WO2015141714A1 - 冷却器およびそれを用いた半導体モジュール - Google Patents
冷却器およびそれを用いた半導体モジュール Download PDFInfo
- Publication number
- WO2015141714A1 WO2015141714A1 PCT/JP2015/058023 JP2015058023W WO2015141714A1 WO 2015141714 A1 WO2015141714 A1 WO 2015141714A1 JP 2015058023 W JP2015058023 W JP 2015058023W WO 2015141714 A1 WO2015141714 A1 WO 2015141714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- cooler
- fin
- top plate
- path
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/473—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
- H01L25/072—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/18—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/433—Auxiliary members in containers characterised by their shape, e.g. pistons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/467—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a cooler with improved cooling performance and a semiconductor module using the same.
- Patent Document 1 discloses a cooling flow path for cooling a portion to be cooled of an electronic component, an introduction flow path for introducing a cooling medium from an inlet to the cooling flow path, and discharging the cooling medium from the cooling flow path to an outlet.
- a discharge channel, and at least one of the introduction channel and the discharge channel is larger at a position farther from the predetermined position than the predetermined position than at the predetermined position.
- a characteristic cooler is described.
- Patent Document 2 describes a cooler having corrugated fins.
- JP 2012-174963 A (FIG. 1) JP2013-165298A (FIG. 3)
- Patent Document 1 has a structure in which the flow area of at least one of the introduction flow path and the discharge flow path is larger at a position farther than the predetermined position than the predetermined position, the inlet and the outlet. There is a problem that the pressure loss in the vicinity of is increased, and the power of the pump through which the refrigerant flows is increased. In order to reduce the power of the pump, it is necessary to enlarge the flow path area in the vicinity of the inlet and the outlet, which causes a problem that the cooler becomes large.
- Patent Document 2 since the end of the fin on the refrigerant outlet side is bent in the refrigerant discharge direction, the refrigerant fluctuation at the end of the fin on the refrigerant outlet side is small as in the simulation result of the comparative example described later. There was a problem that the heat transfer performance of the cooler was lowered.
- an object of the present invention is to provide a cooler with improved cooling performance and a semiconductor module using the same.
- a cooler includes a top plate as a cooling main surface, a bottom plate disposed opposite to the top plate, and a side wall connecting the outer periphery of the top plate and the bottom plate.
- a jacket provided with a refrigerant flow space inside the top plate, the bottom plate and the side wall; a refrigerant inflow pipe and a refrigerant outflow pipe connected to two through holes provided in the side wall;
- a refrigerant introduction path that forms part of the refrigerant flow space and communicates with the refrigerant inflow pipe, a refrigerant lead-out path that forms part of the refrigerant flow space and communicates with the refrigerant outflow pipe, the refrigerant introduction path, and the refrigerant
- a fin unit including a plurality of fins, each of which has a main surface spaced apart from the lead-out path and thermally connected to the top plate.
- the end of the refrigerant in the refrigerant introduction path Re disposed oriented at an acute angle to the direction, the second end of the fin is characterized in that it is arranged and oriented at an acute angle relative to the direction of flow of the refrigerant in the refrigerant lead-out passage.
- the refrigerant flows into the fin unit at the first end of the fin, the flow direction of which is changed acutely from the flow direction of the refrigerant introduction path, and flows into the fin unit at the second end of the fin. Since the flow direction is changed at an acute angle from the flow direction of the refrigerant and flows out in the flow direction of the refrigerant outlet passage, the refrigerant fluctuates in the vicinity of the first and second ends, and the fluctuation propagates between the fins in the center of the fin unit. But it fluctuates. If it does so, the heat transfer resistance of a refrigerant
- coolant will become small and the heat transfer performance of a fin will improve.
- a baffle plate is disposed in the refrigerant outlet path.
- the fluctuation of the refrigerant flow between the fin unit and the refrigerant outlet path can be promoted, so that the cooling performance of the cooler can be improved.
- the height of the baffle plate is lower than the height of the refrigerant outlet path.
- the refrigerant passes through the gap between the baffle plate and the top plate or the gap between the baffle plate and the bottom plate. If it does so, the pressure loss of the refrigerant path which flows toward a refrigerant
- the baffle plate is disposed in contact with the bottom plate.
- the strength of the bottom plate of the jacket can be reinforced by the baffle plate.
- the material of the jacket may be metal or resin.
- the baffle plate is disposed in contact with the top plate.
- the heat transfer area can be increased, and further the cooling performance of the cooler can be improved.
- the baffle plate is disposed away from a side wall facing the side wall connected to the refrigerant outflow pipe.
- an increase in pressure loss can be mitigated even when the baffle plate is raised.
- the refrigerant flows along the baffle plate and then flows to the refrigerant outflow pipe.
- the main surface of the fin is corrugated.
- the surface area of the fin per unit area can be increased, and heat transfer from the fin to the refrigerant can be improved.
- the top plate when the corrugated fins are connected to the top plate, the top plate can be improved in rigidity, and the top plate can be made thinner than when the straight fins are used. Since the thickness of the top plate is reduced, the thermal resistance is reduced and the cooling performance of the cooler can be improved.
- the cooler of the present invention includes a first wavy fin and a second wavy fin adjacent to the first wavy fin, and the convex portion of the second wavy fin includes the first wavy fin. It is preferable that the first corrugated fin is on the side of the first corrugated fin than a line connecting adjacent concave portions linearly.
- the flow direction of the refrigerant introduction path and the flow direction of the refrigerant discharge path are antiparallel.
- the cooler can be made compact.
- the refrigerant is preferably a liquid.
- the semiconductor module of the present invention includes a semiconductor module unit in which a semiconductor element is disposed on a surface of the top plate opposite to a surface to which the fin unit is connected.
- the heat of the semiconductor module unit can be efficiently transferred to the cooler, and the rated output of the semiconductor module can be increased.
- the flow direction of the refrigerant flowing into the fin unit from the refrigerant introduction path and the flow of the refrigerant flowing out from the fin unit to the refrigerant discharge path can be changed in the flow direction at an acute angle.
- the refrigerant fluctuates in the vicinity of the second end, and the refrigerant moves so as to fluctuate between the fins in the center of the fin unit. If it does so, the heat transfer resistance of a refrigerant
- coolant will become small and the heat transfer performance of a fin will improve.
- FIG. 1 is a bird's-eye view of a semiconductor module in which a cooler according to a first embodiment of the present invention and a plurality of semiconductor module units are combined.
- FIG. 2 is a plan view of the inside of the cooler according to the first embodiment of the present invention.
- FIG. 3 is a cross-sectional view of the cooler according to the first embodiment of the present invention.
- the cooler 100 includes a top plate 1, a bottom plate 2a, and a side wall 2b, and the upper portion of the side wall 2b is joined to the back surface of the top plate 1 so that the refrigerant flow space 2c is formed inside.
- the jacket 2 provided, the refrigerant inflow pipe 3 and the refrigerant outflow pipe 4 respectively connected to the two through holes 2d provided in the side wall 2b, and part of the refrigerant flow space 2c are communicated with the refrigerant inflow pipe 3
- the fin unit 5 has a plurality of fins 5a which are bent in a wave shape when seen in a plan view and are arranged in a state where the main surfaces are separated from each other.
- the first end 5b of each fin 5a is inclined so as to form an acute angle with respect to the refrigerant flow direction 6 in the refrigerant introduction path 3a, in other words, the refrigerant inflow direction along the first end 5b is returned.
- the second ends 5c of the fins 5a are arranged so as to form an acute angle with the refrigerant flow direction 7 in the refrigerant outlet passage 4a, in other words, the refrigerant flow along the second ends 5c. It is arranged so that the outflow direction is inclined in the returning direction.
- the third end 5 d located on the top plate 1 side of the fin unit 5 is thermally connected to the top plate 1.
- the flow direction 6 of the refrigerant introduction path 3a and the flow direction 7 of the refrigerant outlet path 4a are antiparallel.
- the height of the baffle plate 8 is lower than the height of the refrigerant flow space 2 c and is disposed in the refrigerant outlet passage 4 a and is separated from the side wall facing the side surface 2 b connected to the refrigerant outlet pipe 4.
- the baffle plate 8 is disposed in contact with the bottom plate 2a in the refrigerant outlet passage 4a.
- Each fin 5a of the fin unit 5 has a corrugated main surface between the end 5b of the fin 5a and the end 5c. If it does in this way, seeing a cooler from the upper surface, the surface area of the fin per unit area can be increased, and the cooling capacity of a cooler can be improved.
- the interval between the fins is determined in consideration of the diameter of particles that may be mixed into the refrigerant.
- the cooler provided with the corrugated fin includes a first corrugated fin and a second corrugated fin adjacent to the first corrugated fin, and the convex portion of the second corrugated fin includes the first corrugated fin. It is desirable for the structure to be closer to the first wavy fin side than the line connecting the concave portions adjacent to each other in a straight line. In other words, it is desirable that the fin interval be such that a linear refrigerant path does not occur between the first wavy fins and the second wavy fins. When expressed in mathematical formulas, the fin interval satisfies the following formulas 1 and 2.
- L is the minimum wavy fin spacing at which clogging does not occur between the wavy fins
- Pf is the fin spacing
- Pp is the distance between adjacent vertices of the wavy fins
- H is the recess of the wavy fin.
- ⁇ is the flow direction 7 in the refrigerant outlet passage 4a and the second end 5c of the corrugated fin 5a. Means angle.
- the simulation was performed with the angle ⁇ formed as 65 degrees and the fin spacing of 0.9 mm.
- FIG. 4 is a cross-sectional view of the cooler 101 according to the second embodiment of the present invention.
- the baffle plate 8 is disposed in contact with the top plate 1 in the refrigerant outlet path 4a.
- Other configurations of the cooler of the second embodiment are the same as those of the first embodiment.
- FIG. 5 is a plan view of the inside of the cooler 102 according to the third embodiment of the present invention.
- the cooler 102 of the third embodiment is different from the first embodiment in the fin unit 5 and the other parts are the same. That is, in the cooler 102 of the third embodiment, the space between the first end 5b and the second end 5c of each fin 5a is linear.
- the first end 5b of each fin 5a is arranged so as to form an acute angle with respect to the flow direction 6 of the refrigerant in the refrigerant introduction path 3a, and the first end 5b of the fin 5a.
- the second end 5c is arranged so as to make an acute angle with the refrigerant flow direction 7 in the refrigerant outlet passage 4a.
- the baffle plate 8 is disposed in contact with the bottom plate 2a in the refrigerant outlet path 4a, the baffle plate 8 may be disposed in contact with the top plate 1 as in the second embodiment.
- FIG. 6 is a plan view of the inside of the cooler of the comparative example.
- the cooler 103 according to the comparative example has the same configuration as that of the first embodiment except that the fin unit 5 of the first embodiment is reversed left and right. That is, a plurality of the fin units 5 of the comparative example are arranged in a state where the main surfaces of the bent corrugated fins 5e are separated from each other, and the first ends 5f of the fins 5e are in the refrigerant flow direction 6 in the refrigerant introduction path 3a.
- the refrigerant inflow direction along the first end 5f is oriented so as to incline in the traveling direction, and the second end 5g of the fin 5d is connected to the refrigerant outlet passage 4a.
- the refrigerant is disposed so that the obtuse angle with respect to the refrigerant flow direction 7 in other words, in other words, the refrigerant outflow direction along the second end 5g is inclined in the traveling direction.
- a third end located on the top plate 1 side of the fin unit 5 is thermally connected to the top plate 1.
- the thermal resistance of the semiconductor chip on the refrigerant outflow side was 0.145 (° C./W) in the structure of Example 1, In the structure of the comparative example, it was 0.147 (° C./W).
- Example 1 improved the cooling performance of the cooler by 1.4% compared to the structure of the comparative example.
- Example 4 A fourth embodiment showing an example of the semiconductor module of the present invention will be described with reference to FIG.
- This semiconductor module 300 is a combination of the cooler according to the first embodiment of the present invention and a plurality of semiconductor module units.
- the semiconductor module 300 includes a plurality of semiconductor module units 200 having semiconductor elements on the surface opposite to the surface on which the fin units 5 of the top plate 1 of the cooler of Embodiment 1 are disposed.
- the semiconductor module unit 200 includes at least one set of circuits configured by connecting an insulated gate bipolar transistor (IGBT) and a free wheeling diode (FWD) in antiparallel.
- a three-phase inverter circuit is configured by combining a plurality of semiconductor module units 200 in one semiconductor module. Since the other configuration of the cooler is the same as the structure of the cooler of the first embodiment, detailed description thereof is omitted.
- a cooler with improved cooling performance and a semiconductor module using the cooler can be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
本発明に係る第1の実施例について説明する。図1は、本発明の第1の実施例に係る冷却器と複数の半導体モジュールユニットを組み合わせた半導体モジュールの鳥瞰図である。図2は、本発明の第1の実施例に係る冷却器の内部の平面図である。図3は、本発明の第1の実施例に係る冷却器の断面図である。
H=Pp/(2tanθ)・・・式2
本発明に係る第2の実施例について説明する。図4は、本発明の第2の実施例に係る冷却器101の断面図である。第2の実施例の冷却器は、図4に示すように、邪魔板8が、冷媒導出路4aにおいて天板1に接触して配置されている。第2の実施例の冷却器のその他の構成は、第1の実施例と同じである。
本発明に係る第3の実施例について説明する。図5は、本発明の第3の実施例に係る冷却器102の内部の平面図である。第3の実施例の冷却器102は、第1の実施例とはフィンユニット5が相違しており、その他の部分は、同じである。すなわち、第3の実施例の冷却器102では、各フィン5aの第一の端5bと第二の端5cとの間が直線状になっている。そして、第1の実施例と同様に、各フィン5aの第一の端5bは、冷媒導入路3aにおける冷媒の流れ方向6に対して鋭角をなすように配向して配置され、フィン5aの第二の端5cは、冷媒導出路4aにおける冷媒の流れ方向7に対して鋭角をなすように配向して配置されている。邪魔板8は、冷媒導出路4aにおいて底板2aに接触して配置されているが、第2の実施例と同様に、邪魔板8を天板1に接触して配置してもよい。
比較例について説明する。図6は、比較例の冷却器の内部の平面図である。比較例に係る冷却器103は、上記実施例1のフィンユニット5を左右逆にした点を除いて、実施例1と同じ構成を備えている。すなわち、比較例のフィンユニット5は、曲折した波状のフィン5eの主面をそれぞれ離間させた状態で複数枚配置され、フィン5eの第一の端5fが冷媒導入路3aにおける冷媒の流れ方向6に対して鈍角をなすように、言い換えると、第一の端5fに沿った冷媒の流入方向が進行方向に傾くように配向して配置され、フィン5dの第二の端5gが冷媒導出路4aにおける冷媒の流れ方向7に対して鈍角をなすように、言い換えると、第二の端5gに沿った冷媒の流出方向が進行方向に傾くように配向して配置されている。そして、フィンユニット5の天板1側に位置する第三の端が天板1に熱的に接続されている。
本発明の半導体モジュールの一例を示す第4の実施例について、図1を参照して説明する。この半導体モジュール300は、本発明の第1の実施例に係る冷却器と複数の半導体モジュールユニットを組み合わせたものである。半導体モジュール300は、実施例1の冷却器の天板1のフィンユニット5が配置された面とは反対側の面に、半導体素子を持った半導体モジュールユニット200を複数備えている。半導体モジュールユニット200は、絶縁ゲートバイポーラトランジスタ(IGBT:Insulated Gate Bipolar Transistor)と、フリーホイーリングダイオード(FWD:Free Wheeling Diode)を逆並列に接続して構成される回路を少なくとも1組備えている。1つの半導体モジュールに複数の半導体モジュールユニット200を組み合せて3相のインバーター回路を構成している。それ以外の冷却器の構成は、実施例1の冷却器の構造と同じであるため、詳細な説明は省略する。
2 ジャケット
2a 底板
2b 側壁
2c 冷媒通流空間
2d 貫通孔
3 冷媒流入配管
3a 冷媒導入路
4 冷媒流出配管
4a 冷媒導出路
5 フィンユニット
5a フィン
5b フィンの第一の端
5c フィンの第二の端
5d フィンの第三の端
6 冷媒の流れ方向
7 冷媒の流れ方向
8 邪魔板
100 冷却器
101 冷却器
102 冷却器
103 冷却器
200 半導体モジュールユニット
300 半導体モジュール
Claims (11)
- 冷却主面である天板と、前記天板に対向配置された底板と、前記天板及び前記底板の外周を接続する側壁と、を有し、前記天板、前記底板および前記側壁で囲まれる内部に冷媒通流空間を備えたジャケットと、
前記側壁に設けられた2つの貫通孔にそれぞれ接続された冷媒流入配管および冷媒流出配管と、
前記冷媒通流空間の一部をなし前記冷媒流入配管に連通する冷媒導入路と、
前記冷媒通流空間の一部をなし前記冷媒流出配管に連通する冷媒導出路と、
前記冷媒導入路及び冷媒導出路との間にあって、主面がそれぞれ離間して配置され、前記天板と熱的に接続された、複数枚のフィンからなるフィンユニットと、
を備える冷却器において、
前記フィンの第一の端が前記冷媒導入路における冷媒の流れ方向に対して鋭角に配向して配置され、前記フィンの第二の端が前記冷媒導出路における冷媒の流れ方向に対して鋭角に配向して配置されていることを特徴とする冷却器。 - 請求項1に記載の冷却器において、
前記冷媒導出路に邪魔板が配置されていることを特徴とする冷却器。 - 請求項2に記載の冷却器において、
前記邪魔板の高さが前記冷媒導出路の高さよりも低いことを特徴とする冷却器。 - 請求項3に記載の冷却器において、
前記邪魔板は、前記底板に接して配置されていることを特徴とする冷却器。 - 請求項3に記載の冷却器において、
前記邪魔板は、前記天板に接して配置されていることを特徴とする冷却器。 - 請求項2~5のいずれか一項に記載の冷却器において、
前記邪魔板は、前記冷媒流出配管を接続した側壁と対向する側壁からは離間して配置されていることを特徴とする冷却器。 - 請求項2~6のいずれか一項に記載の冷却器において、
前記フィンの主面は、波状であることを特徴とする冷却器。 - 請求項7に記載の冷却器において、
第1の波状フィンと、前記第1の波状フィンに隣り合う第2の波状フィンを備え、
前記第2の波状フィンの凸部が、前記第1の波状フィンの隣り合う凹部を直線状に結んだ線よりも前記第1の波状フィン側にあることを特徴とする冷却器。 - 請求項1~8のいずれか一項に記載の冷却器において、
前記冷媒導入路の流れ方向と、前記冷媒導出路の流れ方向とが、逆平行であることを特徴とする冷却器。 - 請求項1~9のいずれか一項に記載の冷却器において、
前記冷媒は、液体であることを特徴とする冷却器。 - 請求項1~10のいずれか一項に記載の冷却器を備えた半導体モジュールにおいて、
前記天板の、前記フィンユニットが接続された面とは反対側の面に、半導体素子を配置した半導体モジュールユニットを備えることを特徴とする半導体モジュール。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580002170.6A CN105637632B (zh) | 2014-03-20 | 2015-03-18 | 冷却器及使用该冷却器的半导体模块 |
JP2016508756A JP6406348B2 (ja) | 2014-03-20 | 2015-03-18 | 冷却器およびそれを用いた半導体モジュール |
US15/027,419 US9960100B2 (en) | 2014-03-20 | 2015-03-18 | Cooler and semiconductor module using same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-057802 | 2014-03-20 | ||
JP2014057802 | 2014-03-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015141714A1 true WO2015141714A1 (ja) | 2015-09-24 |
Family
ID=54144678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/058023 WO2015141714A1 (ja) | 2014-03-20 | 2015-03-18 | 冷却器およびそれを用いた半導体モジュール |
Country Status (4)
Country | Link |
---|---|
US (1) | US9960100B2 (ja) |
JP (1) | JP6406348B2 (ja) |
CN (1) | CN105637632B (ja) |
WO (1) | WO2015141714A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105514064A (zh) * | 2016-01-25 | 2016-04-20 | 中国电子科技集团公司第三十八研究所 | 散热器 |
JP2020035927A (ja) * | 2018-08-30 | 2020-03-05 | 富士電機株式会社 | 冷却装置、半導体モジュールおよび車両 |
CN113068378A (zh) * | 2021-03-23 | 2021-07-02 | 郑州职业技术学院 | 一种计算机机房服务器机柜冷却装置 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106104797B (zh) * | 2014-03-25 | 2018-11-13 | 京瓷株式会社 | 流路构件以及半导体模块 |
JP6327271B2 (ja) * | 2015-04-17 | 2018-05-23 | 株式会社デンソー | 熱交換器 |
JP6477276B2 (ja) * | 2015-06-12 | 2019-03-06 | 富士通株式会社 | クーリングプレート及びクーリングプレートを備える情報処理装置 |
TWI635248B (zh) | 2016-09-02 | 2018-09-11 | 宏碁股份有限公司 | 蒸發器及其製作方法 |
JP6636996B2 (ja) * | 2017-07-11 | 2020-01-29 | ファナック株式会社 | Ldモジュール冷却装置及びレーザ装置 |
JP6951786B2 (ja) * | 2017-08-29 | 2021-10-20 | 株式会社Welcon | ヒートシンク |
JP6918218B2 (ja) * | 2018-05-01 | 2021-08-11 | 三菱電機株式会社 | 半導体装置 |
JP2023096940A (ja) * | 2021-12-27 | 2023-07-07 | ニデック株式会社 | 放熱部材および冷却装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008187754A (ja) * | 2007-01-26 | 2008-08-14 | Aisin Aw Co Ltd | 発熱体冷却構造及び駆動装置 |
JP2011040554A (ja) * | 2009-08-11 | 2011-02-24 | Showa Denko Kk | 液冷式冷却装置 |
WO2013054887A1 (ja) * | 2011-10-12 | 2013-04-18 | 富士電機株式会社 | 半導体モジュール用冷却器及び半導体モジュール |
JP2013165298A (ja) * | 2013-05-17 | 2013-08-22 | Toyota Industries Corp | 液冷式冷却装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4765397A (en) * | 1986-11-28 | 1988-08-23 | International Business Machines Corp. | Immersion cooled circuit module with improved fins |
JP3525498B2 (ja) * | 1994-07-13 | 2004-05-10 | 株式会社デンソー | 沸騰冷却装置 |
MY115676A (en) * | 1996-08-06 | 2003-08-30 | Advantest Corp | Printed circuit board with electronic devices mounted thereon |
JP4156132B2 (ja) * | 1999-06-15 | 2008-09-24 | 株式会社Pfu | 半導体モジュール装置 |
TWM289878U (en) * | 2005-11-11 | 2006-04-21 | Cooler Master Co Ltd | Heat-dissipation structure of water-cooling type parallel runner |
EP1882893A3 (en) * | 2006-07-26 | 2013-05-01 | Furukawa-Sky Aluminum Corporation | Heat exchanger |
JP4861840B2 (ja) * | 2007-01-26 | 2012-01-25 | アイシン・エィ・ダブリュ株式会社 | 発熱体冷却構造及び駆動装置 |
JP2009147107A (ja) * | 2007-12-14 | 2009-07-02 | Toyota Motor Corp | 冷却フィンおよび冷却フィンの製造方法 |
WO2009104575A1 (ja) * | 2008-02-19 | 2009-08-27 | 昭和電工株式会社 | パイプ接続部品の製造方法、ケーシング構成部材の製造方法および中空部品へのパイプ接続構造 |
US8230903B2 (en) * | 2008-04-18 | 2012-07-31 | International Business Machines Corporation | Low profile heat sink for semiconductor devices |
JP2011091301A (ja) * | 2009-10-26 | 2011-05-06 | Toyota Industries Corp | 液冷式冷却装置 |
JP2012174963A (ja) | 2011-02-23 | 2012-09-10 | Toyota Motor Corp | 冷却器 |
JP6006480B2 (ja) | 2011-07-29 | 2016-10-12 | 株式会社ティラド | 液冷ヒートシンク |
US9408330B2 (en) * | 2012-04-18 | 2016-08-02 | International Business Machines Coporation | Apparatus to cool a computing device |
US20140352937A1 (en) * | 2013-06-03 | 2014-12-04 | Nathanael Draht | Injection plate for microstructure water cooling units for an electrical or electronic component |
JP5983565B2 (ja) * | 2013-08-30 | 2016-08-31 | 株式会社デンソー | 冷却器 |
JP6247090B2 (ja) * | 2013-12-26 | 2017-12-13 | 昭和電工株式会社 | 液冷式冷却装置および液冷式冷却装置用放熱器の製造方法 |
-
2015
- 2015-03-18 US US15/027,419 patent/US9960100B2/en active Active
- 2015-03-18 WO PCT/JP2015/058023 patent/WO2015141714A1/ja active Application Filing
- 2015-03-18 JP JP2016508756A patent/JP6406348B2/ja active Active
- 2015-03-18 CN CN201580002170.6A patent/CN105637632B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008187754A (ja) * | 2007-01-26 | 2008-08-14 | Aisin Aw Co Ltd | 発熱体冷却構造及び駆動装置 |
JP2011040554A (ja) * | 2009-08-11 | 2011-02-24 | Showa Denko Kk | 液冷式冷却装置 |
WO2013054887A1 (ja) * | 2011-10-12 | 2013-04-18 | 富士電機株式会社 | 半導体モジュール用冷却器及び半導体モジュール |
JP2013165298A (ja) * | 2013-05-17 | 2013-08-22 | Toyota Industries Corp | 液冷式冷却装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105514064A (zh) * | 2016-01-25 | 2016-04-20 | 中国电子科技集团公司第三十八研究所 | 散热器 |
JP2020035927A (ja) * | 2018-08-30 | 2020-03-05 | 富士電機株式会社 | 冷却装置、半導体モジュールおよび車両 |
JP7200549B2 (ja) | 2018-08-30 | 2023-01-10 | 富士電機株式会社 | 冷却装置、半導体モジュールおよび車両 |
CN113068378A (zh) * | 2021-03-23 | 2021-07-02 | 郑州职业技术学院 | 一种计算机机房服务器机柜冷却装置 |
Also Published As
Publication number | Publication date |
---|---|
US20160379914A1 (en) | 2016-12-29 |
JP6406348B2 (ja) | 2018-10-17 |
JPWO2015141714A1 (ja) | 2017-04-13 |
US9960100B2 (en) | 2018-05-01 |
CN105637632A (zh) | 2016-06-01 |
CN105637632B (zh) | 2019-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6406348B2 (ja) | 冷却器およびそれを用いた半導体モジュール | |
JP6512266B2 (ja) | 半導体装置 | |
JP5975110B2 (ja) | 半導体装置 | |
JP5983565B2 (ja) | 冷却器 | |
JP5523542B1 (ja) | 冷却装置 | |
JP5901343B2 (ja) | 冷却器及び冷却装置 | |
US11523540B2 (en) | Cooling device | |
US10015907B2 (en) | Heat dissipating device | |
US20150221579A1 (en) | Heat dissipation device and semiconductor device | |
US10004159B2 (en) | Water-cooling radiator unit and device thereof | |
KR20130031825A (ko) | 냉각기 | |
JP2008041750A (ja) | 水冷式ヒートシンク及び水冷システム | |
JP2017108045A (ja) | 液冷式冷却装置 | |
JP2013165298A (ja) | 液冷式冷却装置 | |
US8899307B2 (en) | Cooling device | |
JP5083288B2 (ja) | 半導体冷却構造 | |
WO2019176620A1 (ja) | 冷却器、電力変換装置ユニット及び冷却システム | |
JP2012169429A (ja) | 熱交換器 | |
JP6708113B2 (ja) | 積層型冷却器 | |
JP2010080455A (ja) | 電子機器の冷却装置及び冷却方法 | |
JP6563161B1 (ja) | 冷却器、電力変換装置ユニット及び冷却システム | |
EP3770958B1 (en) | Liquid-cooled cooler | |
JP5251916B2 (ja) | 電子機器の冷却器 | |
JP2018081997A (ja) | コールドプレート | |
JP2011208814A (ja) | 水冷ジャケット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15764764 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15027419 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2016508756 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15764764 Country of ref document: EP Kind code of ref document: A1 |