WO2015135310A1 - 拍摄设备稳定器及其控制方法 - Google Patents

拍摄设备稳定器及其控制方法 Download PDF

Info

Publication number
WO2015135310A1
WO2015135310A1 PCT/CN2014/086003 CN2014086003W WO2015135310A1 WO 2015135310 A1 WO2015135310 A1 WO 2015135310A1 CN 2014086003 W CN2014086003 W CN 2014086003W WO 2015135310 A1 WO2015135310 A1 WO 2015135310A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
phase brushless
rotating shaft
main controller
rotary encoder
Prior art date
Application number
PCT/CN2014/086003
Other languages
English (en)
French (fr)
Inventor
冯健
焦志涛
林健
曾子斌
Original Assignee
广州微沃电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州微沃电子有限公司 filed Critical 广州微沃电子有限公司
Publication of WO2015135310A1 publication Critical patent/WO2015135310A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/563Camera grips, handles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing

Definitions

  • the traditional stability equipment mainly has the following four types: 1.
  • Mechanical stabilizer (conventional title: Steadicam Stabilization System), which is based on the inertial stability principle of the mechanical center of gravity, and achieves a stable shooting load through a universal joint with low frictional resistance.
  • the related patents are: CN201220417128.4, CN201230053857.1, etc., but this kind of stabilizer controls the balance of the shooting load through the principle of the pendulum effect, which plays a certain stabilizing effect during the movement, due to the existence between the shooting load and the counterweight.
  • a stabilizing device mainly used for aerial aerial photography. It uses micro-mechanical sensors for feedback and is stabilized by a microcomputer-driven motor.
  • the related patents are: CN201010171360.X, CN201310097887.6, the stabilizer Open loop control using angular velocity sensor for feedback, using DC deceleration
  • the motor or the rudder servo is used as the driving component.
  • Control 3
  • a high-performance stabilization device for professional fields which uses high-performance angular velocity sensor for feedback, and is stabilized by a microcomputer-driven torque motor.
  • the related patents are: CN201110099579.8, the motor used in this stabilizer
  • the outer casing, the motor and the feedback component are relatively large in volume and weight, and the power consumption is huge. It can only be used in professional fields and is difficult to be accepted by ordinary consumers. 4.
  • a stable cloud for aerial photography application Taiwan which uses the inertial sensor to detect the attitude information of the load, and is stabilized by the motor directly driving the load movement through the microcomputer.
  • the related patent is: CN201110380351.6, but the disadvantage of this stabilizer is that the DC brushless motor is used as a direct The driven component, on the one hand, because its motor length is much larger than its straight It is not suitable for the stable pan/tilt field with low speed rotation and large driving torque. On the other hand, the DC brushless motor causes sudden change of driving torque during commutation, which has an influence on the stability accuracy.
  • the stable pan/tilt uses DC brushless motor as the The driving device, which changes the armature power supply polarity according to the Hall signal to realize electronic commutation, but brings a large torque fluctuation when commutating, and cannot satisfy high performance and high precision. Stable application.
  • the invention only uses the attitude information as the feedback control quantity, and controls the acquisition without any other auxiliary information, which has a large problem in the control principle, which leads to low control lag and low control precision.
  • the stable cloud platform exists. The structure is not compact, the seismic performance is poor, the portability is poor, the reliability is low, and the rotation of the ring cannot be performed.
  • a photographing device stabilizer comprises a first rotating shaft driven by a three-phase brushless AC motor, a second rotating shaft driven by a three-phase brushless AC motor, and mounted on a three-phase brushless AC motor a first magnetic rotary encoder, a second magnetic rotary encoder mounted on the three-phase brushless AC motor 2, an inertial sensor, a fixing member, a main controller, the three-phase brushless AC motor, and a three-phase brushless alternating current
  • the motor 2, the inertial sensor, the first magnetic rotary encoder, and the second magnetic rotary encoder are respectively electrically connected to the main controller, and the inertial sensor is mounted on the fixing member, and the axis of the first rotating shaft and the second rotating shaft
  • the wires are perpendicularly intersected, and the fixing member is connected to the first rotating shaft, and the three-phase brushless AC motor is connected to the second rotating shaft through the bending member.
  • the fixing member comprises a supporting plate, a first clamping member and a second clamping member, and the opposite sides of the supporting plate are provided with a card seat, and the first clamping member and the second clamping member a card shaft is disposed on the card shaft, and the card shaft is sleeved with a torsion spring, and the first clamping member and the second clamping member are rotatably mounted on the support plate by the card shaft and the card seat, the support plate and the first A rotating shaft is connected.
  • the fixing member comprises a receiving plate, a connecting plate and a clamping member
  • the connecting plate comprises a connecting portion and a mounting portion disposed perpendicularly to each other, the connecting portion passing through the first screw nut mechanism and the first rotating shaft
  • the connecting portion is connected to the receiving plate by a second screw nut mechanism, and the latching member is disposed on a side of the receiving plate.
  • a side of the two-phase brushless AC motor 2 remote from the second rotating shaft is provided with a display for electrically connecting to the photographing device.
  • the first magnetic rotary encoder and the second magnetic rotary encoder each include a circular magnetic steel and an encoder chip, and the circular magnetic steel is mounted on the first rotating shaft and the second rotating shaft, and the encoder The chip is placed on the circular magnetic steel, and the encoder chip is electrically connected to the main controller, and the encoder chip does not abut the corresponding circular magnetic steel.
  • the photographing device stabilizer further comprises a universal handle, the three-phase brushless AC motor 2 is connected to the universal handle, the main controller is disposed in the universal handle, and the universal handle is provided with a power supply The switch and the rotating shaft adjusting rod are respectively electrically connected to the main controller.
  • the camera stabilizer further includes a third rotating shaft driven by the three-phase brushless AC motor, a connecting rod, an operating handle, and a geomagnetic sensor and a third magnetic rotary encoder electrically connected to the main controller.
  • the geomagnetic sensor is mounted on a fixing member
  • the third magnetic rotary encoder is mounted on a three-phase brushless AC motor 3
  • the three-phase brushless AC motor 3 is connected to an operating handle
  • the connecting rod is connected to the three-phase brushless AC motor 2, and the axis lines of the third rotating shaft intersect perpendicularly with the axis lines of the first rotating shaft and the second rotating shaft, respectively.
  • the third magnetic rotary encoder comprises a circular magnetic steel and an encoder chip, and the circular magnetic steel is mounted on the first rotating shaft, the second rotating shaft and the third rotating shaft, and the encoder chip
  • the encoder chip is electrically connected to the main controller, and the encoder chip does not abut the corresponding circular magnetic steel.
  • the first rotating shaft, the second rotating shaft and the third rotating shaft are all hollow structures, and a collecting ring is arranged therein.
  • the three-phase brushless AC motor, the three-phase brushless AC motor, and the three-phase brushless AC motor are all flat cylindrical shape structures.
  • the invention also provides a two-axis photographing device stabilizer, the technical scheme of which is as follows:
  • a method for controlling a camera stabilizer includes the following steps:
  • the main controller budgets the movement trend of the first rotating shaft and the second rotating shaft according to the data transmitted by the inertial sensor, and outputs a control command to the three-phase brushless AC motor, and the three-phase brushless AC motor adjusts the first rotating shaft.
  • the first magnetic rotary encoder and the second magnetic rotary encoder detect the rotation information of the three-phase brushless AC motor one and the three-phase brushless AC motor two, and transmit the rotation information to the main controller, and the main control calculates the three-phase brushless according to the rotation information.
  • AC motor 1 The absolute position information of the two-phase brushless AC motor.
  • the phase and amplitude of the output control command are corrected according to the absolute position information of the motor.
  • the invention also provides a three-axis photographing device stabilizer, the technical scheme of which is as follows:
  • the inertial sensor detects the real-time angular velocity and acceleration of the three axes of the space and transmits it to the main controller, and the geomagnetic sensor detects the three-axis geomagnetic field strength of the space and transmits it to the main controller;
  • the main controller budgets the direction angles and movement trends of the first rotating shaft, the second rotating shaft, and the third rotating shaft according to the data transmitted by the inertial sensor and the geomagnetic sensor, and outputs a control command to the three-phase brushless communication.
  • the first magnetic rotary encoder, the second magnetic rotary encoder, and the third magnetic rotary encoder detect the rotation information of the three-phase brushless AC motor, the three-phase brushless AC motor, and the three-phase brushless AC motor, and transmit the information to
  • the main controller calculates the absolute position information of the three-phase brushless AC motor, the three-phase brushless AC motor, the three-phase brushless AC motor, and the information according to the absolute position of the motor according to the rotation information.
  • the phase and amplitude of the output control command are corrected.
  • the main controller budgets the first rotation axis, the second rotation axis, the third rotation axis direction angle and the movement trend, and outputs a control command to the three-phase brushless AC motor, the three-phase brushless AC motor Second, three-phase brushless AC motor three, including the following steps:
  • the main controller reads the data of the inertial sensor and the geomagnetic sensor in real time and calculates the current posture of the first rotating shaft, the second rotating shaft and the third rotating shaft;
  • the main controller uses the angular velocity of the three axes of the space as the feedback amount, and calculates the current control angle of the first rotating shaft, the second rotating shaft and the third rotating shaft as the compensation amount, and calculates the control increments;
  • the main controller adds the control increments to the driving target quantity of the three-phase brushless AC motor one, the three-phase brushless AC motor two, and the three-phase brushless AC motor three, and assigns a duty ratio according to the driving target amount.
  • Three-phase sine wave pulse width modulation pulse to three-phase brushless AC motor, three-phase brushless AC motor two, three-phase brushless AC motor three.
  • the pulse width modulation pulse has a frequency of 16 kHz/s to 22 kHz/s.
  • the first magnetic rotary encoder, the second magnetic rotary encoder, and the third magnetic rotary encoder detect a three-phase brushless AC motor, a three-phase brushless AC motor, and a three-phase brushless AC motor.
  • the rotation information is transmitted to the main controller, including the following steps:
  • Each circular magnetic steel follows a three-phase brushless AC motor, a three-phase brushless AC motor, and a three-phase brushless AC motor three rotations form a rotating magnetic field, and each encoder chip detects the rotating magnetic field and outputs two orthogonal strings.
  • the wave signal is sent to the main controller, and the main controller calculates the absolute position information of the three-phase brushless AC motor, the three-phase brushless AC motor, and the three-phase brushless AC motor according to the data of the encoder chip.
  • the frequency of the data collected by the main controller of the inertial sensor and the magnetic rotary encoder is 1300 times/second to 1600 times/second.
  • the above-mentioned photographing device stabilizer, by vertically intersecting the first rotating shaft and the axis line of the second rotating shaft, the fixing member is connected with the first rotating shaft, and the three-phase brushless AC motor passes through the bending member and the second rotation
  • the shaft is connected, the shooting device is mounted on the fixing member, and the space is detected by the inertial sensor during the shooting.
  • the real-time angular velocity and acceleration are obtained by the first magnetic rotary encoder and the second magnetic rotary encoder, and the data of the rotational position of the three-phase brushless AC motor and the three-phase brushless AC motor are collected by the high-performance main controller.
  • the motion compensation enables the photographing device to maintain the stability of the time posture.
  • the photographing device stabilizer has a simple structure, is small and light, and is convenient to carry. It is suitable for different sports modes and carriers such as walking, riding, hand-held, on-board, onboard, and machine.
  • the shooting equipment includes a smartphone shooting device, a miniature camera shooting device, a card shooting device, a micro single lens shooting device, a single lens reflective shooting device, a professional digital video recording device, a professional digital film shooting device, and a professional film. Movie shooting equipment, etc.
  • the control method of the above-mentioned photographing device stabilizer is a control method of the two-axis stabilizer, which has two control loops.
  • the main controller budgets the first rotating shaft and the second rotating shaft according to the data transmitted by the inertial sensor. The position of the movement trend, and output control command to the three-phase brushless AC motor.
  • the three-phase brushless AC motor adjusts the position of the first rotating shaft and the second rotating shaft; the second is the first magnetic rotary encoder and the second magnetic
  • the rotary encoder detects the rotation information of the three-phase brushless AC motor and the three-phase brushless AC motor II, and transmits the rotation information to the main controller.
  • the main control calculates the three-phase brushless AC motor according to the rotation information, and the three-phase brushless AC motor.
  • the information of the absolute position of the motion is corrected, and the phase and amplitude of the output control command are corrected based on the information of the absolute position of the motor. Therefore, the photographing device mounted on the stabilizer of the two axes can be kept stable, so that the photographed picture is clear and continuous without swaying.
  • Another control method of the above-mentioned photographing device stabilizer is a three-axis stabilizer control method, which also has two control loops.
  • the main controller budgets the first rotation axis according to the data transmitted by the inertial sensor and the geomagnetic sensor.
  • the second rotating shaft, the third rotating shaft direction angle and movement trend and output control instructions to the three-phase brushless AC motor, three-phase brushless AC motor two, three-phase brushless AC motor three, three-phase brushless AC motor one, three-phase brushless AC motor two, three-phase brushless AC motor three according to the control command of the main controller to adjust the position of the first rotating shaft, the second rotating shaft, the third rotating shaft; the second is the first magnetic rotation
  • the encoder, the second magnetic rotary encoder, and the third magnetic rotary encoder detect the rotation information of the three-phase brushless AC motor, the three-phase brushless AC motor, and the three-phase brushless AC motor, and transmit the rotation information to the main controller.
  • the main control calculates the absolute position information of the three-phase brushless AC motor, the three-phase brushless AC motor, and the three-phase brushless AC motor according to the rotation information, and according to the information of the absolute position of the motor
  • the phase and amplitude of the output control command are corrected. Therefore, the shooting device mounted on the three-axis stabilizer can be kept stable, so that the captured picture is clear and continuous without swaying.
  • FIG. 2 is a schematic structural diagram of a two-axis photographing device stabilizer according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural diagram of a two-axis photographing device stabilizer according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural diagram of a three-axis photographing device stabilizer according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic structural diagram of a three-axis photographing device stabilizer according to Embodiment 5 of the present invention.
  • FIG. 6 is a flowchart of a method for controlling a two-axis photographing device stabilizer according to Embodiment 6 of the present invention.
  • FIG. 7 is a flowchart of a method for controlling a three-axis photographing device stabilizer according to Embodiment 7 of the present invention.
  • FIG. 8 is a schematic diagram of a method for controlling a three-axis photographing device stabilizer according to Embodiment 7 of the present invention.
  • Three-phase brushless AC motor one, two, three-phase brushless AC motor two, three, three-phase brushless AC motor three, four, first rotating shaft, 5, second rotating shaft, 6, third rotating shaft 7, fixing member, 711, support plate, 712, first clamping member, 713, second clamping member, 721, supporting plate, 722, connecting plate, 723, clamping member, 8, bending member, 9, universal handle, 10, display, 11, connecting rod, 12, operating handle.
  • a photographing device stabilizer includes a first rotating shaft 4 driven by a three-phase brushless AC motor 1 and a second rotating shaft 5 driven by a three-phase brushless AC motor 2, and mounting. a first magnetic rotary encoder on the three-phase brushless AC motor 1 , a second magnetic rotary encoder mounted on the three-phase brushless AC motor 2, an inertial sensor, a fixture 7, and a main controller The three-phase brushless AC motor is connected to the main controller, and the inertial sensor is installed in a fixed manner.
  • the above-mentioned photographing device stabilizer is connected to the first rotating shaft 4 by vertically intersecting the first rotating shaft 4 and the axial line of the second rotating shaft 5, and the three-phase brushless AC motor 1 passes through the bending member 8.
  • the photographing device is mounted on the fixing member 7, and during the shooting, the inertial sensor detects the real-time three axes of the space (referring to the space X, Y, and Z axes with the inertial sensor as the coordinate origin). Angular velocity, acceleration data, and output control command to the three-phase brushless AC motor.
  • the three-phase brushless AC motor adjusts the position of the first rotating shaft and the second rotating shaft.
  • the control command is a three-phase AC sinusoidal waveform
  • a magnetic rotary encoder and a second magnetic rotary encoder obtain data of the rotational position of the three-phase brushless AC motor 1 and the three-phase brushless AC motor 2, and the high-performance master collects each data and performs an attitude solution. Calculate the position and solve the solution, and according to the information of the absolute position of the motor, the phase of the output three-phase AC sinusoidal waveform The position and amplitude are corrected so that the photographing device can maintain the stability of the time posture.
  • the photographing device stabilizer has a simple structure, is small and light, and is convenient to carry, and is suitable for different sports modes and carriers such as walking, riding, hand-held, vehicle, and ship.
  • the shooting equipment includes smart phone shooting equipment, miniature camera shooting equipment, card shooting equipment, micro single lens shooting equipment, single lens reflective shooting equipment, professional digital video recording equipment, professional digital film shooting equipment , professional film film shooting equipment, etc.
  • the absolute position information includes the mechanical angle of the motor, the electrical angle of the motor, the phase of the magnetic field, and the like. Setting the first magnetic rotary encoder and the second magnetic rotary encoder avoids the torque anomaly and jitter caused by the lack of the motor angle feedback loop, improves the reliability and stability of the stabilizer, and enables the stabilizer to be disturbed with the external
  • the size of the motor automatically adjusts the drive current of the motor. When the external sway is small, the power consumption is very low.
  • the AC motors 1 and 2 work in the position servo mode to provide users with a more user-friendly operation experience, such as locking the angle of a rotating shaft so that it can move with external motion.
  • the fixing member 7 of the embodiment includes a supporting plate 711, a first clamping member 712, and a second clamping member 713.
  • the opposite sides of the supporting plate 711 are provided with a card holder, and the first clamping member 712 is provided.
  • a clamping shaft is disposed on the second clamping member 713, and the clamping shaft is sleeved with a torsion spring.
  • the first clamping member 712 and the second clamping member 713 are rotatably mounted on the support through the clamping shaft and the card holder.
  • the support plate 711 is coupled to the first rotating shaft 4.
  • the first clamping member 712 and the second clamping member 713 are matched to keep the imaging device fixed relative to the supporting plate 711, and under the action of the torsion spring, the card shaft and the card seat, the first clamping member 712 and the second clamping member
  • the holding members 713 can be adjusted to different widths according to different size photographing devices, so that the fixing members 7 are suitable for different size photographing devices.
  • the clamping surfaces of the first clamping member 712 and the second clamping member 713 are in a concave fold line shape, and the clamping surfaces of the first clamping member 712 and the second clamping member 713 are symmetric in structure.
  • the imaging device is clamped on the clamping surface of the first clamping member 712 and the two clamping members.
  • the support plate 711 Under the action of the surface, the support plate 711 can be fixed at different angles required, and can be stable at different angles, and is not easy to slide out from the fixing member 7.
  • the first magnetic rotary encoder and the second magnetic rotary encoder comprise a circular magnetic steel and an encoder chip, and the circular magnetic steel is mounted on a rear end of the first rotating shaft 4 and the second rotating shaft 5, and the encoding
  • the chip is placed on the circular magnetic steel, the encoder chip is electrically connected to the main controller, and the encoder chip does not abut the corresponding circular magnetic steel.
  • the circular magnetic steel rotates with the output shaft to form a rotating magnetic field, and the encoder chip detects the rotating magnetic field and outputs two orthogonal sine wave signals to the main controller, and the main controller calculates three-phase brushless according to the data of the encoder chip.
  • the information of the absolute position of the AC motor 1 and the three-phase brushless AC motor 2 is thus corrected for the output three-phase AC sinusoidal waveform, avoiding the three-phase brushless AC motor 1 and the three-phase brushless AC motor 2 Driving phase overrun, torque reversal, device oscillation, improve three-phase brushless
  • the AC motor 1 and the three-phase brushless AC motor 2 have the control precision and anti-interference ability, and can optimize the contradiction between the holding torque and the power consumption.
  • the first magnetic rotary encoder and the second magnetic rotary encoder can also be used separately.
  • the three-phase brushless AC motor obtained by the device 1 and the motion data of the three-phase brushless AC motor 2 are used as the feedback amount to realize the two-phase angle locking function of the three-phase brushless AC motor 1 and the three-phase brushless AC motor.
  • the circular magnetic steel is a magnetized method in which the circular area is divided into NS poles, and the encoder chip uses the TMR principle sensor.
  • the photographing device stabilizer further includes a universal handle 9, the three-phase brushless AC motor 2 is connected to the universal handle 9, the main controller is disposed in the universal handle 9, and the universal handle 9 is disposed There is a power switch and a rotating shaft adjusting rod, and the power switch and the rotating shaft adjusting rod are respectively electrically connected to the main controller.
  • the main controller controls the three-phase brushless AC motor to drive the first rotating shaft 4, and controls the three-phase brushless AC motor.
  • the rotating shaft 5 allows the photographing device on the fixing member 7 to maintain the initial position at all times.
  • the embodiment is different from the first embodiment in that the fixing member 7 includes a receiving plate 721, a connecting plate 722, and a latching member 723.
  • the connecting plate 722 includes connecting portions that are perpendicular to each other.
  • the mounting portion, the connecting portion is connected to the first rotating shaft 4 by a first screw nut mechanism, and the mounting portion is connected to the receiving plate 721 by a second screw nut mechanism, and the latching member 723 is disposed at the bearing
  • the side of the pallet 721 is on the side.
  • the photographic apparatus is mounted on the support plate 721 by the fixing member 7 including the support plate 721, the connecting plate 722, and the latching member 723, and the photographing device is relatively opposed by the latching member 723 disposed on the side of the supporting plate 721.
  • the support plate 721 is fixed, and the position of the support plate 721 is adjusted by the first screw nut mechanism and the second screw nut mechanism, thereby adjusting the center of gravity of the photographing device mounted on the support plate 721, so that the center of gravity of the photographing device and the first The intersection of a rotating shaft 4 and the axis of the second rotating shaft 5 coincides, thereby further improving the stability of the stabilizer.
  • the embodiment is different from the first embodiment in that a side of the three-phase brushless AC motor 2 is remote from the second rotating shaft 5, and the display 10 is used for electrical connection with the shooting device. connection.
  • the display 10 for electrically connecting to the photographing device is disposed on a side of the three-phase brushless AC motor 2 away from the second rotating shaft 5, and the display screen is convenient for the user to view the photographing effect during the shooting.
  • the present embodiment is different from the first embodiment in that the photographing device stabilizer is not provided with the universal handle 9, but further includes a third rotating shaft 6 driven by the three-phase brushless AC motor 3 3. a connecting rod 11, an operating handle 12, and a geomagnetic sensor and a third magnetic rotary encoder electrically connected to the main controller, the geomagnetic sensor being mounted on the fixing member 7, the third magnetic rotary encoder being mounted on the three-phase On the brushless AC motor 3, the three-phase brushless AC motor 3 is connected to the operating handle 12, and the third rotating shaft 6 is connected to the three-phase brushless AC motor 2 via the connecting rod 11, and the third rotating shaft
  • the axis lines of 6 intersect perpendicularly to the axis lines of the first rotating shaft 4 and the second rotating shaft 5, respectively.
  • the third rotating shaft 6 and the geomagnetic sensor are arranged to realize the control of the direction of the photographing device, and the geomagnetic sensor detects the geomagnetic field intensity of the spatial three-axis (referring to the space X, Y, and Z axes of the geomagnetic sensor as the coordinate origin) in real time.
  • the main controller calculates the direction angle and the movement trend of the first rotating shaft 4, the second rotating shaft 5, and the third rotating shaft 6 according to the data transmitted by the inertial sensor and the geomagnetic sensor, and outputs a control command to Three-phase brushless AC motor 1, 1, three-phase brushless AC motor 2, three-phase brushless AC motor three 3, three-phase brushless AC motor 1, three-phase brushless AC motor 2, three-phase brushless communication
  • the motor 3 3 adjusts the positions of the first rotating shaft 4, the second rotating shaft 5, and the third rotating shaft 6 in accordance with a control command of the main controller.
  • the first rotating shaft 4 is a pitch axis
  • the second rotating shaft 5 is a roll axis
  • the third rotating shaft 6 is a direction axis.
  • the third magnetic rotary encoder includes a circular magnetic steel, an encoder chip mounted on a rear end of the first rotating shaft 4, the second rotating shaft 5, and the third rotating shaft 6, the encoding
  • the chip is placed on the circular magnetic steel, the encoder chip is electrically connected to the main controller, and the encoder chip does not abut the corresponding circular magnetic steel.
  • the first rotating shaft 4, the second rotating shaft 5, and the third rotating shaft 6 are both hollow structures, and a slip ring is disposed therein.
  • a slip ring is disposed therein.
  • the three-phase brushless AC motor-1, the three-phase brushless AC motor 2, and the three-phase brushless AC motor 3 are all flat cylindrical shape structures.
  • the three-phase brushless AC motor 1, the three-phase brushless AC motor 2, and the three-phase brushless AC motor 3 3 are arranged in a flat cylindrical disc-shaped outer structure, which is suitable for low torque output under low speed, which is different from the conventional one.
  • the long cylindrical brushless motor is only suitable for high speed rotation.
  • the embodiment is different from the fourth embodiment in that the operation handle 12 is provided with a display 10 for electrically connecting with the photographing device.
  • a control method of a photographing device stabilizer includes the following steps:
  • the inertial sensor detects the real-time angular velocity and acceleration of the three axes of the space, and transmits the same to the main controller;
  • the main controller estimates the movement trend of the first rotating shaft 4 and the second rotating shaft 5 according to the data transmitted by the inertial sensor, and outputs a control command to the three-phase brushless AC motor 1 and the three-phase brushless AC motor 2 Adjusting the positions of the first rotating shaft 4 and the second rotating shaft 5;
  • the first magnetic rotary encoder and the second magnetic rotary encoder detect the rotation information of the three-phase brushless AC motor-1 and the three-phase brushless AC motor 2, and transmit the rotation information to the main controller, and the main controller is solved according to the rotation information.
  • the information of the absolute position of the three-phase brushless AC motor 1 and the three-phase brushless AC motor 2 is calculated, and the phase and amplitude of the output control command are corrected based on the information of the absolute position of the motor.
  • the absolute position information includes the mechanical angle of the motor, the electrical angle of the motor, the phase of the magnetic field, and the like.
  • the control command is a three-phase AC sinusoidal waveform.
  • the control method of the camera stabilizer of the embodiment is the control method of the stabilizers according to the first, second and third axes of the embodiment, and has two control loops.
  • the main controller is budgeted according to the data transmitted by the inertial sensor.
  • the three-phase brushless AC motor 2 adjusts the first rotating shaft 4 and the second rotating shaft The position of 5; the second is the first magnetic rotary encoder, the second magnetic rotary encoder detects the rotation information of the three-phase brushless AC motor 1 and the three-phase brushless AC motor 2, and transmits the rotation information to the main controller, and the main control is based on
  • the rotation information is used to calculate the absolute position information of the three-phase brushless AC motor 1 and the three-phase brushless AC motor 2, and correct the phase and amplitude of the output three-phase AC sinusoidal waveform according to the absolute position information of the motor. Therefore, the shooting device mounted on the two-axis stabilizer can be kept stable, so that the captured picture is clear, continuous, and does not appear to be shaken.
  • a control method of a photographing device stabilizer includes the following steps:
  • the inertial sensor detects the real-time angular velocity and acceleration of the three axes of the space, and transmits the same to the main controller, and the geomagnetic sensor detects the three-axis geomagnetic field strength of the space and transmits it to the main controller;
  • S220 The main controller estimates the direction angle and the movement trend of the first rotating shaft 4, the second rotating shaft 5, and the third rotating shaft 6 according to the data transmitted by the inertial sensor and the geomagnetic sensor, and outputs a control command to the three-phase brushless communication.
  • Motor 1 1, three-phase brushless AC motor 2, three-phase brushless AC motor three 3, three-phase brushless AC motor 1, three-phase brushless AC motor 2, three-phase brushless AC motor three 3 according to the main
  • the control command of the controller adjusts the positions of the first rotating shaft 4, the second rotating shaft 5, and the third rotating shaft 6;
  • the first magnetic rotary encoder, the second magnetic rotary encoder, and the third magnetic rotary encoder detect three-phase brushless AC motor one, three-phase brushless AC motor 2, three-phase brushless AC motor three 3 Rotating the information and transmitting it to the main controller, the master calculates the absolute position information of the three-phase brushless AC motor 1, the three-phase brushless AC motor 2, and the three-phase brushless AC motor 3 3 motion according to the rotation information, and According to the motor
  • the position information is corrected for the phase and amplitude of the output control command.
  • the absolute position information includes the mechanical angle of the motor, the electrical angle of the motor, the phase of the magnetic field, and the like.
  • the control command is a three-phase AC sinusoidal waveform.
  • Another control method of the camera stabilizer of the embodiment is the control method of the three-axis stabilizer as described in Embodiments 4 and 5, which also has two control loops, and the first controller is based on the inertial sensor.
  • the data transmitted by the geomagnetic sensor budgets the direction angle and movement trend of the first rotating shaft 4, the second rotating shaft 5, and the third rotating shaft 6, and outputs a control command to the three-phase brushless AC motor.
  • Motor 2, 3 three-phase brushless AC motor 3, three-phase brushless AC motor 1, 1, three-phase brushless AC motor 2, three-phase brushless AC motor 3 3 adjust the first rotation according to the control command of the main controller The position of the shaft 4, the second rotating shaft 5, and the third rotating shaft 6.
  • the first magnetic rotary encoder, the second magnetic rotary encoder, the third magnetic rotary encoder detect three-phase brushless AC motor 1, three-phase brushless AC motor 2, three-phase brushless AC motor three 3 Rotating the information and transmitting it to the main controller, the master calculates the absolute position information of the three-phase brushless AC motor 1, the three-phase brushless AC motor 2, and the three-phase brushless AC motor 3 3 motion according to the rotation information, and Correct the phase and amplitude of the output control command according to the absolute position information of the motor; thus, the shooting device mounted on the three-axis stabilizer can be kept stable, so that the captured picture is clear, continuous, and does not appear to shake.
  • the absolute position information includes the mechanical angle of the motor, the electrical angle of the motor, the phase of the magnetic field, and the like.
  • the control command is a three-phase AC sinusoidal waveform
  • the main controller budgets the direction angles and movement trends of the first rotating shaft 4, the second rotating shaft 5, and the third rotating shaft 6, and outputs a control command to the three-phase brushless AC motor-1, three-phase brushless AC motor 2, 3, three-phase brushless AC motor 3, including the following steps:
  • the main controller reads the data of the inertial sensor and the geomagnetic sensor in real time and calculates the current postures of the first rotating shaft 4, the second rotating shaft 5, and the third rotating shaft 6;
  • the main controller uses the angular velocity of the three axes of the space (the three axes of the space X, Y, and Z of the inertial sensor as the coordinate origin) as the feedback amount (feedback speed) to calculate the first rotation axis 4, the second rotation axis 5, and the first
  • the current attitude angle of the three rotating shafts 6 is the compensation amount, and each control increment is calculated;
  • the main controller adds the control increments to the driving target quantity of the three-phase brushless AC motor 1, the three-phase brushless AC motor 2, and the three-phase brushless AC motor 3, and allocates according to the driving target amount.
  • the air ratio is a pulse width modulation pulse of a three-phase sine wave to a three-phase brushless AC motor 1, a three-phase brushless AC motor 2, and a three-phase brushless AC motor three.
  • the control output is added to the driving target quantity, and the control output is the output data of the control algorithm, which is an increment; the driving target quantity is the current driving phase of the motor, which is an absolute quantity, so the two are cumulatively fused together.
  • the frequency of the pulse width modulation pulse is 16KHZ/s to 22KHZ/s, and the three-phase brushless AC motor one, the three-phase brushless AC motor 2, and the three-phase brushless AC motor 3 are stable in the frequency, and Achieve the right A direct drive of the rotating shaft 4, the second rotating shaft 5, and the third rotating shaft 6 without mechanical clearance achieves smooth and stable motion compensation of the photographing device in a plurality of axial directions.
  • the first magnetic rotary encoder, the second magnetic rotary encoder, and the third magnetic rotary encoder detect three-phase brushless AC motor one, three-phase brushless AC motor 2, three-phase brushless AC motor three
  • the rotation information of 3 is transmitted to the main controller, including the following steps:
  • Each circular magnetic steel follows a three-phase brushless AC motor, a three-phase brushless AC motor 2, a three-phase brushless AC motor, three 3 rotations to form a rotating magnetic field, and each encoder chip detects the rotating magnetic field and outputs two positive
  • the sine wave signal is given to the main controller, and the main controller calculates the three-phase brushless AC motor according to the data of the encoder chip. 1.
  • the frequency of the data collected by the main controller and the magnetic rotary encoder is 1300 times/second to 1600 times/second, and the movement of the first rotating shaft 4, the second rotating shaft 5, and the third rotating shaft 6 is realized. Precise control so that the shooting equipment can remain stable.
  • FIG. 8 is a schematic diagram of a method for controlling a three-axis imaging device stabilizer according to the embodiment.
  • the first control loop the main controller reads the inertial sensor and the geomagnetic sensor in real time. The data is used to solve the current attitude of each rotating axis by the quaternion method.
  • the data output by the inertial sensor includes the angular velocity and acceleration of the three-dimensional X, Y, Z of the spatial space with the inertial sensor as the coordinate origin, and the data output by the geomagnetic sensor is
  • the geomagnetic sensor is the geomagnetic field strength of the three-axis X, Y, and Z in the spatial space of the coordinate origin, and then the angular velocity of the three-dimensional X, Y, and Z of the spatial space with the inertial sensor as the coordinate origin is the feedback amount (feedback speed) to solve the solution.
  • the current attitude angles of the first rotation axis, the second rotation axis, and the third rotation axis are compensation amounts, and each control increment is obtained by a feedback control algorithm, and the feedback control is based on a well-known PID control algorithm, and the tracking differentiator is TD)
  • TD tracking differentiator
  • the rear PWM drive waveform forms a rotation vector in the three-phase brushless AC motor winding, and outputs a corresponding torque to push the load such as a photographing device; meanwhile, the second control loop: a circular magnetic steel fixed to each rotating shaft rotates with the motor Forming a rotating magnetic field, the magnetic field outputs a double orthogonal sine wave signal through the encoder chip, and the main controller reads the data of each magnetic rotary encoder in real time and calculates the angle of each three-phase brushless AC motor and the current magnetic field phase.
  • the main controller adjusts the phase of the output three-phase sine wave according to the current magnetic field phase, and adjusts the amplitude of the output three-phase sine wave according to the control increment to stabilize the attitude of the photographing device; the principle is also applicable to the two-axis stabilizer, and three The shaft is different in that the two-axis stabilizer control method detects the geomagnetic field strength of the space three-axis without the geomagnetic sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)
  • Control Of Eletrric Generators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种拍摄设备稳定器以及两种拍摄设备稳定器的控制方法,该拍摄设备稳定器包括分别由三相无刷交流电机一(1)驱动的第一旋转轴(4)、由三相无刷交流电机二(2)驱动的第二旋转轴(5)、安装在三相无刷交流电机一(1)上的第一磁旋转编码器、安装在三相无刷交流电机二(2)上的第二磁旋转编码器、惯性传感器、固定件(7)、主控器,所述三相无刷交流电机一(1)、三相交流无刷电机二(2)、惯性传感器、第一磁旋转编码器、第二磁旋转编码器分别与主控器电性连接,所述惯性传感器安装在固定件(7)上,第一旋转轴(4)与第二旋转轴(5)的轴心线垂直相交,所述固定件(7)与第一旋转轴(4)连接,三相无刷交流电机一(1)通过折弯件(8)与第二旋转轴(5)连接。

Description

拍摄设备稳定器及其控制方法 技术领域
本发明涉及一种拍摄设备稳定器及其控制方法。
背景技术
随着影视技术不断发展,无论是带有拍摄功能的手机还是专业级别数码拍摄设备已非常普及了,但是在运动中拍摄非常容易造成画面晃动和模糊,为了在运动中拍摄也能得到清晰稳定的画面,需要借助拍摄用稳定器材。
传统的稳定器材主要有以下四种:1、机械式稳定装置(常规称谓:斯坦尼康稳定系统),它是根据机械重心的惯性稳定原理,通过低摩擦阻力的万向节实现拍摄负载的基本稳定,相关的专利有:CN201220417128.4、CN201230053857.1等,但是这种稳定装置通过钟摆效应的原理控制拍摄负载的平衡,在运动时起到一定的稳定作用,由于拍摄负载和配重之间存在固定比例,负载越大,整个稳定装置体积重量就越大,导致操控不灵活、使用空间有限制、快速运动急停惯性晃动大等缺点,在实际应用中,完全掌握斯坦尼康系统需要有具备较高的操作水平;2、一种主要用于空中航拍的稳定装置,它使用微机械传感器做反馈,通过微型计算机驱动电机实现稳定,相关的专利有:CN201010171360.X、CN201310097887.6,该稳定装置使用角速度传感器做反馈的开环控制方式,使用直流减速伺服电机或者航模舵机作为驱动元件,由于直流减速电机的齿轮箱正反转后存在间隙,存在控制精度较低、可靠性差、容易震动、寿命较低等缺陷,无法实现顺滑稳定的增稳控制;3、一种用于专业领域的高性能稳定装置,它使用高性能角速度传感器做反馈,通过微型计算机驱动力矩电机实现稳定,相关专利有:CN201110099579.8,这种稳定装置所使用的电机为空心环有刷力矩电机,外壳、电机和反馈元件体积重量都比较大,功耗巨大,仅能用于专业领域,难以被普通消费者所接受;4、一种航模空中拍摄应用的稳定云台,它使用惯性传感器检测负载的姿态信息,通过微型计算机处理后通过电机直接驱动负载运动实现稳定,相关专利有:CN201110380351.6,但是这种稳定装置不足之处在于使用直流无刷电机作为直接驱动的元件,一方面由于其电机长度远大于其直径,不适用于低速旋转而驱动力矩较大的稳定云台领域,另一方面直流无刷电机的在换向时造成驱动力矩突变,对稳定精度有影响,该稳定云台使用直流无刷电机作为驱动装置,这种电机根据霍尔信号而改变电枢供电极性实现电子换向,但是在换向时会带来较大的力矩波动,无法满足高性能、高精度的 稳定应用。该发明仅使用姿态信息作为反馈控制量,控制采集无任何其他辅助信息,这在控制原理上存在较大的问题,会导致控制滞后和控制精度较低,在机械结构方面,该稳定云台存在结构不紧凑、抗震性能差、便携性差、可靠性低、不能通圈旋转等缺点。
发明内容
基于此,本发明在于克服现有技术的缺陷,提供一种拍摄设备稳定器,不仅稳定性能优良,而且结构简单,便携性好。
其技术方案如下:
一种拍摄设备稳定器,包括分别由三相无刷交流电机一驱动的第一旋转轴、由三相无刷交流电机二驱动的第二旋转轴、安装在三相无刷交流电机一上的第一磁旋转编码器、安装在三相无刷交流电机二上的第二磁旋转编码器、惯性传感器、固定件、主控器,所述三相无刷交流电机一、三相无刷交流电机二、惯性传感器、第一磁旋转编码器、第二磁旋转编码器分别与主控器电性连接,所述惯性传感器安装在固定件上,第一旋转轴与第二旋转轴的轴心线垂直相交,所述固定件与第一旋转轴连接,三相无刷交流电机一通过折弯件与第二旋转轴连接。
优选的,所述固定件包括支撑板、第一夹持件、第二夹持件,所述支撑板相对的两侧上设有卡座,所述第一夹持件与第二夹持件上均设有卡轴,所述卡轴上套有扭力弹簧,第一夹持件与第二夹持件通过卡轴与卡座配合可旋转地安装在支撑板上,所述支撑板与第一旋转轴连接。
优选的,所述第一夹持件、第二夹持件的夹持面呈内凹的折线状,且第一夹持件、第二夹持件的夹持面结构对称。
优选的,所述固定件包括承托板、连接板、卡位件,所述连接板包括相互垂直设置的连接部与安装部,所述连接部通过第一丝杆螺母机构与第一旋转轴连接,所述安装部通过第二丝杆螺母机构与承托板连接,所述卡位件设置在承托板侧边上。
优选的,三相无刷交流电机二远离第二旋转轴的一面设有显示器,所述显示器用于与拍摄设备电性连接。
优选的,第一磁旋转编码器、第二磁旋转编码器均包括圆形磁钢、编码器芯片,所述圆形磁钢安装在第一旋转轴、第二旋转轴上,所述编码器芯片正对圆形磁钢设置,且编码器芯片与主控器电性连接,而且编码器芯片与其相对应的圆形磁钢不相抵接。
优选的,所述的拍摄设备稳定器还包括万向手柄,所述三相无刷交流电机二与万向手柄连接,所述主控器设置在万向手柄内,万向手柄上设有电源开关、旋转轴调节杆,所述电源开关、旋转轴调节杆分别与主控器电性连接。
优选的,所述的拍摄设备稳定器还包括由三相无刷交流电机三驱动的第三旋转轴、连接杆、操作手柄以及与主控器电性连接的地磁传感器和第三磁旋转编码器,所述地磁传感器安装在固定件上,所述第三磁旋转编码器安装在三相无刷交流电机三上,所述三相无刷交流电机三与操作手柄连接,所述第三旋转轴通过连接杆与三相无刷交流电机二连接,第三旋转轴的轴心线分别与第一旋转轴、第二旋转轴的轴心线垂直相交。
优选的,所述第三磁旋转编码器包括圆形磁钢、编码器芯片,所述圆形磁钢安装在第一旋转轴、第二旋转轴、第三旋转轴上,所述编码器芯片正对圆形磁钢设置,编码器芯片与主控器电性连接,而且编码器芯片与其相对应的圆形磁钢不相抵接。
优选的,所述第一旋转轴、第二旋转轴、第三旋转轴均为空心结构,其内设有集电环。
优选的,所述三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三均为扁平圆柱状的盘式外形结构。
本发明还提供了一种两轴的拍摄设备稳定器,其技术方案如下:
一种拍摄设备稳定器的控制方法,包括如下步骤:
惯性传感器检测空间三轴的实时角速度、加速度,并传送给主控器;
主控器根据惯性传感器传送的数据预算出第一旋转轴、第二旋转轴的运动趋势,并输出控制指令给三相无刷交流电机一、三相无刷交流电机二调整第一旋转轴、第二旋转轴的位置;
第一磁旋转编码器、第二磁旋转编码器检测三相无刷交流电机一、三相无刷交流电机二的旋转信息并传送给主控制器,主控根据旋转信息解算出三相无刷交流电机一、三相无刷交流电机二运动的绝对位置的信息,并根据电机的绝对位置的信息对输出控制指令的相位和波幅进行修正。
本发明还提供了一种三轴的拍摄设备稳定器,其技术方案如下:
一种拍摄设备稳定器的控制方法,包括如下步骤:
惯性传感器检测空间三轴的实时角速度、加速度,并传送给主控器,地磁传感器检测空间三轴的地磁场强度,并传送给主控器;
主控器根据惯性传感器与地磁传感器传送的数据预算出第一旋转轴、第二旋转轴、第三旋转轴的方向角度和运动趋势,并输出控制指令给三相无刷交流 电机一、三相无刷交流电机二、三相无刷交流电机三,三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三根据主控器的控制指令调整第一旋转轴、第二旋转轴、第三旋转轴的位置;
第一磁旋转编码器、第二磁旋转编码器、第三磁旋转编码器检测三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三的旋转信息并传送给主控制器,主控根据旋转信息解算出三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三运动的绝对位置的信息,并根据电机的绝对位置的信息对输出控制指令的相位和波幅进行修正。
进一步,上述步骤中,主控器预算出第一旋转轴、第二旋转轴、第三旋转轴方向角度和运动趋势,并输出控制指令给三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三,包括如下步骤:
主控器实时读取惯性传感器与地磁传感器的数据并解算出第一旋转轴、第二旋转轴、第三旋转轴的当前姿态;
主控制器以空间三轴的角速度为反馈量,以解算出的第一旋转轴、第二旋转轴、第三旋转轴的当前姿态角度为补偿量,计算得出各控制增量;
主控器将各控制增量累加到对三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三的驱动目标量中,并根据驱动目标量分配占空比为三相正弦波的脉宽调制脉冲到三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三中。
优选的,所述脉宽调制脉冲的频率为16KHZ/s~22KHZ/s。
进一步,上述步骤中,第一磁旋转编码器、第二磁旋转编码器、第三磁旋转编码器检测三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三的旋转信息并传送给主控制器,包括如下步骤:
各个圆形磁钢随三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三旋转形成旋转磁场,各个编码器芯片检测该旋转磁场并输出两路正交的弦波信号给主控器,主控器根据编码器芯片的数据解算出三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三运动的绝对位置的信息。
优选的,上述步骤中,主控器采集惯性传感器、磁旋转编码器的数据的频率为1300次/秒~1600次/秒。
下面对前述技术方案的优点或原理进行说明:
1、上述拍摄设备稳定器,通过将第一旋转轴与第二旋转轴的轴心线垂直相交,固定件与第一旋转轴连接,三相无刷交流电机一通过折弯件与第二旋转轴连接,将拍摄设备安装在固定件上,拍摄过程中,由惯性传感器检测空间三轴 的实时角速度、加速度,由第一磁旋转编码器、第二磁旋转编码器获取三相无刷交流电机一、三相无刷交流电机二的旋转位置的数据,由高性能的主控器采集各数据并进行姿态解算和位置解算,输出三相交流正弦波形给三相无刷交流电机一驱动的第一旋转轴、三相无刷交流电机二驱动的第二旋转轴对拍摄设备进行运动补偿,使拍摄设备能保持时刻姿态的稳定,所述拍摄设备稳定器结构简单,小巧轻便,便于携带,适用于不同的运动方式和载体如步行、骑行、手持、车载、船载、机载等,所述拍摄设备包括了智能手机拍摄设备、微型摄像拍摄设备、卡片式拍摄设备、微型单镜头拍摄设备、单镜头反光拍摄设备、专业数码摄录设备、专业数码电影拍摄设备,专业胶片电影拍摄设备等。
2、上述拍摄设备稳定器的控制方法为两轴的稳定器的控制方法,具有两个控制环路,一是主控器根据惯性传感器传送的数据预算出第一旋转轴、第二旋转轴未来的运动趋势位置,并输出控制指令给三相无刷交流电机一、三相无刷交流电机二调整第一旋转轴、第二旋转轴的位置;二是第一磁旋转编码器、第二磁旋转编码器检测三相无刷交流电机一、三相无刷交流电机二的旋转信息并传送给主控制器,主控根据旋转信息解算出三相无刷交流电机一、三相无刷交流电机二运动的绝对位置的信息,并根据电机的绝对位置的信息对输出控制指令的相位和波幅进行修正。从而实现使安装在两轴的稳定器上的拍摄设备能保持稳定,使拍摄出的画面清晰、连续,不出现晃动等情况。
3、上述拍摄设备稳定器的另一控制方法为三轴的稳定器的控制方法,同样具有两个控制环路,一是主控器根据惯性传感器与地磁传感器传送的数据预算出第一旋转轴、第二旋转轴、第三旋转轴的方向角度和运动趋势,并输出控制指令给三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三,三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三根据主控器的控制指令调整第一旋转轴、第二旋转轴、第三旋转轴的位置;二是第一磁旋转编码器、第二磁旋转编码器、第三磁旋转编码器检测三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三的旋转信息并传送给主控制器,主控根据旋转信息解算出三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三运动的绝对位置的信息,并根据电机的绝对位置的信息对输出控制指令的相位和波幅进行修正。从而实现使安装在三轴的稳定器上的拍摄设备能保持稳定,使拍摄出的画面清晰、连续,不出现晃动等情况。
附图说明
图1为本发明实施例一所述的两轴的拍摄设备稳定器的结构示意图;
图2为本发明实施例二所述的两轴的拍摄设备稳定器的结构示意图;
图3为本发明实施例三所述的两轴的拍摄设备稳定器的结构示意图;
图4为本发明实施例四所述的三轴的拍摄设备稳定器的结构示意图;
图5为本发明实施例五所述的三轴的拍摄设备稳定器的结构示意图;
图6为本发明实施例六所述的二轴的拍摄设备稳定器的控制方法的流程图;
图7为本发明实施例七所述的三轴的拍摄设备稳定器的控制方法的流程图;
图8为本发明实施例七所述的三轴的拍摄设备稳定器的控制方法的原理图;
附图标记说明:
1、三相无刷交流电机一,2、三相无刷交流电机二,3、三相无刷交流电机三,4、第一旋转轴,5、第二旋转轴,6、第三旋转轴,7、固定件,711、支撑板,712、第一夹持件,713、第二夹持件,721、承托板,722、连接板,723、卡位件,8、折弯件,9、万向手柄,10、显示器,11、连接杆,12、操作手柄。
具体实施方式
下面结合附图对本发明的实施例进行详细说明:
实施例一
如图1所示,一种拍摄设备稳定器,包括分别由三相无刷交流电机一1驱动的第一旋转轴4、由三相无刷交流电机二2驱动的第二旋转轴5、安装在三相无刷交流电机一1上的第一磁旋转编码器、安装在三相无刷交流电机二2上的第二磁旋转编码器、惯性传感器、固定件7、主控器,所述三相无刷交流电机一1、三相无刷交流电机二2、惯性传感器、第一磁旋转编码器、第二磁旋转编码器分别与主控器电性连接,所述惯性传感器安装在固定件7上,第一旋转轴4与第二旋转轴5的轴心线垂直相交,所述固定件7与第一旋转轴4连接,三相无刷交流电机一1通过折弯件8与第二旋转轴5连接。
上述拍摄设备稳定器,通过将第一旋转轴4与第二旋转轴5的轴心线垂直相交,固定件7与第一旋转轴4连接,三相无刷交流电机一1通过折弯件8与第二旋转轴5连接,将拍摄设备安装在固定件7上,拍摄过程中,由惯性传感器检测空间三轴(是指以惯性传感器为坐标原点的空间X、Y、Z三轴)的实时角速度、加速度数据,并输出控制指令给三相无刷交流电机一、三相无刷交流电机二调整第一旋转轴、第二旋转轴的位置,该控制指令为三相交流正弦波形;由第一磁旋转编码器、第二磁旋转编码器获取三相无刷交流电机一1、三相无刷交流电机二2的旋转位置的数据,由高性能的主控器采集各数据并进行姿态解算和位置解算,并根据电机的绝对位置的信息对输出的三相交流正弦波形的相 位和波幅进行修正,使拍摄设备能保持时刻姿态的稳定,所述拍摄设备稳定器结构简单,小巧轻便,便于携带,适用于不同的运动方式和载体如步行、骑行、手持、车载、船载、机载等,所述拍摄设备包括了智能手机拍摄设备、微型摄像拍摄设备、卡片式拍摄设备、微型单镜头拍摄设备、单镜头反光拍摄设备、专业数码摄录设备、专业数码电影拍摄设备,专业胶片电影拍摄设备等。其中,绝对位置的信息包括电机机械角度、电机电气角度、磁场相位等。设置第一磁旋转编码器、第二磁旋转编码器避免了缺少电机角度反馈环带来的力矩异常和抖动现象,提高了稳定器的可靠性和稳定性,且使稳定器能随着外部扰动的大小自动调整电机的驱动电流,当外部晃动较小时功耗很低,当遇到较大干扰时能够立即提高力矩,实现了低功耗与高稳定性的统一,且能够使三相无刷交流电机一1、二工作在位置伺服模式,为用户提供更加人性化的操作体验,譬如将某个旋转轴的角度锁定使之能够随外部的运动而运动。
本实施例所述固定件7包括支撑板711、第一夹持件712、第二夹持件713,所述支撑板711相对的两侧上设有卡座,所述第一夹持件712与第二夹持件713上均设有卡轴,所述卡轴上套有扭力弹簧,第一夹持件712与第二夹持件713通过卡轴与卡座配合可旋转地安装在支撑板711上,所述支撑板711与第一旋转轴4连接。通过第一夹持件712、第二夹持件713配合,使拍摄设备相对支撑板711保持固定,且在扭力弹簧、卡轴、卡座的作用下,第一夹持件712、第二夹持件713之间可根据不同尺寸的拍摄设备调节成不同宽度,使固定件7适用于不同尺寸的拍摄设备。
所述第一夹持件712、第二夹持件713的夹持面呈内凹的折线状,且第一夹持件712、第二夹持件713的夹持面结构对称。通过将第一夹持件712、第二夹持件713的夹持面设置成相互对称的内凹折线状,使拍摄设备在第一夹持件712的夹持面与二夹持件的夹持面作用下能相对支撑板711固定成所需的不同角度,且在不同角度上都能保持稳定,不易从固定件7上滑出。
所述第一磁旋转编码器、第二磁旋转编码器包括圆形磁钢、编码器芯片,所述圆形磁钢安装在第一旋转轴4、第二旋转轴5后端,所述编码器芯片正对圆形磁钢设置,编码器芯片与主控器电性连接,而且编码器芯片与其相对应的圆形磁钢不相抵接。圆形磁钢随着输出轴旋转形成旋转磁场,编码器芯片检测该旋转磁场并输出两路正交的弦波信号给主控器,主控器根据编码器芯片的数据解算出三相无刷交流电机一1、三相无刷交流电机二2运动的绝对位置的信息从而对输出的三相交流正弦波形进行修正,避免三相无刷交流电机一1、三相无刷交流电机二2发生驱动相位超限、力矩反转、装置震荡的现象,提高三相无刷 交流电机一1、三相无刷交流电机二2的控制精度和抗干扰性,同时能够优化保持力矩与功耗之间的矛盾,还可以单独使用第一磁旋转编码器、第二磁旋转编码器获得的三相无刷交流电机一1、三相无刷交流电机二2的运动数据作为反馈量实现对三相无刷交流电机一1、三相无刷交流电机二2角度锁定功能。圆形磁钢是一个圆形面积平分为NS极的磁化方式,而编码器芯片则采用了TMR原理传感器。
所述的拍摄设备稳定器还包括万向手柄9,所述三相无刷交流电机二2与万向手柄9连接,所述主控器设置在万向手柄9内,万向手柄9上设有电源开关、旋转轴调节杆,所述电源开关、旋转轴调节杆分别与主控器电性连接。开启万向手柄9上的电源开关,调节旋转轴调节杆控制第一旋转轴4、第二旋转轴5旋转,使安装在固定件7上的拍摄设备处于最佳的拍摄角度,该最佳的拍摄角度即为拍摄设备在稳定器上的初始位置,移动万向手柄9,主控器控制三相无刷交流电机一1驱动第一旋转轴4,控制三相无刷交流电机二2驱动第二旋转轴5,使固定件7上的拍摄设备能一直保持初始位置。
实施例二
如图2所示,本实施例与实施例一不同之处在于,所述固定件7包括承托板721、连接板722、卡位件723,所述连接板722包括相互垂直设置的连接部与安装部,所述连接部通过第一丝杆螺母机构与第一旋转轴4连接,所述安装部通过第二丝杆螺母机构与承托板721连接,所述卡位件723设置在承托板721侧边上。
通过设置包括承托板721、连接板722、卡位件723的固定件7,将拍摄设备安装在承托板721上,通过设置在承托板721侧边的卡位件723使拍摄设备相对承托板721固定,通过第一丝杆螺母机构、第二丝杆螺母机构调节承托板721的位置,从而调节安装在承托板721上的拍摄设备的重心,使拍摄设备的重心与第一旋转轴4与第二旋转轴5的轴心线相交点重合,从而进一步提高稳定器的稳定性能。
实施例三
如图3所示,本实施例与实施例一不同之处在于,三相无刷交流电机二2远离第二旋转轴5的一面设有显示器10,所述显示器10用于与拍摄设备电性连接。
通过在三相无刷交流电机二2远离第二旋转轴5的一面设置用于与拍摄设备电性连接的显示器10,通过显示屏方便使用者在拍摄过程中观看拍摄效果。
实施例四
如图4所示,本实施例与实施例一不同之处在于,所述拍摄设备稳定器不设置万向手柄9,但是还包括由三相无刷交流电机三3驱动的第三旋转轴6、连接杆11、操作手柄12以及与主控器电性连接的地磁传感器和第三磁旋转编码器,所述地磁传感器安装在固定件7上,所述第三磁旋转编码器安装在三相无刷交流电机三3上,所述三相无刷交流电机三3与操作手柄12连接,所述第三旋转轴6通过连接杆11与三相无刷交流电机二2连接,第三旋转轴6的轴心线分别与第一旋转轴4、第二旋转轴5的轴心线垂直相交。
设置第三旋转轴6与地磁传感器,从而实现对拍摄设备方向的控制,地磁传感器实时检测空间三轴(是指以地磁传感器为坐标原点的空间X、Y、Z三轴)的地磁场强度,并传送给主控器,主控器根据惯性传感器与地磁传感器传送的数据预算出第一旋转轴4、第二旋转轴5、第三旋转轴6的方向角度和运动趋势,并输出控制指令给三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3,三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3根据主控器的控制指令调整第一旋转轴4、第二旋转轴5、第三旋转轴6的位置。本实施例中第一旋转轴4为俯仰轴,第二旋转轴5为横滚轴,第三旋转轴6为方向轴。
所述第三磁旋转编码器包括圆形磁钢、编码器芯片,所述圆形磁钢安装在第一旋转轴4、第二旋转轴5、第三旋转轴6的后端,所述编码器芯片正对圆形磁钢设置,编码器芯片与主控器电性连接,而且编码器芯片与其相对应的圆形磁钢不相抵接。
所述第一旋转轴4、第二旋转轴5、第三旋转轴6均为空心结构,其内设有集电环。通过将第一旋转轴4、第二旋转轴5、第三旋转轴6设置为空心结构,便于电源线及控制线路等穿过,在各旋转轴内设置集电环,使稳定器的电源线及控制线路实现多圈旋转无缠绕的功能。
所述三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3均为扁平圆柱状的盘式外形结构。将三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3设置为扁平圆柱状的盘式外形结构,适用于低速下大力矩输出,其不同于传统的长圆柱形无刷电机的,只适用于高速旋转。
实施例五
如图5所示,本实施例与实施例四不同之处在于,操作手柄12上设有显示器10,所述显示器10用于与拍摄设备电性连接。
实施例六
如图6所示,一种拍摄设备稳定器的控制方法,包括如下步骤:
S110:惯性传感器检测空间三轴的实时角速度、加速度,并传送给主控器;
S120:主控器根据惯性传感器传送的数据预算出第一旋转轴4、第二旋转轴5的运动趋势,并输出控制指令给三相无刷交流电机一1、三相无刷交流电机二2调整第一旋转轴4、第二旋转轴5的位置;
S130:第一磁旋转编码器、第二磁旋转编码器检测三相无刷交流电机一1、三相无刷交流电机二2的旋转信息并传送给主控制器,主控器根据旋转信息解算出三相无刷交流电机一1、三相无刷交流电机二2运动的绝对位置的信息,根据电机的绝对位置的信息对输出控制指令的相位和波幅进行修正。其中,绝对位置的信息包括电机机械角度、电机电气角度、磁场相位等。该控制指令为三相交流正弦波形。
本实施例所述拍摄设备稳定器的控制方法为如实施例一、二、三两轴的稳定器的控制方法,具有两个控制环路,一是主控器根据惯性传感器传送的数据预算出第一旋转轴4、第二旋转轴5未来的运动趋势位置,并输出控制指令给三相无刷交流电机一1、三相无刷交流电机二2调整第一旋转轴4、第二旋转轴5的位置;二是第一磁旋转编码器、第二磁旋转编码器检测三相无刷交流电机一1、三相无刷交流电机二2的旋转信息并传送给主控制器,主控根据旋转信息解算出三相无刷交流电机一1、三相无刷交流电机二2运动的绝对位置的信息,并根据电机的绝对位置的信息对输出的三相交流正弦波形的相位和波幅进行修正,从而实现使安装在两轴的稳定器上的拍摄设备能保持稳定,使拍摄出的画面清晰、连续,不出现晃动等情况。
实施例7
如图7所示,一种拍摄设备稳定器的控制方法,包括如下步骤:
S210:惯性传感器检测空间三轴的实时角速度、加速度,并传送给主控器,地磁传感器检测空间三轴的地磁场强度,并传送给主控器;
S220:主控器根据惯性传感器与地磁传感器传送的数据预算出第一旋转轴4、第二旋转轴5、第三旋转轴6的方向角度和运动趋势,并输出控制指令给三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3,三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3根据主控器的控制指令调整第一旋转轴4、第二旋转轴5、第三旋转轴6的位置;
S230:第一磁旋转编码器、第二磁旋转编码器、第三磁旋转编码器检测三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3的旋转信息并传送给主控制器,主控根据旋转信息解算出三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3运动的绝对位置的信息,并根据电机的绝 对位置的信息对输出控制指令的相位和波幅进行修正。其中,绝对位置的信息包括电机机械角度、电机电气角度、磁场相位等。该控制指令为三相交流正弦波形。
本实施例所述拍摄设备稳定器的另一控制方法为如实施例四、五所述的三轴的稳定器的控制方法,同样具有两个控制环路,一是主控器根据惯性传感器与地磁传感器传送的数据预算出第一旋转轴4、第二旋转轴5、第三旋转轴6的方向角度和运动趋势,并输出控制指令给三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3,三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3根据主控器的控制指令调整第一旋转轴4、第二旋转轴5、第三旋转轴6的位置。二是第一磁旋转编码器、第二磁旋转编码器、第三磁旋转编码器检测三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3的旋转信息并传送给主控制器,主控根据旋转信息解算出三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3运动的绝对位置的信息,并根据电机的绝对位置的信息对输出控制指令的相位和波幅进行修正;从而实现使安装在三轴的稳定器上的拍摄设备能保持稳定,使拍摄出的画面清晰、连续,不出现晃动等情况。其中,绝对位置的信息包括电机机械角度、电机电气角度、磁场相位等。该控制指令为三相交流正弦波形
上述步骤中,主控器预算第一旋转轴4、第二旋转轴5、第三旋转轴6的方向角度和运动趋势,并输出控制指令给三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3,包括如下步骤:
主控器实时读取惯性传感器与地磁传感器的数据并解算出第一旋转轴4、第二旋转轴5、第三旋转轴6的当前姿态;
主控制器以空间三轴(惯性传感器为坐标原点的空间X、Y、Z三轴)的角速度为反馈量(反馈速度),以解算出的第一旋转轴4、第二旋转轴5、第三旋转轴6的当前姿态角度为补偿量,计算得出各控制增量;
主控器将各控制增量累加到对三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3的驱动目标量中,并根据驱动目标量分配占空比为三相正弦波的脉宽调制脉冲到三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3中。控制输出量累加到驱动目标量,控制输出量是控制算法的输出数据,是一个增量;驱动目标量是对电机的当前驱动相位,是一个绝对量,所以两者要累加融合在一起。
所述脉宽调制脉冲的频率为16KHZ/s~22KHZ/s,该频率下三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3运行平稳,且能实现对第 一旋转轴4、第二旋转轴5、第三旋转轴6无机械间隙的直接驱动,在多个轴向实现拍摄设备的顺滑稳定的运动补偿。
上述步骤中,第一磁旋转编码器、第二磁旋转编码器、第三磁旋转编码器检测三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3的旋转信息并传送给主控制器,包括如下步骤:
各个圆形磁钢随三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3旋转形成旋转磁场,各个编码器芯片检测该旋转磁场并输出两路正交的弦波信号给主控器,主控器根据编码器芯片的数据解算出三相无刷交流电机一1、三相无刷交流电机二2、三相无刷交流电机三3运动的绝对位置的信息。
上述步骤中,主控器采集惯性传感器、磁旋转编码器的数据的频率为1300次/秒~1600次/秒,实现对第一旋转轴4、第二旋转轴5、第三旋转轴6运动的精确控制,从而使拍摄设备能保持稳定。
如图8所示,为本实施例所述的三轴的拍摄设备稳定器的控制方法的原理图图,由图可知,第一控制环路:主控器实时读取惯性传感器和地磁传感器的数据并通过四元数法解算出各旋转轴的当前姿态,惯性传感器输出的数据包括以惯性传感器为坐标原点的空间空间三轴X、Y、Z的角速度和加速度,地磁传感器输出的数据为以地磁传感器为坐标原点的空间空间三轴X、Y、Z的地磁场强度,然后以惯性传感器为坐标原点的空间空间三轴X、Y、Z的角速度为反馈量(反馈速度),以解算出的第一旋转轴、第二旋转轴、第三旋转轴的当前姿态角度为补偿量,通过反馈控制算法计算获得各控制增量,反馈控制以公知的PID控制算法为基础,通过跟踪微分器(TD)获取高质量的微分信号,并对积分项进行抗饱和处理,有效的加快响应速度、提高控制精度、降低震荡;在“三相正弦波形分配”中将控制增量累加到驱动目标量,并根据驱动目标量分配三相正弦波的相应相位数据,以PWM方式将三相驱动数据输出到三相无刷交流电机驱动芯片,放大后的PWM驱动波形在三相无刷交流电机绕组中形成旋转矢量,输出相应力矩推动负载如拍摄设备;同时,第二控制环路:与各旋转轴固连的圆形磁钢随着电机旋转形成旋转磁场,该磁场通过编码器芯片输出双路正交的弦波信号,主控器实时读取各磁旋转编码器的数据并解算出各三相无刷交流电机的角度以及当前磁场相位,主控器根据当前磁场相位调整输出三相正弦波的相位,根据控制增量调整输出三相正弦波的幅值,使拍摄设备的姿态稳定;该原理也适用于两轴的稳定器,与三轴不同的是两轴的稳定器的控制方法中无地磁传感器地磁传感器检测空间三轴的地磁场强度。
以上所述实施例仅表达了本发明的具体实施方式,其描述较为具体和详细, 但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (17)

  1. 一种拍摄设备稳定器,其特征在于,包括分别由三相无刷交流电机一驱动的第一旋转轴、由三相无刷交流电机二驱动的第二旋转轴、安装在三相无刷交流电机一上的第一磁旋转编码器、安装在三相无刷交流电机二上的第二磁旋转编码器、惯性传感器、固定件、主控器,所述三相无刷交流电机一、三相无刷交流电机二、惯性传感器、第一磁旋转编码器、第二磁旋转编码器分别与主控器电性连接,所述惯性传感器安装在固定件上,第一旋转轴与第二旋转轴的轴心线垂直相交,所述固定件与第一旋转轴连接,三相无刷交流电机一通过折弯件与第二旋转轴连接。
  2. 根据权利要求1所述的拍摄设备稳定器,其特征在于,所述固定件包括支撑板、第一夹持件、第二夹持件,所述支撑板相对的两侧上设有卡座,所述第一夹持件与第二夹持件上均设有卡轴,所述卡轴上套有扭力弹簧,第一夹持件与第二夹持件通过卡轴与卡座配合可旋转地安装在支撑板上,所述支撑板与第一旋转轴连接。
  3. 根据权利要求2所述的拍摄设备稳定器,其特征在于,所述第一夹持件、第二夹持件的夹持面呈内凹的折线状,且第一夹持件、第二夹持件的夹持面结构对称。
  4. 根据权利要求1所述的拍摄设备稳定器,其特征在于,所述固定件包括承托板、连接板、卡位件,所述连接板包括相互垂直设置的连接部与安装部,所述连接部通过第一丝杆螺母机构与第一旋转轴连接,所述安装部通过第二丝杆螺母机构与承托板连接,所述卡位件设置在承托板侧边上。
  5. 根据权利要求1所述的拍摄设备稳定器,其特征在于,三相无刷交流电机二远离第二旋转轴的一面设有显示器,所述显示器用于与拍摄设备电性连接。
  6. 根据权利要求1所述的拍摄设备稳定器,其特征在于,所述第一磁旋转编码器、第二磁旋转编码器均包括圆形磁钢、编码器芯片,所述圆形磁钢安装在第一旋转轴、第二旋转轴上,所述编码器芯片正对圆形磁钢设置,编码器芯片与主控器电性连接,而且编码器芯片与其相对应的圆形磁钢不相抵接。
  7. 根据权利要求1~6任一项所述的拍摄设备稳定器,其特征在于,还包括万向手柄,所述三相无刷交流电机二与万向手柄连接,所述主控器设置在万向手柄内,万向手柄上设有电源开关、旋转轴调节杆,所述电源开关、旋转轴调节杆分别与主控器电性连接。
  8. 根据权利要求1~6任一项所述的拍摄设备稳定器,其特征在于,其还包括由三相无刷交流电机三驱动的第三旋转轴、连接杆、操作手柄以及与主控 器电性连接的地磁传感器和第三磁旋转编码器,所述地磁传感器安装在固定件上,所述第三磁旋转编码器安装在三相无刷交流电机三上,所述三相无刷交流电机三与操作手柄连接,所述第三旋转轴通过连接杆与三相无刷交流电机二连接,第三旋转轴的轴心线分别与第一旋转轴、第二旋转轴的轴心线垂直相交。
  9. 根据权利要求8所述的拍摄设备稳定器,其特征在于,所述第三磁旋转编码器包括圆形磁钢、编码器芯片,所述圆形磁钢安装在第一旋转轴、第二旋转轴、第三旋转轴上,所述编码器芯片正对圆形磁钢设置,编码器芯片与主控器电性连接,而且编码器芯片与其相对应的圆形磁钢不相抵接。
  10. 根据权利要求9所述的拍摄设备稳定器,其特征在于,所述第一旋转轴、第二旋转轴、第三旋转轴均为空心结构,其内设有集电环。
  11. 根据权利要求10所述的拍摄设备稳定器,其特征在于,所述三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三均为扁平圆柱状的盘式外形结构。
  12. 一种如权利要求1~7任一项所述的拍摄设备稳定器的控制方法,其特征在于,包括如下步骤:
    惯性传感器检测空间三轴的实时角速度、加速度,并传送给主控器;
    主控器根据惯性传感器传送的数据预算出第一旋转轴、第二旋转轴的运动趋势,并输出控制指令给三相无刷交流电机一、三相无刷交流电机二调整第一旋转轴、第二旋转轴的位置;
    第一磁旋转编码器、第二磁旋转编码器检测三相无刷交流电机一、三相无刷交流电机二的旋转信息并传送给主控制器,主控根据旋转信息解算出三相无刷交流电机一、三相无刷交流电机二运动的绝对位置的信息,并根据电机的绝对位置的信息对输出控制指令的相位和波幅进行修正。
  13. 一种如权利要求8~11任一项所述的拍摄设备稳定器的控制方法,其特征在于,包括如下步骤:
    惯性传感器检测空间三轴的实时角速度、加速度,并传送给主控器,地磁传感器检测空间三轴的地磁场强度,并传送给主控器;
    主控器根据惯性传感器与地磁传感器传送的数据预算出第一旋转轴、第二旋转轴、第三旋转轴方向角度和运动趋势,并输出控制指令给三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三,三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三根据主控器的控制指令调整第一旋转轴、第二旋转轴、第三旋转轴的位置;
    第一磁旋转编码器、第二磁旋转编码器、第三磁旋转编码器检测三相无刷 交流电机一、三相无刷交流电机二、三相无刷交流电机三的旋转信息并传送给主控制器,主控器根据旋转信息解算出三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三运动的绝对位置的信息,并根据电机的绝对位置的信息对输出控制指令的相位和波幅进行修正。
  14. 根据权利要求13所述的拍摄设备稳定器的控制方法,其特征在于,上述步骤中,主控器预算出第一旋转轴、第二旋转轴、第三旋转轴的方向角度和运动趋势,并输出控制指令给三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三包括如下步骤:
    主控器实时读取惯性传感器与地磁传感器的数据并解算出第一旋转轴、第二旋转轴、第三旋转轴的当前姿态;
    主控制器以空间三轴的角速度为反馈量,以解算出的第一旋转轴、第二旋转轴、第三旋转轴的当前姿态角度为补偿量,计算得出各控制增量;
    主控器将各控制增量累加到对三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三的驱动目标量中,并根据驱动目标量分配占空比为三相正弦波的脉宽调制脉冲到三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三中。
  15. 根据权利要求14所述的拍摄设备稳定器的控制方法,其特征在于,所述脉宽调制脉冲的频率为16KHZ/s~22KHZ/s。
  16. 根据权利要求15所述的拍摄设备稳定器的控制方法,其特征在于,上述步骤中,第一磁旋转编码器、第二磁旋转编码器、第三磁旋转编码器检测三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三的旋转信息并传送给主控制器,包括如下步骤:
    各个圆形磁钢随三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三旋转形成旋转磁场,各个编码器芯片检测该旋转磁场并输出两路正交的弦波信号给主控器,主控器根据编码器芯片的数据解算出三相无刷交流电机一、三相无刷交流电机二、三相无刷交流电机三运动的绝对位置的信息。
  17. 根据权利要求16所述的拍摄设备稳定器的控制方法,其特征在于,上述步骤中,主控器采集惯性传感器、磁旋转编码器的数据的频率为1300次/秒~1600次/秒。
PCT/CN2014/086003 2014-03-14 2014-09-05 拍摄设备稳定器及其控制方法 WO2015135310A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410098752.6 2014-03-14
CN201410098752.6A CN103984193B (zh) 2014-03-14 2014-03-14 拍摄设备稳定器及其控制方法

Publications (1)

Publication Number Publication Date
WO2015135310A1 true WO2015135310A1 (zh) 2015-09-17

Family

ID=51276216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086003 WO2015135310A1 (zh) 2014-03-14 2014-09-05 拍摄设备稳定器及其控制方法

Country Status (5)

Country Link
US (1) US20150261070A1 (zh)
EP (1) EP2919064A1 (zh)
JP (1) JP2015177539A (zh)
CN (1) CN103984193B (zh)
WO (1) WO2015135310A1 (zh)

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9454064B2 (en) 2014-02-04 2016-09-27 Disney Enterprises, Inc. Motorized monopod jib for cameras
CN103984193B (zh) * 2014-03-14 2020-10-16 广州虹天航空科技有限公司 拍摄设备稳定器及其控制方法
CN106471337B (zh) 2014-04-28 2020-12-18 深圳市大疆创新科技有限公司 可替换的安装平台
EP3139239B1 (en) 2014-04-30 2019-01-16 SZ DJI Osmo Technology Co., Ltd. Control apparatus, cradle head using same, and cradle head control method
CN104158378A (zh) * 2014-08-25 2014-11-19 广州虹天航空科技有限公司 电机模组及应用该电机模组的稳定器
CN104457421A (zh) * 2014-11-06 2015-03-25 江苏北方湖光光电有限公司 瞄准镜环境参量快速修正装置
CN204372498U (zh) * 2014-11-28 2015-06-03 昆山优力电能运动科技有限公司 云台手持架
US9798221B2 (en) 2015-02-20 2017-10-24 Disney Enterprises, Inc. Motorized monopod jib for cameras
CN105894607B (zh) * 2015-04-30 2018-09-07 睿驰智能汽车(广州)有限公司 行车记录装置及利用行车记录装置的调整控制方法
CN104908207B (zh) * 2015-06-19 2017-05-24 东莞市银燕电气科技有限公司 手持云台弯臂、生产工艺及手持云台
CN104994275A (zh) * 2015-06-24 2015-10-21 东莞市银燕电气科技有限公司 拍摄装置及其控制方法
EP3112933A1 (en) * 2015-06-30 2017-01-04 Guilin Feiyu Technology Corporation Ltd. Stabilizer applicable for recording moving images
CN105090695B (zh) * 2015-09-29 2018-01-16 深圳市大疆灵眸科技有限公司 手柄云台及其控制方法
EP3165806B1 (en) * 2015-11-05 2018-12-05 Disney Enterprises, Inc. Motorized monopole for a camera
GB2544192B (en) 2015-11-06 2019-01-23 Movr Designs Ltd Active stabilisation system
CN107409173B (zh) * 2015-12-22 2021-08-10 深圳市大疆灵眸科技有限公司 拍摄设备及其控制方法、装置
US9904149B2 (en) 2015-12-31 2018-02-27 Gopro, Inc. Camera gimbal mount system
CN107040080B (zh) * 2016-02-04 2020-10-16 天津远度科技有限公司 一种云台
CN105736925A (zh) * 2016-02-18 2016-07-06 武汉智能鸟无人机有限公司 一种手持三维全景云台
CN106764345B (zh) * 2016-03-10 2018-08-24 上海锐拍智能科技有限公司 一种便携式摄像、摄影辅助稳定器
WO2017167281A1 (zh) * 2016-03-31 2017-10-05 纳恩博(北京)科技有限公司 一种地面移动装置及稳定器、一种云台和机器人头部
CN105697947B (zh) * 2016-04-12 2023-04-25 广州好创智能科技有限公司 稳定拍摄云台
KR101680103B1 (ko) 2016-04-15 2016-11-28 주식회사 구컴코퍼레이션 카메라 짐벌
EP3236311B1 (en) * 2016-04-20 2019-08-07 Guilin Feiyu Technology Corporation Ltd. Stable and controllable shooting apparatus
PL3236312T3 (pl) * 2016-04-20 2019-10-31 Guilin Feiyu Tech Corporation Ltd Trójosiowy stabilizator do telefonu komórkowego
USD794606S1 (en) 2016-05-31 2017-08-15 Sz Dji Osmo Technology Co., Ltd. Gimbal with handle
CN106796420B (zh) * 2016-05-31 2019-05-07 深圳市大疆灵眸科技有限公司 图像稳定装置控制方法和图像稳定装置
DK3465085T3 (da) 2016-06-06 2022-03-07 Sz Dji Osmo Technology Co Ltd Bærerstøttet sporing
CN109477607A (zh) 2016-06-06 2019-03-15 深圳市大疆灵眸科技有限公司 用于跟踪的图像处理
KR102550731B1 (ko) * 2016-06-08 2023-07-04 삼성전자주식회사 수평 자세 유지 장치 및 자세 유지 장치 구동 방법
CN107690606B (zh) * 2016-07-29 2020-10-30 深圳市大疆灵眸科技有限公司 云台、拍摄设备和无人飞行器
WO2018023505A1 (zh) 2016-08-03 2018-02-08 深圳市大疆灵眸科技有限公司 手持云台
CN106016086A (zh) * 2016-08-03 2016-10-12 苏州华冲精密机械有限公司 一种船用照明灯
CN107690546A (zh) * 2016-08-04 2018-02-13 深圳市大疆灵眸科技有限公司 手持云台及其手持结构
CN106122708A (zh) * 2016-08-29 2016-11-16 南通爱慕希机械股份有限公司 一种可自动调整的工程机械用高精密旋转支座
US10547773B2 (en) 2016-10-28 2020-01-28 Disney Enterprises, Inc. User interface aspects for a motorized monopod jib for cameras
JP6880979B2 (ja) * 2016-11-30 2021-06-02 株式会社リコー 振動抑制装置および電子機器
CN106842641B (zh) * 2016-12-23 2019-11-01 武汉精立电子技术有限公司 显示模组的移动检测图像采集装置
USD822754S1 (en) * 2016-12-30 2018-07-10 Guixiong Fang Selfie stick
CN108286648B (zh) * 2017-01-10 2024-05-14 深圳市浩瀚卓越科技有限公司 稳定器
CN107466471B (zh) 2017-01-19 2019-03-15 深圳市大疆创新科技有限公司 云台组件及手持云台拍摄器
JP2019514317A (ja) * 2017-04-11 2019-05-30 グイリン ジーシェン インフォメーション テクノロジー カンパニー リミテッドGuilin Zhishen Information Technology Co., Ltd. モーターシェル
CN108733088A (zh) * 2017-04-17 2018-11-02 广西师范大学 一种三轴无刷自稳云台控制装置
CN107168170A (zh) * 2017-06-08 2017-09-15 成都宇翔科技有限公司 增稳器控制装置及系统
USD842919S1 (en) * 2017-06-23 2019-03-12 Tilta Inc. Camera lens controller
US10583556B2 (en) 2017-06-30 2020-03-10 Disney Enterprises, Inc. Motion stabilization on a motorized monopod jib
JP6384002B1 (ja) * 2017-07-21 2018-09-05 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 制御装置、支持システム、撮像システム、制御方法、及びプログラム
KR102419142B1 (ko) * 2017-08-09 2022-07-11 삼성전자주식회사 스태빌라이져 기능을 제공하는 전자 장치
CN107339569A (zh) * 2017-08-23 2017-11-10 魏承赟 稳定器及稳定器的角度调节方法
KR20190029242A (ko) 2017-09-12 2019-03-20 삼성전자주식회사 전자 장치의 영상촬영 보조 액세서리
WO2019056381A1 (zh) * 2017-09-25 2019-03-28 深圳市大疆灵眸科技有限公司 云台的控制方法、云台控制器及云台
US10491824B2 (en) * 2017-09-26 2019-11-26 Gopro, Inc. Combined mechanical and electronic image stabilization
JP6965085B2 (ja) * 2017-10-05 2021-11-10 キヤノン株式会社 操作装置、システム、および撮像装置
USD863411S1 (en) * 2017-12-26 2019-10-15 Guilin Zhishen Information Technology Co., Ltd. Stabilizer
EP3737082A4 (en) 2018-01-05 2020-12-23 SZ DJI Technology Co., Ltd. METHOD OF CONTROL OF TILT-TILT, TILT-TILT, AND MACHINE-READABLE STORAGE MEDIUM
US10770992B2 (en) * 2018-01-05 2020-09-08 Guilin Feiyu Technology Corporation Ltd. Stabilizer auto-rotating control method
USD857786S1 (en) * 2018-01-08 2019-08-27 SZ DJI Technology Co., Ltd. Gimbal
CN110069012A (zh) * 2018-01-23 2019-07-30 北京京东尚科信息技术有限公司 用于抑制噪声的控制量确定方法和装置、姿态控制系统
JP6999045B2 (ja) 2018-02-11 2022-01-18 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド 雲台およびその制御方法、無人機
USD900916S1 (en) * 2018-03-01 2020-11-03 Guilin Zhishen Information Technology Co., Ltd. Camera stabilizer
CN108491001A (zh) * 2018-03-21 2018-09-04 深圳臻迪信息技术有限公司 增稳云台、增稳云台实现方法及无人机系统
USD874532S1 (en) * 2018-06-26 2020-02-04 SZ DJI Technology Co., Ltd. Camera with gimbal
USD874539S1 (en) * 2018-06-29 2020-02-04 SZ DJI Technology Co., Ltd. Stabilized camera device
CN109000103B (zh) * 2018-09-11 2023-09-05 桂林智神信息技术股份有限公司 一种稳定器电机锁定结构
EP3835913A1 (en) 2018-09-13 2021-06-16 SZ DJI Technology Co., Ltd. Control method of handheld gimbal, handheld gimbal, and handheld device
USD868877S1 (en) * 2018-09-13 2019-12-03 Gudsen Technology Co., Ltd Camera mount
USD879186S1 (en) * 2018-09-28 2020-03-24 Gudsen Technology Co., Ltd Camera mount
CN109027580A (zh) * 2018-10-18 2018-12-18 江苏海丰交通设备科技有限公司 一种用于半挂车的多功能可视系统
CN109854925A (zh) * 2019-01-31 2019-06-07 桂林飞宇科技股份有限公司 一种三轴手持稳定器
CN109915704A (zh) * 2019-03-27 2019-06-21 南京理工大学 一种带电磁阻尼系统的电控云台及其运动方法
CN110345344B (zh) * 2019-06-13 2022-01-28 桂林智神信息技术股份有限公司 稳定器用快装连接装置及具有其的稳定器
CN111131674B (zh) * 2019-12-23 2021-06-01 诚瑞光学(常州)股份有限公司 摄像装置及电子设备
JP7556685B2 (ja) * 2019-12-25 2024-09-26 株式会社タムロン ジンバル装置、及びそれを備えたカメラシステム
WO2021142712A1 (zh) * 2020-01-16 2021-07-22 深圳市大疆创新科技有限公司 手持装置、手持云台和手持拍摄装置
CN111779961B (zh) * 2020-06-30 2022-12-06 刘小琼 横向增稳式手持机架及手持摄影器材
KR102399007B1 (ko) * 2020-08-27 2022-05-17 한성대학교 산학협력단 휴대 단말기용 짐벌 장치
US11852959B2 (en) * 2020-10-01 2023-12-26 4Movie Bvba Camera stabilization system
CN113217793B (zh) * 2021-02-24 2022-09-02 陈盈 针对拍摄抖动自动补偿机构的手持式侦查仪及应用
CN113074306B (zh) * 2021-03-11 2024-08-02 桂林智神信息技术股份有限公司 一种手持摄影器材
USD1042601S1 (en) * 2021-08-17 2024-09-17 Guilin Zhishen Information Technology Co., Ltd Stabilizer
CN113915503A (zh) * 2021-10-11 2022-01-11 桂林智神信息技术股份有限公司 一种手持电子稳定器
USD1025189S1 (en) * 2022-12-19 2024-04-30 Arashi Vision Inc. Gimbal
CN115793225B (zh) * 2023-01-10 2023-05-30 南京木木西里科技有限公司 一种图像采集反光消除调节装置及其系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487999A (en) * 1987-09-30 1989-04-03 Matsushita Electric Ind Co Ltd Horizontal vertical carriage device
CN101140404A (zh) * 2006-09-08 2008-03-12 索尼株式会社 配件及配件安装器件
CN201287830Y (zh) * 2008-10-14 2009-08-12 西安展翼航空科技有限公司 航拍摄像机用稳定支架
CN202392373U (zh) * 2011-09-09 2012-08-22 深圳市大疆创新科技有限公司 陀螺式动态自平衡云台
CN202452059U (zh) * 2012-01-12 2012-09-26 西安市瑞特测控技术有限责任公司 陀螺稳定云台
CN202992585U (zh) * 2011-08-29 2013-06-12 林诺曼弗罗托股份有限公司 用于摄像摄影设备的肩部支承框架及手柄
CN103984193A (zh) * 2014-03-14 2014-08-13 广州虹天航空科技有限公司 拍摄设备稳定器及其控制方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3584602B2 (ja) * 1996-03-11 2004-11-04 三菱電機株式会社 冷凍冷蔵庫の制御装置
US5894323A (en) * 1996-03-22 1999-04-13 Tasc, Inc, Airborne imaging system using global positioning system (GPS) and inertial measurement unit (IMU) data
JPH10142646A (ja) * 1996-11-14 1998-05-29 Olympus Optical Co Ltd カメラ用手ブレ防止装置
US5897223A (en) * 1997-11-17 1999-04-27 Wescam Inc. Stabilized platform system for camera
US6628338B1 (en) * 1998-07-08 2003-09-30 Elbex Video Ltd. Direct drive electric motor apparatus incorporating slip ring assembly
US8179078B2 (en) * 2005-04-27 2012-05-15 Sidman Adam D Handheld or vehicle-mounted platform stabilization system
KR20070009298A (ko) * 2005-07-15 2007-01-18 삼성전자주식회사 모션 감지에 의하여 효과 음향을 재생하고 제어하는 방법및 장치
JP2007183356A (ja) * 2006-01-05 2007-07-19 Casio Comput Co Ltd 防振装置
US8087315B2 (en) * 2006-10-10 2012-01-03 Honeywell International Inc. Methods and systems for attaching and detaching a payload device to and from, respectively, a gimbal system without requiring use of a mechanical tool
JP2009080213A (ja) * 2007-09-25 2009-04-16 Sony Corp カメラ制御方法及びカメラ制御装置
JP2014516409A (ja) * 2011-04-15 2014-07-10 ファロ テクノロジーズ インコーポレーテッド レーザトラッカの改良位置検出器
MX344931B (es) * 2011-09-09 2017-01-11 Sz Dji Technology Co Ltd Plataforma de doble eje para su uso en un pequeño vehículo aéreo no tripulado y plataforma de triple eje para su uso en un pequeño vehículo aéreo no tripulado.
CN202818223U (zh) * 2012-07-18 2013-03-20 广东通鑫起重机科技有限公司 用锁相环模块组成的交流电机速度控制器
WO2015101822A1 (en) * 2014-01-02 2015-07-09 Mastortech Limited Camera stabilisation mounting
CN203950109U (zh) * 2014-03-14 2014-11-19 广州虹天航空科技有限公司 拍摄设备稳定器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6487999A (en) * 1987-09-30 1989-04-03 Matsushita Electric Ind Co Ltd Horizontal vertical carriage device
CN101140404A (zh) * 2006-09-08 2008-03-12 索尼株式会社 配件及配件安装器件
CN201287830Y (zh) * 2008-10-14 2009-08-12 西安展翼航空科技有限公司 航拍摄像机用稳定支架
CN202992585U (zh) * 2011-08-29 2013-06-12 林诺曼弗罗托股份有限公司 用于摄像摄影设备的肩部支承框架及手柄
CN202392373U (zh) * 2011-09-09 2012-08-22 深圳市大疆创新科技有限公司 陀螺式动态自平衡云台
CN202452059U (zh) * 2012-01-12 2012-09-26 西安市瑞特测控技术有限责任公司 陀螺稳定云台
CN103984193A (zh) * 2014-03-14 2014-08-13 广州虹天航空科技有限公司 拍摄设备稳定器及其控制方法

Also Published As

Publication number Publication date
US20150261070A1 (en) 2015-09-17
CN103984193B (zh) 2020-10-16
JP2015177539A (ja) 2015-10-05
CN103984193A (zh) 2014-08-13
EP2919064A1 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
WO2015135310A1 (zh) 拍摄设备稳定器及其控制方法
US10545392B2 (en) Gimbal and unmanned aerial vehicle and control method thereof
US11962905B2 (en) Apparatus and methods for stabilization and vibration reduction
CN203950109U (zh) 拍摄设备稳定器
US20160381271A1 (en) Handheld camera stabilizer with integration of smart device
CN104508346B (zh) 非正交轴载体
JP6334576B2 (ja) 能動的に安定化させたカメラのポインティング制御を可能にするための方法及びシステム
EP3549872B1 (en) Dual-axis platform for use in a small unmanned aerial vehicle and tri-axis platform for use in a small unmanned aerial vehicle
US7936984B2 (en) Stabilizer device for optical equipment
CN102996983B (zh) 陀螺式动态自平衡云台
WO2019119896A1 (zh) 一种检测电机转子位置的方法、装置、电子设备及无人飞行器
JP2018534490A (ja) 搭載物を安定させる安定化装置
WO2019134154A1 (zh) 非正交云台的控制方法及其云台和存储装置
CN104811641A (zh) 一种带有云台的头戴式摄录系统及其控制方法
CN206202711U (zh) 一种云台及无人机
WO2017020247A1 (zh) 一种手持三轴云台
CN207884759U (zh) 一种精简的运动相机姿态控制装置
JPWO2019017286A1 (ja) アクチュエータ及びカメラ装置
CN207423210U (zh) 投影仪设备、投影仪支架及投影仪增稳装置
CN116447469A (zh) 一种小型化大视角单框架式三轴的稳定伺服系统
JP2020008378A (ja) 角度検出システム、カメラ用スタビライザ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.02.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14885529

Country of ref document: EP

Kind code of ref document: A1