WO2019176620A1 - 冷却器、電力変換装置ユニット及び冷却システム - Google Patents

冷却器、電力変換装置ユニット及び冷却システム Download PDF

Info

Publication number
WO2019176620A1
WO2019176620A1 PCT/JP2019/008417 JP2019008417W WO2019176620A1 WO 2019176620 A1 WO2019176620 A1 WO 2019176620A1 JP 2019008417 W JP2019008417 W JP 2019008417W WO 2019176620 A1 WO2019176620 A1 WO 2019176620A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
cooling medium
fins
solid
columnar
Prior art date
Application number
PCT/JP2019/008417
Other languages
English (en)
French (fr)
Inventor
勇吾 浅井
一法師 茂俊
裕之 牛房
俊雄 篠木
健 篠▲崎▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019525925A priority Critical patent/JP6563161B1/ja
Publication of WO2019176620A1 publication Critical patent/WO2019176620A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a cooler, a power converter unit, and a cooling system.
  • inverters including semiconductor elements such as MOSFETs (Metal-Oxide-Semiconductors Effector Transistors), IGBTs (Insulated Gate Bipolar Transistors), etc.
  • MOSFETs Metal-Oxide-Semiconductors Effector Transistors
  • IGBTs Insulated Gate Bipolar Transistors
  • a power converter such as a converter is required.
  • Such a power converter processes a large current, generates heat, and becomes high temperature. Therefore, a liquid cooling type cooler is generally used for the cooling.
  • This type of cooler (hereinafter referred to as a conventional cooler) has a box shape, and the coolant flows through the inside of the box. Moreover, a power converter is attached to the outer surface of one plate (hereinafter referred to as a heat sink) constituting the cooler box. Thereby, the heat from a power converter device is transmitted to the cooling fluid which flows through the inside of a cooler via a heat sink, and a power converter device is cooled. And in order to improve the cooling efficiency on the inner surface of the heat sink, that is, the surface that comes into contact with the cooling liquid, as shown in FIG. It is provided to line up.
  • the columnar fins are provided at intervals, there are a portion where the flow path of the coolant is wide and a portion where the flow path of the coolant is narrow. At this time, the flow rate of the cooling liquid is slow in a portion where the flow path of the cooling liquid is wide. As a result, there is a problem that the cooling efficiency is poor in the portion where the flow path of the coolant is wide compared to the portion where the flow path of the coolant is narrow.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a cooler, a power conversion device unit, and a cooling system that efficiently cool the heat generated from the power conversion device. To do.
  • a cooler according to the present invention is a cooler for cooling a power conversion device, and has a box-like case having an opening, an inlet into which a cooling medium flows, and an outlet from which the cooling medium flows out.
  • a flat plate portion whose one main surface is in contact with the cooling medium, a plurality of columnar fins provided on one main surface of the flat plate portion, and an intermediate fin that connects adjacent columnar fins in the flow direction from the inlet to the outlet.
  • the power conversion device unit according to the present invention is a power conversion device that performs power conversion, a first plate member on which the power conversion device is disposed on one surface, and the other surface of the first plate member.
  • a cooling medium flow path formed between the first plate-like member and the second plate-like member, in which the first cooling medium for cooling the power converter flows.
  • a plurality of first solid fins provided in the cooling medium flow path and extending from the first plate-shaped member toward the second plate-shaped member; and provided in the cooling medium flow path, A second solid fin that connects two first solid fins adjacent to each other in the flow direction of the first cooling medium among the first solid fins.
  • a cooling system includes a first cooling circuit that includes the power conversion device unit according to the present invention and circulates the first cooling medium to cool the power conversion device, and circulates a second cooling medium, A second cooling circuit that cools the rotating machine controlled by the power conversion device; and a heat exchanger that performs heat exchange between the first cooling medium and the second cooling medium.
  • the heat generated from the power converter can be efficiently cooled.
  • FIG. 1 is a configuration diagram illustrating a configuration of a cooling system according to Embodiment 1.
  • FIG. It is a perspective view which shows the cooler and power converter device which concern on Embodiment 1.
  • FIG. It is a perspective view which shows the cooler and power converter device which concern on Embodiment 1.
  • FIG. 4 is a cross-sectional view taken along a line AA in FIG. 3. It is the top view which looked at the one main surface of the flat plate part of the heat sink which concerns on Embodiment 1 from the direction orthogonal to this surface.
  • FIG. 6 is a cross-sectional view taken along the CC, DD, EE, and FF sections of FIG.
  • FIG. 3 is a plan view of a heat sink that is a comparison target of the first embodiment.
  • FIG. 10 is a cross-sectional view taken along a GG cross section, a HH cross section, an II cross section, and a JJ cross section in FIG. It is the top view which looked at the one main surface of the flat plate part of the heat sink which concerns on Embodiment 3 from the direction orthogonal to this surface.
  • FIG. 12 is a cross-sectional view taken along the KK cross section, the LL cross section, the MM cross section, and the NN cross section of FIG. It is the top view which looked at the one main surface of the flat plate part of the heat sink which concerns on Embodiment 4 from the direction orthogonal to this surface. It is the top view which looked at the one main surface of the flat plate part of the heat sink which concerns on other embodiment from the direction orthogonal to this surface. It is a block diagram which shows the structure of the cooling system which concerns on other embodiment.
  • FIG. 10 is a configuration diagram showing a configuration of a cooling system according to a fifth embodiment.
  • FIG. 20 is a diagram showing the A1-A1 cross section, the A2-A2 cross section, the A3-A3 cross section, and the A4-A4 cross section of FIG. 19 together. It is a figure which shows an example of a structure of the fin unit in the cooler of the power converter device unit which concerns on Embodiment 5.
  • FIG. 10 is a plan view showing a configuration of a cooler of a power conversion device unit according to a seventh embodiment.
  • FIG. 26 is a diagram showing the A9-A9 cross section, the A10-A10 cross section, the A11-A11 cross section, and the A12-A12 cross section of FIG. 25 together.
  • FIG. 10 is a plan view showing a configuration of a cooler of a power conversion device unit according to an eighth embodiment. It is a figure which shows the structure of the cooler of the power converter device unit which concerns on other embodiment.
  • FIG. 1 is a configuration diagram illustrating a configuration of a cooling system 30 according to the first embodiment.
  • the cooling system 30 includes a cooler 20, a motor 40, a radiator 50, a pump 60, and a pipe 70 that connects them.
  • the cooling medium cooled by the radiator 50 is conveyed to the cooler 20 and the motor 40 by the pump 60.
  • the cooling medium circulates in the cooling system 30 in the order of the radiator 50, the pump 60, the cooler 20, and the motor 40.
  • the motor 40 is a motor for driving an electric vehicle or the like, and a power converter 80 for controlling the motor 40 is attached to the cooler 20.
  • the cooling medium in the present embodiment is an antifreeze (LLC) obtained by mixing an ethylene glycol aqueous solution with an additive that plays the role of a rust preventive, a preservative, and an antifoaming agent.
  • LLC antifreeze
  • the cooling medium cools the motor 40 and the power conversion device 80 by exchanging heat with the motor 40 and the power conversion device 80.
  • the components constituting the cooling system 30 are connected by a pipe 70. Therefore, when the cooling medium circulates in the cooling system 30, it passes through the pipe 70.
  • FIG. 2 is a perspective view showing the cooler 20 and the power conversion device 80 according to the first embodiment. 2 and the subsequent drawings, the height direction H indicated by the H-axis is a direction orthogonal to the plane formed by one main surface S1 of the flat plate portion 11 of the heat radiating plate 10 described later, and the flow indicated by the F-axis.
  • the direction F is a direction from the inflow port 93 provided in the case 90 of the cooler 20 toward the outflow port 95.
  • the width direction W indicated by the W axis is a direction orthogonal to the height direction H and the flow direction F.
  • the cooler 20 is provided in the circulation path of the cooling medium of the cooling system 30 as described above. Further, the cooler 20 can be divided into four parts: a case 90, a cooling medium inlet portion 92, a cooling medium outlet portion 94, and the heat sink 10.
  • the case 90 is a box-shaped member made of aluminum or the like and having an opening 91 at the top.
  • the cooling medium inlet portion 92 is a pipe-shaped member made of aluminum or the like. As shown in FIG. 2, one end of the pipe formed by the cooling medium inlet portion 92 is connected to an inlet port 93 opened on one surface constituting the box of the case 90. Further, the other end of the cooling medium inlet 92 is connected to the pipe 70. As a result, the cooling medium that has passed through the pipe 70 flows into the case 90.
  • the cooling medium outlet portion 94 is also a pipe-like member made of aluminum or the like, like the cooling medium inlet portion 92.
  • one end of the pipe formed by the cooling medium outlet portion 94 is opened in a surface facing the surface to which the cooling medium inlet portion 92 is connected among the surfaces constituting the box of the case 90.
  • An outlet 95 is connected.
  • the other end of the cooling medium outlet 94 is connected to the pipe 70.
  • FIG. 3 is a perspective view showing the cooler 20 and the power conversion device 80 according to the first embodiment. 3 that are denoted by the same reference numerals as those in FIG. 2 are the same as or correspond to those indicated by the reference numerals in FIG.
  • the heat sink 10 is a rectangular flat plate made of copper or aluminum.
  • the heat sink 10 is attached to the upper part of the case 90, thereby closing the opening of the case 90 as shown in FIG.
  • the cooler 20 has a rectangular parallelepiped shape.
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG. 4 that are indicated by the same reference numerals as those in FIG. 1 or FIG. 2 are the same as or correspond to those indicated by the reference numerals in FIG. 1 or FIG.
  • a power conversion device 80 is attached to the upper surface of the radiator plate 10 (flat plate portion 11) that is one of the outer surfaces of the cooler 20. Further, one main surface S1 (lower surface) of the heat radiating plate 10 (flat plate portion 11) constitutes one of the inner surfaces of the cooler 20, and is in contact with the cooling medium.
  • the power conversion device 80 is a converter / inverter or regulator for controlling the motor 40, and includes a semiconductor element such as MOSFET or IGBT, a reactor, a capacitor, and the like. Further, the semiconductor elements and the like included in the power conversion device 80 are mounted on an insulating substrate inside the power conversion device 80. When the motor 40 is operated, a current flows through the power conversion device 80 to control the motor 40, and the semiconductor elements and the like included in the power conversion device 80 become high temperature.
  • FIG. 5 is a plan view of one main surface S1 of the flat plate portion 11 of the heat radiating plate 10 according to the first embodiment when viewed from a direction orthogonal to this surface.
  • FIG. 6 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 6 is a cross-sectional view taken along the ⁇ D cross section, the EE cross section, and the FF cross section.
  • the heat sink 10 can be divided into three parts: a flat plate part 11, columnar fins 12, and intermediate fins 14.
  • the flat plate portion 11 of the heat radiating plate 10 is a flat portion of the heat radiating plate 10.
  • a plurality of columnar fins 12 having a columnar shape are provided on one main surface S1 (lower surface) of the flat plate portion 11.
  • the columnar fins 12 are solid members made of aluminum, and extend in the height direction H perpendicular to the plane formed by the main surface S1. Further, the columnar fins 12 are arranged in a staggered manner on the one main surface S1 when viewed from the height direction H.
  • intermediate fins 14 are provided between the respective columnar fins 12 in the flow direction F of the cooling medium from the inlet 93 toward the outlet 95.
  • the intermediate fin 14 is a rectangular flat plate made of copper.
  • the flat plate formed by the intermediate fin 14 is parallel to the height direction H and parallel to the flow direction F.
  • One end of the intermediate fin 14 in the flow direction F is provided so as to contact the columnar fin 12 on the inlet 93 side in the flow direction F, and the other end of the intermediate fin 14 is on the outlet 95 side in the flow direction F. It is provided in contact with the columnar fin 12. That is, the intermediate fin 14 connects the columnar fins 12 adjacent in the flow direction F.
  • the length in the height direction H (hereinafter referred to as height) of the intermediate fin 14 is the same as the height of the columnar fin 12. As shown in FIG. 6, the thickness t of the intermediate fin 14 is smaller than the diameter R of the columnar fin 12.
  • FIG. 7 is a plan view of a heat sink 100 that is a comparison target of the heat sink 10 according to the first embodiment.
  • the heat sink 100 which is a comparison object has a structure in which the intermediate fins 14 are removed from the heat sink 10 according to the first embodiment.
  • the heat generated from the power conversion device 80 can be efficiently cooled.
  • the heat sink 100 shown in FIG. 7 is attached to the cooler 20 instead of the heat sink 10.
  • the cooling medium that collides with the columnar fins 12a flows to the gaps M between the columnar fins 12a and the columnar fins 12b located upstream of the columnar fins 12a and the columnar fins 12a and the columnar fins 12a. It passes through the gap N between the columnar fins 12c adjacent in the width direction W perpendicular to the direction F, and collides with the columnar fins 12d located on the downstream side with respect to the columnar fins 12a.
  • the gap N is wider than the gap M, the flow rate of the cooling medium is reduced in the gap N. As a result, the cooling efficiency in the vicinity of the gap N is deteriorated.
  • the intermediate fin 14 is located in the center of the gap N portion in the width direction W. Thereby, the width of the flow path in the gap N becomes narrower than that in the case where the intermediate fin 14 is not provided. As a result, a decrease in the flow rate of the cooling medium in the gap N is suppressed, and deterioration of the cooling efficiency can be suppressed. Therefore, the cooler 20 can efficiently cool the heat generated from the power converter 80.
  • the heat sink 10 since the heat sink 10 is provided with the intermediate fins 14, the heat sink 10 has a larger surface area in contact with the cooling medium than the heat sink without the intermediate fins 14. Therefore, the cooler 20 provided with the heat sink 10 has a higher ability to cool the power conversion device than the conventional cooler provided with a heat sink provided with no intermediate fins 14.
  • FIG. 8 schematically shows the relationship between the depth of the case 90, the height of the columnar fins 12, and the height of the intermediate fins 14 for the case 90 and the heat sink 10 included in the cooler 20 according to the first embodiment. It is a figure.
  • the plurality of columnar fins 12 are connected by intermediate fins 14.
  • the columnar fins 12 and the intermediate fins 14 function as beams extending in the flow direction F in the heat radiating plate 10. Therefore, the heat radiating plate 10 has higher rigidity than the heat radiating plate not provided with the intermediate fins 14, and the heat radiating plate 10 is less likely to warp.
  • the heat radiating plate 10 when the heat radiating plate 10 is attached to the case 90, the columnar fins 12 or the intermediate fins 14 extending from the heat radiating plate 10 do not contact the bottom surface S ⁇ b> 2 of the case 90 facing the heat radiating plate 10. Like that.
  • the height h of the columnar fins 12 and the intermediate fins 14 is set lower than the depth D of the box formed by the case 90.
  • the height h of the columnar fins 12 and the intermediate fins 14 is determined in consideration of the warp of the heat sink 10.
  • the curvature of the heat sink 10 is small, the height h of the columnar fin 12 or the intermediate fin 14 can be increased, and the gap between the bottom surface S2 of the case 90 and the columnar fin 12 or the intermediate fin 14 can be decreased. .
  • the area where the cooling medium flowing through the cooler 20 contacts the columnar fins 12 and the intermediate fins 14 increases.
  • the cooler 20 can efficiently cool the heat generated from the power converter 80.
  • the columnar fins 12 are arranged in a staggered manner on the one main surface S1 of the flat plate portion 11 of the heat sink 10 when viewed from the height direction H.
  • the cooling medium flowing in the cooler 20 collides with the columnar fins 12 from a direction parallel to the flow direction F, and suppresses the development of the temperature boundary layer around the columnar fins 12 due to the leading edge effect.
  • the cooler 20 can efficiently cool the heat generated from the power converter 80.
  • the columnar fins 12 have a cylindrical shape.
  • the columnar fins 12 have a prismatic shape. In this case, the flow of the refrigerant in the vicinity of the surface of the columnar fin 12 is likely to be disturbed at the corner portion formed by the prism.
  • the columnar fins 12 are cylindrical as in the present embodiment, it is possible to suppress the disturbance of the refrigerant flow as described above.
  • the cooling performance can be improved by using different materials for the material of the columnar fins 12 and the material of the intermediate fins 14.
  • the fins including the columnar fins 12 and the intermediate fins 14 are configured such that heat propagation between the columnar fins 12 and the intermediate fins 14 is smooth and the temperature difference between the columnar fins 12 and the intermediate fins 14 is reduced. The whole can be used efficiently, and the cooling performance of the cooler 20 is improved.
  • the thickness of the flat plate formed by the intermediate fins 14 is smaller than the diameter of the column formed by the columnar fins 12 and the materials thereof are the same. In this case, the thermal resistance of the intermediate fins 14 is increased, and heat propagation is prevented by the intermediate fins 14.
  • the intermediate fin 14 becomes a bottleneck in the heat propagation path including the columnar fin 12 and the intermediate fin 14.
  • the entire fin including the columnar fins 12 and the intermediate fins 14 cannot be used efficiently.
  • copper having a higher thermal conductivity than aluminum which is the material of the columnar fins 12 is used as the material of the intermediate fins 14.
  • the entire fin can be used efficiently without the heat propagation being hindered by the intermediate fin 14.
  • the cooling performance can be improved by using different materials for the material of the columnar fins 12 and the material of the intermediate fins 14.
  • different materials are used for the material of the columnar fins 12 and the material of the intermediate fins 14, a method of press-fitting the intermediate fins 14 after forming the columnar fins 12 on the heat sink 10 in the manufacturing process, There is a method in which the intermediate fin 14 is bonded to 12 by brazing or the like.
  • the height of the intermediate fin 14 and the height of the columnar fin 12 are the same. Thereby, compared with the case where the height of the intermediate
  • FIG. FIG. 9 is a plan view of one main surface S1 of the flat plate portion 11 of the heat radiating plate 10A according to the cooler 20A according to the second embodiment when viewed from a direction orthogonal to this surface
  • FIG. FIG. 4 is a cross-sectional view taken along a ⁇ G cross section, an HH cross section, an II cross section, and a JJ cross section.
  • cooler 20A according to the second embodiment is the height of the intermediate fin of the heat sink. More specific description will be given below.
  • the heat sink 10A according to the cooler 20A according to the second embodiment there are a plurality of intermediate fins 14 having different heights.
  • the height h1 of the intermediate fin 14 located in that portion is higher than the height h2 of the other intermediate fins 14. And cooling performance can be partially enhanced.
  • cooler 20A Other configurations of the cooler 20A are the same as those of the cooler 20. Therefore, the description other than the description regarding the point where the plurality of intermediate fins 14 having different heights exist on the heat radiating plate is as described in the cooler 20.
  • FIG. 11 is a plan view of one main surface S1 of the flat plate portion 11 of the heat radiating plate 10B according to the cooler 20B according to the third embodiment when viewed from a direction orthogonal to this surface
  • FIG. FIG. 4 is a cross-sectional view taken along a ⁇ K cross section, an LL cross section, an MM cross section, and an NN cross section.
  • cooler 20B according to the third embodiment is the height of the intermediate fin of the heat sink. More specific description will be given below.
  • the heat sink 10B according to the cooler 20B according to the third embodiment there are a plurality of intermediate fins 14 having different heights.
  • the height of the intermediate fins 14 increases as the flow proceeds from the inflow port 93 to the outflow port 95. That is, the height of the intermediate fin 14 increases from the upstream side to the downstream side in the flow direction F of the cooling medium.
  • the cooling medium that has flowed into the cooler 20B receives the heat of the power conversion device 80 via the heat radiating plate 10B.
  • the temperature of the cooling medium rises from the inlet 93 toward the outlet 95. That is, the temperature of the cooling medium is higher on the outlet 95 side than on the inlet 93 side. Due to the temperature difference of the cooling medium, the temperature of the heat radiating plate 10B is higher on the outlet 95 side than on the inlet 93 side.
  • the heat sink 10B is warped.
  • the heat sink 10B as shown in FIG.
  • the height of the intermediate fins 14 increases from the upstream side to the downstream side in the flow direction F of the cooling medium. Therefore, since it becomes easy to radiate the heat sink 10B toward the downstream side, the temperature rise of the heat sink 10B is suppressed. As a result, warpage of the heat sink 10B is suppressed. In addition, it can suppress that the power converter device 80 attached to the heat sink 10B peels from the heat sink 10B because the curvature of the heat sink 10B is suppressed.
  • cooler 20B Other configurations of the cooler 20B are the same as those of the cooler 20. Therefore, other than the explanation regarding the point that the plurality of intermediate fins 14 having different heights exist on the heat sink and the height of the intermediate fins 14 increases from the upstream side to the downstream side in the flow direction F. The description is as described for the cooler 20.
  • FIG. FIG. 13 is the top view which looked at one main surface S1 of 10 C of heat sinks which concern on the cooler 20C which is Embodiment 4 from the direction orthogonal to this surface.
  • the difference between the cooler 20C according to the fourth embodiment and the cooler 20 according to the first embodiment is the surface shape of the intermediate fin of the heat sink. Irregularities are formed on the surface of the intermediate fin that contacts the cooling medium. More specific description will be given below.
  • a plurality of irregularities G are formed on the main surface of the intermediate fin 14, that is, the surface in contact with the cooling medium.
  • the unevenness G is a groove having a V-shaped cross section and extending in the height direction H.
  • cooler 20C Other configurations of the cooler 20C are the same as those of the cooler 20. Therefore, the description other than the description regarding the surface shape of the intermediate fin 14 of the heat radiating plate is as described in the cooler 20.
  • the cooler according to the present invention is not limited to the coolers according to the first to fourth embodiments, and can be changed within the scope of the gist thereof.
  • the cooling medium in the first to fourth embodiments is an antifreeze liquid, it may be replaced with a cooled gas.
  • the shape of the columnar fins may be a prismatic shape.
  • the circulation path of the cooling medium in the cooling system including the cooler may be in the order of the radiator 50, the pump 60, the motor 40, and the cooler 20, as shown in FIG.
  • the unevenness G formed on the main surface of the intermediate fin 14 may be not only a V-shaped groove but also a semicircular recess.
  • FIG. 16 is a configuration diagram showing the configuration of the cooling system according to the present embodiment.
  • the cooling system according to the present embodiment includes a first cooling circuit 30A for circulating the first cooling medium, a second cooling circuit 30B for circulating the second cooling medium, and the first cooling medium. And a heat exchanger 31 that performs heat exchange with the second cooling medium.
  • the first cooling circuit 30A has a power converter unit 180.
  • the power conversion device unit 180 includes a power conversion device 81 and a cooler 20 that cools the power conversion device 81.
  • the power conversion device 81 includes a plurality of electrical components such as a semiconductor element, a reactor, and a capacitor, and an insulating substrate on which these electrical components are mounted.
  • 30 A of 1st cooling circuits are circuits which cool the power converter device 81 using a 1st cooling medium.
  • the second cooling circuit 30B is a circuit that cools the motor 40 controlled by the power converter 81 using the second cooling medium.
  • the heat exchanger 31 is a counter flow type heat exchanger having a first cooling medium flow path through which the first cooling medium flows and a second cooling medium flow path through which the second cooling medium flows.
  • the first cooling circuit 30A has a configuration in which the first pump 60A, the radiator 50, the cooler 20 of the power converter unit 180, and the heat exchanger 31 are annularly connected in this order via the first pipe 70A. ing. As the first cooling medium circulating through the first cooling circuit 30A, the antifreeze as described above is used.
  • the first cooling medium discharged from the first pump 60A flows into the radiator 50.
  • the radiator 50 heat exchange between the first cooling medium and air is performed.
  • the first cooling medium that has flowed into the radiator 50 is cooled by heat radiation to the air.
  • the first cooling medium that has flowed out of the radiator 50 flows into the cooler 20 of the power converter unit 180.
  • the first cooling medium flowing into the cooler 20 is heated by the heat absorption from the power conversion device 81. Thereby, the power converter 81 is cooled.
  • the first cooling medium flowing out of the cooler 20 flows into the first cooling medium flow path of the heat exchanger 31. In the heat exchanger 31, heat exchange between the first cooling medium and the second cooling medium is performed.
  • the temperature of the first cooling medium flowing into the heat exchanger 31 is lower than the temperature of the second cooling medium flowing into the heat exchanger 31. For this reason, the first cooling medium is heated by heat absorption from the second cooling medium. The first cooling medium flowing out from the heat exchanger 31 is sucked into the first pump 60A.
  • the second cooling circuit 30B has a configuration in which the second pump 60B, the motor 40, and the heat exchanger 31 are annularly connected in this order via the second pipe 70B. Insulating oil is used as the second cooling medium circulating through the second cooling circuit 30B.
  • the second cooling medium discharged from the second pump 60B flows into the motor 40.
  • the second cooling medium flowing into the motor 40 is heated by the heat absorption from the motor 40. Thereby, the motor 40 is cooled.
  • the second cooling medium flowing out from the motor 40 flows into the second cooling medium flow path of the heat exchanger 31.
  • the second cooling medium that has flowed into the heat exchanger 31 is cooled by heat radiation to the first cooling medium.
  • the second cooling medium flowing out from the heat exchanger 31 is sucked into the second pump 60B.
  • the heat exchanger 31 that performs heat exchange between the first cooling medium and the second cooling medium is not provided, and the second cooling circuit Another heat exchanger for cooling the medium is provided in the second cooling circuit 30B.
  • an air heat exchanger for exchanging heat between ambient air and insulating oil is generally used instead of a liquid-liquid heat exchanger for exchanging heat between liquids.
  • air heat exchangers are larger than liquid-liquid heat exchangers. For this reason, the conventional cooling system has been enlarged as a whole.
  • the first cooling circuit 30A and the second cooling circuit 30B are connected via the heat exchanger 31.
  • the second cooling medium of the second cooling circuit 30B is cooled by heat exchange with the first cooling medium in the heat exchanger 31. Therefore, according to the present embodiment, it is not necessary to provide an air heat exchanger in the second cooling circuit 30B, so that the cooling system can be downsized as a whole.
  • FIG. 17 is a diagram schematically illustrating a physical layout of the motor 40, the heat exchanger 31, and the power converter unit 180 in the cooling system according to the present embodiment.
  • the vertical direction in FIG. 17 represents the vertical vertical direction.
  • power converter unit 180 is arranged above motor 40.
  • the heat exchanger 31 is disposed above the motor 40 and below the power converter unit 180.
  • the heat exchanger 31 is disposed at a position sandwiched between the motor 40 and the power converter unit 180 in a physical or spatial sense.
  • the pipe length of the first pipe 70A connecting the power converter unit 180 and the heat exchanger 31 and the pipe length of the second pipe 70B connecting the motor 40 and the heat exchanger 31 are respectively set. It can be shortened. Therefore, according to the present embodiment, it is possible to reduce the size and cost of the cooling system.
  • the heat exchanger 31 is added to the first cooling circuit 30A, the pressure loss of the entire first cooling circuit 30A may increase. For this reason, the cooler 20 is required to further reduce the pressure loss. Further, the power converter unit 180 is required to be further reduced in size and output. Therefore, in the cooler 20 of the power converter unit 180, it is desired to achieve both a high heat transfer coefficient and a low pressure loss as much as possible.
  • FIG. 18 is a perspective view showing the configuration of the power converter unit 180 according to the present embodiment.
  • the power conversion device unit 180 includes a power conversion device 81 and a cooler 20 that cools the power conversion device 81.
  • the cooler 20 includes the heat radiating plate 10 and the case 90 as in the first embodiment.
  • a power conversion device 81 is disposed on the upper surface of the heat sink 10.
  • the case 90 has a bottom surface portion 96 disposed to face the lower surface of the heat sink 10.
  • a cooling medium flow path 97 through which the first cooling medium flows is formed between the radiator plate 10 and the bottom surface portion 96.
  • FIG. 19 is a plan view showing the configuration of the cooler 20 of the power converter unit 180 according to the present embodiment.
  • FIG. 20 is a diagram showing the A1-A1 cross section, the A2-A2 cross section, the A3-A3 cross section, and the A4-A4 cross section of FIG. 19 together.
  • the cooling medium flow path 97 in the cooler 20 is provided with a plurality of cylindrical columnar fins 12.
  • the columnar fins 12 are solid fins made of a material such as aluminum or copper and filled with the material from the outer wall to the inside.
  • the columnar fins 12 may be referred to as “first solid fins”.
  • the columnar fins 12 extend along the height direction H from the heat radiating plate 10 toward the bottom surface portion 96.
  • the height of the columnar fins 12 in the height direction H is equal to the distance between the heat sink 10 and the bottom surface portion 96. For this reason, the columnar fins 12 are in contact with both the heat radiating plate 10 and the bottom surface portion 96.
  • the plurality of columnar fins 12 are arranged at equal intervals in the direction along the flow direction F.
  • the columnar fins 12 for one row arranged at equal intervals along the flow direction F may be expressed as “fin rows”.
  • a plurality of fin rows are provided in parallel in the width direction W. Two fin rows adjacent in the width direction W are shifted from each other by a half pitch with respect to the arrangement of the columnar fins 12. Thereby, the plurality of columnar fins 12 are arranged in a staggered manner on the flat plate portion 11 of the heat radiating plate 10.
  • the intermediate fin 14 is a solid fin made of a material such as aluminum or copper.
  • the intermediate fin 14 may be referred to as a “second solid fin”.
  • the intermediate fin 14 is a blade fin having a rectangular flat plate shape, that is, a straight fin.
  • the intermediate fins 14 are provided so as to be parallel to both the height direction H and the flow direction F.
  • the upstream end of the intermediate fin 14 in the flow direction F is in contact with the columnar fin 12 located on the upstream side of the intermediate fin 14.
  • the downstream end of the intermediate fin 14 in the flow direction F is in contact with the columnar fin 12 positioned on the downstream side of the intermediate fin 14. That is, the intermediate fin 14 connects the two columnar fins 12 adjacent in the flow direction F.
  • the height of the intermediate fin 14 in the height direction H is the same as the height of the columnar fin 12. That is, the intermediate fin 14 is in contact with both the heat radiating plate 10 and the bottom surface portion 96.
  • the diameter of the columnar fin 12 that is, the width of the columnar fin 12 in the direction along the width direction W is R
  • the width of the intermediate fin 14 in the same direction is t
  • the relationship of R / t> 1 is satisfied. Yes.
  • a material having higher thermal conductivity than the material of the columnar fins 12 may be used as the material of the intermediate fin 14.
  • a solid fin 15 or a solid fin 16 is provided between the columnar fin 12 and the intermediate fin 14 that are adjacent in the width direction W.
  • Each of the solid fin 15 and the solid fin 16 is a solid fin made of a material such as aluminum or copper and filled with the material from the outer wall to the inside.
  • the solid fins 15 may be referred to as “third solid fins”, and the solid fins 16 may be referred to as “fourth solid fins”.
  • Both the solid fin 15 and the solid fin 16 are blade fins having a rectangular flat plate shape. For each material of the solid fins 15 and the solid fins 16, a material having higher thermal conductivity than that of the columnar fins 12 may be used.
  • the solid fins 15 are provided along the heat sink 10 so as to be parallel to both the height direction H and the width direction W.
  • One end of the solid fin 15 in the width direction W is in contact with the columnar fin 12.
  • the other end of the solid fin 15 in the width direction W is in contact with the intermediate fin 14. That is, the solid fin 15 connects the columnar fin 12 and the intermediate fin 14 that are adjacent in the width direction W.
  • the height of the solid fins 15 in the height direction H is lower than the height of the columnar fins 12.
  • One end of the solid fin 15 in the height direction H is in contact with the heat sink 10.
  • the other end of the solid fin 15 in the height direction H faces the bottom surface portion 96 through a gap.
  • a gap between the solid fin 15 and the bottom surface portion 96 serves as a flow path for the first cooling medium.
  • the solid fins 16 are provided along the bottom surface portion 96 so as to be parallel to both the height direction H and the width direction W.
  • One end of the solid fin 16 in the width direction W is in contact with the columnar fin 12.
  • the other end of the solid fin 16 in the width direction W is in contact with the intermediate fin 14. That is, the solid fins 16 connect the columnar fins 12 and the intermediate fins 14 adjacent in the width direction W.
  • the height of the solid fin 16 in the height direction H is lower than the height of the columnar fin 12.
  • One end of the solid fin 16 in the height direction H is in contact with the bottom surface portion 96.
  • the other end of the solid fin 16 in the height direction H faces the heat radiating plate 10 through a gap.
  • a gap between the solid fin 16 and the heat radiating plate 10 serves as a flow path for the first cooling medium.
  • the solid fins 15 along the heat radiating plate 10 and the solid fins 16 along the bottom surface 96 are alternately provided in the flow direction F. For this reason, the 1st cooling medium which flows along flow direction F gets over solid fin 15 and solid fin 16 by turns. Thereby, the flowing first cooling medium is agitated, and the turbulent flow of the first cooling medium is promoted. Therefore, in the cooler 20 of the present embodiment, the heat transfer coefficient between the cooler 20 and the first cooling medium is improved, so that the power conversion device 81 can be efficiently cooled.
  • the heat sink 10 is provided with the intermediate fins 14, the solid fins 15, and the solid fins 16 in addition to the columnar fins 12, the contact area between the heat sink 10 and the first cooling medium increases. For this reason, according to this Embodiment, the power converter device 81 can be cooled more efficiently.
  • FIG. 21 is a diagram illustrating an example of the configuration of the fin unit 110 in the cooler 20 of the power conversion device unit 180 according to the present embodiment.
  • the fin unit 110 includes a blade fin 101, a partial columnar fin 102 connected to one end of the blade fin 101, and a partial columnar fin 103 connected to the other end of the blade fin 101. is doing.
  • Each of the partial columnar fins 102 and the partial columnar fins 103 is joined to the blade fins 101 by brazing or the like.
  • the blade fin 101, the partial columnar fin 102, and the partial columnar fin 103 may be integrally formed.
  • the blade fin 101 has a rectangular flat plate shape.
  • the blade fin 101 constitutes the intermediate fin 14, the solid fin 15, or the solid fin 16.
  • the height of the blade fin 101 is equal to or lower than the height of each of the partial columnar fins 102 and the partial columnar fins 103.
  • Each of the partial columnar fins 102 and the partial columnar fins 103 has a semicircular planar shape.
  • Each of the partial columnar fins 102 and the partial columnar fins 103 constitutes a part of the columnar fins 12. That is, each of the partial columnar fins 102 and the partial columnar fins 103 is combined with the partial columnar fins 102 or the partial columnar fins 103 of another fin unit 110 to form the columnar columnar fins 12.
  • FIG. 22 is a diagram illustrating another example of the configuration of the fin unit 110 in the cooler 20 of the power conversion device unit 180 according to the present embodiment.
  • each of the partial columnar fins 102 and the partial columnar fins 103 of this example has a fan-shaped planar shape having a central angle of 90 °.
  • the partial columnar fins 102 and the partial columnar fins 103 are combined with the partial columnar fins 102 or the partial columnar fins 103 of another fin unit 110 to form the columnar columnar fins 12.
  • the columnar fins 12, the intermediate fins 14, the solid fins 15, and the solid fins 16 are formed on the heat sink 10. Since the shape of the plurality of fin units 110 can be patterned into several types, the process of forming the columnar fins 12, the intermediate fins 14, the solid fins 15, and the solid fins 16 can be simplified.
  • the power conversion device unit 180 includes the power conversion device 81 that performs power conversion, the heat sink 10 on which the power conversion device 81 is disposed on one surface, and the heat sink 10.
  • a bottom surface portion 96 disposed opposite to the other surface; a cooling medium flow path 97 formed between the radiator plate 10 and the bottom surface portion 96 and in which a first cooling medium for cooling the power conversion device 81 flows;
  • a plurality of columnar fins 12 provided in the cooling medium flow path 97 and extending from the radiator plate 10 toward the bottom surface portion 96, and provided in the cooling medium flow path 97, and the flow of the first cooling medium among the plurality of columnar fins 12.
  • an intermediate fin 14 that connects two columnar fins 12 that are adjacent in the direction F.
  • the heat sink 10 is an example of a first plate member.
  • the bottom surface portion 96 is an example of a second plate member.
  • the columnar fin 12 is an example of a first solid fin.
  • the intermediate fin 14 is an example of a second solid fin.
  • the contact area between the heat sink 10 and the first cooling medium can be increased. Therefore, since the heat generated from the power converter 81 can be efficiently radiated to the first cooling medium, the power converter 81 can be efficiently cooled. Moreover, according to this structure, since the intermediate fin 14 can be functioned as a beam, the rigidity of the heat sink 10 can be improved.
  • the intermediate fin 14 is a blade fin having a flat plate shape. According to this configuration, the contact area between the intermediate fin 14 and the first cooling medium can be increased while suppressing an increase in the pressure loss of the first cooling medium, so that the power converter 81 can be cooled more efficiently. it can.
  • each of the plurality of columnar fins 12 has a columnar shape in which a plurality of partial columnar fins 102 or 103 having a semicircular or fan-shaped planar shape are combined. It has a shape. According to this configuration, since the separation of the flow of the first cooling medium can be suppressed, the pressure loss of the first cooling medium can be reduced.
  • each of the plurality of columnar fins 12 is in contact with both the heat radiating plate 10 and the bottom surface portion 96. According to this configuration, since the pressure loss of the first cooling medium can be reduced, the power conversion device 81 can be cooled more efficiently.
  • the intermediate fin 14 is in contact with both the heat radiating plate 10 and the bottom surface portion 96. According to this configuration, the contact area between the intermediate fin 14 and the first cooling medium can be increased while suppressing an increase in the pressure loss of the first cooling medium, so that the power converter 81 can be cooled more efficiently. it can.
  • the width of each of the plurality of columnar fins 12 in the direction orthogonal to the flow direction F of the first cooling medium is R
  • the flow direction F of the first cooling medium is
  • the width of the intermediate fin 14 in the orthogonal direction is t
  • the relationship of R / t> 1 is satisfied. According to this configuration, the contact area between the columnar fins 12 and the intermediate fins 14 and the first cooling medium can be increased, and the front edge effect of the columnar fins 12 can be enhanced. Can be cooled more efficiently.
  • the power conversion device unit 180 further includes a solid fin 15 and a solid fin 16.
  • the solid fins 15 are provided in the cooling medium flow path 97, extend in the direction intersecting the flow direction F of the first cooling medium along the heat radiating plate 10, and are connected to at least the columnar fins 12.
  • the solid fins 16 are provided in the cooling medium flow path 97, extend in the direction intersecting the flow direction F of the first cooling medium along the bottom surface portion 96, and are connected to at least the columnar fins 12.
  • the solid fins 15 and the solid fins 16 are alternately provided in the flow direction F of the first cooling medium.
  • the solid fin 15 is an example of a third solid fin.
  • the solid fin 16 is an example of a fourth solid fin. According to this configuration, it is possible to promote the turbulent flow of the first cooling medium while increasing the contact area between the heat sink 10 and the first cooling medium. Therefore, the power converter 81 can be cooled more efficiently.
  • each of the solid fins 15 and the solid fins 16 is a blade fin having a flat plate shape. According to this configuration, since the contact area between each of the solid fins 15 and the solid fins 16 and the first cooling medium can be increased, the power conversion device 81 can be cooled more efficiently.
  • the solid fin 15 is in contact with the heat radiating plate 10 and is opposed to the bottom surface portion 96 through a gap.
  • the solid fin 16 is in contact with the bottom surface portion 96 and faces the heat radiating plate 10 through a gap. According to this configuration, it is possible to promote the turbulent flow of the first cooling medium while securing the flow path of the first cooling medium.
  • the cooling system according to the present embodiment includes the first cooling circuit 30A that includes the power conversion device unit 180 according to the present embodiment and circulates the first cooling medium to cool the power conversion device 81, and the second cooling medium. Are circulated, and a second cooling circuit 30B that cools the motor 40 controlled by the power conversion device 81, and a heat exchanger 31 that performs heat exchange between the first cooling medium and the second cooling medium.
  • the motor 40 is an example of a rotating machine.
  • the second cooling medium can be cooled by heat exchange with the first cooling medium in the heat exchanger 31, the air heat exchanger provided in the second cooling circuit 30B is omitted or downsized. it can. Therefore, according to this Embodiment, a cooling system can be reduced in size.
  • the heat exchanger 31 is disposed at a position physically sandwiched between the power converter unit 180 and the motor 40. According to this configuration, the pipe length of the pipe connecting the power converter unit 180 and the heat exchanger 31 can be shortened, and the pipe length of the pipe connecting the motor 40 and the heat exchanger 31 can be shortened. be able to. Therefore, according to the present embodiment, it is possible to reduce the size and cost of the cooling system.
  • FIG. 23 is a plan view showing a configuration of cooler 20 of power conversion device unit 180 according to the present embodiment.
  • FIG. 24 is a diagram showing the A5-A5 cross section, the A6-A6 cross section, the A7-A7 cross section, and the A8-A8 cross section of FIG.
  • the present embodiment is different from the fifth embodiment in that it relates to the height of the intermediate fin 14. The other points are the same as in the fifth embodiment.
  • the cooler 20 includes a plurality of intermediate fins 14 having different heights.
  • the height of the intermediate fin 14 provided in a part of the heat radiating plate 10 is h1
  • the height of the intermediate fin 14 provided in another part of the heat radiating plate 10 is h2 lower than h1 (h1> h2 ).
  • an intermediate fin 14 having a height h1 is provided at a particularly high temperature portion of the heat sink 10 in order to increase the contact area with the first cooling medium.
  • the intermediate fins 14 having a height h2 lower than the height h1 are provided at the other portions. Thereby, since the contact area of the heat sink 10 and the 1st cooling medium can be partially increased, the cooling performance of the cooler 20 can be partially improved.
  • a plurality of intermediate fins 14 are provided, and there are intermediate fins 14 having different heights. According to this configuration, the cooling performance of the cooler 20 can be partially enhanced.
  • FIG. 25 is a plan view showing a configuration of cooler 20 of power conversion device unit 180 according to the present embodiment.
  • FIG. 26 is a diagram showing the A9-A9 cross section, the A10-A10 cross section, the A11-A11 cross section, and the A12-A12 cross section of FIG. 25 together.
  • the present embodiment is different from the fifth embodiment in that it relates to the height of the intermediate fin 14. The other points are the same as in the fifth embodiment.
  • the height of each of the plurality of intermediate fins 14 increases in the flow direction F from the upstream side toward the downstream side. That is, the height of the intermediate fin 14 provided in a certain part is higher than the height of the intermediate fin 14 provided upstream in the flow direction F. Thereby, since the temperature rise of the heat sink 10 can be suppressed similarly to Embodiment 3, the curvature of the heat sink 10 can be suppressed.
  • FIG. 27 is a plan view showing a configuration of cooler 20 of power conversion device unit 180 according to the present embodiment.
  • the present embodiment is different from the fifth embodiment in that it relates to the surface shape of the intermediate fin 14. The other points are the same as in the fifth embodiment.
  • the unevenness G is a groove having a V-shaped cross section extending along the height direction H. Thereby, since the contact area of the heat sink 10 and a 1st cooling medium can be increased, the power converter device 81 can be cooled more efficiently.
  • the unevenness G is not limited to a groove having a V-shaped cross section, and may be formed by a groove having a semicircular cross section.
  • corrugation G is not restricted to a groove
  • the power conversion device unit 180 As described above, in the power conversion device unit 180 according to the present embodiment, irregularities are formed on the surface of the intermediate fin 14. According to this configuration, the power conversion device 81 can be cooled more efficiently.
  • the power converter unit and the cooling system according to the present invention are not limited to the fifth to eighth embodiments and can be changed within the scope of the gist thereof.
  • the first cooling medium in Embodiments 5 to 8 above is an antifreeze liquid, but the first cooling medium may be a liquid other than the antifreeze liquid or a gas.
  • the second cooling medium is an insulating oil.
  • the second cooling medium may be a liquid other than the insulating oil or a gas.
  • the shape of the columnar fins 12 in the fifth to eighth embodiments is a columnar shape, but the shape of the columnar fins 12 may be a prismatic shape as shown in FIG.

Abstract

冷却器20は、電力変換装置80を冷却するための冷却器である。冷却器20は、ケース90及び放熱板10を備える。ケース90は、開口部91を有し、冷却媒体が流れ込む流入口93及び冷却媒体が流れ出る流出口95が設けられ、箱状を成している。放熱板10は、ケース90の開口部91に取り付けられ、平板部11、柱状フィン12及び中間フィン14を有する。平板部11の一方主面S1は、冷却媒体と接触する。柱状フィン12は、平板部11の一方主面S1に設けられている。中間フィン14は、流入口93から流出口95に向かう流動方向Fにおいて隣り合う柱状フィン12を連結している。

Description

冷却器、電力変換装置ユニット及び冷却システム
 本発明は、冷却器、電力変換装置ユニット及び冷却システムに関する。
 電気自動車等の車両には、それらが有するモータを駆動させるために、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)、IGBT(Insulated Gate Bipolar Transistor)等の半導体素子等を含む、スイッチング電源、インバータ、コンバータ等の電力変換装置が必要となる。このような電力変換装置は、大電流を処理し、発熱して高温になる。従って、その冷却のために、一般的に液冷式の冷却器が用いられている。
 この種の冷却器(以下で、従来の冷却器と称す)は、箱状を成し、その内部を冷却液が流れる。また、冷却器の箱を構成する一つの板(以下で、放熱板と称す)の外側の面に電力変換装置が取り付けられる。これにより、電力変換装置からの熱は放熱板を介して、冷却器内を流れる冷却液に伝わり、電力変換装置は冷却される。そして、放熱板の内側の面、つまり、冷却液と触れる面には、その冷却効率を向上させるために、特許文献1の図11に記載のように、柱状のフィンが間隔を空けて、規則正しく並ぶように設けられている。
国際公開第2012/157247号
 ところで、従来の冷却器では、柱状のフィンが間隔を空けて設けられているため、冷却液の流路が広い部分と、冷却液の流路が狭い部分とが存在する。このとき、冷却液の流路が広い部分では、冷却液の流速が遅くなる。その結果、冷却液の流路が広い部分では、冷却液の流路が狭い部分と比較して、冷却効率が悪いという課題があった。
 本発明は、上記のような問題点を解決するためになされたものであり、電力変換装置から発生する熱を効率よく冷却する冷却器、電力変換装置ユニット及び冷却システムを提供することを目的とする。
 本発明に係る冷却器は、電力変換装置を冷却するための冷却器であって、開口部を有し、冷却媒体が流れ込む流入口及び冷却媒体が流れ出る流出口が設けられた箱状のケースと、一方主面が冷却媒体と接触する平板部、平板部の一方主面に複数設けられた柱状フィン、及び流入口から流出口に向かう流動方向において隣り合う柱状フィンを連結する中間フィンを有し、開口部に取り付けられる放熱板と、を備える。
 本発明に係る電力変換装置ユニットは、電力変換を行う電力変換装置と、前記電力変換装置が一方の面に配置される第1板状部材と、前記第1板状部材の他方の面と対向して配置された第2板状部材と、前記第1板状部材と前記第2板状部材との間に形成され、前記電力変換装置を冷却する第1冷却媒体が流動する冷却媒体流路と、前記冷却媒体流路に設けられ、前記第1板状部材から前記第2板状部材に向かって延びた複数の第1中実フィンと、前記冷却媒体流路に設けられ、前記複数の第1中実フィンのうち前記第1冷却媒体の流動方向で隣り合う2つの第1中実フィン同士を接続する第2中実フィンと、を備える。
 本発明に係る冷却システムは、本発明に係る電力変換装置ユニットを有し前記第1冷却媒体を循環させて前記電力変換装置を冷却する第1冷却回路と、第2冷却媒体を循環させて、前記電力変換装置により制御される回転機を冷却する第2冷却回路と、前記第1冷却媒体と前記第2冷却媒体との熱交換を行う熱交換器と、を備える。
 本発明によれば、電力変換装置から発生する熱を効率よく冷却することができる。
実施の形態1に係る冷却システムの構成を示す構成図である。 実施の形態1に係る冷却器及び電力変換装置を示す斜視図である。 実施の形態1に係る冷却器及び電力変換装置を示す斜視図である。 図3のA-A断面における断面図である。 実施の形態1に係る放熱板の平板部の一方主面をこの面と直交する方向から見た平面図である。 図5のC-C断面、D-D断面、E-E断面及びF-F断面における断面図である。 実施の形態1の比較対象である放熱板の平面図である。 実施の形態1に係る冷却器に含まれるケース及び放熱板について、ケースの深さ、柱状フィン高さ及び中間フィン高さの関係を模式的に示した図である。 実施の形態2に係る放熱板の平板部の一方主面をこの面と直交する方向から見た平面図である。 図9のG-G断面、H-H断面、I-I断面及びJ-J断面における断面図である。 実施の形態3に係る放熱板の平板部の一方主面をこの面と直交する方向から見た平面図である。 図11のK-K断面、L-L断面、M-M断面及びN-N断面における断面図である。 実施の形態4に係る放熱板の平板部の一方主面をこの面と直交する方向から見た平面図である。 他の実施の形態に係る放熱板の平板部の一方主面をこの面と直交する方向から見た平面図である。 他の実施の形態に係る冷却システムの構成を示す構成図である。 実施の形態5に係る冷却システムの構成を示す構成図である。 実施の形態5に係る冷却システムにおけるモータ、熱交換器及び電力変換装置ユニットの物理的なレイアウトを模式的に示す図である。 実施の形態5に係る電力変換装置ユニットの構成を示す斜視図である。 実施の形態5に係る電力変換装置ユニットの冷却器の構成を示す平面図である。 図19のA1-A1断面、A2-A2断面、A3-A3断面及びA4-A4断面を併せて示す図である。 実施の形態5に係る電力変換装置ユニットの冷却器におけるフィンユニットの構成の一例を示す図である。 実施の形態5に係る電力変換装置ユニットの冷却器におけるフィンユニットの構成の別の例を示す図である。 実施の形態6に係る電力変換装置ユニットの冷却器の構成を示す平面図である。 図23のA5-A5断面、A6-A6断面、A7-A7断面及びA8-A8断面を併せて示す図である。 実施の形態7に係る電力変換装置ユニットの冷却器の構成を示す平面図である。 図25のA9-A9断面、A10-A10断面、A11-A11断面及びA12-A12断面を併せて示す図である。 実施の形態8に係る電力変換装置ユニットの冷却器の構成を示す平面図である。 他の実施の形態に係る電力変換装置ユニットの冷却器の構成を示す図である。
 以下で、一実施形態である冷却器について、添付した図面を参照しながら説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化又は省略する。
 実施の形態1.
 図1は、実施の形態1に係る冷却システム30の構成を示す構成図である。冷却システム30は、図1に示すように、冷却器20、モータ40、ラジエータ50、ポンプ60及びそれらを接続する配管70を備えている。
 冷却システム30では、ラジエータ50で冷却された冷却媒体が、ポンプ60によって冷却器20及びモータ40に運ばれる。このとき、冷却媒体は、ラジエータ50、ポンプ60、冷却器20及びモータ40の順で冷却システム30内を循環している。また、本実施の形態において、モータ40は、電気自動車等を駆動させるためのモータであり、冷却器20にはモータ40を制御するための電力変換装置80が取り付けられる。さらに、本実施の形態における冷却媒体は、エチレングリコール水溶液に防錆剤、防腐剤、消泡剤の役割を担う添加剤を混ぜた不凍液(LLC)である。このように構成された冷却システム30では、冷却媒体が、モータ40及び電力変換装置80と熱交換を行うことで、モータ40及び電力変換装置80を冷却する。なお、冷却システム30を構成する各構成品の間は配管70により接続されている。従って、冷却媒体が冷却システム30内を循環する際は、配管70内を通過する。
 図2は、実施の形態1に係る冷却器20及び電力変換装置80を示す斜視図である。なお、図2以降の図において、H軸で示される高さ方向Hは、後述する放熱板10の平板部11の一方主面S1が成す平面と直交する方向であり、F軸で示される流動方向Fは、冷却器20のケース90に設けられた流入口93から流出口95に向かう方向である。また、W軸で示される幅方向Wは、高さ方向H及び流動方向Fと直交する方向である。
 冷却器20は、上述の通り、冷却システム30の冷却媒体の循環経路に設けられている。また、冷却器20は、ケース90、冷却媒体入口部92、冷却媒体出口部94、及び放熱板10の4つの部分に分けることができる。
 ケース90は、アルミニウム等を材料とし、その上部が開口部91になっている箱状の部材である。
 冷却媒体入口部92は、アルミニウム等を材料とするパイプ状の部材である。冷却媒体入口部92が成すパイプの一端は、図2に示すように、ケース90の箱を構成する一つの面に開けられた流入口93と接続されている。また、冷却媒体入口部92の他端は、配管70と接続されている。これにより、配管70を通過した冷却媒体は、ケース90に流入する。
 冷却媒体出口部94も、冷却媒体入口部92と同様に、アルミニウム等を材料とするパイプ状の部材である。また、冷却媒体出口部94が成すパイプの一端は、図2に示すように、ケース90の箱を構成する面のうち、冷却媒体入口部92が接続された面と対向する面に開けられた流出口95と接続されている。また、冷却媒体出口部94の他端は、配管70と接続されている。これにより、ケース90を通過した冷却媒体は、冷却媒体出口部94から配管70に流出する。なお、配管70に流出した冷却媒体は、その後、モータ40へと向かう。
 図3は、実施の形態1に係る冷却器20及び電力変換装置80を示す斜視図である。図3において図2と同一の符号で指し示すものは、図2においてその符号で指し示すものと同一または相当するものであるので、その説明を簡略化又は省略する。
 放熱板10は、銅やアルミなどを材料とする長方形状の平板である。放熱板10は、ケース90の上部に取り付けられることで、図3に示すように、ケース90の開口部を塞ぐ。これにより、冷却器20は、内部が空洞の直方体状を成す。
 図4は、図3のA-A断面における断面図である。図4において図1又は図2と同一の符号で指し示すものは、図1又は図2においてその符号で指し示すものと同一または相当するものであるので、その説明を簡略化又は省略する。
 図4に示すように、冷却器20の外側の面の一つである放熱板10(平板部11)の上面には、電力変換装置80が取り付けられる。また、放熱板10(平板部11)の一方主面S1(下面)は、冷却器20の内側の面の一つを構成し、冷却媒体と接触する。
 電力変換装置80は、モータ40を制御するためのコンバータ・インバータやレギュレーターであり、MOSFETやIGBTなどの半導体素子や、リアクトル、コンデンサ等を含む。また、電力変換装置80に含まれる半導体素子等は、電力変換装置80内部の絶縁基板に実装されている。そして、モータ40の作動時には、モータ40を制御するために電力変換装置80に電流が流れ、電力変換装置80の内部に含まれる半導体素子等が高温になる。
 図5は、実施の形態1に係る放熱板10の平板部11の一方主面S1をこの面と直交する方向から見た平面図であり、図6は、図5のC-C断面、D-D断面、E-E断面及びF-F断面における断面図である。
 放熱板10は、平板部11、柱状フィン12、中間フィン14の3つの部分に分けることができる。放熱板10の平板部11は、放熱板10における平面を成す部分である。また、平板部11の一方主面S1(下面)には、円柱状を成す複数の柱状フィン12が設けられている。柱状フィン12は、アルミからなる中実の部材であり、一方主面S1が成す平面と直交する高さ方向Hに伸びている。また、柱状フィン12は、高さ方向Hから見たとき、一方主面S1上において千鳥状に配置されている。
 また、流入口93から流出口95に向かう冷却媒体の流動方向Fにおいて、隣り合う柱状フィン12それぞれの間には、中間フィン14が設けられている。中間フィン14は、銅を材料とする長方形状の平板である。この中間フィン14が成す平板は、高さ方向Hと平行、かつ、流動方向Fと平行である。また、流動方向Fにおける中間フィン14の一端は、流動方向Fにおける流入口93側の柱状フィン12と接触するように設けられ、中間フィン14の他端は、流動方向Fにおける流出口95側の柱状フィン12と接触するように設けられている。つまり、中間フィン14は、流動方向Fにおいて隣り合う柱状フィン12を連結している。さらに、中間フィン14における、高さ方向Hの長さ(以下で、高さと称す)は、柱状フィン12の高さと同じである。なお、図6に示すように、中間フィン14の厚さtは、柱状フィン12の直径Rよりも小さい。
 図7は、実施の形態1に係る放熱板10の比較対象である放熱板100の平面図である。なお、比較対象である放熱板100は、実施の形態1に係る放熱板10から、中間フィン14を取り除いた構造をしている。
 本実施の形態における冷却器20では、電力変換装置80から発生する熱を効率よく冷却することができる。まず、冷却器20に、放熱板10の代わりに、図7に示される放熱板100が取り付けられた場合を仮定する。放熱板100では、柱状フィン12aと衝突した冷却媒体は、柱状フィン12a及び柱状フィン12aに対して上流側に位置する柱状フィン12bの隙間M、並びに、柱状フィン12a及び柱状フィン12aに対して流動方向Fと直交する幅方向Wで隣り合う柱状フィン12cの隙間Nを通り抜けて、柱状フィン12aに対して下流側に位置する柱状フィン12dと衝突する。このとき、隙間Mに対して隙間Nは広いため、隙間Nで冷却媒体の流速が遅くなる。その結果、隙間N付近での冷却効率が悪化する。一方、実施の形態1である放熱板10では、隙間N部分の幅方向Wの中央に、中間フィン14が位置している。これにより、隙間Nでの流路の幅は、中間フィン14がない場合と比較して、狭くなる。その結果、隙間Nでの冷却媒体の流速の低下が抑制され、冷却効率の悪化を抑えられる。従って、冷却器20では、電力変換装置80から発生する熱を効率よく冷却することができる。
 また、放熱板10には中間フィン14が設けられているため、放熱板10は、中間フィン14が設けられていない放熱板よりも冷却媒体と接触する表面積が大きい。従って、放熱板10を備えた冷却器20は、中間フィン14が設けられていない放熱板を備えた従来の冷却器と比較して、電力変換装置を冷却する能力が高い。
 図8は、実施の形態1に係る冷却器20に含まれるケース90及び放熱板10について、ケース90の深さ、柱状フィン12の高さ及び中間フィン14の高さの関係を模式的に示した図である。
 複数の柱状フィン12は、中間フィン14によって連結されている。これにより、柱状フィン12及び中間フィン14は、放熱板10において、流動方向Fに伸びる梁として機能する。従って、放熱板10は、中間フィン14が設けられていない放熱板よりも剛性が高く、放熱板10は反りにくくなる。ここで、図8に示すように、放熱板10をケース90に取り付ける際には、放熱板10と対向するケース90の底面S2に、放熱板10から伸びる柱状フィン12又は中間フィン14が接触しないようにする。具体的には、ケース90が成す箱の深さDよりも、柱状フィン12や中間フィン14の高さhを低くしておく。このとき、柱状フィン12や中間フィン14の高さhは、放熱板10の反りを考慮して決められる。そして、放熱板10の反りが小さい場合、柱状フィン12や中間フィン14の高さhを高くして、ケース90の底面S2と、柱状フィン12や中間フィン14との隙間を小さくすることができる。これにより、冷却器20内を流れる冷却媒体が、柱状フィン12や中間フィン14と接触する面積が増加する。結果として、冷却器20では、電力変換装置80から発生する熱を効率よく冷却することができる。
 また、柱状フィン12は、高さ方向Hから見たときに、放熱板10の平板部11の一方主面S1上で千鳥状に配置されている。これにより、冷却器20内を流れる冷却媒体は、流動方向Fと平行な方向から柱状フィン12と衝突し、前縁効果により、柱状フィン12の周囲の温度境界層の発達を抑制する。結果として、冷却器20では、電力変換装置80から発生する熱を効率よく冷却することができる。
 さらに、柱状フィン12は、円柱状を成している。ここで、柱状フィン12が、角柱状である場合を仮定する。この場合、柱状フィン12の表面付近における冷媒の流れが、角柱が成す角部分で乱れやすい。一方、柱状フィン12が本実施の形態のように円柱状である場合、上述のような冷媒の流れの乱れを抑制できる。
 これに加え、冷却器20では、柱状フィン12の材料及び中間フィン14の材料に異なる材料を用いることで、その冷却性能を改善することができる。具体的には、柱状フィン12及び中間フィン14間での熱の伝搬をスムーズにし、柱状フィン12及び中間フィン14間の温度差を減少させた方が、柱状フィン12及び中間フィン14を含むフィン全体を効率よく利用でき、冷却器20の冷却性能は向上する。ここで、例えば、中間フィン14が成す平板の厚みが、柱状フィン12が成す円柱の直径よりも薄く、それらの材料が同じ場合を仮定する。この場合、中間フィン14の熱抵抗が高くなってしまい、中間フィン14で熱の伝搬が妨げられる。つまり、中間フィン14が、柱状フィン12及び中間フィン14を含む熱の伝搬経路におけるボトルネックになる。結果として、柱状フィン12及び中間フィン14を含むフィン全体を効率よく利用することができない。しかし、本実施の形態では、中間フィン14の材料として、柱状フィン12の材料であるアルミよりも熱伝導率のいい銅を用いている。この場合、中間フィン14が成す平板の厚みが、柱状フィン12が成す円柱の直径よりも薄い場合でも、中間フィン14の熱抵抗の上昇を抑制できる。その結果、中間フィン14で熱の伝搬が妨げられることなく、フィン全体を効率よく利用できる。従って、冷却器20では、柱状フィン12の材料及び中間フィン14の材料に異なる材料を用いることで、その冷却性能を改善することができる。なお、柱状フィン12の材料及び中間フィン14の材料に異なる材料を用いる場合には、その製造工程において、放熱板10に柱状フィン12を形成した後に、中間フィン14を圧入する方法や、柱状フィン12に対して中間フィン14をろう付けなどで接着する方法がある。
 また、中間フィン14の高さ及び柱状フィン12の高さは同じである。これにより、中間フィン14の高さが、柱状フィン12の高さよりも低い場合と比較して、中間フィン14の表面積が増加し、冷却効率を改善できる。
 実施の形態2.
 図9は、実施の形態2である冷却器20Aに係る放熱板10Aの平板部11の一方主面S1をこの面と直交する方向から見た平面図であり、図10は、図9のG-G断面、HH断面、I-I断面及びJ-J断面における断面図である。
 実施の形態2である冷却器20Aと実施の形態1である冷却器20の相違点は、放熱板の中間フィンの高さである。以下で、より具体的に説明する。
 実施の形態2である冷却器20Aに係る放熱板10Aでは、高さが異なる複数の中間フィン14が存在している。これにより、例えば、放熱板10Aの特に高熱になりやすい部分において、図10に示すように、その部分に位置する中間フィン14の高さh1を、他の中間フィン14の高さh2よりも高くし、部分的に冷却性能を高めることができる。
 冷却器20Aにおける他の構成は、冷却器20と同様である。従って、放熱板に高さが異なる複数の中間フィン14が存在する点に関する説明以外の説明は、冷却器20での説明のとおりである。
 実施の形態3.
 図11は、実施の形態3である冷却器20Bに係る放熱板10Bの平板部11の一方主面S1をこの面と直交する方向から見た平面図であり、図12は、図11のK-K断面、L-L断面、M-M断面及びN-N断面における断面図である。
 実施の形態3である冷却器20Bと実施の形態1である冷却器20の相違点は、放熱板の中間フィンの高さである。以下で、より具体的に説明する。
 実施の形態3である冷却器20Bに係る放熱板10Bでは、高さが異なる複数の中間フィン14が存在している。これに加え、放熱板10Bでは、図12に示すように、流入口93から流出口95に進むにしたがって、中間フィン14の高さが高くなっている。つまり、中間フィン14の高さが、冷却媒体の流動方向Fの上流側から下流側に向かうにしたがって高くなっている。
 以上のように構成された放熱板10Bでは、放熱板10Bの反りを抑制することができる。具体的には、冷却器20B内に流入した冷却媒体は、放熱板10Bを介して電力変換装置80の熱を受ける。これにより、冷却媒体の温度は、流入口93から流出口95に向かうにしたがって上昇する。つまり、冷却媒体の温度は、流入口93側に対して流出口95側が高くなる。この冷却媒体の温度差によって、放熱板10Bの温度も流入口93側に対して流出口95側が高くなる。その結果、放熱板10Bに反りが発生する。しかし、放熱板10Bでは、図12に示すように、中間フィン14の高さが、冷却媒体の流動方向Fの上流側から下流側に向かうにしたがって高くなっている。これにより、放熱板10Bは、下流側ほど放熱しやすくなるため、放熱板10Bの温度上昇が抑制される。結果として、放熱板10Bの反りが抑制される。なお、放熱板10Bの反りが抑制されることで、放熱板10Bに取り付けられた電力変換装置80が、放熱板10Bから剥がれることを抑制できる。
 冷却器20Bにおける他の構成は、冷却器20と同様である。従って、放熱板に高さが異なる複数の中間フィン14が存在する点、及び流動方向Fの上流側から下流側に向かうにしたがって、中間フィン14の高さが高くなっている点に関する説明以外の説明は、冷却器20での説明のとおりである。
 実施の形態4.
 図13は、実施の形態4である冷却器20Cに係る放熱板10Cの一方主面S1をこの面と直交する方向から見た平面図である。
 実施の形態4である冷却器20Cと実施の形態1である冷却器20の相違点は、放熱板の中間フィンにおける表面形状である。中間フィンの冷却媒体と接触する面には、凹凸が形成されている。以下で、より具体的に説明する。
 実施の形態4である冷却器20Cに係る放熱板10Cでは、中間フィン14の主面、つまり、冷却媒体と接触する面に、凹凸Gが複数形成されている。凹凸Gは、その断面がV字を成し、高さ方向Hに伸びる溝である。これにより、放熱板10Cは、放熱板10よりも冷却媒体と接触する面積が増加する。その結果、冷却器20Cは、冷却器20と比較して、電力変換装置80から発生する熱を効率よく冷却することができる。
 冷却器20Cにおける他の構成は、冷却器20と同様である。従って、放熱板の中間フィン14の表面形状に関する説明以外の説明は、冷却器20での説明のとおりである。
 他の実施形態.
 本発明に係る冷却器は、前記実施の形態1~4に係る冷却器に限らずその要旨の範囲内において変更可能である。例えば、上記の実施の形態1~4における冷却媒体は不凍液であったが、これを冷却された気体に代えてもよい。また、図14に示すように、柱状フィンの形状を角柱状にしてもよい。さらに、冷却器を含む冷却システムにおける、冷却媒体の循環経路は、図15に示すように、ラジエータ50、ポンプ60、モータ40及び冷却器20の順であってもよい。これに加え、例えば、中間フィン14の主面に形成された凹凸Gは、V字の溝だけでなく、半円状の凹部等であってもよい。
 実施の形態5.
 本発明の実施の形態5に係る電力変換装置ユニット及び冷却システムについて説明する。図16は、本実施の形態に係る冷却システムの構成を示す構成図である。図16に示すように、本実施の形態に係る冷却システムは、第1冷却媒体を循環させる第1冷却回路30Aと、第2冷却媒体を循環させる第2冷却回路30Bと、第1冷却媒体と第2冷却媒体との熱交換を行う熱交換器31と、を有している。第1冷却回路30Aは、電力変換装置ユニット180を有している。電力変換装置ユニット180は、電力変換装置81と、電力変換装置81を冷却する冷却器20と、を有している。電力変換装置81は、半導体素子、リアクトル、コンデンサ等の複数の電気部品と、これらの電気部品が実装された絶縁基板と、を備えている。第1冷却回路30Aは、第1冷却媒体を用いて電力変換装置81を冷却する回路である。第2冷却回路30Bは、第2冷却媒体を用いて、電力変換装置81により制御されるモータ40を冷却する回路である。熱交換器31は、第1冷却媒体を流通させる第1冷却媒体流路と、第2冷却媒体を流通させる第2冷却媒体流路と、を有する対向流型の熱交換器である。
 第1冷却回路30Aは、第1ポンプ60A、ラジエータ50、電力変換装置ユニット180の冷却器20、及び熱交換器31が、第1配管70Aを介してこの順に環状に接続された構成を有している。第1冷却回路30Aを循環する第1冷却媒体としては、既に述べたような不凍液が用いられる。
 第1冷却回路30Aにおいて、第1ポンプ60Aから吐出された第1冷却媒体は、ラジエータ50に流入する。ラジエータ50では、第1冷却媒体と空気との熱交換が行われる。ラジエータ50に流入した第1冷却媒体は、空気への放熱によって冷却される。ラジエータ50から流出した第1冷却媒体は、電力変換装置ユニット180の冷却器20に流入する。冷却器20に流入した第1冷却媒体は、電力変換装置81からの吸熱によって加熱される。これにより、電力変換装置81は冷却される。冷却器20から流出した第1冷却媒体は、熱交換器31の第1冷却媒体流路に流入する。熱交換器31では、第1冷却媒体と第2冷却媒体との熱交換が行われる。通常、熱交換器31に流入する第1冷却媒体の温度は、熱交換器31に流入する第2冷却媒体の温度よりも低い。このため、第1冷却媒体は、第2冷却媒体からの吸熱によって加熱される。熱交換器31から流出した第1冷却媒体は、第1ポンプ60Aに吸入される。
 第2冷却回路30Bは、第2ポンプ60B、モータ40及び熱交換器31が第2配管70Bを介してこの順に環状に接続された構成を有している。第2冷却回路30Bを循環する第2冷却媒体としては、絶縁油が用いられる。
 第2冷却回路30Bにおいて、第2ポンプ60Bから吐出された第2冷却媒体は、モータ40に流入する。モータ40に流入した第2冷却媒体は、モータ40からの吸熱によって加熱される。これにより、モータ40は冷却される。モータ40から流出した第2冷却媒体は、熱交換器31の第2冷却媒体流路に流入する。熱交換器31に流入した第2冷却媒体は、第1冷却媒体への放熱によって冷却される。熱交換器31から流出した第2冷却媒体は、第2ポンプ60Bに吸入される。
 第1冷却回路30Aと第2冷却回路30Bとが互いに独立して設けられている場合、第1冷却媒体と第2冷却媒体との熱交換を行う熱交換器31は設けられず、第2冷却媒体を冷却するための別の熱交換器が第2冷却回路30Bに設けられる。この熱交換器としては、液体間で熱交換を行う液-液熱交換器ではなく、周囲空気と絶縁油との熱交換を行う空気熱交換器が一般に用いられる。通常、空気熱交換器は、液-液熱交換器よりも大型である。このため、従来の冷却システムは、全体として大型化してしまっていた。
 これに対し、本実施の形態の冷却システムでは、第1冷却回路30Aと第2冷却回路30Bとが熱交換器31を介して接続されている。第2冷却回路30Bの第2冷却媒体は、熱交換器31での第1冷却媒体との熱交換によって冷却される。したがって、本実施の形態によれば、第2冷却回路30Bに空気熱交換器を設ける必要がなくなるため、冷却システムを全体として小型化することができる。
 図17は、本実施の形態に係る冷却システムにおけるモータ40、熱交換器31及び電力変換装置ユニット180の物理的なレイアウトを模式的に示す図である。図17の上下方向は、鉛直上下方向を表している。図17に示すように、本実施の形態の冷却システムでは、モータ40の上方に電力変換装置ユニット180が配置されている。熱交換器31は、モータ40の上方であって電力変換装置ユニット180の下方に配置されている。熱交換器31は、物理的すなわち空間的な意味で、モータ40と電力変換装置ユニット180とに挟まれた位置に配置されている。このような配置により、電力変換装置ユニット180と熱交換器31とを接続する第1配管70Aの配管長、及び、モータ40と熱交換器31とを接続する第2配管70Bの配管長をそれぞれ短縮することができる。したがって、本実施の形態によれば、冷却システムの小型化及び低コスト化が可能となる。
 一方で、本実施の形態では、第1冷却回路30Aに熱交換器31が追加されることから、第1冷却回路30A全体の圧力損失が増大してしまう場合がある。このため、冷却器20では、圧力損失をより低くすることが求められる。また、電力変換装置ユニット180では、さらなる小型化及び高出力化が求められている。したがって、電力変換装置ユニット180の冷却器20では、高熱伝達率化及び低圧力損失化をできるだけ両立させることが望まれている。
 既に述べたように、冷却器に設けられる柱状フィンの形状が角柱形状である場合、角部が多くなるため、流れの剥離の影響で圧力損失が大きくなる。これに対し、柱状フィンの形状が円柱形状である場合、角部がないため、剥離が抑制されて圧力損失は小さくなる。ただし、柱状フィンの形状が円柱形状であっても、柱状フィン間での流速にバラツキが生じると、熱伝達率が小さくなってしまう。そのため、冷却器において高熱伝達率化と低圧力損失化とを両立させるのは困難であった。
 図18は、本実施の形態に係る電力変換装置ユニット180の構成を示す斜視図である。図18に示すように、電力変換装置ユニット180は、電力変換装置81と、電力変換装置81を冷却する冷却器20と、を有している。冷却器20は、実施の形態1と同様に、放熱板10とケース90とを有している。放熱板10の上面には、電力変換装置81が配置されている。ケース90は、放熱板10の下面と対向して配置された底面部96を有している。放熱板10と底面部96との間には、第1冷却媒体が流動する冷却媒体流路97が形成されている。
 図19は、本実施の形態に係る電力変換装置ユニット180の冷却器20の構成を示す平面図である。図20は、図19のA1-A1断面、A2-A2断面、A3-A3断面及びA4-A4断面を併せて示す図である。図19及び図20に示すように、冷却器20内の冷却媒体流路97には、複数の円柱状の柱状フィン12が設けられている。柱状フィン12は、アルミニウム、銅等の材料からなり、外壁から内部まで材料が充填されている中実フィンである。以下、柱状フィン12のことを「第1中実フィン」という場合がある。柱状フィン12は、放熱板10から底面部96に向かい、高さ方向Hに沿って延びている。高さ方向Hにおける柱状フィン12の高さは、放熱板10と底面部96との間の間隔に等しい。このため、柱状フィン12は、放熱板10及び底面部96の双方に接触している。複数の柱状フィン12は、流動方向Fに沿う方向では等間隔に配列している。以下、流動方向Fに沿って等間隔に配列した1列分の柱状フィン12のことを「フィン列」と表現する場合がある。フィン列は、幅方向Wに並列して複数設けられている。幅方向Wで隣り合う2つのフィン列同士は、柱状フィン12の配置に関して互いに半ピッチ分ずれている。これにより、複数の柱状フィン12は、放熱板10の平板部11上に千鳥状に配置されている。
 流動方向Fで隣り合う2つの柱状フィン12の間には、中間フィン14が設けられている。中間フィン14は、アルミニウム、銅等の材料からなる中実フィンである。以下、中間フィン14のことを「第2中実フィン」という場合がある。中間フィン14は、長方形平板状の形状を有するブレードフィン、すなわちストレートフィンである。中間フィン14は、高さ方向H及び流動方向Fの双方と平行になるように設けられている。流動方向Fにおける中間フィン14の上流端は、当該中間フィン14の上流側に位置する柱状フィン12と接触している。流動方向Fにおける中間フィン14の下流端は、当該中間フィン14の下流側に位置する柱状フィン12と接触している。つまり、中間フィン14は、流動方向Fで隣り合う2つの柱状フィン12同士を接続している。
 高さ方向Hにおける中間フィン14の高さは、柱状フィン12の高さと同じである。すなわち、中間フィン14は、放熱板10および底面部96の双方に接触している。柱状フィン12の直径、すなわち幅方向Wに沿う方向での柱状フィン12の幅をRとし、同方向での中間フィン14の幅をtとしたとき、R/t>1の関係が満たされている。既に述べた理由により、中間フィン14の材料には、柱状フィン12の材料よりも熱伝導率の高い材料が用いられていてもよい。
 幅方向Wで隣り合う2つのフィン列同士は、柱状フィン12の配置に関して互いに半ピッチ分ずれているため、幅方向Wでは、柱状フィン12同士ではなく、柱状フィン12と中間フィン14とが隣り合っている。幅方向Wで隣り合う柱状フィン12及び中間フィン14の間には、中実フィン15又は中実フィン16が設けられている。中実フィン15及び中実フィン16はいずれも、アルミニウム、銅等の材料からなり、外壁から内部まで材料が充填されている中実フィンである。以下、中実フィン15のことを「第3中実フィン」という場合があり、中実フィン16のことを「第4中実フィン」という場合がある。中実フィン15及び中実フィン16はいずれも、長方形平板状の形状を有するブレードフィンである。中実フィン15及び中実フィン16のそれぞれの材料には、柱状フィン12の材料よりも熱伝導率の高い材料が用いられていてもよい。
 中実フィン15は、高さ方向H及び幅方向Wの双方と平行になるように、放熱板10に沿って設けられている。幅方向Wにおける中実フィン15の一端は、柱状フィン12と接触している。幅方向Wにおける中実フィン15の他端は、中間フィン14と接触している。つまり、中実フィン15は、幅方向Wで隣り合う柱状フィン12と中間フィン14とを接続している。高さ方向Hにおける中実フィン15の高さは、柱状フィン12の高さよりも低くなっている。高さ方向Hにおける中実フィン15の一端は、放熱板10と接触している。高さ方向Hにおける中実フィン15の他端は、隙間を介して底面部96と対向している。中実フィン15と底面部96との間の隙間は、第1冷却媒体の流路となる。
 中実フィン16は、高さ方向H及び幅方向Wの双方と平行になるように、底面部96に沿って設けられている。幅方向Wにおける中実フィン16の一端は、柱状フィン12と接触している。幅方向Wにおける中実フィン16の他端は、中間フィン14と接触している。つまり、中実フィン16は、幅方向Wで隣り合う柱状フィン12と中間フィン14とを接続している。高さ方向Hにおける中実フィン16の高さは、柱状フィン12の高さよりも低くなっている。高さ方向Hにおける中実フィン16の一端は、底面部96と接触している。高さ方向Hにおける中実フィン16の他端は、隙間を介して放熱板10と対向している。中実フィン16と放熱板10との間の隙間は、第1冷却媒体の流路となる。
 放熱板10に沿った中実フィン15と底面部96に沿った中実フィン16とは、流動方向Fにおいて交互に設けられている。このため、流動方向Fに沿って流動する第1冷却媒体は、中実フィン15と中実フィン16とを交互に乗り越える。これにより、流動する第1冷却媒体が撹拌され、第1冷却媒体の乱流化が促進される。したがって、本実施の形態の冷却器20では、冷却器20と第1冷却媒体との間の熱伝達率が向上するため、電力変換装置81を効率良く冷却することができる。
 放熱板10には、柱状フィン12に加えて中間フィン14、中実フィン15及び中実フィン16が設けられているため、放熱板10と第1冷却媒体との接触面積が増加する。このため、本実施の形態によれば、電力変換装置81をより効率良く冷却することができる。
 本実施の形態の柱状フィン12、中間フィン14、中実フィン15及び中実フィン16は、複数のフィンユニット110を適宜組み合わせることによって形成されている。図21は、本実施の形態に係る電力変換装置ユニット180の冷却器20におけるフィンユニット110の構成の一例を示す図である。図21に示すように、フィンユニット110は、ブレードフィン101と、ブレードフィン101の一端に接続された部分柱状フィン102と、ブレードフィン101の他端に接続された部分柱状フィン103と、を有している。部分柱状フィン102及び部分柱状フィン103のそれぞれは、ろう付け等によりブレードフィン101に接合されている。あるいは、ブレードフィン101、部分柱状フィン102及び部分柱状フィン103は、一体的に成形されていてもよい。
 ブレードフィン101は、長方形平板状の形状を有している。ブレードフィン101は、中間フィン14、中実フィン15又は中実フィン16を構成する。紙面に直交する方向において、ブレードフィン101の高さは、部分柱状フィン102及び部分柱状フィン103のそれぞれの高さと同じか、又はそれより低くなっている。部分柱状フィン102及び部分柱状フィン103はいずれも、半円状の平面形状を有している。部分柱状フィン102及び部分柱状フィン103のそれぞれは、柱状フィン12の一部を構成する。すなわち、部分柱状フィン102及び部分柱状フィン103のそれぞれは、別のフィンユニット110の部分柱状フィン102又は部分柱状フィン103と組み合わされることにより、円柱状の柱状フィン12を構成する。
 図22は、本実施の形態に係る電力変換装置ユニット180の冷却器20におけるフィンユニット110の構成の別の例を示す図である。図22に示すように、本例の部分柱状フィン102及び部分柱状フィン103はいずれも、90°の中心角を有する扇形状の平面形状を有している。部分柱状フィン102及び部分柱状フィン103は、別のフィンユニット110の部分柱状フィン102又は部分柱状フィン103と組み合わされることにより、円柱状の柱状フィン12を構成する。
 図21及び図22に示したような複数のフィンユニット110は、互いに組み合わされるとともに放熱板10に対して固定される。これにより、柱状フィン12、中間フィン14、中実フィン15及び中実フィン16が放熱板10に形成される。複数のフィンユニット110の形状は数種類にパターン化され得るため、柱状フィン12、中間フィン14、中実フィン15及び中実フィン16を形成する工程を簡略化できる。
 以上説明したように、本実施の形態に係る電力変換装置ユニット180は、電力変換を行う電力変換装置81と、電力変換装置81が一方の面に配置される放熱板10と、放熱板10の他方の面と対向して配置された底面部96と、放熱板10と底面部96との間に形成され、電力変換装置81を冷却する第1冷却媒体が流動する冷却媒体流路97と、冷却媒体流路97に設けられ、放熱板10から底面部96に向かって延びた複数の柱状フィン12と、冷却媒体流路97に設けられ、複数の柱状フィン12のうち第1冷却媒体の流動方向Fで隣り合う2つの柱状フィン12同士を接続する中間フィン14と、を備える。ここで、放熱板10は、第1板状部材の一例である。底面部96は、第2板状部材の一例である。柱状フィン12は、第1中実フィンの一例である。中間フィン14は、第2中実フィンの一例である。
 この構成によれば、放熱板10と第1冷却媒体との接触面積を増加させることができる。したがって、電力変換装置81から発生する熱を第1冷却媒体に効率良く放熱することができるため、電力変換装置81を効率良く冷却することができる。また、この構成によれば、中間フィン14を梁として機能させることができるため、放熱板10の剛性を高めることができる。
 また、本実施の形態に係る電力変換装置ユニット180において、中間フィン14は、平板状の形状を有するブレードフィンである。この構成によれば、第1冷却媒体の圧力損失の増加を抑えつつ中間フィン14と第1冷却媒体との接触面積を増加させることができるため、電力変換装置81をより効率良く冷却することができる。
 また、本実施の形態に係る電力変換装置ユニット180において、複数の柱状フィン12のそれぞれは、半円状又は扇形状の平面形状を有する複数の部分柱状フィン102又は103が組み合わされた円柱状の形状を有している。この構成によれば、第1冷却媒体の流れの剥離を抑制できるため、第1冷却媒体の圧力損失を低減することができる。
 また、本実施の形態に係る電力変換装置ユニット180において、複数の柱状フィン12のそれぞれは、放熱板10及び底面部96の双方に接触している。この構成によれば、第1冷却媒体の圧力損失を低減できるため、電力変換装置81をより効率良く冷却することができる。
 また、本実施の形態に係る電力変換装置ユニット180において、中間フィン14は、放熱板10及び底面部96の双方に接触している。この構成によれば、第1冷却媒体の圧力損失の増加を抑えつつ中間フィン14と第1冷却媒体との接触面積を増加させることができるため、電力変換装置81をより効率良く冷却することができる。
 また、本実施の形態に係る電力変換装置ユニット180において、第1冷却媒体の流動方向Fに直交する方向における複数の柱状フィン12のそれぞれの幅をRとし、第1冷却媒体の流動方向Fに直交する方向における中間フィン14の幅をtとしたとき、R/t>1の関係が満たされる。この構成によれば、柱状フィン12及び中間フィン14と、第1冷却媒体と、の接触面積を増加させることができるとともに、柱状フィン12の前縁効果を高めることができるため、電力変換装置81をより効率良く冷却することができる。
 また、本実施の形態に係る電力変換装置ユニット180は、中実フィン15と中実フィン16とをさらに備えている。中実フィン15は、冷却媒体流路97に設けられ、放熱板10に沿って第1冷却媒体の流動方向Fと交差する方向に延び、少なくとも柱状フィン12に接続される。中実フィン16は、冷却媒体流路97に設けられ、底面部96に沿って第1冷却媒体の流動方向Fと交差する方向に延び、少なくとも柱状フィン12に接続される。中実フィン15及び中実フィン16は、第1冷却媒体の流動方向Fにおいて交互に設けられている。ここで、中実フィン15は、第3中実フィンの一例である。中実フィン16は、第4中実フィンの一例である。この構成によれば、放熱板10と第1冷却媒体との接触面積を増加させつつ、第1冷却媒体の乱流化を促進することができる。したがって、電力変換装置81をより効率良く冷却することができる。
 また、本実施の形態に係る電力変換装置ユニット180において、中実フィン15及び中実フィン16のそれぞれは、平板状の形状を有するブレードフィンである。この構成によれば、中実フィン15及び中実フィン16のそれぞれと第1冷却媒体との接触面積を増加させることができるため、電力変換装置81をより効率良く冷却することができる。
 また、本実施の形態に係る電力変換装置ユニット180において、中実フィン15は、放熱板10に接触しているとともに、隙間を介して底面部96と対向している。中実フィン16は、底面部96に接触しているとともに、隙間を介して放熱板10と対向している。この構成によれば、第1冷却媒体の流路を確保しつつ、第1冷却媒体の乱流化を促進することができる。
 本実施の形態に係る冷却システムは、本実施の形態に係る電力変換装置ユニット180を有し第1冷却媒体を循環させて電力変換装置81を冷却する第1冷却回路30Aと、第2冷却媒体を循環させて、電力変換装置81により制御されるモータ40を冷却する第2冷却回路30Bと、第1冷却媒体と第2冷却媒体との熱交換を行う熱交換器31と、を備える。ここで、モータ40は、回転機の一例である。
 この構成によれば、熱交換器31での第1冷却媒体との熱交換によって第2冷却媒体を冷却することができるため、第2冷却回路30Bに設けられる空気熱交換器を省略又は小型化できる。したがって、本実施の形態によれば、冷却システムを小型化することができる。
 また、本実施の形態に係る冷却システムにおいて、熱交換器31は、電力変換装置ユニット180とモータ40とに物理的に挟まれた位置に配置されている。この構成によれば、電力変換装置ユニット180と熱交換器31とを接続する配管の配管長を短縮することができるとともに、モータ40と熱交換器31とを接続する配管の配管長を短縮することができる。したがって、本実施の形態によれば、冷却システムの小型化及び低コスト化が可能となる。
 実施の形態6.
 本発明の実施の形態6に係る電力変換装置ユニットについて説明する。図23は、本実施の形態に係る電力変換装置ユニット180の冷却器20の構成を示す平面図である。図24は、図23のA5-A5断面、A6-A6断面、A7-A7断面及びA8-A8断面を併せて示す図である。本実施の形態は、中間フィン14の高さに関する点で実施の形態5と異なっている。この点以外については、実施の形態5と同様である。
 図23及び図24に示すように、本実施の形態の冷却器20には、高さの異なる複数の中間フィン14が存在している。放熱板10の一部分に設けられた中間フィン14の高さはh1であり、放熱板10の別の部分に設けられた中間フィン14の高さは、h1よりも低いh2である(h1>h2)。例えば、放熱板10において特に高温となる部分には、第1冷却媒体との接触面積を増加させるために、高さh1の中間フィン14が設けられる。それ以外の部分には、高さh1よりも低い高さh2の中間フィン14が設けられる。これにより、放熱板10と第1冷却媒体との接触面積を部分的に増加させることができるため、冷却器20の冷却性能を部分的に高めることができる。
 以上説明したように、本実施の形態に係る電力変換装置ユニット180では、中間フィン14は複数設けられており、互いに高さの異なる中間フィン14が存在する。この構成によれば、冷却器20の冷却性能を部分的に高めることができる。
 実施の形態7.
 本発明の実施の形態7に係る電力変換装置ユニットについて説明する。図25は、本実施の形態に係る電力変換装置ユニット180の冷却器20の構成を示す平面図である。図26は、図25のA9-A9断面、A10-A10断面、A11-A11断面及びA12-A12断面を併せて示す図である。本実施の形態は、中間フィン14の高さに関する点で実施の形態5と異なっている。この点以外については、実施の形態5と同様である。
 図25及び図26に示すように、複数の中間フィン14のそれぞれの高さは、流動方向Fにおいて上流側から下流側に向かうにしたがって高くなっている。すなわち、ある部分に設けられた中間フィン14の高さは、流動方向Fにおいてそれより上流側に設けられた中間フィン14の高さよりも高くなっている。これにより、実施の形態3と同様に、放熱板10の温度上昇を抑制できるため、放熱板10の反りを抑制することができる。
 実施の形態8.
 本発明の実施の形態8に係る電力変換装置ユニットについて説明する。図27は、本実施の形態に係る電力変換装置ユニット180の冷却器20の構成を示す平面図である。本実施の形態は、中間フィン14の表面形状に関する点で実施の形態5と異なっている。この点以外については、実施の形態5と同様である。
 図27に示すように、中間フィン14の主面、すなわち第1冷却媒体と接触する面には、複数の凹凸Gが形成されている。凹凸Gは、高さ方向Hに沿って延びる断面V字状の溝である。これにより、放熱板10と第1冷却媒体との接触面積を増加させることができるため、電力変換装置81をより効率良く冷却することができる。なお、凹凸Gは、断面V字状の溝に限られず、断面半円状の溝によって形成されていてもよい。また、凹凸Gは溝に限られず、高さ方向Hに沿って延びる線状の凸部によって形成されていてもよいし、点状の凹部又は点状の凸部によって形成されていてもよい。
 以上説明したように、本実施の形態に係る電力変換装置ユニット180では、中間フィン14の表面には凹凸が形成されている。この構成によれば、電力変換装置81をより効率良く冷却することができる。
 他の実施形態.
 本発明に係る電力変換装置ユニット及び冷却システムは、上記実施の形態5~8に限らずその要旨の範囲内において変更可能である。例えば、上記実施の形態5~8における第1冷却媒体は不凍液であったが、第1冷却媒体は不凍液以外の液体であってもよいし、気体であってもよい。また、上記実施の形態5~8における第2冷却媒体は絶縁油であったが、第2冷却媒体は絶縁油以外の液体であってもよいし、気体であってもよい。また、上記実施の形態5~8における柱状フィン12の形状は円柱状であったが、図28に示すように、柱状フィン12の形状は角柱状であってもよい。
 10,10A,10B,10C 放熱板、11 平板部、12,12a,12b,12c,12d 柱状フィン、14 中間フィン、15,16 中実フィン、20,20A,20B,20C 冷却器、30 冷却システム、30A 第1冷却回路、30B 第2冷却回路、31 熱交換器、40 モータ、50 ラジエータ、60 ポンプ、60A 第1ポンプ、60B 第2ポンプ、70 配管、70A 第1配管、70B 第2配管、80,81 電力変換装置、90 ケース、91 開口部、92 冷却媒体入口部、93 流入口、94 冷却媒体出口部、95 流出口、96 底面部、97 冷却媒体流路、101 ブレードフィン、102,103 部分柱状フィン、110 フィンユニット、180 電力変換装置ユニット、F 流動方向、G 凹凸、H 高さ方向、S1 一方主面

Claims (20)

  1.  電力変換装置を冷却するための冷却器であって、
     開口部を有し、冷却媒体が流れ込む流入口及び前記冷却媒体が流れ出る流出口が設けられた箱状のケースと、
     一方主面が前記冷却媒体と接触する平板部、前記平板部の前記一方主面に複数設けられた柱状フィン、及び前記流入口から前記流出口に向かう流動方向において隣り合う前記柱状フィンを連結する中間フィンを有し、前記開口部に取り付けられる放熱板と、
     を備える、冷却器。
  2.  前記柱状フィンは、前記一方主面と直交する方向から見たとき、千鳥状に配置されている、請求項1に記載の冷却器。
  3.  前記中間フィンは、複数存在し、
     前記一方主面と直交する高さ方向において、高さの異なる前記中間フィンが存在する、請求項1又は請求項2に記載の冷却器。
  4.  前記中間フィンの高さは、前記流動方向において上流側から下流側に向かうにしたがって高くなる、請求項3に記載の冷却器。
  5.  前記柱状フィンの材料は、前記中間フィンの材料と異なる、請求項1から請求項4のいずれか1項に記載の冷却器。
  6.  前記柱状フィンの形状は、円柱状である、請求項1から請求項5のいずれか1項に記載の冷却器。
  7.  前記中間フィンの前記冷却媒体と接触する面には凹凸が形成されている、請求項1から請求項6のいずれか1項に記載の冷却器。
  8.  前記一方主面と直交する高さ方向において、前記中間フィンの高さは、前記柱状フィンの高さと同じである、請求項1から請求項7のいずれか1項に記載の冷却器。
  9.  電力変換を行う電力変換装置と、
     前記電力変換装置が一方の面に配置される第1板状部材と、
     前記第1板状部材の他方の面と対向して配置された第2板状部材と、
     前記第1板状部材と前記第2板状部材との間に形成され、前記電力変換装置を冷却する第1冷却媒体が流動する冷却媒体流路と、
     前記冷却媒体流路に設けられ、前記第1板状部材から前記第2板状部材に向かって延びた複数の第1中実フィンと、
     前記冷却媒体流路に設けられ、前記複数の第1中実フィンのうち前記第1冷却媒体の流動方向で隣り合う2つの第1中実フィン同士を接続する第2中実フィンと、
     を備える電力変換装置ユニット。
  10.  前記第2中実フィンは、平板状の形状を有するブレードフィンである請求項9に記載の電力変換装置ユニット。
  11.  前記複数の第1中実フィンのそれぞれは、半円状又は扇形状の平面形状を有する複数の部分柱状フィンが組み合わされた円柱状の形状を有している請求項9又は請求項10に記載の電力変換装置ユニット。
  12.  前記複数の第1中実フィンのそれぞれは、前記第1板状部材及び前記第2板状部材の双方に接触している請求項9から請求項11のいずれか1項に記載の電力変換装置ユニット。
  13.  前記第2中実フィンは複数設けられており、
     互いに高さの異なる前記第2中実フィンが存在する請求項9から請求項12のいずれか1項に記載の電力変換装置ユニット。
  14.  前記第2中実フィンの表面には凹凸が形成されている請求項9から請求項13のいずれか1項に記載の電力変換装置ユニット。
  15.  前記第1冷却媒体の流動方向に直交する方向における前記複数の第1中実フィンのそれぞれの幅をRとし、前記第1冷却媒体の流動方向に直交する方向における前記第2中実フィンの幅をtとしたとき、
     R/t>1の関係が満たされる請求項9から請求項14のいずれか1項に記載の電力変換装置ユニット。
  16.  前記冷却媒体流路に設けられ、前記第1板状部材に沿って前記第1冷却媒体の流動方向と交差する方向に延び、少なくとも前記第1中実フィンに接続される第3中実フィンと、
     前記冷却媒体流路に設けられ、前記第2板状部材に沿って前記第1冷却媒体の流動方向と交差する方向に延び、少なくとも前記第1中実フィンに接続される第4中実フィンと、
     をさらに備え、
     前記第3中実フィン及び前記第4中実フィンは、前記第1冷却媒体の流動方向において交互に設けられている請求項9から請求項15のいずれか1項に記載の電力変換装置ユニット。
  17.  前記第3中実フィン及び前記第4中実フィンのそれぞれは、平板状の形状を有するブレードフィンである請求項16に記載の電力変換装置ユニット。
  18.  前記第3中実フィンは、前記第1板状部材に接触しているとともに、隙間を介して前記第2板状部材と対向しており、
     前記第4中実フィンは、前記第2板状部材に接触しているとともに、隙間を介して前記第1板状部材と対向している請求項16又は請求項17に記載の電力変換装置ユニット。
  19.  請求項9から請求項18のいずれか1項に記載の電力変換装置ユニットを有し前記第1冷却媒体を循環させて前記電力変換装置を冷却する第1冷却回路と、
     第2冷却媒体を循環させて、前記電力変換装置により制御される回転機を冷却する第2冷却回路と、
     前記第1冷却媒体と前記第2冷却媒体との熱交換を行う熱交換器と、
     を備える冷却システム。
  20.  前記熱交換器は、前記電力変換装置ユニットと前記回転機とに物理的に挟まれた位置に配置されている請求項19に記載の冷却システム。
PCT/JP2019/008417 2018-03-15 2019-03-04 冷却器、電力変換装置ユニット及び冷却システム WO2019176620A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019525925A JP6563161B1 (ja) 2018-03-15 2019-03-04 冷却器、電力変換装置ユニット及び冷却システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-048212 2018-03-15
JP2018048212 2018-03-15

Publications (1)

Publication Number Publication Date
WO2019176620A1 true WO2019176620A1 (ja) 2019-09-19

Family

ID=67906573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008417 WO2019176620A1 (ja) 2018-03-15 2019-03-04 冷却器、電力変換装置ユニット及び冷却システム

Country Status (1)

Country Link
WO (1) WO2019176620A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256248A1 (ja) * 2020-06-17 2021-12-23 株式会社デンソー 熱交換器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215545B1 (en) * 2003-05-01 2007-05-08 Saeed Moghaddam Liquid cooled diamond bearing heat sink
WO2012114475A1 (ja) * 2011-02-23 2012-08-30 トヨタ自動車株式会社 冷却器
JP2013175526A (ja) * 2012-02-24 2013-09-05 Mitsubishi Electric Corp 冷却器及び冷却装置
WO2014069174A1 (ja) * 2012-10-29 2014-05-08 富士電機株式会社 半導体装置
JP2016164968A (ja) * 2015-02-27 2016-09-08 カルソニックカンセイ株式会社 冷却装置
JP2017092468A (ja) * 2015-11-10 2017-05-25 昭和電工株式会社 パワーモジュール用ベース

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215545B1 (en) * 2003-05-01 2007-05-08 Saeed Moghaddam Liquid cooled diamond bearing heat sink
WO2012114475A1 (ja) * 2011-02-23 2012-08-30 トヨタ自動車株式会社 冷却器
JP2013175526A (ja) * 2012-02-24 2013-09-05 Mitsubishi Electric Corp 冷却器及び冷却装置
WO2014069174A1 (ja) * 2012-10-29 2014-05-08 富士電機株式会社 半導体装置
JP2016164968A (ja) * 2015-02-27 2016-09-08 カルソニックカンセイ株式会社 冷却装置
JP2017092468A (ja) * 2015-11-10 2017-05-25 昭和電工株式会社 パワーモジュール用ベース

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256248A1 (ja) * 2020-06-17 2021-12-23 株式会社デンソー 熱交換器
JP7424251B2 (ja) 2020-06-17 2024-01-30 株式会社デンソー 熱交換器

Similar Documents

Publication Publication Date Title
JP5975110B2 (ja) 半導体装置
US9816762B2 (en) Heat exchanger having a passage pipe
US20120205086A1 (en) Heat exchanger
US20080216991A1 (en) Cooling device for information equipment
JP2008171840A (ja) 液冷ヒートシンクおよびその設計方法
JP2010010418A (ja) 積層型冷却器
CN111386010A (zh) 冷却装置
JPWO2015141714A1 (ja) 冷却器およびそれを用いた半導体モジュール
JP7238400B2 (ja) 冷却装置
JP2009266937A (ja) 積層型冷却器
JP4941398B2 (ja) 積層型冷却器
JP6563161B1 (ja) 冷却器、電力変換装置ユニット及び冷却システム
WO2019176620A1 (ja) 冷却器、電力変換装置ユニット及び冷却システム
WO2023171529A1 (ja) 冷却装置、放熱部材、および半導体モジュール
JP2007212120A (ja) インナーフィン及びこのインナーフィンを備えたヒートシンク
JP2012169429A (ja) 熱交換器
JP5114324B2 (ja) 半導体装置
US20220377939A1 (en) Cooling apparatus and semiconductor apparatus with cooling apparatus
US20210066166A1 (en) Liquid-cooling-type cooler
WO2017077566A1 (ja) ヒートシンク、それを用いた冷却器及び半導体装置
US20230204305A1 (en) Heat dissipation member and cooling device
JP2020035830A (ja) ウェーブフィンおよび熱交換器
WO2024084551A1 (ja) 冷却器及び冷却システム
JP2008218828A (ja) 冷却装置及び冷却装置付半導体装置
JP7151352B2 (ja) ウェーブフィンおよび熱交換器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019525925

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767402

Country of ref document: EP

Kind code of ref document: A1