WO2015144076A1 - 半导体制冷冰箱及其温度控制方法 - Google Patents

半导体制冷冰箱及其温度控制方法 Download PDF

Info

Publication number
WO2015144076A1
WO2015144076A1 PCT/CN2015/075165 CN2015075165W WO2015144076A1 WO 2015144076 A1 WO2015144076 A1 WO 2015144076A1 CN 2015075165 W CN2015075165 W CN 2015075165W WO 2015144076 A1 WO2015144076 A1 WO 2015144076A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
hot end
voltage
supply voltage
semiconductor
Prior art date
Application number
PCT/CN2015/075165
Other languages
English (en)
French (fr)
Inventor
李春阳
张奎
王定远
王铭
苗建林
Original Assignee
海尔集团公司
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔集团公司, 青岛海尔股份有限公司 filed Critical 海尔集团公司
Publication of WO2015144076A1 publication Critical patent/WO2015144076A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly to a semiconductor refrigeration refrigerator and a temperature control method thereof.
  • the supply voltage of the semiconductor refrigerating chip may be excessively high.
  • the supply voltage of the semiconductor refrigerating chip is too high, the temperature of the hot end of the semiconductor refrigerating chip rises rapidly, eventually leading to damage of the semiconductor refrigerating sheet.
  • An object of the present invention is to overcome at least one of the drawbacks of the prior art semiconductor refrigerating refrigerator and its temperature control method, and to provide a method for enabling a semiconductor refrigerating sheet to quickly obtain a maximum cooling capacity with a high cooling efficiency, and can be accurately A semiconductor refrigeration refrigerator that controls the average temperature of the compartment and a temperature control method thereof.
  • a further object of the present invention is to protect a semiconductor refrigerating sheet from excessive temperature at the hot end to burn out the semiconductor refrigerating sheet.
  • the PID adjustment rule is further configured to: when the temperature difference first decreases to a zero value, cause the power supply voltage to undergo a fluctuation change, so that the power supply voltage having the temperature difference equal to or tending to a zero value is sent to the semiconductor The cooling sheet is powered.
  • the first data acquisition step further includes: collecting a hot end temperature of the semiconductor refrigerating sheet; and the temperature control method further includes: between the first data obtaining step and the refrigerating power supply step a hot end prohibiting temperature determining step: determining whether the hot end temperature reaches or exceeds a preset prohibition temperature; if the hot end temperature reaches or exceeds the prohibition temperature, performing the following first power supply stopping step: The supply voltage of the semiconductor refrigerating sheet is set to zero, and power supply to the semiconductor refrigerating sheet is stopped.
  • the temperature control method further includes, after the first hot end prohibition temperature determining step, if the hot end temperature is less than the prohibition temperature, continuing to perform the following hot end protection temperature upper limit determining step: determining the Whether the hot end temperature reaches or exceeds a preset upper limit of the hot end protection temperature, wherein the hot end protection temperature upper limit is less than the prohibition temperature; if the hot end temperature reaches or exceeds the hot end protection temperature upper limit, the execution is performed
  • the first step of lowering to the sustain voltage is as follows: lowering the supply voltage to a preset maintenance voltage; and if the hot end temperature is less than the upper limit of the hot end protection temperature, performing the cooling power supply step.
  • the temperature control method further includes: after the step of the first falling to the maintaining voltage, a second data acquiring step: acquiring a temperature difference between the average temperature and the target temperature, and collecting the hot end temperature;
  • the second hot end prohibiting temperature determining step determining whether the hot end temperature reaches or exceeds the prohibition temperature; if the hot end temperature reaches or exceeds the prohibition temperature, performing the following second power supply stopping step: The supply voltage of the semiconductor refrigerating sheet is set to zero, and the supply of the semiconductor refrigerating sheet is stopped; if the hot end temperature is less than the prohibition temperature, the following hot end protection temperature lower limit determining step is performed: determining whether the hot end temperature is Reaching or lowering a preset lower limit of the hot end protection temperature, wherein the lower limit of the hot end protection temperature is less than the upper limit of the hot end protection temperature; if the hot end temperature reaches or falls below the lower end of the hot end protection temperature, execution is performed The refrigeration power supply step; If the hot junction temperature is greater than the lower end of the hot junction
  • the temperature control method loops back to the second data acquisition step to continue execution.
  • the temperature control method loops back to the second data acquisition step to continue execution.
  • the sustain voltage is a minimum cooling capacity voltage determined according to a minimum cooling demand of the semiconductor refrigeration refrigerator.
  • the temperature control method loops back to the first data acquisition step to continue execution.
  • the first data obtaining step and the second data obtaining step respectively comprise: acquiring the preset target temperature, and collecting the average temperature of the refrigerator compartment; calculating the average temperature and The temperature difference between the target temperatures.
  • the PID adjustment rule is further configured to: the maximum value of the supply voltage is a preset maximum supply voltage, which is equal to the maximum cooling capacity voltage; and the minimum value of the supply voltage is a pre- The minimum supply voltage is set to be less than or equal to the minimum cooling capacity voltage determined according to the minimum cooling demand of the semiconductor refrigeration refrigerator.
  • a semiconductor refrigeration refrigerator including a temperature control system including: a main control panel configured to perform the above temperature control method to determine semiconductor refrigeration to the semiconductor refrigeration refrigerator The power supply voltage of the chip.
  • the semiconductor refrigerating refrigerator further includes: a compartment temperature sensor configured to detect an average temperature of a refrigerator compartment of the semiconductor refrigerating refrigerator; and a hot end temperature sensor configured to detect a hot end temperature of the semiconductor refrigerating sheet And a temperature setting module configured to set a target temperature to be reached in the refrigerator compartment.
  • the power supply voltage is maintained near the highest efficiency voltage U best for better cooling performance.
  • the power supply voltage is equal to the maximum cooling capacity voltage, so that the temperature can be rapidly lowered with a higher cooling efficiency when the temperature difference is large, so that the temperature difference is Quickly tends to a smaller value; when the temperature difference drops to the temperature difference threshold At this time, the supply voltage starts to decrease from the maximum cooling capacity voltage, so that the cooling can be prevented from being too fast, so as not to fall far below the target temperature, resulting in poor cooling effect.
  • the temperature control method of the present invention when the hot end temperature reaches or exceeds the prohibition temperature, the supply of the semiconductor refrigerating sheet is stopped, thereby preventing the semiconductor refrigerating sheet from being burnt out when the hot end temperature is too high.
  • FIG. 1 is a flow chart of a temperature control method of a semiconductor refrigeration refrigerator according to an embodiment of the present invention
  • FIG. 2 is a schematic graph showing that a temperature control method quickly obtains a maximum cooling capacity with a higher cooling efficiency and accurately controls an average temperature of a refrigerator compartment of a semiconductor refrigerating refrigerator to a set target temperature according to an embodiment of the present invention
  • FIG. 3 is a schematic graph showing a temperature control method for controlling a supply voltage thereof when a temperature of a hot end of a semiconductor refrigerating sheet is high, according to an embodiment of the present invention
  • FIG. 4 is a schematic graph showing a relationship between a supply voltage of a semiconductor refrigerating sheet and a cooling efficiency and a cooling capacity according to an embodiment of the present invention
  • Figure 5 is a schematic block diagram of a semiconductor refrigeration refrigerator in accordance with one embodiment of the present invention.
  • the temperature control method may include:
  • the first data acquisition step 101 acquires a temperature difference ⁇ T between the average temperature T r of the refrigerator compartment and the preset target temperature T S , and collects the hot end temperature T hot of the semiconductor refrigeration chip.
  • the first hot end prohibits the temperature determining step 102, determining whether the hot end temperature T hot reaches or exceeds the preset prohibition temperature; if the hot end temperature T hot reaches or exceeds the prohibition temperature, performing the first stop power supply step 103: to the semiconductor
  • the supply voltage U of the cooling fin is set to zero to stop supplying power to the semiconductor cooling sheet, and U is a supply voltage for supplying power to the semiconductor cooling sheet.
  • the hot end protection temperature upper limit determining step 104 is performed when the hot end temperature T hot is less than the prohibition temperature, and determines whether the hot end temperature T hot reaches or exceeds a preset hot end protection temperature upper limit, wherein the hot end protection temperature upper limit is less than the prohibited temperature; If the hot end temperature T hot is less than the upper end of the hot end protection temperature, the cooling power supply step 105 is performed.
  • the first data obtaining step 101 may specifically include: acquiring a preset target temperature T S , and collecting an average temperature T r of the refrigerator compartment; and calculating a temperature difference ⁇ T between the average temperature T r and the target temperature T S .
  • the temperature control method of the present invention may loop back to the first data acquisition step 101 to continue execution.
  • the first hot end prohibition temperature determining step 102 to the hot end protection temperature upper limit determining step 104 are not necessary.
  • only the temperature difference ⁇ T may be acquired in the first data acquisition step 101 without collecting the hot end temperature T hot ; after the first data acquisition step 101 is performed, the cooling power supply step 105 is directly performed.
  • FIG. 2 is a schematic graph in which a temperature control method quickly obtains a maximum cooling capacity with a higher cooling efficiency and accurately controls an average temperature of a refrigerator compartment of a semiconductor refrigerating refrigerator to a set target temperature, according to an embodiment of the present invention. As shown in FIG.
  • the PID adjustment rule may be set such that when the temperature difference ⁇ T is greater than or equal to the preset temperature difference threshold ⁇ T thd , the supply voltage U is equal to the maximum cooling capacity voltage U max-cold , so that the hot end can be performed Rapid cooling; when the temperature difference ⁇ T decreases to the temperature difference threshold ⁇ T thd , the supply voltage U starts to decrease from the maximum cooling capacity voltage U max-cold , so that the semiconductor cooling chip is no longer supplied with a larger supply voltage, which can avoid The temperature inside the refrigerator is lowered to a temperature far below the preset value, resulting in poor cooling.
  • the semiconductor refrigerating sheet can be powered according to this rule.
  • the PID adjustment rule may be further configured to cause the power supply voltage U to undergo a fluctuation change after the temperature difference ⁇ T is first reduced to a value of zero, so that the temperature difference ⁇ T is equal to or
  • the supply voltage U which tends to zero, supplies power to the semiconductor cooling fins.
  • the semiconductor cooling fins can be powered according to this rule. This enables the supply voltage U to finally stabilize near the highest efficiency voltage U best .
  • the first down to maintain voltage step 106 is performed: lowering the supply voltage U to the preset sustain voltage U keep .
  • the maintenance voltage U keep is a voltage that can gradually increase or decrease the average temperature T r of the refrigerator compartment in an extreme situation such as excessive ambient temperature, poor air flow, excessive humidity, and large temperature difference.
  • the temperature at the end is not greater than the preset lower limit of the hot end protection temperature.
  • the sustain voltage U keep may be a minimum cooling capacity voltage determined according to the minimum cooling demand of the semiconductor refrigeration refrigerator (which will be described later).
  • the second hot end disable temperature determination step 108 are performed in sequence.
  • the second data acquisition step 107 is: acquiring the temperature difference ⁇ T between the average temperature T r and the target temperature T S and collecting the hot end temperature T hot .
  • the second data obtaining step 107 may specifically include: acquiring the target temperature T S and collecting the average Temperature T r ; The temperature difference ⁇ T between the average temperature T r and the target temperature T S is calculated.
  • the second hot end prohibition temperature determining step 108 is: determining whether the hot end temperature T hot reaches or exceeds the prohibition temperature.
  • the second stop power supply step 109 is performed: the supply voltage U to the semiconductor cooling fin is set to zero, and the pair is stopped.
  • the semiconductor refrigeration chip is powered; if the hot end temperature T hot is less than the prohibition temperature, the hot end protection temperature lower limit determination step 110 is performed: determining whether the hot end temperature T hot reaches or falls below a preset hot end protection temperature lower limit, wherein the hot end protection The lower temperature limit is less than the upper limit of the hot end protection temperature.
  • the cooling power supply step 105 is performed; if the hot end temperature T hot is greater than the hot end protection temperature lower limit, then Performing a second drop to the sustain voltage step 111: lowering or maintaining the supply voltage U to the sustain voltage U keep .
  • the temperature control method of the present invention may loop back to the second data acquisition step 107 to continue execution.
  • FIG. 3 is a schematic graph showing a temperature control method for controlling a supply voltage thereof when a temperature of a hot end of a semiconductor refrigerating sheet is high, according to an embodiment of the present invention.
  • the maximum is The cooling capacity voltage U max-cold is the supply voltage, so that the cold end of the semiconductor refrigeration chip is cooled faster, and the hot end temperature T hot is gradually increased from a low value to an upper limit of the hot end protection temperature.
  • the hot end protection temperature upper limit determining step 104 is continuously performed.
  • the hot end protection temperature upper limit determining step 104 determines that the upper end of the hot end protection temperature is reached or exceeded, as shown in FIG. 3, the first down to maintain voltage step 106 is performed such that the supply voltage U is lowered to the sustain voltage U keep . Since the supply voltage U drops, the hot end temperature T hot also decreases.
  • the second data acquisition step 107 and the second hot end prohibition temperature determination step 108 are sequentially performed. As shown in FIG. 3, the hot end temperature T hot does not exceed the prohibition temperature, so the determination of the second hot end prohibition temperature determination step 108 is always NO, and the hot end protection temperature lower limit determination step 110 is executed according to the aforementioned method.
  • the cooling power supply step 105 is performed. It can be seen from FIG. 3 that if the temperature difference ⁇ T is greater than the temperature difference threshold ⁇ T thd at this time, the power supply voltage U obtained according to the PID adjustment rule may be the maximum cooling capacity voltage U max-cold . The above process is repeated until the average temperature ⁇ T of the inter-refrigerator compartment is less than the temperature difference threshold ⁇ T thd and the voltage is lowered according to the PID adjustment rule.
  • the supply voltage may be a value lower than the maximum cooling capacity voltage U max-cold ;
  • the supply voltage is subjected to a fluctuating change so that the supply voltage of the temperature difference ⁇ T equal to or tending to zero value supplies power to the semiconductor refrigerating sheet.
  • FIG. 4 is a schematic graph showing a relationship between a supply voltage of a semiconductor refrigeration chip, a cooling efficiency, and a cooling capacity according to an embodiment of the present invention.
  • the supply voltage U can be divided into four regions: the first non-economic zone 401 (ie, the region where the supply voltage U is between 0 and U min ), and the efficiency is high.
  • a region 402 ie, a region where the supply voltage U is between U min and U n
  • a high cooling capacity region 403 ie, a region where the supply voltage U is between U n and U max
  • a second non-economic region 404 ie, power supply
  • the voltage U is larger than the area of U max ).
  • the cooling capacity of the first non-economic zone 401 is very small, and basically cannot meet the minimum cooling demand of the refrigerator; although the cooling capacity of the semiconductor in the second non-economic zone 404 itself may satisfy the minimum cooling demand of the refrigerator,
  • the supply voltage U is high and the power consumption is much higher than the high efficiency region 402 and the high cooling capacity region 403; therefore, in the embodiment of the present invention, the supply voltage U of the first non-economic zone 401 and the second non-economy zone 404 is not used.
  • the semiconductor refrigerating sheet supplies power, and the supply voltage U of the semiconductor refrigerating sheet is placed in the high efficiency region 402 and the high cooling capacity region 403.
  • the maximum value (ie, the maximum supply voltage U max ) and the minimum value (ie, the minimum supply voltage) of the semiconductor refrigerating chip supply voltage U used according to the experiment will be determined according to the requirements for the cooling efficiency of the semiconductor refrigerating refrigerator.
  • the supply voltage U min causes the operating voltage of the semiconductor cooling fin to be located in the high efficiency region 402 and the high cooling capacity region 403 defined by these two values.
  • the maximum supply voltage U max can be experimentally selected as the maximum cooling capacity voltage U max-cold , that is, the PID adjustment rule in the present invention can be set such that the supply voltage is made in the formula described above.
  • the maximum value of U is determined as the maximum cooling capacity voltage U max-cold , that is, U PID ( ⁇ T) is assigned to be limited to the maximum cooling capacity voltage U max-cold when ⁇ T is greater than the temperature difference threshold ⁇ T thd Efficiency voltage U best .
  • the minimum supply voltage Umin can be experimentally selected as the supply voltage U demarcated by the first non-economic zone 401 and the high efficiency zone 402, that is, the minimum cooling capacity voltage Umin-cold , which is used, for example, to satisfy the semiconductor. Refrigeration refrigerators have minimum cooling requirements.
  • the PID adjustment rule in the embodiment of the present invention can be set such that the minimum value of the supply voltage U is determined as the minimum cooling capacity voltage U min-cold in the formula described above. That is to say, U PID ( ⁇ T) can be assigned to the minimum cooling capacity voltage U min-cold minus the highest efficiency voltage U best when ⁇ T is less than a certain threshold (the calculated voltage value is a negative value at this time).
  • the minimum supply voltage Umin may also be slightly lower than the minimum cooling capacity voltage Umin-cold of the refrigerator.
  • the highest efficiency voltage U best can be experimentally obtained, the value of which is clearly between the maximum cooling capacity voltage U max-cold and the minimum cooling capacity voltage U min-cold .
  • the sustain voltage U keep can generally take a value between the minimum supply voltage U min and the highest efficiency voltage U best .
  • the selection principle of the maintenance voltage U keep is to consider the temperature in the refrigerator when the refrigerator is in an extreme situation such as excessive ambient temperature, poor air flow, excessive humidity, and large temperature difference. It can be quickly reduced to the set temperature.
  • the value of the selected sustain voltage U keep is that, in these extreme cases, it is found by simulation that the difference between this value and U max-cold is not very large.
  • FIG. 5 is a schematic block diagram of a semiconductor refrigeration refrigerator in accordance with one embodiment of the present invention.
  • a semiconductor refrigeration refrigerator including a temperature control system, the temperature control system comprising: a main control board 501 configured to perform any of the above temperature control methods to determine a semiconductor The power supply voltage U supplied from the semiconductor refrigerating sheet 502 of the refrigerating refrigerator.
  • the semiconductor refrigeration refrigerator may further include a compartment temperature sensor 503, a hot end temperature sensor 504, and a temperature setting module 505.
  • the compartment temperature sensor detects the average temperature T r of the refrigerator compartment
  • the hot junction temperature sensor detects the hot end temperature T hot of the semiconductor refrigeration chip
  • the temperature setting module sets the target temperature T S to be reached in the refrigerator compartment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种半导体制冷冰箱及其温度控制方法。该方法包括:获取冰箱间室的平均温度与预设的目标温度的温差△T;根据预设的PID调节规则,按公式U= U PID(△T)+ U best确定的供电电压向冰箱的半导体制冷片供电,其中,U为向半导体制冷片供电的供电电压,U best为使得半导体制冷片的制冷效率最高的最高效率电压,U PID (△T)为根据PID调节规则对温差△T进行运算得出的数值;PID调节规则被设置成:当温差大于等于预设的温差阈值时,使得供电电压等于使半导体制冷片产生最大制冷量的最大制冷量电压;当温差降低到温差阈值时,使得供电电压开始从最大制冷量电压下降。本方法可使半导体制冷片以较高制冷效率快速获得最大制冷量而且可精确控制半导体制冷冰箱温度。

Description

半导体制冷冰箱及其温度控制方法 技术领域
本发明涉及制冷设备,特别是涉及半导体制冷冰箱及其温度控制方法。
背景技术
在现有的半导体制冷冰箱中,为控制冰箱间室的平均温度,一般是通过直接比较冰箱间室的平均温度和设定温度,利用类似于压缩机制冷冰箱中常用的PID算法(或者说,PID调节规则)来确定半导体制冷片的供电电压。
然而,压缩机制冷冰箱中常用的PID调节规则并未考虑到半导体制冷片特殊的制冷特性,不能保证半导体制冷冰箱在正常工作维持其内的制冷空间温度时,半导体制冷片能够以实现较高制冷效率的方式工作,或者不能保证在需要半导体制冷冰箱快速制冷时,半导体制冷片能够以快速获得最大制冷量的方式工作。
此外,在简单利用压缩机制冷冰箱中常用的PID调节规则来确定半导体制冷片的供电电压时,还可能会出现半导体制冷片供电电压过高的情况。在半导体制冷片供电电压过高时,半导体制冷片的热端温度会快速上升,最终导致半导体制冷片损坏。
发明内容
本发明的一个目的旨在克服现有技术中半导体制冷冰箱及其温度控制方法的至少一个缺陷,提供一种可使半导体制冷片以较高制冷效率快速获得最大制冷量的方式工作、而且可精确控制间室的平均温度的半导体制冷冰箱及其温度控制方法。
本发明一个进一步的目的是对半导体制冷片进行保护,避免热端温度过高烧坏半导体制冷片。
根据本发明的一个方面,提供了一种半导体制冷冰箱的温度控制方法,包括:第一数据获取步骤:获取所述半导体制冷冰箱的冰箱间室的平均温度与预设的目标温度的温差;制冷供电步骤:根据预设的PID调节规则,按公式U=UPID(△T)+Ubest确定的供电电压向所述半导体制冷冰箱的半导体制冷片供电,其中,U为向所述半导体制冷片供电的供电电压,Ubest为使得所 述半导体制冷片的制冷效率最高的最高效率电压,△T为所述冰箱间室的平均温度与预设的目标温度的温差,UPID(△T)为根据所述PID调节规则对所述温差进行运算得出的数值;所述PID调节规则被设置成:当所述温差大于等于预设的温差阈值时,使得所述供电电压等于使所述半导体制冷片产生最大制冷量的最大制冷量电压;当所述温差降低到所述温差阈值时,使得所述供电电压开始从所述最大制冷量电压下降。
可选地,所述PID调节规则还被设置成:当所述温差首次降低到零值后,使得供电电压经历波动变化,以使所述温差等于或趋于零值的供电电压向所述半导体制冷片供电。
可选地,所述第一数据获取步骤还包括采集所述半导体制冷片的热端温度;而且所述温度控制方法在所述第一数据获取步骤与所述制冷供电步骤之间还包括:第一热端禁止温度判断步骤:判断所述热端温度是否达到或超出预设的禁止温度;若所述热端温度达到或超出所述禁止温度,则执行如下第一停止供电步骤:将向所述半导体制冷片的供电电压设置为零,停止对所述半导体制冷片供电。
可选地,所述温度控制方法在所述第一热端禁止温度判断步骤之后还包括:若所述热端温度小于所述禁止温度,则继续执行如下热端保护温度上限判断步骤:判断所述热端温度是否达到或超出预设的热端保护温度上限,其中所述热端保护温度上限小于所述禁止温度;若所述热端温度达到或超出所述热端保护温度上限,则执行如下第一降至维持电压步骤:降低所述供电电压至预设的维持电压;若所述热端温度小于所述热端保护温度上限,则执行所述制冷供电步骤。
可选地,所述温度控制方法在所述第一降至维持电压步骤之后还包括:第二数据获取步骤:获取所述平均温度与所述目标温度的温差,并采集所述热端温度;第二热端禁止温度判断步骤:判断所述热端温度是否达到或超出所述禁止温度;若所述热端温度达到或超出所述禁止温度,则执行如下第二停止供电步骤:将向所述半导体制冷片的供电电压设置为零,停止对所述半导体制冷片供电;若所述热端温度小于所述禁止温度,则执行如下热端保护温度下限判断步骤:判断所述热端温度是否达到或低于预设的热端保护温度下限,其中所述热端保护温度下限小于所述热端保护温度上限;若所述热端温度达到或低于所述热端保护温度下限,则执行所述制冷供电步骤;若所述 热端温度大于所述热端保护温度下限,则执行如下第二降至维持电压步骤:降低或保持所述供电电压至所述维持电压。
可选地,在执行所述第二停止供电步骤后,所述温度控制方法循环回所述第二数据获取步骤继续执行。
可选地,在执行所述第二降至维持电压步骤后,所述温度控制方法循环回所述第二数据获取步骤继续执行。
可选地,所述维持电压为根据所述半导体制冷冰箱最低制冷需求确定的最小制冷量电压。
可选地,在执行所述制冷供电步骤后,所述温度控制方法循环回所述第一数据获取步骤继续执行。
可选地,所述第一数据获取步骤和所述第二数据获取步骤分别包括:获取预设的所述目标温度,并采集所述冰箱间室的所述平均温度;计算所述平均温度与所述目标温度之间的温差。
可选地,所述PID调节规则还被设置成使得:所述供电电压的最大值为一预设的最大供电电压,其等于所述最大制冷量电压;所述供电电压的最小值为一预设的最小供电电压,其小于或等于根据所述半导体制冷冰箱最低制冷需求确定的最小制冷量电压。
根据本发明的另一方面,提供了一种半导体制冷冰箱,包括温度控制系统,所述温度控制系统包括:主控板,配置成执行上述温度控制方法,确定向所述半导体制冷冰箱的半导体制冷片供电的供电电压。
可选地,所述半导体制冷冰箱还包括:间室温度传感器,配置成检测所述半导体制冷冰箱的冰箱间室的平均温度;热端温度传感器,配置成检测所述半导体制冷片的热端温度;以及温度设定模块,配置成设定所述冰箱间室内所要达到的目标温度。
本发明的半导体制冷冰箱的温度控制方法由于根据预设的PID调节规则,按公式U=UPID(△T)+Ubest确定的供电电压向冰箱的半导体制冷片供电,因此能够使半导体制冷片的供电电压维持在最高效率电压Ubest附近,实现较优的制冷效果。
具体地,在本发明的温度控制方法中,当温差大于等于预设的温差阈值时,使得供电电压等于最大制冷量电压,因此能够在温差较大时以较高制冷效率迅速降低温度,使得温差迅速趋于一个较小值;当温差降低到温差阈值 时,使得供电电压开始从最大制冷量电压下降,因此能够避免降温过快,以免降低到远低于目标温度,造成不良制冷效果。
进一步地,在本发明的温度控制方法中,当热端温度达到或超出禁止温度时,则停止对半导体制冷片供电,因此避免了热端温度过高时烧坏半导体制冷片。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的半导体制冷冰箱的温度控制方法的流程图;
图2是根据本发明一个实施例的温度控制方法以较高制冷效率快速获得最大制冷量且将半导体制冷冰箱的冰箱间室的平均温度精确控制到设定的目标温度的示意性曲线图;
图3是根据本发明一个实施例的温度控制方法在半导体制冷片热端温度较高时对其供电电压进行控制的示意性曲线图;
图4是根据本发明一个实施例的半导体制冷片的供电电压与制冷效率及制冷量关系的示意性曲线图;
图5是根据本发明一个实施例的半导体制冷冰箱的示意性框图。
具体实施方式
图1是根据本发明一个实施例的半导体制冷冰箱的温度控制方法的流程图。在图1所示的实施例中,该温度控制方法可包括:
第一数据获取步骤101,获取冰箱间室的平均温度Tr与预设的目标温度TS的温差△T,采集半导体制冷片的热端温度Thot
第一热端禁止温度判断步骤102,判断热端温度Thot是否达到或超出预设的禁止温度;若热端温度Thot达到或超出禁止温度,则执行第一停止供电步骤103:将向半导体制冷片的供电电压U设置为零,停止对半导体制冷片供电,U为向半导体制冷片供电的供电电压。
热端保护温度上限判断步骤104,在热端温度Thot小于禁止温度时执行,判断热端温度Thot是否达到或超出预设的热端保护温度上限,其中热端保护温度上限小于禁止温度;若热端温度Thot小于热端保护温度上限,则执行制冷供电步骤105。
制冷供电步骤105,根据预设的PID调节规则,按公式U=UPID(△T)+Ubest确定的供电电压U向冰箱的半导体制冷片供电。
第一数据获取步骤101可以具体包括:获取预设的目标温度TS,并采集冰箱间室的平均温度Tr;计算平均温度Tr与目标温度TS之间的温差△T。
在制冷供电步骤105中,Ubest为使得半导体制冷片的制冷效率最高的最高效率电压,UPID(△T)为根据PID调节规则对温差△T进行运算得出的数值。在本发明的一些实施例中,在执行制冷供电步骤105后,本发明的温度控制方法可以循环回第一数据获取步骤101继续执行。
需要说明的是,在本发明温度控制方法的其他一些实施例中,第一热端禁止温度判断步骤102至热端保护温度上限判断步骤104并不是必须的。在这样的实施例中,在第一数据获取步骤101中可以仅仅采集温差△T,而无需采集热端温度Thot;在第一数据获取步骤101执行完毕后,直接执行制冷供电步骤105。
图2是根据本发明一个实施例的温度控制方法以较高制冷效率快速获得最大制冷量且将半导体制冷冰箱的冰箱间室的平均温度精确控制到设定的目标温度的示意性曲线图。如图2所示,PID调节规则可以被设置成:当温差△T大于等于预设的温差阈值△Tthd时,使得供电电压U等于最大制冷量电压Umax-cold,这样能对热端进行迅速降温;当温差△T降低到温差阈值△Tthd时,使得供电电压U开始从最大制冷量电压Umax-cold下降,这样不再以较大的供电电压对半导体制冷片进行供电,能够避免冰箱内的温度降低到远低于预设定值的温度而造成不良制冷效果。在制冷供电步骤105中,可以按此规则对半导体制冷片进行供电。
在本发明的一个实施例中,如图2所示,PID调节规则还可被设置成:当温差△T首次降低到零值后,使得供电电压U经历波动变化,以使温差△T等于或趋于零值的供电电压U向半导体制冷片供电。在制冷供电步骤105中,可按此规则对半导体制冷片进行供电。这样能够使得供电电压U最终稳定在最高效率电压Ubest附近。
在本发明的另一个实施例中,若热端温度Thot达到或超出热端保护温度上限,则执行第一降至维持电压步骤106:降低供电电压U至预设的维持电压Ukeep。维持电压Ukeep为在环境温度过高、空气流通性差、湿度过大、温差较大等极端情况下能维持冰箱间室的平均温度Tr缓慢上升或者下降的电压,其一个目的在于尽量保证热端的温度不大于预设的热端保护温度下限。例如,维持电压Ukeep可以是根据半导体制冷冰箱最低制冷需求确定的最小制冷量电压(其将在后文描述)。
在本发明的一个实施例中,在第一降至维持电压步骤106之后,依次执行第二数据获取步骤107、第二热端禁止温度判断步骤108。第二数据获取步骤107为:获取平均温度Tr与目标温度TS的温差△T,并采集热端温度Thot,第二数据获取步骤107可以具体包括:获取目标温度TS,并采集平均温度Tr;计算平均温度Tr与目标温度TS之间的温差△T。第二热端禁止温度判断步骤108为:判断热端温度Thot是否达到或超出禁止温度。
在第二热端禁止温度判断步骤108执行完毕后,若热端温度Thot达到或超出禁止温度,则执行第二停止供电步骤109:将向半导体制冷片的供电电压U设置为零,停止对半导体制冷片供电;若热端温度Thot小于禁止温度,则执行热端保护温度下限判断步骤110:判断热端温度Thot是否达到或低于预设的热端保护温度下限,其中热端保护温度下限小于热端保护温度上限。在执行第二停止供电步骤109后,本发明的温度控制方法可以循环回第二数据获取步骤107继续执行。
在热端保护温度下限判断步骤110执行完毕后,若热端温度Thot达到或低于热端保护温度下限,则执行制冷供电步骤105;若热端温度Thot大于热端保护温度下限,则执行第二降至维持电压步骤111:降低或保持供电电压U至维持电压Ukeep。这样在热端温度较高,但尚未足以达到停止对半导体制冷片供电的条件时,以较低的供电电压U满足冰箱的制冷量,也使得半导体制冷片的热端温度下降,从而在不停止制冷的情况下保护半导体制冷片。在执行第二降至维持电压步骤111后,本发明的温度控制方法可循环回第二数据获取步骤107继续执行。
图3是根据本发明一个实施例的温度控制方法在半导体制冷片热端温度较高时对其供电电压进行控制的示意性曲线图。在图3所示实施例中,在例如环境温度过高、空气流通性差、湿度过大、温差△T大于等于预设的温 差阈值△Tthd等冰箱需要大的制冷量的情况下,以最大制冷量电压Umax-cold为供电电压,使得半导体制冷片的冷端较快制冷,热端温度Thot由一个低值逐渐升高到热端保护温度上限。在此过程中,不断进行热端保护温度上限判断步骤104。在热端保护温度上限判断步骤104的判定为达到或超出热端保护温度上限时,如图3所示,执行第一降至维持电压步骤106,使得供电电压U降低至维持电压Ukeep。由于供电电压U下降了,热端温度Thot也下降,在此过程中,依次执行第二数据获取步骤107、第二热端禁止温度判断步骤108。如图3所示,热端温度Thot并没有超过禁止温度,因此第二热端禁止温度判断步骤108的判定始终为否,根据前述方法,执行热端保护温度下限判断步骤110。当热端温度Thot达到热端保护温度下限,则执行制冷供电步骤105。由图3可以看出,若此时温差△T大于温差阈值△Tthd,则根据PID调节规则得到的供电电压U可为最大制冷量电压Umax-cold。重复上述过程,直至冰箱间室的平均温度△T小于温差阈值△Tthd后开始按PID调节规则降低电压。如前文所述,当这两个温度之间的温差△T降低到预设的温差阈值△Tthd内时,供电电压可为低于最大制冷量电压Umax-cold的某个值;然后,当温差△T首次降低到零值后,使得供电电压经历波动变化,以使温差△T等于或趋于零值的供电电压向半导体制冷片供电。
图4是根据本发明一个实施例的半导体制冷片的供电电压与制冷效率及制冷量关系的示意性曲线图。如图4所示,根据供电电压U与制冷效率的关系,可将供电电压U划分为4个区域:第一非经济区401(即供电电压U在0至Umin之间的区域)、高效区402(即供电电压U在Umin至Un之间的区域)、高制冷量区403(即供电电压U在Un至Umax之间的区域)、第二非经济区404(即供电电压U大于Umax的区域)。第一非经济区401的制冷量非常小,基本上不能满足冰箱的最低制冷需求;第二非经济区404中虽然半导体的制冷量本身可能满足冰箱的最低制冷需求,但是由于此区域所需的供电电压U高,功耗要比高效区402和高制冷量区403高很多;因此在本发明的实施例中,不使用第一非经济区401和第二非经济区404的供电电压U为半导体制冷片供电,而是使半导体制冷片的供电电压U位于高效区402和高制冷量区403。也就是说,在本发明的实施例中,将根据对半导体制冷冰箱制冷效率的要求,根据实验确定所用半导体制冷片供电电压U的最大值(即最大供电电压Umax)和最小值(即最小供电电压Umin),使 半导体制冷片的工作电压位于这两个值所限定的高效区402和高制冷量区403内。
如图4所示,最大供电电压Umax可通过实验选取为最大制冷量电压Umax-cold,即:可将本发明中的PID调节规则设置成使其在前文所述的公式中使得供电电压U的最大值被确定为最大制冷量电压Umax-cold,也就是说,UPID(△T)在△T大于温差阈值△Tthd时被赋值限定为最大制冷量电压Umax-cold减最高效率电压Ubest
也如图4所示,最小供电电压Umin可通过实验选取为第一非经济区401与高效区402划界的供电电压U,即最小制冷量电压Umin-cold,其例如用于满足半导体制冷冰箱最低制冷需求。类似地,可将本发明实施例中的PID调节规则设置成使其在前文所述的公式中使得供电电压U的最小值被确定为最小制冷量电压Umin-cold。也就是说,UPID(△T)在△T小于一定阈值时可被赋值限定为最小制冷量电压Umin-cold减最高效率电压Ubest(此时计算出的电压数值为一负值)。在本发明的一些替代性实施例中,最小供电电压Umin也可略低于满足冰箱最小制冷量电压Umin-cold
此外,如本领域技术人员根据图4可认识到的,最高效率电压Ubest可经实验得到,其值显然处于最大制冷量电压Umax-cold和最小制冷量电压Umin-cold之间。
需要理解的是,维持电压Ukeep通常可在最小供电电压Umin与最高效率电压Ubest间取值。在本发明的一些实施例中,维持电压Ukeep的选取原则是考虑在冰箱处在环境温度过高、空气流通性差、湿度过大、温差较大等极端情况下时,使冰箱内的温度还能较快地降到最低到设定温度。被选取的维持电压Ukeep的值是在这些极端情况下,通过模拟实验得出,这个值与Umax-cold的差值不是很大。
图5是根据本发明一个实施例的半导体制冷冰箱的示意性框图。在图5所示的实施例中,提供了一种半导体制冷冰箱,该冰箱包括温度控制系统,该温度控制系统可包括:主控板501,配置成执行上述任一温度控制方法,确定向半导体制冷冰箱的半导体制冷片502供电的供电电压U。
在本发明的一个实施例中,该半导体制冷冰箱还可以包括间室温度传感器503、热端温度传感器504和温度设定模块505。其中,间室温度传感器检测冰箱间室的平均温度Tr;热端温度传感器检测半导体制冷片的热端温 度Thot;温度设定模块设定冰箱间室内所要达到的目标温度TS
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (13)

  1. 一种半导体制冷冰箱的温度控制方法,包括:
    第一数据获取步骤:获取所述半导体制冷冰箱的冰箱间室的平均温度与预设的目标温度的温差;
    制冷供电步骤:根据预设的PID调节规则,按公式U=UPID(△T)+Ubest确定的供电电压向所述半导体制冷冰箱的半导体制冷片供电,其中,U为向所述半导体制冷片供电的供电电压,Ubest为使得所述半导体制冷片的制冷效率最高的最高效率电压,△T为所述冰箱间室的平均温度与预设的目标温度的温差,UPID(△T)为根据所述PID调节规则对所述温差进行运算得出的数值;
    所述PID调节规则被设置成:
    当所述温差大于等于预设的温差阈值时,使得所述供电电压等于使所述半导体制冷片产生最大制冷量的最大制冷量电压;
    当所述温差降低到所述温差阈值时,使得所述供电电压开始从所述最大制冷量电压下降。
  2. 根据权利要求1所述的温度控制方法,其中
    所述PID调节规则还被设置成:
    当所述温差首次降低到零值后,使得供电电压经历波动变化,以使所述温差等于或趋于零值的供电电压向所述半导体制冷片供电。
  3. 根据权利要求1所述的温度控制方法,其中
    所述第一数据获取步骤还包括采集所述半导体制冷片的热端温度;而且
    所述温度控制方法在所述第一数据获取步骤与所述制冷供电步骤之间还包括:
    第一热端禁止温度判断步骤:判断所述热端温度是否达到或超出预设的禁止温度;
    若所述热端温度达到或超出所述禁止温度,则执行如下第一停止供电步骤:将向所述半导体制冷片的供电电压设置为零,停止对所述半导体制冷片供电。
  4. 根据权利要求3所述的温度控制方法,其中
    所述温度控制方法在所述第一热端禁止温度判断步骤之后还包括:
    若所述热端温度小于所述禁止温度,则继续执行如下热端保护温度上限判断步骤:判断所述热端温度是否达到或超出预设的热端保护温度上限,其中所述热端保护温度上限小于所述禁止温度;
    若所述热端温度达到或超出所述热端保护温度上限,则执行如下第一降至维持电压步骤:降低所述供电电压至预设的维持电压;
    若所述热端温度小于所述热端保护温度上限,则执行所述制冷供电步骤。
  5. 根据权利要求4所述的温度控制方法,在所述第一降至维持电压步骤之后还包括:
    第二数据获取步骤:获取所述平均温度与所述目标温度的温差,并采集所述热端温度;
    第二热端禁止温度判断步骤:判断所述热端温度是否达到或超出所述禁止温度;
    若所述热端温度达到或超出所述禁止温度,则执行如下第二停止供电步骤:将向所述半导体制冷片的供电电压设置为零,停止对所述半导体制冷片供电;
    若所述热端温度小于所述禁止温度,则执行如下热端保护温度下限判断步骤:判断所述热端温度是否达到或低于预设的热端保护温度下限,其中所述热端保护温度下限小于所述热端保护温度上限;
    若所述热端温度达到或低于所述热端保护温度下限,则执行所述制冷供电步骤;
    若所述热端温度大于所述热端保护温度下限,则执行如下第二降至维持电压步骤:降低或保持所述供电电压至所述维持电压。
  6. 根据权利要求5所述的温度控制方法,在执行所述第二停止供电步骤后,所述温度控制方法循环回所述第二数据获取步骤继续执行。
  7. 根据权利要求5所述的温度控制方法,在执行所述第二降至维持电压步骤后,所述温度控制方法循环回所述第二数据获取步骤继续执行。
  8. 根据权利要求4所述的温度控制方法,其中
    所述维持电压为根据所述半导体制冷冰箱最低制冷需求确定的最小制冷量电压。
  9. 根据权利要求1-8任一项所述的温度控制方法,在执行所述制冷供电步骤后,所述温度控制方法循环回所述第一数据获取步骤继续执行。
  10. 根据权利要求1或5所述的温度控制方法,其中所述第一数据获取步骤和所述第二数据获取步骤分别包括:
    获取预设的所述目标温度,并采集所述冰箱间室的所述平均温度;
    计算所述平均温度与所述目标温度之间的温差。
  11. 根据权利要求1所述的温度控制方法,其中
    所述PID调节规则还被设置成使得:
    所述供电电压的最大值为一预设的最大供电电压,其等于所述最大制冷量电压;
    所述供电电压的最小值为一预设的最小供电电压,其小于或等于根据所述半导体制冷冰箱最低制冷需求确定的最小制冷量电压。
  12. 一种半导体制冷冰箱,包括温度控制系统,其中所述温度控制系统包括:
    主控板,配置成执行权利要求1-11中任一项所述的温度控制方法,确定向所述半导体制冷冰箱的半导体制冷片供电的供电电压。
  13. 根据权利要求12所述的半导体制冷冰箱,还包括:
    间室温度传感器,配置成检测所述半导体制冷冰箱的冰箱间室的平均温度;
    热端温度传感器,配置成检测所述半导体制冷片的热端温度;以及
    温度设定模块,配置成设定所述冰箱间室内所要达到的目标温度。
PCT/CN2015/075165 2014-03-28 2015-03-26 半导体制冷冰箱及其温度控制方法 WO2015144076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410122800.0 2014-03-28
CN201410122800.0A CN104331097B (zh) 2014-03-28 2014-03-28 半导体制冷冰箱及其温度控制方法

Publications (1)

Publication Number Publication Date
WO2015144076A1 true WO2015144076A1 (zh) 2015-10-01

Family

ID=52405843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075165 WO2015144076A1 (zh) 2014-03-28 2015-03-26 半导体制冷冰箱及其温度控制方法

Country Status (2)

Country Link
CN (1) CN104331097B (zh)
WO (1) WO2015144076A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050714A (zh) * 2017-12-30 2018-05-18 广州星辰热能股份有限公司 一种基于物联网的多热源采暖设备及其控制方法
CN110456250A (zh) * 2019-09-16 2019-11-15 中国科学技术大学 一种tec制冷性能的测量方法及测量装置
CN113865154A (zh) * 2021-10-12 2021-12-31 珠海格力电器股份有限公司 翅片式蒸发器及其化霜控制方法、装置和制冷设备
CN114111197A (zh) * 2020-08-28 2022-03-01 青岛海尔特种电冰柜有限公司 制冷电器的控制方法与制冷电器
CN110456250B (zh) * 2019-09-16 2024-05-17 中国科学技术大学 一种tec制冷性能的测量方法及测量装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104331097B (zh) * 2014-03-28 2017-01-25 海尔集团公司 半导体制冷冰箱及其温度控制方法
CN104329898B (zh) * 2014-03-28 2017-01-18 海尔集团公司 半导体冰箱及其半导体制冷片的供电电压控制方法
CN108873991A (zh) * 2018-06-29 2018-11-23 深圳市广润电力科技有限公司 智能工具柜控制方法
CN108790696B (zh) 2018-06-29 2021-05-11 京东方科技集团股份有限公司 温度控制方法、装置、电子设备及存储介质
CN114061207B (zh) * 2020-08-04 2023-07-18 合肥华凌股份有限公司 冰箱、冰箱的控制方法和计算机可读存储介质
CN112034701A (zh) * 2020-09-11 2020-12-04 长虹美菱股份有限公司 一种基于温度采样的pid控制系统及pid控制算法
CN114739077B (zh) * 2021-01-07 2023-07-14 贵州海尔电器有限公司 半导体制冷设备及其控制方法
CN114739076B (zh) * 2021-01-07 2023-07-14 贵州海尔电器有限公司 半导体制冷设备及其控制方法
CN114739078B (zh) * 2021-01-07 2023-10-24 贵州海尔电器有限公司 半导体制冷设备及其控制方法
CN113531829B (zh) * 2021-07-09 2023-02-17 青岛海尔空调器有限总公司 用于空调控制的方法、装置及空调
CN113885609B (zh) * 2021-10-25 2023-04-25 四川虹美智能科技有限公司 一种车载冰箱的箱体温度控制方法、装置和车载冰箱
CN113982877A (zh) * 2021-11-19 2022-01-28 天津市通洁高压泵制造有限公司 一种用于气瓶疲劳测试的高压柱塞泵

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1888998A (zh) * 2006-07-13 2007-01-03 上海交通大学 用于半导体制冷器快速加热/制冷系统的复合控制方法
JP2013155889A (ja) * 2012-01-27 2013-08-15 Mitsubishi Electric Corp 機器、冷蔵庫
US20130263611A1 (en) * 2012-04-10 2013-10-10 International Business Machines Corporation Cooling system control and servicing based on time-based variation of an operational variable
CN103438630A (zh) * 2013-09-06 2013-12-11 广东富信科技股份有限公司 半导体制冷系统控制方法及半导体制冷系统
CN104331097A (zh) * 2014-03-28 2015-02-04 海尔集团公司 半导体制冷冰箱及其温度控制方法
CN104329900A (zh) * 2014-03-28 2015-02-04 海尔集团公司 一种用于半导体冰箱的控制系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2063720U (zh) * 1990-03-30 1990-10-10 刘平 冰箱电机变频调速器
CN2685943Y (zh) * 2004-02-04 2005-03-16 博泰光电股份有限公司 具双功能的温度控制装置
CN2754031Y (zh) * 2004-09-14 2006-01-25 广东科龙电器股份有限公司 一种带精确控温装置的电冰箱
US20100326096A1 (en) * 2008-11-10 2010-12-30 Brent Alden Junge Control sytem for bottom freezer refrigerator with ice maker in upper door
CN102738718A (zh) * 2012-06-29 2012-10-17 西北工业大学 一种用于电柜的制冷型除湿器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1888998A (zh) * 2006-07-13 2007-01-03 上海交通大学 用于半导体制冷器快速加热/制冷系统的复合控制方法
JP2013155889A (ja) * 2012-01-27 2013-08-15 Mitsubishi Electric Corp 機器、冷蔵庫
US20130263611A1 (en) * 2012-04-10 2013-10-10 International Business Machines Corporation Cooling system control and servicing based on time-based variation of an operational variable
CN103438630A (zh) * 2013-09-06 2013-12-11 广东富信科技股份有限公司 半导体制冷系统控制方法及半导体制冷系统
CN104331097A (zh) * 2014-03-28 2015-02-04 海尔集团公司 半导体制冷冰箱及其温度控制方法
CN104329900A (zh) * 2014-03-28 2015-02-04 海尔集团公司 一种用于半导体冰箱的控制系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050714A (zh) * 2017-12-30 2018-05-18 广州星辰热能股份有限公司 一种基于物联网的多热源采暖设备及其控制方法
CN110456250A (zh) * 2019-09-16 2019-11-15 中国科学技术大学 一种tec制冷性能的测量方法及测量装置
CN110456250B (zh) * 2019-09-16 2024-05-17 中国科学技术大学 一种tec制冷性能的测量方法及测量装置
CN114111197A (zh) * 2020-08-28 2022-03-01 青岛海尔特种电冰柜有限公司 制冷电器的控制方法与制冷电器
CN113865154A (zh) * 2021-10-12 2021-12-31 珠海格力电器股份有限公司 翅片式蒸发器及其化霜控制方法、装置和制冷设备
CN113865154B (zh) * 2021-10-12 2022-05-31 珠海格力电器股份有限公司 翅片式蒸发器及其化霜控制方法、装置和制冷设备

Also Published As

Publication number Publication date
CN104331097B (zh) 2017-01-25
CN104331097A (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
WO2015144076A1 (zh) 半导体制冷冰箱及其温度控制方法
WO2015144077A1 (zh) 半导体冰箱及其半导体制冷片的供电电压控制方法
WO2015144078A1 (zh) 一种用于半导体冰箱的控制系统
JP6020714B2 (ja) 冷却システムの制御装置
US10458683B2 (en) Systems and methods for mitigating heat rejection limitations of a thermoelectric module
US20160018140A1 (en) Systems and methods for operating a thermoelectric module to increase efficiency
WO2019128944A1 (zh) 冰箱及其化霜控制方法
CN104133502B (zh) 冷却发热装置的方法和系统
CN111023458B (zh) 一种延长结霜周期的电子膨胀阀控制方法及空调
WO2019128943A1 (zh) 冰箱及其化霜控制方法
CN110966813B (zh) 一种宽温工况风冷冷水机的冷凝压力控制方法
CN107270583B (zh) 热泵机组的控制方法
CN113028591A (zh) 一种空调器延缓结霜方法、控制装置及空调器
JP6805612B2 (ja) 冷却装置および制御装置
CN110848899B (zh) 一种变频空调运行控制方法、计算机可读存储介质及空调
KR100826926B1 (ko) 수냉식 공기조화기 및 그 제어방법
JP6430758B2 (ja) 冷却システム
JP6677708B2 (ja) 熱電モジュールの排熱限度を緩和するためのシステム及び方法
JP7150160B2 (ja) 冷却制御装置、冷却システム及び冷却制御方法
WO2018066357A1 (ja) 熱源システムの制御装置、熱源システム、熱源システムの制御方法及び熱源システムの制御プログラム
JP2015206568A (ja) 空調システムおよび空調システムの制御方法
JP5940608B2 (ja) 熱媒体循環システム
KR20150122374A (ko) 공기 조화기의 소비 전력 절감 방법 및 이를 이용한 공기 조화기
CN114508879A (zh) 半导体制冷设备的制冷控制方法
JP2009236452A (ja) 温調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15770299

Country of ref document: EP

Kind code of ref document: A1