WO2015141693A1 - 半透膜分離装置および半透膜分離装置の運転方法 - Google Patents

半透膜分離装置および半透膜分離装置の運転方法 Download PDF

Info

Publication number
WO2015141693A1
WO2015141693A1 PCT/JP2015/057941 JP2015057941W WO2015141693A1 WO 2015141693 A1 WO2015141693 A1 WO 2015141693A1 JP 2015057941 W JP2015057941 W JP 2015057941W WO 2015141693 A1 WO2015141693 A1 WO 2015141693A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
semipermeable membrane
pressure
permeated
supplied
Prior art date
Application number
PCT/JP2015/057941
Other languages
English (en)
French (fr)
Inventor
谷口 雅英
一憲 富岡
智宏 前田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2015525342A priority Critical patent/JPWO2015141693A1/ja
Publication of WO2015141693A1 publication Critical patent/WO2015141693A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • B01D61/026Reverse osmosis; Hyperfiltration comprising multiple reverse osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • B01D2317/025Permeate series
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions
    • C02F2301/066Overpressure, high pressure

Definitions

  • the present invention relates to a fresh water production method for obtaining fresh water efficiently and inexpensively in a semipermeable membrane unit using raw water such as seawater, salt-containing river water, groundwater, lake water, wastewater treated water, etc. is there. More specifically, by loading a plurality of semipermeable membrane elements in one pressure vessel and combining a semipermeable membrane unit having a structure in which different conditions can be set therein with a highly efficient energy recovery unit, The present invention relates to a semipermeable membrane separation apparatus for producing fresh water at low cost and an operation method thereof.
  • the reverse osmosis method applied to seawater desalination can produce desalted water by allowing water containing a solute such as salt to pass through a semipermeable membrane at a pressure higher than the osmotic pressure.
  • This technology can be used to obtain drinking water from, for example, seawater, brine, and water containing harmful substances, and has also been used in the production of industrial ultrapure water, wastewater treatment, and recovery of valuable resources. .
  • a minimum pressure of about 3.0 MPa or more and a pressure of at least about 5.0 MPa are necessary in consideration of practicality, and sufficient reverse osmosis unless pressurized to a pressure higher than this. Separation performance is not exhibited.
  • the rate of recovery of freshwater from seawater is usually around 40% with normal seawater desalination technology, equivalent to 40% of seawater supply.
  • the seawater concentration in the semipermeable membrane unit is concentrated from 3.5% to about 6%.
  • osmotic pressure corresponding to the concentration of concentrated water (about 4.5 MPa for seawater concentrated water concentration of 6%) or more Pressure is required.
  • a semipermeable membrane element is usually used in a state in which a plurality of semipermeable membrane elements are loaded in series in one pressure vessel (pressure vessel for loading elements) (this is called a module). In the plant, it is used as a unit in which many of these modules are installed in parallel.
  • Seawater desalination yield is the ratio of the total amount of permeated water to the total amount of seawater supplied to the entire plant. Under normal conditions, modules are installed in parallel, so the supply per module And the ratio of the amount of permeated water obtained from one module (the total amount of permeated water from each element in the module).
  • the permeated water obtained from each element inside the module is, for example, one unit is one module, and one module is composed of six semipermeable membrane elements.
  • the matters that need to be considered for setting the operating conditions of the semipermeable membrane separator are prevention of fouling (membrane surface contamination) and prevention of concentration polarization.
  • fouling membrane surface contamination
  • concentration polarization concentration polarization
  • the amount of permeated water obtained from one semipermeable membrane element should not exceed a certain value (anti-fouling tolerance Flux), and the flow rate on the supply side should be within a certain range (allowable cross flow velocity). ) Can be prevented or reduced.
  • Fluxing tolerance Flux turbidity in the feed water is transported to the membrane surface and pressed against it.
  • the crossflow flow rate has the effect of writing and flowing away turbidity and the like deposited on the membrane surface by a shearing force, if it falls below the allowable range, the membrane surface contamination of the semipermeable membrane element is accelerated, which is not preferable.
  • the cross flow velocity if the flow velocity is too large, the flow pressure loss of the supply water flow path becomes large, or the element is easily damaged by the water hammer effect, and therefore an upper limit value is usually set.
  • This allowable fouling resistance depends on the membrane material, element structure, and raw water quality, but is usually about 0.7 m 3 / m 2 ⁇ day in the case of a high-performance semipermeable membrane. More specifically, when using Toray's reverse osmosis membrane 8 inch element (diameter 20 cm x length 1 m) of this standard and obtaining fresh water from pretreated surface seawater, the maximum flux of the element is 28 L / m 2 / hour.
  • the amount of water produced per element with a membrane area of 40 m 2 is 26.9 m 3 / day) or less, and the crossflow flow rate is 3.6 m 3 / hour (86 m 3 / day) or more and 13 m 3 / hour (312 m 3 / day).
  • the supply seawater is concentrated as it goes from the head element to the tail. Since it is a fraction of the amount of water produced by the element, it is necessary to increase the flux as much as possible.
  • the concrete amount of water in the first element is a case of the condition that the 26.9m 3 / day or less, it is designed in closer. Otherwise, a large membrane area is required, which is economically disadvantageous.
  • the total recovery rate of the first and second stages is 60%, for example, as a unit configuration, the number of modules in the first stage is two, the recovery rate is 40%, If the number of modules in the first stage is one and the recovery rate is 33%, and 400m 3 / day of seawater is supplied to the first stage, 200m 3 / day (upper limit 312m 3 / day) is supplied to the first stage pressure vessel.
  • the seawater concentration changes from 3.5% to 8.8% and the osmotic pressure changes from 2.6 MPa to 7.0 MPa in terms of mass balance.
  • the effective pressure difference between the operating pressure and the osmotic pressure necessary for permeating fresh water varies greatly from 5.4 MPa to 1.0 MPa. That is, the ratio of the amount of permeated water between the first and last stage elements inside the module is approximately the same as this effective pressure ratio of 54:10. That is, there was a problem that the amount of permeated water of the first element increased dramatically, exceeded the allowable fouling resistance, and fouling was very likely to occur.
  • the reverse osmosis membrane has higher water permeability as the water temperature becomes higher.
  • the amount of water produced by the leading element increases, so the problem of the amount of water produced by the leading element at a high temperature is remarkable and very serious.
  • Non-Patent Document 2 Patent Document 1 in which the operation pressure applied to the first-stage semipermeable membrane element is reduced and the latter is increased to ensure the second-stage permeated water amount having a high osmotic pressure. ) Can be applied.
  • the pretreated water stored in the intermediate water tank 5 passes through the safety filter 6, and then the booster pump 7, the first semipermeable membrane unit 8 a is sent to the first semipermeable membrane unit 8 a to obtain permeated water from the first permeated water line 11.
  • the first concentrated water 14a of the first semipermeable membrane unit 8a is pressurized by a booster pump or a turbocharger 19 (the turbocharger 19 is shown in FIG. 1), and the second semipermeable membrane unit 8b receives the first concentrated water 14a.
  • Permeate can be obtained from the two permeate lines 12.
  • the second concentrated water 14 b is discharged from the concentrated drainage line 14 after the remaining pressure energy is recovered by the turbocharger 19.
  • a step-up pump or a turbocharger is not provided between the first semipermeable membrane unit 8a and the second semipermeable membrane unit 8b, but the first The method as shown to patent document 2 which acquires the same effect by applying a back pressure to the permeation
  • FIG. 11 shows a cross-sectional view of an example of a semipermeable membrane module constituting the semipermeable membrane unit 8 applied here. Furthermore, as illustrated in FIG. 4, a method of applying an energy recovery unit 10 a instead of the valve 18 in a similar method is proposed in Patent Document 4.
  • Japanese Unexamined Patent Publication No. 08-108048 Japanese Patent No. 04187316 Japanese Patent Laid-Open No. 2001-137672 Japanese Unexamined Patent Publication No. 2010-179264
  • the present invention provides an apparatus and a separation method that can obtain a low-concentration solution more stably from a high-concentration solution with a high recovery rate, less energy, at a lower cost, and with a higher efficiency.
  • it is difficult to increase the recovery rate in high-concentration seawater such as the Middle East, and even when the leading and trailing fluxes change significantly, fresh water can be efficiently used with less energy and fouling can be suppressed.
  • it aims at providing the semipermeable membrane separation apparatus and its operating method for obtaining stably.
  • the present invention has the following configuration.
  • a semipermeable membrane unit is disposed downstream of a booster pump that pressurizes and supplies seawater or high-concentration brine with a salinity concentration of 1% by weight or more as raw water and raw water or its pretreated water as supply water.
  • a semipermeable membrane separating apparatus for separating permeated water wherein the semipermeable membrane unit has a plurality of semipermeable membrane elements housed in series in one cylindrical pressure vessel, and supplied water is supplied from one end.
  • a module having a structure for supplying non-permeated water obtained from the semi-permeable membrane element located in the previous stage to the semi-permeable membrane element located in the next stage, and the permeated water obtained from the semi-permeable membrane element in the previous stage and the remaining
  • a first permeate line for taking out a portion of the permeate obtained from the previous stage from one end so that the permeate obtained from the back stage is divided, and the remaining permeate from the rear stage is taken out from the other end.
  • a second permeate line, and the first permeate line is connected to an energy recovery unit, and a portion of the feed water is at least of the pressure exchange type energy recovery unit and the turbocharger using back pressure energy.
  • a semipermeable membrane separator that is designed to boost pressure by one.
  • the pressure is increased substantially equal to the amount of the concentrated water by the pressure energy of the concentrated water (1) or (2) Permeable membrane separator.
  • the turbocharger boosts a part of the supply water, and before or after that, boosts the pressure to the required pressure with the boost pump.
  • the membrane winding body in which the semipermeable membrane element is wound with the semipermeable membrane on the sheet is covered with an exterior body, and at least one end of the membrane winding body and the exterior body is provided with a telescope prevention plate, At least a spiral membrane element in which a raw water sealing member is provided on the outer periphery of one telescope prevention plate, and the raw water sealing member can move the semipermeable membrane element substantially in both directions within the cylindrical pressure vessel.
  • the semipermeable membrane separation device according to (13) which has a caulking structure.
  • the supply water side of at least two semipermeable membrane modules is downstream of a booster pump that pressurizes and supplies seawater or high-concentration brine with a salinity concentration of 1% by weight or more as raw water and raw water or its pretreated water as supply water.
  • Semi-permeable membrane separation for separating concentrated water and permeated water by a unit that is connected in series and supplies non-permeated water obtained from the previous semi-permeable membrane module to the semi-permeable membrane module located in the next stage.
  • An outlet of permeated water obtained from at least one semipermeable membrane module excluding at least the last semipermeable membrane module among the semipermeable membrane modules is connected to an energy recovery unit and uses back pressure energy
  • the semipermeable membrane is designed to boost a part of the supplied water with at least one of the pressure exchange type energy recovery unit and the turbocharger. Away equipment.
  • the present invention makes it possible to obtain fresh water stably while preventing fouling of reverse osmosis membranes in seawater desalination, particularly in high-concentration seawater such as the Middle East.
  • FIG. 3 is an example of a flow diagram of a semipermeable membrane separation apparatus configured to pressurize the remaining supply water with a pump and then pressurize again after merging.
  • the permeated water of a plurality of semipermeable membrane elements is divided back and forth in a pressure vessel, and a part of the supplied water is boosted by a turbocharger using the permeated water pressure energy of the previous stage, and a booster pump It is an example of the flowchart of the semipermeable membrane separation apparatus of the structure which pressurizes the remaining supply water.
  • the permeated water of a plurality of semipermeable membrane elements is divided back and forth, and a part of the feed water pre-pressurized with a booster pump by a turbocharger using the permeated water pressure energy of the previous stage FIG.
  • FIG. 6 is another example of a flow chart of a semipermeable membrane separation apparatus configured to increase the pressure of the water supply again and increase the pressure of the remaining supply water again with another booster pump.
  • the permeated water of a plurality of semipermeable membrane elements is divided into front and rear, and the pressure water is supplied by a booster pump following the pressure exchange type energy recovery unit using the permeated water pressure energy of the previous stage.
  • the permeated water of a plurality of semipermeable membrane elements is divided into front and rear, and the pressure water is supplied by a booster pump following the pressure exchange type energy recovery unit using the permeated water pressure energy of the previous stage.
  • a semi-permeable membrane with a configuration that boosts a part of the feed water and boosts the other part of the feed water using a pressure exchange type energy recovery unit using the concentrated water pressure energy and boosts the remaining feed water with a boost pump. It is an example of the flowchart of a separator.
  • the permeated water of a plurality of semipermeable membrane elements is divided into front and rear, and a part of the supplied water is boosted by a booster pump following the turbocharger using the permeated water pressure energy of the previous stage.
  • a flow diagram of a semipermeable membrane separation apparatus configured to pressurize another part of the supplied water with a booster pump following the pressure exchange type energy recovery unit using concentrated water pressure energy.
  • It is a partially broken perspective view which shows an example of embodiment of the spiral type semipermeable membrane element which comprises this invention.
  • It is sectional drawing which shows an example of the separation membrane module which loaded the several spiral type semipermeable membrane element which concerns on this invention in the cylindrical pressure vessel.
  • FIG. 5 is a partially enlarged cross-sectional view schematically showing an enlarged vicinity of an O-ring seal mounting portion in a state where a separation membrane element having an O-ring seal mounted on a telescope prevention plate is loaded in a pressure vessel.
  • FIG. 4 is a partially enlarged cross-sectional view schematically showing an enlarged vicinity of a U-cup seal mounting portion in a state in which a separation membrane element having a U-cup seal mounted on a telescope prevention plate is loaded in a pressure vessel.
  • FIG. 18 is a plan view schematically showing an example of a split ring-shaped seal member (FIG. 17A), and a sectional view taken along line bb in FIG. 17A (FIG. 17B).
  • FIG. 18A is a plan view schematically showing an example in which the split portion of the split ring-shaped sealing member is inclined
  • FIG. 18B is a cross-sectional view taken along line bb in FIG. is there.
  • FIG. 19A is a plan view schematically showing an example in which the split portion of the split ring-shaped seal member is stepwise
  • FIG. 19B is a cross-sectional view taken along line bb in FIG. It is.
  • (A), (b), (c) is an example which shows the shape of the split part of a split ring-shaped sealing member.
  • It is an example of a flow chart of a semipermeable membrane separation device of the present invention that has a two-stage module configuration and that uses a pressure exchange type energy recovery unit to boost part of the feed water using the previous stage permeate pressure energy. .
  • the module has a two-stage configuration, and the pressure exchange type energy recovery unit uses the pressure exchange type energy recovery unit to boost the pressure of a part of the supplied water and the pressure exchange type energy using the concentrated water pressure energy.
  • the flowchart of the semipermeable membrane separation apparatus of the structure which pressure
  • the permeated water of a plurality of semipermeable membrane elements is divided into the front and rear in a pressure vessel, and a part of the supplied water is boosted by a booster pump following the turbocharger using the permeated water pressure energy of the previous stage.
  • a flow diagram of a semipermeable membrane separation apparatus configured to pressurize the remaining supply water with another booster pump.
  • the permeated water of a plurality of semipermeable membrane elements is divided into the front and rear in a pressure vessel, and a portion of the supplied water is boosted by a turbocharger following a booster pump using the permeated water pressure energy of the previous stage.
  • a flow diagram of a semipermeable membrane separation apparatus configured to pressurize the remaining supply water with another booster pump.
  • the permeated water of a plurality of semipermeable membrane elements is divided into front and rear, and the pressure water is supplied by a booster pump following the pressure exchange type energy recovery unit using the permeated water pressure energy of the previous stage.
  • a booster pump following the pressure exchange type energy recovery unit using the permeated water pressure energy of the previous stage.
  • a flow diagram of a semipermeable membrane separation apparatus configured to pressurize the remaining supply water with another booster pump using the pressure energy of concentrated water.
  • the permeated water of a plurality of semipermeable membrane elements is divided into front and rear, and a part of the supplied water is boosted by a booster pump following the turbocharger using the permeated water pressure energy of the previous stage.
  • the flow chart of the semipermeable membrane separation apparatus configured to pressurize a part of the remaining supply water with another booster pump using the pressure energy of the concentrated water and boost the remaining supply water with another booster pump. It is an example.
  • the permeated water of a plurality of semipermeable membrane elements is divided into front and rear, and the pressure water is supplied by a booster pump following the pressure exchange type energy recovery unit using the permeated water pressure energy of the previous stage.
  • Semi-permeable membrane separation that boosts a part and boosts a part of the remaining supply water with another boost pump using the pressure energy of concentrated water and boosts all the remaining feed water with another boost pump It is an example of the flowchart of an apparatus.
  • the permeated water of a plurality of semipermeable membrane elements is divided into front and rear, and a part of the supplied water is boosted by a booster pump following the turbocharger using the permeated water pressure energy of the previous stage.
  • the semi-permeable membrane is configured to use the pressure energy of the concentrated water to pressurize a part of the remaining supply water with another booster pump following the turbocharger and boost the remaining supply water with the other booster pump. It is an example of the flowchart of a separator.
  • the permeated water of a plurality of semipermeable membrane elements is divided into front and rear, and the pressure water is supplied by a booster pump following the pressure exchange type energy recovery unit using the permeated water pressure energy of the previous stage.
  • a configuration that boosts a part of the water, boosts a part of the remaining supply water with another booster pump using the pressure energy of the concentrated water, and boosts the remaining supply water with another booster pump It is an example of the flowchart of a semipermeable membrane separation apparatus.
  • the permeated water of a plurality of semipermeable membrane elements is divided into front and rear, and a part of the supplied water is boosted by a booster pump following the turbocharger using the permeated water pressure energy of the previous stage.
  • the pressure energy of the concentrated water is used to pressurize a part of the remaining supply water with another booster pump, followed by a pressure exchange type energy recovery unit, and the remaining supply water is boosted with another booster pump.
  • FIG. 6 shows an example of a semipermeable membrane device to which the water treatment apparatus according to the water production method of the present invention can be applied.
  • the raw water 1 is once stored in the raw water tank 2, and then fed to the pretreatment unit 4 by the raw water supply pump 3 and pretreated.
  • the pretreated water passes through the intermediate water tank 5, the pretreated water supply pump 17, and the safety filter 6, and a part of the pretreated water is boosted by the booster pump 7 and the rest is boosted by the turbocharger 19, and then a semi-permeable membrane module.
  • the permeated water and the concentrated water are separated by the permeable membrane unit 8.
  • the permeated water is separated into a front permeate and a rear permeate by the sealing portion 9, and the front permeate passes through the first permeate line 11 and the permeated water energy recovery unit 10a. And sent to the permeate tank 13.
  • the permeated water at the latter stage of the permeated water is sent to the permeated water tank 13 through the second permeated water line 12 at the latter stage.
  • the concentrated water is discharged from the concentrated drainage line 14 after the pressure energy is recovered by the energy recovery unit 10b as necessary. Further, as shown in FIGS.
  • the booster pump 7 b is provided in front of or behind the turbocharger 19 separately from the booster pump 7 a in the branched booster line. It is also preferable to provide Further, as exemplified in FIGS. 5 and 7, it is also preferable to add a booster pump 7 b to the common line before and after branching of the pretreatment water to assist the boosting, or to increase the boosting of the pretreatment water supply pump 17. Is also possible. However, when increasing the pressure of the pretreatment water supply pump 17, it is necessary to increase the pressure resistance of the safety filter 6, so care must be taken.
  • FIG. 8 shows a diagram in which the turbocharger 19 in FIG. 23 is replaced with a pressure exchange type energy recovery unit 15, but FIG. 5, FIG. 7, and FIG. 24 can be similarly replaced.
  • the energy recovery units 10, 10a, and 10b are comprehensive device names, and may include a pressure exchange type energy recovery unit, a turbocharger, a Pelton turbine, a reversing pump, and the like, but are not particularly limited.
  • the raw water and application to which the present invention is applied are not particularly limited, and can be applied for various purposes such as turbidity and desalination of river water and groundwater, and desalination of seawater and brine.
  • the concentration change in the membrane unit is large, the fouling risk is high due to the large flux of the leading element, energy consumption is a particularly big problem, and an expensive energy recovery unit is required for energy recovery.
  • Suitable for seawater desalination Specifically, if the raw water is high-concentration brine or seawater having a salinity of 1% by weight or more, it is suitable for the present invention.
  • the pressure of water to be treated supplied to the separation membrane unit is 40 bar or higher, that is, the pressure of concentrated water is also 35 bar or higher.
  • the limit of high pressure it is preferable to design at 80 bar or less, more preferably at 70 bar or less, and to set operation conditions such as a semipermeable membrane that can be operated under this condition and a recovery rate.
  • the idea of the present invention can be applied to the desalination of brackish water having a treated water concentration of less than 1% by weight, although the effect is small.
  • the pre-processing unit 4 to which the present invention can be applied includes a screen in units of cm to mm, sand filtration capable of high-precision solid-liquid separation at submillimeter to micrometer level, fiber filter, non-woven fabric filter, sand filtration, and further accuracy.
  • High microfiltration membranes, ultrafiltration membranes and the like can be used according to the quality of raw water, and various pretreatment processes such as sedimentation separation and flotation separation can be mentioned.
  • a coagulant, an adsorbent, a disinfectant, and a drug combination such as pH adjustment may be used for the application.
  • the pressurizing pump 7 is not particularly limited as long as it can apply a pressure sufficient to separate the treated water from the treated water in the semipermeable membrane unit 8, and a commercially available pump can be used.
  • a plunger type, a spiral type, a magnet type, or the like can be appropriately selected and used according to the required output and characteristics.
  • a semipermeable membrane module to which the present invention is applied is obtained from a semipermeable membrane element in which a plurality of semipermeable membrane elements are housed in series in one cylindrical pressure vessel, and supplied water is supplied from one end. The non-permeated water is supplied to the semipermeable membrane element located in the next stage.
  • the semipermeable membrane element applied to the present invention is not particularly limited, a spiral separation membrane element having a uniform flow rate flowing through the membrane surface as exemplified by a partially broken sectional perspective view in FIG. Is preferred.
  • a fluid to be treated (treated water) 27 is supplied from one end surface, and a part of the components (for example, water in the case of seawater desalination) flows while flowing along the supply-side flow path member 24.
  • the permeated fluid and the concentrated fluid are separated.
  • the component (permeated water) that has permeated through the separation membrane flows along the permeate-side flow path member 23, flows into the central tube 25 from the hole on the side surface thereof, flows in the central tube 25, and permeates. It is taken out as a fluid (permeated water) 28.
  • treated water containing a high concentration of a non-permeating component in the case of seawater desalination
  • a concentrated fluid 29 concentrated water
  • the separation membrane 22 used in the spiral membrane element to which the present invention is applicable is a flat membrane-like separation membrane.
  • a net-like material, a mesh-like material, a grooved sheet, a corrugated sheet or the like can be used for the supply side flow path member 24 .
  • a net-like material, a mesh-like material, a grooved sheet, a corrugated sheet, or the like can be used for the permeate side flow path member 23. Any of them may be a net or sheet independent of the separation membrane, or may be integrated by adhesion or fusion.
  • the telescope prevention plate 26 is a plate-like object having a gap, which is installed to prevent deformation into a cylindrical shape (telescope phenomenon) due to the pressure of the fluid that the separation membrane winding passes through, It is preferable to have a circumferential groove for loading a sealing material. If the telescope prevention plate 26 has a function of preventing deformation, the material is not particularly limited. However, when chemical resistance, heat resistance, or the like is required according to the application, it can be appropriately selected according to the required specifications. In general, a resin material such as a thermoplastic resin, a thermosetting resin, or a heat resistant resin is suitable.
  • the telescope prevention plate 26 preferably has a spoke-type structure having an outer peripheral annular portion, an inner peripheral annular portion, and a radial spoke portion for the purpose of maintaining strength without hindering the flow of raw water as much as possible.
  • the central tube 25 has a plurality of holes on the side surface of the tube, and the material of the central tube 25 may be any of resin and metal, but in view of cost and durability, plastics such as noryl resin and ABS resin are used. Is generally used.
  • an adhesion method is preferably used.
  • the adhesive any known adhesive such as a urethane-based adhesive, an epoxy-based adhesive, and a hot melt adhesive can be used.
  • the spiral separation membrane element preferably has a structure in which the outer peripheral portion of the separation membrane wound body is constrained by an exterior material and does not expand in diameter.
  • the exterior material is a sheet made of polyester, polypropylene, polyethylene, polyvinyl chloride, or the like, or a glass fiber coated with a curable resin, and the sheet or fiber is wound around the outer peripheral surface of the separation membrane wound body.
  • the separation membrane element is restrained so as not to expand its diameter.
  • a semipermeable membrane module 37 is constructed by loading a plurality of semipermeable membrane elements (separation membrane elements) 32 (32a, 32b, 32c, 32d, 32e, 32f) into a cylindrical pressure vessel 39. To do.
  • the water-to-be-treated seal members 38 (38a1, 3a2, 38b1 ⁇ 38e2, 38f1, 38f2) are arranged.
  • To-be-treated water can be supplied from the to-be-treated fluid (treated water) supply port 31, but can also be supplied from the reverse concentrated fluid (concentrated water) discharge port 33.
  • the reverse concentrated fluid Concentrated water
  • the first semipermeable membrane element (first separation membrane) Element) When the treated water is supplied from the treated fluid supply port 31 (the concentrated fluid discharge port 33 when the flow direction of the treated water is reversed), the first semipermeable membrane element (first separation membrane) Element) is supplied to the end of 32a.
  • the concentrated water (concentrated fluid) treated with the first separation membrane element is supplied to the first semipermeable membrane element (second separation membrane element) 32b, and then sequentially supplied to 32c, 32d, 32e, and 32f.
  • the concentrated fluid discharge port 33 After the treatment, the concentrated fluid discharge port 33 is finally discharged from the treated fluid supply port 31 when the flow direction of the treated water is reversed.
  • the central pipes of the respective semipermeable membrane elements 32a to 32f are respectively connected by the connector 34, and one portion is divided by the sealing portion 9, and the permeated fluid (permeated water) provided on the end plates 35a and 35b.
  • the permeated fluid (permeated water) obtained by the respective separation membrane elements is connected to the outlets 36a and 36b, divided into the first permeated water line 11 and the second permeated water line 12, and taken out of the system. It is.
  • U-cup seals (seal members) 45 are provided on both sides of each separation membrane element 39a to 39f, but only one side (ie, 38a1, 38b1, 38c1 to 38f1 or 38a2, 38b2, 38c2 to 38f2). With both, the sealing performance is improved, but the degree of difficulty increases during loading and unloading, and a dead space is likely to occur between adjacent sealing members (for example, between 38a1 and 38a2). If the concentrated water becomes contaminated, such as concentration of water, it is not preferable.
  • the first permeate line 11 is connected to the turbocharger 19 and the pressure exchange type energy recovery unit 15, and the back pressure is applied to the permeate to further increase the turbocharger 19.
  • the pressure exchange type energy recovery unit 15 is directly used for boosting the feed water, the back pressure energy can be efficiently used for boosting the feed water.
  • the pressure energy of the concentrated water of the semipermeable membrane unit 8 is recovered by the energy recovery unit 10 and used as power for the booster pump 7a, the energy required for desalination is reduced. It is very preferable because it can be done.
  • the pretreated water is branched into three, and each of them may be boosted by the back pressure utilization energy of the permeate, boosted by the pressure energy of the concentrated water, and boosted by the boost pump. preferable.
  • the branch flow rate must be basically the same as the flow rate of the permeate line 11.
  • the booster pump 7c is equipped with an inverter so that the performance efficiency can be flexibly maintained depending on the operating conditions.
  • FIG. 29 when both the pressure energy of the permeated water and the pressure energy of the concentrated water are recovered by the turbochargers 19a and 19b, and as shown in FIG. 30, the permeated water When the pressure energy is recovered by the pressure exchange type energy recovery unit 15 and the pressure energy of the concentrated water is recovered by the turbocharger 19, as shown in FIG.
  • the pressure energy of the concentrated water is performed by the pressure exchange type energy recovery unit, and the pressure of all the remaining supply water is boosted by the turbocharger 19 and, if necessary, the booster pump 7b.
  • the raw water 1 is once stored in the raw water tank 2, and then fed to the pretreatment unit 4 by the raw water supply pump 3 and pretreated.
  • the pretreated water is sent to the pressure exchange type energy recovery unit 15b in an amount substantially equal to the concentrated water out of the pretreated water that has passed through the intermediate water tank 5 and the safety filter 6, and the pressure energy of the concentrated water is recovered.
  • the pressure required for the semipermeable membrane unit 8 is acquired in 7a.
  • the pressure is increased by the booster pump 7 b and mixed with the supply water boosted by the pressure exchange type energy recovery unit 15. It is supplied to the semipermeable membrane unit 8.
  • the present invention can be achieved even if the order of the pressure exchange type energy recovery unit 15 and the booster pump 7a, or the turbocharger 19 and the booster pump 7b is reversed, the pressure resistance requirement in the latter stage is increased, so that the cost can be increased. Can be selected as appropriate.
  • the supplied water is separated into permeated water and concentrated water.
  • the permeated water is separated into a front permeate and a rear permeate by the sealing portion 9, and the front permeate passes through the first permeate line 11 and the permeate turbocharger 19 in the permeate water tank. 13.
  • the permeated water at the latter stage of the permeated water is sent to the permeated water tank 13 through the second permeated water line 12 at the latter stage.
  • the concentrated water is discharged from the concentrated drain line 14 after the pressure energy is recovered by the pressure exchange type energy recovery unit 15b.
  • the pressure exchange type energy recovery units 15a and 15b it is also very preferable to apply both the pressure energy of the permeated water and the pressure energy of the concentrated water to the pressure of the supplied water by the pressure exchange type energy recovery units 15a and 15b.
  • the flow rate that must be boosted by the booster pump 7c is substantially the same as the flow rate obtained by subtracting the concentrated water and the first permeate flow rate from the supply water (that is, the second permeate flow rate). Therefore, it is necessary to branch and boost the flow rate substantially the same as the flow rate through the permeate line 12 by the booster pump 7a.
  • turbocharger it is not essential to use a turbocharger to collect the pressure energy of the permeated water or the pressure energy of the concentrated water.
  • FIG. This is a very preferred embodiment because it is possible to achieve optimal energy recovery by adjusting the flow rate.
  • an auxiliary boosting pump may be connected in series.
  • the raw water and application to which the present invention is applied are not particularly limited, and can be applied for various purposes such as turbidity and desalination of river water and groundwater, and desalination of seawater and brine.
  • the concentration change in the membrane unit is large, the fouling risk is high due to the large flux of the leading element, energy consumption is a particularly big problem, and an expensive energy recovery unit is required for energy recovery.
  • Suitable for seawater desalination Specifically, if the raw water is high-concentration brine or seawater having a salinity of 1% by weight or more, it is suitable for the present invention.
  • the pressure of the water to be treated supplied to the separation membrane unit is 40 bar or higher, that is, the pressure of the concentrated water is also 35 bar or higher.
  • the limit of high pressure but if the operating pressure exceeds 80 bar, special specifications are required for semipermeable membrane elements, pressure vessels, etc., and operation at high pressure increases the energy cost. Therefore, it is preferable to design at 80 bar or less, more preferably at 70 bar or less, and to set operation conditions such as a semipermeable membrane that can be operated under this condition and a recovery rate.
  • the idea of the present invention can be applied to the desalination of brackish water having a treated water concentration of less than 1% by weight, although the effect is small.
  • Such conditions are preferably applied to 4.5 to 5.5% by weight seawater in the Middle East, especially the Arabian Gulf.
  • the semipermeable membrane element applied to the present invention can be loaded with the same element. However, if the water permeability of the former semipermeable membrane element is larger than the water permeability of the latter semipermeable membrane element, the first step is used. Can be operated at a low pressure, and energy recovery by back pressure is increased, which is preferable.
  • the blocking performance of the former semipermeable membrane element is smaller than the blocking performance of the latter semipermeable membrane element, the overall water quality can be improved, which is also preferable.
  • the treated water sealing member when the treated water supply port of the semipermeable membrane module 37 is replaced with reference numerals 31 and 33, the treated water sealing member It is required to have a structure that can be used to reverse the direction of water flow.
  • a U-coupling seal or a V-coupling seal has been devised and widely used as a seal member.
  • This U-coupling seal is made of elastic resin and is set on the telescope prevention plate of the separation membrane element so that the U-shaped open part faces the side to be treated water (raw water side).
  • the U-cup seal has a structure in which, when water is supplied from the raw water side, the U-shape is opened by the water pressure to fill the gap between the U-cup seal and the pressure vessel. The same applies to the V-coupling seal.
  • FIG. 5 is an enlarged cross-sectional view schematically showing an enlarged vicinity of a U-cup seal mounting portion, showing a state of sealing with an inner peripheral surface of the U-cup.
  • the U-cup seal 45 has a relatively small contact area with the inner wall 41 of the pressure vessel, but as described above, the treated water (raw water) from upstream to downstream (from left to right in FIG. 16) The sealing function is demonstrated against the water that flows through. Further, when the separation membrane element is moved in the pressure vessel, it can be moved with a relatively small resistance by sliding from left to right in FIG. However, it is difficult to move the separation membrane element from right to left. That is, when it is necessary to supply the water to be treated from both sides, the U-cup seal and the V-cup seal are not suitable.
  • FIG. 15 shows a telescope in which an O-ring seal (seal member) 44 is fitted in the circumferential groove of the outer peripheral portion 43 of the telescope prevention plate 42 in a state where the separation membrane element is loaded in the pressure vessel.
  • FIG. 6 is a partially enlarged cross-sectional view schematically showing an enlarged vicinity of an O-ring seal mounting portion, showing a state of sealing between the outer periphery of the prevention plate and the inner peripheral surface of the pressure vessel.
  • the O-ring seal 44 is deformed at the portion in pressure contact with the inner wall 41 of the pressure vessel, and the contact area with the inner wall 41 of the pressure vessel is increased. Further, since the O-ring seal 44 is made of an elastic resin, sliding friction with the inner wall 41 of the pressure vessel is large, so that the separation membrane element in the pressure vessel is not easily moved.
  • split ring seal As a method for solving the disadvantages of the O-ring seal and the U-cup seal, for example, a split ring-shaped seal member (hereinafter referred to as “split ring seal”) as shown in FIGS. 17A and 17B is used. It is preferable.
  • the split ring seal (seal member) 46 is described in International Publication No. 2011/046944.
  • the split ring seal 46 has such a shape that the annular seal is cut and divided at one or more places. For example, as shown in the plan view of the split ring seal in FIG. 17 (a), it is preferable to have one split portion 47, but a semicircular arc split ring seal in which the annular seal is cut and divided at two locations is used. Two may be used.
  • the cross-sectional shape of the split ring seal is not particularly limited, but may be any structure that can fit in the circumferential groove of the outer peripheral portion 43 of the telescope prevention plate and does not move.
  • the cross-sectional view of FIG. As shown in FIG. 4, it may be a substantially square shape or a substantially polygonal shape.
  • the outer peripheral diameter (outer peripheral length) of the split ring seal is such that the outer peripheral diameter 49 when the split portion 47 of the split ring seal 46 is connected to form an annular shape is slightly larger than the diameter size of the inner wall of the pressure vessel.
  • the inner peripheral length (inner peripheral length) of the split ring seal is such that the inner peripheral diameter 48 when the split portion 47 of the split ring seal 46 is connected to form an annular shape is the circumference of the outer peripheral portion 43 of the telescope prevention plate. Any size that fits in the groove without any gap is acceptable.
  • the size of the split ring seal 46 may be optimized depending on the outer diameter and material of the element. For example, the radial width of the seal (that is, half of the difference between the outer diameter 49 and the inner diameter 48) is 5 A seal thickness of about 3 to 10 mm can be employed. Since the split ring seal 46 has a rectangular cross-sectional shape as shown in FIG. 17B, the sliding surface and the seal member can contact in parallel or in both directions symmetrically.
  • the seal member applicable to the present invention As a characteristic of the seal member applicable to the present invention, sufficient sealing performance can be exhibited regardless of whether the water to be treated is supplied from either separation membrane element.
  • the shape of the sealing member having such characteristics the above-described split ring shape, or the seal contact surface is sharp, that is, a delta ring shape having a triangular cross section, for example, a convex lens shape instead of O, or a cross section.
  • a corrugated plate having a concavo-convex contact surface is applicable.
  • the shape of the split part in the split ring seal is not particularly limited.
  • a seal member cut at right angles to the seal longitudinal direction (the left side of the cut part is in the vicinity of the vertical cut part)
  • the seal longitudinal direction is A split ring having an obliquely cut seal member (a seal member 55 near the oblique cut portion on the left side of the cut portion and a seal member 56 near the oblique cut portion on the right side) and a split portion 54 cut obliquely
  • a seal FIG. 20
  • the split ring ends are pressed against each other with the pressure when the treated water flows through the pressure vessel, and there is almost no gap between the split ring ends.
  • the sealing effect is substantially maintained even at the joint between the split ends, and the amount of water to be treated that bypasses the outside of the separation membrane element is considerably small, so that efficient water treatment can be performed.
  • the split portions may be arranged so as to contact each other, or the split portions may be joined.
  • a bonding method at that time heat fusion bonding or strong bonding using an adhesive may be used, or bonding in which one piece of the split portion of the split ring seal and the other are combined by uneven fitting may be used.
  • the split ring seals can be prevented from falling off due to an impact during handling by joining the split ends to the concave and convex portions.
  • one or a plurality of seal members may be mounted. When a plurality of seal members are mounted, it is preferable that the positions of the split portions are different from each other, thereby reducing the amount of raw water passing through the outside of the separation membrane element.
  • the material constituting the split ring may be either an inelastic material or an elastic material, and an inelastic material is preferably used.
  • Organic materials such as polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, various hard plastics, inorganic materials, iron, stainless steel, copper, aluminum, titanium and their alloys can be used. Ceramic, graphite and asbestos can also be used, and an organic-inorganic composite such as FRP or a multilayer product of the above materials can also be used.
  • sealing materials such as a nitrile rubber, a styrene rubber, a silicone rubber, a fluorine rubber, an acrylic rubber, an ethylene propylene rubber, a urethane rubber, can be used.
  • these raw materials have durability in the to-be-processed water used as the object of the semipermeable membrane module 37.
  • FIG. 15 to 20 when seawater is used as a target, it is easy to corrode when an iron alloy is used, and when an organic solvent is included, care should be taken because it tends to deteriorate when a resin with insufficient durability is used. Therefore, in the application of the present invention, the seal members shown in FIGS. 15 to 20 can be applied to all of the treated water seal members (38a1 to 38f1 and 38a2 to 38f2 in FIG. 12).
  • the pretreated water is supplied to the semipermeable membrane unit 8 from the first supply water side line Fa (or the second supply water side line Fb), and the concentrated water is discharged from the second supply water side line.
  • the process is performed from Fb (or the first supply water side line Fa).
  • the first permeate line 11 in FIG. 6 is connected to the first permeate side line Pa and the second permeate line 12 is connected to the second permeate side line Pb.
  • the feed water side lines Fa and Fb have valves 20a to 20d, and the permeate water side lines Pa and Pb have valves 20e to 20h.
  • the first supply water side line Fa communicates with F1
  • the second supply water side line Fb communicates with F2
  • the first permeate water The side line Pa communicates with P1
  • the second permeated water side line Pb communicates with P2
  • the feed water is fed from F1 in the semipermeable membrane unit 8
  • the concentrated water is taken out from F2
  • the permeated water in the previous stage is removed from P1. Subsequent permeated water can be obtained from P2.
  • valves 20a, 20c, 20f, and 20h are opened and the others are closed, supply from F2, drainage of concentrated water from F1, drainage of the front stage from P2, and permeation of the rear stage from P1 can be obtained. .
  • By implementing the backflow it is possible to make the load of the element uniform and reduce fouling.
  • switching is performed using eight valves 20a to 20h.
  • one of F1 and F2 is connected to the supply water side using a mechanism including three-way valves 21a to 21d. It is possible to switch the line Fa, the other to the concentrated water side line Fb, one of P1 and P2 to the first permeate side line Pa, and the other to the second permeate side line Pb.
  • the raw water temperature and the raw water concentration fluctuate.
  • the element from the head element to the tail element is lower than when the temperature is low or low. Fluctuation of flux increases.
  • the element performance at the front front stage in the present invention
  • the element performance at the rear back stage in the present invention
  • Appropriate operating conditions can always be maintained against changes in temperature and raw water concentration. That is, if at least one of the raw water temperature and the raw water concentration exceeds a predetermined value, fouling is prevented and extremely stable if the supply direction of the water supply to the semipermeable membrane module is reversed. Operation can be realized.
  • a semipermeable membrane unit can be comprised by one semipermeable membrane module like embodiment mentioned above.
  • the semipermeable membrane unit the supply water sides of the two semipermeable membrane modules are connected in series, and the non-permeated water obtained from the preceding semipermeable membrane module is located in the next stage.
  • the same effect can be obtained even when the structure is supplied to the semipermeable membrane module.
  • it is easy to replace the elements in the module so replacement is easy especially when the elements in the front and back stages are different, but there is a possibility that the cost may increase due to the increase in the number of modules. is necessary.
  • FIGS another embodiment of the present invention will be described with reference to FIGS.
  • the scope of the present invention is not limited to these.
  • the semipermeable membrane separation device illustrated in FIG. 21 is sent to the pretreatment unit 4 by the raw water supply pump 3 and pretreated.
  • the pretreated water passes through the intermediate water tank 5 and the safety filter 6 and is boosted by the booster pump 7, and then separated into permeated water and concentrated water by the first (previous) semipermeable membrane unit 8a.
  • the first concentrated water 14a is supplied to the second (subsequent) semipermeable membrane unit 8b without being pressurized, and further separated into permeated water and concentrated water.
  • the first-stage permeate is sent to the permeate tank 13 through the first-stage first permeate line 11 and the pressure-exchange energy recovery unit 15 of the permeate.
  • the permeated water at the latter stage of the permeated water is sent to the permeated water tank 13 through the second permeated water line 12 at the latter stage.
  • the second concentrated water 14b at the rear stage is discharged from the concentrated drainage line 14 after the pressure energy is recovered by the energy recovery unit 10b as necessary.
  • a booster pump 7b it is also preferable to add a booster pump 7b to assist the boosting.
  • FIG. 22 shows a flow for recovering the pressure energy of the concentrated water to be used for boosting a part of the supplied water by the pressure exchange type energy recovery unit 15b. This system is a particularly preferred embodiment because pressure energy can be recovered with very high efficiency. It is also preferable to add boosting pumps 7a and 7b to assist the boosting as shown in FIG.

Abstract

 海水または塩分濃度1重量%以上の高濃度かん水を原水として、原水もしくはその前処理水を供給水として、加圧供給する昇圧ポンプの下流に半透膜ユニットが配置され、濃縮水と透過水に分離するための半透膜分離装置であって、半透膜ユニットは、一つの筒状圧力容器に半透膜エレメントが複数直列に収納され、片方の端部から供給水が供給され、前段に位置する半透膜エレメントから得られる非透過水を次段に位置する半透膜エレメントに供給する構造のモジュールからなるとともに、前段の半透膜エレメントから得られる透過水と残りの後段から得られる透過水が分割されるように前段から得られる透過水の一部を一方の端部から取り出すための第1の透過水ラインと残り後段の透過水を他方の端部から取り出すための第2の透過水ラインを備え、かつ、第1の透過水ラインがエネルギー回収ユニットに接続され、背圧エネルギーを利用して供給水の一部を圧力交換式エネルギー回収ユニットおよびターボチャージャーの少なくともひとつで昇圧するようになっている。

Description

半透膜分離装置および半透膜分離装置の運転方法
 本発明は、海水や、塩分を含む河川水、地下水、湖水、廃水処理水などの原水を用いて、半透膜ユニットで効率的、かつ、安価に淡水を得るための造水方法に関するものである。更に詳しくは、一つの圧力容器の中に複数の半透膜エレメントを装填し、その中で異なる条件を設定できる構造を持たせた半透膜ユニットを高効率のエネルギー回収ユニットと組み合わせることによって、低コストに淡水を製造する半透膜分離装置およびその運転方法に関するものである。
 近年、水資源の枯渇が深刻になりつつあり、これまで利用されてこなかった水資源の活用が検討され、とくに、もっとも身近でそのままでは利用できなかった海水から飲料水を製造する技術、いわゆる“海水淡水化”、さらには、下廃水の再利用が注目されてきている。海水淡水化は、従来、水資源が極端に少なく、かつ、石油による熱資源が非常に豊富である中東地域で蒸発法を中心に実用化されてきているが、熱源が豊富でない中東以外の地域ではエネルギー効率の高い逆浸透法が採用され、最近では、逆浸透法の技術進歩による信頼性の向上やコストダウンが進み、中東を含む多くの地域において、逆浸透法海水淡水化プラントが建設され、世界的な展開を見せつつある。
 海水淡水化に適用される逆浸透法は、塩分などの溶質を含んだ水を浸透圧以上の圧力をもって半透膜を透過させることで、脱塩された水を製造するものでできる。この技術は例えば海水、かん水、有害物を含んだ水から飲料水を得ることも可能であるし、また、工業用超純水の製造、排水処理、有価物の回収などにも用いられてきた。半透膜で溶液を分離する場合は、溶液の溶質濃度によって定まる溶液自身の持つ化学ポテンシャル(これを浸透圧で表わすことができる)以上の圧力で溶液を半透膜面に供給する必要がある。たとえば海水を半透膜ユニットで分離する場合は、最低3.0MPa程度以上、実用性を考慮すると少なくとも5.0MPa程度以上の圧力が必要となり、これ以上の圧力に加圧されないと充分な逆浸透分離性能は発現されない。
 半透膜による海水淡水化の場合を例にとると、通常の海水淡水化技術では海水から淡水を回収する割合(回収率)は通常40%程度であり、海水供給量に対して40%相当量の真淡水が膜を透過して得られる結果、半透膜ユニットの中で海水濃度が3.5%から6%程度にまで濃縮されることになる。このように海水から回収率40%で淡水を得るという逆浸透分離操作を行うためには、濃縮水の濃度に対応する浸透圧(海水濃縮水濃度6%に対しては約4.5MPa)以上の圧力が必要である。
 実際には、半透膜を淡水が透過する際に生じる膜面塩濃度上昇(いわゆる濃度分極現象)するため、さらに高い圧力が必要とされる。この点も考え併せると、淡水の水質がいわゆる飲料水レベルに対応でき、かつ充分な水量を得るためには、実際には、濃縮水濃度に対応する浸透圧よりも約2.0MPa(この圧力を有効圧力と呼ぶ)程度高めの圧力を半透膜に加えることが必要であり、海水淡水化用半透膜ユニットは6.0から6.5MPa程度の圧力をかけて回収率40%という条件になるのが一般的である。海水供給量に対する淡水の回収率は、直接コストに寄与するものであり、高いほど、前処理がコンパクトになるため、設備コストとしては低減方向に行く。回収率を上げると、半透膜に非常に高い圧力をかける必要があるためエネルギーコストが大きくなりやすいという問題点も併せ持っているので注意が必要である。
 半透膜エレメントは、通常複数本の半透膜のエレメントを1本の圧力容器(エレメントを装填するための耐圧容器)に直列に装填した状態(これをモジュールと称す)で使用され、実際のプラントではこのモジュールを多数本並列に設置したユニットとして使用される。海水淡水化の収率というのは、プラント全体に供給される全供給海水に対する全透過水量の割合であり、通常の条件では、モジュールが並列に設置されているので、モジュール1本あたりの供給量とモジュール1本から得られる透過水量の割合(モジュール内の各エレメントからの透過水量の合計)と一致する。ここで、モジュール内部の各エレメントから得られる透過水は、例えば1ユニットが1モジュールであって、1モジュールが半透膜エレメント6本から構成される。例えば、1モジュールに198m3/日の海水を供給し、合計78m3 /日の淡水が得られる場合(収率40%)は、実際に起こっている現象をシミュレーションしてみると、1本目のエレメントで18~19m3 /日、2本目のエレメントで15~17m3 /日、3本目からも徐々に減っていき、合計して78m3 /日の透過水となる。このように、各エレメントからの透過水収率は小さいがモジュール全体の透過水の総量としては、供給水に対して40%と大きな収率が達成されることになる。
 一方、半透膜分離装置の運転条件設定について考慮する必要のある事項としては、ファウリング(膜面汚れ)の防止と濃度分極の防止がある。膜のファウリングは、具体的には1本の半透膜エレメントから得られる透過水量をある値(耐ファウリング許容Flux)以上にしない、また供給側の流量をある範囲内(許容クロスフロー流速)にするということによって防止もしくは低減することができる。耐ファウリング許容Fluxを越えて透過水を採取すると、供給水中の濁質などが膜面に多く運ばれ、また、押しつけられることになる。クロスフロー流速は、膜表面に堆積しつつある濁質などを剪断力によって書き取り押し流す効果を有するため、許容範囲を下回ると、半透膜エレメントの膜面汚れが加速されることになり好ましくない。クロスフロー流速に関しては、大きすぎると、供給水流路の流動圧損が大きくなったり、ウォーターハンマー効果によってエレメントにダメージを与えやすくなるため、通常上限値も定められている。
 この耐ファウリング許容Fluxは膜素材やエレメント構造、また原水性状によっても異なるが、通常、高性能の半透膜の場合では、0.7m3 /m2 ・日程度である。より具体的には、この規格の東レ製逆浸透膜8インチエレメント(直径20cm×長さ1m)を用い、前処理した表層海水から淡水を得る場合、エレメントのFluxを最大28L/m2/時(膜面積40m2のエレメント1本あたりの造水量26.9m/日)以下、さらに、クロスフロー流速は3.6m3/時(86m3/日)以上13m3/時(312m3/日)以下と規定されている。これは、すなわち、同位置の圧力容器内部の先頭エレメントへの供給量を312m3/時以下、造水量を26.9m3/日以下、透過によって流量が減少した最後尾の供給水(濃縮水)の流量を86m3/日以上にする必要があるということである。なお、すべての条件を限界付近で使うことは好ましいことではないが、海水淡水化の場合には、先頭エレメントから最後尾に行くにつれて、供給海水が濃縮され、最後尾エレメントの造水量は、先頭エレメントの造水量の数分の一になるため、Fluxは可能な限り高める必要がある。すなわち、先頭エレメントの造水量が26.9m3/日以下という条件の場合、それに近いところで設計される。さもないと、膜面積が多く必要となり、経済的に不利になる。
 しかし、Fluxとクロスフローすべてを制限近くで運転すると、供給水濃度、温度などの条件や膜性能変化、供給水流路閉塞などが生じた場合、ファウリング危険領域に陥る危険性があるため、クロスフロー流量については、上限下限流量を適用して設計することは好ましくない。すなわち、回収率50%以上のような場合には、通常、圧力容器を1本ないし複数並列にした1段構成ではなく、非特許文献1に示されるように、複数並列にした1段目の濃縮水を集めて、1段目よりも圧力容器の数を少なくした2段目の圧力容器に供給することで、クロスフロー流量の変動を抑える方法をとることが好ましい。具体的には、1段目と2段目を合わせた全体の回収率を60%としたい場合は、例えば、ユニット構成として、1段目のモジュール数を2本、回収率を40%、2段目のモジュール数を1本、回収率を33%とし、1段目に400m3/日の海水を供給すれば、1段目の圧力容器には200m3/日(上限312m3/日)を供給、濃縮水120m3/日(下限86m3/日)排出し、2本の濃縮水を合わせて、240m3/日(上限312m3/日)にして、2段目に送り、2段目濃縮水が160m3/日(下限86m3/日)となるようにすれば、クロスフロー流量について余裕を持たせることができる。
 しかし、回収率を上げることは、濃縮水の濃度が上昇につながるため、1回で供給水の圧力を上げる場合は、はじめに非常に高い圧力をかけなければならない。すなわち、膜面積が同じで、半透膜エレメント6本を直列にしたモジュールに、198m3/日を供給し、40%回収するために6.0MPaを要する場合、先頭エレメントの造水量は、18~19m3/日となるが、回収率60%にしようとすると、8.0MPa必要となり、先頭エレメントの造水量は、28m3/日以上となり、上限値を超えてしまう。この結果、エレメントに濃度分極およびファウリングという現象が生じてエレメントの目つまりや寿命低下が生じ、長期にわたる半透膜装置の安定運転を行うことが非常にむずかしくなる。
 回収率60%の海水淡水化では、モジュールの入口から出口にかけては、物質収支的に海水濃度は3.5%から8.8%にまで、浸透圧は2.6MPaから7.0MPaにまで変化し、淡水を透過させるのに必要な有効圧力(操作圧力と浸透圧の差)は5.4MPaから1.0MPaまでと大きく変化している。すなわち、モジュール内部の1番目と最後段エレメントとの透過水量の比率はこの有効圧比率の54:10と同程度となる。すなわち、一本目のエレメントの透過水量が激増し、耐ファウリング許容値を越え、ファウリングが非常に生じ易くなるという問題があった。とくに逆浸透膜は水温が高いほど透水性が大きくなり、結果、先頭エレメントの造水量が大きくなるため、高温における先頭エレメントの造水量問題は顕著、かつ、非常に深刻である。
 なお、上記内容は、簡単のためにスパイラル型半透膜エレメントを例にとり説明しているが、中空糸膜型モジュールの場合でも内部では同様の現象と同様の問題が生ずる。
 これを解決するための方法、すなわち、先頭の半透膜エレメントの透過水量を抑える方法として、図1に例示するように、半透膜モジュールを二段にしてユニットを構成し、浸透圧の小さな一段目の半透膜エレメントにかかる操作圧力を小さくし、後段で昇圧して浸透圧の高い二段目の透過水量を確保する、いわゆる濃縮水昇圧二段法(非特許文献2、特許文献1)を適用することが出来る。
 図1では、原水1が原水槽2を介して、原水供給ポンプ3によって前処理ユニット4で処理した後、中間水槽5に貯留された前処理水が、保安フィルター6を通った後、昇圧ポンプ7で第1の半透膜ユニット8aに送られ、第1の透過水ライン11から透過水が得られる。第1の半透膜ユニット8aの第1の濃縮水14aは、昇圧ポンプもしくはターボチャージャー19(図1には、ターボチャージャー19を表示)によって昇圧され、第2の半透膜ユニット8bにて第2の透過水ライン12から透過水を得ることが出来る。第2の濃縮水14bは、残っている圧力エネルギーをターボチャージャー19で回収された後に、濃縮排水ライン14から排出される。
 さらに、昇圧二段法と同様の効果を実現する方法としては、昇圧ポンプやターボチャージャーを第1の半透膜ユニット8aと第2の半透膜ユニット8bの間に備えずに、第1の半透膜ユニット8aの透過側にバルブやエネルギー回収ユニット10aを用いて背圧をかけることによって、同様の効果を得る特許文献2に示すような方法が挙げられる。さらに、2つの半透膜ユニットを直列することなしに、例えば、特許文献3で提案され、図3に例示されるように、1つの半透膜ユニット8の内部で透過側を前段と後段に分割し、前段の透過水ライン11aをバルブ18で背圧をかけ、半透膜ユニット8の前段と後段で操作圧力を変えることによって、同様の効果を得ることが出来る。ここに適用される半透膜ユニット8を構成する半透膜モジュールの一例の断面図を図11に示す。さらに、図4に例示されるように、同様の方法でバルブ18の代わりにエネルギー回収ユニット10aを適用する方法が、特許文献4で提案されている。
日本国特開平08-108048号公報 日本国特許04187316号公報 日本国特開2001-137672号公報 日本国特開2010-179264号公報
酒井清孝監、膜分離プロセスの理論と設計、第1章5.4、P18(1993) 山村弘之、他、「省エネ低コスト型逆浸透膜法海水淡水化技術の開発」膜、23(5)、p245-250(1998)
 本発明は、高濃度溶液から高い回収率で、少ないエネルギーで、より安価に、高効率に低濃度溶液をより安定に得ることができる装置および分離方法を提供する。特に、中東などの高濃度海水において回収率を高くすることが困難で、かつ、先頭と最後のフラックスも大きく変化するような場合においても、少ないエネルギーで淡水を効率的に、かつファウリングを抑制し、安定的に得るための半透膜分離装置およびその運転方法を提供することを目的とする。
 前記課題を解決するために、本発明は次の構成をとる。
(1)海水または塩分濃度1重量%以上の高濃度かん水を原水として、原水もしくはその前処理水を供給水として、加圧供給する昇圧ポンプの下流に半透膜ユニットが配置され、濃縮水と透過水に分離するための半透膜分離装置であって、前記半透膜ユニットは、一つの筒状圧力容器に半透膜エレメントが複数直列に収納され、片方の端部から供給水が供給され、前段に位置する半透膜エレメントから得られる非透過水を次段に位置する半透膜エレメントに供給する構造のモジュールからなるとともに、前段の半透膜エレメントから得られる透過水と残りの後段から得られる透過水が分割されるように前段から得られる透過水の一部を一方の端部から取り出すための第1の透過水ラインと前記残り後段の透過水を他方の端部から取り出すための第2の透過水ラインを備え、かつ、前記第1の透過水ラインがエネルギー回収ユニットに接続され、背圧エネルギーを利用して供給水の一部を圧力交換式エネルギー回収ユニットおよびターボチャージャーの少なくともひとつで昇圧するようになっている半透膜分離装置。
(2)第1の透過水にかける背圧から取り出される背圧エネルギーを利用して前記圧力交換式エネルギー回収ユニットによって供給水のうち少なくとも一部を第1の透過水と実質的に等量昇圧し、その後前記昇圧ポンプで必要圧力まで昇圧するとともに背圧エネルギーを利用しない残りの供給水をもう1台の昇圧ポンプで必要圧力まで昇圧してから混合し、前記半透膜ユニットに供給するようになっている(1)に記載の半透膜分離装置。
(3)第1の透過水の背圧エネルギーを利用しない供給水のうち、濃縮水量と実質的に等量の昇圧を、濃縮水の圧力エネルギーによって行う(1)または(2)に記載の半透膜分離装置。
(4)第1の透過水にかける背圧から取り出される背圧エネルギーを利用して前記ターボチャージャーによって供給水の一部を昇圧し、その前か後で必要圧力まで前記昇圧ポンプで昇圧するとともに、背圧エネルギーを利用しない残りの供給水を他の昇圧手段によって行う(1)に記載の半透膜分離装置。
(5)第1の透過水の背圧エネルギーを利用しない供給水の少なくとも一部の昇圧を濃縮水の圧力エネルギーによって行う(4)に記載の半透膜分離装置。
(6)背圧エネルギーを利用しない供給水の少なくとも一部の昇圧を前記ターボチャージャーによって行うとともに、必要に応じて残りの供給水を他の昇圧手段で行う(3)または(5)に記載の半透膜分離装置。
(7)背圧エネルギーを利用しない供給水少なくとも一部の昇圧を前記圧力交換式エネルギー回収ユニットと昇圧ポンプによって行うとともに、必要に応じて残りの供給水を他の昇圧手段で行う(3)または(5)に記載の半透膜分離装置。
(8)原水濃度が4重量%以上の海水または、高濃度かん水であって、前記半透膜ユニットへの供給水量に対する透過水の回収率が30%以上50%以下である(1)~(7)のいずれか1つに記載の半透膜分離装置。
(9)前段の半透膜エレメントの透水性能が後段の半透膜エレメントの透水性能よりも大きい(1)~(8)のいずれか1つに記載の半透膜分離装置。
(10)前段の半透膜エレメントの阻止性能が後段の半透膜エレメントの阻止性能よりも小さい(1)~(9)のいずれか1つに記載の半透膜分離装置。
(11)前段の半透膜エレメントのうち最上流から1ないし複数の半透膜エレメントが前段の他の半透膜エレメントよりも透水性が小さい(9)に記載の半透膜分離装置。
(12)後段の半透膜エレメントのうち最下流から1ないし複数の半透膜エレメントが後段の他の半透膜エレメントよりも阻止性能が大きい(10)に記載の半透膜分離装置。
(13)前記半透膜ユニットへの供給水の供給方向を逆向きに出来る流路構造となっている(1)~(12)のいずれか1つに記載の半透膜分離装置。
(14)半透膜エレメントが、シート上の半透膜が巻回されてなる膜巻体が外装体で覆われ、膜巻体および外装体の少なくとも片端に、テレスコープ防止板が設けられ、少なくとも、1つのテレスコープ防止板の外周に原水シール部材が設けられてなるスパイラル型膜エレメントであり、前記原水シール部材が、半透膜エレメントを筒状圧力容器内で実質的に両方向に移動可能せしめる構造である(13)に記載の半透膜分離装置。
(15)(13)または(14)に記載の半透膜分離装置を運転する半透膜分離装置の運転方法において、水温と原水濃度の少なくとも一方の値が、予め定められた値を超えた場合に、前記半透膜ユニットの供給水の供給方向を逆向きにする半透膜分離装置の運転方法。
(16)海水または塩分濃度1重量%以上の高濃度かん水を原水として、原水もしくはその前処理水を供給水として、加圧供給する昇圧ポンプの下流に少なくとも二つの半透膜モジュールの供給水側が直列に接続配置され、前段の半透膜モジュールから得られる非透過水を次段に位置する半透膜モジュールに供給する構造のユニットによって、濃縮水と透過水に分離するための半透膜分離装置であって、前記半透膜モジュールのうち、少なくとも最後尾の半透膜モジュールを除く少なくとも一つの半透膜モジュールから得られる透過水の出口がエネルギー回収ユニットに接続され、背圧エネルギーを利用して供給水の一部を圧力交換式エネルギー回収ユニットおよびターボチャージャーの少なくともひとつで昇圧するようになっている半透膜分離装置。
 本発明によって、海水淡水化、特に中東のような高濃度の海水において、逆浸透膜のファウリングを防止しつつ、安定的に淡水を得ることが可能となる。
中間昇圧がある二段法を適用した従来の半透膜分離装置のフロー図の例である。 1段目の透過側に背圧をかけた中間昇圧がない二段法を適用した従来の半透膜分離装置のフロー図の一例である。 圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水にバルブで背圧をかけた構成とした従来の半透膜分離装置のフロー図の一例である。 圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水にエネルギー回収ユニットを備えた従来の半透膜分離装置のフロー図の一例である。 本発明に係る、圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水圧力エネルギーを利用してターボチャージャーで供給水の一部を予備昇圧するとともに、昇圧ポンプで残りの供給水を昇圧した後、合流後に再度昇圧する構成の半透膜分離装置のフロー図の一例である 本発明に係る、圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水圧力エネルギーを利用してターボチャージャーで供給水の一部を昇圧するとともに、昇圧ポンプで残りの供給水を昇圧する構成の半透膜分離装置のフロー図の一例である。 本発明に係る、圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水圧力エネルギーを利用してターボチャージャーで昇圧ポンプで予備昇圧された供給水の一部を再度昇圧するとともに、残りの供給水を他の昇圧ポンプで再度昇圧する構成の半透膜分離装置のフロー図の他の一例である。 本発明に係る、圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水圧力エネルギーを利用して圧力交換式エネルギー回収ユニットにつづいて昇圧ポンプで供給水の一部を昇圧するとともに、他の昇圧ポンプで残りの供給水を昇圧する構成の半透膜分離装置のフロー図の一例である。 本発明に係る、圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水圧力エネルギーを利用して圧力交換式エネルギー回収ユニットにつづいて昇圧ポンプで供給水の一部を昇圧するとともに、濃縮水圧力エネルギーを利用して圧力交換式エネルギー回収ユニットにつづいて供給水の他の一部を昇圧し、残りの供給水を昇圧ポンプで昇圧する構成の半透膜分離装置のフロー図の一例である。 本発明に係る、圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水圧力エネルギーを利用してターボチャージャーにつづいて昇圧ポンプで供給水の一部を昇圧するとともに、濃縮水圧力エネルギーを利用して圧力交換式エネルギー回収ユニットにつづいて昇圧ポンプで供給水の他の一部を昇圧する構成の半透膜分離装置のフロー図の一例である。 本発明を構成するスパイラル型半透膜エレメントの実施形態の一例を示す部分破断斜視図である。 本発明に係る複数のスパイラル型半透膜エレメントを筒状圧力容器に装填した分離膜モジュールの一例を示す断面図である。 本発明に係る、半透膜モジュールの供給水と透過水の流れ方向を逆転可能なフロー図の一例である。 本発明に係る、三方弁を用いて半透膜モジュールの供給水と透過水の流れ方向を逆転可能なフロー図の一例である。 テレスコープ防止板にO-リングシールが装着された分離膜エレメントが圧力容器内に装填された状態において、O-リングシール装着部分近傍を拡大して模式的に示す部分拡大断面図である。 テレスコープ防止板にU-カップシールが装着された分離膜エレメントが圧力容器内に装填された状態において、U-カップシール装着部分近傍を拡大して模式的に示す部分拡大断面図である。 スプリットリング状のシール部材の一例を模式的に示す平面図(図17(a))、(a)のb-bでの断面図(図17(b))である。 スプリットリング状のシール部材のスプリット部が斜めになっている一例を模式的に示す平面図(図18(a))、(a)のb-bでの断面図(図18(b))である。 スプリットリング状のシール部材のスプリット部が段階的になっている一例を模式的に示す平面図(図19(a))、(a)のb-bでの断面図(図19(b))である。 (a)、(b)、(c)はスプリットリング状のシール部材のスプリット部の形状を示す例である。 本発明に係る、モジュール2段構成とし、前段の透過水圧力エネルギーを利用して圧力交換式エネルギー回収ユニットで供給水の一部を昇圧する構成の半透膜分離装置のフロー図の一例である。 本発明に係る、モジュール2段構成とし、前段の透過水圧力エネルギーを利用して圧力交換式エネルギー回収ユニットで供給水の一部を昇圧するとともに、濃縮水圧力エネルギーを利用して圧力交換式エネルギー回収ユニットで供給水の他の一部を昇圧する構成の半透膜分離装置のフロー図の一例である。 本発明に係る、圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水圧力エネルギーを利用してターボチャージャーに続いて昇圧ポンプで供給水の一部を昇圧するとともに、他の昇圧ポンプで残りの供給水を昇圧する構成の半透膜分離装置のフロー図の一例である。 本発明に係る、圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水圧力エネルギーを利用して昇圧ポンプに続いてターボチャージャーで供給水の一部を昇圧するとともに、他の昇圧ポンプで残りの供給水を昇圧する構成の半透膜分離装置のフロー図の一例である。 本発明に係る、圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水圧力エネルギーを利用して圧力交換式エネルギー回収ユニットにつづいて昇圧ポンプで供給水の一部を昇圧するとともに、濃縮水の圧力エネルギーを利用した他の昇圧ポンプで残りの供給水を昇圧する構成の半透膜分離装置のフロー図の一例である。 本発明に係る、圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水圧力エネルギーを利用してターボチャージャーにつづいて昇圧ポンプで供給水の一部を昇圧するとともに、濃縮水の圧力エネルギーを利用した他の昇圧ポンプで残りの供給水を昇圧する構成の半透膜分離装置のフロー図の一例である。 本発明に係る、圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水圧力エネルギーを利用してターボチャージャーにつづいて昇圧ポンプで供給水の一部を昇圧するとともに、濃縮水の圧力エネルギーを利用した他の昇圧ポンプで残りの供給水の一部を昇圧し、残り全ての供給水を他の昇圧ポンプで昇圧する構成の半透膜分離装置のフロー図の一例である。 本発明に係る、圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水圧力エネルギーを利用して圧力交換式エネルギー回収ユニットにつづいて昇圧ポンプで供給水の一部を昇圧するとともに、濃縮水の圧力エネルギーを利用した他の昇圧ポンプで残りの供給水の一部を昇圧し、残り全ての供給水を他の昇圧ポンプで昇圧する構成の半透膜分離装置のフロー図の一例である。 本発明に係る、圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水圧力エネルギーを利用してターボチャージャーにつづいて昇圧ポンプで供給水の一部を昇圧するとともに、濃縮水の圧力エネルギーを利用してターボチャージャーにつづいて他の昇圧ポンプで残りの供給水の一部を昇圧し、残りの供給水を他の昇圧ポンプで昇圧する構成の半透膜分離装置のフロー図の一例である。 本発明に係る、圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水圧力エネルギーを利用して圧力交換式エネルギー回収ユニットにつづいて昇圧ポンプで供給水の一部を昇圧するとともに、濃縮水の圧力エネルギーを利用してターボチャージャーにつづいて他の昇圧ポンプで残りの供給水の一部を昇圧し、残りの供給水を他の昇圧ポンプで昇圧する構成の半透膜分離装置のフロー図の一例である。 本発明に係る、圧力容器の中で複数の半透膜エレメントの透過水を前後に分割し、前段の透過水圧力エネルギーを利用してターボチャージャーにつづいて昇圧ポンプで供給水の一部を昇圧するとともに、濃縮水の圧力エネルギーを利用して圧力交換式エネルギー回収ユニットにつづいて他の昇圧ポンプで残りの供給水の一部を昇圧し、残り全ての供給水を他の昇圧ポンプで昇圧する構成の半透膜分離装置のフロー図の一例である。
 以下、本発明の望ましい実施の形態を、図面を用いて説明する。ただし、本発明の範囲がこれらに限られるものではない。
 本発明の造水方法に係る水処理装置を適用可能な半透膜装置の例を図6に示す。図6に示す半透膜分離装置は、原水1が、原水槽2に一旦貯留された後、原水供給ポンプ3で前処理ユニット4に送液され、前処理される。前処理水は、中間水槽5、前処理水供給ポンプ17、保安フィルター6を経て、一部が昇圧ポンプ7で昇圧され、残りがターボチャージャー19で昇圧された後、半透膜モジュールからなる半透膜ユニット8で透過水と濃縮水に分離させる。さらに、透過水は、封止部9によって前段の透過水と後段の透過水に分離され、前段の透過水は、前段の第1の透過水ライン11と透過水のエネルギー回収ユニット10aを通って、透過水槽13に送られる。透過水後段の透過水は、後段の第2の透過水ライン12を通って透過水槽13に送られる。濃縮水は、必要に応じてエネルギー回収ユニット10bで圧力エネルギーを回収された後、濃縮排水ライン14から排出される。さらに、図23、図24に示すように、ターボチャージャー19による昇圧不十分である場合を考慮して、分岐した昇圧ラインにおける昇圧ポンプ7aと別に、ターボチャージャー19の前もしくは後ろに、昇圧ポンプ7bを設けることも好ましい。また、図5、7に例示するように、前処理水の分岐前後の共通ラインに昇圧ポンプ7bを追加し、昇圧を補助することも好ましいし、前処理水供給ポンプ17の昇圧を大きくすることも可能である。ただし、前処理水供給ポンプ17の昇圧を大きくする場合は、保安フィルター6の耐圧性をあげる必要がある場合があるので注意が必要である。ここで、ターボチャージャー19の代わりに、エネルギー回収効率が非常に高いとして、近年適用が積極的に推進されている圧力交換式エネルギー回収ユニット15を用いることも好ましい。圧力交換式エネルギー回収ユニット15を適用する場合は、その特性上、第1の透過水ユニットの透過水流量と圧力交換式エネルギー回収ユニット15で昇圧できる供給水流量を実質的に同じにしなければならないため、ターボチャージャーの場合と水量や昇圧のバランスを適宜適正に設計する必要がある。図23のターボチャージャー19を圧力交換式エネルギー回収ユニット15に置き換えた図を、図8に示すが、図5、図7、図24も同様に置換できる。これらは、設計や昇圧ポンプやエネルギー回収ユニットの耐圧仕様などに応じて適宜選択、適用することができる。尚、エネルギー回収ユニット10、10a、10bは、包括的な装置名称であり、圧力交換式エネルギー回収ユニット、ターボチャージャー、ペルトン水車、逆転ポンプなどを含み得るが特に限定はされない。
 本発明を適用する原水、用途は、特に限定されるものではなく、河川水や地下水の除濁、脱塩、また、海水やかん水の淡水化など、いろんな目的に適用可能であるが、半透膜ユニットの中での濃度変化が大きく、先頭エレメントのフラックスが大きいためにファウリングリスクが高い、また、エネルギー消費が特に大きな問題となり、さらに、エネルギー回収のために高価なエネルギー回収ユニットが必要となる海水淡水化に適している。具体的には、塩分濃度が1重量%以上の高濃度かん水もしくは海水を原水とすると、本発明に適している。特に、3重量%以上の海水淡水化の場合、分離膜ユニットに供給される被処理水の圧力が40bar以上、すなわち、濃縮水の圧力も35bar以上あることが好ましい。高圧の限界については、特に制限はないが、運転圧力が80barを超えると、半透膜エレメントや圧力容器などに特殊な仕様が必要となること、また高圧での運転は、エネルギーコストが高くなるため、80bar以下、より好ましくは、70bar以下に設計すること、この条件で運転可能な半透膜および回収率などの運転条件設定をすることが好ましい。
 一方、被処理水濃度が1重量%未満のかん水の淡水化の場合も効果は小さいものの本発明の考え方を適用することは可能である。
 本発明を適用可能な前処理ユニット4としては、cm~mm単位のスクリーン、サブミリ~マイクロメートルレベルの高精度の固液分離が可能な砂ろ過、繊維フィルター、不織布フィルター、砂ろ過、さらに精度が高い、精密ろ過膜、限外ろ過膜などを原水水質に応じて用いることができるし、沈降分離、浮上分離など、種々の前処理プロセスを挙げることが出来る。またその適用に、凝集剤、吸着剤、殺菌剤、pH調整などの薬剤併用も差し支えない。原水中に有機物が非常に多い場合は、生物処理やラグーンなどで有機物をあらかじめ分解しておくことも好ましい実施態様である。
 昇圧ポンプ7は、半透膜ユニット8において、被処理水から処理水を分離することができるだけの圧力を付加できるものであれば特に限定されず、市販のポンプを用いることができる。例えば、プランジャー式、渦巻き式、マグネット式など必要とする出力、特性に応じ適宜選択し、用いることができる。
 本発明を適用する半透膜モジュールは、一つの筒状圧力容器に半透膜エレメントが複数直列に収納され、片方の端部から供給水が供給され、前段に位置する半透膜エレメントから得られる非透過水を次段に位置する半透膜エレメントに供給する構造になっている。本発明に適用される半透膜エレメントは特に限定されるものではないが、図11に部分破断面斜視図として例示されるような、膜面を流れる流量が均一であるスパイラル型分離膜エレメントが好適である。
 この分離膜エレメントは、被処理流体(被処理水)27が一端面より供給され、供給側流路部材24に沿って流動しながら成分の一部(例えば、海水淡水化の場合は水)が分離膜22を透過することにより、透過流体と濃縮流体とに分離される。その後、分離膜を透過した成分(透過水)は、透過側流路部材23に沿って流動して、中心管25内へとその側面の孔から流入し、中心管25内を流動し、透過流体(透過水)28として取り出される。一方、非透過成分(海水淡水化の場合は塩分)を高濃度に含有する処理水は、分離膜エレメントの他端面より濃縮流体29(濃縮水)として排出される。
 本発明を適用可能なスパイラル型膜エレメントに用いられる分離膜22は平膜状の分離膜である。供給側流路部材24には、ネット状材料、メッシュ状材料、溝付シート、波形シート等が使用できる。透過側流路部材23には、ネット状材料、メッシュ状材料、溝付シート、波形シート等が使用できる。いずれも、分離膜と独立したネットやシートでも構わないし、接着や融着するなどして一体化したものでも差し支えない。
 テレスコープ防止板26は、分離膜巻回体が通過する流体の圧力により筒状に変形すること(テレスコープ現象)を防止するために設置された、空隙を有する板状物であり、外周側にはシール材を装填するための周回溝を有していることが好ましい。テレスコープ防止板26は変形防止の機能を有すれば、その材質は特に制約はない。ただし、用途に応じて、耐薬品性や耐熱性など必要になる場合は、要求仕様に応じて適宜選択することが可能である。一般には、熱可塑性樹脂、熱硬化性樹脂、耐熱性樹脂などの樹脂材が好適である。また、このテレスコープ防止板26は、原水の流れをなるべく妨げずに強度を維持する目的から、外周環状部と内周環状部と放射状スポーク部とを有するスポーク型構造であることが好ましい。
 中心管25は、管の側面に複数の孔を有するものであり、中心管25の材質は、樹脂、金属など何れでもよいが、コスト、耐久性を鑑みて、ノリル樹脂、ABS樹脂等のプラスチックが通常使用されることが一般的である。分離膜22の端部を封止するための手段としては、接着法が好適に用いられる。接着剤としては、ウレタン系接着剤、エポキシ系接着剤、ホットメルト接着剤等、公知の何れの接着剤も使用することができる。また、スパイラル型分離膜エレメントは、分離膜巻回体の外周部が外装材により拘束されて拡径しない構造になっていることも好ましい。外装材は、ポリエステル、ポリプロピレン、ポリエチレン、ポリ塩化ビニルなどからなるシートや、硬化性樹脂を塗ったガラス繊維などからなるもので、分離膜巻回体の外周表面に、かかるシートや繊維を巻回して分離膜エレメントが拡径しないように拘束する。
 本発明では、図11に例示したスパイラル型膜エレメントを、図12に示すように、筒状圧力容器に一つもしくは複数装填して、半透膜モジュール(分離膜モジュール)37を構成する。図12では、複数の半透膜エレメント(分離膜エレメント)32(32a,32b,32c,32d,32e,32f)を、筒状圧力容器39内に装填することにより、半透膜モジュール37を構成する。半透膜エレメント32を構成する少なくとも片端に設けられたテレスコープ防止板の少なくとも1つの外周と筒状圧力容器39の内周面の間に、被処理水シール部材38(38a1,3a2,38b1~38e2,38f1,38f2)が配置される。被処理水は、被処理流体(被処理水)供給口31から供給することもできるが、逆の濃縮流体(濃縮水)排出口33から供給することも可能である。ただし、逆から流す場合は、シール部材38の配置方法も必要に応じて逆にする必要がある。被処理水が被処理流体供給口31(被処理水の流れ方向を逆向きにするときは濃縮流体排出口33)から供給される場合は、第1の半透膜エレメント(第1の分離膜エレメント)32aの端部に供給される。第1の分離膜エレメントで処理された濃縮水(濃縮流体)は、第1の半透膜エレメント(第2の分離膜エレメント)32bに供給されその後、順次32c,32d,32e,32fに供給、処理された後、最終的に濃縮流体排出口33(被処理水の流れ方向を逆向きにするときは被処理流体供給口31)から排出される。それぞれの半透膜エレメント32a~32fの中心パイプは、それぞれコネクター34で連接されるとともに、一箇所が封止部9によって、分割され、端板35a,35bに設けられた透過流体(透過水)取出口36a,36bに接続されており、それぞれの分離膜エレメントで得られた透過流体(透過水)が第1の透過水ライン11と第2の透過水ライン12に分割されて系外に取り出される。
 なお、図12では、それぞれの分離膜エレメント39a~39fの両側にU-カップシール(シール部材)45が備えられているが、片側のみ(すなわち、38a1,38b1,38c1~38f1もしくは38a2,38b2,38c2~38f2)とすることも可能である。両方備えた方がシール性は向上するが、装填、取り出し時に困難度が増すこと、また、隣接するシール部材間(例えば、38a1と38a2の間)にデッドスペースを生じやすくなるため、例えば、ジュースの濃縮など濃縮水が汚染されると問題となる場合は、好ましくない。
 本発明においては、図6に示すように、第1の透過水ライン11がターボチャージャー19や圧力交換式エネルギー回収ユニット15に接続され、透過水に背圧をかけることによって、さらに、ターボチャージャー19や圧力交換式エネルギー回収ユニット15が供給水の昇圧に直接利用されることによって、背圧エネルギーを供給水の昇圧に効率的に活用することを可能せしめることができる。
 さらに、図26および図25に例示するように、半透膜ユニット8の濃縮水が有する圧力エネルギーをエネルギー回収ユニット10で回収し、昇圧ポンプ7aの動力として活用すると、淡水化の所要エネルギーを低減することができるため非常に好ましい。とくに、また、図26におけるターボチャージャー19の特性によっては、また、図25に示すようにターボチャージャー19の代わりに圧力交換式エネルギー回収ユニット15を用いる場合において、流量バランスや昇圧効率を最適化するにあたっては、図27図28に例示するように前処理水を3つに分岐し、それぞれを透過水の背圧利用エネルギーによる昇圧、濃縮水の圧力エネルギーによる昇圧、昇圧ポンプによる昇圧を行うことも好ましい。とくに、図28のように、背圧エネルギーを圧力交換式エネルギー回収ユニットによって回収利用する場合、分岐流量は透過水ライン11の流量と基本的に同じでなければならない。
 さらに、濃縮水のエネルギー回収ユニット10の特性を最適に維持するためには、その流量も設計範囲内に維持することが好ましく、その場合、残りの供給水を昇圧ポンプ7cで昇圧すると非常に効率的である。この場合、昇圧ポンプ7cは運転条件によってフレキシブルに性能効率を維持できるようにインバーターを装備しておくことも好ましい。このような使い方としては、図29に例示するように、透過水の圧力エネルギーと濃縮水の圧力エネルギーをともにターボチャージャー19a、19bで回収する場合、また、図30に提示するように、透過水の圧力エネルギーを圧力交換式エネルギー回収ユニット15、濃縮水の圧力エネルギーをターボチャージャー19で回収する場合、さらに、図10に示すように、濃縮水と実質的に等量の供給水の昇圧を、濃縮水の圧力エネルギーを圧力交換式エネルギー回収ユニットによって行い、残りの供給水全ての昇圧をターボチャージャー19と必要に応じて昇圧ポンプ7bによって行うことも非常に好ましい構成である。図10に示す半透膜分離装置は、原水1が、原水槽2に一旦貯留された後、原水供給ポンプ3で前処理ユニット4に送液され、前処理される。前処理水は、中間水槽5、保安フィルター6を経た前処理水のうち、濃縮水と実質的に等量を圧力交換式エネルギー回収ユニット15bに送り、濃縮水の圧力エネルギーを回収し、昇圧ポンプ7aで半透膜ユニット8に必要な圧力を獲得する。残りの前処理水は、ターボチャージャー19によって昇圧された後、圧力が不十分な場合は、昇圧ポンプ7bで昇圧し、圧力交換式エネルギー回収ユニット15で昇圧された供給水と混合された後、半透膜ユニット8に供給される。なお、圧力交換式エネルギー回収ユニット15と昇圧ポンプ7a、また、ターボチャージャー19と昇圧ポンプ7bの順序は逆でも本発明の達成は可能であるが、後段の耐圧要求が高くなるため、コストに応じて適宜選択することができる。半透膜ユニット8では、供給水を透過水と濃縮水に分離させる。透過水は、封止部9によって前段の透過水と後段の透過水に分離され、前段の透過水は、前段の第1の透過水ライン11と透過水のターボチャージャー19を通って、透過水槽13に送られる。透過水後段の透過水は、後段の第2の透過水ライン12を通って透過水槽13に送られる。濃縮水は、圧力交換式エネルギー回収ユニット15bで圧力エネルギーを回収された後、濃縮排水ライン14から排出される。
 また、図9に例示するように、透過水の圧力エネルギーと濃縮水の圧力エネルギーをともに圧力交換式エネルギー回収ユニット15a、15bによって、供給水の昇圧に適用することも非常に好ましい。ただし、この場合、実質的には、昇圧ポンプ7cで昇圧しなければならない流量は、濃縮水と第1の透過水流量を供給水から差し引いた流量(すなわち、第2の透過水流量とほぼ同じ)となるため、透過水ライン12を流れる流量と実質的に同じ流量を昇圧ポンプ7aで分岐昇圧しなければならないことになる。
 もちろん、透過水の圧力エネルギーや濃縮水の圧力エネルギーの回収にターボチャージャーを併用する場合も、必須ではないが、図31に例示するように前処理水を3つに分岐し、昇圧ポンプ7cの流量を調節することで最適なエネルギー回収を実現することが可能であるため、非常に好ましい実施態様である。なお、いずれのエネルギー回収ユニットの場合も単独で昇圧に必要なエネルギーが得られない場合は、補助の昇圧ポンプを直列することも差し支えない。
 本発明を適用する原水、用途は、特に限定されるものではなく、河川水や地下水の除濁、脱塩、また、海水やかん水の淡水化など、いろんな目的に適用可能であるが、半透膜ユニットの中での濃度変化が大きく、先頭エレメントのフラックスが大きいためにファウリングリスクが高い、また、エネルギー消費が特に大きな問題となり、さらに、エネルギー回収のために高価なエネルギー回収ユニットが必要となる海水淡水化に適している。具体的には、塩分濃度が1重量%以上の高濃度かん水もしくは海水を原水とすると、本発明に適している。
 特に、3重量%以上の海水淡水化の場合、分離膜ユニットに供給される被処理水の圧力が40bar以上、すなわち、濃縮水の圧力も35bar以上あることが好ましい。高圧の限界については、特に制限はないが、運転圧力が80barを超えると、半透膜エレメントや圧力容器などに特殊な仕様が必要となること、また高圧での運転は、エネルギーコストが高くなるため、80bar以下、より好ましくは、70bar以下に設計すること、この条件で運転可能な半透膜および回収率などの運転条件設定をすることが好ましい。
 一方、被処理水濃度が1重量%未満のかん水の淡水化の場合も効果は小さいものの本発明の考え方を適用することは可能である。
 原水濃度が4重量%以上6重量%未満の海水または、高濃度かん水の場合、半透膜ユニットの供給水量に対する透過水の回収率を30%以上50%以下に設定することが経済的に好ましいが、この条件においては、半透膜ユニットへの供給水流量と濃縮水流量が比較的大きくならないため、本発明のように半透膜モジュールの前段と後段の並列本数が同じになっても半透膜エレメントの流量に関する上下限の範囲内で設計可能となり、非常に好ましい適用条件である。
 このような条件は、中東、とくに、アラビア湾の4.5~5.5重量%の海水に適用すると好ましい。
 本発明に適用する半透膜エレメントは、同じエレメントを装填することも可能であるが、前段の半透膜エレメントの透水性能が後段の半透膜エレメントの透水性能よりも大きいと、1段目が低圧で運転できるため、背圧によるエネルギー回収が大きくなり、好ましい。
 また、前段の半透膜エレメントの阻止性能が後段の半透膜エレメントの阻止性能よりも小さいと、全体的な水質を向上させることができるため、これも好ましい。
 本発明に適用する半透膜ユニット8において、被処理水シール部材(シール部材)としては、半透膜モジュール37の被処理水供給口を符号31と33で入れ替わるようにする場合は、被処理水の流れ方向を逆向きにさせるのに差し支えない構造になっていることが求められる。
 一般には、被処理水の供給が一方向であるため、シール部材としてU-カップリングシールもしくはV-カップリングシールが考案され広く使用されている。このU-カップリングシールは、弾性樹脂を用い、U字状の開いた部分が被処理水を供給する側(原水側)に向くように分離膜エレメントのテレスコープ防止板にセットされている。このU-カップシールは、原水側から水が供給された時に、その水圧でU字が開き、U-カップシールと圧力容器との隙間を埋める構造になっている。V-カップリングシールも同様である。図16は、分離膜エレメントが圧力容器内に装填された状態において、U-カップシール45がテレスコープ防止板42の外周部43の周回溝に嵌着され、テレスコープ防止板の外周と圧力容器の内周面との間でシールする状態を示すものであって、U-カップシール装着部分の近傍を拡大して模式的に示す拡大断面図である。
 図16において、U-カップシール45は、圧力容器の内壁41との接触面積は比較的小さいが、前述したとおり、被処理水(原水)上流から下流(図16ではに左から右への方向)に流れる水に対してはシール機能が発揮される。また、圧力容器内で分離膜エレメントを移動させる場合は、図16の左から右に摺動させれば、比較的小さな抵抗で移動させることが可能である。しかしながら、分離膜エレメントを右から左に移動させるのは難しい。すなわち、被処理水を両側から供給できるようにしなければならない場合は、U-カップシールやV-カップシールは適していない。
 一方、従来技術として、O-リングシールを使用する場合もあり、テレスコープ防止板の外周側の周回溝に嵌着されたO-リングシールが、圧力容器の内壁と接触し、O-リングシールがつぶれて変形することで、分離膜エレメントと圧力容器内との隙間を埋めているため、両側からの被処理水の供給に対して、良好なシール性を発揮することができる。ただし、図15は、分離膜エレメントが圧力容器内に装填された状態において、O-リングシール(シール部材)44がテレスコープ防止板42の外周部43の周回溝に嵌着された、テレスコープ防止板の外周と圧力容器の内周面との間でシールする状態を示すものであって、O-リングシール装着部分の近傍を拡大して模式的に示す部分拡大断面図である。図15において、O-リングシール44は、圧力容器の内壁41と圧接している部分において変形し、圧力容器の内壁41との接触面積が大きくなっている。さらに、O-リングシール44は弾性樹脂で構成されているので圧力容器の内壁41との摺動摩擦が大きいため、圧力容器内の分離膜エレメントの移動が容易でないという欠点を有している。
 O-リングシールとU-カップシールの欠点を解決する方法として、例えば、図17(a)および(b)に示すようなスプリットリング状のシール部材(以下、「スプリットリングシール」という)を用いることが好ましい。スプリットリングシール(シール部材)46は、国際公開第2011/046944号に記載されている。スプリットリングシール46は、環状シールが1箇所以上で切断・分割された如き形状を有するものである。例えば、図17(a)のスプリットリングシールの平面図に示すようにスプリット部47が1箇所存在するものが好ましいが、環状シールが2箇所で切断・分割された如き半円弧状スプリットリングシールを2つ用いてもよい。
 また、スプリット部のカットの仕方についても特に制約はなく、図18や図19のように斜めや段差をもったような形状などを手寄与することができる。図18や図19のような形状の場合、スプリット面が互いに密着しやすいため、シール性を発揮しやすく好ましい態様である。スプリットリングシールの横断面形状は、特に限定されるものでは無いが、テレスコープ防止板の外周部43の周回溝に収まり、移動しない構造であればよく、例えば、図17(b)の断面図に示すように略四角形でもよいし、略多角形でもよい。また、スプリットリングシールの外周部の長さ(外周長)は、そのスプリットリングシール46のスプリット部47を繋げて環状にした時の外周直径49が、圧力容器の内壁の直径サイズよりも少し大きくなるように設計し、実際に分離膜エレメントのテレスコープ防止板に装着して圧力容器内に装填された時には、そのスプリット部の隙間が縮まり、スプリットリングシールが圧力容器の内壁と密接する構造となるようにする。
 また、スプリットリングシールの内周部長さ(内周長)は、そのスプリットリングシール46のスプリット部47を繋げて環状にした時の内周直径48が、テレスコープ防止板の外周部43の周回溝に、隙間無く収まる大きさであれば良い。スプリットリングシール46の大きさは、エレメントの外径や材質等により最適化すればよいが、例えば、シールの径方向幅(即ち、外周直径49と内周直径48との差の半分)が5~10mm程度、シールの厚み3~10mm程度を採用することができる。このようなスプリットリングシール46は、図17(b)に示すように断面形状が矩形であるため、摺動面とシール部材が並行もしくは両方向対称に接触することができ、これによって、半透膜モジュール37の両側(被処理流体供給口31,濃縮流体排出口33)から被処理水を供給することが可能となり、しかも、スパイラル型分離膜エレメントを筒状圧力容器内に装填する時も、また、分離膜エレメントを圧力容器から抜き取る時も、容易に分離膜エレメントを圧力容器内で移動させることができるようになるため、両側からの装填や抜き取りができる構造は非常に好ましいものである。
 本発明に適用可能なシール部材の特性としては、分離膜エレメントのどちらから被処理水を供給しても十分なシール性を発現することができる。このような特性を有するシール部材の形状としては、前述のスプリットリング状、もしくはシール接触面がとがった、すなわち、断面がたとえば三角形になっているデルタリング状や断面がOではなく凸レンズ状、また、接触面が凹凸を保った波板状が適用可能である。さらに、摺動性の問題はあるもののO-リング状も適用することは可能ではある。O-リングやデルタリングなどの場合、弾性材製シール部材を用いるとシール性が高くなるため好ましいが、摺動性が損なわれやすいため、注意が必要である。摺動性を重視するため、弾性材製シール材で一般に考慮する潰し代(弾性材を用いたO-リングなどで密着性を上げるため、使用時に圧縮変形させる割合)を小さくすることが重要である。具体的には、通常8~30%とされている潰し代を、10%以下、より好ましくは5%以下にすることによって、圧力容器内での良好な摺動性を保つことが可能となるが、高い精度が必要となることに加え、素材の経時的な劣化による寸法変化を生じやすいため、適用に当たっては、注意が必要である。
 スプリットリングシールにおけるスプリット部の形状は、特に限定されるものではないが、一例として、図20に示すように、シール長手方向に直角に切断したシール部材(カット部分の左側が垂直カット部分の近傍のシール部材51、右側が同じく垂直カット部分の近傍のシール部材52)、および、垂直にカットされたスプリット部50を有するスプリットリングシールとする場合(図20(a))、シール長手方向に対し斜めに切断したシール部材(カット部分の左側が斜めカット部分の近傍のシール部材55、右側が同じく斜めカット部分の近傍のシール部材56)、および、斜めにカットされたスプリット部54を有するスプリットリングシールとする場合(図20(b))、シール長手方向に対し階段状に切断したシール部材(カット部分の左側が階段状カット部分の近傍のシール部材58、右側が同じく階段状カット部分の近傍のシール部材59)、および、階段状にカットされたスプリット部57を有するスプリットリングシールとする場合(図20(c))が挙げられる。なお、テレスコープ防止板の円周溝の両側部分53がシール部材の上下に位置する。特に、シール長手方向に対し斜めに切断した場合(図20(b))、シール長手方向に対し階段状に切断した場合(図20(c))のスプリットリングシールを用いた時には、実際に被処理水が圧力容器内を流れる際の圧力でもってスプリットリング端部同士が押し付けられ、スプリットリング端部の隙間がほとんど無い状態となる。この結果、スプリット端部同士の接合部分でもシール効果はほぼ保たれ、被処理水が分離膜エレメントの外側をバイパスする量はかなり少なく、効率的な水処理を行うことができる。
 スプリットリングシールを、分離膜エレメントのテレスコープ防止板の外周部に装着した後、そのスプリット部どうしは単に接触するように配置することでもよいし、スプリット部どうしを接合しても良い。その際の接合の方法としては、熱融着接合や接着剤を用いる強固な接合でも良いし、スプリットリングシールのスプリット部の一片と他方とが凹凸嵌合により組み合わさった接合でもよい。スプリット端部同士を凹凸嵌合させて接合することで、取り扱い時の衝撃でスプリットリングシールの脱落を阻止することができる。スプリットリングシールを、テレスコープ防止板の外周に装着するにあたって、1もしくは複数のシール部材を装着してもよい。複数個のシール部材を装着する場合は、スプリット部の位置を相互に異なる位置にすることが好ましく、これにより原水が分離膜エレメントの外側を通り抜ける量をより少なくすることができる。
 スプリットリングを構成する素材は、非弾性体、弾性体のいずれでもよく、非弾性材を用いることが好ましい。有機材料としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレンを始めとする、様々な硬質プラスチック、無機材料としても、鉄、ステンレス、銅、アルミニウム、チタンやそれらの合金を使うこともできれば、セラミック、黒鉛、石綿も用いることができるし、また、FRPなどのように有機無機複合体や以上の素材の複層品を用いることも可能である。弾性材としては、特に制約はなく、ニトリルゴム、スチロールゴム、シリコーンゴム、フッ素ゴム、アクリルゴム、エチレンプロピレンゴム、ウレタンゴムなど、一般に多用されるシール材を用いることができる。なお、これらの素材は、半透膜モジュール37の対象となる被処理水に耐久性があることが好ましい。たとえば、海水を対象にする場合は、鉄合金を用いると腐食しやすく、また、有機溶媒を含む場合は、耐久性が不十分な樹脂を使うと劣化しやすいので注意を要する。従って、本発明の適用にあたっては、被処理水シール部材(図12の38a1~38f1、38a2~38f2)については、すべて、図15~図20に示すシール部材を適用することができる。
 このようなスプリットリングシールなどの前後に稼動可能なシール部材を用いることによって、前段の半透膜エレメントのうち最上流から1ないし複数の半透膜エレメントを前段の他の半透膜エレメントと、また、後段の半透膜エレメントのうち最下流から1ないし複数の半透膜エレメントが後段の他の半透膜エレメントと異なるようにすることが可能である。これによって、高フラックスであるためにファウリングしやすい先頭近傍のエレメントやクロスフローが小さいためにファウリング、また高濃縮のためにスケールが発生しやすい最下流エレメントの交換を容易にすることができる。さらに、前段の先頭近傍のエレメントの透水性能を他より小さくしたり、後段の最下流近傍のエレメントの阻止性能を他より大きくすることによって、よりバランスの優れた構成にすることができる。
 また、本発明を適用するにおいて、半透膜ユニットへの供給水の供給方向を逆向きに出来る構造とすることも好ましい実施態様である。
 具体的な例として、図13のようなバルブ構成をとることも可能である。すなわち、半透膜ユニット8に対し、前処理水の供給を第1の供給水側ラインFa(もしくは第2の供給水側ラインFb)から行い、濃縮水の排出を第2の供給水側ラインFb(もしくは第1の供給水側ラインFa)から行う。このために、例えば、図6における第1の透過水ライン11を第1の透過水側ラインPa、第2の透過水ライン12を第2の透過水側ラインPbに接続する。供給水側ラインFaとFbはバルブ20a~20dを有し、透過水側ラインPaとPbは、バルブ20e~20hを有する。
 ここで、バルブ20a、20c、20f、20hを閉じ、他を開けば、第1の供給水側ラインFaがF1に連通、第2の供給水側ラインFbがF2に連通、第1の透過水側ラインPaがP1に連通、第2の透過水側ラインPbがP2に連通し、半透膜ユニット8におけるF1から供給水を入れ、濃縮水をF2から取り出し、P1から前段の透過水を、P2から後段の透過水を得ることができる。逆に、バルブ20a、20c、20f、20hを開け、他を閉じれば、F2から供給、F1からの濃縮水を排水、P2から前段の透過水を、P1から後段の透過水を得ることができる。逆流を実施することによって、エレメントの負荷を均一化し、ファウリングを低減することが可能となる。
 なお、図13では、バルブ20a~20hの8つのバルブを用いて切り替えているが、図14に例示するように三方弁21a~21dからなる機構を用いて、F1、F2の一方を供給水側ラインFa、他方を濃縮水側ラインFbに、P1、P2の一方を第1の透過水側ラインPa、他方を第2の透過水側ラインPbに切り替えることが可能である。
 図13、図14に例示するような半透膜モジュールへの供給水の方向を逆にできる構成にする場合は、スプリットリング状のシール部材を使用することが非常に好ましい。
 さらに、通常、従来の1段の淡水化装置の運転において、原水温度や原水濃度が変動するが、高温や高濃度の場合は、低温や低濃度の場合に比べて、先頭エレメントから最後尾エレメントのフラックスの変動が大きくなる。このため、高温や高濃度のときに、前方(本発明における前段)のエレメント性能を後方(本発明における後段)のエレメント性能よりも低透水性、低温や低濃度のときの逆にすると、原水温度や原水濃度の変動に対しても常に適切な運転状態を維持することが可能となる。すなわち、原水温度と原水濃度の少なくとも一方の値が、予め定められた値を超えた場合に、半透膜モジュールの供給水の供給方向を逆向きにすると、ファウリングを防止し、非常に安定した運転を実現することができる。
 ところで、上述した実施形態の様に1つの半透膜モジュールで半透膜ユニットを構成することができる。ただし、本発明の趣旨からして、半透膜ユニットとして、二つの半透膜モジュールの供給水側が直列に接続配置され、前段の半透膜モジュールから得られる非透過水を次段に位置する半透膜モジュールに供給する構造になっていても同様の効果を得ることができる。この場合、モジュール内のエレメント交換は容易になるため、特に前段と後段でエレメントが異なる場合は、交換は容易になるが、モジュール数が増えることによってコストアップにつながる可能性があるので、注意が必要である。以下、本発明の他の実施の形態を、図21、図22を用いて説明する。ただし、本発明の範囲がこれらに限られるものではない。
 図21に例示する半透膜分離装置は、原水1が、原水槽2に一旦貯留された後、原水供給ポンプ3で前処理ユニット4に送液され、前処理される。前処理水は、中間水槽5、保安フィルター6を経て、昇圧ポンプ7で昇圧された後、第1(前段)の半透膜ユニット8aで透過水と濃縮水に分離させる。第1の濃縮水14aは、昇圧されることなく、第2(後段)の半透膜ユニット8bに供給され、さらに透過水と濃縮水に分離させる。前段の透過水は、前段の第1の透過水ライン11と透過水の圧力交換式エネルギー回収ユニット15を通って、透過水槽13に送られる。透過水後段の透過水は、後段の第2の透過水ライン12を通って透過水槽13に送られる。後段の第2の濃縮水14bは、必要に応じてエネルギー回収ユニット10bで圧力エネルギーを回収された後、濃縮排水ライン14から排出される。図21に示したように昇圧ポンプ7bを追加し、昇圧を補助することも好ましい。図22には、濃縮水の圧力エネルギーを圧力交換式エネルギー回収ユニット15bで供給水の一部の昇圧に利用する回収するフローを示している。このシステムによって、圧力エネルギーは非常に高い効率で回収できるため特に好ましい実施態様である。図22に示したように昇圧ポンプ7a、7bを追加し、昇圧を補助することも好ましい。
 本出願は、2014年3月18日出願の日本特許出願、特願2014-054549に基づくものであり、その内容はここに参照として取り込まれる。
1:原水
2:原水槽
3:原水供給ポンプ
4:前処理ユニット
5:中間水槽
6:保安フィルター
7、7a、7b、7c:昇圧ポンプ
8、8a、8b:半透膜ユニット
9:封止部
10、10a、10b:エネルギー回収ユニット
11:第1の透過水ライン
12:第2の透過水ライン
13:透過水槽
14:濃縮排水ライン
14a:第1の濃縮水
14b:第2の濃縮水
15、15a、15b:圧力交換式エネルギー回収ユニット
17:前処理水供給ポンプ
18:バルブ
19、19a、19b:ターボチャージャー(エネルギー回収用ターボチャージャー)
20:流路切替バルブ
21a、21b、21c、21d:三方弁
22:分離膜
23:透過側流路部材
24:供給側流路部材
25:中心管
26:テレスコープ防止板
27:被処理流体(被処理水)
28:透過流体(透過水)
29:濃縮流体(濃縮水)
31:被処理流体(被処理水)供給口
32:半透膜エレメント(分離膜エレメント)
33:濃縮流体(濃縮水)排出口
34:コネクター
35:端板
36:透過流体(透過水)出口
37:半透膜モジュール(分離膜モジュール)
38:シール部材
39:筒状圧力容器
41:筒状圧力容器の内壁
42:テレスコープ防止板
43:テレスコープ防止板の外周部
44:O-リングシール(シール部材)
45:U-カップシール(シール部材)
46:スプリットリングシール(シール部材)
47:スプリット部
48: 内周直径
49: 外周直径
50:垂直にカットされたスプリット部
51,52:垂直カット部分の近傍のシール部材
53:テレスコープ防止板の円周溝の両側部分
54:斜めにカットされたスプリット部
55,56:斜めカット部分の近傍のシール部材
57:階段状にカットされたスプリット部
58,59:階段状カット部分の近傍のシール部材

Claims (16)

  1.  海水または塩分濃度1重量%以上の高濃度かん水を原水として、原水もしくはその前処理水を供給水として、加圧供給する昇圧ポンプの下流に半透膜ユニットが配置され、濃縮水と透過水に分離するための半透膜分離装置であって、
     前記半透膜ユニットは、
     一つの筒状圧力容器に半透膜エレメントが複数直列に収納され、片方の端部から供給水が供給され、前段に位置する半透膜エレメントから得られる非透過水を次段に位置する半透膜エレメントに供給する構造のモジュールからなるとともに、
     前段の半透膜エレメントから得られる透過水と残りの後段から得られる透過水が分割されるように前段から得られる透過水の一部を一方の端部から取り出すための第1の透過水ラインと前記残り後段の透過水を他方の端部から取り出すための第2の透過水ラインを備え、かつ、
     前記第1の透過水ラインがエネルギー回収ユニットに接続され、背圧エネルギーを利用して供給水の一部を圧力交換式エネルギー回収ユニットおよびターボチャージャーの少なくともひとつで昇圧するようになっている半透膜分離装置。
  2.  第1の透過水にかける背圧から取り出される背圧エネルギーを利用して前記圧力交換式エネルギー回収ユニットによって供給水のうち少なくとも一部を第1の透過水と実質的に等量昇圧し、その後前記昇圧ポンプで必要圧力まで昇圧するとともに背圧エネルギーを利用しない残りの供給水をもう1台の昇圧ポンプで必要圧力まで昇圧してから混合し、前記半透膜ユニットに供給するようになっている請求項1に記載の半透膜分離装置。
  3.  第1の透過水の背圧エネルギーを利用しない供給水のうち、濃縮水量と実質的に等量の昇圧を、濃縮水の圧力エネルギーによって行う請求項1または2に記載の半透膜分離装置。
  4.  第1の透過水にかける背圧から取り出される背圧エネルギーを利用して前記ターボチャージャーによって供給水の一部を昇圧し、
     その前か後で必要圧力まで前記昇圧ポンプで昇圧するとともに、背圧エネルギーを利用しない残りの供給水を他の昇圧手段によって行う請求項1に記載の半透膜分離装置。
  5.  第1の透過水の背圧エネルギーを利用しない供給水の少なくとも一部の昇圧を濃縮水の圧力エネルギーによって行う請求項4に記載の半透膜分離装置。
  6.  背圧エネルギーを利用しない供給水の少なくとも一部の昇圧を前記ターボチャージャーによって行うとともに、必要に応じて残りの供給水を他の昇圧手段で行う請求項3または5に記載の半透膜分離装置。
  7.  背圧エネルギーを利用しない供給水少なくとも一部の昇圧を前記圧力交換式エネルギー回収ユニットと昇圧ポンプによって行うとともに、必要に応じて残りの供給水を他の昇圧手段で行う請求項3または5に記載の半透膜分離装置。
  8.  原水濃度が4重量%以上の海水または、高濃度かん水であって、前記半透膜ユニットへの供給水量に対する透過水の回収率が30%以上50%以下である請求項1~7のいずれか1項に記載の半透膜分離装置。
  9.  前段の半透膜エレメントの透水性能が後段の半透膜エレメントの透水性能よりも大きい請求項1~8のいずれか1項に記載の半透膜分離装置。
  10.  前段の半透膜エレメントの阻止性能が後段の半透膜エレメントの阻止性能よりも小さい請求項1~9のいずれか1項に記載の半透膜分離装置。
  11.  前段の半透膜エレメントのうち最上流から1ないし複数の半透膜エレメントが前段の他の半透膜エレメントよりも透水性が小さい請求項9に記載の半透膜分離装置。
  12.  後段の半透膜エレメントのうち最下流から1ないし複数の半透膜エレメントが後段の他の半透膜エレメントよりも阻止性能が大きい請求項10に記載の半透膜分離装置。
  13.  前記半透膜ユニットへの供給水の供給方向を逆向きに出来る流路構造となっている請求項1~12のいずれか1項に記載の半透膜分離装置。
  14.  半透膜エレメントが、シート上の半透膜が巻回されてなる膜巻体が外装体で覆われ、膜巻体および外装体の少なくとも片端に、テレスコープ防止板が設けられ、少なくとも、1つのテレスコープ防止板の外周に原水シール部材が設けられてなるスパイラル型膜エレメントであり、前記原水シール部材が、半透膜エレメントを筒状圧力容器内で実質的に両方向に移動可能せしめる構造である請求項13に記載の半透膜分離装置。
  15.  請求項13または14に記載の半透膜分離装置を運転する半透膜分離装置の運転方法において、水温と原水濃度の少なくとも一方の値が、予め定められた値を超えた場合に、前記半透膜ユニットの供給水の供給方向を逆向きにする半透膜分離装置の運転方法。
  16.  海水または塩分濃度1重量%以上の高濃度かん水を原水として、原水もしくはその前処理水を供給水として、加圧供給する昇圧ポンプの下流に少なくとも二つの半透膜モジュールの供給水側が直列に接続配置され、前段の半透膜モジュールから得られる非透過水を次段に位置する半透膜モジュールに供給する構造のユニットによって、濃縮水と透過水に分離するための半透膜分離装置であって、前記半透膜モジュールのうち、少なくとも最後尾の半透膜モジュールを除く少なくとも一つの半透膜モジュールから得られる透過水の出口がエネルギー回収ユニットに接続され、背圧エネルギーを利用して供給水の一部を圧力交換式エネルギー回収ユニットおよびターボチャージャーの少なくともひとつで昇圧するようになっている半透膜分離装置。
PCT/JP2015/057941 2014-03-18 2015-03-17 半透膜分離装置および半透膜分離装置の運転方法 WO2015141693A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015525342A JPWO2015141693A1 (ja) 2014-03-18 2015-03-17 半透膜分離装置および半透膜分離装置の運転方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-054549 2014-03-18
JP2014054549 2014-03-18

Publications (1)

Publication Number Publication Date
WO2015141693A1 true WO2015141693A1 (ja) 2015-09-24

Family

ID=54144658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057941 WO2015141693A1 (ja) 2014-03-18 2015-03-17 半透膜分離装置および半透膜分離装置の運転方法

Country Status (2)

Country Link
JP (1) JPWO2015141693A1 (ja)
WO (1) WO2015141693A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113652A (ja) * 2015-12-21 2017-06-29 株式会社日立製作所 逆浸透処理システム
WO2018129442A1 (en) * 2017-01-09 2018-07-12 Veolia Water Solutions & Technologies Support System and method for the treatment of water by reverse osmosis or nanofiltration
JP2020078773A (ja) * 2018-11-12 2020-05-28 日東電工株式会社 ろ過システム及びろ過方法
CN115920635A (zh) * 2023-01-05 2023-04-07 寿光北控水务有限公司 一种具有段内能回和回流功能的多段半透膜装置和方法
WO2024020539A1 (en) * 2022-07-22 2024-01-25 High Bar Membrane Systems LLC Method and system for achieving high recoveries from membrane systems using internal pressure boosting pumps

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137672A (ja) * 1999-11-18 2001-05-22 Toray Ind Inc 逆浸透処理装置および造水方法
JP2001269543A (ja) * 1994-12-02 2001-10-02 Toray Ind Inc 膜分離装置および高濃度溶液の分離方法
JP2011115704A (ja) * 2009-12-02 2011-06-16 Toray Ind Inc 塩水淡水化装置
JP2013126636A (ja) * 2011-12-19 2013-06-27 Hitachi Plant Technologies Ltd 逆浸透処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000093751A (ja) * 1998-09-22 2000-04-04 Toray Ind Inc 逆浸透分離装置及び逆浸透分離方法
JP2003126855A (ja) * 2001-10-26 2003-05-07 Toshiba Corp 膜濾過システム
JP4251879B2 (ja) * 2002-08-29 2009-04-08 オルガノ株式会社 分離膜モジュールの運転方法
JP5535491B2 (ja) * 2009-02-06 2014-07-02 三菱重工業株式会社 スパイラル型海水淡水化装置
JPWO2013146391A1 (ja) * 2012-03-30 2015-12-10 東レ株式会社 アルカリ金属分離回収方法およびアルカリ金属分離回収装置
JP6102921B2 (ja) * 2012-06-04 2017-03-29 東レ株式会社 分離膜ユニットを用いた造水方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001269543A (ja) * 1994-12-02 2001-10-02 Toray Ind Inc 膜分離装置および高濃度溶液の分離方法
JP2001137672A (ja) * 1999-11-18 2001-05-22 Toray Ind Inc 逆浸透処理装置および造水方法
JP2011115704A (ja) * 2009-12-02 2011-06-16 Toray Ind Inc 塩水淡水化装置
JP2013126636A (ja) * 2011-12-19 2013-06-27 Hitachi Plant Technologies Ltd 逆浸透処理装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017113652A (ja) * 2015-12-21 2017-06-29 株式会社日立製作所 逆浸透処理システム
US10427101B2 (en) 2015-12-21 2019-10-01 Hitachi, Ltd. Reverse osmosis treatment system for recovering energy generated both at brine and permeate sides during seawater desalination
US11395990B2 (en) 2015-12-21 2022-07-26 Hitachi, Ltd. Reverse osmosis treatment system for recovering energy generated both at brine and permeate sides during sea water desalination
WO2018129442A1 (en) * 2017-01-09 2018-07-12 Veolia Water Solutions & Technologies Support System and method for the treatment of water by reverse osmosis or nanofiltration
KR20190104042A (ko) * 2017-01-09 2019-09-05 베올리아 워터 솔루션스 앤드 테크놀로지스 서포트 역삼투 또는 나노여과에 의한 수처리 시스템 및 방법
KR102180787B1 (ko) 2017-01-09 2020-11-23 베올리아 워터 솔루션스 앤드 테크놀로지스 서포트 역삼투 또는 나노여과에 의한 수처리 시스템 및 방법
US11230479B2 (en) 2017-01-09 2022-01-25 Veolia Water Solutions & Technologies Support System and method for the treating of water by reverse osmosis or nanofiltration
US11673815B2 (en) 2017-01-09 2023-06-13 Veolia Water Solutions & Technologies Support System and method for the treatment of water by reverse osmosis or nanofiltration
JP2020078773A (ja) * 2018-11-12 2020-05-28 日東電工株式会社 ろ過システム及びろ過方法
WO2024020539A1 (en) * 2022-07-22 2024-01-25 High Bar Membrane Systems LLC Method and system for achieving high recoveries from membrane systems using internal pressure boosting pumps
CN115920635A (zh) * 2023-01-05 2023-04-07 寿光北控水务有限公司 一种具有段内能回和回流功能的多段半透膜装置和方法
CN115920635B (zh) * 2023-01-05 2024-02-20 寿光北控水务有限公司 一种具有段内能回和回流功能的多段半透膜装置和方法

Also Published As

Publication number Publication date
JPWO2015141693A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
US9901878B2 (en) Membrane separation device and operation method for membrane separation device
Wang et al. Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes
JP6102921B2 (ja) 分離膜ユニットを用いた造水方法
WO2015141693A1 (ja) 半透膜分離装置および半透膜分離装置の運転方法
JP6834360B2 (ja) 濃縮方法および濃縮装置
US8696904B2 (en) Multi-leaf reverse osmosis element
US9975090B2 (en) Double pass reverse osmosis separator module
JP2008100219A (ja) 脱塩方法及び脱塩装置
SG193966A1 (en) Concentration difference power generation device and method for operating same
KR101560698B1 (ko) 삼투 에너지 회수가 가능한 멤브레인 기반의 담수화 장치 및 방법
JP7428127B2 (ja) 膜分離装置、造水システム、膜分離方法および造水方法
JP2000167358A (ja) 膜分離システムおよび膜分離方法
US20120067808A1 (en) Filtration apparatus and process with reduced flux imbalance
JP2008100220A (ja) 造水方法
JP2018126706A (ja) 膜分離装置および流体分離方法
KR20210133631A (ko) 해수담수화 압력지연삼투 기술을 이용한 복합 담수화 시스템
JP2000093751A (ja) 逆浸透分離装置及び逆浸透分離方法
EP2821123B1 (en) Separation membrane module and replacement method for separation membrane element
JP2000288356A (ja) 逆浸透膜分離装置および造水方法
CN112340938A (zh) 一种实现高倍浓缩的膜系统
US20170152159A1 (en) Reverse osmosis with rectification
JP2015033673A (ja) 膜分離装置および膜分離装置の運転方法
JP6607336B1 (ja) 分離膜モジュール
JP2012139614A (ja) 分離膜エレメントの洗浄方法
WO2022059737A1 (ja) 海水淡水化システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015525342

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764463

Country of ref document: EP

Kind code of ref document: A1