WO2015144077A1 - 半导体冰箱及其半导体制冷片的供电电压控制方法 - Google Patents

半导体冰箱及其半导体制冷片的供电电压控制方法 Download PDF

Info

Publication number
WO2015144077A1
WO2015144077A1 PCT/CN2015/075166 CN2015075166W WO2015144077A1 WO 2015144077 A1 WO2015144077 A1 WO 2015144077A1 CN 2015075166 W CN2015075166 W CN 2015075166W WO 2015144077 A1 WO2015144077 A1 WO 2015144077A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
supply voltage
hot end
semiconductor
power supply
Prior art date
Application number
PCT/CN2015/075166
Other languages
English (en)
French (fr)
Inventor
李春阳
苗建林
何胜涛
李鹏
张奎
王铭
Original Assignee
海尔集团公司
青岛海尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔集团公司, 青岛海尔股份有限公司 filed Critical 海尔集团公司
Publication of WO2015144077A1 publication Critical patent/WO2015144077A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • F25B2321/021Control thereof
    • F25B2321/0212Control thereof of electric power, current or voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2107Temperatures of a Peltier element

Definitions

  • the present invention relates to a refrigeration apparatus, and more particularly to a method of controlling a supply voltage of a semiconductor refrigerator and its semiconductor refrigerating sheet.
  • An object of the present invention is to overcome at least one of the defects of the power supply voltage control method for a semiconductor refrigerator and a semiconductor refrigerating chip thereof in the prior art, and to provide a semiconductor refrigerator capable of achieving both protection and cooling effects on a semiconductor refrigerating sheet and semiconductor refrigeration thereof
  • the chip's power supply voltage control method avoids excessive negative effects on the cooling effect of the semiconductor refrigerator when protecting the semiconductor cooling sheet.
  • a method for controlling a supply voltage of a semiconductor refrigerating sheet of a semiconductor refrigerator includes: a first data acquisition step of: collecting a hot end temperature of the semiconductor refrigerating sheet; and a hot end protection temperature upper limit determining step: Determining whether the hot end temperature reaches or exceeds the upper end of the hot end protection temperature; if the hot end temperature reaches or exceeds the upper end of the hot end protection temperature, performing the following first step of maintaining the voltage: lowering or maintaining the The power supply voltage supplied by the semiconductor refrigerating chip is a preset maintaining voltage; if the hot end temperature is less than the upper end of the hot end protection temperature, a cooling power supply step is performed to provide the supply voltage to the semiconductor cooling fin.
  • the power supply voltage control method further includes: a first hot end prohibition temperature determining step between the first data obtaining step and the hot end protection temperature upper limit determining step: determining whether the hot end temperature is reached Or exceeding a preset prohibition temperature, wherein the prohibition temperature is greater than the hot end protection temperature upper limit; if the hot end temperature reaches or exceeds the prohibition temperature, performing a first stop power supply step: cooling the semiconductor The power supply voltage of the chip is set to zero to stop supplying power to the semiconductor cooling chip; if the hot end temperature is less than the prohibition temperature, the hot end protection temperature upper limit determining step is continued.
  • the power supply voltage control method further includes: after the step of the first falling to the maintaining voltage, a second data acquiring step: collecting the hot end temperature; and a second prohibiting temperature determining step: determining the hot end temperature Whether the prohibition temperature is reached or exceeded; if the hot end temperature reaches or exceeds the prohibition temperature, performing a second power-off step of: setting a supply voltage to the semiconductor cooling fin to zero, stopping the The semiconductor refrigeration chip is powered; if the hot end temperature is less than the prohibition temperature, the following hot end protection temperature lower limit determining step is performed: determining whether the hot end temperature reaches or falls below a preset hot end protection temperature lower limit, wherein The hot end protection temperature lower limit is smaller than the hot end protection temperature upper limit; if the hot end temperature reaches or falls below the hot end protection temperature lower limit, the cooling and power supply step is performed; if the hot end temperature is greater than Referring to the lower end of the hot end protection temperature, the following second step of maintaining the voltage is performed: lowering or maintaining the supply voltage to the sustain voltage.
  • the first data obtaining step further includes: acquiring a temperature difference between an average temperature of the refrigerator compartment of the semiconductor refrigerator and a preset target temperature; and the second data obtaining step further includes: acquiring the temperature difference;
  • the PID adjustment rule is further configured to: when the temperature difference is greater than or equal to a preset temperature difference threshold, causing the supply voltage to be equal to causing maximum cooling of the semiconductor cooling fin A maximum amount of refrigeration voltage; when the temperature difference decreases to the temperature difference threshold, causing the supply voltage to begin to decrease from the maximum cooling capacity voltage.
  • the sustain voltage is a minimum cooling capacity voltage determined according to a minimum cooling demand of the semiconductor refrigerator; a maximum value of the power supply voltage is a preset maximum power supply voltage, which is equal to maximizing the semiconductor cooling fin The maximum cooling capacity voltage of the cooling capacity; the minimum value of the power supply voltage is a preset minimum supply voltage, which is less than or equal to the minimum cooling capacity voltage.
  • the supply voltage control method loops back to the second data acquisition step to continue; after performing the second power-off step, the supply voltage The control method loops back to the second data acquisition step to continue execution.
  • the power supply voltage control method loops back to the first data acquisition step to continue execution.
  • a semiconductor refrigerator including a power supply voltage control system includes: a hot end temperature sensor configured to detect a hot end temperature of a semiconductor refrigerating sheet of the semiconductor refrigerator;
  • the main control board is configured to perform any of the above-described power supply voltage control methods to determine a supply voltage for supplying power to the semiconductor cooling sheet.
  • the semiconductor refrigerator further includes: a compartment temperature sensor configured to detect an average temperature of the refrigerator compartment of the semiconductor refrigerator; and a temperature setting module configured to set a target to be achieved in the refrigerator compartment temperature.
  • the method for controlling the power supply voltage of the semiconductor refrigerator and the semiconductor refrigerating sheet thereof according to the present invention is capable of lowering or maintaining the supply voltage for supplying power to the semiconductor cooling sheet to a predetermined sustain voltage after the hot end temperature reaches or exceeds the upper limit of the hot end protection temperature,
  • the protection and cooling effect of the semiconductor refrigerating sheet can be balanced, that is, the semiconductor refrigerator can be continuously supplied with power when the semiconductor refrigerating sheet is protected, thereby avoiding an excessively negative influence on the cooling effect of the semiconductor refrigerator.
  • the hot end temperature reaches or exceeds the prohibition temperature
  • the supply of the semiconductor refrigerating sheet is stopped, thereby preventing the semiconductor refrigerating sheet from being burnt out when the hot end temperature is too high.
  • the supply voltage when the temperature difference is greater than or equal to a preset temperature
  • the difference threshold when the difference threshold is made, the supply voltage is equal to the maximum cooling capacity voltage, so the temperature can be rapidly lowered with higher cooling efficiency when the temperature difference is large, so that the temperature difference rapidly approaches a small value; when the temperature difference is lowered to the temperature difference threshold, the supply voltage starts to be The maximum cooling capacity voltage is reduced, so that the cooling can be prevented from being too fast, so as not to fall below the target temperature, resulting in poor cooling.
  • FIG. 1 is a flow chart showing a method of controlling a supply voltage of a semiconductor refrigerating sheet of a semiconductor refrigerator according to an embodiment of the present invention
  • FIG. 2 is a schematic graph showing a power supply voltage control method for controlling a supply voltage thereof when a temperature of a hot junction of a semiconductor refrigerating chip is high, according to an embodiment of the present invention
  • FIG. 3 is a schematic graph showing that a power supply voltage control method quickly obtains a maximum cooling capacity with a higher cooling efficiency and accurately controls an average temperature of a refrigerator compartment of a semiconductor refrigerator to a set target temperature according to an embodiment of the present invention
  • FIG. 4 is a schematic graph showing a relationship between a supply voltage of a semiconductor refrigerating sheet and a cooling efficiency and a cooling capacity according to an embodiment of the present invention
  • Figure 5 is a schematic block diagram of a semiconductor refrigerator in accordance with one embodiment of the present invention.
  • the power supply voltage control method may include:
  • the first data acquisition step 101 acquires the hot end temperature T hot of the semiconductor refrigerating sheet.
  • the first hot end prohibits the temperature determining step 102, determining whether the hot end temperature T hot reaches or exceeds the preset prohibition temperature; if the hot end temperature T hot reaches or exceeds the prohibition temperature, performing the first stop power supply step 103: to the semiconductor
  • the supply voltage U of the cooling fin is set to zero to stop supplying power to the semiconductor cooling fin.
  • the hot end protection temperature upper limit determining step 104 is performed when the hot end temperature T hot is less than the prohibition temperature, and determines whether the hot end temperature T hot reaches or exceeds a preset hot end protection temperature upper limit, wherein the hot end protection temperature upper limit is less than the prohibited temperature; If the hot end temperature T hot is less than the upper end of the hot end protection temperature, the cooling power supply step 105 is performed: supplying the supply voltage U to the semiconductor cooling sheet.
  • the first data obtaining step 101 may further include: obtaining a temperature difference ⁇ T between the average temperature T r of the refrigerator compartment and the preset target temperature T S .
  • the specific process may include: obtaining a preset target temperature T S , and collecting an average temperature T r of the refrigerator compartment; and calculating a temperature difference ⁇ T between the average temperature T r and the target temperature T S .
  • the adjustment rule calculates the value obtained by calculating the temperature difference ⁇ T.
  • the power supply voltage control method of the present invention may loop back to the first data acquisition step 101 to continue execution.
  • the first hot end prohibition temperature determining step 102 to the hot end protection temperature upper limit determining step 104 are not necessary.
  • only the temperature difference ⁇ T may be acquired in the first data acquisition step 101 without collecting the hot end temperature T hot ; after the first data acquisition step 101 is performed, the cooling power supply step 105 is directly performed.
  • the first down to maintain voltage step 106 is performed: lowering or maintaining the supply voltage U to a predetermined sustain voltage U keep .
  • the maintenance voltage U keep is a voltage that can gradually increase or decrease the average temperature T r of the refrigerator compartment in an extreme situation such as excessive ambient temperature, poor air flow, excessive humidity, and large temperature difference, and one of the purposes is to ensure as much as possible
  • the temperature of the hot end is not greater than the preset lower limit of the hot end protection temperature.
  • the sustain voltage U keep may be a minimum cooling capacity voltage determined according to the minimum cooling demand of the semiconductor refrigerator (which will be described later).
  • the second data acquisition step 107 and the second hot end prohibition temperature determination step 108 are sequentially performed.
  • the second data acquisition step 107 is to collect the hot end temperature T hot .
  • the second data acquisition step 107 may further include acquiring the temperature difference ⁇ T.
  • the second hot end prohibition temperature determining step 108 is: determining whether the hot end temperature T hot reaches or exceeds the prohibition temperature.
  • the second power-off step 109 is performed: the supply voltage U to the semiconductor cooling fin is set to zero, and the pair is stopped.
  • the semiconductor refrigeration chip is powered; if the hot end temperature T hot is less than the prohibition temperature, the hot end protection temperature lower limit determination step 110 is performed: determining whether the hot end temperature T hot reaches or falls below a preset hot end protection temperature lower limit, wherein the hot end protection The lower temperature limit is less than the upper limit of the hot end protection temperature.
  • the cooling power supply step 105 is performed; if the hot end temperature T hot is greater than the hot end protection temperature lower limit, Performing a second drop to the sustain voltage step 111: lowering or maintaining the supply voltage U to the sustain voltage U keep .
  • the supply voltage control method of the present invention may loop back to the second data acquisition step 107 to continue execution.
  • FIG. 2 is a schematic graph showing the control of the supply voltage by the supply voltage control method when the temperature of the hot end of the semiconductor refrigerating chip is high, according to an embodiment of the present invention.
  • the maximum cooling is performed in the case where the refrigerator requires a large amount of cooling, such as an excessively high ambient temperature, poor air flow, excessive humidity, and a temperature difference ⁇ T greater than or equal to a preset temperature difference threshold ⁇ T thd .
  • the voltage U max-cold is the supply voltage, so that the cold end of the semiconductor refrigeration chip is cooled faster, and the hot end temperature T hot is gradually increased from a low value to an upper limit of the hot end protection temperature.
  • the hot end protection temperature upper limit determining step 104 is continuously performed.
  • the hot-end protection temperature upper limit determining step 104 determines that the hot-end protection temperature upper limit is reached or exceeded, as shown in FIG. 2, the first falling-to-maintain voltage step 106 is performed such that the supply voltage U is lowered to the sustain voltage U keep . Since the supply voltage U drops, the hot end temperature T hot also decreases.
  • the second data acquisition step 107 and the second hot end prohibition temperature determination step 108 are sequentially performed. As shown in FIG. 2, the hot end temperature T hot does not exceed the prohibition temperature, so the determination of the second hot end prohibition temperature determining step 108 is always NO. According to the aforementioned method, the hot end protection temperature lower limit determining step 110 is performed.
  • the cooling power supply step 105 is performed. As can be seen from FIG. 2, if the temperature difference ⁇ T is greater than the temperature difference threshold ⁇ T thd at this time, the supply voltage U obtained according to the PID adjustment rule may be the maximum cooling capacity voltage U max-cold . The above process is repeated until the average temperature ⁇ T of the inter-refrigerator compartment is less than the temperature difference threshold ⁇ T thd and the voltage is lowered by the PID adjustment rule.
  • FIG. 3 is a schematic graph in which a power supply voltage control method quickly obtains a maximum cooling capacity with a higher cooling efficiency and accurately controls an average temperature of a refrigerator compartment of a semiconductor refrigerator to a set target temperature, according to an embodiment of the present invention.
  • the PID adjustment rule may be set such that when the temperature difference ⁇ T is greater than or equal to the preset temperature difference threshold ⁇ T thd , the supply voltage U is equal to the maximum cooling capacity voltage U max-cold , so that the hot end can be rapidly cooled.
  • the semiconductor refrigerating sheet can be powered according to this rule.
  • the PID adjustment rule may be further configured to cause the power supply voltage U to undergo a fluctuation change after the temperature difference ⁇ T is first reduced to a value of zero, so that the temperature difference ⁇ T is equal to or tends to A zero supply voltage U supplies power to the semiconductor cooling fins.
  • the semiconductor cooling fins can be powered according to this rule. This enables the supply voltage U to finally stabilize near the highest efficiency voltage U best . 3 and FIG. 2, in FIG.
  • the supply voltage may be a value lower than the maximum cooling capacity voltage U max-cold ; After the temperature difference ⁇ T is first reduced to a value of zero, the supply voltage is subjected to a fluctuating change so that the supply voltage of the temperature difference ⁇ T equal to or tending to zero value supplies power to the semiconductor refrigerating sheet.
  • FIG. 4 is a schematic graph showing a relationship between a supply voltage of a semiconductor refrigeration chip, a cooling efficiency, and a cooling capacity according to an embodiment of the present invention.
  • the supply voltage U can be divided into four regions: the first non-economic zone 401 (ie, the region where the supply voltage U is between 0 and U min ), and the efficiency is high.
  • a region 402 ie, a region where the supply voltage U is between U min and U n
  • a high cooling capacity region 403 ie, a region where the supply voltage U is between U n and U max
  • a second non-economic region 404 ie, power supply
  • the voltage U is larger than the area of U max ).
  • the cooling capacity of the first non-economic zone 401 is very small, and basically cannot meet the minimum cooling demand of the refrigerator; although the cooling capacity of the semiconductor in the second non-economic zone 404 itself may satisfy the minimum cooling demand of the refrigerator,
  • the supply voltage U is high and the power consumption is much higher than the high efficiency region 402 and the high cooling capacity region 403; therefore, in the embodiment of the present invention, the supply voltage U of the first non-economic zone 401 and the second non-economy zone 404 is not used.
  • the semiconductor refrigerating sheet supplies power, and the supply voltage U of the semiconductor refrigerating sheet is placed in the high efficiency region 402 and the high cooling capacity region 403.
  • the maximum value (i.e., the maximum supply voltage U max ) and the minimum value (i.e., the maximum supply voltage U max ) of the semiconductor refrigerating chip used may be determined experimentally according to the requirements for the cooling efficiency of the semiconductor refrigerator.
  • the voltage U min causes the operating voltage of the semiconductor refrigerating sheet to be located in the high efficiency region 402 and the high cooling capacity region 403 defined by these two values.
  • the maximum supply voltage U max can be experimentally selected as the maximum cooling capacity voltage U max-cold , that is, the PID adjustment rule in the present invention can be set such that the supply voltage is made in the formula described above.
  • the maximum value of U is determined as the maximum cooling capacity voltage U max-cold , that is, U PID ( ⁇ T) is assigned to the maximum cooling capacity voltage U max-cold minus the highest efficiency voltage U when ⁇ T is greater than the temperature difference threshold ⁇ T thd Best .
  • the minimum supply voltage Umin can be experimentally selected as the supply voltage U demarcated by the first non-economic zone 401 and the high efficiency zone 402, that is, the minimum cooling capacity voltage Umin-cold , which is used, for example, to satisfy the semiconductor.
  • the minimum cooling needs of the refrigerator.
  • the PID adjustment rule in the embodiment of the present invention can be set such that the minimum value of the supply voltage U is determined as the minimum cooling capacity voltage U min-cold in the formula described above. That is to say, U PID ( ⁇ T) can be assigned to the minimum cooling capacity voltage U min-cold minus the highest efficiency voltage U best when ⁇ T is less than a certain threshold (the calculated voltage value is a negative value at this time).
  • the minimum supply voltage Umin may also be slightly lower than the minimum cooling capacity voltage Umin-cold of the refrigerator.
  • the highest efficiency voltage U best can be experimentally obtained, the value of which is clearly between the maximum cooling capacity voltage U max-cold and the minimum cooling capacity voltage U min-cold .
  • the sustain voltage U keep can generally take a value between the minimum supply voltage U min and the highest efficiency voltage U best .
  • the selection principle of the maintenance voltage U keep is to consider that the temperature in the refrigerator can be quickly reduced to a minimum when the refrigerator is in an extreme situation such as excessive ambient temperature, poor air flow, excessive humidity, and large temperature difference. Set the temperature.
  • the value of the selected sustain voltage U keep is that, in these extreme cases, it is found by simulation that the difference between this value and U max-cold is not very large.
  • FIG. 5 is a schematic block diagram of a semiconductor refrigerator in accordance with one embodiment of the present invention.
  • a semiconductor refrigerator including a supply voltage control system, which may include a hot end temperature sensor 504 configured to detect the hot end of the semiconductor refrigerating sheet 502 of the semiconductor refrigerator.
  • the temperature T hot the main control board 501 is configured to perform any of the above-described power supply voltage control methods to determine the power supply voltage U for supplying power to the semiconductor cooling sheet 502.
  • the semiconductor refrigerator may further include: a compartment temperature sensor 503 configured to detect an average temperature T r of the refrigerator compartment; and a temperature setting module 505 configured to set a target temperature T S to be reached in the refrigerator compartment.
  • a compartment temperature sensor 503 configured to detect an average temperature T r of the refrigerator compartment
  • a temperature setting module 505 configured to set a target temperature T S to be reached in the refrigerator compartment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

一种半导体冰箱及其半导体制冷片(502)的供电电压控制方法。该控制方法包括:第一数据获取步骤(101):采集半导体制冷片(502)的热端温度(T hot);热端保护温度上限判断步骤(104):判断热端温度(T hot)是否达到或超出热端保护温度上限;若热端温度(T hot)达到或超出热端保护温度上限,则执行如下第一降至维持电压步骤(106):降低或保持向半导体制冷片(502)供电的供电电压为预设的维持电压(U keep);若热端温度(T hot)小于热端保护温度上限,则执行如下制冷供电步骤(105):向半导体制冷片(502)提供供电电压。这种供电电压控制方法兼顾了对半导体制冷片(502)的保护和制冷效果。

Description

半导体冰箱及其半导体制冷片的供电电压控制方法 技术领域
本发明涉及制冷设备,特别是涉及半导体冰箱及其半导体制冷片的供电电压控制方法。
背景技术
在现有的半导体冰箱中,在半导体冰箱的半导体制冷片两端的电压过高、半导体制冷片的热端的散热不良等情况下,半导体制冷片的热端温度往往会快速上升,最终导致半导体制冷片损坏。
对于此问题,若停止对半导体制冷片的供电,固然可以使得半导体制冷片的热端温度迅速下降,但会影响半导体制冷片的正常制冷,往往会使得半导体冰箱的冰箱间室的温度过度升高,从而对制冷效果带来过大负面影响。
另外,在现有的半导体冰箱中,为控制冰箱间室的平均温度,一般是通过直接比较冰箱间室的平均温度和设定温度,利用类似于压缩机制冷冰箱中常用的PID算法(或者说,PID调节规则)来确定半导体制冷片的供电电压。
然而,压缩机制冷冰箱中常用的PID调节规则并未考虑到半导体制冷片特殊的制冷特性,不能保证半导体冰箱在正常工作以维持其内的间室温度时,半导体制冷片能够以实现较高制冷效率的方式工作;或者不能保证在需要半导体冰箱快速制冷时,半导体制冷片能够以快速获得最大制冷量的方式工作。
发明内容
本发明的一个目的旨在克服现有技术中半导体冰箱及其半导体制冷片的供电电压控制方法的至少一个缺陷,提供一种能够兼顾对半导体制冷片的保护和制冷效果的半导体冰箱及其半导体制冷片的供电电压控制方法,避免在对半导体制冷片进行保护时对半导体冰箱的制冷效果带来过大负面影响。
本发明的一个进一步的目的是提供一种可使半导体制冷片以较高制冷效率快速获得最大制冷量的方式工作、而且可精确控制间室的平均温度的半导体冰箱及其半导体制冷片的供电电压控制方法。
根据本发明的一个方面,提供了一种半导体冰箱的半导体制冷片的供电电压控制方法,包括:第一数据获取步骤:采集所述半导体制冷片的热端温度;热端保护温度上限判断步骤:判断所述热端温度是否达到或超出热端保护温度上限;若所述热端温度达到或超出所述热端保护温度上限,则执行如下第一降至维持电压步骤:降低或保持向所述半导体制冷片供电的供电电压为预设的维持电压;若热端温度小于所述热端保护温度上限,则执行如下制冷供电步骤:向所述半导体制冷片提供所述供电电压。
可选地,所述供电电压控制方法在所述第一数据获取步骤与所述热端保护温度上限判断步骤之间还包括:第一热端禁止温度判断步骤:判断所述热端温度是否达到或超出预设的禁止温度,其中所述禁止温度大于所述热端保护温度上限;若所述热端温度达到或超出所述禁止温度,则执行第一停止供电步骤:将向所述半导体制冷片的供电电压设置为零,停止对所述半导体制冷片供电;若所述热端温度小于所述禁止温度,则继续执行所述热端保护温度上限判断步骤。
可选地,所述供电电压控制方法在所述第一降至维持电压步骤后还包括:第二数据获取步骤:采集所述热端温度;第二禁止温度判断步骤:判断所述热端温度是否达到或超出所述禁止温度;若所述热端温度达到或超出所述禁止温度,则执行如下第二停止供电步骤:将向所述半导体制冷片的供电电压设置为零,停止对所述半导体制冷片供电;若所述热端温度小于所述禁止温度,则继续执行如下热端保护温度下限判断步骤:判断所述热端温度是否达到或低于预设的热端保护温度下限,其中所述热端保护温度下限小于所述热端保护温度上限;若所述热端温度达到或低于所述热端保护温度下限,则执行所述制冷供电步骤;若所述热端温度大于所述热端保护温度下限,则执行如下第二降至维持电压步骤:降低或保持所述供电电压至所述维持电压。
可选地,所述第一数据获取步骤还包括:获取所述半导体冰箱的冰箱间室的平均温度与预设的目标温度的温差;所述第二数据获取步骤还包括:获取所述温差;而且所述制冷供电步骤包括:根据预设的PID调节规则,按公式U=UPID(ΔT)+Ubest确定的供电电压向所述半导体制冷片供电,其中,U为向所述半导体制冷片供电的供电电压,Ubest为使得所述半导体制冷片的制冷效率最高的最高效率电压,ΔT为所述冰箱间室的平均温度与预设的目标 温度的温差,UPID(ΔT)为根据所述PID调节规则对所述温差进行运算得出的数值。
可选地,在所述制冷供电步骤中,所述PID调节规则还被设置成:当所述温差大于等于预设的温差阈值时,使得所述供电电压等于使所述半导体制冷片产生最大制冷量的最大制冷量电压;当所述温差降低到所述温差阈值时,使得所述供电电压开始从所述最大制冷量电压下降。
可选地,所述维持电压为根据所述半导体冰箱最低制冷需求确定的最小制冷量电压;所述供电电压的最大值为一预设的最大供电电压,其等于使所述半导体制冷片产生最大制冷量的最大制冷量电压;所述供电电压的最小值为一预设的最小供电电压,其小于或等于所述最小制冷量电压。
可选地,在执行所述第二降至维持电压步骤后,所述供电电压控制方法循环回所述第二数据获取步骤继续执行;在执行所述第二停止供电步骤后,所述供电电压控制方法循环回所述第二数据获取步骤继续执行。
可选地,在执行所述制冷供电步骤后,所述供电电压控制方法循环回所述第一数据获取步骤继续执行。
根据本发明的另一方面,提供了一种半导体冰箱,包括供电电压控制系统,所述供电电压控制系统包括:热端温度传感器,配置成检测所述半导体冰箱的半导体制冷片的热端温度;主控板,配置成执行上述任一供电电压控制方法,确定向所述半导体制冷片供电的供电电压。
可选地,所述半导体冰箱还包括:间室温度传感器,配置成检测所述半导体冰箱的冰箱间室的平均温度;和温度设定模块,配置成设定所述冰箱间室内所要达到的目标温度。
本发明的半导体冰箱及其半导体制冷片的供电电压控制方法由于能够在热端温度达到或超出热端保护温度上限后,降低或保持向半导体制冷片供电的供电电压为预设的维持电压,因此能够兼顾对半导体制冷片的保护和制冷效果,即在对半导体制冷片进行保护时可继续对半导体冰箱供电,避免了对半导体冰箱的制冷效果带来过大负面影响。
进一步地,在本发明的供电电压控制方法中,当热端温度达到或超出禁止温度时,则停止对半导体制冷片供电,因此避免了热端温度过高时烧坏半导体制冷片。
进一步地,在本发明的供电电压控制方法中,当温差大于等于预设的温 差阈值时使得供电电压等于最大制冷量电压,因此能够在温差较大时以较高制冷效率迅速降低温度,使得温差迅速趋于一个较小值;当温差降低到温差阈值时使得供电电压开始从最大制冷量电压下降,因此能够避免降温过快,以免降低到远低于目标温度,造成不良制冷效果。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的半导体冰箱的半导体制冷片的供电电压控制方法的流程图;
图2是根据本发明一个实施例的供电电压控制方法在半导体制冷片热端温度较高时对其供电电压进行控制的示意性曲线图;
图3是根据本发明一个实施例的供电电压控制方法以较高制冷效率快速获得最大制冷量且将半导体冰箱的冰箱间室的平均温度精确控制到设定的目标温度的示意性曲线图;
图4是根据本发明一个实施例的半导体制冷片的供电电压与制冷效率及制冷量关系的示意性曲线图;
图5是根据本发明一个实施例的半导体冰箱的示意性框图。
具体实施方式
图1是根据本发明一个实施例的半导体冰箱的半导体制冷片的供电电压控制方法的流程图。在图1所示的实施例中,该供电电压控制方法可包括:
第一数据获取步骤101,采集半导体制冷片的热端温度Thot
第一热端禁止温度判断步骤102,判断热端温度Thot是否达到或超出预设的禁止温度;若热端温度Thot达到或超出禁止温度,则执行第一停止供电步骤103:将向半导体制冷片的供电电压U设置为零,停止对半导体制冷片供电。
热端保护温度上限判断步骤104,在热端温度Thot小于禁止温度时执行,判断热端温度Thot是否达到或超出预设的热端保护温度上限,其中热端保护 温度上限小于禁止温度;若热端温度Thot小于热端保护温度上限,则执行制冷供电步骤105:向半导体制冷片提供供电电压U。
在本发明的一些实施例中,第一数据获取步骤101还可以包括:获取冰箱间室的平均温度Tr与预设的目标温度TS的温差ΔT。其具体过程可以包括:获取预设的目标温度TS,并采集冰箱间室的平均温度Tr;计算平均温度Tr与目标温度TS之间的温差ΔT。在此实施例中,在制冷供电步骤105中,可以根据预设的PID调节规则,按公式U=UPID(ΔT)+Ubest确定的供电电压U向冰箱的半导体制冷片供电,其中U为向半导体制冷片供电的供电电压,Ubest为使得半导体制冷片的制冷效率最高的最高效率电压,ΔT为冰箱间室的平均温度与预设的目标温度的温差,UPID(ΔT)为根据PID调节规则对该温差ΔT进行运算得出的数值。
在本发明的另一些实施例中,在执行制冷供电步骤105后,本发明的供电电压控制方法可以循环回第一数据获取步骤101继续执行。
需要说明的是,在本发明供电电压控制方法的其他一些实施例中,第一热端禁止温度判断步骤102至热端保护温度上限判断步骤104并不是必须的。在这样的实施例中,在第一数据获取步骤101中可以仅仅采集温差ΔT,而无需采集热端温度Thot;在第一数据获取步骤101执行完毕后,直接执行制冷供电步骤105。
在本发明的一个实施例中,若热端温度Thot达到或超出热端保护温度上限,则执行第一降至维持电压步骤106:降低或保持供电电压U至预设的维持电压Ukeep。维持电压Ukeep为在环境温度过高、空气流通性差、湿度过大、温差较大等极端情况下能维持冰箱间室的平均温度Tr缓慢上升或者下降的电压,其的一个目的在于尽量保证热端的温度不大于预设的热端保护温度下限。例如,维持电压Ukeep可以是根据半导体冰箱最低制冷需求确定的最小制冷量电压(其将在后文描述)。
在本发明的另一个实施例中,在第一降至维持电压步骤106之后,依次执行第二数据获取步骤107、第二热端禁止温度判断步骤108。第二数据获取步骤107为:采集热端温度Thot,在本发明的一些实施例中,第二数据获取步骤107还可包括获取温差ΔT。第二热端禁止温度判断步骤108为:判断热端温度Thot是否达到或超出禁止温度。
上述第二热端禁止温度判断步骤108执行完毕后,若热端温度Thot达到 或超出禁止温度,则执行第二停止供电步骤109:将向半导体制冷片的供电电压U设置为零,停止对半导体制冷片供电;若热端温度Thot小于禁止温度,则执行热端保护温度下限判断步骤110:判断热端温度Thot是否达到或低于预设的热端保护温度下限,其中热端保护温度下限小于热端保护温度上限。在执行第二停止供电步骤109后,本发明的供电电压控制方法可以循环回第二数据获取步骤107继续执行。
上述热端保护温度下限判断步骤110执行完毕后,若热端温度Thot达到或低于热端保护温度下限,则执行制冷供电步骤105;若热端温度Thot大于热端保护温度下限,则执行第二降至维持电压步骤111:降低或保持供电电压U至维持电压Ukeep。这样在热端温度较高,但尚未足以达到停止对半导体制冷片供电的条件时,以较低的供电电压U满足冰箱的制冷量,也使得半导体制冷片的热端温度下降,从而在不停止制冷的情况下保护半导体制冷片。在执行第二降至维持电压步骤111后,本发明的供电电压控制方法可循环回第二数据获取步骤107继续执行。
图2是根据本发明一个实施例的供电电压控制方法在半导体制冷片热端温度较高时对其供电电压进行控制的示意性曲线图。在图2所示的实施例中,在例如环境温度过高、空气流通性差、湿度过大、温差ΔT大于等于预设的温差阈值ΔTthd等冰箱需要大的制冷量的情况下,以最大制冷量电压Umax-cold为供电电压,使得半导体制冷片的冷端较快制冷,热端温度Thot由一个低值逐渐升高到热端保护温度上限。在此过程中,不断进行热端保护温度上限判断步骤104。在热端保护温度上限判断步骤104的判定为达到或超出热端保护温度上限时,如图2所示,执行第一降至维持电压步骤106,使得供电电压U降低至维持电压Ukeep。由于供电电压U下降了,热端温度Thot也下降,在此过程中,依次执行第二数据获取步骤107、第二热端禁止温度判断步骤108。如图2所示,热端温度Thot并没有超过禁止温度,因此第二热端禁止温度判断步骤108的判定始终为否,根据前述方法,执行热端保护温度下限判断步骤110。当热端温度Thot达到热端保护温度下限,则执行制冷供电步骤105。由图2可以看出,若此时温差ΔT大于温差阈值ΔTthd,则根据PID调节规则得到的供电电压U可为最大制冷量电压Umax-cold。重复上述过程,直至冰箱间室的平均温度ΔT小于温差阈值ΔTthd后开始按PID调节规则降低电压。
图3是根据本发明一个实施例的供电电压控制方法以较高制冷效率快速获得最大制冷量且将半导体冰箱的冰箱间室的平均温度精确控制到设定的目标温度的示意性曲线图。如图3所示,PID调节规则可以被设置成:当温差ΔT大于等于预设的温差阈值ΔTthd时,使得供电电压U等于最大制冷量电压Umax-cold,这样能对热端进行迅速降温;当温差ΔT降低到温差阈值ΔTthd时,使得供电电压U开始从最大制冷量电压Umax-cold下降,这样不再以较大的供电电压对半导体制冷片进行供电,能够避免冰箱内的温度降低到远低于预设定值的温度而造成不良制冷效果。在制冷供电步骤105中,可以按此规则对半导体制冷片进行供电。
在本发明的一个实施例中,如图3所示,PID调节规则还可被设置成:当温差ΔT首次降低到零值后,使得供电电压U经历波动变化,以使温差ΔT等于或趋于零值的供电电压U向半导体制冷片供电。在制冷供电步骤105中,可按此规则对半导体制冷片进行供电。这样能够使得供电电压U最终稳定在最高效率电压Ubest附近。结合图3及图2可知,在图2中,当温差ΔT降低到预设的温差阈值ΔTthd内时,供电电压可为低于最大制冷量电压Umax-cold的某个值;然后,当温差ΔT首次降低到零值后,使得供电电压经历波动变化,以使温差ΔT等于或趋于零值的供电电压向半导体制冷片供电。
图4是根据本发明一个实施例的半导体制冷片的供电电压与制冷效率及制冷量关系的示意性曲线图。如图4所示,根据供电电压U与制冷效率的关系,可将供电电压U划分为4个区域:第一非经济区401(即供电电压U在0至Umin之间的区域)、高效区402(即供电电压U在Umin至Un之间的区域)、高制冷量区403(即供电电压U在Un至Umax之间的区域)、第二非经济区404(即供电电压U大于Umax的区域)。第一非经济区401的制冷量非常小,基本上不能满足冰箱的最低制冷需求;第二非经济区404中虽然半导体的制冷量本身可能满足冰箱的最低制冷需求,但是由于此区域所需的供电电压U高,功耗要比高效区402和高制冷量区403高很多;因此在本发明的实施例中,不使用第一非经济区401和第二非经济区404的供电电压U为半导体制冷片供电,而是使半导体制冷片的供电电压U位于高效区402和高制冷量区403。也就是说,在本发明的实施例中,将根据对半导体冰箱制冷效率的要求,根据实验确定所用半导体制冷片供电电压U的最 大值(即最大供电电压Umax)和最小值(即最小供电电压Umin),使半导体制冷片的工作电压位于这两个值所限定的高效区402和高制冷量区403内。
如图4所示,最大供电电压Umax可通过实验选取为最大制冷量电压Umax-cold,即:可将本发明中的PID调节规则设置成使其在前文所述的公式中使得供电电压U的最大值被确定为最大制冷量电压Umax-cold,也就是说,UPID(ΔT)在ΔT大于温差阈值ΔTthd时被赋值限定为最大制冷量电压Umax-cold减最高效率电压Ubest
也如图4所示,最小供电电压Umin可通过实验选取为第一非经济区401与高效区402划界的供电电压U,即最小制冷量电压Umin-cold,其例如用于满足半导体冰箱最低制冷需求。类似地,可将本发明实施例中的PID调节规则设置成使其在前文所述的公式中使得供电电压U的最小值被确定为最小制冷量电压Umin-cold。也就是说,UPID(ΔT)在ΔT小于一定阈值时可被赋值限定为最小制冷量电压Umin-cold减最高效率电压Ubest(此时计算出的电压数值为一负值)。在本发明的一些替代性实施例中,最小供电电压Umin也可略低于满足冰箱最小制冷量电压Umin-cold
此外,如本领域技术人员根据图4可认识到的,最高效率电压Ubest可经实验得到,其值显然处于最大制冷量电压Umax-cold和最小制冷量电压Umin-cold之间。
需要理解的是,维持电压Ukeep通常可在最小供电电压Umin与最高效率电压Ubest间取值。维持电压Ukeep的选取原则是考虑在冰箱处在环境温度过高、空气流通性差、湿度过大、温差较大等极端情况下时,使冰箱内的温度还能较快地降到最低到设定温度。被选取的维持电压Ukeep的值是在这些极端情况下,通过模拟实验得出,这个值与Umax-cold的差值不是很大。
图5是根据本发明一个实施例的半导体冰箱的示意性框图。在图5所示的实施例中,提供了一种半导体冰箱,包括供电电压控制系统,该供电电压控制系统可包括:热端温度传感器504,配置成检测半导体冰箱的半导体制冷片502的热端温度Thot;主控板501,配置成执行上述任一供电电压控制方法,确定向半导体制冷片502供电的供电电压U。
可选地,半导体冰箱还可包括:间室温度传感器503,配置成检测冰箱间室的平均温度Tr;温度设定模块505,配置成设定冰箱间室内所要达到的 目标温度TS
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种半导体冰箱的半导体制冷片的供电电压控制方法,包括:
    第一数据获取步骤:采集所述半导体制冷片的热端温度;热端保护温度上限判断步骤:判断所述热端温度是否达到或超出热端保护温度上限;
    若所述热端温度达到或超出所述热端保护温度上限,则执行如下第一降至维持电压步骤:降低或保持向所述半导体制冷片供电的供电电压为预设的维持电压;
    若热端温度小于所述热端保护温度上限,则执行如下制冷供电步骤:向所述半导体制冷片提供所述供电电压。
  2. 根据权利要求1所述的供电电压控制方法,在所述第一数据获取步骤与所述热端保护温度上限判断步骤之间还包括:
    第一热端禁止温度判断步骤:判断所述热端温度是否达到或超出预设的禁止温度,其中所述禁止温度大于所述热端保护温度上限;
    若所述热端温度达到或超出所述禁止温度,则执行第一停止供电步骤:将向所述半导体制冷片的供电电压设置为零,停止对所述半导体制冷片供电;
    若所述热端温度小于所述禁止温度,则继续执行所述热端保护温度上限判断步骤。
  3. 根据权利要求2所述的供电电压控制方法,在所述第一降至维持电压步骤后还包括:第二数据获取步骤:采集所述热端温度;第二禁止温度判断步骤:判断所述热端温度是否达到或超出所述禁止温度;
    若所述热端温度达到或超出所述禁止温度,则执行如下第二停止供电步骤:将向所述半导体制冷片的供电电压设置为零,停止对所述半导体制冷片供电;
    若所述热端温度小于所述禁止温度,则继续执行如下热端保护温度下限判断步骤:判断所述热端温度是否达到或低于预设的热端保护温度 下限,其中所述热端保护温度下限小于所述热端保护温度上限;
    若所述热端温度达到或低于所述热端保护温度下限,则执行所述制冷供电步骤;
    若所述热端温度大于所述热端保护温度下限,则执行如下第二降至维持电压步骤:降低或保持所述供电电压至所述维持电压。
  4. 根据权利要求3所述的供电电压控制方法,其中
    所述第一数据获取步骤还包括:获取所述半导体冰箱的冰箱间室的平均温度与预设的目标温度的温差;
    所述第二数据获取步骤还包括:获取所述温差;而且
    所述制冷供电步骤包括:根据预设的PID调节规则,按公式U=UPID(△T)+Ubest确定的供电电压向所述半导体制冷片供电,其中,U为向所述半导体制冷片供电的供电电压,Ubest为使得所述半导体制冷片的制冷效率最高的最高效率电压,△T为所述冰箱间室的平均温度与预设的目标温度的温差,UPID(△T)为根据所述PID调节规则对所述温差进行运算得出的数值。
  5. 根据权利要求4所述的供电电压控制方法,其中
    在所述制冷供电步骤中,所述PID调节规则还被设置成:
    当所述温差大于等于预设的温差阈值时,使得所述供电电压等于使所述半导体制冷片产生最大制冷量的最大制冷量电压;
    当所述温差降低到所述温差阈值时,使得所述供电电压开始从所述最大制冷量电压下降。
  6. 根据权利要求1所述的供电电压控制方法,其中
    所述维持电压为根据所述半导体冰箱最低制冷需求确定的最小制冷量电压;
    所述供电电压的最大值为一预设的最大供电电压,其等于使所述半导体制冷片产生最大制冷量的最大制冷量电压;
    所述供电电压的最小值为一预设的最小供电电压,其小于或等于所述最小制冷量电压。
  7. 根据权利要求3所述的供电电压控制方法,在执行所述第二降至维持电压步骤后,所述供电电压控制方法循环回所述第二数据获取步骤继续执行;
    在执行所述第二停止供电步骤后,所述供电电压控制方法循环回所述第二数据获取步骤继续执行。
  8. 根据权利要求1-7任一项所述的供电电压控制方法,在执行所述制冷供电步骤后,所述供电电压控制方法循环回所述第一数据获取步骤继续执行。
  9. 一种半导体冰箱,包括供电电压控制系统,其中所述供电电压控制系统包括:
    热端温度传感器,配置成检测所述半导体冰箱的半导体制冷片的热端温度;
    主控板,配置成执行权利要求1-8中任一项所述的供电电压控制方法,确定向所述半导体制冷片供电的供电电压。
  10. 根据权利要求9所述的半导体冰箱,还包括:
    间室温度传感器,配置成检测所述半导体冰箱的冰箱间室的平均温度;和
    温度设定模块,配置成设定所述冰箱间室内所要达到的目标温度。
PCT/CN2015/075166 2014-03-28 2015-03-26 半导体冰箱及其半导体制冷片的供电电压控制方法 WO2015144077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410122788.3A CN104329898B (zh) 2014-03-28 2014-03-28 半导体冰箱及其半导体制冷片的供电电压控制方法
CN201410122788.3 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015144077A1 true WO2015144077A1 (zh) 2015-10-01

Family

ID=52404669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075166 WO2015144077A1 (zh) 2014-03-28 2015-03-26 半导体冰箱及其半导体制冷片的供电电压控制方法

Country Status (2)

Country Link
CN (1) CN104329898B (zh)
WO (1) WO2015144077A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113188681A (zh) * 2021-04-28 2021-07-30 宁波奥克斯电气股份有限公司 一种安装贴合度测试方法和安装贴合度测试系统
CN113203246A (zh) * 2021-04-23 2021-08-03 河北稳控科技有限公司 一种基于陶瓷制冷片的快速控温装置及方法
CN114484924A (zh) * 2020-11-11 2022-05-13 青岛海尔特种电冰柜有限公司 半导体制冷设备及供电控制方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104329898B (zh) * 2014-03-28 2017-01-18 海尔集团公司 半导体冰箱及其半导体制冷片的供电电压控制方法
KR102281711B1 (ko) 2017-03-21 2021-07-27 엘지전자 주식회사 냉장고
KR102304277B1 (ko) 2017-03-21 2021-09-23 엘지전자 주식회사 냉장고
CN108019982B (zh) * 2017-11-28 2020-05-26 四川航天系统工程研究所 一种半导体热电制冷器驱动控制方法
CN110109494B (zh) * 2019-05-28 2021-08-24 东莞铭普光磁股份有限公司 热电制冷器的控制方法及控制装置
CN110425817B (zh) * 2019-08-28 2023-10-03 广东富信科技股份有限公司 母乳冷藏装置的自适应温度调节方法、装置及系统
CN114234475A (zh) * 2020-09-09 2022-03-25 青岛海尔特种电冰柜有限公司 半导体制冷装置的控制方法
CN114251867B (zh) * 2020-09-25 2023-09-29 青岛海尔特种电冰柜有限公司 半导体制冷装置的控制方法
CN114508879B (zh) * 2020-11-16 2023-11-14 青岛海尔特种电冰柜有限公司 半导体制冷设备的制冷控制方法
CN114739078B (zh) * 2021-01-07 2023-10-24 贵州海尔电器有限公司 半导体制冷设备及其控制方法
CN114739077B (zh) * 2021-01-07 2023-07-14 贵州海尔电器有限公司 半导体制冷设备及其控制方法
CN113982877A (zh) * 2021-11-19 2022-01-28 天津市通洁高压泵制造有限公司 一种用于气瓶疲劳测试的高压柱塞泵
CN114963610A (zh) * 2022-05-26 2022-08-30 中元汇吉生物技术股份有限公司 试剂制冷系统及其控制方法和分析仪

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112054A (en) * 1978-02-21 1979-09-01 Nec Corp Temperature controller
CN2528044Y (zh) * 2001-12-24 2002-12-25 苏州三星电子有限公司 半导体制冷冰箱的电源电压控制电路
JP2005331230A (ja) * 2004-04-21 2005-12-02 Ricoh Co Ltd 冷却装置、冷却方法、プログラム、記録媒体、及び電子装置
US20120312030A1 (en) * 2011-06-07 2012-12-13 B/E Aerospace, Inc. Thermoelectric Cooling System for a Food and Beverage Compartment
CN202748681U (zh) * 2012-08-14 2013-02-20 宁波婷微电子科技有限公司 半导体冰箱节能控制器
CN103438630A (zh) * 2013-09-06 2013-12-11 广东富信科技股份有限公司 半导体制冷系统控制方法及半导体制冷系统
CN104331097A (zh) * 2014-03-28 2015-02-04 海尔集团公司 半导体制冷冰箱及其温度控制方法
CN104329898A (zh) * 2014-03-28 2015-02-04 海尔集团公司 半导体冰箱及其半导体制冷片的供电电压控制方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11146830A (ja) * 1996-12-27 1999-06-02 Eco Twenty One:Kk 保管用ボックス装置
CN2685943Y (zh) * 2004-02-04 2005-03-16 博泰光电股份有限公司 具双功能的温度控制装置
CN2754031Y (zh) * 2004-09-14 2006-01-25 广东科龙电器股份有限公司 一种带精确控温装置的电冰箱
US20100326096A1 (en) * 2008-11-10 2010-12-30 Brent Alden Junge Control sytem for bottom freezer refrigerator with ice maker in upper door
CN102155814B (zh) * 2011-01-19 2012-08-29 顺德职业技术学院 变电流半导体制冷器
CN102496839B (zh) * 2011-12-21 2013-04-10 于堃 一种小型连续式co2激光器
CN102738718A (zh) * 2012-06-29 2012-10-17 西北工业大学 一种用于电柜的制冷型除湿器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112054A (en) * 1978-02-21 1979-09-01 Nec Corp Temperature controller
CN2528044Y (zh) * 2001-12-24 2002-12-25 苏州三星电子有限公司 半导体制冷冰箱的电源电压控制电路
JP2005331230A (ja) * 2004-04-21 2005-12-02 Ricoh Co Ltd 冷却装置、冷却方法、プログラム、記録媒体、及び電子装置
US20120312030A1 (en) * 2011-06-07 2012-12-13 B/E Aerospace, Inc. Thermoelectric Cooling System for a Food and Beverage Compartment
CN202748681U (zh) * 2012-08-14 2013-02-20 宁波婷微电子科技有限公司 半导体冰箱节能控制器
CN103438630A (zh) * 2013-09-06 2013-12-11 广东富信科技股份有限公司 半导体制冷系统控制方法及半导体制冷系统
CN104331097A (zh) * 2014-03-28 2015-02-04 海尔集团公司 半导体制冷冰箱及其温度控制方法
CN104329898A (zh) * 2014-03-28 2015-02-04 海尔集团公司 半导体冰箱及其半导体制冷片的供电电压控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114484924A (zh) * 2020-11-11 2022-05-13 青岛海尔特种电冰柜有限公司 半导体制冷设备及供电控制方法
CN114484924B (zh) * 2020-11-11 2024-05-14 青岛海尔特种电冰柜有限公司 半导体制冷设备及供电控制方法
CN113203246A (zh) * 2021-04-23 2021-08-03 河北稳控科技有限公司 一种基于陶瓷制冷片的快速控温装置及方法
CN113203246B (zh) * 2021-04-23 2022-06-21 河北稳控科技有限公司 一种基于陶瓷制冷片的快速控温装置及方法
CN113188681A (zh) * 2021-04-28 2021-07-30 宁波奥克斯电气股份有限公司 一种安装贴合度测试方法和安装贴合度测试系统
CN113188681B (zh) * 2021-04-28 2024-02-09 宁波奥克斯电气股份有限公司 一种安装贴合度测试方法和安装贴合度测试系统

Also Published As

Publication number Publication date
CN104329898A (zh) 2015-02-04
CN104329898B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2015144077A1 (zh) 半导体冰箱及其半导体制冷片的供电电压控制方法
WO2015144076A1 (zh) 半导体制冷冰箱及其温度控制方法
WO2015144078A1 (zh) 一种用于半导体冰箱的控制系统
JP6020714B2 (ja) 冷却システムの制御装置
CN104133502B (zh) 冷却发热装置的方法和系统
WO2019128944A1 (zh) 冰箱及其化霜控制方法
WO2018233147A1 (zh) 新风机及其的控制方法和装置
CN104949290B (zh) 基站空调的控制方法和控制装置
KR20100049681A (ko) 압축기 보호 시스템 및 방법
KR102149272B1 (ko) 중앙냉방 시스템 및 그의 제어방법
JP2007155232A (ja) 冷水循環システム
WO2019128943A1 (zh) 冰箱及其化霜控制方法
US9696076B2 (en) Method of controlling one or more fans of a heat rejecting heat exchanger
CN106322639A (zh) 空调器的排气温度限频保护控制方法
TW201346190A (zh) 空調裝置之控制方法
JP6052883B2 (ja) 冷水循環システム
CN107270583B (zh) 热泵机组的控制方法
WO2019015536A1 (zh) 一种空调器的控制方法
JP2009063290A (ja) 冷水循環システム
JP2009115452A (ja) 冷水循環システム
JP6805612B2 (ja) 冷却装置および制御装置
KR101518981B1 (ko) 보일러 시스템
KR100826926B1 (ko) 수냉식 공기조화기 및 그 제어방법
CN110848899B (zh) 一种变频空调运行控制方法、计算机可读存储介质及空调
JP6430758B2 (ja) 冷却システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769334

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15769334

Country of ref document: EP

Kind code of ref document: A1