.
  • the sulfur-containing phosphor had an effect of excellent moisture resistance.
  • this phosphor was packaged as an LED, and even when exposed to a high-temperature and high-humidity test environment for 1000 hours, the corrosion of the metal reflective film was suppressed, and the effect that the luminous flux maintenance factor was hardly lowered was obtained. .
  • a sulfur-containing phosphor having a structure in which particles containing a crystalline metal borate containing zinc, boron, and oxygen are present on the surface of the sulfur-containing phosphor also has the same moisture resistance and high temperature and high humidity. It had the effect of maintaining the speed of light in the test environment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 蛍光体の耐水性を高めつつ、硫黄系ガスの悪影響を効果的に抑制することができ、金属部材の腐食を効果的に抑制することができる蛍光体を提案する。 母体に硫黄を含む硫黄含有蛍光体の表面に、IIA族元素、ホウ素及び酸素を含有する結晶性の金属ホウ酸塩を含む粒子或いは層を備えた蛍光体を提案する。

Description

蛍光体及びその用途
 本発明は、母体に硫黄を含む蛍光体及びその用途に関する。
 赤色蛍光体の代表例として、例えば(Ca、Sr)S:Eu、(Zn、Cd)(S、Se):Ag、Ba2ZnS3:Mnなど、母体に硫黄を含む硫黄含有蛍光体が知られている。
 また、特許文献1や特許文献2には、硫化カルシウム(CaS)を母体とし、Euを発光中心(付活剤)とし、Mn,Li,Cl,Ce,Gd等を増感剤(共付活剤)として含有してなる硫黄含有赤色蛍光体が開示されている。
 また、緑色蛍光体として、(Ca、Sr、Ba)(Al、Ga、In)24:Euで表される硫化物系のチオガレート蛍光体が知られている(特許文献3、特許文献4、特許文献5)ほか、青色蛍光体として、例えばSrS:Ce、(Sr、Ca)Ga24:Ce、BaAl24:Eu、Ba2SiS4:Ce等の硫黄含有蛍光体が知られている。
 更には、ナノ粒子のサイズを制御することで、発光波長を調整することができる、量子ドット蛍光体であるコアシェル型CdSe/ZnSなども知られている(特許文献6)。
 このように母体に硫黄を含む硫黄含有蛍光体は、LEDなどによって励起され、組成によって様々な色を発光することができるため、各種蛍光体として開発が進められている。
 しかし、この種の硫黄含有蛍光体は、硫黄含有蛍光体中の硫黄に起因して硫化水素ガスが発生し、この硫化水素ガスが、特に白色LED素子に使用される場合に、蛍光体と混合されるシリコーン樹脂の硬化を阻害したり、リードフレームの反射率を高めるために施されたAgめっき膜(以下「Ag反射膜」と称する)等の素子内部の金属部材を腐食させて、その反射性能を低下させたり、断線等の電気的不良の原因となったりするなどの問題が指摘されていた。
 そこで従来、耐湿性等の向上を目的として、この種の蛍光体をガラス材料等でコーティングする方法(特許文献7、特許文献8、特許文献9、特許文献10、特許文献11)や、蛍光体粒子の表面を化学気相反応法によって被覆する方法(特許文献12)や、金属化合物の粒子を付着させる方法(特許文献13)等が提案されている。
 また、特許文献14において、母体に硫黄を含む硫黄含有蛍光体の表面側に、Zn及びOを含有するZnO化合物が存在してなる構成を備えたZnO化合物被覆硫黄含有蛍光体が開示されている。
特開2002-80845号公報 特開2003-41250号公報 特開2002-060747号公報 特開2007-056267号公報 特開2007-214579号公報 特開2003-64278号公報 特開2002-223008号公報 特開2004-250705号公報 特開2002-173675号公報 特開2008-7779号公報 特開2009-13186号公報 特開2005-82788号公報 特開2006-28458号公報 WO2012/077656A1
 しかしながら、蛍光体をガラスやZnOで被覆するのみでは、硫化水素ガスや二酸化硫黄ガス、二硫化炭素ガス等の硫黄系ガスの悪影響を抑制することは困難である。例えばAg反射膜などの金属部材は、長期信頼性試験環境下において、上記の硫黄系ガスにより腐食され、発光維持率が低下することが分かってきた。
 そこで本発明は、母体に硫黄を含む硫黄含有蛍光体に関し、蛍光体の耐水性(耐湿性)を高めつつ、硫黄系ガスの悪影響から金属部材の腐食を長期に効果的に抑制することができる蛍光体を提案せんとするものである。
 本発明は、母体に硫黄を含む硫黄含有蛍光体の表面に、IIA族元素、ホウ素及び酸素を含有する結晶性の金属ホウ酸塩(「結晶性金属ホウ酸塩」と称する)を含む粒子が存在してなる構成を備えた蛍光体を提案する。
 本発明はまた、母体に硫黄を含む硫黄含有蛍光体の表面に、亜鉛、ホウ素及び酸素を含有する結晶性の金属ホウ酸塩(「結晶性金属ホウ酸塩」と称する)を含む粒子が存在してなる構成を備えた蛍光体を提案する。
 本発明はまた、母体に硫黄を含む硫黄含有蛍光体の表面に、前記結晶性金属ホウ酸塩を含む層を備えた蛍光体を提案する。
 IIA族元素、ホウ素及び酸素を含有する結晶性金属ホウ酸塩、並びに、亜鉛、ホウ素及び酸素を含有する結晶性金属ホウ酸塩はいずれも、硫黄系ガスを化学的に吸着する特性を備えているため、当該結晶性金属ホウ酸塩を含む粒子又は層が硫黄含有蛍光体の表面に存在すると、硫黄系ガスが発生したとしても該結晶性金属ホウ酸塩がこれを効率よく吸収するため、硫黄系ガスによる金属部材の腐食を効果的に抑制することができる。しかも、前記結晶性金属ホウ酸塩は、LED等の光を吸収しないため、蛍光体自体の輝度を高く保つことが可能である。
本発明の一例に係る蛍光体粒子の断面状態の一例を模式的に示した図である。 本発明の一例に係る蛍光体粒子の断面状態の一例を模式的に示した図である。 本発明の一例に係る蛍光体粒子の断面状態の一例を模式的に示した図である。 本発明の一例に係る蛍光体粒子の断面状態の一例を模式的に示した図である。 本発明の一例に係る蛍光体粒子の断面状態の一例を模式的に示した図である。 本発明の一例に係る蛍光体粒子の断面状態の一例を模式的に示した図である。 本発明の一例に係る蛍光体粒子の断面状態の一例を模式的に示した図である。 参考例として、蛍光体粒子の断面状態の一例を模式的に示した図である。 実施例1-1-1と比較例1-2-2で得られた蛍光体粉末について、それぞれLEDパッケージで評価した光束維持率(%)の経時変化を示したグラフである。 実施例1-3で得たBaB47の粉末X線回折図を示した図である。
 以下、本発明の実施形態について詳述する。但し、本発明の範囲が以下に説明する実施形態に限定されるものではない。
(本蛍光体)
 本実施形態に係る蛍光体(以下「本蛍光体」と称する)は、母体に硫黄を含む硫黄含有蛍光体(「蛍光体母体」と称する)の表面に、IIA族元素又は亜鉛とホウ素と酸素とを含有する結晶性金属ホウ酸塩を含む粒子(「結晶性金属ホウ酸塩粒子」と称する)又は層(「結晶性金属ホウ酸塩層」と称する)が存在する構成を備えた蛍光体粒子(以下「本蛍光体粒子」と称する)からなる粉体(以下「本蛍光体粉末」と称する)である。
 この際、蛍光体母体の表面に結晶性金属ホウ酸塩粒子又は結晶性金属ホウ酸塩層が存在するとは、蛍光体母体の表面に、結晶性金属ホウ酸塩粒子又は結晶性金属ホウ酸塩層が接触して存在しているという意味である。
(蛍光体母体)
 本蛍光体の蛍光体母体、すなわち硫黄含有蛍光体の母体は、硫黄を含んでいれば、具体的な組成を特に限定するものではない。
 発光輝度が高い観点で好ましい硫黄含有蛍光体の母体の具体例としては、例えば(Ca、Sr、Ba)S、Ba2ZnS3、(Ca、Sr、Ba)(Al、Ga、In)24、(Ca、Sr、Ba)Ga24、BaAl24、Ba2SiS4などを挙げることができる。但し、これらに限定するものではない。
 他方、このような蛍光体母体に組み合わせる付活元素又は共付活元素の発光中心(発光イオン)としては、例えばSc、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンや、Cr、Ti、Ag、Cu、Au、Al、Mn、Sb等の遷移金属のイオンを挙げることができる。但し、これらに限定するものではない。
 硫黄含有蛍光体の具体例としては、例えば青色蛍光体としてのBa2(Si1-xAl)S4:Ce(但し、式中のxは0<x<1)やSrS:Ce、緑色蛍光体としてのSrGa24:Eu、SrS:Tb、CaS:Ce、黄色蛍光体としてのCaGa24:Eu、Sr2SiS4:Eu、CaS:Ce,Eu、赤色蛍光体としての(Ca1-xSr)S:Eu,In(但し、式中のxは0~1)やLa22S:Euなどを挙げることができる。但し、これらに限定するものではない。
 なお、以上挙げたうちの1種類の蛍光体を用いることも可能であるし、また、2種類以上の蛍光体を組み合わせて用いることも可能である。
 本蛍光体の蛍光体母体の粒径は、特に制限するものではない。例えば樹脂中での分散性保持の観点からは、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50が0.1μm~50μmであることが好ましい。同様の観点から、1μm以上或いは30μm以下であることがより好ましく、2μm以上或いは20μm以下であることが特に好ましい。
 蛍光体母体のD50が0.1μm以上であれば、発光効率が低下せず、また、蛍光体粒子が凝集することもない。また、50μm以下であれば、樹脂中での分散性が維持され、塗布ムラを生じず、ディスペンサー等の塗布装置内の閉塞を防ぐことができる。
(結晶性金属ホウ酸塩)
 結晶性金属ホウ酸塩は、結晶性金属ホウ酸塩粒子が連続的につながってなる結晶性金属ホウ酸塩の層として、すなわち結晶性金属ホウ酸塩層として、蛍光体母体の表面に存在してもよい。また、蛍光体母体の表面に結晶性金属ホウ酸塩を含む粒子として、すなわち結晶性金属ホウ酸塩粒子として存在してもよい。
 また、蛍光体母体の表面に、結晶性金属ホウ酸塩粒子又は結晶性金属ホウ酸塩層が存在してない部分が存在してもよい。
 金属ホウ酸塩が結晶性であれば、結晶格子間に硫化水素ガス等の硫黄系ガスがトラップされて金属と硫黄の複合化合物を生成しやすいため、硫黄系ガスの吸収効率が高い点で優れている。
 なお、金属ホウ酸塩が結晶性であるか否かは、例えば粉末X線回折分析通則(JISK0131-1996)における回折角-回折強度チャートにおいて、結晶性金属ホウ酸塩由来の回折ピークが認められるかどうかで判別することが可能である。
 結晶性金属ホウ酸塩は、IIA族元素、ホウ素及び酸素を含有する結晶性の金属ホウ酸塩であればよい。
 また、前記IIA族元素の代わりに、又は、前記IIA族元素と共に、亜鉛を含有する結晶性の金属ホウ酸塩(「結晶性金属ホウ酸塩」とも称する)であってもよい。
 前記のIIA族元素としては、Be、Mg、Ca、Sr、Ba及びRaを挙げることができる。
 よって、前記の結晶性金属ホウ酸塩としては、例えばBa-B-O、Sr-B-O、Ca-B-O、Mg-B-O、Zn-B-Oなどの金属ホウ酸塩を挙げることができ、その中でも、硫黄とより安定な化合物を形成し得るという観点から、Ba-B-O、Sr-B-O、Ca-B-O、Zn-B-Oなどの金属ホウ酸塩が好ましく、中でも硫黄系ガスの影響をより軽減できるという観点から、Ba-B-Oが特に好ましい。
 なお、前記の「Ba-B-O」とは、Ba、B及びOからなる金属ホウ酸塩の意味であり、前記に列記した他の例についても同様である。
 また、前記の結晶性金属ホウ酸塩は、式:MxByOz(式中、x=1~3、y=2~6、z=4~11、MはBa、Sr、Ca、Mg及びZnの中から選択される1種又は2種以上の金属元素である。)で表わされる化合物であるのが好ましい。
 この際、MとOのモル比を示すz/xは1.3~11であるのが好ましく、中でも2.0以上或いは10.0以下、その中でも2.5以上或いは7.0以下であるのがさらに好ましい。
 MとBのモル比を示すy/xは0.5~6.0であるのが好ましく、中でも0.6以上或いは5.0以下、その中でも1.0以上或いは4.0以下であるのがさらに好ましい。
 BとOのモル比を示すz/yは1.3~7.0であるのが好ましく、中でも1.70以上或いは3.0以下、その中でも1.75以上或いは2.5以下であるのがさらに好ましい。
 上記Ba-B-Oとしては、BaxByOz(x=1~3、y=2~4、z=4~7)で表わされる化合物を挙げることができる。
 この際、BaとOのモル比を示すz/xは1.3~7.0であるのが好ましく、中でも2.0以上或いは7.0以下、その中でも2.5以上或いは7.0以下であるのがさらに好ましい。BaとBのモル比を示すy/xは0.5~4.0であるのが好ましく、中でも0.6以上或いは4.0以下、その中でも1.0以上或いは4.0以下であるのがさらに好ましい。BとOのモル比を示すz/yは1.3~3.5であるのが好ましく、中でも1.70以上或いは3.0以下、その中でも1.75以上或いは2.5以下であるのがさらに好ましい。
 結晶性金属ホウ酸塩が、蛍光体母体の表面に結晶性金属ホウ酸塩粒子として存在する場合の断面模式図を図1、図5、図6及び図7に示す。
 結晶性金属ホウ酸塩粒子は、SEM観察による平均粒径が10μm以下の微粒子であるのが好ましい。平均粒径が10μm以下であれば、結晶性金属ホウ酸塩粒子がLEDからの光を散乱して輝度が損われることが生じないため、好ましい。
 かかる観点から、さらには1nm以上或いは5μm以下、その中でも10nm以上或いは1μm以下であるのがさらに好ましい。さらには、比表面積を十分に確保して硫化水素ガス等の硫黄系ガスの吸着効率を高める点と、結晶性金属ホウ酸塩粒子同士の凝集を防ぐ点とを加味すると、前記範囲の中でも50nm以上或いは0.5μm以下であるのが特に好ましい。
 なお、SEM観察による平均粒径は、任意の10個の視野で観測される任意の100個の粒子の平均径と定義される。この平均粒径は、例えば画像処理ソフトを用いて求められる投影面積円相当径で定義できる。粒子がアスペクト比を持つ場合は、長径と短径の平均値をその粒子の粒径と定義される。
 蛍光体母体と結晶性金属ホウ酸塩との質量割合は、蛍光体母体:結晶性金属ホウ酸塩=1:0.005~1:1であるのが好ましい。結晶性金属ホウ酸塩の割合が前記範囲内であれば、硫化水素ガスを効果的に吸着でき、蛍光体の発光効率も高く維持することができる。
 さらに、結晶性金属ホウ酸塩が硫化水素ガスや二酸化硫黄ガス等の硫黄系ガスを中和し、金属部材の腐食を抑制する観点から、蛍光体母体と結晶性金属ホウ酸塩との質量割合は、蛍光体母体:結晶性金属ホウ酸塩=1:0.01~1:0.5であるのがより一層好ましく、中でも特に1:0.02~1:0.3であるのがさらにより一層好ましく、さらにその中でも1:0.05~1:0.2であるのが特に好ましい。
 硫黄含有蛍光体の表面に結晶性金属ホウ酸塩粒子を存在させる製法としては、溶媒乾固法があげられる。具体的には結晶性金属ホウ酸塩粉末を有機溶媒(例えばエタノール等)に加えて超音波分散させ、これに硫黄含有蛍光体粉末を添加して攪拌した後、溶媒を蒸発させて、硫黄含有蛍光体粒子の表面に結晶性金属ホウ酸塩粒子を付着させる。
 また、上記の溶媒乾固法の他、硫黄含有蛍光体粉末と結晶性金属ホウ酸塩粉末とをブレンダー等で乾式混合する方法も、採用可能である。
 但し、これらの方法に限定するものではない。
 硫黄含有蛍光体粒子の表面に結晶性金属ホウ酸塩粒子を付着させた後、溶媒や吸着水を完全に除去するために加熱処理を施してもよい。
 この際、結晶性金属ホウ酸塩粒子が蛍光体粒子の表面に十分な密着を確保できる点と、結晶性金属ホウ酸塩の硫黄ガス吸着能の保持のための蛍光体母体を構成する硫黄成分の表面拡散の防止の点からすると、加熱処理における温度は500℃以下であるのが好ましく、更には300℃以下であるのがより一層好ましい。
 結晶性金属ホウ酸塩が、結晶性金属ホウ酸塩層として蛍光体母体の表面に存在する場合の断面模式図を図2、図3及び図4に示す。
 結晶性金属ホウ酸塩層は、蛍光体母体の表面を完全に被覆するものでもよいし、また、蛍光体母体表面の一部が露出するように被覆するものでもよい。
 この際、結晶性金属ホウ酸塩層の被覆率は、20%以下であるのが好ましく、中でも10%以下であるのが好ましい。
 なお、被覆率は、カソードルミネッセンス法による二次元マッピング測定から画像解析により算出することができる。即ち、非被覆部(蛍光体母体表面が露出している部分)は電子線励起により発光し、被覆部は発光しないこととなる。これらのことから、被覆率は次式により算出することができる。
被覆率(%)=非発光部の面積/(発光部の面積+非発光部の面積)
 結晶性金属ホウ酸塩層の厚さは5nm~300nmであることが好ましい。
 この結晶性金属ホウ酸塩層を形成させる製法としては、例えばプラズマCVD法や有機金属気相成長法(MOCVD法)、レーザーCVD法、原子層成長法(ALE)などの化学気相反応法を挙げることができる。
(ガラスコート層)
 本蛍光体は、蛍光体母体の表面にさらにガラスコート層を備えていてもよい。図3~図6は、このようなガラスコート層を備えた状態を示す断面模式図である。このガラスコート層は、本蛍光体にさらなる耐湿性を付与することが可能である。
 ガラスコート層を備える形態としては、例えば蛍光体母体の表面に結晶性金属ホウ酸塩粒子又は結晶性金属ホウ酸塩層が存在し、これを被覆するようにガラスコート層が存在してなる構成を備えたものでもよいし、また、蛍光体母体の表面にガラスコート層が存在し、該ガラスコート層の表面に結晶性金属ホウ酸塩粒子又は結晶性金属ホウ酸塩層が存在してなる構成を備えたものでもよい。また、本蛍光体が備える被覆層が3層以上であってもよい。さらにまた、ガラスコート層内に結晶性金属ホウ酸塩粒子が存在してなる構成であってもよい。
 中でも、結晶性金属ホウ酸塩粒子又は結晶性金属ホウ酸塩層よりもガラスコート層が蛍光体母体側に存在するのが好ましい。ガラスコート層を形成する際の加熱によって、結晶性金属ホウ酸塩が非結晶性になる可能性を避けるためである。
 ガラスコート層は、ガラス組成物を含有する層であればよい。例えば非晶質酸化物を含有するガラス組成物を含有する層であればよい。例えばSiO2、Ma23、Ma23-SiO2、Ma23-MbO、Ma23-MdO2、Ma23-MbO-SiO2、MbO-MdO2-SiO2、MbO-Mc2O-SiO2、Ma23-MbO-Mc2O、Ma23-MbO-MdO2、Ma23-MbO-Mc2O-SiO2などの組成(なお、「Ma」はBやAlなどアルミウム族のIIIA族金属又は希土族のIIIB族金属又はBiから選択される少なくとも1種以上の組み合わせを示し、「Mb」はアルカリ土類金属又はZnから選択される少なくとも1種以上の組み合わせを示し、「Mc」はアルカリ金属から選択される少なくとも1種以上の組み合わせを示し、「Md」はチタン族のIVB族から選択される少なくとも1種以上の組み合わせを示す)を含有するガラス組成物等を挙げることができる。但し、これらに限定するものではない。
 ガラスコート層には、ガラス組成物の軟化点やガラス転移温度を低下させる成分として、B23、アルカリ金属、アルカリ土類金属やフッ素、フッ化物が含有されていてもよい。この際の該フッ化物としては、好ましくはCa、Sr、Ba、Mg、Zn、Al及びGaからなる群から選択される1種または2種以上のフッ化物が含有されていてもよく、さら好ましくはCa、Sr、Ba、及びMgからなる群から選択される1種または2種以上のフッ化物が含有されていてもよい。但し、これらに限定されるものではない。
 ガラスコート層の一例として、ガラス粒子の集合体によるガラスコート層をあげることができる。具体的には、蛍光体粒子とガラス粒子をエタノール中に分散させた後、エタノールを蒸発させることで、蛍光体粒子の表面にガラスコート層を形成することができる。
 この際、ガラス組成物、例えばガラス粒子の好ましい組成範囲の一例として、モル比でSi=0.45~0.55、Ba=0.07~0.16、B=0.13~0.21、Al=0.11~0.20及びF=0.03~0.10を含有する組成を挙げることができる。より好ましくは、モル比でSi=0.48~0.51、Ba=0.10~0.13、B=0.16~0.18、Al=0.14~0.17及びF=0.04~0.08を含有する組成を挙げることができる。
 ガラス粒子の具体的な製造法の一例を示すと、例えば、主原料としてのSiO、BaO、B23及びAlと、フッ素添加成分としてのBaF、AlF、NaAlF、(NHAlFから選択される少なくとも1種とを混合し、得られた混合物を1050℃~1400℃の温度範囲で30分~120分間加熱して、空気中又は水中で急速冷却し、得られたガラス組成物を粒径が1μm以下になるまで粉砕してガラス粒子を得る方法を挙げることができる。この際、粉砕方法は特に限定されることはない。例えば乾式、湿式又はこれらを組合せて行うことができ、粉砕装置としては、例えば振動ミル、ビーズミル、アトライター、ジェットミル等を組み合わせて使用することができる。但し、このような製法に限定するものではない。
 ガラスコート層の別の形態として、ガラス被膜を挙げることができる。
 このようなガラス被膜を形成する方法の一例としては、例えばガラスコート層の前駆体と水と溶媒とを含む前駆体混合物を準備し、前駆体混合物と蛍光体粒子とを混合し、ゾル-ゲル反応を誘導して、蛍光体母体の表面にガラスをコートし、次に、フィルタリングによって、ガラスコート層が形成された蛍光体粒子のみを分離して得た後、その蛍光体粒子を乾燥すればよい。また、必要に応じ乾燥後に熱処理を加えることも可能である。
 また、別の方法によるガラス被膜の形成方法として、例えば蛍光体粒子とガラス組成物の粉末とを混合し、ガラス組成物の粉末が溶融されて蛍光体粒子を取り囲むように、ガラス組成物の粉末と蛍光体粒子との混合物を熱処理した後、その混合物を冷却するようにしてもよい。この場合のガラス組成物の粉末の一例として、SiO-B、ZnO-B、Bi-B、ZnO-SiO-B、Bi-ZnO-B、SiO-B-Al、SiO-B-BaO、SiO-B-BaO-Alなどの組成を挙げることができる。
 そのほか、蛍光体粒子の表面を前述した化学気相反応法によって連続したガラス組成物層として被覆する方法や、ガラス組成物粒子を付着させる方法などを採用することも可能である。
 ガラスコート層は、連続的であることが、蛍光体の発光を維持する上でより好ましい。また、連続的であれば、蛍光体の表面の一部に、ガラスコート層が付着しておらず蛍光体表面が露出している部分が存在してもよい。
 なお、ガラスコート層は、一層のみでもAg反射膜の腐食抑制の効果を示すことは可能である。さらに、結晶性金属ホウ酸塩や、後述する結晶性ZnO化合物をはじめとする金属酸化物層などと組合せた層を蛍光体の表面に形成することにより、Ag反射膜の腐食抑制効果をさらに高めることができる。
 尚、ガラスコート層は、多孔質なガラスコート層であってもよい。
(ZnO化合物粒子又は層)
 本蛍光体は、蛍光体母体の表面に、結晶性ZnO化合物を含む粒子(「ZnO化合物粒子」と称する)又は層(「ZnO化合物層」と称する)をさらに備えていてもよい。
 蛍光体母体の表面に前記ZnO化合物層を備える形態としては、例えば蛍光体母体の表面に結晶性金属ホウ酸塩粒子又は結晶性金属ホウ酸塩粒子層が存在し、その外側にZnO化合物粒子又はZnO化合物層が存在し、必要に応じてさらにそれを被覆するようにガラスコート層が存在してなる構成を備えたものでもよいし、また、蛍光体母体の表面にZnO化合物粒子又はZnO化合物層が存在し、その外側に結晶性金属ホウ酸塩粒子又は結晶性金属ホウ酸塩粒子層が存在し、必要に応じてさらにそれを被覆するようにガラスコート層が存在してなる構成を備えたものでもよい。また、蛍光体母体の表面を被覆するようにガラスコート層が存在し、その表面に結晶性金属ホウ酸塩粒子又は結晶性金属ホウ酸塩粒子層が存在し、その外側にZnO化合物粒子又はZnO化合物層が存在してなる構成を備えたものでもよいし、又、蛍光体母体の表面を被覆するようにガラスコート層が存在し、その表面にZnO化合物粒子又はZnO化合物層が存在し、さらにその外側に結晶性金属ホウ酸塩粒子又は結晶性金属ホウ酸塩粒子層が存在してなる構成を備えたものでもよい。
 ZnO化合物は、Zn及びOを含有するZnO化合物であれば、硫化水素ガスと反応し、且つ、LED等の光を吸収せず色に影響を与えることがない、言い換えれば無色透明であるという特徴を有している。よって、ZnO化合物に関しては、その具体的組成を限定するものではない。例えばZn及びOを含有するZnO化合物が、ZnO、Zn(OH)2、ZnSO4・nH2O(0≦n≦7)、ZnTi、ZnTi、ZnTiOZnTiO、ZnBaO、ZnBa、ZnGa、Zn1.23Ga0.28、ZnGaO、ZnGa、Zn0.125~0.95Mg0.05~0.9O、Zn0.1~0.75Ca0.25~0.9O、ZnSrO、Zn0.3Al2.4、ZnAl、Zn3~7In6~10、ZnSnO、ZnSnOからなる群から選ばれる一種又は二種以上の結晶性微粒子を挙げることができるし、その他の組成のものでもよい。
 ZnO化合物は、ZnO化合物粒子が連続的につながってなるZnO化合物の層として蛍光体母体の表面に存在してもよいし、また、蛍光体母体の表面にZnO化合物粒子として存在してもよい。蛍光体母体の表面にZnO化合物粒子として存在していれば、硫化水素ガスの影響を軽減することができことが確認されている。
 また、蛍光体母体の表面に、ZnO化合物粒子又はZnO化合物層が存在してない部分が存在してもよい。
 蛍光体母体の硫黄と、ZnO化合物との間には化学結合がないことが好ましい。化学結合して、蛍光体母体のSとZnO化合物のZnが反応してZnSが生成すると、硫化水素ガスとの反応が阻害されるばかりか、新たなAg反射膜の腐食要因となるからである。よって、ZnO化合物は、蛍光体母体の表面に物理的に付着していることが好ましい。
 ZnO化合物粒子は、SEM観察による平均粒径が300nm以下の微粒子であるのが好ましく、特に該平均粒径が1nm以上、或いは100nm以下であるのがさらに好ましい。該平均粒径が300nm以下であれば、ZnO化合物粒子がLEDより発せられた光を散乱させず、LEDから発せられた光を蛍光体が吸収するのを妨げないため、好ましい。また、ZnO化合物を被覆する目的は、硫化水素ガスを吸着するためであるから、この点からもZnO化合物の比表面積が大きい方が好ましく、該平均粒径として100nm以下であればより一層好ましいといえる。
 なお、SEM観察による平均粒径は、任意の10個の視野で観測される任意の100個の粒子の平均直径である。この平均粒径は、例えば画像処理ソフトを用いて求められる投影面積円相当径で定義できる。粒子がアスペクト比を持つ場合は、長径と短径の平均値をその粒子の粒径とする。
 蛍光体とZnO化合物との質量割合は、硫黄含有蛍光体:ZnO化合物=1:0.005~1:1であるのが好ましい。ZnO化合物の割合が、前記範囲内であれば、硫化水素ガス吸着の効果を得ることができるばかりか、蛍光体がLEDからの光を吸収して発光するのを妨げることがなく、蛍光体の発光効率を維持することができる。かかる観点から、特に硫黄含有蛍光体:ZnO化合物=1:0.01~1:0.5であるのが好ましく、中でも特に1:0.02~1:0.3であるのがより一層好ましい。
 硫黄含有蛍光体の表面にZnO化合物粒子を存在させる製法としては、ZnO化合物粉末を溶媒(例えばエタノール)に加えて超音波分散させ、これに硫黄含有蛍光体粉末を添加して攪拌した後、溶媒を蒸発させて、硫黄含有蛍光体粒子の表面にZnO化合物を付着させて存在させるようにすればよい。
 また、硫黄含有蛍光体粉末とZnO化合物粉末とをブレンダー等を使って乾式混合しても、硫黄含有蛍光体粒子の表面にZnO化合物粒子に付着させて存在させることは可能である。
 また、硫黄含有蛍光体の表面にZnO化合物層を形成させる別の製法として、例えば化学気相反応法などの方法を挙げることができる。
(その他)
 本蛍光体の表面は、有機系カップリング剤で表面処理されていてもよいし、シルセキスオキサンのように無機シリカと有機シリコーンの中間的な物性を有する物質で表面処理してもよい。
 本蛍光体は、必要に応じて、各種添加剤、例えば可塑剤、顔料、酸化防止剤、熱安定剤、紫外線吸収剤、光安定剤、難燃剤、滑剤、発泡剤、フィラー、帯電防止剤、繊維等の補強剤などを適宜混合してもよい。
 なお、図8に示すように、硫黄含有蛍光体粒子すなわち本蛍光体の蛍光体母体と、結晶性金属ホウ酸塩と、必要に応じてガラス粒子と、必要に応じてZnO化合物粒子とが、混在してなる集合体である場合も想定が可能である。
<本蛍光体の形態>
 本蛍光体は、粉体であっても成形体であってもよい。但し、樹脂と混合して成形体となし得るためには粉体であることが好ましい。
 また、本蛍光体を含有する蛍光体層が、透明な樹脂組成物或いはガラス組成物からなる封止層内に配置されてなる構成を備えたものでもよい。
 本蛍光体が粉体の場合には、分散性の観点から、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布による中心粒径(D50)が、0.1μm~100μmであることが好ましく、1μm以上或いは50μm以下であることがより好ましく、2μm以上或いは20μm以下であることが特に好ましい。D50が0.1μm以上であれば、発光効率が低下する傾向もなく、また、蛍光体粒子が凝集することもない。また、100μm以下であれば、分散性を維持でき、製造工程における塗布ムラやディスペンサー等の閉塞を防ぐことができる。
 なお、本蛍光体の中心粒径(D50)は、母体の原料、すなわちCa原料の粒度を調整することにより調整することができるから、用途に応じて調整すればよい。
<本蛍光体の用途>
 本蛍光体は、例えばLED、レーザー又はダイオード等において波長変換材料として好適に使用することができる。
 例えばLED、レーザー又はダイオード等の発光源の近傍に配置することにより、発光素子並びに光源装置を構成することができ、各種用途に用いることができる。このように本蛍光体をLEDの近傍に配置することにより、例えば照明装置や特殊光源のほか、液晶表示装置などの画像表示装置のバックライトなどに利用することができる。
 また、前記発光源のLED等を有機EL(OLED)に置き換えて用いることもできる。
 また、本蛍光体の近傍に電界源や電子源を配置することで、EL、FEDなどの表示デバイスに利用することができる。
 なお、発光体の近傍とは、該発光体が発光した光を受光し得る位置をいう。
 中でも、本蛍光体は、硫化水素ガスの悪影響を効果的に抑制することができ、反射膜である金属部材上に蛍光体含有層として配置することで発光効率を高く保てる点で有効である。
 この際、固体発光素子としては、LED、レーザー、ダイオード等を挙げることができる反射膜である金属部材としては、銀、銅、ニッケル、鉄やこれらを構成元素とする合金などを挙げることができる。中でも、高い熱伝導率を保持する点で、好ましくは銀、銅であり、高い熱伝導率及び可視光反射率を保持する点で、より好ましくは銀である。
 上記蛍光体含有層は、本蛍光体が樹脂に含まれたものを挙げることもできるし、また、本蛍光体とZnO化合物とが樹脂中に散在した構成のものを挙げることもできる。
 また、本蛍光体を含有する蛍光体層が、透明な樹脂組成物或いはガラス組成物からなる封止層内に配置されてなる構成を備えた蛍光体成形体を作製することもできる。例えば透明な樹脂組成物或いはガラス組成物からなるシート体の裏面側に、適宜間隔をおいて複数の凹溝部を設けておき、各凹溝部内に、透明な樹脂に本蛍光体を含有させた蛍光体含有樹脂組成物を埋め込んで蛍光体層を形成してなる構成を備えた蛍光体成形体を形成し、当該蛍光体成形体の裏面側(視認側の反対側)に、各蛍光体層の裏面側にLEDなどの光源を配置するようにして光源装置とすることができ、画像表示装置などに用いることができる。
 また、本蛍光体を用いて、太陽光のうち少なくとも紫外領域の光又は近紫外領域の光を含む光を受光し、又は、蛍光体を含む蛍光体成形体と、蛍光体により発光された可視光領域の光を受光して電気信号に変換する太陽電池と、を備えた太陽光発電装置を構成することも可能である。
 すなわち、本蛍光体は、組成によっては、上述のように紫外領域~可視光領域の波長(例えば250nm~610nm)の光によって励起され、可視光領域の光、特に赤色光を発光し得るため、本蛍光体は、この特性を利用して太陽光発電装置に利用することができる。例えば、太陽光のうち少なくとも紫外領域の光又は近紫外領域の光を含む光を受光し、可視光領域の光を発光する本蛍光体と、該本蛍光体により発光された可視光領域の光を受光して電気信号に変換する太陽電池と、を備えた太陽光発電装置を構成することができる。
 単結晶シリコンなどからなる太陽電池の場合、可視光領域の光を受光すると励起するが、紫外領域の光又は近紫外領域の光を受光しても励起しないものが一般的であるため、蛍光体を利用して紫外領域の光又は近紫外領域の光を可視光に変換させて、太陽電池に供給することで、発電効率を高めることができる。
 よって、例えば、フィルターミラーと、本蛍光体と、半導体熱電素子と、太陽電池とを備えた太陽光発電装置を構成し、太陽光をフィルターミラーによって赤外領域(例えば1000nm以上)と、可視光・近赤外領域(例えば450~1000nm)と、紫外・青色領域(250~450nm)とに分光し、当該赤外領域の光は半導体熱電素子に照射して加熱させ、当該紫外・青色領域の光は本蛍光体に照射して可視光領域の光に変換して、フィルターミラーによって分光された前記可視光領域の光と共に太陽電池に照射するように太陽光発電装置を構成することができる。
 この際、蛍光体は、集光面や集熱パイプに塗布することで、フィルターミラーとすることができる。
<用語の説明>
 本発明において「発光素子」とは、少なくとも赤色蛍光体などの蛍光体と、その励起源としての発光源又は電子源とを備えた、光を発する発光デバイスを意図する。
 「発光装置」とは、発光素子のうち、少なくとも蛍光体とその励起源としての発光源又は電子源とを備えた、比較的大型の光を発する発光デバイスを意図する。
 「発光素子」、「発光装置」いずれも内部蛍光体の配置は特定のものに限らない。
 本発明において、「X~Y」(X,Yは任意の数字)と表現した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」及び「好ましくはYより小さい」の意を包含する。
 また、本発明において、「X以上」(Xは任意の数字)と表現した場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と表現した場合、特にことわらない限り「好ましくはYより小さい」の意を包含する。
 以下に本発明の実施例を示す。但し、本発明はこれらの実施例に限定されて解釈されるものではない。
<比較例1:CaS:Eu2+(Ca0.99Eu0.01S)蛍光体の合成>
 出発原料としてのCaS及びEuSを目的の組成となるように秤量して混合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1100℃で6時間焼成した。次に、焼成したものを、らいかい機(日陶科学社製「ALM-360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、CaS:Eu2+からなる蛍光体粉末(サンプル)を得た。
<比較例1-1:ZnO-B23系ガラスの被覆>
 ZnOとB23を秤量し、乳鉢で混合したのち、白金製坩堝に移した。
 1600℃の電気炉で混合物を充分溶融した後、炉から坩堝を取出し、融体をステンレス製の板の上に流し、冷却することでZnO-B23系ガラスを得た。
 得られたガラスをタングステン製乳鉢で粉砕した後、さらにアルミナ乳鉢で粉砕した。
 得られたガラス粉末を、ポリエチレン製のポットにジルコニア製のビーズ、エタノールとともに入れ、ビーズミルでさらに粉砕した。ポットからビーズと共にスラリーを取出し、ビーズを除去してガラス粉末がエタノールに懸濁したスラリーを得た。
 エバポレータの中に、比較例1で得たCaS:Eu蛍光体(100質量部)を入れ、ガラス粉末が10質量部となるよう、上記スラリーをさらに添加し、蒸発乾固することで、ZnO-B23ガラス粉末が被着したCaS:Eu蛍光体を得た。
 ガラス粉末が被着した蛍光体を、アルミナボートに充填し、大気中750℃で焼成することで、ZnO-B23系ガラスコートCaS:Eu蛍光体(「比較例1-1ガラスコート蛍光体」と称する、サンプル)を得た。
<比較例1-1-1:Na247の被覆>
 NaCO3とB23を秤量し、乳鉢で混合した後、アルミナボートに移した。900℃の電気炉で混合物を焼成し、結晶性のNa247を得た。
 得られたNa247をアルミナ乳鉢で粉砕し、得られた粉末を、PE樹脂製のポットにジルコニア製のビーズ、エタノールとともに入れ、ビーズミルでさらに粉砕した。ポットからビーズと共にスラリーを取出し、ビーズを除去してNa247粉末がエタノールに懸濁したスラリーを得た。
 次に、エバポレータの中に、比較例1-1で得たガラスコート蛍光体(100質量部)を入れ、Na247が5質量部となるように上記スラリーをさらに添加し、蒸発乾固することで、Na247粒子が最表面に被着したZnO-B23ガラスコート蛍光体(サンプル)を得た。
<比較例1-2-1:SiO2ガラスの被覆>
 比較例1で得たCaS:Eu蛍光体粉末(100質量部)を、エタノールに加えて懸濁させ、これに純水と、ガラス粉末が10質量部相当のSi(OEt)4とを加え、さらに触媒としてアンモニア水を少量添加して60℃で加水分解させ、SiO2ガラスコートCaS:Eu蛍光体(「比較例1-2-1ガラスコート蛍光体」と称する、サンプル)を得た。
<比較例1-2-2:SiO2ガラス/ZnO化合物の被覆>
 比較例1-2-1ガラス蛍光体(100質量部)に対して10質量部の結晶性ZnO粒子(平均粒径30nm)を、エタノール50mLとともにナス型フラスコに入れ、超音波洗浄器にてZnOをエタノール中に分散させた。ここに、SiO2系ガラスコートCaS:Eu蛍光体粉末を添加し、ロータリーエバポレータでエタノールを蒸発させ、SiO2系ガラス/ZnOコートCaS:Eu蛍光体(「比較例1-2-2ガラス/ZnOコート蛍光体」と称する、サンプル)を得た。
<比較例1-3:ZnO化合物被覆>
 比較例1で得たCaS:Eu蛍光体粉末(100質量部)に対して20質量部の結晶性ZnO粒子(平均粒径30nm)を、エタノール50mLとともにナス型フラスコに入れ、超音波洗浄器にてZnOをエタノール中に分散させた。これをロータリーエバポレータで攪拌しながらエタノールを蒸発させ、ZnOコートCaS:Eu蛍光体(サンプル)を得た。
<実施例1:BaB47の被覆>
 BaCO3とB23を秤量し、乳鉢で混合したのち、アルミナボートに移した。
 900℃の電気炉で混合物を焼成し、結晶性のBaB47を得た。
 得られたBaB47をアルミナ乳鉢で粉砕し、得られた粉末を、PE樹脂製のポットにジルコニア製のビーズ、エタノールとともに入れ、ビーズミルでさらに粉砕した。ポットからビーズと共にスラリーを取出し、ビーズを除去してBaB47粉末がエタノールに懸濁したスラリーを得た。
 ロータリーエバポレータの中に、比較例1で得た蛍光体(100質量部)を入れ、BaB47が5質量部となるよう、上記スラリーをさらに添加し、蒸発乾固することで、BaB47粒子が最表面に被着した蛍光体(サンプル)を得た。
<実施例1-1-1:BaB47の被覆>
 BaCO3とB23を秤量し、乳鉢で混合したのち、アルミナボートに移した。900℃の電気炉で混合物を焼成し、結晶性のBaB47を得た。
 得られたBaB47をアルミナ乳鉢で粉砕し、得られた粉末を、PE樹脂製のポットにジルコニア製のビーズ、エタノールとともに入れ、ビーズミルでさらに粉砕した。ポットからビーズと共にスラリーを取出し、ビーズを除去してBaB47粉末がエタノールに懸濁したスラリーを得た。
 ロータリーエバポレータの中に、比較例1-1のガラスコート蛍光体(100質量部)を入れ、BaB47が5質量部となるよう、上記スラリーをさらに添加し、蒸発乾固することで、BaB47粒子が最表面に被着したZnO-B23ガラスコート蛍光体(サンプル)を得た。
<実施例1-1-2:BaB24の被覆>
 BaCO3とB23を秤量し、乳鉢で混合したのち、アルミナボートに移した。900℃の電気炉で混合物を焼成し、結晶性のBaB24を得た。
 得られたBaB24をアルミナ乳鉢で粉砕し、得られた粉末を、PE樹脂製のポットにジルコニア製のビーズ、エタノールとともに入れ、ビーズミルでさらに粉砕した。ポットからビーズと共にスラリーを取出し、ビーズを除去してBaB24粉末がエタノールに懸濁したスラリーを得た。
 エバポレータの中に、比較例1-1ガラスコート蛍光体(100質量部)を入れ、BaB24が5質量部となるよう、上記スラリーをさらに添加し、蒸発乾固することで、BaB24粒子が最表面に被着したZnO-B23ガラスコート蛍光体(サンプル)を得た。
<実施例1-1-3:Ba225の被覆>
 BaCO3とB23を秤量し、乳鉢で混合したのち、アルミナボートに移した。900℃の電気炉で混合物を焼成し、結晶性のBa225を得た。
 得られたBa225をアルミナ乳鉢で粉砕し、得られた粉末を、PE樹脂製のポットにジルコニア製のビーズ、エタノールとともに入れ、ビーズミルでさらに粉砕した。ポットからビーズと共にスラリーを取出し、ビーズを除去してBa225粉末がエタノールに懸濁したスラリーを得た。
 ロータリーエバポレータの中に、比較例1-1ガラスコート蛍光体(100質量部)を入れ、Ba225が5質量部となるよう、上記スラリーをさらに添加し、蒸発乾固することで、Ba225粒子が最表面に被着したZnO-B23ガラスコート蛍光体(サンプル)を得た。
<実施例1-1-4:Ba326の被覆>
 BaCO3とB23を秤量し、乳鉢で混合したのち、アルミナボートに移した。900℃の電気炉で混合物を焼成し、結晶性のBa326を得た。
 得られたBa326をアルミナ乳鉢で粉砕し、得られた粉末を、PE樹脂製のポットにジルコニア製のビーズ、エタノールとともに入れ、ビーズミルでさらに粉砕した。ポットからビーズと共にスラリーを取出し、ビーズを除去してBa326粉末がエタノールに懸濁したスラリーを得た。
 エバポレータの中に、比較例1-1ガラスコート蛍光体(100質量部)を入れ、Ba326が5質量部となるよう、上記スラリーをさらに添加し、蒸発乾固することで、Ba326粒子が最表面に被着したZnO-B23ガラスコート蛍光体(サンプル)を得た。
<実施例1-1-5~1-1-7:各種結晶性金属ホウ酸塩の被覆>
 実施例1-1-5では、MgCO3とB23を秤量し、乳鉢で混合したのち、アルミナボートに移し、900℃の電気炉で混合物を焼成し、結晶性のMg11を得た。
 実施例1-1-6では、CaCO3とB23を秤量し、乳鉢で混合したのち、アルミナボートに移し、900℃の電気炉で混合物を焼成し、結晶性のCaBを得た。
 実施例1-1-7では、SrCO3とB23を秤量し、乳鉢で混合したのち、アルミナボートに移し、900℃の電気炉で混合物を焼成し、結晶性のSrを得た。
 上記の如く得られた結晶性金属ホウ酸塩をアルミナ乳鉢で粉砕し、得られた粉末を、PE樹脂製のポットにジルコニア製のビーズ、エタノールとともに入れ、ビーズミルでさらに粉砕した。ポットからビーズと共にスラリーを取出し、ビーズを除去してBaB47粉末がエタノールに懸濁したスラリーを得た。
 ロータリーエバポレータの中に、比較例1-1のガラスコート蛍光体(100質量部)を入れ、上記結晶性金属ホウ酸塩が5質量部となるよう、上記スラリーをさらに添加し、蒸発乾固することで、上記結晶性金属ホウ酸塩粒子が最表面に被着したZnO-B23ガラスコート蛍光体(サンプル)を得た。
<実施例1-2:BaB47の被覆>
 実施例1-1-1で用いた比較例1-1ガラスコート蛍光体の代わりに、比較例1-2-2ガラス/ZnOコート蛍光体を用いた以外は実施例1-1-1と同じ方法で、BaB47粒子が最表面に被着したSiO2系ガラス/ZnOコート蛍光体(サンプル)を得た。
<実施例1-3:BaB47の被覆>
 ロータリーエバポレータの中に、比較例1-1ガラスコート蛍光体(100質量部)を、エタノールに加えて懸濁させ、SiO2ガラス粉末が5質量部となるよう添加し、蒸発乾固することで、ZnO-B23-SiO2系ガラスコートCaS:Eu蛍光体を得た。
 さらに、エバポレータの中に、ZnO-B23-SiO2系ガラスコートCaS:Eu蛍光体(100質量部)を入れ、BaB47が5質量部となるよう、上記スラリーをさらに添加し、蒸発乾固することで、BaB47粒子が最表面に被着したZnO-B23-SiO2系ガラスコート蛍光体(サンプル)を得た。
<実施例1-4>
 出発原料としてCaSの代わりに、SrSを用いた以外、比較例1と同様にして、SrS:Eu2+からなる蛍光体粉末を得た。
 次に、CaS:Eu蛍光体(100質量部)の代わりに、上記SrS:Eu蛍光体(100質量部)を用いた以外、比較例1-1と同様にして、ZnO-B23系ガラスコートSrS:Eu蛍光体を得た。
 次に、ロータリーエバポレータの中に、上記ZnO-B23系ガラスコートSrS:Eu蛍光体(100質量部)を、エタノールに加えて懸濁させ、SiO2ガラス粉末が5質量部となるよう添加し、蒸発乾固することで、ZnO-B23-SiO2系ガラスコートSrS:Eu蛍光体を得た。
 さらに、エバポレータの中に、ZnO-B23-SiO2系ガラスコートSrS:Eu蛍光体(100質量部)を入れ、BaB47が5質量部となるよう、上記スラリーをさらに添加し、蒸発乾固することで、BaB47粒子が最表面に被着したZnO-B23-SiO2系ガラスコート蛍光体(サンプル)を得た。
<実施例1-5>
 出発原料としてCaSと共にSrSを用いた以外、比較例1と同様にして、Ca0.2Sr0.8S:Eu2+からなる蛍光体粉末を得た。
 次に、SrS:Eu蛍光体(100質量部)の代わりに、前記Ca0.2Sr0.8S:Eu蛍光体(100質量部)を用いた以外、実施例1-4と同様にして、BaB47粒子が最表面に被着したZnO-B23-SiO2系ガラスコート蛍光体(サンプル)を得た。
<実施例1-6>
 ZnCO3とB23を秤量し、乳鉢で混合したのち、アルミナボートに移し、900℃の電気炉で混合物を焼成し、結晶性のZnB11を得た。
 次に、BaB47の代わりに、ZnB11を用いた以外、実施例1と同様にして、ZnB11粒子が最表面に被着した蛍光体(サンプル)を得た。
<比較例2:SrGa:Eu2+(Sr0.91Eu0.09Ga)蛍光体の合成)
 出発原料としてのSrS、Ga及びEuSを目的の組成となるように秤量して混合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1100℃で6時間焼成した。次に、焼成した得たものを、らいかい機(日陶科学社製「ALM-360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、SrGa:Eu2+からなる蛍光体粉末(サンプル)を得た。
<比較例2-1:ZnO-B23系ガラスの被覆>
 比較例1-1で用いたCaS:Eu蛍光体の代わりに、比較例2で得たSrGa:Eu蛍光体を用いた以外は、比較例1-1と同じ方法でZnO-B23系ガラスコートSrGa:Eu蛍光体(「比較例2-1ガラスコート蛍光体」と称する、サンプル)を得た。
<比較例2-2:SiO2-B23系ガラスの被覆>
 比較例2で得たSrGa:Eu蛍光体をエタノールに加えて懸濁させ、これに、純水、ガラス粉末が10質量部となるようSi(OEt)4及びH3BO3を加え、さらに触媒としてアンモニア水を少量添加して60℃で加水分解させ、ガラスの前駆体ゲルを蛍光体表面に被覆したガラス前駆体・蛍光体複合体を合成した。このガラス前駆体・蛍光体複合体を、600℃で30分間熱処理して、B23-SiO2系ガラス被覆SrGa:Eu蛍光体粉末(「比較例2-2ガラスコート蛍光体」と称する、サンプル)を得た。
<比較例2-3:ZnO化合物の被覆>
 比較例1-3で用いたCaS:Eu蛍光体の代わりに、比較例2で得たSrGa:Eu蛍光体を用いた以外は、比較例1-3と同じ方法でZnOコートSrGa:Eu蛍光体粉末(サンプル)を得た。
<実施例2:BaB47の被覆>
 実施例1で用いたCaS:Eu蛍光体の代わりに、比較例2で得たSrGa:Eu蛍光体を用いた以外は、実施例1と同じ方法でBaB47粒子が表面に被着したSrGa:Eu蛍光体(サンプル)を得た。
<実施例2-1-1:BaB47の被覆>
 実施例1-1-1で用いた比較例1-1ガラスコート蛍光体の代わりに、比較例2-1ガラスコート蛍光体を用いた以外は、実施例1-1-1と同じ方法で、BaB47粒子が最表面に被着したZnO-B23ガラスコートSrGa:Eu蛍光体(サンプル)を得た。
<実施例2-1-2:BaB24の被覆>
 実施例1-1-2で用いた比較例1-1ガラスコート蛍光体の代わりに、比較例2-1ガラスコート蛍光体を用いた以外は、実施例1-1-2と同じ方法で、BaB24粒子が最表面に被着したZnO-B23ガラスコートSrGa:Eu蛍光体(サンプル)を得た。
<実施例2-1-3:Ba225の被覆>
 実施例1-1-3で用いた比較例1-1ガラスコート蛍光体の代わりに、比較例2-1ガラスコート蛍光体を用いた以外は、実施例1-1-3と同じ方法で、Ba225粒子が最表面に被着したZnO-B23ガラスコートSrGa:Eu蛍光体(サンプル)を得た。
<実施例2-1-4:Ba326の被覆>
 実施例1-1-4で用いた比較例1-1ガラスコート蛍光体の代わりに、比較例2-1ガラスコート蛍光体を用いた以外は、実施例1-1-4と同じ方法で、Ba326粒子が最表面に被着したZnO-B23ガラスコートSrGa:Eu蛍光体(サンプル)を得た。
<実施例2-2:BaB47の被覆>
 比較例2-2ガラスコート蛍光体(100質量部)に対して10質量部の結晶性ZnO粒子(平均粒径30nm)を、エタノール50mLとともにナス型フラスコに入れ、超音波洗浄器にてZnOをエタノール中に分散させた。ここに、比較例2-2ガラスコート蛍光体粉末を添加し、ロータリーエバポレータで攪拌しながらエタノールを蒸発させ、B23-SiO2系ガラス/ZnOコートSrGa:Eu蛍光体を得た。この蛍光体を実施例1で用いた比較例1の蛍光体の代わりに使用して、実施例1と同じ方法で、BaB47粒子が最表面に被着したB23-SiO2系ガラス/ZnOコートSrGa:Eu蛍光体(サンプル)を得た。
<実施例2-3:BaB47の被覆>
 エバポレータの中に、比較例2-1ガラスコート蛍光体(100質量部)を、エタノールに加えて懸濁させ、SiO2ガラス粉末が5質量部となるよう添加し、蒸発乾固することで、ZnO-B23-SiO2系ガラスコートSrGa:Eu蛍光体を得た。さらに、エバポレータの中に、ZnO-B23-SiO2系ガラスコートSrGa:Eu蛍光体(100質量部)を入れ、BaB47が5質量部となるよう、上記スラリーをさらに添加し、蒸発乾固することで、BaB47粒子が最表面に被着したZnO-B23-SiO2系ガラスコートSrGa:Eu蛍光体(サンプル)を得た。
<実施例2-4~2-5:各種結晶性金属ホウ酸塩の被覆>
 実施例2-4では、CaCO3とB23を秤量し、乳鉢でよく混合したのち、アルミナボートに移し、900℃の電気炉で混合物を焼成し、結晶性のCaBを得た。
 実施例2-5では、SrCO3とB23を秤量し、乳鉢でよく混合したのち、アルミナボートに移し、900℃の電気炉で混合物を焼成し、結晶性のSrを得た。
 次に、BaB47の代わりに、上記結晶性金属ホウ酸塩を用いた以外、実施例2-3と同様にして、上記結晶性金属ホウ酸塩粒子が最表面に被着したZnO-B23-SiO2系ガラスコートSrGa:Eu蛍光体(サンプル)を得た。
<実施例2-6>
 出発原料としてのSrSの代わりに、CaSを使用した以外、比較例2と同様にして、CaGa:Eu2+からなる蛍光体粉末(サンプル)を得た。
 次に、SrGa:Eu蛍光体の代わりに、前記CaGa:Eu蛍光体を用いた以外、実施例2-3と同様にして、BaB47粒子が最表面に被着したZnO-B23-SiO2系ガラスコートCaGa:Eu蛍光体(サンプル)を得た。
<実施例2-7>
 出発原料として、BaS、SrS、Ga及びEuSを目的の組成となるように秤量して混合した以外、比較例2と同様にして、Ba0.2Sr0.8Ga:Eu2+からなる蛍光体粉末(サンプル)を得た。
 次に、SrGa:Eu蛍光体の代わりに、前記Ba0.2Sr0.8Ga:Eu蛍光体を用いた以外、実施例2-3と同様にして、BaB47粒子が最表面に被着したZnO-B23-SiO2系ガラスコートBa0.2Sr0.8Ga:Eu蛍光体(サンプル)を得た。
<初期状態のAg反射率の測定>
 ガラス基板上に、スパッタリング法で300nm程度の厚さでAgの膜を形成したAg膜片を用意し、実施例及び比較例で得られた蛍光体(サンプル)をシリコーン樹脂(モメンティブ・パフォーマンス・マテリアルズ社製:TSJ3150)に対して30wt.%の濃度で分散させたペースト(以下、「蛍光体樹脂」とする)を前記Ag膜片のAg膜上に塗布し、140℃で1時間熱硬化させた。
 この塗布・硬化させたサンプルを85℃、85%RHの高温多湿雰囲気の環境試験機内で、100時間エージングさせた。100時間後に、該サンプルを取り出し、前記蛍光体樹脂をAg膜から引き剥がし、そのAg膜表面の反射率を測定した。
 反射率の測定には、分光蛍光光度計(日本分光社製:FP-6500)を用いた。反射率は、基準としてBaSO標準白板の反射率を100%とした。
 蛍光体樹脂を塗布する前のAg膜の反射率は、おおよそ98%であった。それに対し、100時間エージング後のAg膜の反射率を測定し、その値を100時間後の反射維持率(%)とした。
<耐湿性の評価(PCT試験)>
 実施例及び比較例で得られた蛍光体(サンプル)を、40wt%の割合でシリコーン樹脂(東レダウコーニング社製:OE-6630)に混ぜ、約300μmの厚みでガラス板に塗布し、140℃で1時間熱硬化させた後、蛍光体の耐湿性評価のためHAST試験前後での発光効率を測定した。
 HAST試験は、IEC68-2-66に準拠し、蛍光体(サンプル)を飽和PCT容器(120℃、100%RH)中で72時間保存するように行った。
 発光効率は、分光蛍光光度計(日本分光社製:FP-6500)にて外部量子効率(励起波長450nm)を測定し、HAST試験前の外部量子効率を100%とした場合の維持率(%)を耐湿性の評価値として示した。
 また、当該維持率(%)に基づき、下記の基準で耐湿性に関する判定を行った。
 A:90%以上(良好)
 B:70%以上90%未満(許容レベル)
 C:70%未満(不良 ) 
<Ag腐食試験>
 蛍光体(サンプル)を、8wt%の割合でシリコーン樹脂(東レダウコーニング社製:OE-6630)に混ぜて、Ag電極を使用したLEDパッケージ(6mm□)にポッティングし、140℃で1時間熱硬化させた後、電流60mAで点灯させて「初期の光束(単位:Lm)」を測定した。
 初期光束の測定が完了したLEDパッケージを、85℃、85%RHの高温多湿雰囲気の環境試験機内で1,000時間エージングさせ、同様の方法で光束を測定し、初期の光束を100%とした場合の光束維持率(%)として示した。
 また、当該光束維持率(%)に基づき、下記の基準でAg腐食性に関する判定を行った。
 A:90%以上(良好)
 B:70%以上90%未満(許容レベル)
 C:70%未満(不良) 
<総合判定>
 上記の2つの評価試験の結果に基づき、下記基準で総合判定を行った。
 AA:耐湿性試験、Ag腐食試験がともにA判定(良好)
 A :耐湿性試験、Ag腐食試験のいずれか一方がA判定で、他方がB判定(良好)
 B :耐湿性試験、Ag腐食試験がともにB判定(許容)
 C :耐湿性試験、Ag腐食試験のいずれか一方又は両方がC判定(不良)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上記実施例で得た各結晶性金属ホウ酸塩について、粉末X線回折分析通則(JIS K 0131-1996)に準じて測定を行い、得られた回折角-回折強度チャート(「粉末X線回折図」とも称する)の解析を行った結果、いずれについても、結晶性を示すピークが認められた。一例として、実施例1-3で得たBaB47の回折角-回折強度チャートを図10に示す。
 上記実施例の結果及びこれまで発明者が行ってきた試験結果から、硫黄含有蛍光体の表面に、IIA族元素、ホウ素及び酸素を含有する結晶性金属ホウ酸塩が存在してなる構成を備えた硫黄含有蛍光体は、耐湿性に優れる効果が得られた。さらには、この蛍光体は、LEDとしてパッケージングし、1000時間の高温高湿試験環境下に晒されても、金属反射膜の腐食を抑制し、光束維持率は殆ど低下しない効果が得られた。
 また、硫黄含有蛍光体の表面に、亜鉛、ホウ素及び酸素を含有する結晶性金属ホウ酸塩を含む粒子が存在してなる構成を備えた硫黄含有蛍光体も、同様の耐湿性及び高温高湿試験環境下での光速維持の効果を有していた。

Claims (11)

  1.  母体に硫黄を含む硫黄含有蛍光体の表面に、IIA族元素、ホウ素及び酸素を含有する結晶性の金属ホウ酸塩(「結晶性金属ホウ酸塩」とも称する)を含む粒子が存在してなる構成を備えた蛍光体。
  2.  母体に硫黄を含む硫黄含有蛍光体の表面に、亜鉛、ホウ素及び酸素を含有する結晶性の金属ホウ酸塩(「結晶性金属ホウ酸塩」とも称する)を含む粒子が存在してなる構成を備えた蛍光体。
  3.  母体に硫黄を含む硫黄含有蛍光体の表面に、請求項1又は2に記載の結晶性金属ホウ酸塩を含む層を備えた蛍光体。
  4.  請求項1又は2に記載の結晶性金属ホウ酸塩が、式:MxByOz(式中、x=1~3、y=2~6、z=4~11、MはBa、Sr、Ca、Mg及びZnの中から選択される1種又は2種以上の金属元素である。)で表わされる化合物であることを特徴とする請求項1~3の何れかに記載の蛍光体。
  5.  請求項1に記載の結晶性金属ホウ酸塩が、BaxByOz(x=1~3、y=2~4、z=4~7)で表わされる化合物であることを特徴とする請求項1、3又は4の何れかに記載の蛍光体。
  6.  母体に硫黄を含む硫黄含有蛍光体の表面に、ガラス組成物を含有するガラス層をさらに備えた請求項1~5の何れかに記載の蛍光体。
  7.  母体に硫黄を含む硫黄含有蛍光体の表面に、ZnO化合物を含んだ粒子又は層をさらに備えた請求項1~6の何れかに記載の蛍光体。
  8.  固体発光素子と、硫黄系ガスと反応する金属部材と、蛍光体含有層とを備えた発光デバイスであって、
     該蛍光体含有層は、請求項1~7の何れかに記載の蛍光体が樹脂に含まれたものであることを特徴とする発光デバイス。
  9.  固体発光素子と、硫黄系ガスと反応する金属部材と、蛍光体含有層とを備えた発光デバイスであって、
     該蛍光体含有層は、請求項1~7の何れかに記載の蛍光体とZnO化合物とが樹脂中に散在した構成を備えていることを特徴とする発光デバイス。
  10.  請求項1~7の何れかに記載の蛍光体を含有する蛍光体層が、透明な樹脂組成物或いはガラス組成物からなる封止層内に配置されてなる構成を備えた蛍光体成形体。
  11.  太陽光のうち少なくとも紫外領域の光又は近紫外領域の光を含む光を受光し、可視光領域の光を発光する請求項1~7の何れかに記載の蛍光体と、該蛍光体により発光された可視光領域の光を受光して電気信号に変換する太陽電池と、を備えた太陽光発電装置。
PCT/JP2015/050916 2014-03-27 2015-01-15 蛍光体及びその用途 WO2015146231A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015515059A JP5796148B1 (ja) 2014-03-27 2015-01-15 蛍光体及びその用途
US15/129,188 US10550321B2 (en) 2014-03-27 2015-01-15 Phosphor and use thereof
KR1020167023125A KR101850755B1 (ko) 2014-03-27 2015-01-15 형광체 및 그 용도
EP15769303.7A EP3124572B1 (en) 2014-03-27 2015-01-15 Phosphor and use thereof
CN201580016812.8A CN106164217B (zh) 2014-03-27 2015-01-15 荧光体和其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014065862 2014-03-27
JP2014-065862 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015146231A1 true WO2015146231A1 (ja) 2015-10-01

Family

ID=54194773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050916 WO2015146231A1 (ja) 2014-03-27 2015-01-15 蛍光体及びその用途

Country Status (7)

Country Link
US (1) US10550321B2 (ja)
EP (1) EP3124572B1 (ja)
JP (1) JP5796148B1 (ja)
KR (1) KR101850755B1 (ja)
CN (1) CN106164217B (ja)
TW (1) TWI636119B (ja)
WO (1) WO2015146231A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160289555A1 (en) * 2015-03-30 2016-10-06 Nichia Corporation Fluorescent material particles, method for producing the same, and light emitting device
JP2017052927A (ja) * 2015-03-30 2017-03-16 日亜化学工業株式会社 蛍光体粒子及びその製造方法並びに発光装置
WO2019021756A1 (ja) * 2017-07-26 2019-01-31 デクセリアルズ株式会社 蛍光体、及びその製造方法、蛍光体シート、並びに照明装置
JP2020053467A (ja) * 2018-09-25 2020-04-02 日亜化学工業株式会社 発光装置及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218574A (ja) * 2016-06-07 2017-12-14 シャープ株式会社 ナノ粒子蛍光体素子および発光素子
JP7459373B2 (ja) * 2021-03-30 2024-04-01 三井金属鉱業株式会社 蛍光体及びその製造方法、蛍光体を含む発光素子並びに発光装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087162A (ja) * 2010-10-15 2012-05-10 Nippon Electric Glass Co Ltd 波長変換部材およびそれを用いてなる光源
WO2012077656A1 (ja) * 2010-12-09 2012-06-14 三井金属鉱業株式会社 ZnO化合物被覆硫黄含有蛍光体
WO2012166855A1 (en) * 2011-06-03 2012-12-06 Cree, Inc. Coated phosphors and light emitting devices including the same
WO2013017340A2 (de) * 2011-07-29 2013-02-07 Osram Ag Leuchtstoff und leuchtstofflampe denselben enthaltend
WO2014017334A1 (ja) * 2012-07-25 2014-01-30 デクセリアルズ株式会社 蛍光体シート
WO2014021353A1 (ja) * 2012-08-02 2014-02-06 株式会社日本セラテック 蛍光体材料および発光装置
WO2014065292A1 (ja) * 2012-10-23 2014-05-01 三井金属鉱業株式会社 蛍光体、led発光素子及び光源装置

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503780A (en) * 1960-12-10 1970-03-31 Matsushita Electronics Corp Flux substance and method for coating with fluorescent substances
JPS55136441A (en) * 1979-04-10 1980-10-24 Toshiba Corp Filter-covered fluorescent body
US4384237A (en) * 1980-10-20 1983-05-17 Gte Products Corporation Fluorescent lamp containing adhesive frit in phosphor coating
US4451757A (en) * 1982-01-25 1984-05-29 Gte Products Corporation Fluorescent lamp having improved maintenance
JPH0662945B2 (ja) * 1988-09-28 1994-08-17 日亜化学工業株式会社 シリケート系蛍光体
US4897249A (en) * 1989-04-03 1990-01-30 Sprague Electric Company Barium borate preparation
JP2784255B2 (ja) * 1990-10-02 1998-08-06 日亜化学工業株式会社 蛍光体及びそれを用いた放電ランプ
WO1998037166A1 (en) * 1997-02-24 1998-08-27 Superior Micropowders Llc Sulfur-containing phosphor powders, methods for making phosphor powders and devices incorporating same
US6686691B1 (en) 1999-09-27 2004-02-03 Lumileds Lighting, U.S., Llc Tri-color, white light LED lamps
JP2002080845A (ja) 2000-09-08 2002-03-22 Ise Electronics Corp 低速電子線励起蛍光体及び蛍光表示管
DE10051242A1 (de) 2000-10-17 2002-04-25 Philips Corp Intellectual Pty Lichtemittierende Vorrichtung mit beschichtetem Leuchtstoff
JP2002173675A (ja) 2000-12-06 2002-06-21 Sanken Electric Co Ltd 被覆層を有する蛍光粒子及びその製法
JP2003041250A (ja) 2001-07-27 2003-02-13 Noritake Itron Corp 蛍光体
JP2003064278A (ja) 2001-08-23 2003-03-05 Mitsubishi Chemicals Corp コアシェル型半導体ナノ粒子
KR100689229B1 (ko) * 2002-10-03 2007-03-02 가부시키가이샤후지쿠라 전극 기판, 광전변환 소자, 도전성 글래스 기판 및 그 제조방법, 및 색소증감 태양전지
JP4725008B2 (ja) 2003-09-11 2011-07-13 日亜化学工業株式会社 発光装置、発光素子用蛍光体および発光素子用蛍光体の製造方法
CN1238465C (zh) * 2002-12-20 2006-01-25 殷忠梅 一种包膜荧光粉及制备方法
CN1261670C (zh) * 2002-12-24 2006-06-28 高芒来 单分子单季铵盐和单分子多季铵盐的用途
DE10307282A1 (de) 2003-02-20 2004-09-02 Osram Opto Semiconductors Gmbh Beschichteter Leuchtstoff, lichtemittierende Vorrichtung mit derartigem Leuchtstoff und Verfahren zu seiner Herstellung
JP4150362B2 (ja) 2004-07-21 2008-09-17 松下電器産業株式会社 ランプ用蛍光体の製造方法
KR100691273B1 (ko) 2005-08-23 2007-03-12 삼성전기주식회사 복합 형광체 분말, 이를 이용한 발광 장치 및 복합 형광체분말의 제조 방법
WO2007080555A1 (en) 2006-01-16 2007-07-19 Koninklijke Philips Electronics N.V. Phosphor converted light emitting device
JP5090802B2 (ja) 2006-06-28 2012-12-05 ソウル セミコンダクター カンパニー リミテッド 蛍光体及びその製造方法並びに発光ダイオード
KR101414243B1 (ko) * 2007-03-30 2014-07-14 서울반도체 주식회사 황화물 형광체 코팅 방법 및 코팅된 황화물 형광체를채택한 발광 소자
JP2008303230A (ja) * 2007-06-05 2008-12-18 Panasonic Corp 蛍光体およびその製造方法
JP2009013186A (ja) 2007-06-29 2009-01-22 Mitsubishi Chemicals Corp 被覆蛍光体粒子、被覆蛍光体粒子の製造方法、蛍光体含有組成物、発光装置、画像表示装置、および照明装置
DE102010016908B4 (de) * 2010-05-11 2021-11-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum silikatischen Bonden von beschichteten und unbeschichteten optischen Körpern
JP6122747B2 (ja) * 2013-09-25 2017-04-26 三井金属鉱業株式会社 蛍光体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087162A (ja) * 2010-10-15 2012-05-10 Nippon Electric Glass Co Ltd 波長変換部材およびそれを用いてなる光源
WO2012077656A1 (ja) * 2010-12-09 2012-06-14 三井金属鉱業株式会社 ZnO化合物被覆硫黄含有蛍光体
WO2012166855A1 (en) * 2011-06-03 2012-12-06 Cree, Inc. Coated phosphors and light emitting devices including the same
WO2013017340A2 (de) * 2011-07-29 2013-02-07 Osram Ag Leuchtstoff und leuchtstofflampe denselben enthaltend
WO2014017334A1 (ja) * 2012-07-25 2014-01-30 デクセリアルズ株式会社 蛍光体シート
WO2014021353A1 (ja) * 2012-08-02 2014-02-06 株式会社日本セラテック 蛍光体材料および発光装置
WO2014065292A1 (ja) * 2012-10-23 2014-05-01 三井金属鉱業株式会社 蛍光体、led発光素子及び光源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124572A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160289555A1 (en) * 2015-03-30 2016-10-06 Nichia Corporation Fluorescent material particles, method for producing the same, and light emitting device
JP2017052927A (ja) * 2015-03-30 2017-03-16 日亜化学工業株式会社 蛍光体粒子及びその製造方法並びに発光装置
US10899965B2 (en) 2015-03-30 2021-01-26 Nichia Corporation Fluorescent material particles, method for producing the same, and light emitting device
WO2019021756A1 (ja) * 2017-07-26 2019-01-31 デクセリアルズ株式会社 蛍光体、及びその製造方法、蛍光体シート、並びに照明装置
JP2020053467A (ja) * 2018-09-25 2020-04-02 日亜化学工業株式会社 発光装置及びその製造方法
JP7161100B2 (ja) 2018-09-25 2022-10-26 日亜化学工業株式会社 発光装置及びその製造方法

Also Published As

Publication number Publication date
TW201542762A (zh) 2015-11-16
US20170101579A1 (en) 2017-04-13
KR101850755B1 (ko) 2018-04-23
CN106164217A (zh) 2016-11-23
KR20160114640A (ko) 2016-10-05
CN106164217B (zh) 2019-06-28
EP3124572B1 (en) 2021-09-08
JPWO2015146231A1 (ja) 2017-04-13
US10550321B2 (en) 2020-02-04
JP5796148B1 (ja) 2015-10-21
TWI636119B (zh) 2018-09-21
EP3124572A4 (en) 2017-08-30
EP3124572A1 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP5575994B1 (ja) 蛍光体、led発光素子及び光源装置
JP5796148B1 (ja) 蛍光体及びその用途
JP5466771B2 (ja) ZnO化合物被覆硫黄含有蛍光体
TWI597349B (zh) 複合波長變換粉體、含有複合波長變換粉體的樹脂組成物及發光裝置
JP6122747B2 (ja) 蛍光体
EP1961046A1 (en) Phosphors protected against moisture and led lighting devices
WO2009096082A1 (en) Luminescent material
JP5912121B2 (ja) Mn賦活蛍光物質
US20090189514A1 (en) Luminescent material
JP5756523B2 (ja) 赤色蛍光体及び発光素子
JP2018056512A (ja) 発光装置、及び発光装置の製造方法
JP2010013608A (ja) 蛍光体および発光装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015515059

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167023125

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015769303

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769303

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15129188

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE