WO2015137386A1 - 有機性排水の生物処理装置及び処理方法 - Google Patents

有機性排水の生物処理装置及び処理方法 Download PDF

Info

Publication number
WO2015137386A1
WO2015137386A1 PCT/JP2015/057126 JP2015057126W WO2015137386A1 WO 2015137386 A1 WO2015137386 A1 WO 2015137386A1 JP 2015057126 W JP2015057126 W JP 2015057126W WO 2015137386 A1 WO2015137386 A1 WO 2015137386A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological treatment
treatment tank
tank
tower body
water
Prior art date
Application number
PCT/JP2015/057126
Other languages
English (en)
French (fr)
Inventor
中野 吉雅
鈴木 雅和
圭介 中根
小西 日善
田中 一平
哲 清水
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020187007588A priority Critical patent/KR20180031806A/ko
Priority to CN201580013661.0A priority patent/CN106103357A/zh
Priority to KR1020177026695A priority patent/KR20170113682A/ko
Priority to KR1020167022136A priority patent/KR20160117482A/ko
Publication of WO2015137386A1 publication Critical patent/WO2015137386A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/109Characterized by the shape
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/121Multistep treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/346Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from semiconductor processing, e.g. waste water from polishing of wafers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/40Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture or use of photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/107Inorganic materials, e.g. sand, silicates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/108Immobilising gels, polymers or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a biological treatment apparatus for organic wastewater that can be widely used for the treatment of organic wastewater such as domestic wastewater, sewage, food factories, pulp factories, semiconductor production wastewater, and liquid crystal production wastewater.
  • the present invention relates to a biological treatment apparatus for organic wastewater provided with a biological treatment tower for biologically treating water.
  • this invention relates to the biological treatment method of the organic waste water using this processing apparatus.
  • the activated sludge method used when biologically treating organic wastewater is widely used for sewage treatment, industrial wastewater treatment, and the like because of its advantages such as good treated water quality and easy maintenance.
  • the BOD volumetric load in the activated sludge method is generally about 0.5 to 0.8 kg / m 3 / d, a large site area is required.
  • 20 to 40% of the decomposed BOD is converted into bacterial cells, that is, sludge, a large amount of excess sludge treatment is also a problem.
  • Patent Document 1 organic wastewater is first treated with bacteria in a first treatment tank, and organic matter contained in the wastewater is oxidatively decomposed and converted into non-aggregating bacterial cells, and then in a second treatment tank. It is described that the amount of excess sludge can be reduced by feeding predatory protozoa. Further, this method enables high-load operation and improves the processing efficiency of the activated sludge method.
  • Patent Document 2 describes a countermeasure against deterioration in processing performance due to fluctuations in the quality of raw water, which is a problem in the processing method of Patent Document 1.
  • the method includes “adding a microbial preparation or seed sludge to the first treatment tank when the quality of the first treated water deteriorates”.
  • Patent Document 3 flocs that are preyed by ultrasonic treatment or mechanical agitation when protozoa or metazoans prey on bacteria, yeast, actinomycetes, algae, molds, wastewater treatment primary sludge or surplus sludge. A method to make the flock size smaller than the animal's mouth is proposed.
  • Patent Document 4 There is a method described in Patent Document 4 as a biological treatment method of organic wastewater by a multi-stage treatment of fluidized bed and activated sludge process.
  • the latter activated sludge method is operated at a low load of BOD sludge load 0.1 kg-BOD / kg-MLSS / d, so that the sludge can be self-oxidized and the amount of sludge extraction can be greatly reduced.
  • a new fluidized bed carrier is introduced into the tank and aeration is started.
  • the carrier is made of a material having a bulk specific gravity smaller than 1, such as a sponge.
  • the carrier is gradually introduced into the tank at different timings, and the carrier is caused to flow by aeration while suppressing the floating of the carrier, so that it takes a long time to introduce the whole amount of the carrier.
  • a tank body of a conventional biological treatment tank As a tank body of a conventional biological treatment tank, a concrete tank or a tower-like elevated tank is used.
  • the concrete tank has the following problems. i) The main body of the tank will be civil engineering work, and the internal equipment will be installed after the tank construction. Concerns remain in terms of construction and quality control. ii) Since the water depth is practically about 4m in practice, the installation space at the site will be large. iii) Even if it is desired to reinforce the facility in response to the increase in raw water load, it cannot be easily expanded due to local civil engineering work and large installation area. iv) It is difficult to check for leaks from the bottom. v) The tank inner lining needs to be repaired.
  • the tower-shaped elevated tank has the following problems. vi) In order to secure the capacity while suppressing the installation space, it is necessary to increase the tank height, and at least 7 m is required. In this case, it is necessary to climb to the upper part of the tank during on-site piping construction and daily maintenance, and usually a staircase or a ladder is installed. For this reason, workability
  • JP-A-55-20649 JP 2000-210692 A Japanese Patent Publication No. 60-23832 Japanese Patent No. 3410699
  • the conventional concrete tank or tower-shaped elevated tank has the following problems. 1) The installation area of the concrete tank is large. 2) The construction period will be longer in concrete tanks. 3) It is not easy to reinforce equipment in a concrete tank. 4) Tower-type water tanks with large tank heights have poor work efficiency due to work at high places, and it is necessary to improve workability and prevent falling accidents. 5) In tower-type water tanks with large tank heights, piping from the top of the tank to the outside will be generated, increasing the burden of on-site construction, so it is necessary to simplify on-site construction.
  • the object of the present invention (I) is to provide a biological treatment apparatus and treatment method for organic waste water that is easy to construct and can reduce work at a high place and save space.
  • an object of the present invention (I) is to provide an organic wastewater biological treatment apparatus and a treatment method that can easily cope with various raw water quality, fluctuations in required water quality, and increased amount of treated water.
  • the biological wastewater treatment device of the present invention (I) is a device for biologically treating organic wastewater in a biological treatment tank provided in multiple stages.
  • a biological treatment apparatus for organic waste water that generates first biological treated water with increased dispersal bacteria by decomposition and produces second biological treated water in a second biological treated tank at a later stage, wherein the first biological treated tank and The second biological treatment tank has towers having the same shape and size, and the height of the towers is 6 to 11 m.
  • the ratio (H / D) of the height (H) to the diameter (D) of the tower is preferably 1.5 to 5.0.
  • the installation height TOP (TOP of pipe) of a manhole or most, for example, half or more pipe connection parts is 3 m or less.
  • a plurality of first biological treatment tanks and second biological treatment tanks may be installed in parallel.
  • the tower body is preferably made of FRP, and is integrally molded as a whole from the tower bottom to the tower top.
  • the thickness of the lower part of the tower body is preferably larger than the thickness of the upper part of the tower body.
  • at least a part of the vertical piping has a half-cylindrical shape and is bonded to the inner peripheral surface of the tower body.
  • the biological wastewater treatment method of the present invention uses such a biological treatment apparatus of the present invention.
  • the organic wastewater treatment apparatus of the present invention is provided with a plurality of water treatment units having towers of standard dimensions (same shape, same size), and each water treatment unit is manufactured in advance in a factory. I can leave.
  • the design and construction of the apparatus are also made common and can be performed easily and quickly. Moreover, the space between tanks can also be made small. Furthermore, it is easy to add a biological treatment tank.
  • the weight is reduced, and transportation and installation work are facilitated.
  • the strength, pressure resistance, and durability of the tower can be increased by increasing the thickness of the lower part of the tower.
  • the vertical piping into a half-cylindrical shape and adhering to the circumferential surface of the tower body, the structure inside the tower body can be simplified, and the water circulation flow inside the tower body can be made smooth. Also, the installation strength of the vertical piping is increased.
  • most of the pipe joints and manholes are provided in the lower part of the tower (height of the ground is 4 m or less), so the number of work at high places is small.
  • biological treatment tanks are provided in multiple stages, the biological treatment tank in the previous stage is a dispersion bacteria tank that converts organic matter into dispersal bacteria, and the last biological treatment tank has an adhesive property that prey on the dispersal bacteria.
  • a carrier is provided as a scaffold for filtered predatory microanimals. In this treatment, the micro-animal can be stably maintained, and the treated water quality can be stabilized.
  • the object of the present invention (II) is to provide a method for operating a biological treatment tank and a method for treating organic waste water that can cause the carrier to flow early at the start of operation and have a short start-up time.
  • the present invention (II) in one aspect thereof, aims to provide an organic wastewater treatment apparatus that can easily cope with various raw water quality, required water quality fluctuations, and increased amount of treated water.
  • a fluidized bed carrier having a bulk specific gravity smaller than 1 is introduced into the biological treatment tank, and aeration is performed from an air diffuser provided at the bottom of the biological treatment tank.
  • aeration is performed from an air diffuser provided at the bottom of the biological treatment tank.
  • water may be sprayed into the tower. In this case, you may sprinkle defoamer containing water.
  • the biological treatment tank is composed of a cylindrical tower having a ratio (H / D) of height (H) to diameter (D) of 1.5 to 5.0. It is preferable.
  • the biological treatment method for organic wastewater of the present invention (II) is a method of biological treatment of organic wastewater in a biological treatment tank provided in multiple stages, and at least one biological treatment tank is activated by the operation method of the present invention. It is characterized by that.
  • the first biological treatment water in which the dispersal bacteria are increased by the decomposition of the organic matter by the dispersal bacteria is generated, and in the second-stage biological treatment tank, the second biological treatment water is generated. It is preferable to produce water.
  • the first biological treatment tank and the second biological treatment tank have towers of the same shape and size, and the height of the towers is preferably 6 to 11 m.
  • a plurality of the first biological treatment tank and the second biological treatment tank may be installed in parallel.
  • the fluidized bed carrier can be submerged and fluidized faster.
  • spraying water containing the antifoaming agent it is possible to prevent the aeration bubbles from being entangled with the carrier and floating the carrier.
  • the method of the present invention is suitable for application when the specific height (H / D) of the biological treatment tank is large.
  • the organic wastewater treatment apparatus used in one aspect of the present invention includes a plurality of water treatment units having towers of standard dimensions (same shape, same size), and each water treatment unit is in advance in a factory. Can be produced.
  • the size of each tank is unified, the design and construction of the apparatus are made common and can be performed easily and quickly. Moreover, the space between tanks can also be made small. Furthermore, it is easy to add a biological treatment tank.
  • biological treatment tanks are provided in multiple stages, the biological treatment tank in the previous stage is a dispersion bacteria tank that converts organic matter into dispersal bacteria, and the last biological treatment tank has an adhesive property that prey on the dispersal bacteria.
  • a carrier is provided as a scaffold for filtered predatory microanimals. In this treatment, the micro-animal can be stably maintained, and the treated water quality can be stabilized.
  • FIG. 3 is a view taken along line III-III in FIG. 4a to 4h are plan views showing examples of arrangement of water treatment units in the organic wastewater biological treatment apparatus of the present invention.
  • FIG. 6A is a cross-sectional view taken along line AA in FIG. 5
  • FIG. 6B is a cross-sectional view taken along line BB in FIG.
  • FIG. 7 is a sectional view taken along line VII-VII in FIG. 5.
  • FIG. 9A is a configuration diagram showing another embodiment
  • FIG. 9B is a cross-sectional view taken along the line IXb-IXb in FIG. 9A.
  • FIG. 1 shows an embodiment of a biological treatment apparatus for organic wastewater of the present invention (I), wherein a first biological treatment tank 1 and a second biological treatment tank 2 are erected on a foundation 3, The pipes 4 are connected in series.
  • the first biological treatment tank 1 is connected to the cylindrical tower 10, the raw water inlet 11 a having a flange structure provided on the lower side surface of the tower 10, and the raw water inlet 11 a,
  • the raw water introduction pipe 11 whose upper end is opened above the outlet 14 a, the air diffusion pipe 12 provided at the bottom of the tower body 10, and the upper side of the air diffusion pipe 12 in the tower body 10
  • the fixed bed or rocking bed carrier 13 installed in the upper part of the tower body 10 and the treated water outlet 14a provided at the upper part of the tower body 10 are provided.
  • the air diffuser 12 is connected to a blower (not shown) as a gas supply device.
  • a blower when the water level is high, a high pressure blower having a capability of a discharge pressure of 60 kPa or more such as a screw blower or a turbo blower is preferable.
  • the outflow pipe 14 is connected to the outflow port 14a.
  • the outflow pipe 14 extends downward along the outer surface of the tower body 10, and the lower end is a pipe connection part 14b having a flange structure.
  • a crank-shaped bent portion 14c is provided in the middle of the outflow pipe 14 in the vertical direction.
  • An opening 15 a is provided at the top of the tower body 10, and one end of the atmosphere communication pipe 15 is connected. As shown in FIG. 2, the atmosphere communication pipe 15 extends downward on the outer surface of the tower body 10 along the tower body 10, and the lower end 15 b is opened downward in the immediate vicinity of the foundation 3. The upper end of the outflow pipe 14 communicates with the laterally extending portion 15b of the atmospheric communication pipe 15 through an inverted U-shaped communication pipe 14d.
  • a spare seat 16 is provided at the top of the tower body 10, and a manhole 17 and a spare seat 18 are provided at the lower portion.
  • the second biological treatment tank 2 includes a cylindrical tower body 20 having the same shape and size as the tower body 10, a flanged structure inlet 21 provided on the lower side surface of the tower body 20, and the inside of the tower body 20.
  • a diffuser tube 22 provided at the bottom of the column 20 and a strainer 23 installed in the middle in the vertical direction of the tower body 20 or below it.
  • the inflow port 21 is connected to the pipe connection portion 14b through the pipe 4.
  • the air diffuser 22 is connected to a blower (not shown). This blower is shared with a blower for supplying air to the air diffuser 12.
  • the outflow pipe 24 is connected to the strainer 23. As shown in FIG. 3, the outflow pipe 24 rises up to the same level as the outlet 14a of the first biological treatment tank 10 along the outer surface of the tower body 20, and one end side is connected to the upright part 24a in the horizontal direction. A laterally extending portion 24b led to the other end side of the laterally extending portion 24b, and an upright portion 24c extending to the vicinity of the foundation 3 along the outer surface of the tower body 20, The lower end of the lower part 24c is an outlet 24d. An air release pipe 24e extends upward from the upper end of the rising portion 24a of the outflow pipe 24, and the upper end of the air release pipe 24e is open to the atmosphere. A crank-shaped bent portion 24 f is provided in the middle of the standing portion 24 c of the outflow pipe 24.
  • An opening 25 a is provided at the top of the tower body 20, and one end of the atmosphere communication pipe 25 is connected thereto. As shown in FIG. 3, the atmosphere communication pipe 25 extends downward on the outer surface of the tower body 20 along the tower body 20, and the lower end 25 b is opened downward in the immediate vicinity of the foundation 3.
  • a preliminary seat 26 is provided at the top of the tower body 20, and a manhole 27, a preliminary seat 28, and an air supply pipe 22a to the diffuser pipe are provided at the lower portion.
  • a fluidized bed carrier 29 is packed in the tower body 20.
  • Reference numeral 27a denotes a maintenance manhole for the strainer 23.
  • the tower bodies 10 and 20 are preferably made of resin such as FRP in order to eliminate the need for lining, but may be steel plates depending on the water quality.
  • FRP resin
  • it is preferable to apply a weather-resistant paint for example, a tank stainless coat made by Torch Co., Ltd.
  • a tank stainless coat made by Torch Co., Ltd.
  • the upper and lower parts of the tower body may be thicker than the upper part, and the lower part may be thicker than that.
  • the first and second biological treatment tanks 1 and 2 are provided with an excess sludge extraction pipe, a drain pipe, an insertion pipe for a monitoring camera in the tank, a wiring insertion opening, a sampling opening (not shown), and the like.
  • Monitoring in the tank is performed by always or appropriately inserting a camera or a photographing device (preferably with illumination or an infrared camera) having a moving image shooting function into the tank.
  • Shooting data is transmitted wirelessly or by wire.
  • the photographing data may be stored in the photographing equipment.
  • a heat insulating material may be wound around the tower in advance.
  • water level gauges pressure gauges, flow meters, water temperature gauges, water quality gauges, and other measuring instruments in water tanks or peripheral equipment, piping, etc.
  • it is used for optimizing the treatment in the water tank in combination with incidental facilities (for example, facilities equipped with water supply, heating, chemical injection, aeration, dehydration functions, etc.).
  • raw water organic wastewater
  • Bacteria non-aggregating bacteria
  • soluble BOD organic components
  • the pH of the first biological treatment tank 1 is preferably 6 to 8.5.
  • the pH is 8 It can be ⁇ 9.
  • the water flow to the 1st biological treatment tank 1 shall be a transient type.
  • the BOD volumetric load of the first biological treatment tank 1 is 1 kg / m 3 / d or more, for example 1 to 20 kg / m 3 / d
  • HRT raw water residence time
  • HRT raw water residence time
  • a fluid bed carrier may be filled as the carrier.
  • the material is preferably a foamed synthetic resin, particularly a flexible polyurethane foam.
  • a porous sheet-like oscillating bed carrier such as a thin plate-like or strip-like lightweight polyurethane foam is installed in the first biological treatment tank 1, the oscillating bed carrier has sufficient elasticity, Even if it is thin, it has sufficient mechanical strength and does not break by being bent in the flow of water in the tank. Moreover, by bending, it mixes uniformly, without inhibiting the water flow in a tank, and a sludge containing liquid comes to flow uniformly also into the porous structure of a support
  • carrier is preferably a foamed synthetic resin, particularly a flexible polyurethane foam.
  • the filling rate of the carrier in the first biological treatment tank 1 is high, dispersal bacteria are not generated, and bacteria adhere to the carrier or filamentous bacteria grow. Therefore, the filling rate of the carrier added to the first biological treatment tank 1 is 10% or less, for example 1 to 10% in the case of a fluidized bed carrier, and 5% or less, for example, in the case of a fixed bed carrier or a rocking carrier. By setting the content to 0.5 to 5%, it becomes possible to produce dispersal bacteria that are easy to prey without being affected by concentration fluctuations.
  • the dissolved oxygen (DO) concentration in the first biological treatment tank 1 may be 1 mg / L or less, preferably 0.5 mg / L or less to suppress the growth of filamentous bacteria.
  • the treated water (first biological treated water) in the first biological treatment tank 1 is introduced into the second biological treatment tank 2 in the subsequent stage through the outlet 14a, the pipes 14, 4 and the inlet 21, and aerated and remains.
  • the amount of excess sludge is reduced by oxidative degradation of organic components, self-degradation of dispersible bacteria, and predation of minute animals.
  • the treatment liquid in the second biological treatment tank 2 is taken out via the strainer 23 and the outflow pipe 4.
  • the second biological treatment tank 2 it is necessary to use an operation condition and a treatment apparatus that allow the microanimal and the bacteria to remain in the system in order to use the action of the microanimal having a slower growth rate than the bacteria and the autolysis of the bacteria. . Therefore, in this embodiment, the second biological treatment tank 2 is filled with a fluidized bed carrier 29 to increase the amount of minute animals retained in the tank.
  • the shape of the fluidized bed carrier 29 is arbitrary such as a spherical shape, a pellet shape, a hollow cylindrical shape, a thread shape, a plate shape, and the size (diameter) is about 0.1 to 10 mm.
  • the material of the carrier 29 is arbitrary such as a natural material, an inorganic material, or a polymer material, and a gel material may be used.
  • the carrier is not limited to a fluidized bed carrier, and may be either a fixed bed carrier or a rocking carrier, and two or more kinds of carriers may be used in combination.
  • the filling rate of the carrier is excessively high, mixing in the tank, sludge decay, etc. may occur.
  • the filling rate is preferably about 0.5 to 30%, particularly about 1 to 10%.
  • the pH of the second biological treatment tank 2 may be 7.0 or less.
  • the second biological treatment tank 2 not only the filtration predation type micro-animal that prey on the dispersed cells but also the aggregate predation type micro-animal that can prey on the floc sludge grows. Since the latter prey on flocs while swimming, if priority is given, sludge is eaten and becomes sludge in which fine floc pieces are scattered (sludge with poor sedimentation). In addition, this floc piece causes clogging of the membrane particularly in the membrane activated sludge method in which membrane separation is performed in the latter stage. Therefore, in order to thin out the aggregate predatory microanimals, it is desirable to control the SRT to be constant within a range of 60 days or less, preferably 45 days or less. However, if it is less than 15 days, it is unnecessarily frequent, and the number of not only aggregate predation type micro-animals but also filtration predation type micro-animals is excessively reduced.
  • the first biological treatment tank 1 it is necessary to decompose most of the organic matter, that is, 70% or more of the wastewater BOD, desirably 80% or more, and convert it into microbial cells.
  • the organic substances When the organic substances are completely decomposed, flocs are not formed in the second biological treatment tank 2, and there is not enough nutrients for the growth of micro-animals. Only sludge with poor compaction (sludge with poor sedimentation) is excellent. It becomes an occupied biological treatment tank. Therefore, a part of the raw water is bypassed and supplied to the second biological treatment tank 2 so that the sludge load due to the soluble BOD in the second biological treatment tank 2 is 0.025 kg-BOD / kg-MLSS / d or more. You may drive.
  • the MLSS at this time includes MLSS for the carrier adhering.
  • any of membrane separation, coagulation sedimentation, and pressurized flotation is performed as solid-liquid separation in order to obtain a higher quality of treated water. May be.
  • the amount of coagulant added can be reduced.
  • the sedimentation water from the second biological treatment tank 2 may be agglomerated in a coagulation tank, and then precipitated in a solid-liquid separation tank (sedimentation tank) to separate into treated water and sedimented sludge.
  • an air supply pipe for backwashing may be connected to the pipe 24.
  • the strainer 23 is installed in the lower part of the tower body, the deposits can be easily removed.
  • the strainer 23 by installing the strainer 23 in the lower part of the tower body, it is possible to prevent floating foreign substances such as fats and oils from adhering to the strainer.
  • a biological treatment apparatus for organic wastewater according to another embodiment of the present invention will be described with reference to FIGS.
  • the first biological treatment tank 41 and the second biological treatment tank 42 are erected on the foundation 43 and connected in series by a pipe 70.
  • the first biological treatment tank 41 includes an FRP cylindrical tower body 50, a raw water (treated water) inlet 51 a having a flange structure provided on the lower side surface of the tower body 50, and the raw water inlet 51 a.
  • a raw water introduction pipe 51 that extends upward along the inner peripheral surface of the tower body 50 and has an upper end opened higher than the water surface level, and an aeration pipe 52 provided at the bottom of the tower body 50,
  • An opening 50a is provided at the top of the tower body 50, and the inside of the tower body 50 communicates with the atmosphere through the opening 50a.
  • the raw water introduction pipe 51 has a half-cylindrical shape and is bonded to the inner peripheral surface of the tower body 50. As described above, the upper end of the raw water introduction pipe 51 is open into the tower body 50 above the water level. The lower end of the raw water introduction pipe 51 is sealed. A raw water inlet 51 a provided so as to penetrate the lower side wall of the tower body 50 communicates with a lower end portion in the raw water introduction pipe 51.
  • the one end side of the air pipe 53 passes through the lower part of the tower body 50 and protrudes outside the tower body 50, and an air supply pipe from the blower is connected to the tip of the air pipe 53.
  • the other end of the air pipe 53 is connected to the diffuser pipe 52.
  • the air pipe 53 rises above the water level in the tower body 50, and one end of the siphon break pipe 53A is connected to the highest portion 53b of the rise.
  • the siphon break pipe 53 ⁇ / b> A is routed downward in the tower body 50, and the other end side penetrates the lower part of the tower body 50 and projects out of the tower body 50.
  • a valve 53a is provided at the tip of the siphon break pipe 53A.
  • the strainer 54 is installed near the middle in the vertical direction of the tower body 50 or below it. As shown in FIG. 7, the strainer 54 includes a box 54a attached by being bonded to the inner peripheral surface of the tower body 50, and a screen 54b made of a wedge wire or the like provided on the front surface of the box 54a.
  • the rear surface of the box 54 a is open, and the rear end of the box 54 a is bonded to the inner peripheral surface of the tower body 50.
  • connection pipe 55 In this embodiment, two strainers 54 are provided apart from each other in the vertical direction, and the inside of each strainer 54 is connected by a connection pipe 55.
  • the connecting pipe 55 is also a half cylinder and is bonded to the inner peripheral surface of the tower body 50.
  • the treated water outlet 56 communicates with the connection pipe 55 through an opening provided in the tower body 50.
  • the tower body 50 is provided with a hand hole.
  • the drain pipe 57 extends in the vertical direction along the inner peripheral surface of the tower body 50.
  • the drain pipe 57 has a half-cylindrical shape as shown in FIG. 6B except for the uppermost part, and is adhered to the inner peripheral surface of the tower body 50.
  • the uppermost part of the drain pipe 57 has a cylindrical shape and opens into the tower body 50 above the water level.
  • the lower end portion of the drain pipe 57 communicates with the drain outlet 57 at the lower part of the tower body 50.
  • the defoamer water injection pipe 58 is routed in the vertical direction in the tower body 50, and the upper end portion is bent in a substantially U shape so as to face downward, above the water level in the tower body 50. It is open. The lower end of the water injection pipe 58 penetrates the tower body 50 and protrudes outside the tower body 50.
  • the second biological treatment tank 42 has all the configurations of the first biological treatment tank 41, and the same reference numerals are given to the same parts as the first biological treatment tank 41.
  • the second biological treatment tank 42 is provided with a treated water extraction pipe 60 connected to the treated water outlet 56 in addition to the above-described configuration of the first biological treatment tank 41.
  • the treated water extraction pipe 60 is drawn upward outside the tower body 50, then passes through the side wall of the tower body 50 and is drawn into the tower body 50, and above the water surface of the second biological treatment tank 10.
  • a rising portion 61 that rises up to one end
  • a horizontal extending portion 62 that is connected to the rising portion 61 at one end side, and is connected to the other end side of the horizontal extending portion 62 and extends to the lower portion in the tower body 50.
  • And has an upright portion 63 protruding out of the tower body 50, and the end of the upright portion 63 serves as an outlet 64.
  • the upper end 61a of the upright portion 61 is curved downward and is open in the tower body 50. For this reason, the level of the horizontal drawing portion 62 becomes the water level in the second biological treatment tank 42. Further, since the outlet 56 of the first biological treatment tank 41 and the inflow port 51a of the second biological treatment tank 42 communicate with each other through the pipe 70, the water level in the first biological treatment tank 41 is the second biological treatment tank. It becomes the same as the water level of 42.
  • the upright portion 61 and the upright portion 63 extend in the vertical direction along the inner peripheral surface of the tower body 50.
  • the upright portion 61 and the upright portion 63 have a half-cylindrical shape, and are connected to the inner peripheral surface of the tower body 50.
  • Two valves 66 and 67 are provided in a portion of the pipe 60 routed outside the tower body 50.
  • An air supply pipe 68 having a valve 68 a is connected between the valves 66 and 67.
  • a sampling pipe 69 for taking out sample water is connected between the valves 66 and 67.
  • the pipe 69 is provided with a valve 69a.
  • Two valves 71 and 72 are provided in a pipe 70 connecting the treated water outlet 56 of the first biological treatment tank 41 and the inlet 51a of the second biological treatment tank 42.
  • An air supply pipe 73 having a valve 74 is connected between the valves 71 and 72.
  • the first and second biological treatment tanks 41 and 42 are filled with a fluidized bed carrier.
  • a fluidized bed carrier the same one as in the above embodiment can be used.
  • raw water (organic wastewater) is introduced into the first biological treatment tank 51 via the introduction pipe 51 of the first biological treatment tank 41, and the diffuser pipe 52.
  • 70% or more, desirably 80% or more, more desirably 85% or more of the organic component (soluble BOD) is oxidatively decomposed by dispersible bacteria (non-aggregating bacteria).
  • the valve 53a of the pipe 53A is closed during aeration. Suitable conditions such as pH, BOD volumetric load, carrier filling rate, dissolved oxygen (DO) concentration, etc. of the first biological treatment tank 41 are the same as those in the embodiment of FIGS.
  • the treated water (first biological treated water) of the first biological treatment tank 41 is introduced from the outlet 56 into the second biological treatment tank 42 in the subsequent stage via the pipe 70, aerated, and the remaining organic components are oxidized. Reduce excess sludge by decomposition, self-degradation of dispersible bacteria and predation of micro-animals.
  • the valves 71 and 72 of the pipe 70 and the valves 66 and 67 of the pipe 60 are opened.
  • the preferred carrier filling rate, pH, SRT, and sludge load due to the soluble BOD in the second biological treatment tank 42 are the same as in the above embodiment.
  • the air during aeration in the first and second biological treatment tanks 41 and 42 is discharged out of the tower through the opening 50a at the top of the tower. Bubbles generated during aeration are discharged to the drain pit outside the tower body 50 through the pipe 57. A foam sensor is provided in this drainage pit, and when there are many bubbles, an antifoaming agent or water is injected.
  • the valve 72 when the screen 54b of the strainer 54 of the first biological treatment tank 41 is clogged, the valve 72 is closed, the valve 74 is opened, and air is supplied from the air supply pipe 73 to the strainer of the first biological treatment tank 41. 54 is supplied and backwashed with air.
  • the valve 67 When the screen 54b of the strainer 54 of the second biological treatment tank 42 is clogged, the valve 67 is closed, the valve 68a is opened, and air is supplied from the air pipe 68 into the strainer 54 of the second biological treatment tank 42. Backwash.
  • the strainer 54 can be easily washed with air, the washing is easy even if the strainer 54 is installed in the lower part of the tower. By installing the strainer 54 in the lower part of the tower body, it is possible to prevent floating foreign matters such as oil and fat from adhering to the strainer 54.
  • each valve 53a is opened to prevent the water in the biological treatment tanks 41 and 42 from flowing backward in the pipe 53 due to the siphon phenomenon.
  • the strainer 54 is installed in two upper and lower stages, but may be installed in one stage or three or more stages. A plurality of strainers may be provided at the same level. An example is shown in FIGS.
  • FIG. 9a and 9b two strainers 54 and 54 are installed at the same level, their lower portions are connected by a pipe 55, and a treated water outlet 56 is provided so as to communicate with the inside of the pipe 55.
  • 9a is a side view of a portion of the tower body 50 where the strainer 54 is provided
  • FIG. 9b is a cross-sectional view taken along the line IXb-IXb of FIG. 9a.
  • FIG. 10 is a side view of a portion of the tower body 50 where the strainer 54 is provided.
  • the biological treatment tank may be provided in three or more stages by providing a third biological treatment tank after the first biological treatment tank 1, 41 or the second biological treatment tank 2, 42.
  • FIGS. 4 a to 4 h are plan views showing various arrangement patterns of the first biological treatment tank 1 and the second biological treatment tank 2.
  • FIG. 4a shows the first biological treatment tank 1 and the second biological treatment tank 2 installed one by one and connected in series.
  • FIG. 4b shows one first biological treatment tank 1 installed and a plurality of second biological treatment tanks 2 arranged in parallel.
  • FIG. 4 c shows a configuration in which a plurality of first biological treatment tanks 1 are installed in parallel and one second biological treatment tank 2 is installed.
  • FIG. 4d shows a series connection of the first biological treatment tank 1 and the second biological treatment tank 2 arranged in parallel.
  • first biological treatment tanks 1 and second biological treatment tanks 2 show a plurality of first biological treatment tanks 1 installed in parallel and a plurality of second biological treatment tanks 2 arranged in parallel.
  • the number of first biological treatment tanks 1 is the first. More than the two biological treatment tanks 2, the number of the second biological treatment tanks 2 is larger than that of the first biological treatment tank 1 in FIG. Although illustration is omitted, the first biological treatment tank 1 and the second biological treatment tank 2 may be the same number.
  • FIG. 4g shows a plurality of second biological treatment tanks 2 and 2 'installed in series.
  • FIG. 4h shows a configuration in which a plurality of FIG. 4g are installed in parallel.
  • the remaining first biological treatment tanks are maintained while being stopped and maintained in some of the first biological treatment tanks or the second biological treatment tanks.
  • the operation of the organic wastewater treatment apparatus can be continued using the second biological treatment tank.
  • the first biological treatment tank 1 and the second biological treatment tank 2 can be installed in various patterns, depending on the amount of raw water and the quality of water at the site. It can be an array.
  • at least one of the first biological treatment tank and the second biological treatment tank is additionally installed in parallel or in series with the existing organic wastewater treatment apparatus of the present invention structure to cope with an increase in raw water flow rate and water quality fluctuation. be able to.
  • the towers of the first and second biological treatment tanks 1, 2 and 41, 42 have the same shape and the same size, even when many biological treatment tanks are installed, the tower bodies are close to each other. Installed, the space between the towers can be reduced, and the installation space of the entire organic wastewater treatment apparatus can be reduced. In addition, the manufacturing cost of the tower is also low.
  • the structure of each tower is the same, so the installation work of the towers and the pipe connection work of each tower are the same, improving work efficiency and shortening the construction period. be able to.
  • Each of the towers 10, 20, and 50 has a diameter of 2.2 to 3.6 m, particularly 2.4 to 3.3 m, a height of 6 to 11 m, particularly 8 to 11 m, and a height H and a diameter.
  • the ratio H / D with D is preferably 1.5 to 5.0, more preferably 3.0 to 4.5.
  • the height of the main pipe connection part, manholes 17 and 27, carrier 13, strainers 23 and 54, and diffuser pipes 12, 22, and 52 from the foundation 3 is 4 m or less, particularly 3.0 m or less. Is preferred.
  • manholes 17, 27, carrier 13, strainers 23, 54, diffuser pipes 12, 22, 52, etc. at low positions, pipe connection work, equipment installation work, and various maintenance work are performed at high places. This improves work efficiency and safety.
  • an anaerobic treatment tank may be installed in front of the first biological treatment tanks 1 and 41, and treated water from the anaerobic treatment tank may be introduced into the first biological treatment tank.
  • the size of the tower body of the anaerobic treatment tank may be the same as that of the tower bodies 10 and 20 or the tower body 50.
  • an adjustment tank may be installed in the forefront of the anaerobic or aerobic treatment tank.
  • the adjustment tank include, but are not limited to, a raw water tank for leveling the raw water flow rate, a settling tank for settling solid matter, and a pressurized flotation device.
  • each biological treatment tank is preliminarily attached to the tower with attached equipment such as a diffuser pipe at the factory, transferred to the site, and installed on the foundation.
  • attached equipment such as a diffuser pipe
  • the distance between the inlet of raw water (treated water) and the outlet of treated water into the biological treatment tank that is, the distance between the upper end of the raw water introduction pipe 11 and the outlet 14a in FIGS. 5 to 8, the distance between the upper end portion of the raw water introduction pipe 51 and the strainer 54 (upper one) is preferably 1.5 m or more, particularly 2 m or more.
  • FIG. 11 shows an embodiment of the biological treatment apparatus for organic wastewater of the present invention (II), wherein a first biological treatment tank 101 and a second biological treatment tank 102 are erected on a foundation 103, The pipes 104 are connected in series.
  • the first biological treatment tank 101 is connected to the cylindrical tower body 110, the raw water inlet 111a having a flange structure provided on the lower side surface of the tower body 110, and the raw water inlet 111a.
  • the raw water introduction pipe 111 whose upper end is opened above the water surface level, aeration pipes 112a and 112b provided at the bottom of the tower body 110, and a lower part of the tower body 110 are provided.
  • the screen box 113, the lower end is connected to the screen box 113, the upper end is opened higher than the water surface level, and the side surface near the upper end of the riser pipe 114 is branched off.
  • the level of the upper end 115a of the outflow pipe 115 becomes the water level in the tower body 110.
  • the pipe 104 is connected to the end 115 b of the outflow pipe 115.
  • the tower body 110 is filled with a fluidized bed carrier C.
  • the front surface directed toward the center side in the tower body 110 is a screen surface made of a wedge wire or the like.
  • the carrier C does not pass through the screen surface.
  • the diffuser tube 112a is disposed on one half side of the bottom surface of the tower body 110, and the diffuser tube 112b is disposed on the other half side of the bottom surface.
  • the area of the half side area is the area of the bottom surface of the tower body 110 15 to 50%, preferably 20 to 45%.
  • An opening 117a is provided at the top of the tower body 110, and one end of the atmosphere communication pipe 117 is connected.
  • the atmosphere communication pipe 117 extends downward through the tower body 110, and the lower end is drawn out of the tower body 110 in the immediate vicinity of the foundation 103 and is opened toward the atmosphere.
  • a reserve seat that can be opened and closed is provided at the top of the tower body 110, and a manhole and a reserve seat are provided at the bottom.
  • the second biological treatment tank 102 includes a cylindrical tower body 120 having the same shape and size as the tower body 110, a flanged structure inlet 121 provided on the lower side surface of the tower body 120, and the inside of the tower body 120. Diffuser pipes 122a and 122b provided at the bottom of the column, a strainer 123 installed slightly lower than the middle in the vertical direction in the tower body 120, a lower end connected to the strainer 123, and an upper end higher than the water level.
  • the level of the upper end 125a of the outflow pipe 125 is the water level in the tower body 120.
  • the tower body 120 is filled with a fluidized bed carrier C.
  • the carrier C does not pass through the strainer 123.
  • the diffuser tube 122a is disposed on one half side of the bottom surface of the tower 120, and the diffuser tube 122b is disposed on the other half side of the bottom surface.
  • the area of the half side region is the area of the bottom surface of the tower body 120 15 to 50%, preferably 20 to 45%.
  • the diffuser tubes 112a, 112b, 122a, 122b are connected to a blower (not shown) through a valve (not shown).
  • a blower when the water level is high, a high-pressure blower having a capability of a discharge pressure of 60 kPa or more such as a screw blower or a turbo blower is preferable.
  • An opening 127 a is provided at the top of the tower body 120, and one end of the atmosphere communication pipe 127 is connected.
  • the atmosphere communication pipe 127 extends downward in the tower body 120, and the lower end 127 e is drawn out of the tower body 120 in the immediate vicinity of the foundation 103 and is open toward the atmosphere.
  • the top of the tower body 120 is provided with an openable / closable spare seat, and the lower portion is provided with a manhole and a spare seat.
  • Each tower 110, 120 is preferably made of resin such as FRP in order to eliminate the need for lining, but may be a steel plate depending on the water quality.
  • FRP resin such as FRP
  • the first and second biological treatment tanks 101 and 102 are provided with an excess sludge extraction pipe, a drain pipe, an insertion pipe for a monitoring camera in the tank, a wiring insertion port, a sampling port (not shown), and the like.
  • Monitoring in the tank is performed by always or appropriately inserting a camera or a photographing device (preferably with illumination or an infrared camera) having a moving image shooting function into the tank.
  • Shooting data is transmitted wirelessly or by wire.
  • the photographing data may be stored in the photographing equipment.
  • a heat insulating material may be wound around the tower in advance.
  • water level gauges pressure gauges, flow meters, water temperature gauges, water quality gauges, and other measuring instruments in water tanks or peripheral equipment, piping, etc.
  • it is used for optimizing the treatment in the water tank in combination with incidental facilities (for example, facilities equipped with water supply, heating, chemical injection, aeration, dehydration functions, etc.).
  • raw water organic wastewater
  • the first biological treatment tank 101 In order to treat organic wastewater with this organic wastewater treatment device, raw water (organic wastewater) is introduced into the first biological treatment tank 101 through the introduction pipe 111, and aerated and diffused by the diffuser pipes 112a and 112b. 70% or more, desirably 80% or more, more desirably 85% or more of the organic component (soluble BOD) is oxidatively decomposed by a sex bacterium (non-aggregating bacterium).
  • the pH of the first biological treatment tank 101 is preferably 6 to 8.5. However, when the raw water such as food manufacturing wastewater contains a lot of oil, or when the raw water such as semiconductor manufacturing wastewater or liquid crystal manufacturing wastewater contains a lot of organic solvent or cleaning agent, the pH is 8 It can be ⁇ 9.
  • the water flow to the first biological treatment tank 101 is assumed to be transient.
  • the BOD volume load of the first biological treatment tank 101 is 1 kg / m 3 / d or more, for example 1 to 20 kg / m 3 / d, and the HRT (raw water residence time) is 24 h or less, preferably 8 h or less, for example 0.5 to 8 h. By doing so, it is possible to obtain treated water predominated by dispersible bacteria, and by shortening the HRT, wastewater having a low BOD concentration can be treated with a high load.
  • a part of sludge from the subsequent biological treatment tank is returned to the first biological treatment tank 101, or the first biological treatment tank 101 has a multi-stage configuration of two or more tanks, so that the BOD volume load is 5 kg / m. High load processing of 3 / d or more is also possible.
  • the first biological treatment tank 101 may be provided with a fixed bed carrier or a swing bed carrier.
  • the material for the rocking floor is preferably a foamed synthetic resin, particularly a flexible polyurethane foam.
  • a porous sheet-like oscillating bed carrier such as a thin plate-like or strip-like lightweight polyurethane foam
  • the oscillating bed carrier has sufficient elasticity, Even if it is thin, it has sufficient mechanical strength and does not break by being bent in the flow of water in the tank. Moreover, by bending, it mixes uniformly, without inhibiting the water flow in a tank, and a sludge containing liquid comes to flow uniformly also into the porous structure of a support
  • carrier is a porous sheet-like oscillating bed carrier.
  • the filling rate of the carrier in the first biological treatment tank 101 is high, dispersal bacteria are not generated, and bacteria adhere to the carrier or filamentous bacteria grow. Therefore, the filling rate of the carrier added to the first biological treatment tank 101 is 10% or less, for example 1 to 10% in the case of a fluidized bed carrier, and 5% or less in the case of a fixed bed carrier or a rocking carrier, for example, By setting the content to 0.5 to 5%, it becomes possible to produce dispersal bacteria that are easy to prey without being affected by concentration fluctuations.
  • the growth of filamentous bacteria may be suppressed by setting the dissolved oxygen (DO) concentration in the first biological treatment tank 101 to 1 mg / L or less, preferably 0.5 mg / L or less.
  • DO dissolved oxygen
  • the treated water (first biological treated water) of the first biological treatment tank 101 is introduced into the second biological treatment tank 102 in the subsequent stage through the pipes 114, 115, 104 and the inlet 121, and is aerated and remains. Reduce excess sludge by oxidative degradation of organic components, self-degradation of dispersible bacteria and predation of micro-animals.
  • the second biological treatment tank 102 it is necessary to use an operation condition and a treatment apparatus in which the microanimal and the bacteria stay in the system in order to utilize the action of the microanimal having a slower growth rate than the bacteria and the self-degradation of the bacteria. . Therefore, in this embodiment, the second biological treatment tank 102 is filled with the fluidized bed carrier C to increase the amount of minute animals retained in the tank.
  • the shape of the fluidized bed carrier C is arbitrary such as a spherical shape, a pellet shape, a hollow cylindrical shape, a thread shape, a plate shape, and the size (diameter) is about 0.1 to 10 mm.
  • the material of the carrier C is arbitrary such as a natural material, an inorganic material, or a polymer material, and a gel material may be used.
  • the carrier C has a bulk specific gravity of less than 1 in a dry state, and specifically, a sponge carrier is suitable.
  • the second biological treatment tank 102 may be further filled with a rocking bed carrier in addition to the fluidized bed carrier.
  • the filling rate of the carrier is excessively high, mixing in the tank, sludge decay, etc. may occur.
  • the filling rate is preferably about 0.5 to 30%, particularly about 1 to 10%.
  • the pH of the second biological treatment tank 102 may be 7.0 or less.
  • the second biological treatment tank 102 not only the filtration predation type micro-animal that prey on the dispersed cells, but also the aggregate predation type micro-animal that can prey on the flocked sludge grows. Since the latter prey on flocs while swimming, if priority is given, sludge is eaten and becomes sludge in which fine floc pieces are scattered (sludge with poor sedimentation). In addition, this floc piece causes clogging of the membrane particularly in the membrane activated sludge method in which membrane separation is performed in the latter stage. Therefore, in order to thin out the aggregate predatory microanimals, it is desirable to control the SRT to be constant within a range of 60 days or less, preferably 45 days or less. However, if it is less than 15 days, it is unnecessarily frequent, and the number of not only aggregate predation type micro-animals but also filtration predation type micro-animals is excessively reduced.
  • the first biological treatment tank 101 it is necessary to decompose most of the organic matter, that is, 70% or more of the wastewater BOD, desirably 80% or more, and convert it into cells.
  • the organic material When the organic material is completely decomposed, flocs are not formed in the second biological treatment tank 102, and nutrients for microanimal growth are insufficient. Only sludge with low compaction (sludge with poor sedimentation) is excellent. It becomes an occupied biological treatment tank. Therefore, a part of the raw water is bypassed and supplied to the second biological treatment tank 102 so that the sludge load due to the soluble BOD to the second biological treatment tank 102 is 0.025 kg-BOD / kg-MLSS / d or more. You may drive.
  • the MLSS at this time includes MLSS for the carrier adhering.
  • any of solid separation and membrane separation, coagulation sedimentation, and pressurized flotation to obtain a higher quality of treated water May be performed.
  • the amount of coagulant added can be reduced.
  • the sedimentation separated water from the second biological treatment tank 102 may be agglomerated in a coagulation tank and then precipitated in a solid-liquid separation tank (sedimentation tank) to be separated into treated water and sedimented sludge.
  • first and second biological treatment tanks 101 and 102 when foaming occurs due to aeration, it is preferable to spray the defoamer aqueous solution from the sprinklers 116 and 126 to prevent foaming.
  • FIG. 11 shows an example of the embodiment of the present invention (II), and the present invention (II) is not limited to the illustrated one.
  • the biological treatment tank may be provided in three or more stages by providing a third biological treatment tank after the first biological treatment tank 101 and the second biological treatment tank 102.
  • the first biological treatment tank 101 and the second biological treatment tank 102 can be arranged in various arrangement patterns as in FIGS. 4a to 4h.
  • the tower bodies 110 and 120 have the same shape and the same size, even when many tower bodies 110 and 120 are installed, the tower bodies are installed close to each other, and the space between the tower bodies is increased. It is possible to reduce the installation space of the entire organic wastewater treatment apparatus. Moreover, the manufacturing cost of each tower body 110, 120 is also low.
  • the structure of each tower is the same, so the installation work of the towers and the pipe connection work of each tower are the same, improving work efficiency and shortening the construction period. be able to.
  • Each of the towers 110 and 120 has a diameter of 2.2 to 3.6 m, particularly 2.4 to 3.3 m, a height of 6 to 11 m, particularly 8 to 11 m, a height H and a diameter D,
  • the ratio H / D is preferably 1.5 to 5.0, more preferably 3.0 to 4.5.
  • the height from the foundation 103 is 4 m or less, particularly 3.0 m or less, for the main pipe connection part, manhole, strainer 123, diffuser pipes 112a, 112b, 122a, 122b and the like.
  • the pipe connection part, manhole, strainer 123, diffuser pipes 112a, 112b, 122a, 122b, etc. at low positions, pipe connection work, equipment installation work, and various maintenance work are not high place work, and work efficiency And safety is improved.
  • an anaerobic treatment tank may be installed in front of the first biological treatment tank 101, and treated water from the anaerobic treatment tank may be introduced into the first biological treatment tank.
  • the size of the tower body of the anaerobic treatment tank may be the same as that of each tower body 110, 120.
  • an adjustment tank may be installed in the forefront of the anaerobic or aerobic treatment tank.
  • the adjustment tank include, but are not limited to, a raw water tank for leveling the raw water flow rate, a settling tank for settling solid matter, and a pressurized flotation device.
  • each biological treatment tank is preliminarily attached to the tower with attached equipment such as a diffuser pipe at the factory, transferred to the site, and installed on the foundation.
  • attached equipment such as a diffuser pipe
  • the carrier C is a sponge carrier or the like, it remains floating even if it is put into the tower 110 or 120, and is hardly submerged even if aeration is performed simultaneously from each air diffuser.
  • aeration is performed only from the aeration tube 112a or 122a. Since the diffuser tubes 112a and 122a are arranged to be biased toward one half of the bottoms in the tower bodies 110 and 120, when aeration is performed from the diffuser tubes 112a and 122a, bubbles are mainly inner peripheral surfaces in the tower bodies 110 and 120. Therefore, an upward flow along the half side is formed in the tower body 110 or 120, and a downward flow is formed on the other half side, thereby forming the tower body 110. Alternatively, a vertical circulation flow is formed in 120. The carrier C introduced into the tower body 110 or 120 is drawn into the water by this downward flow, and becomes compatible with water and flows in the tower bodies 110 and 120.
  • water submerging can be promoted by sprinkling water from the sprinkler 116 and pouring water onto the carrier.
  • This water may be raw water or treated water.
  • Example 1 Into a tower 110 having a configuration shown in FIG. 11 having an inner diameter of 2.5 m, a height of 10 m, and a water surface height of 9 m, 704 kg of a sponge carrier having a size of 3 mm square and a bulk specific gravity of 0.04 g / cm 3 is introduced. When aeration was performed at an aeration amount of 240 Nm 3 / h, all carriers started to flow within 10 min. In addition, the area of the area
  • FIG. 11 the area of the area
  • Example 2 In Example 1, when water was sprinkled from the sprinkler 116 at 100 L / min, all the carriers started to flow within 5 min.
  • Example 1 In Example 1, when aeration was performed from the diffuser tubes 112a and 112b with a total aeration amount of 240 Nm 3 / h, it took 10 days for all the carriers to start flowing.
  • Example 2 In Example 2, when aeration was performed from the diffuser tubes 112a and 112b at a total aeration amount of 240 Nm 3 / h, it took 7 days for all the carriers to start flowing.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)

Abstract

 施工が容易であると共に、高所作業の低減及び省スペース化を図ることができる有機性排水の生物処理装置が提供される。有機性排水を多段に設けられた生物処理槽で生物処理する装置であって、第一段の生物処理槽1において、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、後段の第二生物処理槽2において、分散菌を微小動物に捕食させる。第一生物処理槽1及び第二生物処理槽2は同一形状及び同一大きさの塔体10,20を有しており、塔体の高さが6~11mであり、塔体の高さと直径の比が1.5~5.0である。

Description

有機性排水の生物処理装置及び処理方法
 本発明は、生活排水、下水、食品工場、パルプ工場、半導体製造排水、液晶製造排水等の有機性排水の処理に広く利用することができる有機性排水の生物処理装置に係り、特に有機性排水を生物処理する生物処理塔を備えた有機性排水の生物処理装置に関する。また、本発明は、この処理装置を用いた有機性排水の生物処理方法に関する。
 有機性排水を生物処理する場合に用いられる活性汚泥法は、処理水質が良好で、メンテナンスが容易であるなどの利点から、下水処理や産業廃水処理等に広く用いられている。しかしながら、活性汚泥法におけるBOD容積負荷は一般に0.5~0.8kg/m/d程度であるため、広い敷地面積が必要となる。また、分解したBODの20~40%が菌体、即ち汚泥へと変換されるため、大量の余剰汚泥処理も問題となる。
 有機性排水を高負荷処理する方法としては、担体を添加した流動床法が知られている。この方法を用いた場合、3kg/m/d以上のBOD容積負荷で運転することが可能となる。しかしながら、この方法では発生汚泥量は分解したBODの30~50%程度で、通常の活性汚泥法より高くなることが欠点となっている。
 特許文献1には、有機性排水をまず、第一処理槽で細菌により処理し、排水に含まれる有機物を酸化分解して非凝集性の細菌の菌体に変換した後、第二処理槽で固着性原生動物に捕食させることで余剰汚泥の減量化が可能になることが記載されている。さらに、この方法では高負荷運転が可能となり、活性汚泥法の処理効率も向上するとされている。
 このように細菌の高位に位置する原生動物や後生動物の捕食を利用した廃水処理方法は、多数考案されている。例えば、特許文献2には、特許文献1の処理方法で問題となる原水の水質変動による処理性能悪化の対策が記載されている。具体的な方法としては、「被処理水のBOD変動を平均濃度の中央値から50%以内に調整する」、「第一処理槽内および第一処理水の水質を経時的に測定する」、「第一処理水の水質悪化時には微生物製剤または種汚泥を第一処理槽に添加する」等の方法をあげている。
 特許文献3では、細菌、酵母、放線菌、藻類、カビ類や廃水処理の初沈汚泥や余剰汚泥を原生動物や後生動物に捕食させる際に超音波処理または機械攪拌により、捕食されるフロックのフロックサイズを動物の口より小さくさせる方法を提案している。
 流動床と活性汚泥法の多段処理による有機性排水の生物処理方法としては、特許文献4に記載のものがある。この方法では、後段の活性汚泥法をBOD汚泥負荷0.1kg-BOD/kg-MLSS/dの低負荷で運転することで、汚泥を自己酸化させ、汚泥引き抜き量を大幅に低減できるとしている。
 流動床方式の好気性生物処理槽を新たに設置して運転を開始する場合、新品の流動床担体を槽内に投入して曝気を開始する。この際、担体の全量を一度に槽に投入すると、担体の多くが浮上したままとなり、殆ど流動しない。これは、担体はスポンジなど、嵩比重が1よりも小さい素材よりなるためである。そのため、従来は担体を少しずつ投入時期を異ならせて槽内に投入し、担体の浮上を抑制しながら曝気により流動させるようにしており、担体の全量投入に長時間を要していた。
 従来の生物処理槽の槽体としては、コンクリート水槽又はタワー状高架水槽が用いられている。
 コンクリート水槽には次の課題がある。
i) 槽本体が現地土木工事となり、更に槽内部装置の設置が槽施工後となり、現地での工期が長くなる。施工・品質管理の面でも不安が残る。
ii) 実用上で水深が通常4m程度までであるため、現地での設置スペースが大きくなる。
iii) 原水負荷増加に対応して設備を増強したい場合であっても、現地土木工事でかつ設置面積が大きいことから、増設が容易に出来ない。
iv) 底部からの液漏れの点検がしづらい。
v) 槽内面ライニング補修を行う必要がある。
 タワー状高架水槽には次の課題がある。
vi) 設置スペースを抑制しつつ容量を確保するためには、槽高を大きくする必要があり、少なくとも7m程は必要になる。この場合、現地配管施工や日常保守時には槽上部に登る必要があり、通常は階段や梯子等を設置する。このため作業性が悪くなる。
vii) 現地における槽上部からの渡り配管工事の負担が大きくなりやすい。
viii) 槽材質や液質によっては、槽内面ライニング補修を行う必要がある。
特開昭55-20649号公報 特開2000-210692号公報 特公昭60-23832号公報 特許第3410699号公報
 上記の通り、従来のコンクリート水槽又はタワー状高架水槽には、次のような課題があった。
1)コンクリート水槽では設置平面積が大きい。
2)コンクリート水槽では工期が長くなる。
3)コンクリート水槽では、設備増強が容易ではない。
4)槽高が大きいタワー型水槽では、高所作業により作業効率が悪く、作業性の向上や転落事故防止を図る必要がある。
5)槽高が大きいタワー型水槽では、槽上部から外部への配管が生じ現地工事の負担が大きくなるため現地工事の簡素化を図る必要がある。
[発明I]
 本発明(I)は、施工が容易であると共に、高所作業の低減及び省スペース化を図ることができる有機性排水の生物処理装置及び処理方法を提供することを目的とする。
 また、本発明(I)は、様々な原水水質や要求水質の変動、処理水量増大に容易に対応することができる有機性排水の生物処理装置及び処理方法を提供することを目的とする。
 本発明(I)の有機性排水の生物処理装置は、有機性排水を多段に設けられた生物処理槽で生物処理する装置であって、第一段の生物処理槽において、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、後段の第二生物処理槽において、第二生物処理水を生成させる有機性排水の生物処理装置であって、第一生物処理槽及び第二生物処理槽は同一形状及び同一大きさの塔体を有しており、塔体の高さが6~11mであることを特徴とするものである。
 本発明(I)では、塔体の高さ(H)と直径(D)の比(H/D)が1.5~5.0であることが好ましい。また、本発明では、マンホールや、大部分例えば半数以上の配管接続部の設置高さTOP(TOP of pipe)が3m以下であることが好ましい。
 本発明では、第一生物処理槽及び第二生物処理槽を並列に複数設置してもよい。
 本発明では、塔体はFRP製であり、塔底から塔頂まで全体として一体に成形されたものであることが好ましい。
 この場合、塔体の下部の肉厚は、塔体上部の肉厚よりも大きいことが好ましい。また、少なくとも一部の上下方向配管は、半割円筒状であり、塔体の内周面に接着されていることが好ましい。
 本発明の有機性排水の生物処理方法は、かかる本発明の生物処理装置を用いるものである。
 本発明の有機性排水の処理装置は、規格寸法(同一形状、同一大きさ)の塔体を有する水処理ユニットを複数個備えたものであり、各水処理ユニットは予め工場にて製作しておくことができる。
 本発明では、各槽のサイズが統一されているので、装置の設計・施工も共通化され、簡易・迅速に行うことができる。また、槽同士の間のスペースを小さくすることもできる。さらに、生物処理槽の増設も容易である。
 塔体をFRPで一体に構成することにより、軽量となり、運搬や設置施工も容易となる。この場合、塔体の下部の肉厚を大きくすることにより、塔体の強度、耐圧性、耐久性を大きくすることができる。また、上下方向配管を半割円筒状とし、塔体内周面に接着することにより、塔体内部の構造を簡素化し、塔体内部での水の循環流をスムーズなものとすることができる。また、上下方向配管の設置強度も高くなる。
 本発明の一態様では、大部分の配管の継手箇所やマンホールが塔体の下部(地上高さ4m以下)に設けられているので、高所作業数が少ない。
 本発明の一態様では、生物処理槽を多段に設け、前段の生物処理槽を、有機物を分散菌に変換する分散菌槽とし、最後段の生物処理槽に、分散菌を捕食する固着性の濾過捕食型微小動物の足場として担体を設ける。この処理においては、微小動物を安定して維持し、処理水質を安定化させることができる。
[発明II]
 本発明(II)は、運転開始時に担体を早期に流動させることができ、起動時間が短いものとなる生物処理槽の運転方法及び有機性排水の処理方法を提供することを目的とする。
 また、本発明(II)は、その一態様において、様々な原水水質や要求水質の変動、処理水量増大に容易に対応することができる有機性排水の処理装置を提供することを目的とする。
 本発明(II)の生物処理槽の運転方法は、生物処理槽内に嵩比重が1よりも小さい流動床担体を投入すると共に、生物処理槽内の底部に設けた散気管から曝気して該担体を流動させる生物処理槽の運転を開始する方法において、該生物処理槽内の底部の一半側に設けた散気管から曝気を行って塔体内に上下方向の循環流を形成することを特徴とするものである。
 本発明(II)では、塔体内に散水してもよい。この場合、消泡剤含有水を散水してもよい。
 本発明(II)では、前記生物処理槽の槽体は、高さ(H)と直径(D)との比(H/D)が1.5~5.0の筒形の塔体よりなることが好ましい。
 本発明(II)の有機性排水の生物処理方法は、有機性排水を多段に設けられた生物処理槽で生物処理する方法において、少なくとも1つの生物処理槽をかかる本発明の運転方法によって起動させることを特徴とする。
 本発明(II)では、第一段の生物処理槽において、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、後段の第二生物処理槽において、第二生物処理水を生成させることが好ましい。また、第一生物処理槽及び第二生物処理槽は同一形状及び同一大きさの塔体を有しており、塔体の高さが6~11mであることが好ましい。
 本発明(II)では、第一生物処理槽及び第二生物処理槽を並列に複数設置してもよい。
 本発明(II)の生物処理槽の運転方法では、生物処理槽の起動に際し生物処理槽内の底部の一半側に設けられた散気管から曝気を行って生物処理槽内に上下方向の循環流を形成するので、嵩比重が1よりも小さい流動床担体であっても、速やかに水中に没して流動するようになる。このため、生物処理槽の起動を早期化することができる。
 この起動時に生物処理槽内に散水を行うことにより、流動床担体をより早く水没させて流動させることができる。この場合、消泡剤含有水を散水することにより、曝気気泡が担体に絡みついて担体が浮上することを防止することができる。
 本発明方法は、生物処理槽の比高(H/D)の大きい場合に適用するのに好適である。
 本発明の一態様で用いる有機性排水の処理装置は、規格寸法(同一形状、同一大きさ)の塔体を有する水処理ユニットを複数個備えたものであり、各水処理ユニットは予め工場にて製作しておくことができる。また、各槽のサイズが統一されているので、装置の設計・施工も共通化され、簡易・迅速に行うことができる。また、槽同士の間のスペースを小さくすることもできる。さらに、生物処理槽の増設も容易である。
 本発明の一態様では、生物処理槽を多段に設け、前段の生物処理槽を、有機物を分散菌に変換する分散菌槽とし、最後段の生物処理槽に、分散菌を捕食する固着性の濾過捕食型微小動物の足場として担体を設ける。この処理においては、微小動物を安定して維持し、処理水質を安定化させることができる。
発明(I)の実施の形態に係る有機性排水の生物処理装置の縦断面図である。 図1のII-II線矢視図である。 図1のIII-III線矢視図である。 図4a-4hは本発明の有機性排水の生物処理装置における水処理ユニット配置例を示す平面図である。 別の実施の形態に係る有機性排水の生物処理装置の縦断面図である。 図6aは図5のA-A線断面図、図6bは図5のB-B線断面図である。 図5のVII-VII線断面図である。 図7のVIII-VIII矢視図である。 図9aは別の実施の形態を示す構成図であり、図9bは図9aのIXb-IXb線断面図である。 さらに別の実施の形態を示す構成図である。 発明(II)の実施の形態に係る有機性排水の生物処理装置の縦断面図である。
 以下に図面を参照して本発明(I)の有機性排水の生物処理装置及び処理方法の実施の形態を詳細に説明する。図1は本発明(I)の有機性排水の生物処理装置の実施の形態を示すものであり、第一生物処理槽1と、第二生物処理槽2とが基礎3上に立設され、配管4によって直列に接続されている。
 第一生物処理槽1は、円筒形の塔体10と、該塔体10の下部側面に設けられたフランジ構造の原水流入口11aと、該原水流入口11aに連なり、塔体10内を上方に延在し、上端部が流出口14aよりも上位にて開放した原水導入管11と、塔体10内の底部に設けられた散気管12と、該塔体10内において散気管12の上側に設置された固定床又は揺動床担体13と、塔体10の上部に設けられた処理水の流出口14a等を備えている。なお、散気管12は、気体供給装置としての図示しないブロワに接続されている。ここでブロワとしては、水位が高い場合には、スクリューブロワ、ターボブロワ等の吐出圧力60kPa以上の能力を備える高圧ブロワが好ましい。
 該流出口14aに流出配管14が連なっている。該流出配管14は、塔体10の外面に沿って下方に延設され、下端がフランジ構造の配管接続部14bとなっている。図2の通り、流出配管14の上下方向の途中にはクランク状曲成部14cが設けられている。
 塔体10の頂部に開口15aが設けられ、大気連通管15の一端が接続されている。大気連通管15は、図2の通り、塔体10の外面を塔体10に沿って下方に延設され、下端15bが基礎3の直近において下方に向って開放している。流出配管14の上端は、逆U字形の連通管14dを介して大気連通管15の横引部15bに連通している。
 図2の通り、塔体10の頂部には予備座16が設けられ、下部にはマンホール17及び予備座18が設けられている。
 第二生物処理槽2は、塔体10と同一形状、同一大きさの円筒形の塔体20と、該塔体20の下部側面に設けられたフランジ構造の流入口21と、塔体20内の底部に設けられた散気管22と、該塔体20内の上下方向の中間又はそれよりも下位に設置されたストレーナ23等を備えている。流入口21が配管4を介して配管接続部14bに接続されている。なお、散気管22は、図示しないブロワに接続されている。このブロワは、散気管12への空気供給用ブロワと共用されている。
 該ストレーナ23に流出配管24が連なっている。該流出配管24は図3の通り、塔体20の外面に沿って前記第一生物処理槽10の流出口14aと同レベルまで立ち上がる立上部24aと、該立上部24aに一端側が連なり、水平方向に引き回された横引部24bと、該横引部24bの他端側に連なり、塔体20の外面に沿って基礎3の近傍にまで延在する立下部24cとを有し、該立下部24cの下端が流出口24dとなっている。流出配管24の立上部24aの上端からは大気開放管24eが上方に延設され、該大気開放管24eの上端が大気に開放している。流出配管24の立下部24cの途中にはクランク状曲成部24fが設けられている。
 塔体20の頂部に開口25aが設けられ、大気連通管25の一端が接続されている。大気連通管25は、図3の通り、塔体20の外面を塔体20に沿って下方に延設され、下端25bは基礎3の直近において下方に向って開放している。
 図3の通り、塔体20の頂部には予備座26が設けられ、下部にはマンホール27、予備座28及び散気管への空気供給管22aが設けられている。塔体20内には流動床担体29が充填されている。なお、27aはストレーナ23のメンテナンス用のマンホールである。
 各塔体10,20は、ライニングを不要とするためFRP等の樹脂製が好ましいが、水質によっては鋼板であってもよい。FRPの場合には紫外線による劣化の防止、耐食性の向上を目的として耐候性塗料(例えば(株)トーチ製タンクステンコート等)を塗布するのが好ましい。また、塔体10,20をFRP製とした場合、水圧が大きくなる塔体下部の肉厚を上部よりも大きくすることが好ましい。塔体の上下の途中を上部よりも厚肉とし、下部をそれよりもさらに厚肉としてもよい。
 なお、第一及び第二生物処理槽1,2には余剰汚泥の取出管、ドレン管や槽内監視カメラの挿入管、配線挿通口、サンプリング口(図示略)等が設けられている。槽内の監視は、カメラ又は動画撮影機能を備えた撮影機材(望ましくは照明付きもしくは赤外線カメラ)を常時又は適宜に槽内に挿入して行う。撮影データは無線又は有線にて送信する。撮影機材に撮影データを保管してもよい。塔体に予め保温材を巻いておいてもよい。
 必要に応じ、水槽或いは周辺設備、配管等に、水位計、圧力計、流量計、水温計、水質計等の測定器を設置し、運転状況の監視や運転制御、運用管理等に用いる。また、付帯設備(例えば、送水、加温、薬品注入、曝気、脱水機能等を備えた設備)との組合せにより、水槽における処理を最適化するために利用する。
 この有機性排水の生物処理装置によって有機性排水を処理するには、導入管11を介して原水(有機性排水)を第一生物処理槽1に導入し、散気管12で曝気し、分散性細菌(非凝集性細菌)により、有機成分(溶解性BOD)の70%以上、望ましくは80%以上、さらに望ましくは85%以上を酸化分解する。この第一生物処理槽1のpHは好ましくは6~8.5とする。ただし、食品製造排水など原水中に油分を多く含む場合や、半導体製造排水や液晶製造排水など原水中に有機性の溶媒や洗浄剤を多く含む場合には分解速度を高くするため、pHは8~9としても良い。
 第一生物処理槽1への通水は、一過式とする。第一生物処理槽1のBOD容積負荷を1kg/m/d以上、例えば1~20kg/m/d、HRT(原水滞留時間)を24h以下、好ましくは8h以下、例えば0.5~8hとすることにより、分散性細菌が優占化した処理水を得ることができ、また、HRTを短くすることでBOD濃度の低い排水を高負荷で処理することができる。
 第一生物処理槽1には、後段の生物処理槽からの汚泥の一部を返送したり、この第一生物処理槽1を二槽以上の多段構成としたり、担体13を設置したりすることにより、BOD容積負荷5kg/m/d以上の高負荷処理も可能となる。担体として流動床担体を充填してもよい。
 担体13が揺動床担体である場合、素材は発泡合成樹脂特に軟質ポリウレタンフォームが好ましい。第一生物処理槽1にこのような薄い板状ないし短冊状の軽量ポリウレタンフォームのような多孔質のシート状揺動床担体を設置すると、揺動床担体が、十分な弾力性を有し、槽内の水の流れの中でたわむ(形状維持しない)ことにより、薄くても十分な機械的強度を持ち、破損することがない。また、たわむことで槽内の通水を阻害することなく均一に混合され、担体の多孔質構造内にも均等に汚泥含有液が通水されるようになる。
 第一生物処理槽1における担体の充填率が高い場合、分散菌は生成せず、細菌は担体に付着するか、糸状性細菌が増殖する。そこで、第一生物処理槽1に添加する担体の充填率を、流動床担体の場合は10%以下、例えば1~10%とし、固定床担体、揺動性担体の場合は5%以下、例えば0.5~5%とすることで、濃度変動に影響されず、捕食しやすい分散菌の生成が可能になる。
 第一生物処理槽1の溶存酸素(DO)濃度を1mg/L以下、好ましくは0.5mg/L以下として、糸状性細菌の増殖を抑制しても良い。
 第一生物処理槽1の処理水(第一生物処理水)を、流出口14a、配管14,4、流入口21を介して後段の第二生物処理槽2に導入し、曝気し、残存している有機成分の酸化分解、分散性細菌の自己分解及び微小動物の捕食による余剰汚泥の減量化を行う。第二生物処理槽2の処理液は、ストレーナ23、流出配管4を介して取り出される。
 第二生物処理槽2では、細菌に比べ増殖速度の遅い微小動物の働きと細菌の自己分解を利用するため、微小動物と細菌が系内に留まるような運転条件及び処理装置を用いる必要がある。そこで、この実施の形態では、第二生物処理槽2には、流動床担体29を充填して微小動物の槽内保持量を高めている。
 流動床担体29の形状は、球状、ペレット状、中空筒状、糸状、板状等の任意であり、大きさ(径)は0.1~10mm程度である。担体29の材料は、天然素材、無機素材、高分子素材等任意であり、ゲル状物質を用いても良い。担体は、流動床担体に限定されるものではなく、固定床担体、揺動性担体のいずれでもよく、二種以上の担体を併用してもよい。
 第二生物処理槽2では、微小動物を維持するための多量の足場が必要となるが、過度に担体の充填率が多いと槽内の混合不足、汚泥の腐敗などが起こるため、添加する担体の充填率は、0.5~30%、特に1~10%程度とすることが望ましい。
 微小動物による捕食を促進させるため、第二生物処理槽2のpHを7.0以下としても良い。
 第二生物処理槽2では、分散状態の菌体を捕食する濾過捕食型微小動物だけでなく、フロック化した汚泥を捕食できる凝集体捕食型微小動物も増殖する。後者は遊泳しながらフロックを捕食するため、優先化した場合、汚泥は食い荒らされ、微細化したフロック片が散在する汚泥(沈降性の悪い汚泥)となる。また、このフロック片により、特に後段で膜分離を行う膜式活性汚泥法では膜の目詰まりが発生する。そこで、凝集体捕食型微小動物を間引くため、SRTを60日以下望ましくは45日以下の範囲内で一定に制御することが望ましい。ただし15日未満では不必要に頻繁すぎて凝集体捕食型微小動物だけでなく濾過捕食型微小動物の数が減少しすぎるので15日以上とするのが好ましい。
 第一生物処理槽1では有機物の大部分、すなわち排水BODの70%以上、望ましくは80%以上を分解し、菌体へと変換しておく必要があるが、第一生物処理槽1で溶解性有機物を完全に分解した場合、第二生物処理槽2ではフロックが形成されず、また、微小動物増殖のための栄養も不足し、圧密性の低い汚泥(沈降性の悪い汚泥)のみが優占化した生物処理槽となる。そこで、原水の一部をバイパスして第二生物処理槽2に供給し、第二生物処理槽2への溶解性BODによる汚泥負荷が0.025kg-BOD/kg-MLSS/d以上となるように運転してもよい。この時のMLSSには担体付着分のMLSSも含む。
 第二生物処理槽2からストレーナ23及び配管24を介して取り出される処理水に対して、より高度な処理水水質を得るために固液分離として膜分離、凝集沈殿、加圧浮上のいずれを行ってもよい。なお、凝集沈殿や加圧浮上を行うときは、凝集剤の添加量の低減することができる。第二生物処理槽2からの沈降分離水を凝集槽で凝集処理し、次いで固液分離槽(沈殿槽)で沈殿処理して処理水と沈降汚泥とに分離してもよい。
 ストレーナ23に付着した異物を除去するために、逆洗用空気供給管を配管24に接続してもよい。このようにすれば、ストレーナ23が塔体内の下部に設置されていても、付着物を容易に除去することができる。なお、ストレーナ23を塔体内の下部に設置することにより、油脂などの浮上性の異物がストレーナに付着することが防止される。
 図5~8を参照して本発明の別の実施の形態に係る有機性排水の生物処理装置を説明する。図5の通り、この有機性排水の生物処理装置においても、第一生物処理槽41と、第二生物処理槽42とが基礎43上に立設され、配管70によって直列に接続されている。
 第一生物処理槽41は、FRP製の円筒形の塔体50と、該塔体50の下部側面に設けられたフランジ構造の原水(被処理水)流入口51aと、該原水流入口51aに連なり、塔体50の内周面に沿って上方に延在し、上端部が水面位よりも上位にて開放した原水導入管51と、塔体50内の底部に設けられた散気管52と、散気管52を図示しないブロワに接続する空気配管53と、空気配管53の途中に連なるサイホンブレーク用配管53Aと、塔体50の上下方向の中間又はそれよりも下位に設けられた複数個のストレーナ54,54と、ストレーナ54同士を接続する接続配管55と、該接続配管55内に連通する処理水取出口56と、塔体50の内周面に沿って上下方向に延在したドレン配管57と、塔体50内に上下方向に設けられた消泡剤水溶液の注入配管58等を備えている。
 塔体50の頂部に、開口50aが設けられ、塔体50内が該開口50aを介して大気に連通している。
 原水導入管51は、図6aの通り、半割円筒状であり、塔体50の内周面に接着されている。この原水導入管51の上端は、上記の通り、水面位よりも上方において塔体50内に開放している。原水導入管51の下端は封じられている。塔体50の下部側壁を貫くように設けられた原水流入口51aが該原水導入管51内の下端部に連通している。
 空気配管53は、一端側が塔体50の下部を貫通して塔体50外に突出し、その先端にブロワからの空気供給配管が接続されている。空気配管53の他端が散気管52に接続されている。
 空気配管53は、塔体50内において、水面位よりも上方に立ち上っており、この立ち上がりの最高位部53bにサイホンブレーク用配管53Aの一端が接続されている。サイホンブレーク用配管53Aは、塔体50内を下方に引き回されており、その他端側は塔体50の下部を貫通して塔体50外に突出している。このサイホンブレーク用配管53Aの先端部にバルブ53aが設けられている。
 ストレーナ54は、塔体50の上下方向の中間付近又はそれよりも下位に設置されている。ストレーナ54は、図7に示す通り、塔体50の内周面に接着されることにより取り付けられたボックス54aと、該ボックス54aの前面に設けられたウェッジワイヤ等よりなるスクリーン54bとを有する。ボックス54aの後面は開放しており、ボックス54aの後端が塔体50の内周面に接着されている。
 この実施の形態では、ストレーナ54は上下に離隔して2個設けられており、各ストレーナ54内が接続配管55によって連通されている。
 この接続配管55も半割円筒状であり、塔体50の内周面に接着されている。処理水取出口56は、塔体50に設けられた開口を介して該接続配管55内に連通している。
 図示は省略するが、ストレーナ54内をメンテナンスするために、塔体50にハンドホールが設けられている。
 ドレン配管57は、塔体50の内周面に沿って上下方向に延設されている。ドレン配管57は、最上部を除いて、図6bの通り、半割円筒状であり、塔体50の内周面に接着されている。ドレン配管57の最上部は、円筒状であり、水面位よりも上方において塔体50内に開放している。ドレン配管57の下端部は塔体50の下部のドレン取出口57に連通している。
 消泡剤の注水配管58は、塔体50内を上下方向に引き回されており、上端部は略U字状に曲成されて下向きとされ、塔体50内の水面位よりも上方において開放している。注水配管58の下端は、塔体50を貫通して塔体50外に突出している。
 第二生物処理槽42は、上記第一生物処理槽41の構成をすべて具備しており、第一生物処理槽41と同一部分に同一符号が付されている。
 第二生物処理槽42は、第一生物処理槽41の上記構成に加え、さらに処理水取出口56に接続された処理水取出配管60を備えている。この処理水取出配管60は、塔体50外を上方に引き回された後、塔体50の側壁を貫通して塔体50内に引き込まれ、第二生物処理槽10の水面よりも上方にまで立ち上がる立上部61と、該立上部61に一端側が連なり、水平方向に引き回された横引部62と、該横引部62の他端側に連なり、塔体50内の下部にまで延在し、塔体50外に突出した立下部63とを有し、該立下部63の末端が流出口64となっている。
 立上部61の上端61aは、下向きに湾曲し、塔体50内に開放している。このため、横引部62のレベルが第二生物処理槽42内の水面レベルとなる。また、第一生物処理槽41の取出口56と第二生物処理槽42の流入口51aとが配管70で連通しているので、第一生物処理槽41内の水面レベルは第二生物処理槽42の水面レベルと同一となる。
 図6bに示すように、立上部61、立下部63は、塔体50の内周面に沿って上下方向に延在している。立上部61、及び立下部63は半割円筒状であり、塔体50の内周面に接続されている。
 配管60のうち塔体50外を引き回されている部分には、2個のバルブ66、67が設けられている。このバルブ66,67間に、バルブ68aを有した空気供給配管68が接続されている。また、バルブ66,67間に、サンプル水を取り出すためのサンプリング配管69が接続されている。この配管69にバルブ69aが設けられている。
 第一生物処理槽41の処理水取出口56と第二生物処理槽42の流入口51aとを接続する配管70に2個のバルブ71,72が設けられている。バルブ71,72間に、バルブ74を有した空気供給配管73が接続されている。
 なお、図示は省略するが、第一及び第二生物処理槽41,42には、余剰汚泥の取出管や槽内監視カメラの挿入管、配線挿通口、マンホール、予備座(図示略)等が設けられている。
 第一及び第二生物処理槽41,42には、流動床担体を充填する。この流動床担体としては、前記実施の形態と同様のものを用いることができる。
 この有機性排水の処理装置によって有機性排水を処理するには、第一生物処理槽41の導入管51を介して原水(有機性排水)を第一生物処理槽51に導入し、散気管52で曝気し、分散性細菌(非凝集性細菌)により、有機成分(溶解性BOD)の70%以上、望ましくは80%以上、さらに望ましくは85%以上を酸化分解する。なお、曝気時には配管53Aのバルブ53aは閉とする。この第一生物処理槽41のpHやBOD容積負荷、担体の充填率、溶存酸素(DO)濃度等の好適条件は、前記図1~3の実施の形態と同様である。
 第一生物処理槽41の処理水(第一生物処理水)を、流出口56から配管70を介して後段の第二生物処理槽42に導入し、曝気し、残存している有機成分の酸化分解、分散性細菌の自己分解及び微小動物の捕食による余剰汚泥の減量化を行う。なお、このとき、配管70のバルブ71,72及び配管60のバルブ66,67は開とされている。
 第二生物処理槽42の好適な担体の充填率やpH、SRT、溶解性BODによる汚泥負荷は、前記実施の形態と同様である。
 第一及び第二生物処理槽41,42内で曝気を行っている時の空気は、塔頂の開口50aから塔外に排出される。曝気に際して生じた泡は配管57を介して塔体50外の排水ピットに排出される。この排水ピットに泡センサを設けておき、泡が多いときには消泡剤や水を注入する。
 この実施の形態では、第一生物処理槽41のストレーナ54のスクリーン54bが目詰りしたときには、バルブ72を閉、バルブ74を開とし、空気供給配管73から空気を第一生物処理槽41のストレーナ54内に供給し、空気逆洗する。第二生物処理槽42のストレーナ54のスクリーン54bが目詰りしたときには、バルブ67を閉、バルブ68aを開とし、空気配管68から空気を第二生物処理槽42のストレーナ54内に供給し、空気逆洗する。このようにストレーナ54を空気によって容易に洗浄することができるので、ストレーナ54が塔内の下部に設置されていてもその洗浄が容易である。ストレーナ54を塔体内の下部に設置することにより、油脂などの浮上性の異物がストレーナ54に付着することが防止される。
 生物処理装置の運転の停止時には、各バルブ53aを開とし、生物処理槽41,42内の水が配管53内をサイホン現象で逆流することを防止する。
 図5~8の実施の形態では、ストレーナ54を上下2段に設置しているが、1段又は3段以上に設置してもよい。また、ストレーナを同レベルに複数個設けてもよい。その一例を図9a,9b,10に示す。
 図9a,9bでは、2個のストレーナ54,54を同レベルに設置し、それらの下部同士を配管55で接続し、配管55内に連通するように処理水取出口56を設けている。なお、図9aは、塔体50のうちストレーナ54を設けた部分の側面図であり、図9bは、図9aのIXb-IXb線断面図である。
 図10では、2個のストレーナ54,54を同レベルに設置し、各々の下部にそれぞれ処理水取出配管80,80を接続している。配管80,80は、上方に引き回され、塔体50内において合流して立上部となり、横引部を経て立下部81となり、その下端が取出口56に連通している。なお、図10は塔体50のうちストレーナ54を設けた部分の側面図である。
 図1~3,5~10は、本発明の実施の形態の一例を示すものであり、本発明は何ら図示のものに限定されない。例えば、第一生物処理槽1,41又は第二生物処理槽2,42の後段に第三生物処理槽を設けるなどして、生物処理槽を3段以上に設けてもよい。
 図4a-4hは、第一生物処理槽1、第二生物処理槽2の種々の配置パターンを示す平面図である。図4aは、第一生物処理槽1、第二生物処理槽2を1基ずつ設置して直列に接続したものである。図4bは、第一生物処理槽1を1基設置し、第二生物処理槽2を並列に複数基設置したものである。図4cは、第一生物処理槽1を並列に複数基設置し、第二生物処理槽2を1基設置したものである。図4dは、第一生物処理槽1及び第二生物処理槽2の直列接続体を並列に複数列設置したものである。
 図4e,4fは、第一生物処理槽1を並列に複数基設置し、第二生物処理槽2を並列に複数基設置したものであり、図4eでは第一生物処理槽1の数が第二生物処理槽2よりも多く、図4fでは第二生物処理槽2の数が第一生物処理槽1よりも多い。図示は省略するが、第一生物処理槽1と第二生物処理槽2の数が同数でもよい。
 図4gは、第二生物処理槽2,2’を直列に複数基設置したものである。図4hは、図4gのものを並列に複数設置したものである。
 第一生物処理槽又は第二生物処理槽を並列に設置した場合には、一部の第一生物処理槽又は第二生物処理槽で運転を停止してメンテナンスしながら残りの第一生物処理槽、第二生物処理槽を用いて有機性排水の処理装置の運転を継続させることもできる。
 図4a-4hの通り、本発明によると、第一生物処理槽1と第二生物処理槽2を種々のパターンにて設置することができ、現場での原水の水量や水質に応じて所望の配列とすることができる。また、既存の本発明構造の有機性排水の処理装置に対して第一生物処理槽及び第二生物処理槽の少なくとも一方を並列又は直列に追加設置して原水流量の増大や水質変動に対応することができる。
 本発明では、第一及び第二生物処理槽1,2同士及び41,42同士の塔体が同一形状、同一大きさであるため、各生物処理槽を多数設置する場合でも各塔体を近接して設置し、塔体間のスペースを小さくし、有機性排水処理装置全体の設置スペースを小さくすることができる。また、塔体の製造コストも安価となる。複数の塔体を並列に設置する場合、各塔体の構成が同一であるから、塔体の据付作業や各塔体の配管接続作業が同じとなり、作業効率が向上し、工期の短縮を図ることができる。
 各塔体10,20,50は、直径が2.2~3.6m、特に2.4~3.3mであり、高さが6~11m、特に8~11mであり、高さHと直径Dとの比H/Dが1.5~5.0特に3.0~4.5であることが好ましい。また、主要な配管の接続部やマンホール17,27、担体13、ストレーナ23,54、散気管12,22,52などは、基礎3からの高さが4m以下、特に3.0m以下であることが好ましい。このように接続部、マンホール17,27、担体13、ストレーナ23,54、散気管12,22,52などを低位置に設けることにより、配管接続作業や機器設置作業、各種メンテナンス作業が高所作業ではなくなり、作業効率及び安全性が向上する。
 本発明では、第一生物処理槽1,41の前段に嫌気処理槽を設置し、嫌気処理槽の処理水を第一生物処理槽に導入するようにしてもよい。この嫌気処理槽の塔体の大きさも塔体10,20又は塔体50と同一としてもよい。
 本発明では、嫌気又は好気処理槽の最前段に調整槽を設置してもよい。この調整槽としては、原水流量を平準化するための原水槽、固形物を沈降させるための沈降槽、加圧浮上装置などが例示されるが、これに限定されない。
 本発明では、各生物処理槽は、予め塔体に散気管などの付属機器を工場で取り付けておき、現場に移送し、基礎上に据え付けるように施工を行うのが好ましい。これにより、現場作業数を減少させ、工期の短縮や、組み立て精度の向上などを図ることができる。
 本発明では、生物処理槽内への原水(被処理水)の流入口と処理水の流出口との距離、すなわち図1~3では原水導入管11の上端部と流出口14aとの距離、図5~8では原水導入管51の上端部とストレーナ54(上側のもの)との距離を1.5m以上特に2m以上とすることが好ましい。このように構成することにより、短絡流の割合が少なくなり、CODの分解時間を十分に確保できるようになる。
 以下に図面を参照して本発明(II)の有機性排水の生物処理装置の実施の形態を詳細に説明する。図11は本発明(II)の有機性排水の生物処理装置の実施の形態を示すものであり、第一生物処理槽101と、第二生物処理槽102とが基礎103上に立設され、配管104によって直列に接続されている。
 第一生物処理槽101は、円筒形の塔体110と、該塔体110の下部側面に設けられたフランジ構造の原水流入口111aと、該原水流入口111aに連なり、塔体110内を上方に延在し、上端部が水面位よりも上位にて開放した原水導入管111と、塔体110内の底部に設けられた散気管112a,112bと、該塔体110内の下部に設けられたスクリーンボックス113と、下端が該スクリーンボックス113に連なり、上端が水面位よりも上位にて開放した立上管114と、該立上管114の上端近傍の側面から分岐し、塔体110内を立ち下り、塔体110の下部において塔体110外に引き出された流出配管115と、塔体110の上部に設けられた散水器116等を備えている。
 流出配管115の上端部115aのレベルが塔体110内の水面位となる。流出配管115の末端115bに前記配管104が接続されている。
 塔体110内には流動床担体Cが充填されている。スクリーンボックス113は、塔体110内の中央側を指向した前面がウェッジワイヤ等よりなるスクリーン面となっている。担体Cはこのスクリーン面を不通過となっている。
 散気管112aは、塔体110の底面の一半側に配置され、散気管112bは該底面の他半側に配置されている。散気管112aを配置した前記一半側と散気管112bを配置した前記他半側との中間を境界として塔体110の底面を二分した場合、該一半側領域の面積は塔体110の底面の面積の15~50%好ましくは20~45%となるように構成されている。
 塔体110の頂部に開口117aが設けられ、大気連通管117の一端が接続されている。大気連通管117は、塔体110内を通って下方に延設され、下端が基礎103の直近において塔体110外に引き出され、大気に向って開放している。
 図示は省略するが、塔体110の頂部には開閉可能な予備座が設けられ、下部にはマンホール及び予備座が設けられている。
 第二生物処理槽102は、塔体110と同一形状、同一大きさの円筒形の塔体120と、該塔体120の下部側面に設けられたフランジ構造の流入口121と、塔体120内の底部に設けられた散気管122a,122bと、該塔体120内の上下方向中間よりも若干下位に設置されたストレーナ123と、下端が該ストレーナ123に連なり、上端が水面位よりも上位にて開放した立上管124と、該立上管124の上端近傍の側面から分岐し、塔体120内を立ち下り、塔体120の下部において塔体120外に引き出された流出配管125と、塔体120の上部に設けられた散水器126等を備えている。
 流出配管125の上端部125aのレベルが塔体120内の水面位となる。
 塔体120内には流動床担体Cが充填されている。担体Cはストレーナ123を不通過となっている。
 散気管122aは、塔体120の底面の一半側に配置され、散気管122bは該底面の他半側に配置されている。散気管122aを配置した前記一半側と散気管122bを配置した前記他半側との中間を境界として塔体120の底面を二分した場合、該一半側領域の面積は塔体120の底面の面積の15~50%好ましくは20~45%となるように構成されている。
 散気管112a,112b,122a,122bはバルブ(図示略)を介して図示しないブロワに接続されている。ブロワとしては、水位が高い場合には、スクリューブロワ、ターボブロワ等の吐出圧力60kPa以上の能力を備える高圧ブロワが好ましい。
 塔体120の頂部に開口127aが設けられ、大気連通管127の一端が接続されている。大気連通管127は、塔体120内を下方に延設され、下端127eは基礎103の直近において塔体120外に引き出され、大気に向って開放している。
 塔体120の頂部には開閉可能な予備座が設けられ、下部にはマンホール及び予備座が設けられている。
 各塔体110,120は、ライニングを不要とするためFRP等の樹脂製が好ましいが、水質によっては鋼板であってもよい。FRPの場合には紫外線による劣化の防止、耐食性の向上を目的として耐候性塗料を塗布するのが好ましい。
 なお、第一及び第二生物処理槽101,102には余剰汚泥の取出管、ドレン管や槽内監視カメラの挿入管、配線挿通口、サンプリング口(図示略)等が設けられている。槽内の監視は、カメラ又は動画撮影機能を備えた撮影機材(望ましくは照明付きもしくは赤外線カメラ)を常時又は適宜に槽内に挿入して行う。撮影データは無線又は有線にて送信する。撮影機材に撮影データを保管してもよい。塔体に予め保温材を巻いておいてもよい。
 必要に応じ、水槽或いは周辺設備、配管等に、水位計、圧力計、流量計、水温計、水質計等の測定器を設置し、運転状況の監視や運転制御、運用管理等に用いる。また、付帯設備(例えば、送水、加温、薬品注入、曝気、脱水機能等を備えた設備)との組合せにより、水槽における処理を最適化するために利用する。
 この有機性排水の処理装置によって有機性排水を処理するには、導入管111を介して原水(有機性排水)を第一生物処理槽101に導入し、散気管112a,112bで曝気し、分散性細菌(非凝集性細菌)により、有機成分(溶解性BOD)の70%以上、望ましくは80%以上、さらに望ましくは85%以上を酸化分解する。この第一生物処理槽101のpHは好ましくは6~8.5とする。ただし、食品製造排水など原水中に油分を多く含む場合や、半導体製造排水や液晶製造排水など原水中に有機性の溶媒や洗浄剤を多く含む場合には分解速度を高くするため、pHは8~9としても良い。
 第一生物処理槽101への通水は、一過式とする。第一生物処理槽101のBOD容積負荷を1kg/m/d以上、例えば1~20kg/m/d、HRT(原水滞留時間)を24h以下、好ましくは8h以下、例えば0.5~8hとすることにより、分散性細菌が優占化した処理水を得ることができ、また、HRTを短くすることでBOD濃度の低い排水を高負荷で処理することができる。
 第一生物処理槽101には、後段の生物処理槽からの汚泥の一部を返送したり、この第一生物処理槽101を二槽以上の多段構成とすることにより、BOD容積負荷5kg/m/d以上の高負荷処理も可能となる。
 なお、第一生物処理槽101には、固定床担体又は揺動床担体を設けてもよい。揺動床担の素材は、発泡合成樹脂特に軟質ポリウレタンフォームが好ましい。第一生物処理槽101にこのような薄い板状ないし短冊状の軽量ポリウレタンフォームのような多孔質のシート状揺動床担体を設置すると、揺動床担体が、十分な弾力性を有し、槽内の水の流れの中でたわむ(形状維持しない)ことにより、薄くても十分な機械的強度を持ち、破損することがない。また、たわむことで槽内の通水を阻害することなく均一に混合され、担体の多孔質構造内にも均等に汚泥含有液が通水されるようになる。
 第一生物処理槽101における担体の充填率が高い場合、分散菌は生成せず、細菌は担体に付着するか、糸状性細菌が増殖する。そこで、第一生物処理槽101に添加する担体の充填率を、流動床担体の場合は10%以下、例えば1~10%とし、固定床担体、揺動性担体の場合は5%以下、例えば0.5~5%とすることで、濃度変動に影響されず、捕食しやすい分散菌の生成が可能になる。
 第一生物処理槽101の溶存酸素(DO)濃度を1mg/L以下、好ましくは0.5mg/L以下として、糸状性細菌の増殖を抑制しても良い。
 第一生物処理槽101の処理水(第一生物処理水)を、配管114,115,104、流入口121を介して後段の第二生物処理槽102に導入し、曝気し、残存している有機成分の酸化分解、分散性細菌の自己分解及び微小動物の捕食による余剰汚泥の減量化を行う。
 第二生物処理槽102では、細菌に比べ増殖速度の遅い微小動物の働きと細菌の自己分解を利用するため、微小動物と細菌が系内に留まるような運転条件及び処理装置を用いる必要がある。そこで、この実施の形態では、第二生物処理槽102には、流動床担体Cを充填して微小動物の槽内保持量を高めている。
 流動床担体Cの形状は、球状、ペレット状、中空筒状、糸状、板状等の任意であり、大きさ(径)は0.1~10mm程度である。担体Cの材料は、天然素材、無機素材、高分子素材等任意であり、ゲル状物質を用いても良い。なお、担体Cは、乾燥状態において嵩比重が1よりも小さいものであり、具体的にはスポンジ担体が好適である。
 第二生物処理槽102には、流動床担体のほかにさらに揺動床担体を充填してもよい。
 第二生物処理槽102では、微小動物を維持するための多量の足場が必要となるが、過度に担体の充填率が多いと槽内の混合不足、汚泥の腐敗などが起こるため、添加する担体の充填率は、0.5~30%、特に1~10%程度とすることが望ましい。
 微小動物による捕食を促進させるため、第二生物処理槽102のpHを7.0以下としても良い。
 第二生物処理槽102では、分散状態の菌体を捕食する濾過捕食型微小動物だけでなく、フロック化した汚泥を捕食できる凝集体捕食型微小動物も増殖する。後者は遊泳しながらフロックを捕食するため、優先化した場合、汚泥は食い荒らされ、微細化したフロック片が散在する汚泥(沈降性の悪い汚泥)となる。また、このフロック片により、特に後段で膜分離を行う膜式活性汚泥法では膜の目詰まりが発生する。そこで、凝集体捕食型微小動物を間引くため、SRTを60日以下望ましくは45日以下の範囲内で一定に制御することが望ましい。ただし15日未満では不必要に頻繁すぎて凝集体捕食型微小動物だけでなく濾過捕食型微小動物の数が減少しすぎるので15日以上とするのが好ましい。
 第一生物処理槽101では有機物の大部分、すなわち排水BODの70%以上、望ましくは80%以上を分解し、菌体へと変換しておく必要があるが、第一生物処理槽101で溶解性有機物を完全に分解した場合、第二生物処理槽102ではフロックが形成されず、また、微小動物増殖のための栄養も不足し、圧密性の低い汚泥(沈降性の悪い汚泥)のみが優占化した生物処理槽となる。そこで、原水の一部をバイパスして第二生物処理槽102に供給し、第二生物処理槽102への溶解性BODによる汚泥負荷が0.025kg-BOD/kg-MLSS/d以上となるように運転してもよい。この時のMLSSには担体付着分のMLSSも含む。
 第二生物処理槽102からストレーナ123及び配管124,125を介して取り出される処理水に対して、より高度な処理水水質を得るために固液分離として膜分離、凝集沈殿、加圧浮上のいずれを行ってもよい。なお、凝集沈殿や加圧浮上を行うときは、凝集剤の添加量の低減することができる。第二生物処理槽102からの沈降分離水を凝集槽で凝集処理し、次いで固液分離槽(沈殿槽)で沈殿処理して処理水と沈降汚泥とに分離してもよい。
 第一、第二生物処理槽101,102において、曝気に伴って発泡が生じたときには、散水器116,126から消泡剤水溶液を散水して発泡を防止することが好ましい。
 図11は、本発明(II)の実施の形態の一例を示すものであり、本発明(II)は何ら図示のものに限定されない。例えば、第一生物処理槽101、第二生物処理槽102の後段に第三生物処理槽を設けるなどして、生物処理槽を3段以上に設けてもよい。
 本発明(II)でも、図4a-4hと同様に、第一生物処理槽101、第二生物処理槽102を種々の配置パターンとすることができる。
 この実施の形態では、塔体110,120が同一形状、同一大きさであるため、各塔体110,120を多数設置する場合でも各塔体を近接して設置し、塔体間のスペースを小さくし、有機性排水処理装置全体の設置スペースを小さくすることができる。また、各塔体110,120の製造コストも安価となる。複数の塔体を並列に設置する場合、各塔体の構成が同一であるから、塔体の据付作業や各塔体の配管接続作業が同じとなり、作業効率が向上し、工期の短縮を図ることができる。
 各塔体110,120は、直径が2.2~3.6m、特に2.4~3.3mであり、高さが6~11m、特に8~11mであり、高さHと直径Dとの比H/Dが1.5~5.0特に3.0~4.5であることが好ましい。また、主要な配管の接続部やマンホール、ストレーナ123、散気管112a,112b,122a,122bなどは、基礎103からの高さが4m以下、特に3.0m以下であることが好ましい。このように配管接続部、マンホール、ストレーナ123、散気管112a,112b,122a,122bなどを低位置に設けることにより、配管接続作業や機器設置作業、各種メンテナンス作業が高所作業ではなくなり、作業効率及び安全性が向上する。
 本発明では、第一生物処理槽101の前段に嫌気処理槽を設置し、嫌気処理槽の処理水を第一生物処理槽に導入するようにしてもよい。この嫌気処理槽の塔体の大きさも各塔体110,120と同一としてもよい。
 本発明では、嫌気又は好気処理槽の最前段に調整槽を設置してもよい。この調整槽としては、原水流量を平準化するための原水槽、固形物を沈降させるための沈降槽、加圧浮上装置などが例示されるが、これに限定されない。
 本発明では、各生物処理槽は、予め塔体に散気管などの付属機器を工場で取り付けておき、現場に移送し、基礎上に据え付けるように施工を行うのが好ましい。これにより、現場作業数を減少させ、工期の短縮や、組み立て精度の向上などを図ることができる。
 次に、各生物処理槽101,102の運転を開始する際の流動担体Cの投入方法を説明する。
 担体Cがスポンジ担体等である場合、塔体110又は120内に投入しても浮上したままであり、各散気管から一斉に曝気を行っても殆ど水没しない。
 そこで、この実施の形態では、担体を塔体110又は120内に投入した後、(又は投入に先立って、)散気管112a又は122aのみから曝気を行う。散気管112a、122aは各塔体110,120内の底部の一半側に偏って配置されているため、該散気管112a又は122aから曝気すると、気泡は主として塔体110又は120内の内周面のうち一半側の内周面に沿って上昇するので、塔体110又は120内には、該一半側に沿う上昇流が形成され、他半側では下降流が形成され、これにより塔体110又は120内に上下方向の循環流が形成される。塔体110又は120内に投入された担体Cは、この下降流によって水中に引き込まれ、水と親和し、各塔体110,120内で流動するようになる。
 従って、この起動方法によると、担体全量をまとめて各塔体110,120内に投入しても、担体が速やかに水中に分散し、流動を開始するようになる。
 なお、この起動時に、散水器116から水を散水し、担体に水を注ぎかけることにより担体の水没を促進することができる。この水は、原水であってもよく、処理水であってもよい。
 また、この起動時に、散水器116から消泡剤水溶液を散水することにより、曝気気泡が粗大化して担体に絡みついて担体が浮上することを防止することができる。
[実施例1]
 内径2.5m、高さ10m、水面高さ9mの図11に示す構成の塔体110内に担体として3mm角、嵩比重0.04g/cmのスポンジ担体704kgを投入し、散気管112aから曝気量240Nm/hにて曝気したところ、10min以内にすべての担体が流動を開始した。なお、散気管112aを配置した一半側の領域の面積は、塔体110の底面積の10%である。
[実施例2]
 実施例1において、さらに散水器116から水を100L/minにて散水したところ、5min以内にすべての担体が流動を開始した。
[比較例1]
 実施例1において、散気管112a,112bから合計曝気量240Nm/hにて曝気したところ、すべての担体が流動を開始するまでに10日を要した。
[比較例2]
 実施例2において、散気管112a,112bから合計曝気量240Nm/hにて曝気したところ、すべての担体が流動を開始するまでに7日を要した。
 以上の実施例及び比較例より、本発明によると、生物処理装置の起動を著しく早期化できることが認められた。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年3月13日付で出願された日本特許出願2014-050444及び2015年2月16日付で出願された日本特許出願2015-027727に基づいており、その全体が引用により援用される。

Claims (16)

  1.  有機性排水を多段に設けられた生物処理槽で生物処理する装置であって、
     第一段の生物処理槽において、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、
     後段の第二生物処理槽において、第二生物処理水を生成させる有機性排水の生物処理装置において、
     第一生物処理槽及び第二生物処理槽は同一形状及び同一大きさの塔体を有しており、塔体の高さが6~11mであることを特徴とする有機性排水の生物処理装置。
  2.  請求項1において、塔体の高さ(H)と直径(D)との比(H/D)が1.5~5.0であることを特徴とする有機性排水の生物処理装置。
  3.  請求項1又は2において、半数以上の配管接続部の設置高さが3m以下であることを特徴とする有機性排水の生物処理装置。
  4.  請求項1ないし3のいずれか1項において、第一生物処理槽及び第二生物処理槽の少なくとも一方が並列に複数設置されていることを特徴とする有機性排水の生物処理装置。
  5.  請求項1ないし4のいずれか1項において、前記塔体はFRP製であり、塔底から塔頂まで全体として一体に成形されたものであることを特徴とする有機性排水の生物処理装置。
  6.  請求項5において、前記塔体の下部の肉厚は、塔体上部の肉厚よりも大きいことを特徴とする有機性排水の生物処理装置。
  7.  請求項5又は6において、塔内内部を上下方向に引き回された上下方向配管を備えており、少なくとも一部の上下方向配管は、半割円筒状であり、塔体の内周面に接着されていることを特徴とする有機性排水の生物処理装置。
  8.  請求項1ないし7のいずれか1項の生物処理装置を用いた有機性排水の生物処理方法。
  9.  請求項8において、第一生物処理槽及び第二生物処理槽内に流動床担体を充填して曝気を行うことを特徴とする有機性排水の生物処理方法。
  10.  生物処理槽内に嵩比重が1よりも小さい流動床担体を投入すると共に、生物処理槽内の底部に設けた散気管から曝気して該担体を流動させる生物処理槽の運転を開始する方法において、
     該生物処理槽内の底部の一半側に設けた散気管から曝気を行って塔体内に上下方向の循環流を形成することを特徴とする生物処理槽の運転方法。
  11.  請求項10において、塔体内に散水することを特徴とする生物処理槽の運転方法。
  12.  請求項11において、消泡剤含有水を散水することを特徴とする生物処理槽の運転方法。
  13.  請求項10ないし12のいずれか1項において、前記生物処理槽の槽体は、高さ(H)と直径(D)との比(H/D)が1.5~5.0の筒形の塔体よりなることを特徴とする生物処理槽の運転方法。
  14.  有機性排水を多段に設けられた生物処理槽で生物処理する方法において、
     少なくとも1つの生物処理槽を請求項10ないし13のいずれか1項に記載の方法によって起動させることを特徴とする有機性排水の生物処理方法。
  15.  請求項14において、第一段の生物処理槽において、分散菌による有機物の分解により分散菌の増加した第一生物処理水を生成させ、
     後段の第二生物処理槽において、第二生物処理水を生成させることを特徴とする有機性排水の生物処理方法。
  16.  請求項15において、第一生物処理槽及び第二生物処理槽は同一形状及び同一大きさの槽体を有しており、該槽体の高さが6~11mであることを特徴とする有機性排水の生物処理方法。
PCT/JP2015/057126 2014-03-13 2015-03-11 有機性排水の生物処理装置及び処理方法 WO2015137386A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187007588A KR20180031806A (ko) 2014-03-13 2015-03-11 유기성 배수의 생물 처리 장치
CN201580013661.0A CN106103357A (zh) 2014-03-13 2015-03-11 有机性排水的生物处理装置以及处理方法
KR1020177026695A KR20170113682A (ko) 2014-03-13 2015-03-11 유기성 배수의 생물 처리 장치 및 처리 방법
KR1020167022136A KR20160117482A (ko) 2014-03-13 2015-03-11 유기성 배수의 생물 처리 장치 및 처리 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014050444 2014-03-13
JP2014-050444 2014-03-13
JP2015-027727 2015-02-16
JP2015027727 2015-02-16

Publications (1)

Publication Number Publication Date
WO2015137386A1 true WO2015137386A1 (ja) 2015-09-17

Family

ID=54071828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057126 WO2015137386A1 (ja) 2014-03-13 2015-03-11 有機性排水の生物処理装置及び処理方法

Country Status (3)

Country Link
KR (3) KR20160117482A (ja)
CN (1) CN106103357A (ja)
WO (1) WO2015137386A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018023931A (ja) * 2016-08-10 2018-02-15 栗田工業株式会社 生物処理槽の運転方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102334438B1 (ko) * 2019-10-09 2021-12-03 (주)동명기술공단종합건축사사무소 처리효율이 개선된 플랜지고정수단을 갖는 하수처리시스템
KR102334437B1 (ko) * 2019-10-09 2021-12-03 (주)동명기술공단종합건축사사무소 플랜지고정수단을 갖는 하수처리시스템

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229587A (ja) * 1995-02-27 1996-09-10 Aichi Pref Gov Keizai Nogyo Kyodo Kumiai Rengokai 家畜糞尿用活性汚泥処理装置及び設置方法
JPH10174989A (ja) * 1996-12-18 1998-06-30 Hymo Corp 廃水の処理方法および微生物担体
JP2000254670A (ja) * 1999-03-09 2000-09-19 Suiko Kinzoku Kk 汚水浄化処理システム
JP2000334439A (ja) * 1999-05-25 2000-12-05 Omega:Kk 多目的モジュールタンク
JP2001087786A (ja) * 1999-09-27 2001-04-03 Yoshimoto Pole Kk 汚水処理装置
WO2013084711A1 (ja) * 2011-12-09 2013-06-13 栗田工業株式会社 揺動性担体と、この揺動性担体を用いた有機性排水の生物処理装置及び方法
JP2013208560A (ja) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd 有機性排水の生物処理方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5520649A (en) 1978-07-29 1980-02-14 Agency Of Ind Science & Technol Biological treatment method of waste water
JPS6023832A (ja) 1983-07-19 1985-02-06 Seiko Instr & Electronics Ltd 多色表面着色体の製造方法
JP2000210692A (ja) 1998-06-05 2000-08-02 Agency Of Ind Science & Technol 有機性廃水の処理方法
JP3410699B2 (ja) 1999-11-19 2003-05-26 株式会社クラレ 排水の処理方法
CN101374772B (zh) * 2006-02-03 2011-09-07 栗田工业株式会社 有机废水的生物处理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229587A (ja) * 1995-02-27 1996-09-10 Aichi Pref Gov Keizai Nogyo Kyodo Kumiai Rengokai 家畜糞尿用活性汚泥処理装置及び設置方法
JPH10174989A (ja) * 1996-12-18 1998-06-30 Hymo Corp 廃水の処理方法および微生物担体
JP2000254670A (ja) * 1999-03-09 2000-09-19 Suiko Kinzoku Kk 汚水浄化処理システム
JP2000334439A (ja) * 1999-05-25 2000-12-05 Omega:Kk 多目的モジュールタンク
JP2001087786A (ja) * 1999-09-27 2001-04-03 Yoshimoto Pole Kk 汚水処理装置
WO2013084711A1 (ja) * 2011-12-09 2013-06-13 栗田工業株式会社 揺動性担体と、この揺動性担体を用いた有機性排水の生物処理装置及び方法
JP2013208560A (ja) * 2012-03-30 2013-10-10 Kurita Water Ind Ltd 有機性排水の生物処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018023931A (ja) * 2016-08-10 2018-02-15 栗田工業株式会社 生物処理槽の運転方法

Also Published As

Publication number Publication date
KR20170113682A (ko) 2017-10-12
KR20180031806A (ko) 2018-03-28
KR20160117482A (ko) 2016-10-10
CN106103357A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
US20090065412A1 (en) Apparatus for waste water treatment
PL109974B1 (en) Method and apparatus for biological sewage treatment with activated sludge
WO2015137386A1 (ja) 有機性排水の生物処理装置及び処理方法
CN102849848B (zh) 内循环生物滤池反应器及污水处理方法
CN103663886B (zh) 一种农村生活污水箱式泥鳅生态处理装置
SK288077B6 (sk) Sewage water treatment plant
JP6202161B2 (ja) 有機性排水の生物処理装置
JP6112162B2 (ja) 有機性排水の生物処理装置及び処理方法
JP5786998B1 (ja) 有機性排水の生物処理方法及び装置
KR20060029667A (ko) 우수의 집수와 오폐수 처리를 연결한 통합 시스템
JP2017042714A (ja) 有機性排水の生物処理装置及び処理方法
CN102060418A (zh) 空塔曝气生态滤床污水处理系统
JP6024807B2 (ja) 生物処理槽、その運転方法及び有機性排水の処理方法
CN104692587A (zh) 地埋式无动力五格净化槽污水处理设备
WO2016132881A1 (ja) 生物処理槽、その運転方法及び有機性排水の処理方法
JP6834236B2 (ja) 生物処理槽の運転方法
US7160460B2 (en) System and method for treating wastewater using coir filter
CN213037622U (zh) 生活污水一体化处理装置
JP2016150276A (ja) 生物処理槽及び有機性排水の処理方法
CN219449477U (zh) 一种序批式流化床一体化污水处理装置
CN216837549U (zh) 一种适用于农村集镇的污水处理装置
CN208562089U (zh) 河道原位修复装置
CN206486348U (zh) 一体化压榨挤出液处理装置
CN112158942A (zh) 一种用于污水处理的沉淀池
CN116199381A (zh) 一种污水资源化设备及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167022136

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761795

Country of ref document: EP

Kind code of ref document: A1