WO2015137565A1 - 신규 포름알데하이드 탈수소효소 및 이를 이용한 포름알데하이드의 생산방법 - Google Patents

신규 포름알데하이드 탈수소효소 및 이를 이용한 포름알데하이드의 생산방법 Download PDF

Info

Publication number
WO2015137565A1
WO2015137565A1 PCT/KR2014/004812 KR2014004812W WO2015137565A1 WO 2015137565 A1 WO2015137565 A1 WO 2015137565A1 KR 2014004812 W KR2014004812 W KR 2014004812W WO 2015137565 A1 WO2015137565 A1 WO 2015137565A1
Authority
WO
WIPO (PCT)
Prior art keywords
formaldehyde
formaldehyde dehydrogenase
dehydrogenase
present
gene
Prior art date
Application number
PCT/KR2014/004812
Other languages
English (en)
French (fr)
Inventor
이정걸
라마크리시난란지타
박지현
김태수
김선창
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to US15/125,785 priority Critical patent/US9963684B2/en
Publication of WO2015137565A1 publication Critical patent/WO2015137565A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0008Oxidoreductases (1.) acting on the aldehyde or oxo group of donors (1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01046Formaldehyde dehydrogenase (1.2.1.46)

Definitions

  • the present invention relates to a novel formaldehyde dehydrogenase and a method for producing formaldehyde using the same. More specifically, the new formaldehyde dehydrogenase derived from Berkolderia multiborane (KTCT 2970) and the enzyme in formic acid using NADH coenzyme It relates to a process for preparing formaldehyde.
  • KTCT 2970 Berkolderia multiborane
  • NADH coenzyme NADH coenzyme
  • Biocatalytic reactions are an industry that is growing rapidly with the development of biotechnology by performing various catalytic reactions in a bio-friendly environment, including reactions that conventional chemical catalysts could not perform.
  • Typical applications include the synthesis of chiral compounds, alcohols, aldehydes, amino acids and pharmaceutical intermediates, and the development of biosensors for the synthesis, analysis and diagnostics of polymers suitable for biodegradation or biological applications.
  • carbon dioxide is converted to formic acid through formic acid dehydrogenase, and formic acid is converted to formaldehyde by formaldehyde dehydrogenase, and finally alcohol dehydrogenase converts formaldehyde into methanol.
  • Formaldehyde dehydrogenase is essential for the completion of such multiple enzyme systems. Despite this importance and usefulness, the reduction of formaldehyde dehydrogenase has been rarely reported compared to oxidation. In addition, formaldehyde dehydrogenase, which exhibits independent reducing activity, has not been reported as the oxidation reaction is thermodynamically superior to the reduction reaction and occurs better.
  • securing a new formaldehyde dehydrogenase having independent reducibility for converting formic acid to formaldehyde can be applied to a multi-enzyme system to produce methanol using carbon dioxide, as well as to produce various industrially important chemicals. Will play a role.
  • the present invention solves the above problems, and the first object of the present invention is to provide a formaldehyde dehydrogenase to reduce formic acid independently.
  • a third object of the present invention is to provide a recombinant expression vector comprising the gene of the formaldehyde dehydrogenase.
  • a fifth object of the present invention is to provide a method for preparing recombinant formaldehyde dehydrogenase using a transformed strain.
  • the present invention provides a reducing activity retaining formaldehyde dehydrogenase consisting of the amino acid sequence of SEQ ID NO: 2.
  • the enzyme is preferably derived from Birch Alderia multiborance, it can be prepared through genetic engineering methods or chemical synthesis methods.
  • the molecular weight of the enzyme of the present invention is characterized in that 46.5 kDa.
  • the present invention provides a formaldehyde dehydrogenase gene encoding the enzyme of the present invention.
  • the gene is preferably composed of the nucleotide sequence of SEQ ID NO: 1, at least 85% or more, preferably at least at least the sequence of SEQ ID NO: 2 in consideration of the degeneracy of the genetic code, etc.
  • sequences having at least 90%, more preferably at least 95% homology are not limited thereto.
  • the present invention provides a recombinant expression vector comprising the formaldehyde dehydrogenase gene of the present invention.
  • the present invention also provides a method for producing formaldehyde dehydrogenase by culturing the strain transformed with the recombinant expression vector of the present invention.
  • the present invention provides a method for producing formaldehyde from the substrate through a reduction reaction of the enzyme by treating the substrate with the formaldehyde dehydrogenase of the present invention.
  • the substrate is preferably formic acid, but is not limited thereto.
  • the present invention provides a composition for producing formaldehyde comprising the formaldehyde dehydrogenase of the present invention as an active ingredient.
  • the present invention introduces a novel formaldehyde dehydrogenase derived from Berkolderia multiborane (KTCT 2970) capable of producing formaldehyde from formic acid, and the reaction conditions for producing formaldehyde efficiently from formic acid using the system I would like to present.
  • KTCT 2970 Berkolderia multiborane
  • the present invention is characterized by cloning the formaldehyde dehydrogenase gene from Berkolderia multiborance through Southern hybridization and colony hybridization.
  • the present invention is characterized in that formic acid dehydrogenase derived from Burkholderia multivorans (KTCT 2970, Burkholderia multivorans) in the production method of formaldehyde.
  • Formaldehyde dehydrogenase of the present invention is characterized by having an amino acid sequence represented by SEQ ID NO: 2.
  • amino acid sequence of SEQ ID NO: 2 deletion, substitution and addition of at least one mutation of one or more amino acids are introduced within a range in which the formaldehyde dehydrogenase activity indicated by the protein having these amino acid sequences is not impaired.
  • the modified formaldehyde dehydrogenase is also included in the formaldehyde dehydrogenase according to the present invention.
  • the present invention includes a formaldehyde dehydrogenase gene encoding formaldehyde dehydrogenase having an amino acid sequence of SEQ ID NO: 2, and the gene sequence represented by SEQ ID NO: 1 is mentioned.
  • the formaldehyde dehydrogenase gene according to the present invention also includes the above-mentioned mutated formaldehyde dehydrogenase gene encoding the above-mentioned mutated formaldehyde dehydrogenase obtained by mutating the nucleotide sequences of SEQ ID NO: 1.
  • the present invention also includes a recombinant vector containing the formaldehyde dehydrogenase gene and a transformant transformed by the recombinant vector.
  • the present invention includes a method for producing formaldehyde dehydrogenase, characterized in that the formaldehyde dehydrogenase is separated from the culture obtained by culturing the transformant.
  • the formaldehyde dehydrogenase gene of the present invention is isolated from the cells of Berkolderia multiborance (KTCT 2970). After acquiring chromosomal DNA from a strain having a formaldehyde dehydrogenase gene, the polymerase chain reaction (PCR) was carried out using the designed oligonucleotide as a primer, and the chromosomal DNA of the Berkolderia multiboranth (KTCT 2970) strain as a template. To partially amplify the formaldehyde dehydrogenase gene.
  • PCR polymerase chain reaction
  • the PCR amplification fragment thus obtained was a fragment having 100% homology to the formaldehyde dehydrogenase gene of the Berkolderia multiborance (KTCT 2970) strain, and was a high S / probe as a probe for colony hybridization. While the N ratio can be expected, it facilitates stringency control of hybridization.
  • the PCR amplification fragment is labeled with a suitable reagent, and colony hybridization is performed on the chromosomal DNA library to select a formaldehyde dehydrogenase gene (Current Protocols in Molecular Biology, Vol. 1, p. 603, 1994). ).
  • DNA fragments containing the formaldehyde dehydrogenase gene can be obtained by recovering the plasmid from the E. coli selected by the above method using the alkaline method (Current Protocols in Molecular Biology, Vol. 1, p. 161, 1994). After determining the nucleotide sequence by the above method, it is possible to obtain the entire gene of the present invention by hybridizing using a DNA fragment prepared by digestion by restriction enzymes of the DNA fragment having the nucleotide sequence as a probe.
  • SEQ ID NO: 1 shows the nucleotide sequence of the formaldehyde dehydrogenase gene of the present invention
  • SEQ ID NO: 2 shows the amino acid sequence encoded by the gene.
  • the transformed microorganism of the present invention is obtained by introducing the recombinant vector of the present invention into a host suitable for the expression vector used when producing the recombinant vector.
  • pET28a was used as the expression vector used in the present invention, any expression vector satisfying the above requirements can be used.
  • the production of formaldehyde dehydrogenase according to the present invention is carried out by culturing a transformant obtained by transforming a host with a recombinant vector having a gene encoding the same, and forming a formaldehyde which is a gene product in culture (cultured cell or culture supernatant). This is done by generating and accumulating dehydrogenase and obtaining enzyme from the culture.
  • Acquisition and purification of formaldehyde dehydrogenase can be carried out by centrifuging the cells or supernatant from the culture obtained, followed by cell disruption, affinity chromatography, cation or anion exchange chromatography alone or in combination.
  • formaldehyde dehydrogenase gene was cloned from Berkolderia multiborance (KTCT 2970).
  • the present invention was completed by confirming that formaldehyde dehydrogenase derived from the expressed recombinant Burkholderia multivorans (KTCT 2970 Burkholderia multivorans ) can be prepared from formic acid through a reduction reaction using NADH as a coenzyme.
  • the present invention is to clone the gene encoding the formaldehyde dehydrogenase from the gene of the Berk Alderia multi-borance (KTCT 2970) to produce an industrially useful formaldehyde dehydrogenase, and the base sequence of the electric gene and the amino acid sequence inferred therefrom
  • Analyze Formaldehyde dehydrogenase of the present invention is an enzyme that forms formaldehyde by catalyzing a reduction reaction using formic acid as a substrate, more preferably formaldehyde having specificity for the reduction reaction and having the ability to convert formic acid to formaldehyde.
  • Formaldehyde dehydrogenase of the present invention has the following characteristics: (i) a molecular weight of about 46.5 kDa; (ii) The known formaldehyde dehydrogenase alone shows little activity of reducing formic acid to formaldehyde alone. However, the formaldehyde dehydrogenase of the present invention produces formaldehyde by reducing formic acid using NADH coenzyme alone, which is not a multiple enzyme system. Therefore, the enzyme of the present invention for producing formaldehyde in formic acid will be very specific, and will be usefully applied to the economical production of biocatalyst of formaldehyde.
  • Formaldehyde dehydrogenase derived from Burkholderia multivorans identified in the present invention can be efficiently produced by using NADH coenzyme and reducing formic acid.
  • Figure 1 is a vector map of the vector pET28a is a fragment containing a formaldehyde dehydrogenase gene from the chromosome of Burkholderia multivorans (KTCT 2970, Burkholderia multivorans) was cloned into a vector used in E. coli.
  • FIG. 2 is a view showing a method of preparing an expression vector including a formaldehyde dehydrogenase gene derived from Burkholderia multivorans.
  • 3 is a SDS-PAGE gel photograph of formaldehyde dehydrogenase derived from Burkholderia multivorans. One; Size markers, 2; A water soluble protein expressed using a strain transformed with an expression vector, 3; Insoluble protein of formaldehyde dehydrogenase, 4; Water soluble protein of formaldehyde dehydrogenase.
  • 5 is a graph of the kinetic parameters of formaldehyde dehydrogenase.
  • Example 1 Cloning of a Novel Formaldehyde Dehydrogenase Gene from Burkholderia multivorans
  • E. coli pET28a vector was used for cloning.
  • LB medium having a general composition was used, and the peptone agar medium (Malt extract peptone agar) was used for culturing of Berk Alderia multiborance.
  • peptone agar medium Malt extract peptone agar
  • plate medium of E. coli agar plates of LB agar, 3-5% sugar, 0.3-0.5% beef extract, 0.9-1.1% bactopeptone, and 1.3-1.7% agar composition were used. 50 ⁇ g / ml ampicillin was added as needed.
  • the culture method was inoculated in a 250 ml Erlenmeyer flask containing 50 ml of medium for Berk-Orderia multiborance and incubated at 37 ° C., 200 rpm for 5 days, and 16 ° C. at 37 ° C., 200 rpm for E. coli. Time incubation.
  • RNA extraction of Burkholderia multivorans was performed using Qiagen plant total RNA kit (QIAGEN), and oligo-dT RT-mix (intron) was used as a reverse transcriptase for cDNA synthesis.
  • the Berkholderia multivorans chromosome was isolated to clone the formaldehyde dehydrogenase gene. Based on a formaldehyde dehydrogenase sequence already known from other bacteria to amplify a portion of the Berk-Orderia multiboranth formaldehyde dehydrogenase gene, a nonspecific primer, BmFalDH_ 5'- SP1 atttgyggcagcgatcwrcatatgkwysrc (SEQ ID NO: 3) BmFalDH_SP1-Attggcrthccgggnytgtaygtgmcc (SEQ ID NO: 4) was prepared. Using this, a portion of the formaldehyde dehydrogenase gene corresponding to the size of 780 bp was amplified on the Berkolderia multiboranth chromosome by a chain polymerization reaction.
  • genomic DNA of the Berkeolderia multiborance was completely cleaved using restriction enzymes Sac1, Not1, Xho1, and Sal1 which do not have a cleavage site in the amplified partial sequences.
  • a radiolabeled probe was prepared using a DNA fragment obtained through the polymerase chain reaction. Using this, we searched for DNA fragments containing genes to be searched by Southern hybridization. The desired gene was searched using a fragment cut into Sac1 of about 2.7 kb and Sal 1 of about 5.3 kb.
  • Colony hybridization was performed using the 780 bp probe made in the pUC- faldh library to determine clones with the desired formaldehyde dehydrogenase gene.
  • the entire gene sequence of formaldehyde dehydrogenase was identified as 1,197 bp (SEQ ID NO: 1), which is similar in size to the formaldehyde dehydrogenase gene found in several other bacteria as expected. It was.
  • the recombinant strain prepared in Example 2 was inoculated in LB medium and incubated for 24 hours at 37 to confirm the protein expressed in the SDS-PAGE gel (Fig. 3).
  • the recombinant strain culture solution was centrifuged (8000xg, 10 minutes) to collect only the cells, and sonicated to break the cell wall of E. coli, at 20,000xg The precipitate was removed by centrifugation for 20 minutes to obtain a supernatant. After obtaining, Ni-NTA His-tag binding chromatography (Qiagen, Germany) was finally performed to purely separate the recombinant formaldehyde dehydrogenase.
  • Formaldehyde production using the formaldehyde dehydrogenase prepared in Example 3 was carried out under the following conditions.
  • the production amount of formaldehyde was confirmed while changing the pH during the reaction.
  • Enzyme purification method was carried out as in Example 3, the production amount of formaldehyde was confirmed while changing to pH 4.0-10.0 at 100 mM substrate solution, 25 °C. As shown in FIG. 4, the yield of formaldehyde was the highest at pH 7.0. Therefore, it was found that the optimum pH in the formaldehyde production method of the present invention is 7.0.
  • Table 1 is a table showing the metal ion effect of formaldehyde dehydrogenase.
  • the K m value for NADH of formaldehyde dehydrogenase was determined to be about 0.19 mM, the K m value for formaldehyde was about 1.7 mM, and the Vmax value was about 4.7 U mg-protein -1 .
  • Formaldehyde production experiments were performed using formaldehyde dehydrogenase derived from Berkolderia multiborane under optimized conditions. Formaldehyde dehydrogenase in the reaction solution 20 ⁇ g, 10 mM substrate concentration, pH 7.0 and the reaction temperature was adjusted to 30 °C experiments showed that the reaction rate of about 27% when reacted for 3 hours. This is the first report on the direct bioconversion production of formaldehyde from formic acid.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 신규 포름알데하이드 탈수소효소의 유전자로부터 발현되는 포름산에 대한 독립적 환원활성을 보유한 포름알데하이드 탈수소효소, 상기 유전자를 포함하는 재조합 발현벡터로 형질 전환된 균주로부터 포름알데하이드 탈수소효소를 제조하는 방법 및 그 효소의 환원반응을 통하여 포름산으로부터 포름알데하이드를 생산하는 방법에 관한 것이다.

Description

신규 포름알데하이드 탈수소효소 및 이를 이용한 포름알데하이드의 생산방법
본 발명은 신규 포름알데하이드 탈수소효소 및 이를 이용한 포름알데하이드의 생산방법에 관한 것으로 더욱 상세하게는 버크올데리아 멀티보란스 (KTCT 2970) 유래 신규 포름알데하이드 탈수소효소 및 상기 효소가 NADH 조효소를 이용하여 포름산에서 포름알데하이드를 제조하는 방법에 관한 것이다.
생체촉매 반응들은 기존 화학촉매들이 수행할 수 없었던 반응들을 포함한 다양한 촉매반응들을 생체친화적인 환경에서 수행함으로써 생명공학의 발전과 함께 산업적으로 빠르게 성장 중인 분야이다.
대표적으로 키랄성 화합물, 알코올, 알데하이드, 아미노산 및 의약물질 중간체의 합성, 생분해 또는 생체 응용에 적합한 고분자의 합성, 분석 및 진단용 바이오센서의 개발 등에 응용되고 있다. 또한 현재 이산화탄소 농도의 증가와 이에 따른 지구온난화로 인한 문제로 학계와 산업계에서 이산화탄소의 저감 연구와 더불어 이산화탄소의 환원반응에 의해 새로운 에너지를 생산하고자 하는 응용분야의 연구를 수행하고 있다. 즉 포름산 탈수소효소를 통해 이산화탄소가 포름산으로 변환되고, 생성된 포름산은 포름알데하이드 탈수소효소에 의해 포름알데하이드로 변환되며, 마지막으로 알코올 탈소수효소가 포름알데하이드를 메탄올로 전환시킨다. 이와같은 다중 효소시스템의 완성을 위해 포름알데하이드 탈수소효소가 반드시 필요하다. 이러한 중요성 및 유용성에도 불구하고 포름알데하이드 탈수소효소의 환원반응은 산화반응에 비해 거의 보고 된 바가 없다. 또한 일반적 탈수소효소의 특성상 산화반응이 환원반응에 비해 열역학적으로 월등히 유리하고 보다 잘 일어남에 따라 독립적인 환원활성을 나타내는 포름알데하이드 탈수소효소가 보고된 바 없다.
따라서 포름산을 포름알데이드로 변환하는 독립적인 환원성을 갖는 신규 포름알데하이드 탈수소효소를 확보하는 것은 이를 다중효소 시스템에 적용시켜 이산화탄소를 이용 메탄올을 생산할 수 있는 것 뿐만 아니라, 산업적으로 중요한 다양한 케미칼의 생산에 막중한 역할을 할 것이다.
본 발명은 상기의 문제점을 해결하고, 상기의 필요성에 의하여 안출된 것으로서 본 발명의 첫 번째 목적은 포름산을 독립적으로 환원시키는 포름알데하이드 탈수소효소를 제공하는 것이다.
본 발명의 두 번째 목적은 상기 포름알데하이드 탈수소효소를 코딩하는 유전자를 제공하는 것이다.
본 발명의 세 번째 목적은 상기 포름알데하이드 탈수소효소의 유전자를 포함한 재조합 발현벡터를 제공하는 것이다.
본 발명의 네 번째 목적은 형질전환된 재조합 대장균을 포함하는 모든 형질전환 균주를 제공하는 것이다.
본 발명의 다섯 번째 목적은 형질전환된 균주를 이용한 재조합 포름알데하이드 탈수소효소 제조방법을 제공하는 것이다.
본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.
상기의 목적을 달성하기 위하여 본 발명은 서열번호 2의 아미노산 서열로 이루어진 환원활성 보유 포름알데하이드 탈수소효소를 제공한다.
본 발명의 일 구현예에 있어서, 상기 효소는 버크올데리아 멀티보란스 유래인 것이 바람직하나, 유전공학적인 방법이나 화학적인 합성방법을 통하여 제조될 수 있다.
본 발명의 일 구체 예에 있어서, 본 발명의 상기 효소의 분자량은 46.5 kDa인 것을 특징으로 한다.
또 본 발명은 상기 본 발명의 효소를 코딩하는 포름알데하이드 탈수소효소 유전자를 제공한다.
본 발명의 일 구현예에 있어서, 상기 유전자는 서열번호 1의 염기서열로 이루어진 것이 바람직하나, 유전자 코드의 디제너러시 등을 고려하여 서열번호 2에 기재된 서열과 적어도 85% 이상, 바람직하게는 적어도 90% 이상, 더욱 바람직하게는 95% 이상 상동성을 가지는 서열이 바람직하나 이에 한정되지 아니한다.
또한 본 발명은 상기 본 발명의 포름알데하이드 탈수소효소 유전자를 포함하는 재조합 발현벡터를 제공한다.
또 본 발명은 상기 본 발명의 재조합 발현벡터로 형질전환된 균주를 배양하여 포름알데하이드 탈수소효소를 생산하는 방법을 제공한다.
또한 본 발명은 상기 본 발명의 포름알데하이드 탈수소효소를 기질에 처리하여 상기 효소의 환원 반응을 통해 기질로부터 포름알데하이드를 생산하는 방법을 제공한다.
본 발명의 일 구현예에 있어서, 상기 기질은 포름산인 것이 바람직하나 이에 한정되지 아니한다.
또한 본 발명은 상기 본 발명의 포름알데하이드 탈수소효소를 유효성분으로 포함하는 포름알데하이드 생산용 조성물을 제공한다.
이하 본 발명을 설명한다.
본 발명에서는 포름산으부터 포름알데하이드를 생산할 수 있는 버크올데리아 멀티보란스 (KTCT 2970) 유래 신규 포름알데하이드 탈수소효소를 소개하고, 상기 시스템을 이용하여 포름산으로부터 효율적으로 포름알데하이드를 생산할 수 있는 반응 조건을 제시하고자 한다.
본 발명은 서어던 하이브리다이제이션과 콜로니 혼성화를 통하여 버크올데리아 멀티보란스로부터 포름알데하이드 탈수소효소 유전자를 클로닝하는 것을 특징으로 한다. 또한 본 발명은 포름알데하이드의 생산방법에 있어서, 버크올데리아 멀티보란스(KTCT 2970, Burkholderia multivorans) 유래 포름산 탈수소효소를 생성하는 것을 특징으로 한다.
이하, 본 발명을 상세하게 설명한다.
본 발명의 포름알데하이드 탈수소효소는 서열번호 2로 표시되는 아미노산 서열을 가진 것을 특징으로 한다. 또, 서열번호 2의 아미노산 서열에 대해서, 이들 아미노산 서열을 가진 단백질이 표시하는 포름알데하이드 탈수소효소 활성이 손상되지 않는 범위 내에서, 1 이상의 아미노산의 결실, 치환 및 부가의 적어도 1 종의 변이가 도입된 변이 포름알데하이드 탈수소효소도 본 발명에 관한 포름알데하이드 탈수소효소에 포함된다.
또, 본 발명에는 서열번호 2의 아미노산서열을 가진 포름알데하이드 탈수소효소를 코딩하는 포름알데하이드 탈수소효소 유전자가 포함되고, 그 유전자 서열로서는 서열번호 1로 표시되는 것을 들 수 있다. 또, 이들 서열번호 1의 염기서열을 변이시켜서 얻게 되는 상기한 변이 포름알데하이드 탈수소효소를 코딩하는 변이 포름알데하이드 탈수소효소 유전자도 본 발명에 관한 포름알데하이드 탈수소효소 유전자에 포함된다.
또, 본 발명에는, 상기 포름알데하이드 탈수소효소 유전자를 함유하는 재조합벡터, 상기 재조합벡터에 의해서 형질전환된 형질전환체가 포함된다. 또한, 본 발명에는 이 형질전환체를 배양하여 얻게 되는 배양물로부터 포름알데하이드 탈수소효소를 분리하는 것을 특징으로 하는 포름알데하이드 탈수소효소의 제조방법이 포함된다.
본 발명의 포름알데하이드 탈수소효소 유전자는 버크올데리아 멀티보란스 (KTCT 2970)의 균체로부터 분리된 것이다. 포름알데하이드 탈수소효소 유전자를 가진 균주로부터 염색체 DNA를 취득한 후, 설계한 올리고뉴클레오타이드를 프라이머로 하고, 버크올데리아 멀티보란스 (KTCT 2970) 균주의 염색체 DNA를 주형으로 해서 폴리머라제 연쇄반응(PCR)을 행하여, 포름알데하이드 탈수소효소 유전자를 부분적으로 증폭한다. 이와 같이 해서 얻게 된 PCR 증폭 단편은 버크올데리아 멀티보란스 (KTCT 2970) 균주의 포름알데하이드 탈수소효소 유전자에 100% 가까운 상동성을 가진 단편으로서, 콜로니하이브리디제이션을 행할 때의 프로브로서 높은 S/N비를 기대할 수 있는 동시에, 하이브리디제이션의 스트린전시(stringency)제어를 용이하게 한다. 상기의 PCR 증폭 단편을 적당한 시약을 사용해서 표지하고, 상기 염색체 DNA 라이브러리에 대해서 콜로니 하이브리디제이션을 행하여, 포름알데하이드 탈수소효소 유전자를 선발한다 (Current Protocols in Molecular Biology, 1권, 603페이지, 1994년).
상기의 방법에 의해 선발된 대장균으로부터 알칼리법(Current Protocols in Molecular Biology, 1권, 161페이지, 1994년)을 사용하여 플라스미드를 회수함으로써, 포름알데하이드 탈수소효소 유전자를 함유하는 DNA단편을 얻을 수 있다. 또한, 상기 방법에 의해 염기서열을 결정한 후에는, 상기 염기서열을 가진 DNA단편의 제한효소에 의한 분해에 의해 조제한 DNA 단편을 프로브로 사용하여 하이브리다이즈함으로써 본 발명의 전체 유전자를 얻는 것이 가능하다. 서열번호 1에는 본 발명의 포름알데하이드 탈수소효소 유전자의 염기서열을 서열번호 2에는 상기 유전자가 코딩하는 아미노산서열을 표시한다.
본 발명의 형질전환된 미생물은 본 발명의 재조합벡터를 상기 재조합벡터를 제작할 때 사용한 발현벡터에 적합한 숙주 속에 도입함으로써 얻게 된다. 본 발명에 사용된 발현벡터로서는 pET28a을 사용하였으나 상기의 요건을 만족하는 발현벡터이면 어느 것이나 사용 가능하다.
본 발명에 관한 포름알데하이드 탈수소효소의 제조는, 이것을 코딩하는 유전자를 가진 재조합벡터에 의해 숙주를 형질전환해서 얻은 형질전환체를 배양하고, 배양물(배양균체 또는 배양상청액) 속에 유전자 산물인 포름알데하이드 탈수소효소를 생성 축적시켜, 배양물로부터 효소를 취득함으로써 행하여진다.
포름알데하이드 탈수소효소의 취득 및 정제는, 얻게 되는 배양물로부터 균체 또는 상청액을 원심 회수하여, 균체파쇄, 친화성 크로마토그래피, 양이온 또는 음이온교환 크로마토그래피 등을 단독으로 또는 조합함으로써 행할 수 있다.
본 발명에서 환원성을 보이는 포름알데하이드 탈수소효소를 개발하고자 버크올데리아 멀티보란스 (KTCT 2970)로부터 포름알데하이드 탈수소효소 유전자를 클로닝하였다. 발현된 재조합 버크올데리아 멀티보란스 (KTCT 2970 Burkholderia multivorans) 유래의 포름알데하이드 탈수소효소가 NADH를 조효소로 사용한 환원반응을 통해 포름산으로부터 포름알데하이드를 제조할 수 있음을 확인하고 본 발명을 완성하였다.
본 발명은 산업적으로 유용한 포름알데하이드 탈수소효소를 제조하기 위하여 버크올데리아 멀티보란스 (KTCT 2970)의 유전자로부터 포름알데하이드 탈수소효소를 암호화하는 유전자를 클로닝하고, 전기 유전자의 염기서열 및 그로부터 유추되는 아미노산 서열을 분석한다. 본 발명의 포름알데하이드 탈수소효소는 포름산을 기질로 하여 환원반응을 촉매하여 포름알데하이드를 형성하는 효소로서, 보다 바람직하게는 환원반응에 대한 특이성을 갖고 포름산을 포름알데하이드로 전환시킬 수 있는 능력을 갖는 포름알데하이드 탈수소효소를 의미한다.
본 발명의 포름알데하이드 탈수소효소는 다음의 특징을 갖는다: (i) 분자량이 약 46.5 kDa; (ii) 기존에 알려진 포름알데하이드 탈수소효소는 단독으로 포름산을 포름알데하이드로 환원시키는 활성을 거의 보이지 않고 있다. 그러나 본 발명의 포름알데하이드 탈수소효소는 다중효소 시스템인 아닌 단독으로 NADH 조효소를 사용하여 포름산을 환원시켜 포름알데하이드를 생산한다. 따라서 포름산에서 포름알데하이드를 생산하는 본 발명의 효소는 매우 특이하다 할 것이며, 경제적인 포름알데하이드의 생물촉매 생산에 유용하게 적용될 것이다.
본 발명에서 규명한 버크올데리아 멀티보란스 (Burkholderia multivorans) 유래의 포름알데하이드 탈수소효소는 NADH 조효소를 이용하고 포름산을 환원시켜 포름알데하이드를 효율적으로 생산할 수 있다.
도 1은 벡터 pET28a의 벡터맵으로 버크올데리아 멀티보란스 (KTCT 2970, Burkholderia multivorans)의 염색체에서 포름알데하이드 탈수소효소 유전자를 지니고 있는 단편을 찾아 대장균에서 이용되는 벡터에 클로닝한 것이다.
도 2는 버크올데리아 멀티보란스 (Burkholderia multivorans) 로부터 유래된 포름알데하이드 탈수소효소 유전자를 포함하는 발현벡터의 제조방법을 나타내는 도면이다.
도 3은 버크올데리아 멀티보란스 (Burkholderia multivorans) 로부터 유래된 포름알데하이드 탈수소효소의 SDS-PAGE 젤 사진이다. 1; 사이즈 마커, 2; 발현벡터를 형질전환된 균주를 이용하여 발현된 수용성 단백질, 3; 포름알데하이드 탈수소효소의 불용성 단백질, 4; 포름알데하이드 탈수소효소의 수용성 단백질.
도 4는 환원반응을 통해 포름알데하이드의 생산을 위한 최적 pH를 나타낸 도이다.
도 5는 포름알데하이드 탈수소효소의 동역학적 매개변수 그래프이다.
이하, 본 발명을 다음의 실시예에 의하여 더욱 상세히 설명하나, 본 발명이 실시예에 한정되는 것은 아니다.
실시예 1: 버크올데리아 멀티보란스 (Burkholderia multivorans) 로부터 신규 포름알데하이드 탈수소효소 유전자의 클로닝
일반적으로 유사한 기능을 지니는 유전자의 경우에는 각 염기서열과 크기가 어느 정도 유사하다고 알려져 있다. 따라서 버크올데리아 멀티보란스의 포름알데하이드 탈수소효소의 유전자도 약 1.2 kb 정도의 크기를 지녔을 것으로 추정하고 다른 균의 이미 알려진 포름알데하이드 탈수소효소 염기서열을 바탕으로 버크올데리아 멀티보란스의 포름알데하이드 탈수소효소 전체 유전자를 클로닝하였다.
클로닝에는 대장균 pET28a 벡터를 사용하였다. 대장균의 배양 배지로는 일반적 조성의 LB 배지를 사용하였고, 버크올데리아 멀티보란스의 배양에는 상기 펩톤한천배지 (Malt extract peptone agar)를 사용하였다. 대장균의 평판(plate) 배지로는 각각 LB 아가(agar)와 3-5% 설탕, 0.3-0.5% 쇠고기 추출물, 0.9-1.1% 박토 펩톤, 1.3-1.7% 아가 조성의 아가 플레이트를 사용하였다. 필요에 따라 50 ㎍/ml 엠피실린(amipicillin)을 첨가하였다. 배양 방법은 버크올데리아 멀티보란스의 경우, 배지 50 ml이 들어 있는 250 ml의 삼각 플라스크에 접종하여 37℃, 200 rpm 조건에서 5일간 배양하였고, 대장균의 경우에는 37℃, 200 rpm 조건에서 16 시간 배양하였다.
대부분의 DNA는 아가로스겔(TAE buffer, 0.5%) 전기영동법으로 확인하였고, 겔 상에서 DNA 밴드의 정제는 QiaXII 겔 추출장치(QIAGEN, USA)를 이용하였으며, DNA간의 연결(ligation) 반응은 T4 DNA 연결효소(NEB)를 이용하였다. 또한 버크올데리아 멀티보란스 (Burkholderia multivorans)의 RNA 추출은 Qiagen plant total RNA kit(QIAGEN)을 이용하였으며, cDNA 합성을 위한 역전사 효소는 Oligo-dT RT-mix(intron)를 이용하였다.
포름알데하이드 탈수소효소 유전자를 클로닝하기 위하여 버크올데리아 멀티보란스 (Burkholderia multivorans)염색체를 분리하였다. 버크올데리아 멀티보란스 포름알데하이드 탈수소효소 유전자의 일부분을 증폭하기 위해 다른 균에서 이미 알려진 포름알데하이드 탈수소효소 염기서열을 바탕으로 비특이적 프라이머(degenerated primer), BmFalDH_ 5'- SP1 atttgyggcagcgatcwrcatatgkwysrc (서열번호 3)와 BmFalDH_ SP1-Attggcrthccgggnytgtaygtgmcc (서열번호 4)를 제작하였다. 이를 이용하여 연쇄중합반응에 의해 780 bp 크기에 해당하는 포름알데하이드 탈수소효소 유전자 일부를 버크올데리아 멀티보란스 염색체에서 증폭하였다.
그리고 증폭된 상기의 부분 염기서열 중 그 절단 부위가 존재하지 않는 제한 효소인 Sac1, Not1, Xho1, Sal1을 이용하여 버크올데리아 멀티보란스의 genomic DNA를 완전히 절단하였다. 그리고 앞서 중합효소 연쇄반응을 통하여 얻은 DNA 단편을 이용하여 방사능 표지된 탐침자(probe)를 제작하였다. 이를 이용하여 서어던 하이브리다이제이션으로 찾고자 하는 유전자를 지닌 DNA 단편을 탐색하였다. 2.7 kb 정도의 Sac1으로 잘린 조각과 약 5.3 kb 정도의 Sal 1으로 잘린 조각을 이용하여 원하는 유전자를 탐색하였다. 버크올데리아 멀티보란스 염색체를 Sac1으로 절단한 후 분리한 2.7 kb 정도 크기의 DNA 조각과 Sal 1으로 절단한 5.3 kb 정도의 DNA 단편들을 pUC에 클로닝하고 이를 pUC- faldh 라고 명명하였다(도 1).
pUC- faldh 라이브러리에서 앞서 만든 780 bp 크기의 탐침자를 이용하여 콜로니 혼성화를 수행하여 원하는 포름알데하이드 탈수소효소의 유전자를 지닌 클론을 결정하였다. 그리고 결정한 클론을 이용하여 염기서열을 분석함으로써 포름알데하이드 탈수소효소의 전체 유전자 염기서열 1,197 bp를 밝혔으며 (서열번호 1), 이는 예상한 바와 같이 다른 여러 균에서 밝혀진 포름알데하이드 탈수소효소 유전자와 크기가 비슷하였다.
실시예 2: 재조합 발현 벡터 및 재조합 균주 제조
상기 실시예 1에 따른 포름알데하이드 탈수소효소를 암호화하는 유전자를 이용하여, 전기 포름알데하이드 탈수소효소를 대장균에서 대량으로 발현시키기 위하여, 발현 벡터 pET28a(Novagen, 미국)의 BamH과 Xho1 부위에 상기 효소 유전자를 삽입한 후 대장균 BL21(DE3)(NEB, 영국)에 형질 전환시켰다 (도 2).
실시예 3: 재조합 포름알데하이드 탈수소효소의 발현 및 순수 분리
상기 실시예 2에서 제조된 재조합 균주를 LB 배지에 접종하고 37에서 24시간 동안 배양한 후 SDS-PAGE 젤에서 발현된 단백질을 확인하였다 (도 3).
상기 실시예 2의 방법으로 발현시킨 재조합 포름알데하이드 탈수소효소를 정제하기 위하여, 재조합 균주 배양액을 원심분리 (8000xg, 10분)하여 균체만을 모은 후, 초음파 처리하여 대장균의 세포벽을 파쇄하고, 20,000xg에서 20분간 원심분리하여 침전물(균체)을 제거하고 상등액을 수득하였다. 수득한 후, 최종적으로 Ni-NTA His-tag 결합 크로마토그래피(Qiagen, 독일)를 수행하여, 재조합 포름알데하이드 탈수소효소를 순수 분리하였다.
실시예 4: 환원 반응을 통한 포름알데하이드 생산을 위한 최적 pH
상기 실시예 3에서 제조한 포름알데하이드 탈수소효소를 이용하여 포름알데하이드의 생산실험을 다음과 같은 조건에서 수행하였다. 포름알데하이드 탈수소효소를 이용하는 본 발명의 포름알데하이드 생산방법에서, 반응 시 pH를 변화시키면서 포름알데하이드의 생산량을 확인하였다.
효소 정제 방법은 실시예 3과 같이 수행하였으며, 100 mM의 기질 용액, 25℃에서, pH 4.0-10.0까지 변화시키면서 포름알데하이드의 생산량을 확인하였다. 도 4에 나타난 바와 같이, pH를 7.0에서 포름알데하이드의 생산량이 가장 높았다. 따라서, 본 발명의 포름알데하이드 생산 방법에서 최적 pH는 7.0임을 알 수 있었다.
실시예 5: 금속이온의 효과
순수 정제된 포름알데하이드 탈수소효소의 금속 이온이 효소 활성에 미치는 효과를 알아보기 위하여 본 실험을 수행하였다. 최종농도 1 mM 과 5mM의 MgCl2, MnCl2, CoCl2, ZnCl2, FeCl2, CuSO4, CoCl2, HgCl2, BaCl 또는 KCl를 효소 반응액에 첨가한 후 효소의 잔존 활성을 측정하였다. 1 mM, 5mM 농도에서 다양한 금속의 포름알데하이드 탈수소효소효소 활성에 대한 영향은 표 1에 나타내었다. 본 발명의 포름알데하이드 탈수소효소는 5 mM Mg2+ 존재 시 효소 활성이 2.7배 증가하는 것을 확인 하였다 (표 1).
표 1
상대적 활성(%) 상대적 활성(%)
금속 이온 1 mM 5 mM
MnCl2 62.32 111.6
MgCl2 147.8 269.6
CaCl2 50.67 75.96
ZnCl2 63.99 192.2
CuSO4 124.3 91.30
CoCl2 58.39 72.60
BaCl2 98.55 115.1
KCl 104.0 94.49
FeCl2 ND ND
HgCl2 ND ND
None 15.00 13.00
표 1은 포름알데하이드 탈수소효소의 금속이온 효과를 나타낸 표이다.
실시예 6: 포름알데하이드 탈수소효소의 동역학변수
다양한 농도의 기질의 포름산 (0.125-5 mM)을 이용하여 효소 반응을 시킨 후, 비선형 회귀분석을 통하여 동역학적 매개변수를 측정하였다 (도 5). 포름알데하이드 탈수소효소의 NADH에 대한 Km 값은 약 0.19 mM, 포름알데하이드에 대한 Km 값은 약 1.7 mM, Vmax 값은 약 4.7 U mg-protein-1로 결정되었다.
실시예 7: 포름산으로부터 포름알데하이드의 생산실험
최적화 한 조건에서 버크올데리아 멀티보란스 유래 포름알데하이드 탈수소효소를 이용한 포름알데하이드 생산실험을 수행하였다. 반응액 내의 포름알데하이드 탈수소효소 20 ㎍, 10 mM 기질 농도, pH 7.0 및 반응온도 30℃로 조절한 후 실험한 결과 3시간 반응시켰을 때 약 27%의 전환율을 나타내었다. 이는 포름산으로부터 포름알데하이드의 직접적인 생물전환 생산에 관한 최초의 보고이다.

Claims (9)

  1. 서열번호 2의 아미노산 서열로 이루어진 환원활성 보유 포름알데하이드 탈수소효소.
  2. 제 1항에 있어서, 상기 효소는 버크올데리아 멀티보란스 유래인 것을 특징으로 하는 포름알데하이드 탈수소효소.
  3. 제 1항의 효소를 코딩하는 포름알데하이드 탈수소효소 유전자.
  4. 제 3항에 있어서, 상기 유전자는 서열번호 1의 염기서열로 이루어진 것을 특징으로 하는 포름알데하이드 탈수소효소 유전자.
  5. 제 3항 또는 제 4항의 포름알데하이드 탈수소효소 유전자를 포함하는 재조합 발현벡터.
  6. 제 5항의 재조합 발현벡터로 형질전환된 균주를 배양하여 포름알데하이드 탈수소효소를 생산하는 방법.
  7. 제 1항의 포름알데하이드 탈수소효소를 기질에 처리하여 상기 효소의 환원 반응을 통해 기질로부터 포름알데하이드를 생산하는 방법.
  8. 제 7항에 있어서, 상기 기질은 포름산인 것을 특징으로 하는 방법.
  9. 제 1항의 포름알데하이드 탈수소효소를 유효성분으로 포함하는 포름알데하이드 생산용 조성물.
PCT/KR2014/004812 2014-03-13 2014-05-29 신규 포름알데하이드 탈수소효소 및 이를 이용한 포름알데하이드의 생산방법 WO2015137565A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/125,785 US9963684B2 (en) 2014-03-13 2014-05-29 Formaldehyde dehydrogenase and method for preparing formaldehyde using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0029848 2014-03-13
KR1020140029848A KR101694582B1 (ko) 2014-03-13 2014-03-13 신규 포름알데하이드 탈수소효소 및 이를 이용한 포름알데하이드의 생산방법

Publications (1)

Publication Number Publication Date
WO2015137565A1 true WO2015137565A1 (ko) 2015-09-17

Family

ID=54071989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004812 WO2015137565A1 (ko) 2014-03-13 2014-05-29 신규 포름알데하이드 탈수소효소 및 이를 이용한 포름알데하이드의 생산방법

Country Status (3)

Country Link
US (1) US9963684B2 (ko)
KR (1) KR101694582B1 (ko)
WO (1) WO2015137565A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114621935B (zh) * 2020-12-11 2023-11-24 中国科学院大连化学物理研究所 一种甲醛脱氢酶突变体及其应用
CN115058376A (zh) * 2022-06-17 2022-09-16 福建师范大学 重组菌株及其在利用甲酸或其衍生物中的应用和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303981A (ja) * 1993-04-21 1994-11-01 Toyobo Co Ltd ホルムアルデヒド脱水素酵素活性を有する蛋白質の遺伝情報を有するdna並びにホルムアルデヒド脱水素酵素の製造法
US6440711B1 (en) * 2000-12-08 2002-08-27 Board Of Trustees Southern Illinois University, The Dehydrogenase enzymatic synthesis of methanol
JP2005185138A (ja) * 2003-12-25 2005-07-14 Toyama Univ ホルムアルデヒド脱水素酵素の製造方法
US20070042479A1 (en) * 2005-08-18 2007-02-22 Southern Illinois University At Carbondale Conversion of carbon dioxide to methanol in silica sol-gel matrix

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303981A (ja) * 1993-04-21 1994-11-01 Toyobo Co Ltd ホルムアルデヒド脱水素酵素活性を有する蛋白質の遺伝情報を有するdna並びにホルムアルデヒド脱水素酵素の製造法
US6440711B1 (en) * 2000-12-08 2002-08-27 Board Of Trustees Southern Illinois University, The Dehydrogenase enzymatic synthesis of methanol
JP2005185138A (ja) * 2003-12-25 2005-07-14 Toyama Univ ホルムアルデヒド脱水素酵素の製造方法
US20070042479A1 (en) * 2005-08-18 2007-02-22 Southern Illinois University At Carbondale Conversion of carbon dioxide to methanol in silica sol-gel matrix

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI, Genbank 27 June 2013 (2013-06-27), Database accession no. YP_001583515.1 *

Also Published As

Publication number Publication date
KR101694582B1 (ko) 2017-01-17
US20170145389A1 (en) 2017-05-25
US9963684B2 (en) 2018-05-08
KR20150107248A (ko) 2015-09-23

Similar Documents

Publication Publication Date Title
CN107586763B (zh) 羰基还原酶突变体、载体、工程菌及其应用
CN109468291B (zh) 一种羰基还原酶EbSDR8突变体及其构建方法和应用
CN105567652B (zh) 一种酮还原酶及其在不对称合成手性羟基化合物中的应用
CN108239664B (zh) 一种制备4-羟基-l-苏氨酸的工艺
WO2015137565A1 (ko) 신규 포름알데하이드 탈수소효소 및 이를 이용한 포름알데하이드의 생산방법
CN110592035B (zh) 一种羰基还原酶的突变体、重组表达载体及其在生产手性醇中的应用
CN109679978B (zh) 一种用于制备l-2-氨基丁酸的重组共表达体系及其应用
CN114908129B (zh) 用于制备(r)-4-氯-3-羟基丁酸乙酯的脱氢酶
EP1553175A1 (en) Cephalosporin C acylase mutants
CN115747183A (zh) 一种酮还原酶突变体及其应用
CN115975964A (zh) 一种高活性酮基泛解酸内酯还原酶突变体及其编码基因和应用
JP2008283917A (ja) 乳酸の製造方法
KR101564315B1 (ko) 신규 포름산 탈수소효소 및 이를 이용한 포름산의 생산방법
KR101228974B1 (ko) 락토바실러스 람노수스 유래 내열성물 생성 nadh 산화효소 및 그 생산 방법
CN111019915B (zh) 羰基还原酶突变体在手性邻位卤代-α-苯乙醇合成中的应用
CN115896065B (zh) 一种立体选择性羧酯酶、编码基因、载体及其应用
CN111575258B (zh) 一种羰基还原酶EbSDR8突变体及其构建方法和应用
KR101411920B1 (ko) 신규 리비톨 탈수소화효소 및 이를 이용한 l-리불로스의 생산방법
WO2014171570A2 (ko) 화농연쇄구균 유래 신규 nadh 산화효소 및 l-아라비니톨 산화효소와의 커플링에 의한 l-자일룰로스의 생산
KR101479135B1 (ko) 아스페르기루스 플라버스 유래 솔비톨 탈수소화효소와 nadh 산화효소와의 커플링에 의한 l-자일룰로스의 생산
WO2015190633A1 (ko) 활성이 개선된 대장균 유래의 돌연변이 당 이성질화 효소 및 그를 이용한 l-굴로스의 생산
JP2004350625A (ja) 光学活性n−ベンジル−3−ピロリジノールの製造方法
WO2020116932A2 (ko) 디카르복시산 생합성 관련 효소 및 이를 이용한 디카르복시산 생산방법
WO2010090359A1 (ko) 신규 l-아라비니톨 탈수소화효소 및 이를 이용한 l-리불로스의 생산방법
CN115109764A (zh) 一种nad激酶突变体及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15125785

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14885193

Country of ref document: EP

Kind code of ref document: A1