WO2019128944A1 - 冰箱及其化霜控制方法 - Google Patents

冰箱及其化霜控制方法 Download PDF

Info

Publication number
WO2019128944A1
WO2019128944A1 PCT/CN2018/123267 CN2018123267W WO2019128944A1 WO 2019128944 A1 WO2019128944 A1 WO 2019128944A1 CN 2018123267 W CN2018123267 W CN 2018123267W WO 2019128944 A1 WO2019128944 A1 WO 2019128944A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
evaporator
electromagnetic
defrosting
temperature
Prior art date
Application number
PCT/CN2018/123267
Other languages
English (en)
French (fr)
Inventor
苗建林
李登强
李春阳
费斌
Original Assignee
青岛海尔股份有限公司
青岛海尔特种制冷电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔股份有限公司, 青岛海尔特种制冷电器有限公司 filed Critical 青岛海尔股份有限公司
Publication of WO2019128944A1 publication Critical patent/WO2019128944A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/004Control mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating

Definitions

  • the invention relates to a refrigerating and freezing device, in particular to a refrigerator and a defrosting control method thereof.
  • the refrigerator needs to be defrosted after cooling for a period of time.
  • the existing refrigerator is provided with a defrosting heating wire near the evaporator. After the heating wire is energized, the evaporator is heated by heat radiation to achieve the purpose of defrosting.
  • the temperature of the evaporator is higher near the position of the heating wire, the defrosting speed is fast, and the defrosting speed away from the heating wire is slow, so that the defrosting of the evaporator is easy to be uneven.
  • the electric heating defrosting will simultaneously heat the air around the evaporator, which will not only cause thermal energy loss, but also prolong the defrosting time.
  • the current defrosting method used in the refrigerator is to set a preset time according to the empirical data, and after the refrigerator is cooled for a certain period of time, the defrosting is automatically turned on, and the defrosting is stopped after a certain time of defrosting.
  • this method of setting the defrost start point and the end point by experience is not effective because the frosting/defrosting condition cannot be clarified.
  • the defrosting is stopped, which may result in insufficient defrosting, thereby affecting the subsequent cooling effect of the evaporator; if frosting on the evaporator It has been completely eliminated, but the heating wire has not stopped heating, which will cause energy waste and affect the service life of the defrosting device.
  • the present invention has been made in order to provide a refrigerator and a defrosting control method thereof that overcome the above problems or at least partially solve the above problems.
  • An object of the present invention is to improve the defrosting effect of a refrigerator.
  • Another object of the present invention is to accurately determine the end time point of the defrosting process.
  • the present invention provides a defrosting control method for a refrigerator, the refrigerator comprising an electromagnetic defrosting device for electromagnetic defrosting of an evaporator of the refrigerator, the method comprising: detecting that the refrigerator reaches during the cooling operation of the refrigerator Defrosting condition; turning on the electromagnetic defrosting device to start defrosting, and continuously detecting the surface temperature of the evaporator and the power of the electromagnetic defrosting device; adjusting the voltage applied to the electromagnetic defrosting device according to the surface temperature of the evaporator; determining the evaporator Whether the surface temperature reaches the preset temperature, and the power of the electromagnetic defrosting device reaches the target power; if so, the electromagnetic defrosting device is turned off to end the defrosting.
  • the step of adjusting the voltage applied to the electromagnetic defrosting device according to the surface temperature of the evaporator comprises: determining whether the surface temperature is less than or equal to the first temperature; if so, adjusting the voltage applied to the electromagnetic defrosting device to the first a preset voltage value; if not, determining whether the surface temperature is less than or equal to the second temperature and greater than the first temperature; if yes, adjusting the voltage applied to the electromagnetic defrosting device to a second predetermined voltage value; if not, applying The voltage on the electromagnetic defrosting device is adjusted to a third preset voltage value; wherein the first preset voltage value is greater than the second preset voltage value, the second predetermined voltage value is greater than the third preset voltage value, and the first temperature is less than the first Two temperatures.
  • the method before the step of detecting that the refrigerator reaches the defrosting condition, the method further includes: determining a target power of the electromagnetic defrosting device when the refrigerator is powered on for the first time.
  • the step of determining the target power of the electromagnetic defrosting device comprises: detecting a surface temperature of the evaporator; determining whether the surface temperature of the evaporator reaches a preset temperature; and if so, opening the electromagnetic defrosting device And adjusting a voltage applied to the electromagnetic defrosting device to a third preset voltage value, and causing the electromagnetic defrosting device to continue to operate for a first preset time period; during the continuous operation of the electromagnetic defrosting device, calculating a final second preset The average power over the time period as the target power.
  • the step of detecting that the refrigerator reaches the defrosting condition comprises: recording a continuous running time of the refrigerator and a cumulative opening time of the door body of the refrigerator during the continuous running time; determining whether the continuous running time of the refrigerator reaches a preset cumulative running time, and The cumulative number of opening of the door exceeds the preset number; if so, it is determined that the refrigerator reaches the defrosting condition.
  • the present invention provides a refrigerator comprising: a refrigeration cycle system comprising a compressor, an evaporator and a condenser; an electromagnetic defrosting device disposed toward the evaporator and configured to be heated by radiating electromagnetic waves to the evaporator An evaporator for defrosting the evaporator; a temperature detecting device disposed on the surface of the evaporator configured to detect a surface temperature of the evaporator; and a power detecting device electrically connected to the electromagnetic defrosting device and configured to detect the electromagnetic defrosting device Operating power; a voltage regulating device electrically coupled to the temperature detecting device and the electromagnetic defrosting device, configured to adjust a voltage applied to the electromagnetic defrosting device according to a surface temperature of the evaporator; wherein the electromagnetic defrosting device is configured to be cooled in the refrigerator In the process, when the refrigerator is detected to reach the defrosting condition, the defrosting is started; and the defrosting is started; and is also configured to be turned off when the surface temperature
  • the voltage adjusting device is further configured to adjust the voltage applied to the electromagnetic defrosting device to a first preset voltage value if the surface temperature is less than or equal to the first temperature; and the surface temperature is less than or equal to the second temperature And greater than the first temperature, the voltage applied to the electromagnetic defrosting device is adjusted to a second predetermined voltage value; and when the surface temperature is greater than the second temperature, the voltage applied to the electromagnetic defrosting device is adjusted And being a third preset voltage value; wherein the first preset voltage value is greater than the second preset voltage value, the second preset voltage value is greater than the third preset voltage value, and the first temperature is less than the second temperature.
  • the power detecting device is further configured to determine a target power of the electromagnetic defrosting device when the refrigerator is first powered on.
  • the electromagnetic defrosting device is further configured to be turned on when the surface temperature of the evaporator reaches a preset temperature when the refrigerator is first powered on, and continuously operated at a working voltage of the third preset voltage value.
  • the preset time period; the power detecting device is further configured to calculate the average power in the last second preset time period as the target power during the continuous operation of the electromagnetic defrosting device.
  • the refrigerator further includes: a running time detecting device configured to record the continuous running time of the refrigerator; and a door opening and closing detecting device disposed on the door body or the box body of the refrigerator, configured to be in a continuous running time of the refrigerator The number of times the door body is opened is recorded; wherein the electromagnetic defrosting device is configured to be turned on when the continuous running time of the refrigerator reaches a preset cumulative running time, and the cumulative opening number of the door body exceeds a preset number of times.
  • a running time detecting device configured to record the continuous running time of the refrigerator
  • a door opening and closing detecting device disposed on the door body or the box body of the refrigerator, configured to be in a continuous running time of the refrigerator The number of times the door body is opened is recorded; wherein the electromagnetic defrosting device is configured to be turned on when the continuous running time of the refrigerator reaches a preset cumulative running time, and the cumulative opening number of the door body exceeds a preset number of times.
  • the present invention provides a refrigerator.
  • the refrigerator of the invention defrosses the evaporator by using an electromagnetic defrosting device, and the electromagnetic defrosting device heats the evaporator by using the principle of magnetic field induced eddy current heating, and the defrosting effect is compared with the heating wire used in the prior art.
  • the electromagnetic defrosting device can uniformly emit electromagnetic radiation to various portions of the evaporator, so that the entire evaporator can be uniformly heated, and the defrosting of each part of the evaporator is more uniform.
  • the electromagnetic defrosting device since only metal can accept electromagnetic waves and convert magnetic energy into heat, the electromagnetic defrosting device only heats the surface of the evaporator without heating the air around the evaporator. Therefore, the defrosting of the refrigerator of the present embodiment is more direct and rapid, and at the same time, heating of the position other than the frosting is avoided, and the heat utilization efficiency is improved.
  • the present invention also provides a defrosting control method.
  • the method adjusts the voltage applied to the electromagnetic defrosting device according to the surface temperature of the evaporator. Whenever the surface temperature of the evaporator rises by a certain temperature value, the voltage applied to the electromagnetic defrosting device is lowered to reduce the power level of the electromagnetic defrosting device.
  • the defrosting control method of the invention makes the electromagnetic defrosting device operate at high power when the surface area of the evaporator is thick and the temperature is low, so as to improve the defrosting efficiency; when the surface area of the evaporator is less frost and the temperature is higher, The electromagnetic defrosting device is operated at low power to avoid the evaporator surface temperature rising too fast.
  • the method of the method determines the operating power of the electromagnetic defrosting device according to the specific defrosting condition of the evaporator, improves the defrosting efficiency, and optimizes the working process of the electromagnetic defrosting device while ensuring the normal and steady rise of the evaporator surface temperature.
  • FIG. 1 is a schematic view of an evaporator and an electromagnetic defrosting device of a refrigerator according to an embodiment of the present invention
  • FIG. 2 is a schematic block diagram of a refrigerator in accordance with one embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a defrosting control method of a refrigerator according to an embodiment of the present invention.
  • FIG. 4 is a flow chart of a defrosting control method of a refrigerator in accordance with one embodiment of the present invention.
  • an embodiment of the present invention first provides a refrigerator 1.
  • the refrigerator is an air-cooled refrigerator
  • the air-cooled refrigerator includes a door body, a box body, and a refrigeration cycle system composed of the compressor 100, the evaporator 300, and the condenser 200.
  • the interior of the cabinet forms a storage compartment and a supply duct at the rear of the storage compartment.
  • the evaporator 300 is disposed in the air supply duct.
  • the outer casing of the evaporator 300 is made of a metal material, and the interior thereof is formed.
  • the refrigerant flows through the pipes and cools the air inside the ducts through the refrigerant flowing inside.
  • a fan is disposed inside the air supply duct, and the fan is used to transport dry and cool air cooled by the evaporator 300 in the air duct to the storage room to cool the storage room.
  • the air entering the storage room will circulate again into the air duct.
  • the interior of the air-cooled refrigerator is cooled by the above-described air flow circulation principle.
  • the refrigerator of this embodiment further includes an electromagnetic defrosting device 400.
  • the electromagnetic defrosting device 400 is disposed in the air duct and disposed toward the evaporator 300, and is configured to heat the evaporator 300 by radiating electromagnetic waves to the evaporator 300 to defrost the evaporator 300.
  • the electromagnetic defrosting device 400 heats the evaporator 300 by using a magnetic field induced eddy current heating principle, and is internally provided with an electromagnetic coil, and uses a current to generate a magnetic field through the coil. When the magnetic force in the magnetic field passes through the evaporator 300, it is evaporated.
  • the surface of the casing 300 generates a myriad of small eddy currents, causing the metal ions in the casing of the evaporator 300 to move at a high speed, and the temperature of the evaporator 300 rises rapidly.
  • the electromagnetic defrosting device 400 converts magnetic energy by electric energy, and the magnetic energy converts heat energy to quickly heat the evaporator 300 itself, and the evaporator 300 directly melts the frost after heating.
  • the refrigerator of the present embodiment defrosses the evaporator 300 by the electromagnetic defrosting device 400, and the defrosting effect is better by using the heating wire for defrosting compared with the prior art.
  • the electromagnetic defrosting device 400 can uniformly emit electromagnetic radiation to various portions of the evaporator 300, and the evaporator 300 as a whole can uniformly heat up, so that the defrosting of each portion of the evaporator 300 is more uniform.
  • the electromagnetic defrosting device 400 since only metal can receive electromagnetic waves and convert magnetic energy into heat, the electromagnetic defrosting device 400 only heats the surface of the evaporator 300 without heating the air around the evaporator 300. Therefore, the defrosting of the refrigerator of the present embodiment is more direct and rapid, and at the same time, heating of the position other than the frosting is avoided, and the heat utilization efficiency is improved.
  • the electromagnetic defrosting device 400 has a built-in frosting degree detecting module and a power adjusting module.
  • the frosting degree detecting module comprehensively judges the evaporator 300 by detecting the surface temperature of the evaporator 300 and/or detecting the frosting thickness of the surface of the evaporator 300 and combining other factors.
  • the degree of frosting The power adjustment module fine-tunes the operating power of the electromagnetic defrosting device 400 according to the determined degree of frosting to adapt to different working environments. In general, during the defrosting process, when the degree of frosting gradually decreases (as the frosting of the evaporator 300 becomes thinner and the surface temperature thereof rises), the power adjustment module adjusts the power of the electromagnetic defrosting device 400 to rise slightly.
  • the refrigerator of this embodiment further includes: a temperature detecting device 310, a power detecting device 410, and a voltage adjusting device 420.
  • the temperature detecting device 310 is disposed on the surface of the evaporator 300 and configured to detect the surface temperature of the evaporator 300.
  • the temperature detecting device 310 can be a temperature sensor.
  • the temperature sensor is electrically connected to the electromagnetic defrosting device 400, and the electromagnetic defrosting device 400 is capable of receiving temperature data detected by the temperature sensor.
  • the power detecting device 410 is electrically coupled to the electromagnetic defrosting device 400 and configured to detect the operating power of the electromagnetic defrosting device 400.
  • the power detecting device 410 can be disposed on the main control board of the refrigerator, and the power detecting device 410 calculates the electromagnetic defrosting device by detecting data such as the voltage across the electromagnetic defrosting device 400 and the current through the electromagnetic defrosting device 400. Instant power of 400.
  • the voltage regulating device 420 is electrically connected to the temperature detecting device 410 and the electromagnetic defrosting device 400, and is configured to adjust the voltage applied to the electromagnetic defrosting device 400 according to the surface temperature of the evaporator 300.
  • the power of the electromagnetic defrosting device 400 is related to the voltage applied across it, and thus can be adjusted by the voltage regulating device 420. The higher the voltage across the electromagnetic defrosting device 400, the higher its power.
  • the voltage regulating device 420 plays a major role in regulating the power of the electromagnetic defrosting device 400.
  • the power adjusting module built in the electromagnetic defrosting device 400 slightly adjusts the operating power of the electromagnetic defrosting device 400 based on the degree of frosting of the evaporator.
  • the voltage regulating device 420 may be a thermistor in series with the electromagnetic defrosting device 400.
  • the thermistor changes its own resistance value according to the temperature of the evaporator 300, thereby adjusting the voltage applied to the electromagnetic defrosting device 400.
  • the voltage adjusting device 420 is further configured to adjust the voltage applied to the electromagnetic defrosting device 400 to a first preset voltage value if the surface temperature is less than or equal to the first temperature; and the surface temperature is less than or equal to the second
  • the voltage applied to the electromagnetic defrosting device 400 is adjusted to a second predetermined voltage value; and when the surface temperature is greater than the second temperature, the voltage is applied to the electromagnetic defrosting device 400
  • the voltage is adjusted to a third preset voltage value.
  • the first temperature and the second temperature may be set according to a maximum temperature (hereinafter referred to as an upper limit temperature) to which the evaporator 300 can be heated.
  • the first temperature is set to be lower than the upper limit temperature by 30 ° C
  • the second temperature is set to be lower than the upper limit temperature by 20 ° C.
  • the upper limit temperature is set to 5 ° C
  • the corresponding first temperature and the first The two temperatures are -25 ° C and -15 ° C, respectively.
  • the electromagnetic defrosting device 400 is configured to be turned on when the refrigerator is detected to reach the defrosting condition during the cooling operation of the refrigerator to start defrosting; and is further configured to reach a preset temperature at the surface temperature of the evaporator 300 and to be electromagnetically When the power of the frost device 400 reaches the target power, the defrosting is ended.
  • the above preset temperature is 0 ° C, that is, the freezing point temperature.
  • the power detecting device 410 further detects the power of the electromagnetic defrosting device 400. According to the foregoing description, in the case where the voltage across the electromagnetic defrosting device 400 is constant, the operating power thereof changes according to the degree of frosting of the evaporator 300, that is, the operating power and the degree of frosting of the electromagnetic defrosting device 400 have a certain degree.
  • the target power represents that the voltage across the electromagnetic defrosting device 400 is set to a third preset voltage value, the surface temperature of the evaporator 300 is 0 ° C and the power of the electromagnetic defrosting device 400 is not frosted. Therefore, when the electromagnetic defrosting device 400 is raised to the target power, it indicates that the frost on the surface of the evaporator 300 has been removed.
  • the surface temperature of the evaporator 300 and the operating power of the electromagnetic defrosting device 400 are combined to determine the defrosting end time point, and it is possible to more accurately determine when the defrosting is ended. The defrosting of the evaporator 300 is prevented from being insufficient, which affects the subsequent cooling of the evaporator 300.
  • the power detection device 410 is also configured to determine the target power of the electromagnetic defrosting device 400 when the refrigerator is first powered up.
  • the above target power represents the power value that the power adjustment module can achieve when the frost is removed during the defrosting of the refrigerator.
  • the electromagnetic defrosting device 400 is further configured to open and maintain the first preset time under the working voltage of the third preset voltage value when the surface temperature of the evaporator 300 reaches the preset temperature when the refrigerator is first powered on. segment.
  • the power detecting device 410 also calculates the average power during the last second predetermined period of time as the target power during the continuous operation of the electromagnetic defrosting device 400.
  • the preset temperature is 0 ° C
  • the first preset time period is 30 s
  • the second preset time period is 5 s.
  • the electromagnetic defrosting device 400 When the temperature of the evaporator 300 is lowered to 0 ° C, the surface thereof begins to frost, at which time the electromagnetic defrosting device 400 is turned on, and the voltage applied to the electromagnetic defrosting device 400 is adjusted to a third preset voltage value, and The electromagnetic defrosting device 400 is controlled to continue to operate for 30 s.
  • the electromagnetic defrosting device 400 When the electromagnetic defrosting device 400 is just turned on, its power value may fluctuate somewhat, and after the power of the electromagnetic defrosting device 400 tends to be stable, its power value is recorded.
  • the power detecting device 410 detects the average power value of the last 5 seconds within 30 s of the operation of the electromagnetic defrosting device 400.
  • the above average power value is the power value corresponding to the electromagnetic defrosting device 400 when the surface of the evaporator 300 is 0 ° C and there is no frost, that is, the target power.
  • the refrigerator further includes a running time detecting device 520 and a door opening and closing detecting device 510.
  • the runtime detecting means 520 is configured to record the continuous running time of the refrigerator.
  • the running time detecting device 520 may be a timing device disposed on the main control board of the refrigerator.
  • the door opening and closing detecting device 510 is disposed on the door body or the cabinet of the refrigerator, and is configured to record the number of opening of the door body during the continuous operation of the refrigerator.
  • the door opening and closing detecting device 510 includes a pressure sensor disposed on the door body or the casing and a counter, and the pressure sensor determines whether the door body is opened by sensing the pressure on the door body or the casing, and the counter Accumulate the number of opening times of the door.
  • the electromagnetic defrosting device 400 is configured to be turned on when the continuous running time of the refrigerator reaches a preset cumulative running time, and the cumulative opening number of the door exceeds a preset number of times.
  • the degree of frost on the surface of the evaporator 300 is related to the cumulative running time of the refrigerator and the cumulative number of open doors of the refrigerator. The longer the running time of the refrigerator, the lower the temperature of the evaporator 300, the easier it is to frost.
  • each time the user opens the door the moisture of the external environment of the refrigerator enters the air duct, and it is easy to form frost on the surface of the evaporator 300. The more the cumulative opening of the door body, the more easily the evaporator 300 is frosted.
  • the refrigerator when the refrigerator accumulates the cooling operation for M hours and the number of door opening times reaches N times, it is determined that the refrigerator reaches the defrosting condition, and the electromagnetic defrosting device 400 turns on the defrosting.
  • M and N can be set according to the specific model of the refrigerator.
  • the compressor 100 is also configured to close before the electromagnetic defrosting device 400 is turned on to suspend refrigeration of the refrigerator.
  • the compressor 100 is turned off to stop cooling before the refrigerator is ready to start defrosting. After the refrigerator is stopped for a period of time and the temperature of the evaporator 300 is slightly increased, the defrosting process is further entered to prevent the evaporator 300 from suddenly rising in temperature, causing damage to the evaporator 300.
  • FIG. 3 is a schematic diagram of a refrigerator defrosting control method according to an embodiment of the invention, the method generally comprising the following steps:
  • step S302 during the cooling operation of the refrigerator, it is detected that the refrigerator reaches the defrosting condition.
  • the evaporator 300 may have a frosting condition, which affects its operating efficiency. Therefore, the refrigerator needs to perform a defrosting operation on the evaporator 300 after a certain period of cooling.
  • the defrosting condition may be that the surface temperature of the evaporator 300 is lowered to a certain extent, or the number of opening of the refrigerator door body reaches a certain number of times. In other embodiments of the invention, the defrosting condition may also be that the surface of the evaporator 300 is frosted to a certain thickness.
  • step S304 the electromagnetic defrosting device 400 is turned on to start defrosting, and the surface temperature of the evaporator 300 of the refrigerator and the power of the electromagnetic defrosting device 400 are continuously detected.
  • the refrigerator reaches the defrosting condition, it indicates that the refrigerator needs to be defrosted, and at this time, the electromagnetic defrosting device 400 is turned on to start the defrosting process.
  • the surface temperature of the evaporator 300 of the refrigerator and the power of the electromagnetic defrosting device 400 are detected in real time, and the end time point of the defrosting is determined based on the numerical values of the above two data.
  • step S306 the voltage applied to the electromagnetic defrosting device 400 is adjusted according to the surface temperature of the evaporator 300. Specifically, each time the surface temperature of the evaporator 300 rises by a certain temperature value, the voltage applied to the electromagnetic defrosting device 400 is lowered to reduce the power level of the electromagnetic defrosting device 400.
  • the electromagnetic defrosting device 400 when the surface area of the evaporator 300 is thicker and the temperature is lower, the electromagnetic defrosting device 400 is operated at a high power to improve the defrosting efficiency; the surface area of the evaporator 300 is less frosted and the temperature is higher. At this time, the electromagnetic defrosting device 400 is operated at a low power to prevent the surface temperature of the evaporator 300 from rising too fast.
  • the defrosting control method of the embodiment determines the operating power of the electromagnetic defrosting device 400 according to the specific defrosting condition of the evaporator, improves the defrosting efficiency, and optimizes the electromagnetic defrosting while ensuring the normal and stable rise of the surface temperature of the evaporator 300.
  • the operation of device 400 determines the operating power of the electromagnetic defrosting device 400 according to the specific defrosting condition of the evaporator, improves the defrosting efficiency, and optimizes the electromagnetic defrosting while ensuring the normal and stable rise of the surface temperature of the evaporator 300.
  • step S308 it is determined whether the surface temperature of the evaporator 300 reaches a preset temperature, and the power of the electromagnetic defrosting device 400 reaches the target power to reach the target power.
  • the preset temperature is 0 ° C, which is the freezing point temperature.
  • the power detecting device 410 further detects the power of the electromagnetic defrosting device 400.
  • the operating power of the electromagnetic defrosting device 400 varies according to the degree of frosting of the evaporator 300, that is, the operating power of the electromagnetic defrosting device 400 has a certain correspondence with the degree of frosting.
  • the target power represents that the operating voltage of the electromagnetic defrosting device 400 is a third predetermined voltage value, and the surface temperature of the evaporator 300 is 0 ° C, and the power of the electromagnetic defrosting device 400 is not frosted.
  • the power of the electromagnetic defrosting device 400 gradually increases as the defrosting process continues.
  • the electromagnetic defrosting device 400 is raised to the target power, it indicates that the frost on the surface of the evaporator 300 has been completely removed.
  • the surface temperature of the evaporator 300 and the operating power of the electromagnetic defrosting device 400 are combined to determine the defrosting end time point, and it is possible to more accurately determine when the defrosting is ended.
  • the defrosting of the evaporator 300 is prevented from being insufficient, which affects the subsequent cooling of the evaporator 300.
  • the target power it is possible to prevent the power of the electromagnetic defrosting device 400 from being excessively large, and it is possible to protect the electromagnetic defrosting device 400 and improve the service life of the electromagnetic defrosting device 400.
  • step S310 if the result of the determination in step S308 is YES, the electromagnetic defrosting device 400 is turned off, and the defrosting is ended.
  • the defrosting process of the refrigerator evaporator 300 is ended, and after waiting for a certain period of time, the refrigerator re-opens the compressor 100 for cooling.
  • FIG. 4 is a flow chart of a method for controlling defrosting of a refrigerator according to an embodiment of the present invention, which performs the following steps in sequence:
  • step S402 the surface temperature of the evaporator 300 is continuously detected when the refrigerator is powered on for the first time.
  • the temperature of the evaporator 300 will gradually decrease from above 0 °C.
  • step S404 it is determined whether the surface temperature of the evaporator 300 reaches a preset temperature.
  • the preset temperature is 0 °C.
  • step S406 if the result of the determination in step S404 is YES, the electromagnetic defrosting device 400 is turned on and continues to operate for 30 s.
  • the temperature of the evaporator 300 is lowered to 0 ° C, the surface thereof begins to frost, at which time the electromagnetic defrosting device 400 is turned on, the voltage applied to the electromagnetic defrosting device 400 is adjusted to a third preset voltage value and the electromagnetic defrosting is controlled.
  • Device 400 continues to run for 30 s.
  • step S408 during the continuous operation of the electromagnetic defrosting device 400, the average power in the last 5 s is calculated as the target power.
  • the electromagnetic defrosting device 400 When the electromagnetic defrosting device 400 is just turned on, its power value may fluctuate somewhat, and after the power of the electromagnetic defrosting device 400 tends to be stable, its power value is recorded.
  • the power detecting device 410 detects the average power value of the last 5 seconds within 30 s of the operation of the electromagnetic defrosting device 400.
  • the average power value is the power value corresponding to the electromagnetic defrosting device 400 when the voltage on the electromagnetic defrosting device 400 is the third predetermined voltage value and the surface of the evaporator 300 is 0° C. and there is no frost.
  • step S410 the continuous running time of the refrigerator and the cumulative opening times of the door of the refrigerator during the continuous running time are recorded.
  • Step S412 determining whether the continuous running time of the refrigerator reaches a preset cumulative running time, and the cumulative opening time of the door body exceeds a preset number of times.
  • the degree of frost on the surface of the evaporator 300 is related to the cumulative running time of the refrigerator and the cumulative number of open doors of the refrigerator. The longer the running time of the refrigerator, the lower the temperature of the evaporator 300, the easier it is to frost.
  • each time the user opens the door the moisture of the external environment of the refrigerator enters the air duct, and it is easy to form frost on the surface of the evaporator 300.
  • the more the cumulative opening of the door body the more easily the evaporator 300 is frosted.
  • the refrigerator starts the defrosting process.
  • step S414 if the result of the determination in step S412 is YES, the electromagnetic defrosting device 400 is turned on to start defrosting, and the surface temperature of the evaporator 300 of the refrigerator and the power of the electromagnetic defrosting device 400 are continuously detected.
  • the refrigerator accumulates the cooling operation for M hours and the number of door opening times reaches N times, it is determined that the refrigerator reaches the defrosting condition, and the electromagnetic defrosting device 400 turns on the defrosting.
  • M and N are set according to the specific conditions of the refrigerator.
  • Step S416 adjusting the voltage applied to the electromagnetic defrosting device to a first preset voltage value.
  • the surface of the evaporator is frosty and the temperature is very low, generally lower than the first temperature.
  • the voltage applied to the electromagnetic defrosting device is adjusted to a first preset voltage value, so that the electromagnetic defrosting device operates at a high power to speed up the defrosting speed.
  • the first temperature value is set to -25 °C.
  • Step S418, determining that the surface temperature is less than or equal to the second temperature and greater than the first temperature.
  • the frost on the surface of the evaporator 300 melts and the temperature thereof gradually increases.
  • the second temperature is set to -15 °C.
  • step S420 if the result of the determination in step S418 is YES, the voltage applied to the electromagnetic defrosting device 400 is adjusted to a second preset voltage value.
  • the voltage applied to the electromagnetic defrosting device 400 is lowered, and the voltage is adjusted to a second predetermined voltage value to slow down the defrosting rate.
  • the second preset voltage value is smaller than the first preset voltage value.
  • Step S422 determining whether the surface temperature is greater than or equal to the second temperature. As the defrosting process progresses, the surface temperature of the evaporator continues to rise.
  • step S424 if the result of the determination in step S422 is YES, the voltage applied to the electromagnetic defrosting device 400 is adjusted to a third preset voltage value.
  • the voltage applied to the electromagnetic defrosting device 400 is again lowered, and the voltage is adjusted to a third preset voltage value to further reduce the defrosting rate, thereby preventing the evaporator 300 temperature rises too fast.
  • the third preset voltage value is less than the second preset voltage value.
  • step S426 it is determined that the surface temperature of the evaporator 300 reaches the preset temperature, and the power of the electromagnetic defrosting device 400 reaches the target power.
  • the surface temperature of the evaporator 300 and the power of the electromagnetic defrosting device 400 are continuously monitored to determine the end time point of the defrosting.
  • step S428 if the result of the determination in step S426 is YES, the electromagnetic defrosting device 400 is turned off, and the defrosting is ended.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Defrosting Systems (AREA)

Abstract

一种冰箱化霜控制方法,根据蒸发器(300)的表面温度调节施加在电磁化霜装置(400)上的电压,当蒸发器(300)的表面温度上升一定的温度值时,降低调节施加在电磁化霜装置(400)上的电压,以降低电磁化霜装置(400)的功率。在蒸发器(300)表面积霜较厚、温度较低时,使电磁化霜装置(400)以高功率运行,以提高化霜效率;在蒸发器(300)表面积霜较少、温度较高时,使电磁化霜装置(400)以低功率运行,以避免蒸发器表面温度上升过快,在保证蒸发器(300)表面温度正常稳定上升的同时,提高了除霜效率,优化了电磁化霜装置(400)的工作过程。

Description

冰箱及其化霜控制方法 技术领域
本发明涉及冷藏冷冻装置,特别涉及一种冰箱及其化霜控制方法。
背景技术
风冷冰箱在运行一段时间后,其蒸发器会出现结霜情况,结霜会影响其运行效率,因此冰箱在制冷一段时间后需要对蒸发器进行化霜操作。
现有的冰箱内部靠近蒸发器的位置设置有化霜加热丝,加热丝通电后利用热辐射对蒸发器进行加热,以达到化霜的目的。但是,传统的电加热化霜,靠近加热丝的位置蒸发器温度较高,化霜速度快,而远离加热丝的位置化霜速度较慢,因此容易造成蒸发器整体化霜不均匀。另外,电加热化霜会同时加热蒸发器周围的空气,这样不仅会造成热能损失,还会延长除霜时间。
而且,目前的冰箱使用的除霜方法是根据经验数据设定预设时间,在冰箱制冷一定时间后,自动开启化霜,在化霜一定时间后停止化霜。但是,这种根据经验设置除霜开始点和终止点的方法由于不能明确结霜/化霜情况,除霜效果不佳。特别是在确定化霜终止时,若蒸发器上的结霜还未完全消除就停止了化霜,就会导致化霜不充分,进而影响蒸发器的后续制冷效果;若蒸发器上的结霜已完全消除,可是加热丝仍未停止加热,就会造成能源浪费,还会影响化霜装置的使用寿命。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的冰箱及其化霜控制方法。
本发明的一个目的是为了提高冰箱化霜效果。
本发明的另一个目的是为了准确确定化霜过程的终止时间点。
一方面,本发明提供了一种冰箱的化霜控制方法,冰箱包括用于对冰箱的蒸发器进行电磁辐射化霜的电磁化霜装置,方法包括:在冰箱制冷运行过程中,检测到冰箱达到化霜条件;开启电磁化霜装置开始化霜,并持续检测蒸发器的表面温度以及电磁化霜装置的功率;根据蒸发器的表面温度调节施加在电磁化霜装置上的电压;判断蒸发器的表面温度是否达到预设温度,且电磁化霜装置的功率达到目标功率;若是,关闭电磁化霜装置,结束化霜。
可选地,根据蒸发器的表面温度调节施加在电磁化霜装置上的电压的步骤包括;判断表面温度是否小于等于第一温度;若是,将施加在电磁化霜装置上的电压调节为第一预设电压值;若否,判断表面温度是否小于等于第二温度且大于第一温度;若是,将施加在电磁化霜装置上的电压调节为第二预设电压值;若否,将施加在电磁化霜装置上的电压调节为第三预设电压值;其中第一预设电压值大于第二预设电压值,第二预设电压值大于第三预设电压值且第一温度小于第二温度。
可选地,在检测到冰箱达到化霜条件的步骤之前还包括:在冰箱首次上电开机时,确定电磁化霜装置的目标功率。
可选地,在冰箱首次上电开机时,确定电磁化霜装置的目标功率的步骤包括:检测蒸发器的表面温度;判断蒸发器的表面温度是否达到预设温度;若是,开启电磁化霜装置,将施加在电磁化霜装置上的电压调节为第三预设电压值,并使电磁化霜装置持续运行第一预设时间段;在电磁化霜装置持续运行期间,计算最后第二预设时间段内的平均功率,作为目标功率。
可选地,检测到冰箱达到化霜条件的步骤包括:记录冰箱的持续运行时间以及持续运行时间内冰箱的门体的累计打开次数;判断冰箱的持续运行时间是否达到预设累计运行时间,且门体的累计打开次数超过预设次数;若是,确定冰箱达到化霜条件。
另一方面,本发明还提供了一种冰箱,包括:由压缩机、蒸发器和冷凝器组成的制冷循环系统;电磁化霜装置,朝向蒸发器设置,配置成通过向蒸发器辐射电磁波来加热蒸发器,以对蒸发器进行化霜;温度检测装置,设置于蒸发器表面,配置成检测蒸发器的表面温度;功率检测装置,与电磁化霜装置电相连,配置成检测电磁化霜装置的运行功率;电压调节装置,与温度检测装置和电磁化霜装置电相连,配置成根据蒸发器的表面温度调节施加在电磁化霜装置上的电压;其中电磁化霜装置,配置成在冰箱制冷运行过程中,在检测到冰箱达到化霜条件的情况下开启,开始化霜;并且还配置成在蒸发器的表面温度达到预设温度,且电磁化霜装置的功率达到目标功率的情况下关闭,结束化霜。
可选地,电压调节装置,还配置成在表面温度小于等于第一温度的情况下,将施加在电磁化霜装置上的电压调节为第一预设电压值;在表面温度小于等于第二温度且大于第一温度的情况下,将施加在电磁化霜装置上的电压 调节为第二预设电压值;在表面温度大于第二温度的情况下,将施加在电磁化霜装置上的电压调节为第三预设电压值;其中第一预设电压值大于第二预设电压值,第二预设电压值大于第三预设电压值且第一温度小于第二温度。
可选地,功率检测装置,还配置成在冰箱首次上电开机时,确定电磁化霜装置的目标功率。
可选地,电磁化霜装置,还配置成在冰箱首次上电开机时,蒸发器的表面温度达到预设温度的情况下开启,并在第三预设电压值的工作电压下持续运行第一预设时间段;功率检测装置,还配置成在电磁化霜装置持续运行期间,计算最后第二预设时间段内的平均功率,以作为目标功率。
可选地,冰箱还包括:运行时间检测装置,配置成记录冰箱的持续运行时间;和门体开闭检测装置,设置于冰箱的门体或箱体上,配置成在冰箱持续运行的时间内,记录门体的打开次数;其中电磁化霜装置,配置成在冰箱的持续运行时间达到预设累计运行时间,且门体的累计打开次数超过预设次数的情况下开启。
本发明提供了一种冰箱。本发明的冰箱利用电磁化霜装置对蒸发器进行化霜,电磁化霜装置是采用磁场感应涡流加热原理对蒸发器进行加热,相较于现有技术中使用加热丝进行化霜,化霜效果更佳。具体地,电磁化霜装置能够向蒸发器各个部分均匀发射电磁辐射,因此蒸发器整体能够均匀升温,蒸发器各部分化霜更加均匀。而且,由于只有金属才能够将接受电磁波,将磁能转换为热能,因此电磁化霜装置只会对蒸发器表面进行加热,而不会加热蒸发器周围的空气。因此本实施例的冰箱化霜更加直接、迅速,同时避免了对结霜以外的位置进行加热,提高了热能利用效率。
进一步地,本发明还提供了一种化霜控制方法。该方法根据蒸发器的表面温度调节施加在电磁化霜装置上的电压。每当蒸发器的表面温度上升一定的温度值时,降低调节施加在电磁化霜装置上的电压,以降低电磁化霜装置的功率大小。本发明的化霜控制方法,在蒸发器表面积霜较厚、温度较低时,使电磁化霜装置以高功率运行,以提高化霜效率;在蒸发器表面积霜较少、温度较高时,使电磁化霜装置以低功率运行,以避免蒸发器表面温度上升过快。本方法的方法根据蒸发器具体的化霜情况确定电磁化霜装置的运行功率,在保证蒸发器表面温度正常稳定上升的同时,提高了除霜效率,优化了电磁化霜装置的工作过程。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱的蒸发器以及电磁化霜装置的示意图;
图2是根据本发明一个实施例的冰箱的示意框图;
图3是根据本发明一个实施例的冰箱的化霜控制方法的示意图;
图4是根据本发明一个实施例的冰箱的化霜控制方法的流程图。
具体实施方式
如图1、图2所示,本发明实施例首先提供了一种冰箱1。这本实施例中,该冰箱为风冷冰箱,风冷冰箱包括:门体、箱体以及由压缩机100、蒸发器300和冷凝器200组成的制冷循环系统。箱体内部形成储藏间室以及位于储藏间室后部的送风风道,蒸发器300设置于送风风道内,在本实施例中,蒸发器300外壳由金属材料制成,其内部形成供冷媒流动的管道,并通过其内部流动的冷媒对风道内部的空气进行降温。送风风道内部还设置有风机,风机用于将风道内经蒸发器300降温后的干冷空气输送至储藏间室内,以对储藏间室进行制冷。进入储藏间室的空气会循环再次进入风道内。风冷冰箱内部即利用上述空气流动循环原理对储藏间室进行制冷。
本实施例的冰箱还包括:电磁化霜装置400。电磁化霜装置400设置于风道内,并朝向蒸发器300设置,配置成通过向蒸发器300辐射电磁波来加热蒸发器300,以对蒸发器300进行化霜。电磁化霜装置400是采用磁场感应涡流加热原理对蒸发器300进行加热的,其内部设置有电磁线圈,并利用电流通过线圈产生磁场,当磁场内之磁力通过蒸发器300时,即会在蒸发器300壳体表面产生无数小涡流,使蒸发器300壳体内的金属离子高速的运动,蒸发器300温度迅速升高。电磁化霜装置400通过电能转化磁能,磁能转化热能的形式,快速地使蒸发器300本身发热,蒸发器300发热后直接对结霜进行融化。
本实施例的冰箱利用电磁化霜装置400对蒸发器300进行化霜,相较于现有技术中,使用加热丝进行化霜,化霜效果更佳。具体地,电磁化霜装置400能够向蒸发器300各个部分均匀发射电磁辐射,蒸发器300整体能够均匀升温,因此蒸发器300各部分化霜更加均匀。而且,由于只有金属才能够将接受电磁波,将磁能转换为热能,因此电磁化霜装置400只会对蒸发器300表面进行加热,而不会加热蒸发器300周围的空气。因此本实施例的冰箱化霜更加直接、迅速,同时避免了对结霜以外的位置进行加热,提高了热能利用效率。
上述电磁化霜装置400内置结霜程度检测模块和功率调节模块,结霜程度检测模块通过检测蒸发器300表面温度和/或检测蒸发器300表面结霜厚度以及结合其他一些因素综合判断蒸发器300的结霜程度。功率调节模块根据上述确定的根据结霜程度对电磁化霜装置400的工作功率进行微调,以适应不同的工作环境。一般而言,在除霜过程中,当结霜程度逐渐降低时(表现在蒸发器300结霜变薄,其表面温度升高),功率调节模块调节电磁化霜装置400的功率略微上升。
本实施例的冰箱还包括:温度检测装置310、功率检测装置410和电压调节装置420。温度检测装置310,设置于蒸发器300表面,配置成检测蒸发器300的表面温度。在本实施例中,温度检测装置310可以为一温度传感器。该温度传感器与电磁化霜装置400电相连,电磁化霜装置400能够接收该温度传感器检测得到的温度数据。
功率检测装置410与电磁化霜装置400电相连,配置成检测电磁化霜装置400的运行功率。在本实施例中,功率检测装置410可以设置于冰箱的主控板上,功率检测装置410通过检测电磁化霜装置400两端的电压以及通过电磁化霜装置400的电流等数据计算电磁化霜装置400的即时功率。
电压调节装置420与温度检测装置410和电磁化霜装置400电相连,配置成根据蒸发器300的表面温度调节施加在电磁化霜装置400上的电压。电磁化霜装置400的功率和其两端施加的电压相关,因此可以通过电压调节装置420进行调节,电磁化霜装置400两端的电压越高,其功率也就越高。电压调节装置420对电磁化霜装置400的功率起到主要调节作用,电磁化霜装置400内置的功率调节模块仅根据蒸发器的结霜程度对电磁化霜装置400的工作功率进行微小调整。在本实施例中电压调节装置420可以为与电磁化霜 装置400串联的热敏电阻,热敏电阻根据蒸发器300温度改变自身阻值,从而调节施加在电磁化霜装置400上的电压。
具体地,电压调节装置420,还配置成在表面温度小于等于第一温度的情况下,将施加在电磁化霜装置400上的电压调节为第一预设电压值;在表面温度小于等于第二温度且大于第一温度的情况下,将施加在电磁化霜装置400上的电压调节为第二预设电压值;在表面温度大于第二温度的情况下,将施加在电磁化霜装置400上的电压调节为第三预设电压值。上述第一温度、第二温度可以根据蒸发器300所能允许加热到的最高温度(以下简称上限温度)进行设定。在本实施例中,第一温度设定为比上限温度低30℃,第二温度设定为比上限温度低20℃,例如:上限温度设定为5℃,那么对应的第一温度和第二温度分别为-25℃和-15℃。
电磁化霜装置400配置成在冰箱制冷运行过程中,在检测到冰箱达到化霜条件的情况下开启,开始化霜;并且还配置成在蒸发器300的表面温度达到预设温度,且电磁化霜装置400的功率达到目标功率的情况下关闭,结束化霜。
上述预设温度为0℃,也就是冰点温度,当蒸发器300温度达到0℃时,表面蒸发器300结霜已经基本除尽。在本实施例中,为了更加精确地判断结霜是否完全清除,功率检测装置410进一步检测电磁化霜装置400的功率。根据前文描述,在电磁化霜装置400两端电压一定的情况下,其工作功率会根据蒸发器300的结霜程度发生变化,也就是电磁化霜装置400的工作功率与结霜程度具有一定的对应关系,上述目标功率代表电磁化霜装置400两端的电压设定为第三预设电压值,蒸发器300表面温度为0℃且无结霜时电磁化霜装置400的功率。因此,当电磁化霜装置400上升到目标功率时,表明蒸发器300表面结霜已经除尽。在本实施例中,将蒸发器300表面温度和电磁化霜装置400的工作功率相结合确定化霜终止时间点,能够更加准确判断什么时间结束化霜。防止蒸发器300化霜不充分,影响蒸发器300的后续制冷。
功率检测装置410还配置成在冰箱首次上电开机时,确定电磁化霜装置400的目标功率。上述目标功率表示功率调节模块在冰箱化霜过程中,结霜除尽时所能够达到的功率值。
电磁化霜装置400还配置成在冰箱首次上电开机时,蒸发器300的表面 温度达到预设温度的情况下,开启并在第三预设电压值的工作电压下持续运行第一预设时间段。功率检测装置410还在电磁化霜装置400持续运行期间,计算最后第二预设时间段内的平均功率,以作为目标功率。在本实施例中,预设温度为0℃,第一预设时间段为30s,第二预设时间段为5s。在冰箱首次上电开机时,随着制冷过程的持续进行,蒸发器300温度会由0℃以上逐渐下降。当蒸发器300温度降低到0℃时,其表面开始结霜,此时开启电磁化霜装置400,并将施加在所述电磁化霜装置400上的电压调节为第三预设电压值,并控制电磁化霜装置400持续运行30s。电磁化霜装置400在刚开启时,其功率值会有一些波动,待电磁化霜装置400功率趋于稳定后,记录其功率值。具体地,功率检测装置410检测电磁化霜装置400运行的30s内,最后5秒的平均功率值。上述平均功率值即为蒸发器300表面为0℃且无霜时,电磁化霜装置400对应的功率值,也就是目标功率。
上述冰箱还包括:运行时间检测装置520和门体开闭检测装置510。运行时间检测装置520,配置成记录冰箱的持续运行时间。在本实施例中,运行时间检测装置520可以为设置于冰箱主控板上的计时装置。门体开闭检测装置510设置于冰箱的门体或箱体上,配置成在冰箱持续运行的时间内,记录门体的打开次数。在本实施例中,门体开闭检测装置510包括设置于门体或箱体上的压力传感器和一个计数器,压力传感器通过感测门体或箱体上的压力判断门体是否被打开,计数器对门体的打开次数进行累计记录。
电磁化霜装置400配置成在冰箱的持续运行时间达到预设累计运行时间,且门体的累计打开次数超过预设次数的情况下开启。一般而言,蒸发器300表面的结霜程度和冰箱的累计运行时间和冰箱的累计开门次数相关。冰箱的运行时间越长,蒸发器300温度越低,越容易结霜;同时,每一次用户打开门体,冰箱外部环境的湿气进入到风道内,容易在蒸发器300表面形成结霜,因此,门体的累计打开次数越多,蒸发器300也越容易结霜。在本实施例中,当冰箱累计制冷运行M小时且门体打开次数达到N次时,确定冰箱达到化霜条件,电磁化霜装置400开启化霜。上述M和N可以根据冰箱的具体型号进行设置。
压缩机100还配置成在开启电磁化霜装置400之前关闭,使冰箱暂停制冷。在冰箱准备开始除霜之前,先关闭压缩机100停止制冷。在冰箱停止制冷一段时间,蒸发器300温度略微上升后,再进入化霜过程,以防止蒸发器 300温度突然升高,对蒸发器300造成损害。
本发明还提供了一种冰箱化霜控制方法,图3是根据本发明一个实施例的冰箱化霜控制方法的示意图,该方法一般性地包括以下步骤:
步骤S302,在冰箱制冷运行过程中,检测到冰箱达到化霜条件。风冷冰箱在运行一段时间后,其蒸发器300会出现结霜情况,影响了其运行效率,因此冰箱在制冷一段时间后需要对蒸发器300进行化霜操作。在本发明的实施例中,上述化霜条件可以为蒸发器300表面温度降低到一定程度,或者是冰箱门体的打开次数达到一定次数。在本发明另一些实施例中,化霜条件还可以是蒸发器300表面结霜达到一定厚度。
步骤S304,开启电磁化霜装置400开始化霜,并持续检测冰箱的蒸发器300的表面温度以及电磁化霜装置400的功率。当冰箱达到化霜条件后,说明冰箱需要进行除霜,此时开启电磁化霜装置400,开始化霜过程。在化霜过程中,实时检测冰箱的蒸发器300的表面温度以及电磁化霜装置400的功率,并依据上述两个数据的数值大小确定化霜的结束时间点。
步骤S306,根据蒸发器300的表面温度调节施加在电磁化霜装置400上的电压。具体地,每当蒸发器300的表面温度上升一定的温度值时,降低调节施加在电磁化霜装置400上的电压,以降低电磁化霜装置400的功率大小。本发明实施例的方法,在蒸发器300表面积霜较厚、温度较低时,使电磁化霜装置400以高功率运行,以提高化霜效率;在蒸发器300表面积霜较少、温度较高时,使电磁化霜装置400以低功率运行,以避免蒸发器300表面温度上升过快。本实施例的化霜控制方法根据蒸发器具体的化霜情况确定电磁化霜装置400的运行功率,在保证蒸发器300表面温度正常稳定上升的同时,提高了除霜效率,优化了电磁化霜装置400的运行过程。
步骤S308,判断蒸发器300表面温度是否达到预设温度,且电磁化霜装置400的功率达到目标功率达到目标功率。预设温度为0℃,也就是冰点温度,当蒸发器300温度达到0℃时,表明蒸发器300结霜已经基本除尽。在本实施例中,为了更加精确地判断结霜是否完全清除,功率检测装置410进一步检测电磁化霜装置400的功率。根据前文描述,由于内置功率调节模块,电磁化霜装置400的工作功率会根据蒸发器300的结霜程度发生变化,也就是电磁化霜装置400的工作功率与结霜程度具有一定的对应关系,上述目标功率代表电磁化霜装置400的工作电压为第三预设电压值,且蒸发器 300表面温度为0℃、无结霜时电磁化霜装置400的功率。
当蒸发器300表面温度达到-15℃以上,电磁化霜装置400两端电压达到第三预设电压值后,随着化霜过程的持续进行,电磁化霜装置400的功率会逐渐缓慢升高,当电磁化霜装置400上升到目标功率时,表明蒸发器300表面结霜已经完全除尽。在本实施例中,将蒸发器300表面温度和电磁化霜装置400的工作功率相结合确定化霜终止时间点,能够更加准确判断何时结束化霜。防止蒸发器300化霜不充分,影响蒸发器300的后续制冷。另外,通过设置目标功率,还能够防止电磁化霜装置400的功率过大,能够起到保护电磁化霜装置400的作用,提高了电磁化霜装置400的使用寿命。
步骤S310,若步骤S308的判断结果为是,关闭电磁化霜装置400,结束化霜。当蒸发器300表面温度达到0℃,且电磁化霜装置400功率达到目标功率时,结束冰箱蒸发器300的化霜过程,等待一定时间后,冰箱重新开启压缩机100制冷。
图4是根据本发明一个实施例的冰箱化霜控制方法的流程图,该方法依次执行以下步骤:
步骤S402,在冰箱首次上电开机时,持续检测蒸发器300的表面温度。在冰箱首次上电开机时,随着制冷过程的持续进行,蒸发器300温度会由0℃以上逐渐下降。
步骤S404,判断蒸发器300的表面温度是否达到预设温度。在本实施例中,预设温度为0℃。
步骤S406,若步骤S404的判断结果为是,开启电磁化霜装置400并持续运行30s。当蒸发器300温度降低到0℃时,其表面开始结霜,此时开启电磁化霜装置400,将施加在电磁化霜装置400上的电压调节为第三预设电压值并控制电磁化霜装置400持续运行30s。
步骤S408,在电磁化霜装置400持续运行期间,计算最后5s内的平均功率,作为目标功率。电磁化霜装置400在刚开启时,其功率值会有一些波动,待电磁化霜装置400功率趋于稳定后,记录其功率值。具体地,功率检测装置410检测电磁化霜装置400运行的30s内,最后5秒的平均功率值。上述平均功率值即为电磁化霜装置400上的电压为第三预设电压值,且蒸发器300表面为0℃、无霜时,电磁化霜装置400对应的功率值。
步骤S410,记录冰箱的持续运行时间以及持续运行时间内冰箱的门体 的累计打开次数。
步骤S412,判断冰箱的持续运行时间是否达到预设累计运行时间,且门体的累计打开次数超过预设次数。一般而言,蒸发器300表面的结霜程度和冰箱的累计运行时间和冰箱的累计开门次数相关。冰箱的运行时间越长,蒸发器300温度越低,越容易结霜;同时,每一次用户打开门体,冰箱外部环境的湿气进入到风道内,容易在蒸发器300表面形成结霜,因此,门体的累计打开次数越多,蒸发器300也越容易结霜。当冰箱的累计运行时间和打开门体的次数超过一定程度时,冰箱开启化霜过程。
步骤S414,若步骤S412的判断结果为是,开启电磁化霜装置400开始化霜,并持续检测冰箱的蒸发器300的表面温度以及电磁化霜装置400的功率。在本实施例中,当冰箱累计制冷运行M小时且门体打开次数达到N次时,确定冰箱达到化霜条件,电磁化霜装置400开启化霜。上述M和N根据冰箱的具体情况进行设置。
步骤S416,将施加在电磁化霜装置上的电压调节为第一预设电压值。在冰箱刚开始除霜时,蒸发器表面结霜很厚、温度很低,一般均低于第一温度值。此时,将施加在电磁化霜装置上的电压调节为第一预设电压值,使得电磁化霜装置以大功率运行,以加快化霜速度。在本实施例中,上述第一温度值设置为-25℃。
步骤S418,判断表面温度小于等于第二温度且大于第一温度。随着化霜过程的进行,蒸发器300表面的结霜融化,其温度会逐渐升高。在本实施例中,第二温度设定为-15℃。
步骤S420,若步骤S418的判断结果为是,将施加在电磁化霜装置400上的电压调节为第二预设电压值。当蒸发器表面温度上升至第一温度和第二温度之间时,降低施加在电磁化霜装置400上的电压,将上述电压调节为第二预设电压值,以减缓化霜速率。上述第二预设电压值小于第一预设电压值。
步骤S422,判断表面温度是否大于等于第二温度。随着化霜过程的进行,蒸发器的表面温度继续升高。
步骤S424,若步骤S422的判断结果为是,将施加在电磁化霜装置400上的电压调节为第三预设电压值。当蒸发器300表面温度上升至第二温度以上时,再次降低施加在电磁化霜装置400上的电压,将上述电压调节为第三预设电压值,以进一步减缓化霜速率,从而防止蒸发器300温度上升过快。 上述第三预设电压值小于第二预设电压值。
步骤S426,判断蒸发器300表面温度达到预设温度,且电磁化霜装置400的功率达到目标功率。持续监测蒸发器300表面温度以及电磁化霜装置400的功率以确定化霜的终止时间点。
步骤S428,若步骤S426的判断结果为是,关闭电磁化霜装置400,结束化霜。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冰箱的化霜控制方法,所述冰箱包括用于对所述冰箱的蒸发器进行电磁辐射化霜的电磁化霜装置,所述方法包括:
    在所述冰箱制冷运行过程中,检测到所述冰箱达到化霜条件;
    开启所述电磁化霜装置开始化霜,并持续检测所述蒸发器的表面温度以及所述电磁化霜装置的功率;
    根据所述蒸发器的表面温度调节施加在所述电磁化霜装置上的电压;
    判断所述蒸发器的表面温度是否达到预设温度,且所述电磁化霜装置的功率达到目标功率;
    若是,关闭所述电磁化霜装置,结束化霜。
  2. 根据权利要求1所述的化霜控制方法,其中根据所述蒸发器的表面温度调节施加在所述电磁化霜装置上的电压的步骤包括:
    判断所述表面温度是否小于等于第一温度;
    若是,将施加在所述电磁化霜装置上的电压调节为第一预设电压值;
    若否,判断所述表面温度是否小于等于第二温度且大于所述第一温度;
    若是,将施加在所述电磁化霜装置上的电压调节为第二预设电压值;
    若否,将施加在所述电磁化霜装置上的电压调节为第三预设电压值;其中
    所述第一预设电压值大于所述第二预设电压值,所述第二预设电压值大于所述第三预设电压值且所述第一温度小于所述第二温度。
  3. 根据权利要求2所述的化霜控制方法,其中在检测到所述冰箱达到化霜条件的步骤之前还包括:
    在所述冰箱首次上电开机时,确定所述电磁化霜装置的目标功率。
  4. 根据权利要求3所述的化霜控制方法,其中在所述冰箱首次上电开机时,确定所述电磁化霜装置的目标功率的步骤包括:
    检测所述蒸发器的表面温度;
    判断所述蒸发器的表面温度是否达到所述预设温度;
    若是,开启所述电磁化霜装置,将施加在所述电磁化霜装置上的电压调节为第三预设电压值,并使所述电磁化霜装置持续运行第一预设时间段;
    在所述电磁化霜装置持续运行期间,计算最后第二预设时间段内的平均功率,作为所述目标功率。
  5. 根据权利要求2所述的化霜控制方法,其中检测到所述冰箱达到化霜条件的步骤包括:
    记录所述冰箱的持续运行时间以及持续运行时间内所述冰箱的门体的累计打开次数;
    判断所述冰箱的持续运行时间是否达到预设累计运行时间,且所述门体的累计打开次数超过预设次数;
    若是,确定所述冰箱达到所述化霜条件。
  6. 一种冰箱,包括:
    由压缩机、蒸发器和冷凝器组成的制冷循环系统;
    电磁化霜装置,朝向所述蒸发器设置,配置成通过向所述蒸发器辐射电磁波来加热所述蒸发器,以对蒸发器进行化霜;
    温度检测装置,设置于所述蒸发器表面,配置成检测所述蒸发器的表面温度;
    功率检测装置,与所述电磁化霜装置电相连,配置成检测所述电磁化霜装置的运行功率;
    电压调节装置,与所述温度检测装置和所述电磁化霜装置电相连,配置成根据所述蒸发器的表面温度调节施加在所述电磁化霜装置上的电压;其中
    所述电磁化霜装置,配置成在所述冰箱制冷运行过程中,在检测到所述冰箱达到化霜条件的情况下开启,开始化霜;并且还配置成在所述蒸发器的表面温度达到预设温度,且所述电磁化霜装置的功率达到目标功率的情况下关闭,结束化霜。
  7. 根据权利要求6所述的冰箱,其中
    所述电压调节装置,还配置成在所述表面温度小于等于第一温度的情况下,将施加在所述电磁化霜装置上的电压调节为第一预设电压值;在所述表面温度小于等于第二温度且大于所述第一温度的情况下,将施加在所述电磁化霜装置上的电压调节为第二预设电压值;在所述表面温度大于所述第二温度的情况下,将施加在所述电磁化霜装置上的电压调节为第三预设电压值;其中
    所述第一预设电压值大于所述第二预设电压值,所述第二预设电压值大于所述第三预设电压值且所述第一温度小于所述第二温度。
  8. 根据权利要求7所述的冰箱,其中
    所述功率检测装置,还配置成在所述冰箱首次上电开机时,确定所述电磁化霜装置的目标功率。
  9. 根据权利要求8所述的冰箱,其中
    所述电磁化霜装置,还配置成在所述冰箱首次上电开机时,所述蒸发器的表面温度达到所述预设温度的情况下开启,并在所述第三预设电压值的工作电压下持续运行第一预设时间段;
    功率检测装置,还配置成在所述电磁化霜装置持续运行期间,计算最后第二预设时间段内的平均功率,以作为所述目标功率。
  10. 根据权利要求7所述的冰箱,还包括:
    运行时间检测装置,配置成记录所述冰箱的持续运行时间;和
    门体开闭检测装置,设置于所述冰箱的门体或箱体上,配置成在所述冰箱持续运行的时间内,记录所述门体的打开次数;其中
    所述电磁化霜装置,配置成在所述冰箱的持续运行时间达到预设累计运行时间,且所述门体的累计打开次数超过预设次数的情况下开启。
PCT/CN2018/123267 2017-12-27 2018-12-24 冰箱及其化霜控制方法 WO2019128944A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711450424.8A CN108050767B (zh) 2017-12-27 2017-12-27 冰箱及其化霜控制方法
CN201711450424.8 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019128944A1 true WO2019128944A1 (zh) 2019-07-04

Family

ID=62127889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123267 WO2019128944A1 (zh) 2017-12-27 2018-12-24 冰箱及其化霜控制方法

Country Status (2)

Country Link
CN (1) CN108050767B (zh)
WO (1) WO2019128944A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108050767B (zh) * 2017-12-27 2020-06-23 青岛海尔股份有限公司 冰箱及其化霜控制方法
CN110906635A (zh) * 2018-09-17 2020-03-24 青岛海尔智能技术研发有限公司 换热器除霜装置、冷藏设备和冰箱
CN110906613B (zh) * 2018-09-17 2021-11-26 海尔智家股份有限公司 风冷冰箱
CN110044026A (zh) * 2019-03-26 2019-07-23 青岛海尔空调器有限总公司 一种电化学空调及其控制方法
KR20200116320A (ko) * 2019-04-01 2020-10-12 엘지전자 주식회사 냉장고
CN110195960B (zh) * 2019-05-30 2021-01-08 合肥华凌股份有限公司 制冷设备化霜控制方法、制冷设备和存储介质
CN112797706B (zh) * 2019-11-14 2022-09-23 青岛海尔电冰箱有限公司 一种冰箱及其化霜控制方法
CN112197489B (zh) * 2020-07-17 2022-04-22 Tcl家用电器(合肥)有限公司 蒸发器除霜方法、装置、冰箱、计算机设备和存储介质
CN111981759B (zh) * 2020-07-22 2021-12-28 珠海格力电器股份有限公司 一种化霜控制方法、装置及冰箱设备
CN112179041A (zh) * 2020-09-29 2021-01-05 珠海格力电器股份有限公司 化霜控制方法及装置、制冷设备及存储介质
CN113639499A (zh) * 2021-08-05 2021-11-12 珠海格力电器股份有限公司 加热器控制系统、化霜控制方法、制冷系统及冰箱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201440644U (zh) * 2009-06-10 2010-04-21 佛山市南庄广昌电器塑料有限公司 一种定时除霜开关电源
CH702709B1 (it) * 2010-10-19 2011-08-31 Lampen Sail Ltd Impianto di raffreddamento e relativo metodo di funzionamento.
CN104186635A (zh) * 2014-09-05 2014-12-10 海信容声(广东)冰箱有限公司 一种冰箱的解冻装置
KR101765837B1 (ko) * 2016-11-02 2017-08-08 김기중 솔리드 스테이트 해동 시스템
CN108050767A (zh) * 2017-12-27 2018-05-18 青岛海尔股份有限公司 冰箱及其化霜控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201440644U (zh) * 2009-06-10 2010-04-21 佛山市南庄广昌电器塑料有限公司 一种定时除霜开关电源
CH702709B1 (it) * 2010-10-19 2011-08-31 Lampen Sail Ltd Impianto di raffreddamento e relativo metodo di funzionamento.
CN104186635A (zh) * 2014-09-05 2014-12-10 海信容声(广东)冰箱有限公司 一种冰箱的解冻装置
KR101765837B1 (ko) * 2016-11-02 2017-08-08 김기중 솔리드 스테이트 해동 시스템
CN108050767A (zh) * 2017-12-27 2018-05-18 青岛海尔股份有限公司 冰箱及其化霜控制方法

Also Published As

Publication number Publication date
CN108050767A (zh) 2018-05-18
CN108050767B (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
WO2019128944A1 (zh) 冰箱及其化霜控制方法
WO2019128945A1 (zh) 冰箱及其化霜控制方法
WO2019128943A1 (zh) 冰箱及其化霜控制方法
US20210055035A1 (en) Air-cooled refrigerator, and control method, control system and controller for defrosting thereof
JP4365378B2 (ja) 除霜運転制御装置および除霜運転制御方法
JP2007523318A (ja) 適応除霜方法
WO2015144076A1 (zh) 半导体制冷冰箱及其温度控制方法
WO2018059522A1 (zh) 一种冰箱及该冰箱的控制方法
CN108731211B (zh) 空调器及其控制方法
CN111981640A (zh) 一种除霜控制方法、装置、空调器及存储介质
CN107575998A (zh) 空调及其室外机的除霜控制方法
CN105352262B (zh) 风冷冰箱及其冷冻保护控制方法
CN107514735A (zh) 空调的除霜控制方法和控制装置
WO2019080730A1 (zh) 空调及其控制方法
CN113790570B (zh) 冰箱化霜控制方法以及冰箱
CN104864679A (zh) 风冷冰箱自然化霜方法
CN109696007B (zh) 家用制冷器具和用于运行这种家用制冷器具的方法
CN107339848B (zh) 一种冰箱的化霜方法
KR20060126808A (ko) 냉각장치 및 그의 제어방법
CN106524637A (zh) 一种制冷设备中的升温方法及装置
JP5137742B2 (ja) 冷蔵庫
KR20120039910A (ko) 냉장고의 저실온 제어방법
KR0160450B1 (ko) 냉장고의 제상제어방법
KR20070051530A (ko) 냉장고의 팬 제어방법
KR20170132939A (ko) 냉장고 제상 운전 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18897834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18897834

Country of ref document: EP

Kind code of ref document: A1