WO2015141547A1 - 無段変速機の制御装置 - Google Patents

無段変速機の制御装置 Download PDF

Info

Publication number
WO2015141547A1
WO2015141547A1 PCT/JP2015/057241 JP2015057241W WO2015141547A1 WO 2015141547 A1 WO2015141547 A1 WO 2015141547A1 JP 2015057241 W JP2015057241 W JP 2015057241W WO 2015141547 A1 WO2015141547 A1 WO 2015141547A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
continuously variable
variable transmission
input
vehicle
Prior art date
Application number
PCT/JP2015/057241
Other languages
English (en)
French (fr)
Inventor
吉岡 尚
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2016508680A priority Critical patent/JP6291656B2/ja
Priority to CN201580014090.2A priority patent/CN106104095B/zh
Publication of WO2015141547A1 publication Critical patent/WO2015141547A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/021Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings toothed gearing combined with continuous variable friction gearing
    • F16H2037/025CVT's in which the ratio coverage is used more than once to produce the overall transmission ratio coverage, e.g. by shift to end of range, then change ratio in sub-transmission and shift CVT through range once again
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H2061/6604Special control features generally applicable to continuously variable gearings
    • F16H2061/6605Control for completing downshift at hard braking

Definitions

  • the present invention relates to a control device for a continuously variable transmission, and more specifically to a control device that performs a shift that involves switching of a torque transmission path in a continuously variable transmission having a plurality of paths that transmit torque of a drive source.
  • the auxiliary transmission mechanism including the first to third reduction gears and the speed increaser is provided, and the torque transmission path in the continuously variable transmission mechanism is set to the first pulley from one pulley to the other pulley.
  • the overall transmission ratio is increased by switching between the path and the second path from the other pulley to the one pulley.
  • the speed ratio of the continuously variable transmission mechanism is set to the maximum gear ratio when the vehicle starts, ensuring driving force when restarting and improving the starting performance.
  • the speed ratio of the continuously variable transmission mechanism cannot be shifted to the maximum speed ratio in time, and the start performance at the time of restart may be reduced. There is.
  • a continuously variable transmission having a plurality of torque transmission paths such as a continuously variable transmission having a subtransmission mechanism
  • switching control of the subtransmission mechanism is also performed in order to change from a high-speed traveling state to a restarting state. Therefore, if the shift control is performed according to a normal procedure, the shift operation may not be in time for sudden deceleration during high-speed traveling, and there is a possibility that the driving force at the time of restart cannot be secured sufficiently.
  • an object of the present invention is to solve the above-described problems, and in a continuously variable transmission having a plurality of torque transmission paths, the speed ratio of the continuously variable transmission mechanism is maximized even when the vehicle decelerates rapidly during high speed traveling. It is an object of the present invention to provide a control device for a continuously variable transmission that can shift to a gear ratio and thus improve the starting performance at the time of restart.
  • an input shaft connected to a drive source mounted on a vehicle, and an output shaft connected to the input shaft and a drive wheel of the vehicle.
  • a continuously variable transmission mechanism for steplessly shifting the driving force of the driving source input from the input shaft, and a driving force of the driving source input from the input shaft of the continuously variable transmission mechanism.
  • a low-speed input path that inputs to one end side, a high-speed input path that inputs the driving force of the drive source input from the input shaft to the other end side of the continuously variable transmission mechanism, the low-speed input path, and the high-speed input path
  • An input path switching means for selectively switching an input path through which the driving force input from the input shaft is to be transmitted, and a control means for controlling operations of the continuously variable transmission mechanism and the input path switching means.
  • the vehicle speed detecting means for detecting the vehicle speed of the vehicle, the rapid deceleration determining means for determining whether or not the vehicle has suddenly decelerated, and when it is determined that the vehicle has suddenly decelerated, the driving force of the drive source is the high speed Travel state determination means for determining whether or not the vehicle is in a predetermined travel state input to the continuously variable transmission mechanism via an input path, and the control means is configured to perform the predetermined operation when the vehicle decelerates rapidly.
  • the gear ratio of the continuously variable transmission mechanism is set to a predetermined gear ratio, and after the sudden deceleration, when the detected vehicle speed falls below a predetermined speed, the input path is It was configured to switch.
  • the continuously variable transmission mechanism is configured to have a first pulley, a second pulley, and an endless flexible member that is looped between the first pulley and the second pulley.
  • the predetermined traveling state is configured such that the driving force of the driving source is input to the continuously variable transmission mechanism via the high-speed input path and the cruise traveling state.
  • a continuously variable transmission mechanism that continuously changes the driving force of the drive source, a low speed input path that inputs the driving force to one end side of the continuously variable transmission mechanism, and a high speed that inputs the driving force to the other end side.
  • a continuously variable transmission control device including an input route, an input route switching unit that selectively switches the input route, and a control unit that controls the continuously variable transmission mechanism and the input route switching unit.
  • the input path is Since it is necessary to switch from the input path to the low speed input path, the shift control is complicated and requires time. In particular, when switching the input path, it is necessary to perform torque down control to prevent wear of gear mechanisms constituting the low-speed / high-speed input path and shift shocks. It will be necessary.
  • the invention according to claim 1 is configured such that the input path to the continuously variable transmission mechanism is reversed between the low-speed input path and the high-speed input path.
  • the input path is not switched until the speed becomes equal to or lower than the predetermined speed, and only the speed change control for maintaining the speed ratio of the continuously variable transmission mechanism at the predetermined speed ratio is executed. That is, it becomes possible to establish the maximum gear ratio.
  • the input path is switched after the vehicle speed falls below a predetermined speed, in other words, the input path is switched after the torque transmitted through the continuously variable transmission mechanism is sufficiently small. Therefore, it is possible to prevent gear mechanism wear and shift shocks without performing torque-down control, and to reduce the time required for switching the input path accordingly.
  • the continuously variable transmission mechanism is configured to include the first pulley, the second pulley, and the endless flexible member that is hung between them.
  • the durability of the step transmission mechanism can be improved and / or the weight can be reduced.
  • the predetermined traveling state is configured such that the driving force of the driving source is input to the continuously variable transmission mechanism via the high-speed input path and is in the cruise traveling state.
  • the continuously variable transmission mechanism can be shifted more easily from the high-speed running state to the restarting state. That is, in the cruise traveling state, the speed ratio of the continuously variable transmission mechanism is set to the minimum speed ratio, but here the torque input path to the continuously variable transmission mechanism is reversed from the high speed input path to the low speed input path.
  • the maximum gear ratio that is the state at the time of restart can be established reliably and easily without changing the elements constituting the continuously variable transmission mechanism.
  • FIG. 1 is a schematic diagram showing an overall control device for a continuously variable transmission according to an embodiment of the present invention.
  • FIG. 3 is an explanatory diagram schematically showing a switching operation of a normal torque transmission path in the continuously variable transmission shown in FIG. 1. It is a flowchart explaining operation
  • movement of the control apparatus of the continuously variable transmission shown in FIG. 3 is an explanatory diagram schematically showing a torque transmission path switching operation executed according to the processing of the flow chart of FIG.
  • FIG. 1 is a schematic diagram generally showing a control device for a continuously variable transmission according to an embodiment of the present invention.
  • reference numeral 10 denotes an engine (internal combustion engine, drive source).
  • the engine 10 is mounted on a vehicle 14 provided with drive wheels 12 (the vehicle 14 is partially indicated by the drive wheels 12 and the like).
  • the throttle valve 16 disposed in the intake system of the engine 10 is disconnected from the accelerator pedal 18 disposed on the floor surface of the vehicle driver's seat and mechanically disconnected from a DBW (Drive By Wire) mechanism 19 comprising an actuator such as an electric motor. And is opened and closed by the DBW mechanism 19.
  • DBW Drive By Wire
  • a brake pedal 20 is disposed on the driver's seat floor of the vehicle 10, and when the driver depresses the brake pedal 20, the depressing force is increased by the master back 20a and transmitted from the master cylinder 20b to the disc brake 20c.
  • the disc brake 20c is operated to brake (decelerate) the vehicle 10.
  • the intake air metered by the throttle valve 16 flows through an intake manifold (not shown) and mixes with fuel injected from an injector (not shown) in the vicinity of the intake port of each cylinder to form an air-fuel mixture.
  • an intake valve (not shown) When an intake valve (not shown) is opened, it flows into a combustion chamber (not shown) of the cylinder. In the combustion chamber, the air-fuel mixture is ignited and combusted, and after driving the piston and rotating the crankshaft 22, the air-fuel mixture is discharged to the outside of the engine 10 as exhaust gas.
  • the rotation of the crankshaft 22 is input to a continuously variable transmission (Continuously Variable Transmission) T via a torque converter 24.
  • the continuously variable transmission T includes a main input shaft (input shaft) 26 connected to the crankshaft 22 via a torque converter 24, a first auxiliary input shaft 28 and a second input shaft 28 arranged in parallel to the main input shaft 26.
  • the auxiliary input shaft 30 and a continuously variable transmission mechanism 32 disposed between the first auxiliary input shaft 28 and the second auxiliary input shaft 30 are provided.
  • the continuously variable transmission mechanism 32 is disposed on the first auxiliary input shaft 28, more precisely, the first pulley 32a disposed on the outer peripheral shaft thereof, and the second auxiliary input shaft 30, more precisely, the outer peripheral shaft thereof. It consists of a second pulley 32b and an endless flexible member, for example, a metal belt 32c that is hung between them.
  • the first pulley 32 a is relatively non-rotatable to the stationary pulley half 32 a 1 that is disposed so as not to be rotatable relative to the outer peripheral shaft of the first sub input shaft 28 and to be axially movable, and to the outer shaft of the first sub input shaft 28.
  • the movable pulley half 32a2 that can move relative to the fixed pulley half 32a1 in the axial direction, and the movable pulley provided on the side of the movable pulley half 32a2 and supplied with hydraulic pressure (hydraulic oil pressure).
  • a hydraulic actuator 32a3 including a piston, a cylinder, and a spring is provided to press the half body 32a2 toward the fixed pulley half body 32a1.
  • the second pulley 32b is not rotatable relative to the outer peripheral shaft of the second auxiliary input shaft 30 and the fixed pulley half 32b1 that is not rotatable relative to the outer peripheral shaft of the second auxiliary input shaft 30 and the outer peripheral shaft of the second auxiliary input shaft 30.
  • the movable pulley half 32b2 that can move relative to the fixed pulley half 32b1 in the axial direction, and the movable pulley provided on the side of the movable pulley half 32b2 and supplied with hydraulic pressure (hydraulic oil pressure).
  • a hydraulic actuator 32b3 composed of a piston, a cylinder, and a spring is provided to press the half 32b2 toward the fixed pulley half 32b1.
  • the main input shaft 26 is provided with an input switching mechanism 34 (input path switching means) including a LOW friction clutch 34a (low speed input engagement mechanism) and a HIGH friction clutch 34b (high speed input engagement mechanism).
  • a first reduction gear 36 is supported on the main input shaft 26 so as to be relatively rotatable, and a second reduction gear 38 that meshes with the first reduction gear 36 is fixed to the first sub input shaft 28. Therefore, when the LOW friction clutch 34 a is engaged, the torque of the engine 10 input from the main input shaft 26 is decelerated by the first and second reduction gears 36 and 38, and then is transmitted via the first auxiliary input shaft 28. It is input to one pulley 32a.
  • a path for transmitting torque from the main input shaft 26 to the first pulley 32a via the first and second reduction gears 36 and 38 and the first auxiliary input shaft 28 is referred to as a low speed input path.
  • a first speed increasing gear 40 is rotatably supported on the main input shaft 26, and a second speed increasing gear 42 meshing with the first speed increasing gear 40 is relatively rotated on the second sub input shaft 30. It is supported freely. Accordingly, when the HIGH friction clutch 34 b is engaged, the torque of the engine 10 input from the main input shaft 26 is increased by the first and second speed-up gears 40 and 42 and then passed through the second auxiliary input shaft 30. To the second pulley 32b.
  • a path for transmitting torque from the main input shaft 26 to the second pulley 32b via the first and second speed increasing gears 40 and 42 and the second auxiliary input shaft 30 is referred to as a high speed input path.
  • the second auxiliary input shaft 30 is provided with a forward / reverse switching mechanism 44 composed of a dog clutch (meshing clutch). That is, when a sleeve (not shown) of the forward / reverse switching mechanism 44 moves to the right side of the drawing, the second speed increasing gear 42 is engaged with the second auxiliary input shaft 30, and the rotation of the main input shaft 26 is reversed (reversed). As a result of the input to the second auxiliary input shaft 30, the vehicle 14 moves forward. On the other hand, when the sleeve of the forward / reverse switching mechanism 44 moves to the left side of the drawing, the reverse drive gear 44a is engaged with the second sub input shaft 30, and the rotation of the main input shaft 26 is reversed driven gear 44b, reverse idle gear 44c, reverse drive. As a result of being inverted by the gear 44 a and being input to the second auxiliary input shaft 30, the vehicle 14 moves backward.
  • a forward / reverse switching mechanism 44 composed of a dog clutch (meshing clutch). That is, when a sleeve (
  • a third reduction gear 48 that meshes with the first speed increasing gear 40 is supported on the intermediate output shaft 46 so as to be relatively rotatable, and a LOW side dog clutch 50 that couples the third reduction gear 48 to the intermediate output shaft 46 and its shift.
  • a fork (LOW side shift fork, not shown) is provided.
  • the LOW side dog clutch 50 and the LOW side shift fork described above correspond to a low speed output engagement mechanism.
  • a first final drive gear 52 is fixed to the intermediate output shaft 46, and the first final drive gear 52 meshes with a final driven gear 56 of the differential mechanism 54, and is directed from the differential mechanism 54 toward the left and right drive wheels 12. Connected to the extending output shaft 58.
  • a second final drive gear 60 is supported on the first auxiliary input shaft 28 in a relatively rotatable manner, and the HIGH side dog clutch 62 that couples the second final drive gear 60 to the first auxiliary input shaft 28 and its shift fork (HIGH).
  • a side shift fork (not shown) is provided.
  • the HIGH side dog clutch 62 and the HIGH side shift fork described above correspond to a high-speed output engagement mechanism.
  • a route for transmitting torque from the first pulley 32a to the output shaft 58 via the first auxiliary input shaft 28, the second final drive gear 60, the final driven gear 56 and the differential mechanism 54 is output at high speed. This is called a route.
  • the first, second, and third reduction gears 36, 38, and 48, the first and second speed-up gears 40 and 42, the first and second final drive gears 52 and 60, and the final driven gear 56 are the same. This corresponds to the auxiliary transmission mechanism according to the embodiment.
  • the transmission path composed of the low speed input path and the low speed output path is more accurately.
  • the speed ratio of the torque transmission path (torque transmission path in the HIGH mode) passing from the high speed input path to the second pulley 32b, the belt 32c, the first pulley 32a and the high speed output path is the same. It becomes the gear ratio.
  • the minimum speed ratio i min in the path is the switching speed ratio set when the torque transmission path is switched.
  • the shift mode of the continuously variable transmission T having the above configuration will be described.
  • the LOW friction clutch 34a and the LOW side dog clutch 50 of the input switching mechanism 34 are engaged, while the HIGH friction clutch 34b and the HIGH side dog clutch 62 are released. Further, the forward / reverse switching mechanism 44 is switched to the forward side (the second speed increasing gear 42 is engaged).
  • the torque transmission path of the engine 10 in the LOW mode is engine 10 ⁇ crankshaft 22 ⁇ torque converter 24 ⁇ main input shaft 26 ⁇ LOW friction clutch 34a ⁇ low speed input path (more specifically, the first reduction gear 36).
  • ⁇ second reduction gear 38 ⁇ first auxiliary input shaft 28) ⁇ first pulley 32a ⁇ belt 32c ⁇ second pulley 32b ⁇ low speed output path (more specifically, second auxiliary input shaft 30 ⁇ forward / reverse switching mechanism 44) ⁇ second speed increasing gear 42 ⁇ first speed increasing gear 40 ⁇ third reduction gear 48 ⁇ LOW side dog clutch 50 ⁇ intermediate output shaft 46 ⁇ first final drive gear 52 ⁇ final driven gear 56 ⁇ differential mechanism 54) ⁇ output shaft 58 ⁇ drive wheel 12
  • the LOW friction clutch 34a and the HIGH side dog clutch 62 are engaged, while the HIGH friction clutch 34b and the LOW side dog clutch 50 are released.
  • the side pressures of the first and second pulleys 32a and 32b are reduced so that torque from the engine 10 is not transmitted via the belt 32c.
  • the torque transmission path of the engine 10 in the direct connection LOW mode is as follows: engine 10 ⁇ crankshaft 22 ⁇ torque converter 24 ⁇ main input shaft 26 ⁇ LOW friction clutch 34a ⁇ first reduction gear 36 ⁇ second reduction gear 38 ⁇ first Sub input shaft 28 ⁇ HIGH side dog clutch 62 ⁇ second final drive gear 60 ⁇ final driven gear 56 ⁇ differential mechanism 54 ⁇ output shaft 58 ⁇ drive wheel 12.
  • the HIGH friction clutch 34b and the HIGH side dog clutch 62 of the input switching mechanism 34 are engaged, while the LOW friction clutch 34a and the LOW side dog clutch 50 are released.
  • the torque transmission path of the engine 10 in the HIGH mode is the engine 10 ⁇ the crankshaft 22 ⁇ the torque converter 24 ⁇ the main input shaft 26 ⁇ the HIGH friction clutch 34b ⁇ the high speed input path (more specifically, the first speed increasing gear).
  • the torque transmission path in the continuously variable transmission mechanism 32 is configured to be reversed, whereby the overall transmission ratio in the entire continuously variable transmission T can be increased.
  • the HIGH friction clutch 34b and the LOW side dog clutch 50 are engaged, while the LOW friction clutch 34a and the HIGH side dog clutch 62 are released.
  • the side pressures of the first and second pulleys 32a and 32b are reduced so that torque from the engine 10 is not transmitted via the belt 32c.
  • the torque transmission path of the engine 10 in the direct connection HIGH mode is: engine 10 ⁇ crankshaft 22 ⁇ torque converter 24 ⁇ main input shaft 26 ⁇ HIGH friction clutch 34b ⁇ first speed increasing gear 40 ⁇ third speed reducing gear 48 ⁇ LOW
  • the side dog clutch 50 ⁇ the intermediate output shaft 46 ⁇ the first final drive gear 52 ⁇ the final driven gear 56 ⁇ the differential mechanism 54 ⁇ the output shaft 58 ⁇ the drive wheel 12.
  • a range selector 70 is provided at the vehicle driver's seat, and the driver selects one of the ranges such as P (parking), R (reverse), N (neutral), D (forward), etc., for example, a forward / reverse switching mechanism. 44 is switched. That is, the range selection by the driver's operation of the range selector 70 is transmitted to the manual valve of the transmission hydraulic pressure supply mechanism 72, and the vehicle 14 travels forward or backward when the travel range D or R is selected, and does not travel When P or N as the range is selected, transmission of driving force (torque) from the engine 10 to the driving wheel 12 is cut off.
  • P parking
  • R reverse
  • N neutral
  • D forward
  • a forward / reverse switching mechanism. 44 for example, a forward / reverse switching mechanism. 44 is switched. That is, the range selection by the driver's operation of the range selector 70 is transmitted to the manual valve of the transmission hydraulic pressure supply mechanism 72, and the vehicle 14 travels forward or backward when the travel range D or R is selected, and does
  • the transmission hydraulic pressure supply mechanism 72 is provided with an oil pump (oil feed pump), which is driven by the engine 10 to pump up the hydraulic oil stored in the reservoir and discharge it to the oil passage.
  • oil pump oil feed pump
  • the oil passage is connected to the hydraulic actuators 32a3 and 32b3 of the first and second pulleys 32a and 32b of the continuously variable transmission mechanism 32, the clutch of the forward / reverse switching mechanism 44, and the lockup clutch of the torque converter 24 via an electromagnetic valve.
  • a crank angle sensor 74 is provided at an appropriate position such as near the cam shaft (not shown) of the engine 10 and outputs a signal indicating the engine speed NE for each predetermined crank angle position of the piston.
  • an absolute pressure sensor 76 is provided at an appropriate position downstream of the throttle valve 16 and outputs a signal proportional to the intake pipe absolute pressure (engine load) PBA.
  • the actuator of the DBW mechanism 19 is provided with a throttle opening sensor 78, and outputs a signal proportional to the opening TH of the throttle valve 16 through the rotation amount of the actuator.
  • An accelerator opening sensor 80 is provided in the vicinity of the accelerator pedal 18 and outputs a signal proportional to the accelerator opening AP corresponding to the driver's accelerator pedal operation amount.
  • a brake switch 81 is provided in the vicinity of the brake pedal 20 and outputs an ON signal when the driver operates the brake pedal 20. The output of the crank angle sensor 74 and the like described above is sent to the engine controller 82.
  • the main input shaft 26 is provided with an NT sensor (rotational speed sensor) 84 and outputs a pulse signal indicating the rotational speed NT of the main input shaft.
  • NT sensor rotational speed sensor
  • the first sub input shaft 28 of the continuously variable transmission mechanism 32 is provided with an N1 sensor (rotational speed sensor) 86 according to the rotational speed N1 of the first sub input shaft 28, in other words, according to the rotational speed of the first pulley 32a. Outputs a pulse signal.
  • the second sub input shaft 30 is provided with an N2 sensor (rotation speed sensor) 88 to output a pulse signal corresponding to the rotation speed N2 of the second sub input shaft 30, in other words, the rotation speed of the second pulley 32b. To do.
  • a vehicle speed sensor (rotation speed sensor; vehicle speed detection means) 90 is provided to output a pulse signal indicating the vehicle speed V, which means the traveling speed of the vehicle 14.
  • a range selector switch 92 is provided in the vicinity of the above-described range selector 70, and outputs a signal corresponding to the range of P, R, N, D, etc. selected by the driver.
  • a hydraulic sensor 94 is disposed in each of the oil passages communicating with the first and second pulleys 32a and 32b of the continuously variable transmission mechanism 32, and the hydraulic actuators 32a3 of the first and second pulleys 32a and 32b. , 32b3, a signal corresponding to the hydraulic pressure supplied to the piston chamber (not shown) is output.
  • hydraulic sensors are also arranged in the oil passages connected to the piston chamber of the clutch of the forward / reverse switching mechanism 44 and the piston chamber of the lockup clutch of the torque converter 24, respectively, and correspond to each supply hydraulic pressure. Output a signal.
  • First and second stroke sensors 96, 98 are provided in the vicinity of the low speed / high speed output engagement mechanism, more specifically, the LOW side / HIGH side dog clutches 50, 62, and the LOW side / HIGH side dog clutches 50, 62 are provided. A signal corresponding to the amount of movement is output.
  • the output of the NT sensor 84 and the like described above is sent to the shift controller 100 (control means) including the output of other sensors (not shown).
  • the engine controller 82 and the shift controller 100 include a microcomputer including a CPU, a ROM, a RAM, an I / O, and the like, and are configured to be able to communicate with each other.
  • the engine controller 82 controls the operation of the DBW mechanism 19 by determining the target throttle opening based on the sensor output described above, and controls the operation of an ignition device such as an injector or a spark plug by determining the fuel injection amount and the ignition timing. To do.
  • the shift controller 100 calculates pulley supply hydraulic pressure (side pressure) based on the output of the hydraulic pressure sensor 94, and excites and demagnetizes various solenoid valves of the transmission hydraulic pressure supply mechanism 72 according to the calculated side pressure.
  • the hydraulic actuators 32a3 and 32b3 of the two pulleys 32a and 32b are controlled to supply and discharge hydraulic pressure to the piston chamber to control the operation of the continuously variable transmission mechanism 32, and the operations of the forward / reverse switching mechanism 44 and the torque converter 24 are controlled. .
  • FIG. 2 shows a normal torque transmission path switching operation in the continuously variable transmission T, more precisely, when the vehicle 14 stops after decelerating from a state where the vehicle is traveling at high speed (HIGH mode).
  • HGH mode high speed
  • FIG. 2A shows a torque transmission path when the vehicle 14 is traveling at a high speed (HIGH mode). As described above, in this state, the HIGH friction clutch 34b and the HIGH side dog clutch 62 are engaged, while the LOW friction clutch 34a and the LOW side dog clutch 50 are released.
  • the gear ratio of the continuously variable transmission mechanism 32 is set to the minimum gear ratio (HIGH mode minimum gear ratio). Specifically, the lateral pressure of the first and second pulleys 32a and 32b is controlled to change the groove width, and the winding radius of the second pulley 32b on the input side in the HIGH mode is set to the maximum value, The winding radius of the first pulley 32a on the output side is set to the minimum value.
  • the lateral pressure of the first and second pulleys 32a and 32b is controlled to change the groove width thereof, and the transmission ratio of the continuously variable transmission mechanism 32 is set to the switching transmission ratio and transmitted via the belt 32c.
  • the torque down control is executed so that the torque to be applied becomes zero, the LOW friction clutch 34a and the LOW side dog clutch 50 are engaged.
  • the HIGH friction clutch 34b and the HIGH dog clutch 62 are released to establish the LOW mode.
  • the gear ratio of the continuously variable transmission mechanism 32 to the maximum gear ratio (LOW mode maximum gear ratio) in order to ensure the driving force at the time of restart.
  • the lateral pressure of the first and second pulleys 32a and 32b is controlled to change the groove width, and the winding radius of the first pulley 32a on the input side in the LOW mode is set to the minimum value, The winding radius of the second pulley 32b on the output side is set to the maximum value (FIG. 2 (c)).
  • the setting of the first and second pulleys 32a and 32b and the belt 32c during the high speed traveling (HIGH mode minimum speed ratio) and the vehicle 14 are substantially the same settings, and both are the settings of the LOW / HIGH friction clutches 34a and 34b and the LOW side / HIGH side dog clutches 50 and 62. Only the engaged state is different.
  • the inventor of the present application pays attention to such a fact, and even if the vehicle 14 suddenly decelerates while traveling at high speed, the present invention is intended to make it possible to shift the speed ratio of the continuously variable transmission mechanism 32 to the maximum speed ratio. It was made.
  • the details of the torque transmission path switching control described above are described in Japanese Patent Application No. 2014-043441 previously proposed by the present applicant, and thus further description thereof is omitted.
  • FIG. 3 is a flowchart illustrating the operation of the shift controller 100 of the continuously variable transmission T, which is executed to achieve the above object. Note that the processing in FIG. 3 is repeatedly executed at predetermined time intervals.
  • S10 it is determined whether or not the vehicle 14 has suddenly decelerated, for example, a panic brake has been executed.
  • the determination of S10 is to determine whether or not the deceleration ⁇ V of the vehicle speed V exceeds a predetermined value, or whether or not the rate of decrease in the engine speed NE obtained from the output of the crank angle sensor 74 exceeds a predetermined value. Done in
  • the panic brake means a so-called sudden brake in which the disc brake 20c may be operated by a driver with a pedaling force exceeding a specified value and the wheels such as the drive wheels 12 may be locked.
  • this embodiment is not limited to the panic brake, but can be widely applied when there is a sudden deceleration during high-speed traveling.
  • the settings of the first and second pulleys 32a and 32b and the belt 32c (HIGH mode minimum speed ratio) during high speed (cruise) traveling and these settings when the vehicle 14 stops (LOW mode maximum speed change).
  • the ratio is substantially the same setting. Accordingly, in S16, the transmission mode of the continuously variable transmission T is not switched, and the transmission ratio of the continuously variable transmission mechanism 32 is set to the HIGH mode minimum transmission ratio (LOW mode maximum transmission ratio), that is, to the transmission ratio during cruise driving. It was set and maintained.
  • S14 in addition to determining whether or not the vehicle 14 is traveling in the HIGH mode (instead of), it is determined whether or not the vehicle 14 is traveling at a high speed at a predetermined speed or higher, for example, a cruise traveling state. You may do it.
  • the speed ratio of the continuously variable transmission mechanism 32 In the cruise running state, the speed ratio of the continuously variable transmission mechanism 32 is set to the minimum speed ratio (or a speed ratio close thereto) in the HIGH mode. In this case, it is not necessary to change the speed ratio in S16. It is only necessary to maintain the gear ratio in that state. Therefore, when configured as described above, it is possible to establish the LOW mode maximum gear ratio which is a state at the time of re-starting reliably and easily.
  • the program proceeds to S18, and it is determined whether or not the vehicle speed V has become a predetermined speed or less.
  • the determination in S18 is whether or not switching of the torque transmission path can be performed without causing a shift shock without executing control of torque transmitted through the belt 32c of the continuously variable transmission mechanism 32 (torque down control). This is equivalent to judging. Therefore, the above-mentioned predetermined speed is set to a value in the vicinity of 0 km / h, and is set to a value with which it can be determined whether or not the vehicle 14 is stopped or almost stopped.
  • the HIGH friction clutch 34b is first released, and the input engagement mechanisms (LOW / HIGH friction clutches 34a, 34b) are both disconnected from the engine 10. The stall of the engine 10 was prevented.
  • FIG. 4 is an explanatory view schematically showing a torque transmission path switching operation executed in accordance with the processing of the flowchart of FIG. 3 described above.
  • FIG. 4A shows a torque transmission path in a state where the vehicle 14 is traveling at a high speed (HIGH mode) as in FIG. 2A.
  • input path switching means input path switching means
  • LOW friction clutch 34a, HIGH friction clutch 34b input path switching means
  • vehicle speed detection means vehicle speed sensor 90
  • a sudden deceleration determination means shift controller 100. S10 for determining whether or not the vehicle 14 has suddenly decelerated, and when it is determined that the vehicle 14 has suddenly decelerated, the torque of the engine 10 is converted into the high-speed input path.
  • Travel state determination means for determining whether or not the vehicle is in a predetermined travel state that is input to the continuously variable transmission mechanism 32. Controller 100. S14), and when the vehicle 14 is determined to be in the predetermined traveling state when the vehicle 14 suddenly decelerates, the control means changes the speed ratio of the continuously variable transmission mechanism 32 to a predetermined speed. Ratio (HIGH mode minimum gear ratio, LOW mode maximum gear ratio) and after the sudden deceleration, the input path is switched when the detected vehicle speed V falls below a predetermined speed (shift controller 100. S16). To S20), the continuously variable transmission mechanism 32 can be easily shifted from the high-speed running state to the re-starting state, and the time required for switching the input path (torque transmission path) can be shortened. It becomes possible.
  • the speed ratio of the continuously variable transmission mechanism 32 is only maintained at a predetermined speed ratio (HIGH mode minimum speed ratio or LOW mode maximum speed ratio). It is not necessary to separately provide a mechanism for performing a shift in the above, and the continuously variable transmission mechanism 32 can be easily shifted to the state at the time of re-starting with a simple configuration.
  • Torque down control for preventing wear of the fork, LOW side / HIGH side dog clutches 50, 62)) and shift shock is also required, and switching of the torque transmission path takes a considerable amount of time.
  • the low-speed input path and the high-speed input path are configured such that the input path to the continuously variable transmission mechanism 32 is reversed, and the vehicle speed V is predetermined when there is a sudden deceleration during high-speed traveling.
  • the input path is not switched (in other words, the shift mode is not switched) until the speed becomes lower than the speed, and the speed ratio of the continuously variable transmission mechanism 32 is set to a predetermined speed ratio (HIGH mode minimum speed ratio or LOW mode maximum speed ratio).
  • the torque transmission path is switched after the vehicle speed V becomes equal to or lower than the predetermined speed. In other words, the torque transmission path is switched after the torque transmitted through the continuously variable transmission mechanism 32 becomes sufficiently small. With this configuration, it is possible to prevent gear mechanism wear and shift shocks without performing torque-down control, and to shorten the time required for switching the torque transmission path accordingly.
  • the continuously variable transmission mechanism 32 includes a first pulley 32a, a second pulley 32b, and an endless flexible member (belt) 32c that is wound around the first pulley 32a and the second pulley 32b. Since it comprised, in addition to an above-described effect, while being able to improve the durability of the continuously variable transmission mechanism 32, it becomes possible to achieve weight reduction.
  • the continuously variable transmission mechanism 32 having the first and second pulleys 32a and 32b and the endless flexible member (belt 32c)
  • the lateral pressure supplied to the first and second pulleys 32a and 32b must be controlled to change the groove widths of the first and second pulleys 32a and 32b.
  • the second pulleys 32a and 32b and the belt 32c wound around the second pulleys 32a and 32b may be worn out, such inconvenience can be eliminated, so that the durability of the first and second pulleys 32a and 32b and the belt 32c is improved.
  • the weight can be reduced accordingly.
  • the predetermined running state is configured such that the torque of the engine 10 is input to the continuously variable transmission mechanism 32 via the high-speed input path and is in a cruise running state.
  • the continuously variable transmission mechanism 32 can be shifted more easily from the high-speed running state to the restarting state. That is, in the cruise traveling state, the speed ratio of the continuously variable transmission mechanism 32 is set to the minimum speed ratio, but here the torque input path to the continuously variable transmission mechanism 32 is changed from the high speed input path to the low speed input path.
  • the maximum gear ratio which is the state at the time of restarting, is established reliably and easily without changing the elements (first and second pulleys 32a, 32b, belt 32c) constituting the continuously variable transmission mechanism 32. can do.
  • the present invention is not limited to this, and the gist of the present invention is the continuously variable transmission shown in a simplified manner in FIGS.
  • the present invention is applicable to any continuously variable transmission T as long as it corresponds to the configuration of the machine T.
  • the belt-type continuously variable transmission mechanism 32 has been described as an example of the continuously variable transmission mechanism 32.
  • the present invention is not limited to this, and the gist of the present invention is, for example, a toroidal or chain-type continuously variable transmission mechanism.
  • the shift controller 100 may control the operation of the continuously variable transmission mechanism using the inclination angle of the power roller as a parameter instead of the side pressure.
  • the friction clutch mechanism has been described as an example of the low speed / high speed input engagement mechanism, and the meshing clutch mechanism has been described as the low speed / high speed output engagement mechanism.
  • the present invention is not limited to this example. May be constituted by a friction clutch.
  • the continuously variable transmission mechanism that continuously changes the driving force of the drive source, the low speed input path that inputs the driving force to one end side of the continuously variable transmission mechanism, and the high speed input path that inputs the other end side.
  • a continuously variable transmission control device comprising: an input path switching means for selectively switching an input path; and a control means for controlling the continuously variable transmission mechanism and the input path switching means.
  • T continuously variable transmission 10 engine (internal combustion engine, drive source), 14 vehicle, 26 main input shaft, 28 first sub input shaft, 30 second sub input shaft, 32 continuously variable transmission mechanism, 32a first pulley, 32b 2nd pulley, 32c belt, 34 input switching mechanism, 34a LOW friction clutch (low speed input engagement mechanism), 34b HIGH friction clutch (high speed input engagement mechanism), 36 1st reduction gear, 38 2nd reduction gear, 40th 1 speed increasing gear, 42 2nd speed increasing gear, 44 forward / reverse switching mechanism, 46 intermediate output shaft, 48 3rd reduction gear, 50 LOW side dog clutch (low speed output engagement mechanism), 52 1st final drive gear, 54 differential Mechanism, 56 final driven gear, 58 output shaft, 60 second final drive gear, 62 HIGH side dog Latch (Fast output engagement mechanism), 90 a vehicle speed sensor, 96 a first stroke sensor, 98 a second stroke sensor, 100 shift controller

Abstract

本発明は、駆動源(10)の駆動力を無段階に変速する無段変速機構(32)と、駆動力を、無段変速機構(32)の一端側に入力する低速入力経路(36,38,28,26,32a)及び他端側に入力する高速入力経路(40,42,30,26,32b)と、入力経路を選択的に切り替える入力経路切替手段(34)と、無段変速機構(32)及び入力経路切替手段(34)を制御する制御手段(100)とを備え、車両(14)が急減速して所定の走行状態にあると判断した時、無段変速機構(32)の変速比を所定変速比に維持し、更に車速が所定速度以下となった時、入力経路を切り替える(S16からS20)ように構成された無段変速機の制御装置に関する。本発明は、これにより、無段変速機構(32)を高速走行状態から再発進時状態とする変速を容易とし、且つ入力経路の切り替えに要する時間の短縮を可能とする。

Description

無段変速機の制御装置
 この発明は無段変速機の制御装置に関し、より具体的には、駆動源のトルクを伝える経路を複数有する無段変速機において、トルク伝達経路の切り替えを伴う変速を行う制御装置に関する。
 従来から、オーバーオール変速比を拡大するために、複数のギアを噛合させたギア列からなる副変速機構(ギア機構)を無段変速機構と組み合わせるようにした無段変速機が知られている(例えば特許文献1)。
 即ち、特許文献1記載の技術では、第1~第3減速機および増速機からなる副変速機構を備え、無段変速機構におけるトルク伝達経路を、一方のプーリから他方のプーリへの第1経路と、他方のプーリから一方のプーリへの第2経路との間で切り替えることにより、オーバーオール変速比を拡大するようにしている。
 また、副変速機構を備える無段変速機に限らず、車両の発進時には無段変速機構の変速比を最大変速比に設定し、再発進時の駆動力を確保して発進性能を向上させることが良く知られているが、車両が高速走行中に急減速した場合、無段変速機構の変速比を最大変速比まで変速させることが間に合わず、再発進時における発進性能が低下してしまう虞がある。
 そこで、特許文献2記載の技術にあっては、無段変速機構のベルト部分に設けられたベルトテンショナにモータ駆動のローラを取り付けることで急減速時における変速を促進するようにしている。
国際公開2013/175568号 特開2005-331079号公報
 しかしながら、特許文献2記載の技術にあっては、急減速時における変速を促進する手段としてモータ駆動のローラを取り付けなければならず、その分だけ構造が複雑化し、コストの増加などの問題を避けることが出来ないという不都合がある。
 また、副変速機構を備える無段変速機の如く、トルク伝達経路を複数有する無段変速機にあっては、高速走行状態から再発進時の状態とするには副変速機構の切替制御も行わなければならないため、通常の手順に従って変速制御を行っていたのでは、高速走行中における急減速に対して変速動作が間に合わず、再発進時の駆動力を十分に確保できない虞がある。
 従って、この発明の目的は上記した課題を解決し、トルク伝達経路を複数有する無段変速機において、車両が高速走行中に急減速した場合であっても、無段変速機構の変速比を最大変速比へと変速させることを可能とし、よって再発進時の発進性能を向上させるようにした無段変速機の制御装置を提供することにある。
 上記した課題を解決するために、請求項1にあっては、車両に搭載される駆動源に接続される入力軸と、前記入力軸と前記車両の駆動輪に接続される出力軸との間に介挿されて前記入力軸から入力される前記駆動源の駆動力を無段階に変速する無段変速機構と、前記入力軸から入力される前記駆動源の駆動力を前記無段変速機構の一端側に入力する低速入力経路と、前記入力軸から入力される前記駆動源の駆動力を前記無段変速機構の他端側に入力する高速入力経路と、前記低速入力経路と前記高速入力経路のうち、前記入力軸から入力される駆動力が伝達されるべき入力経路を選択的に切り替える入力経路切替手段と、前記無段変速機構および前記入力経路切替手段の動作を制御する制御手段とを備えた無段変速機の制御装置において、前記車両の車速を検出する車速検出手段と、前記車両が急減速したか否か判断する急減速判定手段と、前記車両が急減速したと判定されたとき、前記駆動源の駆動力が前記高速入力経路を介して前記無段変速機構に入力される所定の走行状態にあるか否か判断する走行状態判断手段とを備え、前記制御手段は、前記車両が前記急減速したときに前記所定の走行状態にあると判断されたとき、前記無段変速機構の変速比を所定変速比に設定すると共に、前記急減速後、前記検出された車速が所定速度以下となったとき、前記入力経路を切り替える如く構成した。
 請求項2にあっては、前記無段変速機構は、第1プーリ、第2プーリおよび前記第1プーリと第2プーリの間に掛け回される無端可撓性部材を有する如く構成した。
 請求項3にあっては、前記所定の走行状態は、前記駆動源の駆動力が前記高速入力経路を介して前記無段変速機構に入力され、かつ、クルーズ走行状態である如く構成した。
 請求項1にあっては、駆動源の駆動力を無段階に変速する無段変速機構と、駆動力を、無段変速機構の一端側に入力する低速入力経路および他端側に入力する高速入力経路と、入力経路を選択的に切り替える入力経路切替手段と、無段変速機構および入力経路切替手段を制御する制御手段とを備えた無段変速機の制御装置において、車両が急減速したと判定されたとき、車両が所定の走行状態にあるか否か判断し、急減速したときに所定の走行状態にあると判断したときは無段変速機構の変速比を所定変速比に維持すると共に、車速が所定速度以下となったとき、入力経路を切り替えるように構成したので、無段変速機構を高速走行状態から再発進時の状態へと容易に変速させることができると共に、入力経路の切り替えに要する時間を短縮することが可能となる。
 即ち、急減速があった場合にあっても、無段変速機構の変速比を所定の変速比に維持するのみとしたので、急減速時における変速を行うための機構を別途設ける必要がなく、簡易な構成でありながら、無段変速機構を容易に再発進時の状態へと変速することができる。
 また、複数のトルク伝達経路を有する無段変速機にあっては、通常の手順であれば、車両が高速走行中に減速された場合、無段変速機構の変速制御に加え、入力経路を高速入力経路から低速入力経路へと切り替える必要があり、変速制御が複雑かつ時間を要する。特に、入力経路の切り替えに際しては、低速/高速入力経路を構成するギア機構の磨耗や変速ショックを防止するためのトルクダウン制御も必要とされることから、入力経路の切り替えには相当の時間を要することとなる。しかしながら、請求項1に係る発明にあっては、低速入力経路と高速入力経路とで無段変速機構への入力経路が逆転するように構成し、高速走行中に急減速があった場合、車速が所定速度以下になるまでは入力経路の切り替えは行わず、無段変速機構の変速比を所定変速比に維持する変速制御のみを実行するように構成したので、容易に再発進時の状態、即ち、最大変速比を確立することが可能となる。また、車速が所定速度以下になってから入力経路の切り替えを実行、換言すれば、無段変速機構を介して伝達されるトルクが十分小さくなってから入力経路の切り替えを実行するように構成したので、トルクダウン制御を行わずともギア機構の磨耗や変速ショックを防止することが可能となり、その分だけ入力経路の切り替えに要する時間を短縮することが可能となる。
 請求項2にあっては、無段変速機構は、第1プーリ、第2プーリおよびこれらの間に掛け回される無端可撓性部材を有するように構成したので、上記した効果に加え、無段変速機構の耐久性を向上することができると共に/または、軽量化を図ることが可能となる。
 即ち、第1、第2プーリおよび無端可撓性部材を有する無段変速機構にあっては、車両が高速走行中に急減速した場合、通常の手順によって変速制御を実行すると、第1、第2プーリに供給される側圧を制御して第1、第2プーリの溝幅を変化させなくてはならないため、その分だけ第1、第2プーリおよびそこに掛け回される無端可撓性部材が磨耗する虞があるが、かかる不都合を解消することができるため、第1、第2プーリおよび無端可撓性部材の耐久性を向上させることができると共に、その分だけ軽量化を図ることも可能となる。
 請求項3に係る発明にあっては、所定の走行状態は、駆動源の駆動力が高速入力経路を介して無段変速機構に入力され、かつ、クルーズ走行状態であるように構成したので、上記した効果に加え、無段変速機構を高速走行状態から再発進時の状態へとより一層容易に変速させることができる。即ち、クルーズ走行状態にあっては、無段変速機構の変速比は最小変速比に設定されるが、ここで無段変速機構へのトルク入力経路を高速入力経路から低速入力経路へと逆転させれば、無段変速機構を構成する要素を変化させることなく、確実かつ容易に再発進時の状態である最大変速比を確立することができる。
この発明の実施例に係る無段変速機の制御装置を全体的に示す概略図である。 図1に示す無段変速機における通常のトルク伝達経路の切替動作を模式的に示す説明図である。 図1に示す無段変速機の制御装置の動作を説明するフロー・チャートである。 図3フロー・チャートの処理に従って実行されるトルク伝達経路の切替動作を模式的に示す説明図である。
 以下、添付図面に即してこの発明に係る無段変速機の制御装置を実施するための形態について説明する。
 図1はこの発明の実施例に係る無段変速機の制御装置を全体的に示す概略図である。
 図1において符号10はエンジン(内燃機関。駆動源)を示す。エンジン10は駆動輪12を備えた車両14に搭載される(車両14は駆動輪12などで部分的に示す)。
 エンジン10の吸気系に配置されたスロットルバルブ16は車両運転席床面に配置されるアクセルペダル18との機械的な接続が絶たれて電動モータなどのアクチュエータからなるDBW(Drive By Wire)機構19に接続され、DBW機構19で開閉される。
 また、車両10の運転席床面にはブレーキペダル20が配置され、運転者がブレーキペダル20を踏み込むと、その踏み込み力はマスタバック20aで増力されてマスタシリンダ20bからディスクブレーキ20cに伝えられ、ディスクブレーキ20cを動作させて車両10を制動(減速)させる。
 スロットルバルブ16で調量された吸気はインテークマニホルド(図示せず)を通って流れ、各気筒の吸気ポート付近でインジェクタ(図示せず)から噴射された燃料と混合して混合気を形成し、吸気バルブ(図示せず)が開弁されたとき、当該気筒の燃焼室(図示せず)に流入する。燃焼室において混合気は点火されて燃焼し、ピストンを駆動してクランクシャフト22を回転させた後、排気となってエンジン10の外部に放出される。
 クランクシャフト22の回転はトルクコンバータ24を介して無段変速機(Continuously Variable Transmission)Tに入力される。無段変速機Tはクランクシャフト22にトルクコンバータ24を介して接続された主入力軸(入力軸)26と、主入力軸26に対して平行に配置された第1副入力軸28および第2副入力軸30と、第1副入力軸28および第2副入力軸30の間に配置された無段変速機構32とを備える。
 無段変速機構32は第1副入力軸28、より正確にはその外周側シャフトに配置された第1プーリ32aと、第2副入力軸30、より正確にはその外周側シャフトに配置された第2プーリ32bと、その間に掛け回される無端可撓性部材、例えば金属製のベルト32cからなる。
 第1プーリ32aは、第1副入力軸28の外周側シャフトに相対回転不能で軸方向移動不能に配置された固定プーリ半体32a1と、第1副入力軸28の外周側シャフトに相対回転不能で固定プーリ半体32a1に対して軸方向に相対移動可能な可動プーリ半体32a2と、可動プーリ半体32a2の側方に設けられて油圧(作動油の圧力)を供給されるときに可動プーリ半体32a2を固定プーリ半体32a1に向けて押圧する、ピストンとシリンダとスプリングからなる油圧アクチュエータ32a3を備える。
 第2プーリ32bは、第2副入力軸30の外周側シャフトに相対回転不能で軸方向移動不能に配置された固定プーリ半体32b1と、第2副入力軸30の外周側シャフトに相対回転不能で固定プーリ半体32b1に対して軸方向に相対移動可能な可動プーリ半体32b2と、可動プーリ半体32b2の側方に設けられて油圧(作動油の圧力)を供給されるときに可動プーリ半体32b2を固定プーリ半体32b1に向けて押圧する、ピストンとシリンダとスプリングからなる油圧アクチュエータ32b3を備える。
 主入力軸26にはLOW摩擦クラッチ34a(低速入力係合機構)およびHIGH摩擦クラッチ34b(高速入力係合機構)からなる入力切替機構34(入力経路切替手段)が設けられる。また、主入力軸26には第1減速ギア36が相対回転自在に支持されると共に、第1副入力軸28には第1減速ギア36に噛合する第2減速ギア38が固設される。従って、LOW摩擦クラッチ34aを係合すると、主入力軸26から入力されるエンジン10のトルクは第1、第2減速ギア36,38で減速された後、第1副入力軸28を介して第1プーリ32aに入力される。なお、この明細書において、第1、第2減速ギア36,38および第1副入力軸28を介して主入力軸26から第1プーリ32aへとトルクを伝達する経路を低速入力経路と呼ぶ。
 さらに、主入力軸26には第1増速ギア40が相対回転自在に支持されると共に、第2副入力軸30には第1増速ギア40に噛合する第2増速ギア42が相対回転自在に支持される。従って、HIGH摩擦クラッチ34bを係合すると、主入力軸26から入力されるエンジン10のトルクは第1、第2増速ギア40,42で増速された後、第2副入力軸30を介して第2プーリ32bに入力される。なお、この明細書において第1、第2増速ギア40,42および第2副入力軸30を介して主入力軸26から第2プーリ32bへとトルクを伝達する経路を高速入力経路と呼ぶ。
 第2副入力軸30にはドグクラッチ(噛合式クラッチ)からなる前後進切替機構44が設けられる。即ち、前後進切替機構44のスリーブ(図示せず)が紙面右側に移動すると第2増速ギア42が第2副入力軸30に係合され、主入力軸26の回転がそのまま(反転されることなく)第2副入力軸30に入力される結果、車両14が前進する。一方、前後進切替機構44のスリーブが紙面左側に移動するとリバースドライブギア44aが第2副入力軸30に係合され、主入力軸26の回転はリバースドリブンギア44b、リバースアイドルギア44c、リバースドライブギア44aによって反転されて第2副入力軸30に入力される結果、車両14が後進する。
 中間出力軸46には第1増速ギア40に噛合する第3減速ギア48が相対回転自在に支持されると共に、第3減速ギア48を中間出力軸46に結合するLOW側ドグクラッチ50およびそのシフトフォーク(LOW側シフトフォーク、図示せず)が設けられる。なお、上記したLOW側ドグクラッチ50およびLOW側シフトフォークが低速出力係合機構に相当する。
 また、中間出力軸46には第1ファイナルドライブギア52が固設され、第1ファイナルドライブギア52はディファレンシャル機構54のファイナルドリブンギア56に噛合し、ディファレンシャル機構54から左右の駆動輪12に向けて伸びる出力軸58に接続される。
 なお、この明細書において、第2副入力軸30、前後進切替機構44、第1、第2増速ギア40,42、第3減速ギア48、中間出力軸46、第1ファイナルドライブギア52、ファイナルドリブンギア56およびディファレンシャル機構54を介して第2プーリ32bから出力軸58へとトルクを伝達する経路を低速出力経路と呼ぶ。
 第1副入力軸28には第2ファイナルドライブギア60が相対回転自在に支持されると共に、第2ファイナルドライブギア60を第1副入力軸28に結合するHIGH側ドグクラッチ62およびそのシフトフォーク(HIGH側シフトフォーク、図示せず)が設けられる。なお、上記したHIGH側ドグクラッチ62およびHIGH側シフトフォークが高速出力係合機構に相当する。
 なお、この明細書において、第1副入力軸28、第2ファイナルドライブギア60、ファイナルドリブンギア56およびディファレンシャル機構54を介して第1プーリ32aから出力軸58へとトルクを伝達する経路を高速出力経路と呼ぶ。
 また、上記した第1、第2、第3減速ギア36,38,48、第1、第2増速ギア40,42、第1、第2ファイナルドライブギア52,60およびファイナルドリブンギア56がこの実施例に係る副変速機構に相当する。
 ここで、副変速機構を構成する各ギアのギア比は、以下の通りに設定される。即ち、低速入力経路(第1減速ギア36から第2減速ギア38)のギア比をired、高速入力経路(第1増速ギア40から第2増速ギア42)のギア比をiind、無段変速機構32の第1プーリ32aから第2プーリ32bへの最小変速比をiminとすると、ired×imin=iindとなるように設定される。また、低速出力経路(第2増速ギア42から第1増速ギア40、第1増速ギア40から第3減速ギア48(第1ファイナルドライブギア52)、第1ファイナルドライブギア52からファイナルドリブンギア56)のギア比をiout1、高速出力経路(第2ファイナルドライブギア60からファイナルドリブンギア56)のギア比をiout2とすると、imin×iout1=iout2となるように設定される。
 従って、無段変速機構32の第1プーリ32aから第2プーリ32bへの変速比を最小変速比iminに設定した場合、低速入力経路と低速出力経路とで構成される伝達経路、より正確には、低速入力経路から第1プーリ32a、ベルト32c、第2プーリ32bおよび低速出力経路を通るトルク伝達経路(LOWモードにおけるトルク伝達経路)の変速比と、高速入力経路と高速出力経路とで構成される伝達経路、より正確には、高速入力経路から第2プーリ32b、ベルト32c、第1プーリ32aおよび高速出力経路を通るトルク伝達経路(HIGHモードにおけるトルク伝達経路)の変速比とが同一の変速比となる。
 また、トルク伝達経路を切り替える際の変速ショックを低減するためには、伝達経路の切り替えによって変速比の変化が生じることは好ましくないことから、上記した、第1プーリ32aから第2プーリ32bへの経路における最小変速比iminがトルク伝達経路の切り替え時に設定される切替変速比とされる。
 ここで、上記構成を備えた無段変速機Tの変速モードについて説明する。LOWモードでは、入力切替機構34のLOW摩擦クラッチ34aおよびLOW側ドグクラッチ50が係合される一方、HIGH摩擦クラッチ34bおよびHIGH側ドグクラッチ62は解放される。また、前後進切替機構44は前進側(第2増速ギア42係合)に切り替えられる。
 従って、LOWモードにおけるエンジン10のトルクの伝達経路は、エンジン10→クランクシャフト22→トルクコンバータ24→主入力軸26→LOW摩擦クラッチ34a→低速入力経路(より具体的には、第1減速ギア36→第2減速ギア38→第1副入力軸28)→第1プーリ32a→ベルト32c→第2プーリ32b→低速出力経路(より具体的には、第2副入力軸30→前後進切替機構44→第2増速ギア42→第1増速ギア40→第3減速ギア48→LOW側ドグクラッチ50→中間出力軸46→第1ファイナルドライブギア52→ファイナルドリブンギア56→ディファレンシャル機構54)→出力軸58→駆動輪12となる。
 また、LOWモードからHIGHモードへの移行中、より正確には、直結LOWモードでは、LOW摩擦クラッチ34aおよびHIGH側ドグクラッチ62が係合される一方、HIGH摩擦クラッチ34bおよびLOW側ドグクラッチ50は解放される。また、ベルト32cを介してエンジン10からのトルクが伝達されないように第1、第2プーリ32a,32bの側圧が低減される。
 従って、直結LOWモードにおけるエンジン10のトルクの伝達経路は、エンジン10→クランクシャフト22→トルクコンバータ24→主入力軸26→LOW摩擦クラッチ34a→第1減速ギア36→第2減速ギア38→第1副入力軸28→HIGH側ドグクラッチ62→第2ファイナルドライブギア60→ファイナルドリブンギア56→ディファレンシャル機構54→出力軸58→駆動輪12となる。
 また、HIGHモードでは、入力切替機構34のHIGH摩擦クラッチ34bおよびHIGH側ドグクラッチ62が係合される一方、LOW摩擦クラッチ34aおよびLOW側ドグクラッチ50は解放される。
 従って、HIGHモードにおけるエンジン10のトルクの伝達経路は、エンジン10→クランクシャフト22→トルクコンバータ24→主入力軸26→HIGH摩擦クラッチ34b→高速入力経路(より具体的には、第1増速ギア40→第2増速ギア42→前後進切替機構44→第2副入力軸30→第2プーリ32b→ベルト32c→第1プーリ32a→高速出力経路(より具体的には、第1副入力軸28→HIGH側ドグクラッチ62→第2ファイナルドライブギア60→ファイナルドリブンギア56→ディファレンシャル機構54)→出力軸58→駆動輪12となる。
 このように、LOWモードとHIGHモードとでは無段変速機構32におけるトルク伝達経路が反転するように構成されており、これによって無段変速機T全体におけるオーバーオール変速比を拡大することが可能となる。
 また、HIGHモードからLOWモードへの移行中、より正確には、直結HIGHモードでは、HIGH摩擦クラッチ34bおよびLOW側ドグクラッチ50が係合される一方、LOW摩擦クラッチ34aおよびHIGH側ドグクラッチ62は解放される。また、直結LOWモード同様、ベルト32cを介してエンジン10からのトルクが伝達されないように第1、第2プーリ32a,32bの側圧が低減される。
 従って、直結HIGHモードにおけるエンジン10のトルクの伝達経路は、エンジン10→クランクシャフト22→トルクコンバータ24→主入力軸26→HIGH摩擦クラッチ34b→第1増速ギア40→第3減速ギア48→LOW側ドグクラッチ50→中間出力軸46→第1ファイナルドライブギア52→ファイナルドリブンギア56→ディファレンシャル機構54→出力軸58→駆動輪12となる。
 車両運転席にはレンジセレクタ70が設けられ、運転者が例えばP(パーキング)、R(後進)、N(ニュートラル)、D(前進)などのレンジのいずれかを選択することで前後進切替機構44の切り替えが行われる。即ち、運転者のレンジセレクタ70の操作によるレンジ選択は変速機油圧供給機構72のマニュアルバルブに伝えられ、車両14は走行レンジであるDあるいはRを選択されると前進あるいは後進走行し、非走行レンジであるPあるいはNを選択されるとエンジン10から駆動輪12への駆動力(トルク)の伝達を遮断する。
 なお、図示は省略するが、変速機油圧供給機構72にはオイルポンプ(送油ポンプ)が設けられ、エンジン10で駆動されてリザーバに貯留された作動油を汲み上げて油路に吐出する。
 油路は無段変速機構32の第1、第2プーリ32a,32bの油圧アクチュエータ32a3,32b3、前後進切替機構44のクラッチ、トルクコンバータ24のロックアップクラッチに電磁弁を介して接続される。
 エンジン10のカム軸(図示せず)付近などの適宜位置にはクランク角センサ74が設けられ、ピストンの所定クランク角度位置ごとにエンジン回転数NEを示す信号を出力する。吸気系においてスロットルバルブ16の下流の適宜位置には絶対圧センサ76が設けられ、吸気管内絶対圧(エンジン負荷)PBAに比例した信号を出力する。
 DBW機構19のアクチュエータにはスロットル開度センサ78が設けられ、アクチュエータの回転量を通じてスロットルバルブ16の開度THに比例した信号を出力する。
 前記したアクセルペダル18の付近にはアクセル開度センサ80が設けられて運転者のアクセルペダル操作量に相当するアクセル開度APに比例する信号を出力する。ブレーキペダル20の付近にはブレーキスイッチ81が設けられ、運転者によってブレーキペダル20が操作されてときオン信号を出力する。上記したクランク角センサ74などの出力は、エンジンコントローラ82に送られる。
 主入力軸26にはNTセンサ(回転数センサ)84が設けられ、主入力軸の回転数NTを示すパルス信号を出力する。
 無段変速機構32の第1副入力軸28にはN1センサ(回転数センサ)86が設けられて第1副入力軸28の回転数N1、換言すれば第1プーリ32aの回転数に応じたパルス信号を出力する。また、第2副入力軸30にはN2センサ(回転数センサ)88が設けられて第2副入力軸30の回転数N2、換言すれば第2プーリ32bの回転数に応じたパルス信号を出力する。
 第2ファイナルドライブギア60の付近には車速センサ(回転数センサ。車速検出手段)90が設けられて車両14の走行速度を意味する車速Vを示すパルス信号を出力する。また、前記したレンジセレクタ70の付近にはレンジセレクタスイッチ92が設けられ、運転者によって選択されたP,R,N,Dなどのレンジに応じた信号を出力する。
 変速機油圧供給機構72において、無段変速機構32の第1、第2プーリ32a,32bに通じる油路にはそれぞれ油圧センサ94が配置され、第1、第2プーリ32a,32bの油圧アクチュエータ32a3,32b3のピストン室(図示せず)に供給される油圧に応じた信号を出力する。また、図示は省略するが、前後進切替機構44のクラッチのピストン室やトルクコンバータ24のロックアップクラッチのピストン室に連結される油路にもそれぞれ油圧センサが配置され、各供給油圧に応じた信号を出力する。
 低速/高速出力係合機構、より具体的には、LOW側/HIGH側ドグクラッチ50,62の付近には第1、第2ストロークセンサ96,98が設けられ、LOW側/HIGH側ドグクラッチ50,62の移動量に応じた信号を出力する。
 上記したNTセンサ84などの出力は、図示しないその他のセンサの出力も含め、シフトコントローラ100(制御手段)に送られる。エンジンコントローラ82とシフトコントローラ100はCPU,ROM,RAM,I/Oなどで構成されるマイクロコンピュータを備えると共に、相互に通信自在に構成される。
 エンジンコントローラ82は上記したセンサ出力に基づいて目標スロットル開度を決定してDBW機構19の動作を制御し、燃料噴射量や点火時期を決定してインジェクタあるいは点火プラグなどの点火装置の動作を制御する。
 シフトコントローラ100は油圧センサ94の出力に基づきプーリ供給油圧(側圧)を算出し、算出された側圧に応じて変速機油圧供給機構72の種々の電磁弁を励磁・消磁することにより第1、第2プーリ32a,32bの油圧アクチュエータ32a3,32b3のピストン室への油圧の給排を制御して無段変速機構32の動作を制御すると共に、前後進切替機構44とトルクコンバータ24の動作を制御する。
 図2は無段変速機Tにおける通常のトルク伝達経路の切替動作、より正確には、車両が高速走行をしている状態(HIGHモード)から、減速をして車両14が停止するときに通常実行される動作を模式的に示す説明図である。なお、図2および後述する図4においてエンジン10を「ENG」、駆動輪12を「Tire」と示す。
 図2(a)は車両14が高速走行をしている状態(HIGHモード)におけるトルク伝達経路を示す。上記したように、この状態ではHIGH摩擦クラッチ34bおよびHIGH側ドグクラッチ62が係合される一方、LOW摩擦クラッチ34aおよびLOW側ドグクラッチ50は解放される。
 また、高速走行中であるため、無段変速機構32の変速比は最小変速比(HIGHモード最小変速比)に設定される。具体的には、第1、第2プーリ32a,32bの側圧を制御してその溝幅を変化させ、HIGHモードにおいて入力側となる第2プーリ32bの巻き掛け半径を最大値に設定すると共に、出力側となる第1プーリ32aの巻き掛け半径を最小値に設定する。
 この状態で運転者がブレーキペダル20を踏み込むなどして車速Vが減速すると、図2(b)に示すトルク伝達経路の切替制御が実行される。
 具体的には、第1、第2プーリ32a,32bの側圧を制御してその溝幅を変化させ、無段変速機構32の変速比を切替変速比に設定すると共に、ベルト32cを介して伝達されるトルクがゼロとなるようトルクダウン制御を実行した後、LOW摩擦クラッチ34aおよびLOW側ドグクラッチ50を係合する。
 また、HIGH摩擦クラッチ34bおよびHIGH側ドグクラッチ62を解放してLOWモードを確立する。さらに、車両14が停車する場合には、再発進時の駆動力を確保するために無段変速機構32の変速比を最大変速比(LOWモード最大変速比)に設定する必要がある。具体的には、第1、第2プーリ32a,32bの側圧を制御してその溝幅を変化させ、LOWモードにおいて入力側となる第1プーリ32aの巻き掛け半径を最小値に設定すると共に、出力側となる第2プーリ32bの巻き掛け半径を最大値に設定する(図2(c))。
 図2を示して説明したように、車両14が高速走行中に減速されて停車した場合、通常の手順に従って変速制御を実行すると、無段変速機構32の変速比を2度変化させる必要があると共に、変速時のショックを低減するためにベルト32cを介して伝達されるトルクの制御(トルクダウン、トルクアップ制御)を実行する必要がある。このため、車両14が高速走行中に急減速されて停止したような場合には、上記した制御を行っていたのでは変速動作が完了せず、再発進時の駆動力を十分に確保できない虞がある。
 しかしながら、図2(a)および図2(c)の対比から明らかなように、高速走行中における第1、第2プーリ32a,32bおよびベルト32cの設定(HIGHモード最小変速比)と、車両14の再発進待機時におけるこれらの設定(LOWモード最大変速比)とは、実質的には同一の設定であり、両者はLOW/HIGH摩擦クラッチ34a,34bおよびLOW側/HIGH側ドグクラッチ50,62の係合状態のみが異なる状態にある。
 本願発明人は係る事実に着目し、車両14が高速走行中に急減速した場合であっても、無段変速機構32の変速比を最大変速比へと変速させることを可能とすべくこの発明をなしたものである。なお、上記したトルク伝達経路の切替制御の詳細は、本出願人が先に提案した特願2014-043441号に記載されているため、これ以上の説明は省略する。
 図3は上記目的を達成するために実行される、無段変速機Tのシフトコントローラ100の動作を説明するフロー・チャートである。なお、図3の処理は所定時間ごとに繰り返し実行される。
 以下説明すると、S10において、車両14が急減速、例えば、パニックブレーキが実行されたか否か判断する。S10の判断は、車速Vの減速度ΔVが所定値を超えるか否か、あるいは、クランク角センサ74の出力から得られるエンジン回転数NEの低下率が所定値を超えるか否かを判断することで行われる。
 なお、パニックブレーキとは運転者によって規定値以上の踏力でディスクブレーキ20cが操作されて駆動輪12などの車輪がロックされる可能性がある、いわゆる急ブレーキを意味する。但し、この実施例はパニックブレーキの場合にだけ限定して適用されるものではなく、高速走行中に急減速があった場合に広く適用することが可能である。
 S10で否定される場合は以下の処理をスキップしてS12に進み、通常の変速制御を実行する。一方、S10で肯定される場合はS14に進み、車両14が上記したHIGHモードで走行中(所定の走行状態にある)か否かを判定する。
 S14で否定される場合は、無段変速機Tのモードを切り替える必要はなく、通常の変速制御によっても変速動作が間に合うと判断できるため、以下の処理をスキップしてS12に進む。他方、S14で肯定される場合はS16に進み、無段変速機構32の変速比を所定変速比、より具体的には、LOWモード最大変速比(第1プーリ32aから第2プーリ32bへの最大変速比imax)に設定(維持)する。
 上述したように、高速(クルーズ)走行中における第1、第2プーリ32a,32bおよびベルト32cの設定(HIGHモード最小変速比)と、車両14が停止したときにおけるこれらの設定(LOWモード最大変速比)とは、実質的には同一の設定になる。従って、S16では無段変速機Tの変速モードを切り替えず、無段変速機構32の変速比をHIGHモード最小変速比(LOWモード最大変速比)に設定、即ち、クルーズ走行時の変速比へと設定し、これを維持するようにした。
 なお、S14において、車両14がHIGHモードで走行中か否かを判断することに加え(代え)、車両14が所定速度以上で高速走行している状態、例えば、クルーズ走行状態か否か判断するようにしても良い。クルーズ走行状態であれば、無段変速機構32の変速比はHIGHモードにおける最小変速比(あるいはそれに近い変速比)に設定されていることから、かかる場合、S16において変速比を変更する必要はなく、その状態における変速比を維持するだけで良い。従って、上記のように構成した場合、確実かつ容易に再発進時の状態であるLOWモード最大変速比を確立することができる。
 その後、プログラムはS18に進み、車速Vが所定速度以下となったか否か判断する。S18の判断は、無段変速機構32のベルト32cを介して伝達されるトルクの制御(トルクダウン制御)を実行せずとも、変速ショックを生じることなくトルク伝達経路の切り替えを実行可能か否か判断することに相当する。従って、上記した所定速度は0km/h付近の値とされ、車両14が停止、あるいはほぼ停止したか否かを判断できる値に設定される。
 S18で否定されるときはS10に戻り上記した処理を繰り返す一方、S18で肯定されるときはS20に進み、トルク伝達経路の切替制御を実行する。即ち、再発進時に備えるためにLOWモードを確立、より具体的には、HIGH摩擦クラッチ34bを解放した後、HIGH側ドグクラッチ62を解放する一方、LOW側ドグクラッチ50を係合し、さらにLOW摩擦クラッチ34aを係合してLOWモードを確立する。
 即ち、車両14が停止(あるいはほぼ停止)したことを確認した後は、先ずHIGH摩擦クラッチ34bを解放し、入力係合機構(LOW/HIGH摩擦クラッチ34a,34b)をいずれもエンジン10と切り離してエンジン10のストールを防止するようにした。
 図4は上記した図3フロー・チャートの処理に従って実行されるトルク伝達経路の切替動作を模式的に示す説明図である。
 図4(a)は図2(a)同様、車両14が高速走行をしている状態(HIGHモード)におけるトルク伝達経路を示す。
 この状態において、運転者が大きくブレーキペダル20を踏み込むなどして急減速が指示された場合は、図2を示して説明した通常の手順とは異なり、無段変速機構32の変速比を維持する(S16)。
 さらに、車両14が停止またはほぼ停止したと判断されると(S18でYES)、LOW/HIGH摩擦クラッチ34a,34bおよびLOW側/HIGH側ドグクラッチ50,62の持ち替え(切り替え)を実行し(S20)、再発進時に備える(図4(b))。
 即ち、図2を示して説明したような第1、第2プーリ32a,32bに供給される側圧の制御を実行する必要はなく、LOW/HIGH摩擦クラッチ34a,34bおよびLOW側/HIGH側ドグクラッチ50,62の切り替えを実行するだけで無段変速機Tを再発進時の状態に設定することが可能となる。
 以上のように、この発明の実施例にあっては、車両14に搭載されるエンジン(内燃機関。駆動源)10接続される主入力軸(入力軸)26と、前記主入力軸26と前記車両14のエンジン10に接続される出力軸58との間に介挿されて前記主入力軸26から入力される前記エンジン10のトルク(駆動力)を無段階に変速する無段変速機構32と、前記主入力軸26から入力される前記エンジン10のトルクを前記無段変速機構32の一端側(より具体的には、第1プーリ32a側)に入力する低速入力経路と、前記主入力軸26から入力される前記エンジン10のトルクを前記無段変速機構32の他端側(より具体的には、第2プーリ32b側)に入力する高速入力経路と、前記低速入力経路と前記高速入力経路のうち、前記主入力軸26から入力されるトルクが伝達されるべき入力経路を選択的に切り替える入力経路切替手段(入力切替機構34。LOW摩擦クラッチ34a,HIGH摩擦クラッチ34b)と、前記無段変速機構32および前記入力経路切替手段の動作を制御する制御手段(シフトコントローラ100)とを備えた無段変速機Tの制御装置(シフトコントローラ100)において、前記車両14の車速Vを検出する車速検出手段(車速センサ90)と、前記車両14が急減速したか否か判断する急減速判定手段(シフトコントローラ100。S10)と、前記車両14が急減速したと判定されたとき、前記エンジン10のトルクが前記高速入力経路を介して前記無段変速機構32に入力される所定の走行状態にあるか否か判断する走行状態判断手段(シフトコントローラ100。S14)とを備え、前記制御手段は、前記車両14が前記急減速したときに前記所定の走行状態にあると判断されたとき、前記無段変速機構32の変速比を所定変速比(HIGHモード最小変速比、LOWモード最大変速比)に維持すると共に、前記急減速後、前記検出された車速Vが所定速度以下となったとき、前記入力経路を切り替える(シフトコントローラ100。S16からS20)ように構成したので、無段変速機構32を高速走行状態から再発進時の状態へと容易に変速させることができると共に、入力経路(トルク伝達経路)の切り替えに要する時間を短縮することが可能となる。
 即ち、急減速があった場合にあっても、無段変速機構32の変速比を所定の変速比(HIGHモード最小変速比またはLOWモード最大変速比)に維持するのみとしたので、急減速時における変速を行うための機構を別途設ける必要がなく、簡易な構成でありながら、無段変速機構32を容易に再発進時の状態へと変速させることができる。
 また、複数のトルク伝達経路を有する無段変速機にあっては、通常の手順であれば、車両14が高速走行中に減速された場合、無段変速機構32の変速制御に加え、入力経路(トルク伝達経路)を高速入力経路から低速入力経路へと切り替える必要があり、変速制御が複雑かつ時間を要する。特に、トルク伝達経路の切り替えに際しては、低速/高速入力経路および低速/高速出力経路を構成するギア機構(LOW/HIGH摩擦クラッチ32a,32bおよび低速/高速出力係合機構(LOW側/HIGH側シフトフォーク、LOW側/HIGH側ドグクラッチ50,62))の磨耗や変速ショックを防止するためのトルクダウン制御も必要とされることから、トルク伝達経路の切り替えには相当の時間を要することとなる。しかしながら、この発明にあっては、低速入力経路と高速入力経路とで無段変速機構32への入力経路が逆転するように構成し、高速走行中に急減速があった場合、車速Vが所定速度以下になるまでは入力経路の切り替え(換言すれば、変速モードの切り替え)は行わず、無段変速機構32の変速比を所定変速比(HIGHモード最小変速比またはLOWモード最大変速比)に維持する変速制御のみを実行するように構成したので、容易に再発進時の状態、即ち、最大変速比を確立することが可能となる。また、車速Vが所定速度以下になってからトルク伝達経路の切り替えを実行、換言すれば、無段変速機構32を介して伝達されるトルクが十分小さくなってからトルク伝達経路の切り替えを実行するように構成したので、トルクダウン制御を行わずともギア機構の磨耗や変速ショックを防止することが可能となり、その分だけトルク伝達経路の切り替えに要する時間を短縮することが可能となる。
 また、前記無段変速機構32は、第1プーリ32a、第2プーリ32bおよび前記第1プーリ32aと第2プーリ32bの間に掛け回される無端可撓性部材(ベルト)32cを有するように構成したので、上記した効果に加え、無段変速機構32の耐久性を向上することができると共に/または、軽量化を図ることが可能となる。
 即ち、第1、第2プーリ32a,32bおよび無端可撓性部材(ベルト32c)を有する無段変速機構32にあっては、車両14が高速走行中に急減速した場合、通常の手順によって変速制御を実行すると、第1、第2プーリ32a,32bに供給される側圧を制御して第1、第2プーリ32a,32bの溝幅を変化させなくてはならないため、その分だけ第1、第2プーリ32a,32bおよびそこに掛け回されるベルト32cが磨耗する虞があるが、かかる不都合を解消することができるため、第1、第2プーリ32a,32bおよびベルト32cの耐久性を向上させることができると共に、その分だけ軽量化を図ることも可能となる。
 また、前記所定の走行状態は、前記エンジン10のトルクが前記高速入力経路を介して前記無段変速機構32に入力され、かつ、クルーズ走行状態であるように構成したので、上記した効果に加え、無段変速機構32を高速走行状態から再発進時の状態へとより一層容易に変速させることができる。即ち、クルーズ走行状態にあっては、無段変速機構32の変速比は最小変速比に設定されるが、ここで無段変速機構32へのトルク入力経路を高速入力経路から低速入力経路へと逆転させれば、無段変速機構32を構成する要素(第1、第2プーリ32a,32b、ベルト32c)を変化させることなく、確実かつ容易に再発進時の状態である最大変速比を確立することができる。
 なお、上記した実施例において、無段変速機Tの具体的な構成について説明したが、これに限られるものではなく、この発明の要旨は図2や図4に簡略化して示した無段変速機Tの構成に相当するものであればどのような無段変速機Tに対しても妥当する。
 また、無段変速機構32としてベルト式の無段変速機構を例にとって説明したが、これに限られるものではなく、この発明の要旨は、例えば、トロイダル式やチェーン式の無段変速機構にも妥当する。即ち、トロイダル式の無段変速機構を用いた場合、シフトコントローラ100は、側圧に代えてパワーローラの傾斜角をパラメータとして無段変速機構の動作を制御すれば良い。
 また、低速/高速入力係合機構として摩擦クラッチ機構、低速/高速出力係合機構として噛合式クラッチ機構を例にとって説明したが、これに限られるものではなく、例えば、全ての入出力係合機構を摩擦クラッチで構成しても良い。
 この発明によれば、駆動源の駆動力を無段階に変速する無段変速機構と、駆動力を、無段変速機構の一端側に入力する低速入力経路および他端側に入力する高速入力経路と、入力経路を選択的に切り替える入力経路切替手段と、無段変速機構および入力経路切替手段を制御する制御手段とを備えた無段変速機の制御装置において、車両が急減速したと判定されたとき、車両が所定の走行状態にあるか否か判断し、急減速したときに所定の走行状態にあると判断したときは無段変速機構の変速比を所定変速比に維持すると共に、車速が所定速度以下となったとき、入力経路を切り替えるように構成したので、無段変速機構を高速走行状態から再発進時の状態へと容易に変速させることができると共に、入力経路の切り替えに要する時間を短縮することが可能となる。
 T 無段変速機、10 エンジン(内燃機関。駆動源)、14 車両、26 主入力軸、28 第1副入力軸、30 第2副入力軸、32 無段変速機構、32a 第1プーリ、32b 第2プーリ、32c ベルト、34 入力切替機構、34a LOW摩擦クラッチ(低速入力係合機構)、34b HIGH摩擦クラッチ(高速入力係合機構)、36 第1減速ギア、38 第2減速ギア、40 第1増速ギア、42 第2増速ギア、44 前後進切替機構、46 中間出力軸、48 第3減速ギア、50 LOW側ドグクラッチ(低速出力係合機構)、52 第1ファイナルドライブギア、54 ディファレンシャル機構、56 ファイナルドリブンギア、58 出力軸、60 第2ファイナルドライブギア、62 HIGH側ドグクラッチ(高速出力係合機構)、90 車速センサ、96 第1ストロークセンサ、98 第2ストロークセンサ、100 シフトコントローラ

Claims (3)

  1.  車両に搭載される駆動源に接続される入力軸と、前記入力軸と前記車両の駆動輪に接続される出力軸との間に介挿されて前記入力軸から入力される前記駆動源の駆動力を無段階に変速する無段変速機構と、前記入力軸から入力される前記駆動源の駆動力を前記無段変速機構の一端側に入力する低速入力経路と、前記入力軸から入力される前記駆動源の駆動力を前記無段変速機構の他端側に入力する高速入力経路と、前記低速入力経路と前記高速入力経路のうち、前記入力軸から入力される駆動力が伝達されるべき入力経路を選択的に切り替える入力経路切替手段と、前記無段変速機構および前記入力経路切替手段の動作を制御する制御手段とを備えた無段変速機の制御装置において、前記車両の車速を検出する車速検出手段と、前記車両が急減速したか否か判断する急減速判定手段と、前記車両が急減速したと判定されたとき、前記駆動源の駆動力が前記高速入力経路を介して前記無段変速機構に入力される所定の走行状態にあるか否か判断する走行状態判断手段とを備え、前記制御手段は、前記車両が前記急減速したときに前記所定の走行状態にあると判断されたとき、前記無段変速機構の変速比を所定変速比に維持すると共に、前記急減速後、前記検出された車速が所定速度以下となったとき、前記入力経路を切り替えることを特徴とする無段変速機の制御装置。
  2.  前記無段変速機構は、第1プーリ、第2プーリおよび前記第1プーリと第2プーリの間に掛け回される無端可撓性部材を有することを特徴とする請求項1記載の無段変速機の制御装置。
  3.  前記所定の走行状態は、前記駆動源の駆動力が前記高速入力経路を介して前記無段変速機構に入力され、かつ、クルーズ走行状態であることを特徴とする請求項1または2記載の無段変速機の制御装置。
PCT/JP2015/057241 2014-03-18 2015-03-12 無段変速機の制御装置 WO2015141547A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016508680A JP6291656B2 (ja) 2014-03-18 2015-03-12 無段変速機の制御装置
CN201580014090.2A CN106104095B (zh) 2014-03-18 2015-03-12 无级变速器的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-055038 2014-03-18
JP2014055038 2014-03-18

Publications (1)

Publication Number Publication Date
WO2015141547A1 true WO2015141547A1 (ja) 2015-09-24

Family

ID=54144517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057241 WO2015141547A1 (ja) 2014-03-18 2015-03-12 無段変速機の制御装置

Country Status (3)

Country Link
JP (1) JP6291656B2 (ja)
CN (1) CN106104095B (ja)
WO (1) WO2015141547A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017073407A1 (ja) * 2015-10-28 2018-10-18 ジヤトコ株式会社 車両の制御装置、及び車両の制御方法
US10753463B2 (en) 2017-12-27 2020-08-25 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle drive-force transmitting apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112590752B (zh) * 2020-12-24 2022-07-15 潍柴动力股份有限公司 一种急刹车控制方法、装置、车辆及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311412A (ja) * 1997-05-13 1998-11-24 Daikin Ind Ltd 車両用変速機の変速制御装置
JP2002327835A (ja) * 2001-04-27 2002-11-15 Fuji Heavy Ind Ltd 無段変速機の制御装置
JP2009107414A (ja) * 2007-10-26 2009-05-21 Toyota Motor Corp 車両の駆動力制御装置
JP2010138961A (ja) * 2008-12-10 2010-06-24 Jatco Ltd 複数の伝達経路を有する変速機及びその制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3652502B2 (ja) * 1998-04-28 2005-05-25 アイシン・エィ・ダブリュ株式会社 車両制御装置及びそのプログラムを記録した記録媒体
CN100386540C (zh) * 2001-10-22 2008-05-07 洋马农机株式会社 油压式变速车辆
JP4344380B2 (ja) * 2006-12-26 2009-10-14 ジヤトコ株式会社 無段変速機の制御装置
CN101191546B (zh) * 2007-12-11 2010-12-01 山东交通学院 复合式汽车变速器
JP4613225B2 (ja) * 2008-05-30 2011-01-12 ジヤトコ株式会社 無段変速機の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311412A (ja) * 1997-05-13 1998-11-24 Daikin Ind Ltd 車両用変速機の変速制御装置
JP2002327835A (ja) * 2001-04-27 2002-11-15 Fuji Heavy Ind Ltd 無段変速機の制御装置
JP2009107414A (ja) * 2007-10-26 2009-05-21 Toyota Motor Corp 車両の駆動力制御装置
JP2010138961A (ja) * 2008-12-10 2010-06-24 Jatco Ltd 複数の伝達経路を有する変速機及びその制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017073407A1 (ja) * 2015-10-28 2018-10-18 ジヤトコ株式会社 車両の制御装置、及び車両の制御方法
US10753463B2 (en) 2017-12-27 2020-08-25 Toyota Jidosha Kabushiki Kaisha Control apparatus for vehicle drive-force transmitting apparatus

Also Published As

Publication number Publication date
CN106104095B (zh) 2017-11-14
JPWO2015141547A1 (ja) 2017-04-06
JP6291656B2 (ja) 2018-03-14
CN106104095A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
US10196061B2 (en) Control system of vehicle
JP6246327B2 (ja) 無段変速機の制御装置
US9765886B2 (en) Control system and control method for vehicle
JP5736508B2 (ja) 無段変速機及びその制御方法
JP6291656B2 (ja) 無段変速機の制御装置
WO2014013901A1 (ja) 車両の制御装置
JP5952955B2 (ja) 無段変速機の制御装置
JP6203938B2 (ja) 無段変速機の制御装置
JP6152468B2 (ja) 無段変速機の制御装置
JP7139035B2 (ja) 無段変速機の制御装置
JP6203669B2 (ja) 無段変速機の制御装置
JP6219211B2 (ja) 変速装置の制御装置
JP6246320B2 (ja) 無段変速機の制御装置
JP2011094751A (ja) 無段変速機の制御装置
JP6092139B2 (ja) 無段変速機の制御装置
JP6220302B2 (ja) 無段変速機の制御装置
JP6071927B2 (ja) 無段変速機の制御装置
JP6261440B2 (ja) 無段変速機の制御装置
JP2004176859A (ja) 車両用パワートレーンの制御装置
JP2007057073A (ja) 無段変速機の制御装置
JP6106485B2 (ja) 無段変速機の制御装置
JP2015113897A (ja) 無段変速機の制御装置
JP4744498B2 (ja) 無段変速機の制御装置
JP2017075648A (ja) 車両の制御装置
JP2014126051A (ja) 無段変速機の制御装置および制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508680

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765398

Country of ref document: EP

Kind code of ref document: A1