WO2019134154A1 - 非正交云台的控制方法及其云台和存储装置 - Google Patents

非正交云台的控制方法及其云台和存储装置 Download PDF

Info

Publication number
WO2019134154A1
WO2019134154A1 PCT/CN2018/071686 CN2018071686W WO2019134154A1 WO 2019134154 A1 WO2019134154 A1 WO 2019134154A1 CN 2018071686 W CN2018071686 W CN 2018071686W WO 2019134154 A1 WO2019134154 A1 WO 2019134154A1
Authority
WO
WIPO (PCT)
Prior art keywords
attitude
driving motor
pan
tilt
joint angle
Prior art date
Application number
PCT/CN2018/071686
Other languages
English (en)
French (fr)
Inventor
苏铁
陈子寒
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880019948.8A priority Critical patent/CN110446885B/zh
Priority to PCT/CN2018/071686 priority patent/WO2019134154A1/zh
Publication of WO2019134154A1 publication Critical patent/WO2019134154A1/zh
Priority to US16/920,548 priority patent/US11346495B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/10Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2035Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
    • F16M11/2071Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction for panning and rolling
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/563Camera grips, handles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/04Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or holding steady relative to, a person, e.g. by chains, e.g. rifle butt or pistol grip supports, supports attached to the chest or head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/041Balancing means for balancing rotational movement of the head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/044Balancing means for balancing rotational movement of the undercarriage

Definitions

  • the present application relates to the field of control technologies, and in particular, to a control method for a non-orthogonal pan/tilt head and a pan/tilt and storage device thereof.
  • the pan/tilt is a system that stabilizes the payload. For example, if the user uses a gimbal to fix the camera, the camera can be stabilized, so that a stable process picture can be taken even under motion conditions.
  • the technical problem mainly solved by the present application is to provide a control method for a non-orthogonal pan/tilt head and a pan/tilt and storage device thereof, which can accurately control a non-orthogonal pan/tilt head.
  • a first aspect of the present application provides a control method for a non-orthogonal pan/tilt head, wherein the pan/tilt head includes a base, a first axle arm that is rotatably coupled to the base through the first drive motor, and passes through a second axle arm rotatably coupled to the first axle arm, a third axle arm rotatably coupled to the second axle arm by the third drive motor and configured to carry a payload, wherein the first drive motor
  • the axis of rotation is non-orthogonal to the axis of rotation of the second drive motor, comprising: acquiring an actual attitude of the pan/tilt; according to the actual attitude of the pan-tilt and the axis of rotation of the first drive motor and the axis of rotation of the second drive motor The angle between the two determines the target attitude of the gimbal; determines the attitude error according to the actual attitude of the gimbal and the target attitude of the gimbal; and controls the driving motor according
  • a second aspect of the present application provides a control method for a non-orthogonal pan/tilt head, wherein the pan/tilt head includes a base, a first axle arm rotatably coupled to the base through the first drive motor, and a second axle arm rotatably coupled to the first axle arm, a third axle arm rotatably coupled to the second axle arm by the third drive motor and configured to carry a payload, wherein the first drive motor
  • the axis of rotation is non-orthogonal to the axis of rotation of the second drive motor, including: acquiring an actual attitude of the pan/tilt; determining a target attitude of the pan/tilt; determining an attitude error according to the actual attitude and the target attitude; according to the attitude error,
  • the angle between the axis of rotation of the first drive motor and the axis of rotation of the second drive motor controls the drive motor such that the pan/tilt approaches the actual attitude toward the target attitude.
  • a third aspect of the present application provides a non-orthogonal head, comprising a base, a first axle arm rotatably coupled to the base by a first drive motor, and a second axle motor and a first axle arm a second axle arm that is rotatably coupled, a third axle arm rotatably coupled to the second axle arm by a third drive motor and configured to carry a payload, a memory, and a processor; wherein a rotational axis of the first drive motor The rotation axis of the two drive motors is non-orthogonal; the memory is configured to store program instructions; the processor executes the program instructions for: acquiring an actual attitude of the pan/tilt; according to the actual posture of the pan/tilt An angle between the rotation axis of the first driving motor and the rotation axis of the second driving motor determines a target attitude of the pan/tilt; determining an attitude error according to the actual attitude of the gimbal and the target attitude of the pan
  • a fourth aspect of the present application provides a non-orthogonal head, comprising a base, a first axle arm rotatably coupled to the base by a first drive motor, and a second axle motor and a first axle arm a second axle arm that is rotatably coupled, a third axle arm rotatably coupled to the second axle arm by a third drive motor and configured to carry a payload, a memory, and a processor; wherein a rotational axis of the first drive motor The rotation axis of the two drive motors is non-orthogonal; the memory is configured to store program instructions; the processor executes the program instructions for: acquiring an actual posture of the pan/tilt; determining a target posture of the pan/tilt; Determining the attitude error according to the actual attitude and the target attitude; controlling the driving motor according to the attitude error, the angle between the rotation axis of the first driving motor and the rotation axis of the second driving motor, so that the pan/tilt
  • a fifth aspect of the present application provides a storage device storing program instructions, and when the program instructions are executed on a processor, performing the method described in the first aspect.
  • a sixth aspect of the present application provides a storage device storing program instructions, and when the program instructions are executed on a processor, performing the method described in the second aspect.
  • the closed-loop control mode is used to realize the attitude control of the non-orthogonal pan/tilt head, and considering that the angle between the rotation axis of the first drive motor of the non-orthogonal pan/tilt head and the rotation axis of the second drive motor is not a right angle, The angle can be combined to determine its target attitude or to determine the amount of control for the drive motor so that control of the non-orthogonal head is accurate and efficient.
  • FIG. 1 is a schematic structural view of an embodiment of a non-orthogonal pan/tilt in the present application
  • FIG. 2 is a partial structural diagram of an embodiment of a non-orthogonal pan/tilt in the present application
  • FIG. 3 is a schematic flow chart of an embodiment of a method for controlling a non-orthogonal pan/tilt in the present application
  • FIG. 4 is a partial flow chart of another embodiment of a control method for a non-orthogonal pan/tilt in the present application
  • FIG. 5 is a schematic diagram of a three-dimensional coordinate system established by an orthogonal pan/tilt in an application scenario of the present application
  • FIG. 6 is a schematic flow chart of an embodiment of a method for controlling a non-orthogonal pan/tilt in the present application
  • FIG. 7 is a schematic diagram showing the circuit structure of another embodiment of the non-orthogonal pan/tilt of the present application.
  • FIG. 8 is a schematic structural diagram of an embodiment of a storage device of the present application.
  • FIG. 1 is a schematic structural diagram of an embodiment of a non-orthogonal head according to the present application.
  • the non-orthogonal head is used to carry the payload 20, and specifically includes a base 11, a first driving motor 12, and a first axle arm 13 that is rotatably connected to the base 11 by the first driving motor 12.
  • the second driving motor 14 , the second shaft arm 15 rotatably connected to the first shaft arm 13 by the second driving motor 14 , the third driving motor 16 , and the second shaft motor 15 are rotatably connected by the third driving motor 16 and configured for carrying The third axle arm 17 of the payload 20.
  • the rotation axis of the first drive motor 12 is not orthogonal to the rotation axis of the second drive motor 14, as shown in FIG. 2, the rotation axis r1 of the first drive motor 12 and the rotation axis r2 of the second drive motor 14.
  • the angle ⁇ between the non-orthogonal angles is formed.
  • the angle ⁇ may be, but is not limited to, any angle greater than 0° and less than 90°, for example 55°.
  • An angle sensor is provided for each of the first drive motor 12, the second drive motor 14, and the third drive motor 16 for measuring the joint angle of each of the drive motors.
  • the angle sensor may be at least one of a potentiometer, a Hall sensor, and a photoelectric encoder.
  • the zero position of the third driving motor 16 of the pan/tilt head may be set as follows: when the joint angle of the third driving motor 16 is at the zero position, that is, when the joint angle of the third driving motor 16 is 0, A portion of the third shaft arm 17 that is coupled to the third drive motor 16 is orthogonal to a portion of the second shaft arm 15 that is coupled to the third drive motor 16.
  • the first driving motor 12 is configured to drive the first axle arm 13 to rotate about the rotation axis of the first driving motor 12, and the second driving motor 14 is configured to drive the rotation axis of the second axle arm 15 about the second driving motor 14.
  • the third driving motor 16 is configured to drive the third axle arm 17 to rotate about the rotation axis of the third driving motor 16, and drive the corresponding axle arm to rotate by the driving motor, thereby adjusting the posture of the payload 20 in the corresponding moving direction.
  • the pitch, roll, and yaw of the payload 20 are controlled by controlling three drive motors, i.e., the attitude of the payload 20 is controlled.
  • the above drive motor can be a brushless motor.
  • first axial arm 13 is a first axial arm portion.
  • the 131 and second axle arm portions 132 form a transverse axle arm of the bent configuration.
  • the payload 20 carried on the third axle arm 17 can be one or more.
  • the payload 20 can be a photographing device (eg, a camera, etc.).
  • the pan/tilt may further include a load securing mechanism 18, and the payload 20 is fixed to the pan/tilt head by the load securing mechanism 18.
  • the load securing mechanism 18 can be fixedly coupled to the third axle arm 17.
  • an attitude measuring device such as an inertial measurement unit (IMU) or a gyroscope is provided on the pan/tilt, and the attitude measuring device may be provided not in the load fixing mechanism 18 of the pan/tilt head.
  • IMU inertial measurement unit
  • a gyroscope is provided on the pan/tilt, and the attitude measuring device may be provided not in the load fixing mechanism 18 of the pan/tilt head.
  • the pan/tilt can be used for handheld or set in a mobile platform.
  • the base 11 when used for hand-held, the base 11 is provided for the user to hold; when used for being placed in the movable platform, the base 11 is configured to be disposed on the movable platform, wherein the Mobile platforms may include unmanned aerial vehicles, remotely controlled vehicles, unmanned vehicles, and the like.
  • the non-orthogonal pan/tilt head described above may be such that the second drive motor, the second axle arm or the first axle arm of the pan/tilt does not block the payload.
  • FIG. 3 is a schematic flowchart diagram of an embodiment of a method for controlling a non-orthogonal pan/tilt head according to the present application.
  • the method in this embodiment is used to control the non-orthogonal pan/tilt as described above, and specifically includes the following steps:
  • the actual attitude of the gimbal can be measured by a measuring device such as an IMU or a gyroscope installed on the gimbal.
  • a measuring device such as an IMU or a gyroscope installed on the gimbal.
  • the angular velocity of the gimbal can be measured by the gyroscope of the gimbal, and the current actual attitude can be obtained by integrating the angular velocity.
  • the actual pose obtained by this measurement may be attitude data on a geodetic coordinate system.
  • the pan/tilt when the user's handheld base operates the pan/tilt to change the posture of the payload configured on the pan/tilt, for example, when the pan/tilt is in the following mode, the pan/tilt needs to follow the user's operation to change the current actual posture.
  • the PTZ In the process of changing the current actual posture, the PTZ needs to determine the target posture of the PTZ.
  • the target posture of the gimbal is also the target posture of the payload carried by the gimbal.
  • the target posture of the pan/tilt head may be determined according to a control command (such as a rocker value of the remote controller) sent by the control device for controlling the pan/tilt, which is not limited herein.
  • the target attitude of the gimbal may be determined based on the actual attitude of the gimbal and the angle ⁇ between the axis of rotation of the first drive motor and the axis of rotation of the second drive motor.
  • the process of determining the target attitude of the gimbal according to the actual attitude of the gimbal and the angle ⁇ between the rotational axis of the first drive motor and the rotational axis of the second drive motor will be explained in detail later in the text, and will not be described herein.
  • the current attitude and target pose of the gimbal are compared to determine the current attitude error of the gimbal. Specifically, the difference between the actual posture of the gimbal and the corresponding target posture is taken as the attitude error.
  • the attitude error can be expressed by a quaternion or Euler angle.
  • S34 Controlling the driving motor according to the attitude error causes the pan-tilt to approach the target posture of the pan-tilt from the actual attitude of the pan-tilt.
  • the control object of the pan-tilt is controlled according to the attitude error, that is, the first driving motor of the control platform,
  • the rotation of one or more of the two drive motors and the third drive motor causes the actual attitude of the gimbal to approach the target attitude.
  • the joint angle error of the drive motor can be determined according to the obtained attitude error, and the corresponding drive motor is controlled according to the joint angle error to make the pan-tilt approach from the actual attitude to the target attitude.
  • the attitude error is the error of the attitude of the gimbal.
  • the driving motor is the control object of the gimbal.
  • the attitude error needs to be converted into the control error of the driving motor, that is, the joint angle error, and the gimbal can be converted according to the attitude error.
  • the joint angle error controls the rotation of one or more of the first drive motor, the second drive motor, and the third drive motor of the pan/tilt such that the pan/tilt approaches the target attitude from the current actual attitude.
  • the joint angle error may be determined according to the attitude error and the angle ⁇ between the rotation axis of the first driving motor and the rotation axis of the second driving motor, and the driving motor is controlled according to the joint angle error to make the pan/tilt head from the actual attitude The target pose approaches.
  • the driving motor can be controlled according to the attitude error and the angle ⁇ between the rotation axis of the first driving motor and the rotation axis of the second driving motor, so that the pan-tilt is from the actual attitude of the pan-tilt to the target posture of the gimbal.
  • Approaching Specifically, since the pan/tilt of the present application is a non-orthogonal pan/tilt, the rotation axis of the first driving motor is no longer orthogonal to the rotation axis of the second driving motor, and the control strategy of the original orthogonal pan/tilt is not applicable to the present application. Non-orthogonal gimbal.
  • the angle ⁇ between the axis of rotation of the first drive motor and the axis of rotation of the second drive motor affects the control of the pan/tilt, ie the axis of rotation of the first drive motor and the second drive motor
  • the angle ⁇ of the rotation axis affects the rotation control of one or more of the first drive motor, the second drive motor, and the third drive motor, and therefore, in addition to the attitude error, the pan/tilt is controlled according to the angle ⁇
  • the rotation of one or more of the first drive motor, the second drive motor, and the third drive motor causes the gimbal to approach the target attitude from the current actual attitude.
  • the joint angle error of the driving motor may be determined according to the attitude error and the angle ⁇ , and then the driving motor is controlled according to the joint angle error to make the head of the cloud approach from the actual attitude to the target attitude.
  • the foregoing S34 may specifically include the following sub-steps:
  • S341 Determine an joint angle error of the driving motor according to an attitude error and an angle between a rotation axis of the first driving motor and a rotation axis of the second driving motor.
  • the joint angles of the second drive motor and the third drive motor may be separately obtained first.
  • the joint angle of the first drive motor and the third drive motor can be measured by an angle sensor on the pan/tilt (such as an angle sensor disposed on the corresponding motor shaft).
  • the attitude error conversion parameter is determined according to the joint angle of the second drive motor, the third drive motor, the rotation axis of the first drive motor, and the rotation axis of the second drive motor.
  • the attitude error conversion parameter is used to convert the attitude error into a joint angle error. Further, after the attitude error conversion parameter is determined, the attitude error can be converted into the joint angle error according to the attitude error conversion parameter.
  • the attitude error conversion parameter may be a matrix.
  • determining the attitude error conversion parameter according to the joint angle of the second driving motor, the third driving motor, the rotation axis of the first driving motor, and the rotation axis of the second driving motor includes: according to the second driving The joint angle of the motor, the third drive motor, the rotation axis of the first drive motor and the rotation axis of the second drive motor determine the joint angle error conversion parameter, and determine the attitude error conversion parameter according to the joint angle error conversion parameter, wherein The joint angle error conversion parameter is used to convert the joint angle error into an attitude error.
  • converting the joint angle error into the attitude error and converting the attitude error into the joint angle error are two reversible conversion processes.
  • the joint angle error conversion parameter and the attitude error conversion parameter are two conversion processes representing reciprocal Two parameters, so the attitude error conversion parameter can be determined according to the joint angle error conversion parameter.
  • the above-mentioned angle ⁇ can determine the joint angle error conversion parameter, and then use the conversion relationship between the joint angle error conversion parameter and the error posture conversion parameter, and the joint angle error conversion parameter Obtain the attitude error conversion parameters.
  • the attitude error conversion parameter may be a matrix
  • the joint angle error conversion parameter may also be a matrix
  • the attitude error conversion parameter and the joint angle error conversion parameter may be inverse matrix relationships.
  • the joint angle error conversion parameter may include joint angle error conversion parameter components respectively corresponding to each driving motor of the pan/tilt, that is, the joint angle error conversion parameter includes a first joint angle error conversion parameter component and a second joint angle The error conversion parameter component and the third joint angle error conversion parameter component.
  • the first joint angle error conversion parameter component is used to convert the joint angle error of the third driving motor of the pan/tilt into an attitude error of the payload;
  • the second joint angle error conversion parameter component is used to The error posture of the payload after the joint angle error of the two drive motors is converted;
  • the third joint angle error conversion parameter component is used for the joint angle error of the first drive motor of the pan/tilt head to be converted into the attitude error of the payload.
  • the second joint angle error conversion parameter component may be determined according to the joint angle of the third driving motor;
  • the third joint angle may be determined according to the joint angle of the second driving motor, the joint angle of the third driving motor, and the angle ⁇ Error conversion parameter components, the following part will describe in detail the process of determining joint angle error conversion parameters, which will not be described here.
  • the posture of the pan/tilt head may include three sub-positions of a pitch attitude, a roll attitude, and a yaw attitude, so one or more drive motors may be controlled according to the joint angle error, so that the actual pitch attitude of the pan/tilt heads
  • the near target pitch attitude approaches, the actual roll attitude approaches the target roll attitude and the actual yaw attitude approaches the target yaw attitude.
  • the process of determining the joint angle error conversion parameter according to the joint angle of the second drive motor, the joint angle of the third drive motor, the rotation axis of the first drive motor and the rotation axis of the second drive motor, and the conversion according to the joint angle error The process of determining the attitude error conversion parameter by the parameter and the process of determining the joint angle error according to the attitude error and the attitude error conversion parameter are described in detail.
  • the X axis can be the Roll axis of the pan/tilt head
  • the Y axis can be the Pitch axis of the pan/tilt head
  • the Z axis can be the Yaw axis of the pan/tilt head.
  • the rotation matrix around the X axis is
  • the rotation matrix around the Y axis is
  • the rotation matrix around the Z axis is
  • ⁇ 1 , ⁇ 2 , and ⁇ 3 are joint angles of the drive motors corresponding to the X-axis, the Y-axis, and the Z-axis, respectively.
  • the attitude error S 1 of the payload caused by the joint angle error r 1 of the Y-axis drive motor can be expressed as
  • the joint angle error r 2 of the X-axis drive motor requires rotation about the rotation axis of the Y-axis drive motor, so the attitude error S 2 of the payload caused by the joint angle error r 2 of the X-axis drive motor can be expressed as
  • the joint angle error r 3 of the Z-axis drive motor needs to be rotated by the rotation axis of the drive motor about the X-axis, and then rotated by the rotation axis of the drive motor about the Y-axis, so the joint angle error of the X-axis drive motor is r The
  • ⁇ 1 represents the joint angle of the second drive motor
  • ⁇ 2 represents the joint angle of the third drive motor
  • ⁇ 3 represents the joint of the first drive motor angle
  • the first joint angle error conversion parameter component can be represented as a matrix without mapping transformation.
  • the second joint angle error conversion parameter component can be expressed as a matrix
  • the rotation axis of the first driving motor of the non-orthogonal head is relative to the corresponding driving motor in the orthogonal head (as shown in FIG. 2, the driving motor 12', whose rotation axis is r1'), the rotation axis about the Y axis (ie, the rotation axis of the third drive motor) among them,
  • the rotation of the second driving motor and the third driving motor is sequentially performed, so the third joint angle error conversion parameter component can be expressed as a matrix. among them,
  • the joint angle error can be determined that the conversion
  • the parameter DCM (DCM 1 DCM 2 DCM 3 ).
  • the attitude error conversion parameter DCM -1 can be determined according to the joint angle error conversion parameter.
  • the attitude error conversion parameter includes a first attitude error conversion parameter component, a second attitude error conversion parameter component, and a third posture.
  • the error conversion parameter component, wherein the first attitude error conversion parameter component, the second attitude error conversion parameter component, and the third attitude error conversion parameter component are respectively three column vectors of DCM -1 .
  • the first drive motor corresponding to the control head can compensate for the joint angle error r z
  • the second drive motor controlling the pan head compensates for the joint angle error r x and controls the third drive of the gimbal
  • the motor compensates for the joint angle error r y , thereby eliminating the error in the attitude of each axis, so that the actual attitude approaches the target attitude.
  • FIG. 6 is a schematic flowchart diagram of still another embodiment of a control method for a non-orthogonal platform according to the present application. Based on the embodiment described in FIG. 3, the method of this embodiment includes the following steps:
  • the actual posture of the pan/tilt acquired by S61 includes an actual pitch attitude, an actual roll attitude, and an actual yaw attitude
  • the target posture of the pan/tilt also includes the target pitch attitude, the target roll attitude, and the target. Yaw posture.
  • the above S32 determining the target posture may specifically include the following three sub-steps S621-S623.
  • S621 Determine a target pitch attitude according to an actual attitude of the pan/tilt, a joint angle of the third driving motor, an angle between a rotation axis of the first driving motor and a rotation axis of the second driving motor.
  • the actual posture of the second axle arm may be determined according to the actual attitude of the pan/tilt and the joint angle of the third driving motor; and according to the actual attitude of the second axle arm, the rotation axis of the first driving motor and the second driving motor.
  • the angle ⁇ between the axes of rotation determines the target pitch attitude of the gimbal.
  • an angle sensor corresponding to the third drive motor of the pan/tilt head is used to obtain a joint angle of the third drive motor, and the joint angle is converted into a quaternion q 1 , and a quaternion indicating the actual posture of the pan/tilt is obtained at S61.
  • the number q 2 is obtained by multiplying the above quaternions q 1 and q 2 to obtain the actual posture of the second axial arm.
  • the target pitch attitude of the pan/tilt head should be the actual pitch attitude in the actual attitude of the reference axle arm 19, and the reference axle arm 19 rotates the second axle arm about the rotation axis of the third drive motor.
  • the actual pitch attitude of the payload may follow the actual pitch attitude in the actual attitude of the reference axis arm 19, ie the target pitch attitude of the pan/tilt may be the actual reference arm 19
  • the actual pitch attitude in the pose Therefore, after obtaining the actual posture of the second axial arm, the actual posture of the second axial arm can be multiplied by the angle Determined conversion parameters (for example, the above rotation matrix
  • the angle Determined conversion parameters for example, the above rotation matrix
  • S622 Determine a target roll attitude according to an actual attitude of the pan/tilt, a joint angle of the third driving motor, a joint angle of the second driving motor, an angle of rotation of the first driving motor, and an axis of rotation of the second driving motor.
  • the first angle can be determined according to the actual attitude of the pan/tilt, the joint angle of the third driving motor, the joint angle of the second driving motor, the rotation axis of the first driving motor, and the rotation axis of the second driving motor.
  • the first axle arm 13 includes a first axle arm portion 131 and a second axle arm portion 132, which is the first axle arm portion 13 and A portion of the axle arm to which the first drive motor 12 is coupled, and a second axle arm portion 132 is a portion of the first axle arm 13 that is coupled to the second drive motor 14. Therefore, the joint angle of the third driving motor and the joint angle of the second driving motor can be respectively obtained by using the angle sensors corresponding to the third driving motor and the second driving motor in the gimbal, and the obtained two joint angles are respectively converted into four.
  • the elements q 1 and q 3 are obtained , and a quaternion q 2 representing the actual posture of the gimbal is obtained at S61, and the above quaternions q 1 , q 2 and q 3 are multiplied to obtain the actual of the second axial arm portion 132. attitude. Since the first axle arm portion 131 is equivalent to the second axle arm portion 132, the angle ⁇ is rotated about the rotation axis of the third drive motor.
  • the actual posture of the second axial arm portion 132 can be multiplied by the conversion parameter determined by the angle ⁇ (for example, the above-described rotation matrix R 2 ( ⁇ )) to obtain the The actual attitude of the first axle arm portion 131.
  • the actual posture of the first axle arm portion 131 may be the actual attitude obtained by the actual attitude of the second axle arm portion 132 about the rotation angle ⁇ of the rotation axis of the third drive motor.
  • the actual roll attitude of the payload may follow the actual roll attitude in the actual posture of the axle arm 131, that is, the target roll attitude of the pan/tilt may be the first axis.
  • the actual pitch posture in the actual posture of the arm portion 131 therefore, the actual roll attitude included in the actual posture of the first axle arm portion 131 is determined as the target roll attitude of the pan/tilt head.
  • the actual roll posture of the first axle arm 13 is the same regardless of the first axle arm portion 131 or the second axle arm portion 132, it can also directly follow the actual attitude of the pan/tilt, the third drive.
  • the joint angle of the motor and the joint angle of the second drive motor determine the actual attitude of the second axle arm portion 132, and the roll attitude in the actual attitude of the second axle arm portion 132 serves as the target roll attitude of the platform.
  • the joint angle of the third driving motor determines the actual attitude of the base of the gimbal, wherein the target yaw attitude is the actual yaw attitude in the actual attitude of the pedestal.
  • the joint angle of the third drive motor, the joint angle of the second drive motor and the first drive motor can be obtained by using an angle sensor corresponding to the drive motor of each axis of the pan/tilt.
  • the angle can be determined according to the actual attitude of the pan/tilt, the joint angle of the third drive motor, the joint angle of the second drive motor, the rotation axis of the first drive motor, and the rotation axis of the second drive motor.
  • the actual attitude of the axle arm 131 in the one-axis arm, the actual attitude of the base of the pan/tilt can be determined according to the actual attitude of the axle arm 131 and the joint angle of the first drive motor.
  • the actual posture of the susceptor 11 may be an actual attitude obtained after the actual posture of the axle arm 131 is rotated about the rotation axis of the first drive motor.
  • the actual yaw attitude of the payload may follow the actual yaw attitude in the actual attitude of the pedestal 11, that is, the target yaw attitude of the gimbal may be the pedestal 11
  • the actual pitch attitude in the actual attitude therefore, the yaw attitude included in the actual attitude of the pedestal 11 of the non-orthogonal head is determined as the target yaw attitude of the platform.
  • the yaw attitude and the target yaw attitude determine the yaw attitude error b z .
  • the target posture of the pan/tilt obtained by the foregoing S621-S623 may include only one or two of the corresponding pitch posture, roll attitude, and yaw posture, and correspondingly, may be selectively executed. Part of the steps S621-S623 to obtain the corresponding target posture, and then obtain the corresponding attitude error, thereby controlling the driving motor according to the corresponding attitude error to control the corresponding actual attitude of the gimbal to approach the corresponding target attitude.
  • FIG. 7 is a schematic structural diagram of a circuit of another embodiment of the non-orthogonal pan/tilt of the present application.
  • the structure of the non-orthogonal head 70 is specifically described with reference to FIG. 1 and its embodiment.
  • the non-orthogonal head 70 is further provided with a processor 71 and a memory 72.
  • the processor 71 and memory 72 can be disposed within the non-orthogonal head 70, such as in a pedestal.
  • the processor 71 of the non-orthogonal head 70 is connected to the memory 72, the first drive motor 12, the second drive motor 14, and the third drive motor 16, respectively.
  • the processor 71 can be respectively connected to one or more of the first driving motor 12, the second driving motor 14, and the third driving motor 16 by controlling the ESC element, so as to realize the corresponding driving by the control electric adjusting element. Motor control. Additionally, in other embodiments, the processor 71 of the non-orthogonal head 70 can also be coupled to the at least some of the electrical components via a bus.
  • Memory 72 can include read only memory and random access memory and provides instructions and data to processor 71. A portion of the memory 72 may also include a non-volatile random access memory.
  • the processor 71 may be a central processing unit (CPU), and the processor may be another general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (ASIC). ), a Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • Memory 72 is used to store program instructions.
  • the processor 71 calls the program instructions to perform the operations of the first aspect or the second aspect below when the program instructions are executed.
  • the processor 71 is configured to:
  • Controlling the drive motor according to the attitude error causes the pan/tilt head 70 to approach the target attitude of the pan/tilt head from the actual attitude of the pan/tilt head.
  • the target pose comprises a target pitch attitude.
  • the processor 71 is specifically configured to: when determining the target attitude of the pan/tilt according to the angle between the actual posture of the pan-tilt 70 and the rotation axis of the first driving motor 12 and the rotation axis of the second driving motor 14;
  • the target pitch attitude is determined according to the actual posture of the pan/tilt head 70, the joint angle of the third drive motor 16, and the included angle.
  • the processor 71 is configured to control the driving motor to make the cloud according to the attitude error when the driving motor is controlled according to the attitude error such that the pan/tilt head 70 approaches the target attitude of the pan/tilt head to the target attitude of the pan/tilt head.
  • the station 70 approaches the target pitch attitude from the PTZ to the target pitch attitude of the PTZ.
  • the processor 71 determines the target pitch attitude according to the actual posture of the pan/tilt 70, the joint angle of the third driving motor 16, and the angle
  • the processor 71 may be specifically configured to: according to the pan/tilt head 70 The actual attitude, the joint angle of the third drive motor 16 determines the actual attitude of the second axle arm; and the target pitch attitude of the platform 70 is determined according to the actual attitude of the second axle arm and the included angle.
  • the target pose includes a target roll pose.
  • the processor 71 is specifically configured to: when determining the target attitude of the pan/tilt according to the angle between the actual posture of the pan-tilt 70 and the rotation axis of the first driving motor 12 and the rotation axis of the second driving motor 14;
  • the target roll attitude is determined according to the actual posture of the pan/tilt head 70, the joint angle of the third drive motor 16, the joint angle of the second drive motor 14, and the included angle.
  • the processor 71 is configured to control the driving motor to make the cloud according to the attitude error when the driving motor is controlled according to the attitude error such that the pan/tilt head 70 approaches the target attitude of the pan/tilt head to the target attitude of the pan/tilt head.
  • the platform approaches the target roll attitude of the Yuntai 70 from the actual roll attitude of the Yuntai.
  • the processor 71 determines the target roll attitude according to the actual posture of the pan/tilt 70, the joint angle of the third drive motor 16, the joint angle of the second drive motor 14, and the angle
  • the processor 71 may be specific For determining, according to the actual posture of the pan/tilt head 70, the joint angle of the third driving motor 16, the joint angle of the second driving motor 14, the angle, the first shaft arm connected to the first driving motor
  • the target pose comprises a target yaw pose.
  • the processor 71 is specifically configured to: when determining the target attitude of the pan/tilt according to the angle between the actual posture of the pan-tilt 70 and the rotation axis of the first driving motor 12 and the rotation axis of the second driving motor 14; Determining the target yaw of the gimbal according to the actual attitude of the pan/tilt head 70, the joint angle of the third drive motor 16, the joint angle of the second drive motor 14, the joint angle of the first drive motor 12, and the included angle attitude.
  • the processor 71 is configured to control the driving motor to make the cloud according to the attitude error when the driving motor is controlled according to the attitude error such that the pan/tilt head 70 approaches the target attitude of the pan/tilt head to the target attitude of the pan/tilt head.
  • the station 70 approaches the target yaw attitude of the gimbal from the actual yaw attitude of the gimbal.
  • the processor 71 is in accordance with the actual posture of the pan/tilt head 70, the joint angle of the third driving motor 16, the joint angle of the second driving motor 14, the joint angle of the first driving motor 12, the angle When determining the target yaw attitude of the gimbal, the specific yaw attitude of the pan/tilt head 70, the joint angle of the third driving motor 16, the joint angle of the second driving motor 14, and the first driving motor 12 may be specifically used.
  • the joint angle, the included angle determines an actual attitude of the base of the platform 70, wherein the target yaw attitude is an actual yaw attitude in the actual attitude of the base.
  • the processor 71 when the processor 71 controls the driving motor according to the attitude error to make the platform 70 approach the target attitude of the pan/tilt to the target attitude of the pan/tilt, the processor 71 is specifically configured to: determine according to the attitude error.
  • the joint angle error of the driving motor controlling the driving motor according to the joint angle error to make the head of the cloud approach from the actual attitude to the target attitude.
  • the processor 71 when determining the joint angle error of the driving motor according to the attitude error, is specifically configured to: determine a joint angle error of the driving motor according to the attitude error and the angle.
  • the processor 71 is configured to acquire the joints of the second driving motor 14 and the third driving motor 16 respectively when determining the joint angle error of the driving motor according to the attitude error and the angle.
  • An angle error conversion parameter is determined according to the joint angle of the second driving motor 14 and the third driving motor 16, wherein the attitude error conversion parameter is used to convert the attitude error into the joint angle error
  • a joint angle error is determined based on the attitude error conversion parameter and the attitude error.
  • the processor 71 when determining the attitude error conversion parameter according to the joint angle of the second driving motor 14 and the third driving motor 16 and the angle, is specifically configured to: according to the second driving motor 14.
  • the joint angle of the third drive motor 16 and the included angle determine a joint angle error conversion parameter, wherein the joint angle error conversion parameter is used to convert the joint angle error into an attitude error; and the joint angle error conversion parameter is Determine the attitude error conversion parameters.
  • the joint angle error conversion parameter includes a first joint angle error conversion parameter component, a second joint angle error conversion parameter component, and a third joint angle error conversion parameter component.
  • the processor 71 is configured to determine the second joint angle according to the joint angle of the third drive motor 16 and the third drive motor 16
  • the joint angle error conversion parameter component; the third joint angle error conversion parameter component is determined according to the joint angle of the second drive motor 14, the joint angle of the third drive motor 16, and the included angle.
  • a portion of the third shaft arm that is coupled to the third drive motor and a portion of the second shaft arm that is coupled to the third drive motor are orthogonal.
  • the processor 71 is configured to:
  • the drive motor is controlled in accordance with the attitude error, the angle between the rotational axis of the first drive motor 12 and the rotational axis of the second drive motor 14, such that the pan-tilt 70 approaches the target attitude from the actual attitude.
  • the processor 71 controls the drive motor to cause the pan/tilt at an angle between the rotational axis of the first drive motor 12 and the rotational axis of the second drive motor 14 according to the attitude error.
  • the method is specifically configured to: determine a joint angle error of the driving motor according to the attitude error and the angle; and control the driving motor according to the joint angle error to make the head of the cloud from actual The attitude approaches the target posture.
  • the processor 71 is configured to acquire the joints of the second driving motor 14 and the third driving motor 16 respectively when determining the joint angle error of the driving motor according to the attitude error and the angle.
  • An angle error conversion parameter is determined according to the joint angle of the second driving motor 14 and the third driving motor 16, wherein the attitude error conversion parameter is used to convert the attitude error into the joint angle error And determining a joint angle error according to the attitude error conversion parameter and the attitude error.
  • the processor 71 when determining the attitude error conversion parameter according to the joint angle of the second driving motor 14 and the third driving motor 16 and the angle, is specifically configured to: according to the second driving motor 14.
  • the joint angle of the third drive motor 16 and the included angle determine a joint angle error conversion parameter, wherein the joint angle error conversion parameter is used to convert the joint angle error into an attitude error; and the joint angle error conversion parameter is Determine the attitude error conversion parameters.
  • the joint angle error conversion parameter includes a first joint angle error conversion parameter component, a second joint angle error conversion parameter component, and a third joint angle error conversion parameter component.
  • the processor 71 is configured to determine the second joint angle according to the joint angle of the third drive motor 16 and the third drive motor 16
  • the joint angle error conversion parameter component; the third joint angle error conversion parameter component is determined according to the joint angle of the second drive motor 14, the joint angle of the third drive motor 16, and the included angle.
  • the target pose comprises a target pitch attitude.
  • the processor 71 is specifically configured to determine the target pitch attitude of the pan/tilt 70 according to the actual posture of the pan/tilt head 70, the joint angle of the third driving motor 16, and the angle.
  • the processor 71 controls the driving motor to approach the target from the actual attitude to the target attitude according to the attitude error, the angle between the rotation axis of the first driving motor 12 and the rotation axis of the second driving motor 14 Specifically, the method is: controlling the driving motor to make the pan/tilt from the pan/tilt according to the attitude error, the angle between the rotation axis of the first driving motor 12 and the rotation axis of the second driving motor 14 The actual pitch attitude of the attitude to the gimbal.
  • the processor 71 may be specifically configured to: according to the actual posture of the pan/tilt The joint angle of the third drive motor 16 determines the actual attitude of the second axle arm; the target pitch attitude is determined according to the actual attitude of the second axle arm and the included angle.
  • the target pose includes a target roll pose.
  • the processor 71 is specifically configured to: according to the actual posture of the pan/tilt head 70, the joint angle of the third driving motor 16, the joint angle of the second driving motor 14, the clip The angle determines the target roll attitude.
  • the processor 71 controls the driving motor according to the attitude error, the angle between the rotation axis of the first driving motor 12 and the rotation axis of the second driving motor 14, so that the platform 70 tends from the actual attitude to the target posture.
  • the driving motor is controlled according to the attitude error, the angle between the rotation axis of the first driving motor 12 and the rotation axis of the second driving motor 14, so that the pan/tilt head 70 is removed from the pan/tilt head.
  • the actual roll attitude of the actual yaw to the second reference axis arm is controlled according to the attitude error, the angle between the rotation axis of the first driving motor 12 and the rotation axis of the second driving motor 14, so that the pan/tilt head 70 is removed from the pan/tilt head.
  • the processor 71 determines the target roll attitude according to the actual posture of the pan/tilt 70, the joint angle of the third drive motor 16, the joint angle of the second drive motor 14, and the angle
  • the processor 71 may be specific For determining, according to the actual posture of the pan/tilt head 70, the joint angle of the third driving motor 16, the joint angle of the second driving motor 14, the angle, the first shaft arm connected to the first driving motor
  • the target pose comprises a target yaw pose.
  • the processor 71 is specifically configured to: according to the actual posture of the platform 70, the joint angle of the third driving motor 16, the joint angle of the second driving motor 14, and the first driving.
  • the joint angle of the motor 12, the angle determines the target yaw attitude.
  • the processor 71 controls the driving motor according to the attitude error, the angle between the rotation axis of the first driving motor 12 and the rotation axis of the second driving motor 14, so that the platform 70 tends from the actual attitude to the target posture.
  • the driving motor is controlled according to the attitude error, the angle between the rotation axis of the first driving motor 12 and the rotation axis of the second driving motor 14, so that the pan/tilt head 70 is removed from the pan/tilt head.
  • the actual yaw attitude is toward the target yaw attitude.
  • the processor 71 is in accordance with the actual posture of the pan/tilt head 70, the joint angle of the third driving motor 16, the joint angle of the second driving motor 14, the joint angle of the first driving motor 12, the angle When the target yaw attitude is determined, it may be specifically used according to the actual attitude of the platform 70, the joint angle of the third driving motor 16, the joint angle of the second driving motor 14, and the joint angle of the first driving motor 12.
  • the angle determines an actual attitude of the base of the platform 70, wherein the target yaw attitude is an actual yaw attitude in the actual attitude of the pedestal.
  • a portion of the third shaft arm that is coupled to the third drive motor and a portion of the second shaft arm that is coupled to the third drive motor are orthogonal.
  • the device in this embodiment may be used to implement the technical solution of the foregoing method embodiment of the present application, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • the present application also provides a control device for a non-orthogonal pan/tilt, the control device including the processor 71 and the memory 72 shown in FIG.
  • the control device is configured to perform attitude control on the non-orthogonal pan/tilt, wherein the processor 71 can execute the program instructions for executing any of the above method embodiments.
  • FIG. 8 is a schematic structural diagram of an embodiment of a storage device of the present application.
  • the storage device 80 stores the program instruction 81.
  • the program instruction 81 is run on the processor, the technical solution of the foregoing method embodiment of the present application is executed.
  • the storage device 80 may specifically be a medium that can store computer instructions, such as a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • it may be a server storing the program instructions, and the server may send the stored program instructions to other devices for running, or may also run the stored program instructions.
  • the closed-loop control mode is used to realize the attitude control of the non-orthogonal pan/tilt head, and considering that the angle between the rotation axis of the first drive motor of the non-orthogonal pan/tilt head and the rotation axis of the second drive motor is not a right angle, The angle can be combined to determine its target attitude or to determine the amount of control for the drive motor so that control of the non-orthogonal head is accurate and efficient.
  • the disclosed methods and apparatus may be implemented in other manners.
  • the device implementations described above are merely illustrative.
  • the division of modules or units is only one logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the present embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • An integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the technical solution of the present application in essence or the contribution to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program instructions. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种非正交云台的控制方法及其云台和存储装置。其中,所述方法包括:获取云台的实际姿态;根据云台的实际姿态和第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角确定云台的目标姿态;根据云台的实际姿态和云台的目标姿态确定姿态误差;根据所述姿态误差控制所述驱动电机使得云台从云台的实际姿态向云台的目标姿态趋近。通过上述方式,能够实现对非正交云台进行准确控制。

Description

非正交云台的控制方法及其云台和存储装置 【技术领域】
本申请涉及控制技术领域,特别是涉及非正交云台的控制方法及其云台和存储装置。
【背景技术】
云台是为有效负载增稳的系统。例如,用户使用云台固定相机,可以为相机增稳,使得即使在运动条件下也可以拍摄出稳定流程的画面。
在云台的控制过程中,需要通过控制云台的姿态以实现对有效负载的姿态控制。然而,目前云台的控制策略主要是针对常规的正交云台,不适用于非正交云台。因此,对非正交云台的控制策略是当前非常关键的研究课题。
【发明内容】
本申请主要解决的技术问题是提供非正交云台的控制方法及其云台和存储装置,能够实现对非正交云台进行准确控制。
为解决上述技术问题,本申请第一方面提供一种非正交云台的控制方法,其中,所述云台包括基座、通过第一驱动电机与基座转动连接的第一轴臂、通过第二驱动电机与第一轴臂转动连接的第二轴臂、通过第三驱动电机与第二轴臂转动连接且用于承载有效负载的第三轴臂,其中,所述第一驱动电机的转动轴线与第二驱动电机的转动轴线非正交,包括:获取云台的实际姿态;根据所述云台的实际姿态和所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角确定云台的目标姿态;根据云台的实际姿态和云台的目标姿态确定姿态误差;根据所述姿态误差控制所述驱动电机使得云台从云台的实际姿态向云台的目标姿态趋近。
为了解决上述技术问题,本申请第二方面提供一种非正交云台的控制 方法,其中,所述云台包括基座、通过第一驱动电机与基座转动连接的第一轴臂、通过第二驱动电机与第一轴臂转动连接的第二轴臂、通过第三驱动电机与第二轴臂转动连接且用于承载有效负载的第三轴臂,其中,所述第一驱动电机的转动轴线与第二驱动电机的转动轴线非正交,包括:获取云台的实际姿态;确定云台的目标姿态;根据所述实际姿态和目标姿态确定姿态误差;根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从实际姿态向目标姿态趋近。
为了解决上述技术问题,本申请第三方面提供一种非正交云台,包括基座、通过第一驱动电机与基座转动连接的第一轴臂、通过第二驱动电机与第一轴臂转动连接的第二轴臂、通过第三驱动电机与第二轴臂转动连接且用于承载有效负载的第三轴臂、存储器以及处理器;其中,所述第一驱动电机的转动轴线与第二驱动电机的转动轴线非正交;所述存储器,用于存储程序指令;所述处理器,执行所述程序指令以用于:获取云台的实际姿态;根据所述云台的实际姿态和所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角确定云台的目标姿态;根据云台的实际姿态和云台的目标姿态确定姿态误差;根据所述姿态误差控制所述驱动电机使得云台从云台的实际姿态向云台的目标姿态趋近。
为了解决上述技术问题,本申请第四方面提供一种非正交云台,包括基座、通过第一驱动电机与基座转动连接的第一轴臂、通过第二驱动电机与第一轴臂转动连接的第二轴臂、通过第三驱动电机与第二轴臂转动连接且用于承载有效负载的第三轴臂、存储器以及处理器;其中,所述第一驱动电机的转动轴线与第二驱动电机的转动轴线非正交;所述存储器,用于存储程序指令;所述处理器,执行所述程序指令以用于:获取云台的实际姿态;确定云台的目标姿态;根据所述实际姿态和目标姿态确定姿态误差;根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从实际姿态向目标姿态趋近。
为了解决上述技术问题,本申请第五方面提供一种存储装置,存储有程序指令,当所述程序指令在处理器上运行时,执行上述第一方面所述的方法。
为了解决上述技术问题,本申请第六方面提供一种存储装置,存储有程序指令,当所述程序指令在处理器上运行时,执行上述第二方面所述的方法。
上述方案,通过利用非正交云台的实际姿态和目标姿态之间的姿态误差,并根据该姿态误差控制非正交云台的驱动电机,使得非正交云台的实际姿态向目标姿态趋近,即采用闭环控制方式实现对非正交云台的姿态控制,而且,考虑非正交云台的第一驱动电机的转动轴线和第二驱动电机的转动轴线间的夹角非直角,故可结合该夹角来确定其目标姿态或确定对驱动电机的控制量,使得对非正交云台的控制准确有效。
【附图说明】
图1是本申请非正交云台一实施例的结构示意图;
图2是本申请非正交云台一实施例的部分结构示意图;
图3是本申请非正交云台的控制方法一实施例的流程示意图;
图4是本申请非正交云台的控制方法另一实施例的部分流程示意图;
图5是本申请一应用场景中正交云台建立的三维坐标系的示意图;
图6是本申请非正交云台的控制方法一实施例的流程示意图;
图7是本申请非正交云台另一实施例的电路结构示意图;
图8是本申请存储装置一实施例的结构示意图。
【具体实施方式】
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
为了便于理解,先对本申请的非正交云台的结构进行举例说明。
请参阅图1,图1是本申请非正交云台一实施例的结构示意图。本实施例中,该非正交云台用于承载有效负载20,具体包括基座11、第一驱动电机12、通过第一驱动电机12与基座11转动连接的第一轴臂13、第二驱动电机14、通过第二驱动电机14与第一轴臂13转动连接的第二轴臂15、第三驱动电机16、通过第三驱动电机16与第二轴臂15转动连接且用于承载有效负载20的第三轴臂17。
其中,第一驱动电机12的转动轴线与第二驱动电机14的转动轴线非正交,如图2所示,该第一驱动电机12的转动轴线r1与第二驱动电机14的转动轴线r2之间形成非直角的夹角β。该夹角β可但不限为大于0°且小于90°的任一角度,例如为55°。
针对第一驱动电机12、第二驱动电机14和第三驱动电机16中的每一个驱动电机都设置一个角度传感器,用于测量每一个驱动电机的关节角。其中,所述角度传感器可以为电位计、霍尔传感器、光电编码器中的至少一种。另外,可但不限于对云台的第三驱动电机16的零位进行如下设定:当第三驱动电机16的关节角处于零位时,即第三驱动电机16的关节角为0时,第三轴臂17中与第三驱动电机16连接的部分轴臂与第二轴臂15中与第三驱动电机16连接的部分轴臂正交。
具体地,第一驱动电机12用于驱动该第一轴臂13绕第一驱动电机12的转动轴线转动,第二驱动电机14用于驱动第二轴臂15绕第二驱动电机14的转动轴线转动,第三驱动电机16用于驱动第三轴臂17绕第三驱动电机16的转动轴线转动,通过上述驱动电机驱动相应轴臂转动,进而可调节有效负载20在对应运动方向上的姿态。在实际应用中,通过控制三个驱动电机来控制有效负载20的俯仰运动(pitch)、横滚运动(roll)和偏航运动(yaw),即控制有效负载20的姿态。上述驱动电机可以为无刷电机。
可以理解的是,该第一轴臂13、第二轴臂15、第三轴臂17的形状可根据实际情况进行设置,如图2所示,第一轴臂13为由第一轴臂部分131和第二轴臂部分132形成弯折结构的横向轴臂。
第三轴臂17上承载的有效负载20可以为一个或多个。该有效负载20可以为拍摄设备(例如相机等)。另外,云台还可包括负载固定机构18,有效负载20通过负载固定机构18固定在云台上。例如,该负载固定机构18 可固定连接在第三轴臂17上。
为了可获得云台的实际姿态,云台上设置有惯性测量单元(IMU)或陀螺仪等姿态测量装置,该姿态测量装置可但不限设置在上述云台的负载固定机构18中。
上述云台可以用于手持,或设置在可移动平台中。例如,在用于手持时,其基座11则提供给使用者握持;在用于设置在可移动平台中时,其基座11则用于设置在该可移动平台上,其中,该可移动平台可以包括无人飞行器、遥控车辆、无人驾驶车辆等。
上述非正交云台相对于正交云台,可以使得云台的第二驱动电机、第二轴臂或第一轴臂不会出现阻挡有效负载的情况。
请参阅图3,图3是本申请非正交云台的控制方法一实施例的流程示意图。本实施例方法用于对如上述的非正交云台进行控制,具体包括以下步骤:
S31:获取云台的实际姿态。
具体地,云台的实际姿态,即是云台承载的有效负载的实际姿态,可由云台上设置的IMU或陀螺仪等测量装置测量得到。例如,可通过云台的陀螺仪测量得到云台的角速度,并通过对该角速度进行积分得到当前的实际姿态。该测量得到的实际姿态可以为在大地坐标系上的姿态数据。
S32:确定云台的目标姿态。
具体地,用户手持基座对云台进行操作希望改变配置在云台上的有效负载的姿态时,例如,当云台处于跟随模式时,云台需要跟随用户的操作改变当前的实际姿态。在改变当前的实际姿态的过程中,云台需要确定云台的目标姿态。其中,该云台的目标姿态也即云台承载的有效负载的目标姿态。当然,也可根据用于控制云台的控制设备发送的控制指令(如遥控器的摇杆数值)来确定该云台的目标姿态,在此不做限定。
在某些实施例中,可根据云台的实际姿态和第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角β确定云台的目标姿态。本文后述部分将详细解释根据云台的实际姿态和第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角β确定云台的目标姿态的过程,在此先不赘述。
S33:根据云台的实际姿态和云台的目标姿态确定姿态误差。
通过比较云台的实际姿态和目标姿态,以确定云台当前的姿态误差。具体如,将云台的实际姿态以及对应的目标姿态之间的差值作为该姿态误差。其中,该姿态误差可采用四元数或欧拉角表示。
S34:根据姿态误差控制驱动电机使得云台从云台的实际姿态向云台的目标姿态趋近。
具体地,在确定了姿态误差之后,即可以知道当前的实际姿态和目标姿态相差多少,此时需要根据所述姿态误差闭环控制云台的控制对象,即控制云台的第一驱动电机、第二驱动电机和第三驱动电机中的一个或多个的转动,使得云台的实际姿态向目标姿态趋近。
在某些实施例中,可根据得到的姿态误差确定驱动电机的关节角误差,根据关节角误差控制对应驱动电机使得云台从实际姿态向目标姿态趋近。具体地,姿态误差是云台在姿态上的误差,然后,驱动电机是云台的控制对象,需要将姿态误差转换成为驱动电机的控制误差,即关节角误差,云台可以根据姿态误差转换得到的关节角误差控制云台的第一驱动电机、第二驱动电机和第三驱动电机中的一个或多个的转动,使得云台从当前的实际姿态向目标姿态趋近。进一步地,可根据姿态误差以及第一驱动电机的转动轴线与第二驱动电机的转动轴线的夹角β确定关节角误差,根据所述关节角误差控制所述驱动电机使得云台从实际姿态向目标姿态趋近。
在某些实施例中,可根据姿态误差和第一驱动电机的转动轴线与第二驱动电机的转动轴线的夹角β控制驱动电机,使得云台从云台的实际姿态向云台的目标姿态趋近。具体地,由于本申请的云台是非正交的云台,第一驱动电机的转动轴线与第二驱动电机的转动轴线不再正交,原有正交云台的控制策略不适用于本申请的非正交云台。针对本申请的非正交云台,第一驱动电机的转动轴线与第二驱动电机的转动轴线的夹角β会影响云台的控制,即第一驱动电机的转动轴线与第二驱动电机的转动轴线的夹角β会影响对第一驱动电机、第二驱动电机和第三驱动电机中的一个或多个的转动控制,因此,除了姿态误差之外,还需要根据夹角β控制云台的第一驱动电机、第二驱动电机和第三驱动电机中的一个或多个的转动,使得云台从当前的实际姿态向目标姿态趋近。进一步地,可先根据所述姿态误差和所述夹角β确定所述驱动电机的关节角误差,再根据所述关节角误差控制所述驱 动电机使得云台从实际姿态向目标姿态趋近。
请结合参阅图4,上述S34可具体包括以下子步骤:
S341:根据姿态误差和第一驱动电机的转动轴线与第二驱动电机的转动轴线的夹角确定所述驱动电机的关节角误差。
例如,可先分别获取第二驱动电机、第三驱动电机的关节角。该第一驱动电机和第三驱动电机的关节角可以由云台上的角度传感器(如对应电机轴上设置的角度传感器)测量得到。根据第二驱动电机、第三驱动电机的关节角、第一驱动电机的转动轴线与第二驱动电机的转动轴线的夹角β确定姿态误差转换参数。其中,所述姿态误差转换参数用于将姿态误差转换成关节角误差。进一步地,在确定了姿态误差转换参数后,即可以根据姿态误差转换参数将姿态误差转换成关节角误差。其中,所述姿态误差转换参数可以为矩阵。
可选地,所述根据第二驱动电机、第三驱动电机的关节角、第一驱动电机的转动轴线与第二驱动电机的转动轴线的夹角β确定姿态误差转换参数包括:根据第二驱动电机、第三驱动电机的关节角、第一驱动电机的转动轴线与第二驱动电机的转动轴线的夹角β确定关节角误差转换参数,根据关节角误差转换参数确定姿态误差转换参数,其中,关节角误差转换参数用于将关节角误差转换成姿态误差。具体地,将关节角误差转换成姿态误差和将姿态误差转换成关节角误差是两个可逆的转换过程,因此,关节角误差转换参数和姿态误差转换参数为表示互逆的两个转换过程的两个参数,故可根据该关节角误差转换参数确定该姿态误差转换参数。根据第二驱动电机、第三驱动电机的关节角、上述夹角β可以确定关节角误差转换参数,再利用关节角误差转换参数和误差姿态转换参数之间的转换关系,通过关节角误差转换参数得到姿态误差转换参数。如前所述,姿态误差转换参数可以为矩阵,关节角误差转换参数也可以为矩阵,姿态误差转换参数和关节角误差转换参数可以是互为逆矩阵的关系。
进一步具体地,该关节角误差转换参数可包含分别对应云台的每个驱动电机的关节角误差转换参数分量,即,关节角误差转换参数包括第一关节角误差转换参数分量、第二关节角误差转换参数分量、第三关节角误差转换参数分量。其中,该第一关节角误差转换参数分量用于将云台的上述 第三驱动电机的关节角误差转换成有效负载的姿态误差;第二关节角误差转换参数分量用于将云台的上述第二驱动电机的关节角误差转换后有效负载的误差姿态;第三关节角误差转换参数分量用于云台的上述第一驱动电机的关节角误差转换成有效负载的姿态误差。具体地,可根据第三驱动电机的关节角确定第二关节角误差转换参数分量;可根据第二驱动电机的关节角、第三驱动电机的关节角和所述夹角β确定第三关节角误差转换参数分量,本文下述部分将详细描述确定关节角误差转换参数的过程,此处先不赘述。
S342:根据关节角误差控制驱动电机使得云台从实际姿态向目标姿态趋近。
在实际应用中,该云台的姿态可包括俯仰姿态、横滚姿态和偏航姿态三个分姿态,故可根据关节角误差控制一个或多个驱动电机,以使云台的实际俯仰姿态趋近目标俯仰姿态趋近、实际横滚姿态趋近目标横滚姿态且实际偏航姿态趋近目标偏航姿态。
下面继续对根据第二驱动电机、第三驱动电机的关节角、第一驱动电机的转动轴线与第二驱动电机的转动轴线的夹角β确定关节角误差转换参数的过程、根据关节角误差转换参数确定姿态误差转换参数的过程和根据姿态误差和姿态误差转换参数确定关节角误差的过程进行详细说明。
1)在三轴正交云台中,如图5所示,X轴可以为云台的Roll轴,Y轴可以为云台的Pitch轴,Z轴可以为云台的Yaw轴,则,
绕X轴的旋转矩阵为
Figure PCTCN2018071686-appb-000001
绕Y轴的旋转矩阵为
Figure PCTCN2018071686-appb-000002
绕Z轴的旋转矩阵为
Figure PCTCN2018071686-appb-000003
其中,α 1、α 2和α 3分别为X轴、Y轴和Z轴对应的驱动电机的关节角。则在正交云台中,由于Y轴的驱动电机与有效负载刚性连接,Y轴的驱动电机的关节角误差r 1引起的有效负载的姿态误差S 1可以表示为
Figure PCTCN2018071686-appb-000004
Figure PCTCN2018071686-appb-000005
X轴的驱动电机的关节角误差r 2需要绕Y轴的驱动电机的转动轴线的旋转,因此X轴的驱动电机的关节角误差r 2引起的有效负载的姿态误差S 2可以表示为
Figure PCTCN2018071686-appb-000006
Z轴的驱动电机的关节角误差r 3需要经过绕X轴的驱动电机的转动轴线的旋转,然后经过绕Y轴的驱动电机的转动轴线的旋转,因此X轴的驱动电机的关节角误差r 3引起的有效负载的姿态误差S 3可以表示为
Figure PCTCN2018071686-appb-000007
因此,在正交云台中,用于将关节角误差转换成姿态误差的关节角误差转换参数为M=(M 1 M 2 M 3),由于将关节角误差转换成姿态误差和将姿态误差转换成关节角误差是两个可逆的转换过程,因此,用于将姿态误差转换成关节角误差的姿态误差转换参数为M -1
2)在本申请中的非正交云台中,继续参阅图2,上述α 1表示第二驱动电机的关节角;α 2表示第三驱动电机的关节角;α 3表示第一驱动电机的关节角。
由于第三驱动电机与有效负载为刚性连接,无需映射变换,该第一关节角误差转换参数分量可以表示为矩阵
Figure PCTCN2018071686-appb-000008
由于第二驱动电机的关节角误差经过绕第三驱动电机的转动轴线的旋转,故第二关节角误差转换参数分量可表示为矩阵
Figure PCTCN2018071686-appb-000009
由于第一驱动电机与有效负载通过第二驱动电机、第三驱动电机连接,且实际上非正交云台的第一驱动电机的转动轴线相对于正交云台中的对应的驱动电机(如图2所示的驱动电机12',其转动轴线为r1')的转动轴线绕Y轴(即第三驱动电机的转动轴线)旋转角度
Figure PCTCN2018071686-appb-000010
其中,
Figure PCTCN2018071686-appb-000011
为非正交云台的第一驱动电机的转动轴线和第二驱动电机的转动轴线之间的夹角β的余角。即第一驱动电机的关节角误差经Y轴旋转
Figure PCTCN2018071686-appb-000012
后,再依次经过第二驱动电机、第三驱动电机的旋转,故第三关节角误差转换参数分量可以表示为矩阵
Figure PCTCN2018071686-appb-000013
其中,
Figure PCTCN2018071686-appb-000014
因此,利用第二驱动电机的关节角α 1、第三驱动电机的关节角α 2、第一驱动电机的转动轴线与第二驱动电机的转动轴线的夹角β,可确定该关节角误差转换参数DCM=(DCM 1 DCM 2 DCM 3)。
对应地,可以根据关节角误差转换参数确定得到姿态误差转换参数DCM -1,如前所述,该姿态误差转换参数包含第一姿态误差转换参数分量、第二姿态误差转换参数分量和第三姿态误差转换参数分量,其中,第一姿态误差转换参数分量、第二姿态误差转换参数分量和第三姿态误差转换参数分量分别为DCM -1的三个列向量。
3)在根据云台的实际姿态和目标姿态,确定姿态误差
Figure PCTCN2018071686-appb-000015
利用该姿态误差b与姿态误差转换参数DCM -1相乘可得到关节角误差
Figure PCTCN2018071686-appb-000016
其中,b x和r x分别表示绕第二驱动电机的转动轴转动的姿态误差和关节角误差;b y和r y分别表示绕第三驱动电机的转动轴转动的姿态误差和关节角误差;b z和r z分别表示绕第一驱动电机的转动轴转动的姿态误差和关节角误差。
4)在得到关节角误差后,可对应控制云台的第一驱动电机弥补该关节角误差r z,控制云台的第二驱动电机弥补该关节角误差r x,控制云台的第三驱动电机弥补该关节角误差r y,进而消除各轴姿态上的误差,使得实际姿态向目标姿态趋近。
请参阅图6,图6是本申请非正交平台的控制方法再一实施例的流程示意图。在图3所述的实施例中的基础上,本实施例方法包括以下步骤:
S61:获取云台的实际姿态。
该S61的具体说明可参阅上述实施例的S31的相关描述。
在本实施例中,S61获取的云台的实际姿态包括实际俯仰姿态、实际横滚姿态和实际偏航姿态,故对应地,云台的目标姿态也包括目标俯仰姿态、目标横滚姿态和目标偏航姿态。上述S32确定目标姿态可具体包括下述 S621-S623三个子步骤。
S621:根据云台的实际姿态、第三驱动电机的关节角、第一驱动电机的转动轴线与第二驱动电机的转动轴线的夹角确定目标俯仰姿态。
具体地,可先根据云台的实际姿态、第三驱动电机的关节角确定第二轴臂的实际姿态;再根据第二轴臂的实际姿态、第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角β确定云台的目标俯仰姿态。
例如,利用云台的与第三驱动电机对应的角度传感器得到第三驱动电机的关节角,并将该关节角转换成四元数q 1,并在S61获得表示云台的实际姿态的四元数q 2,将上述四元数q 1和q 2相乘得到该第二轴臂的实际姿态。如图2所示,实质上,云台的目标俯仰姿态应该为参考轴臂19的实际姿态中的实际俯仰姿态,该参考轴臂19为将第二轴臂绕第三驱动电机的转动轴线转动
Figure PCTCN2018071686-appb-000017
角度而形成的虚拟轴臂,其中,该角度
Figure PCTCN2018071686-appb-000018
为第一驱动电机的转动轴线和第二驱动电机的转动轴线之间的夹角β的余角。当用户选择云台需要在俯仰方向上进行跟随时,有效负载的实际俯仰姿态可以跟随参考轴臂19的实际姿态中的实际俯仰姿态,即云台的目标俯仰姿态可以为参考轴臂19的实际姿态中的实际俯仰姿态。因此,在得到第二轴臂的实际姿态后,可将第二轴臂的实际姿态乘以由角度
Figure PCTCN2018071686-appb-000019
确定的转换参数(例如为上述旋转矩阵
Figure PCTCN2018071686-appb-000020
具体可参阅图4-5所示实施例的相关描述),得到该参考轴臂的实际姿态,该参考轴臂的实际姿态包含的俯仰姿态确定为云台的目标俯仰姿态。
S622:根据云台的实际姿态、第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的转动轴线与第二驱动电机的转动轴线的夹角确定目标横滚姿态。
具体地,可根据云台的实际姿态、第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角β确定第一轴臂中与第一驱动电机连接的部分轴臂的实际姿态,其中,所述目标横滚姿态为所述部分轴臂的实际姿态中的横滚姿态。
例如,继续以图2所示的云台为例,其第一轴臂13包括第一轴臂部分131和第二轴臂部分132,该第一轴臂部分131为第一轴臂13中与第一驱动电机12连接的部分轴臂,第二轴臂部分132为第一轴臂13中与第二驱 动电机14连接的部分轴臂。故可利用云台中与第三驱动电机和第二驱动电机对应的角度传感器分别得到第三驱动电机的关节角和第二驱动电机的关节角,并将得到的该两个关节角分别转换成四元数q 1和q 3,并在S61获得表示云台的实际姿态的四元数q 2,将上述四元数q 1、q 2和q 3相乘得到该第二轴臂部分132的实际姿态。由于第一轴臂部分131相当于为第二轴臂部分132绕第三驱动电机的转动轴线转动β角度。因此,在得到第二轴臂部分132的实际姿态后,可将第二轴臂部分132的实际姿态乘以由角度β确定的转换参数(例如为上述旋转矩阵R 2(β)),得到该第一轴臂部分131的实际姿态。由图2可知,第一轴臂部分131的实际姿态可以为第二轴臂部分132的实际姿态绕第三驱动电机的转动轴线的旋转角度β得到的实际姿态。当用户选择云台需要在横滚方向上进行跟随时,有效负载的实际横滚姿态可以跟随轴臂131的实际姿态中的实际横滚姿态,即云台的目标横滚姿态可以为第一轴臂部分131的实际姿态中的实际俯仰姿态,因此,将第一轴臂部分131的实际姿态包含的实际横滚姿态确定为该云台的目标横滚姿态。
可以理解的是,由于第一轴臂13中不管第一轴臂部分131还是第二轴臂部分132,其实际横滚姿态是相同的,故也可直接根据云台的实际姿态、第三驱动电机的关节角、第二驱动电机的关节角确定第二轴臂部分132的实际姿态,并由第二轴臂部分132的实际姿态中的横滚姿态作为该云台的目标横滚姿态。
S623:根据云台的实际姿态、第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的关节角、第一驱动电机的转动轴线与第二驱动电机的转动轴线的夹角确定云台的目标偏航姿态。
具体地,可根据云台的实际姿态、第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的关节角、第一驱动电机的转动轴线与第二驱动电机的转动轴线的夹角β确定云台的基座的实际姿态,其中,所述目标偏航姿态为所述基座的实际姿态中的实际偏航姿态。
例如,继续结合图2所示云台进行举例说明,可利用云台的各轴的驱动电机对应的角度传感器得到第三驱动电机的关节角、第二驱动电机和第一驱动电机的关节角。如前所述,可以根据云台的实际姿态、第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的转动轴线与第二驱 动电机的转动轴线的夹角β确定第一轴臂中轴臂131的实际姿态,则云台的基座的实际姿态可以根据轴臂131的实际姿态和第一驱动电机的关节角来确定。具体地,基座11的实际姿态可以为轴臂131的实际姿态经过绕第一驱动电机的转动轴线的旋转后得到的实际姿态。当用户选择云台需要在偏航方向上进行跟随时,有效负载的实际偏航姿态可以跟随基座11的实际姿态中的实际偏航姿态,即云台的目标偏航姿态可以为基座11的实际姿态中的实际俯仰姿态,因此,将非正交云台的基座11的实际姿态包含的偏航姿态确定为该云台的目标偏航姿态。
S63:根据云台的实际姿态和云台的目标姿态确定姿态误差。
例如,比较云台的实际俯仰姿态和目标俯仰姿态,确定得到俯仰姿态误差b y;比较云台的实际横滚姿态和目标横滚姿态,确定得到横滚姿态误差b x;比较云台的实际偏航姿态和目标偏航姿态,确定得到偏航姿态误差b z
S64:根据姿态误差控制驱动电机,以使得云台从云台的实际俯仰姿态向云台的目标俯仰姿态趋近、从云台的实际横滚姿态向云台的目标横滚姿态趋近且从云台的实际偏航姿态向云台的目标偏航姿态趋近。
可以理解的是,在其他实施例中,上述S621-S623获得的云台的目标姿态可以仅包括对应的俯仰姿态、横滚姿态和偏航姿态的其中一个或两个,对应地,可选择执行上述S621-S623中的部分步骤来得到对应目标姿态,进而得到对应姿态误差,从而根据对应姿态误差控制驱动电机以控制云台的对应实际姿态向对应目标姿态趋近。
请结合参阅图1和图7,图7是本申请非正交云台另一实施例的电路结构示意图。本实施例中,该非正交云台70的结构具体可参考图1及其实施例所描述,此外,非正交云台70还设置有处理器71和存储器72。该处理器71和存储器72可设置在非正交云台70的内部,如基座中。其中,非正交云台70的处理器71分别与存储器72、第一驱动电机12、第二驱动电机14和第三驱动电机16连接。具体地,处理器71可通过控制电调元件分别与第一驱动电机12、第二驱动电机14和第三驱动电机16的一个或多个连接,以实现通过该控制电调元件实现对相应驱动电机的控制。另外,在其他实施例中,非正交云台70的处理器71也可与上述至少部分电组件通过 总线连接。
存储器72可以包括只读存储器和随机存取存储器,并向处理器71提供指令和数据。存储器72的一部分还可以包括非易失性随机存取存储器。
上述处理器71可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器72用于存储程序指令。
处理器71,调用所述程序指令,当程序指令被执行时,用于执行以下第一方面或第二方面的操作。
在第一方面,处理器71用于:
获取云台70的实际姿态;
根据云台70的实际姿态和所述第一驱动电机12的转动轴线与第二驱动电机14的转动轴线之间的夹角确定云台70的目标姿态;
根据云台70的实际姿态和云台70的目标姿态确定姿态误差;
根据所述姿态误差控制所述驱动电机使得云台70从云台的实际姿态向云台的目标姿态趋近。
在一些实施例中,所述目标姿态包括目标俯仰姿态。
处理器71在根据所述云台70的实际姿态和所述第一驱动电机12的转动轴线与第二驱动电机14的转动轴线之间的夹角确定云台的目标姿态时,具体用于:根据所述云台70的实际姿态、所述第三驱动电机16的关节角、所述夹角确定目标俯仰姿态。
处理器71在根据所述姿态误差控制所述驱动电机使得云台70从云台的实际姿态向云台的目标姿态趋近时,具体用于:根据所述姿态误差控制所述驱动电机使得云台70从云台的实际俯仰姿态向云台的目标俯仰姿态趋近。
进一步地,处理器71在根据所述云台70的实际姿态、所述第三驱动电机16的关节角、所述夹角确定目标俯仰姿态时,可具体用于:根据所述 云台70的实际姿态、所述第三驱动电机16的关节角确定第二轴臂的实际姿态;根据所述第二轴臂的实际姿态、所述夹角确定云台70的目标俯仰姿态。
在一些实施例中,所述目标姿态包括目标横滚姿态。
处理器71在根据所述云台70的实际姿态和所述第一驱动电机12的转动轴线与第二驱动电机14的转动轴线之间的夹角确定云台的目标姿态时,具体用于:根据所述云台70的实际姿态、所述第三驱动电机16的关节角、第二驱动电机14的关节角、所述夹角确定目标横滚姿态。
处理器71在根据所述姿态误差控制所述驱动电机使得云台70从云台的实际姿态向云台的目标姿态趋近时,具体用于:根据所述姿态误差控制所述驱动电机使得云台从云台的实际横滚姿态向云台70的目标横滚姿态趋近。
进一步地,处理器71在根据所述云台70的实际姿态、所述第三驱动电机16的关节角、第二驱动电机14的关节角、所述夹角确定目标横滚姿态时,可具体用于:根据所述云台70的实际姿态、所述第三驱动电机16的关节角、第二驱动电机14的关节角、所述夹角确定第一轴臂中与第一驱动电机连接的部分轴臂的实际姿态,其中,所述目标横滚姿态为所述部分轴臂的实际姿态中的横滚姿态。
在一些实施例中,所述目标姿态包括目标偏航姿态。
处理器71在根据所述云台70的实际姿态和所述第一驱动电机12的转动轴线与第二驱动电机14的转动轴线之间的夹角确定云台的目标姿态时,具体用于:根据所述云台70的实际姿态、所述第三驱动电机16的关节角、第二驱动电机14的关节角、第一驱动电机12的关节角、所述夹角确定云台的目标偏航姿态。
处理器71在根据所述姿态误差控制所述驱动电机使得云台70从云台的实际姿态向云台的目标姿态趋近时,具体用于:根据所述姿态误差控制所述驱动电机使得云台70从云台的实际偏航姿态向云台的目标偏航姿态趋近。
进一步地,处理器71在根据所述云台70的实际姿态、所述第三驱动电机16的关节角、第二驱动电机14的关节角、第一驱动电机12的关节角、 所述夹角确定云台的目标偏航姿态时,可具体用于:根据所述云台70的实际姿态、所述第三驱动电机16的关节角、第二驱动电机14的关节角、第一驱动电机12的关节角、所述夹角确定云台70的基座的实际姿态,其中,所述目标偏航姿态为所述基座的实际姿态中的实际偏航姿态。
在一些实施例中,处理器71在根据所述姿态误差控制所述驱动电机使得云台70从云台的实际姿态向云台的目标姿态趋近时,具体用于:根据所述姿态误差确定所述驱动电机的关节角误差;根据所述关节角误差控制所述驱动电机使得云台从实际姿态向目标姿态趋近。
在一些实施例中,处理器71在根据所述姿态误差确定所述驱动电机的关节角误差时,具体用于:根据所述姿态误差和所述夹角确定所述驱动电机的关节角误差。
在一些实施例中,处理器71在根据所述姿态误差和所述夹角确定所述驱动电机的关节角误差时,具体用于:分别获取第二驱动电机14、第三驱动电机16的关节角;根据所述第二驱动电机14、第三驱动电机16的关节角、所述夹角确定姿态误差转换参数,其中,所述姿态误差转换参数用于将姿态误差转换成所述关节角误差根据所述姿态误差转换参数和所述姿态误差确定关节角误差。
在一些实施例中,处理器71在根据所述第二驱动电机14、第三驱动电机16的关节角、所述夹角确定姿态误差转换参数时,具体用于:根据所述第二驱动电机14、第三驱动电机16的关节角、所述夹角确定关节角误差转换参数,其中,所述关节角误差转换参数用于将关节角误差转换成姿态误差;根据所述关节角误差转换参数确定姿态误差转换参数。
在一些实施例中,所述关节角误差转换参数包括第一关节角误差转换参数分量、第二关节角误差转换参数分量、第三关节角误差转换参数分量。
处理器71在根据所述第二驱动电机14、第三驱动电机16的关节角、所述夹角确定关节角误差转换参数时,具体用于:根据第三驱动电机16的关节角确定第二关节角误差转换参数分量;根据第二驱动电机14的关节角、第三驱动电机16的关节角和所述夹角确定第三关节角误差转换参数分量。
在一些实施例中,当所述第三驱动电机的关节角处于零位时,第三轴臂中与第三驱动电机连接的部分轴臂与第二轴臂中与第三驱动电机连接的 部分轴臂正交。
在第二方面,处理器71用于:
获取云台70的实际姿态;
确定云台70的目标姿态;
根据所述实际姿态和目标姿态确定姿态误差;
根据所述姿态误差、所述第一驱动电机12的转动轴线与第二驱动电机14的转动轴线之间的夹角控制所述驱动电机使得云台70从实际姿态向目标姿态趋近。
在一些实施例中,处理器71在所述根据所述姿态误差、所述第一驱动电机12的转动轴线与第二驱动电机14的转动轴线之间的夹角控制所述驱动电机使得云台从实际姿态向目标姿态趋近时,具体用于:根据所述姿态误差和所述夹角确定所述驱动电机的关节角误差;根据所述关节角误差控制所述驱动电机使得云台从实际姿态向目标姿态趋近。
在一些实施例中,处理器71在根据所述姿态误差和所述夹角确定所述驱动电机的关节角误差时,具体用于:分别获取第二驱动电机14、第三驱动电机16的关节角;根据所述第二驱动电机14、第三驱动电机16的关节角、所述夹角确定姿态误差转换参数,其中,所述姿态误差转换参数用于将姿态误差转换成所述关节角误差;根据所述姿态误差转换参数和所述姿态误差确定关节角误差。
在一些实施例中,处理器71在根据所述第二驱动电机14、第三驱动电机16的关节角、所述夹角确定姿态误差转换参数时,具体用于:根据所述第二驱动电机14、第三驱动电机16的关节角、所述夹角确定关节角误差转换参数,其中,所述关节角误差转换参数用于将关节角误差转换成姿态误差;根据所述关节角误差转换参数确定姿态误差转换参数。
在一些实施例中,所述关节角误差转换参数包括第一关节角误差转换参数分量、第二关节角误差转换参数分量、第三关节角误差转换参数分量。
处理器71在根据所述第二驱动电机14、第三驱动电机16的关节角、所述夹角确定关节角误差转换参数时,具体用于:根据第三驱动电机16的关节角确定第二关节角误差转换参数分量;根据所述第二驱动电机14的关节角、第三驱动电机16的关节角和所述夹角确定第三关节角误差转换参数 分量。
在一些实施例中,所述目标姿态包括目标俯仰姿态。
处理器71在确定云台的目标姿态时,具体用于:根据所述云台70的实际姿态、所述第三驱动电机16的关节角、所述夹角确定云台70的目标俯仰姿态。
处理器71在根据所述姿态误差、所述第一驱动电机12的转动轴线与第二驱动电机14的转动轴线之间的夹角控制所述驱动电机使得云台从实际姿态向目标姿态趋近时,具体用于:根据所述姿态误差、所述第一驱动电机12的转动轴线与第二驱动电机14的转动轴线之间的夹角控制所述驱动电机使得云台从云台的实际俯仰姿态向云台的实际俯仰姿态。
进一步地,处理器71在根据所述云台的实际姿态、所述第三驱动电机16的关节角、所述夹角确定目标俯仰姿态时,可具体用于:根据所述云台的实际姿态、所述第三驱动电机16的关节角确定第二轴臂的实际姿态;根据所述第二轴臂的实际姿态、所述夹角确定目标俯仰姿态。
在一些实施例中,所述目标姿态包括目标横滚姿态。
处理器71在确定云台70的目标姿态时,具体用于:根据所述云台70的实际姿态、所述第三驱动电机16的关节角、第二驱动电机14的关节角、所述夹角确定目标横滚姿态。
处理器71在根据所述姿态误差、所述第一驱动电机12的转动轴线与第二驱动电机14的转动轴线之间的夹角控制所述驱动电机使得云台70从实际姿态向目标姿态趋近时,具体用于:根据所述姿态误差、所述第一驱动电机12的转动轴线与第二驱动电机14的转动轴线之间的夹角控制所述驱动电机使得云台70从云台的实际偏横滚态向第二参考轴臂的实际横滚姿态。
进一步地,处理器71在根据所述云台70的实际姿态、所述第三驱动电机16的关节角、第二驱动电机14的关节角、所述夹角确定目标横滚姿态时,可具体用于:根据所述云台70的实际姿态、所述第三驱动电机16的关节角、第二驱动电机14的关节角、所述夹角确定第一轴臂中与第一驱动电机连接的部分轴臂的实际姿态,其中,所述目标横滚姿态为所述部分轴臂的实际姿态中的横滚姿态。
在一些实施例中,所述目标姿态包括目标偏航姿态。
处理器71在确定云台70的目标姿态时,具体用于:根据所述云台70的实际姿态、所述第三驱动电机16的关节角、第二驱动电机14的关节角、第一驱动电机12的关节角、所述夹角确定目标偏航姿态。
处理器71在根据所述姿态误差、所述第一驱动电机12的转动轴线与第二驱动电机14的转动轴线之间的夹角控制所述驱动电机使得云台70从实际姿态向目标姿态趋近时,具体用于:根据所述姿态误差、所述第一驱动电机12的转动轴线与第二驱动电机14的转动轴线之间的夹角控制所述驱动电机使得云台70从云台的实际偏航姿态向目标偏航姿态。
进一步地,处理器71在根据所述云台70的实际姿态、所述第三驱动电机16的关节角、第二驱动电机14的关节角、第一驱动电机12的关节角、所述夹角确定目标偏航姿态时,可具体用于:根据所述云台70的实际姿态、所述第三驱动电机16的关节角、第二驱动电机14的关节角、第一驱动电机12的关节角、所述夹角确定云台70的基座的实际姿态,其中,所述目标偏航姿态为所述基座的实际姿态中的实际偏航姿态。
在一些实施例中,当所述第三驱动电机的关节角处于零位时,第三轴臂中与第三驱动电机连接的部分轴臂与第二轴臂中与第三驱动电机连接的部分轴臂正交。
本实施例的设备,可以用于执行本申请上述方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
本申请还提供一种非正交云台的控制装置,该控制装置包括图7所示的处理器71和存储器72。该控制装置用于对上述非正交云台进行姿态控制,其中,处理器71可通过运行程序指令用于执行上述任一方法实施例。
请参阅图8,图8是本申请存储装置一实施例的结构示意图。本实施例中,该存储装置80存储有程序指令81,当所述程序指令81在处理器上运行时,执行本申请上述方法实施例的技术方案。
该存储装置80具体可以为U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory,)、磁碟或者光盘等可以存储计算机指令的介质,或者也可以为存储有该程序机指令的服务器,该服务器可将存储的程序指令发送给其他设备运行,或 者也可以自运行该存储的程序指令。
上述方案,通过利用非正交云台的实际姿态和目标姿态之间的姿态误差,并根据该姿态误差控制非正交云台的驱动电机,使得非正交云台的实际姿态向目标姿态趋近,即采用闭环控制方式实现对非正交云台的姿态控制,而且,考虑非正交云台的第一驱动电机的转动轴线和第二驱动电机的转动轴线间的夹角非直角,故可结合该夹角来确定其目标姿态或确定对驱动电机的控制量,使得对非正交云台的控制准确有效。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施方式方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random  Access Memory)、磁碟或者光盘等各种可以存储程序指令的介质。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (52)

  1. 一种非正交云台的控制方法,其中,所述云台包括基座、通过第一驱动电机与基座转动连接的第一轴臂、通过第二驱动电机与第一轴臂转动连接的第二轴臂、通过第三驱动电机与第二轴臂转动连接且用于承载有效负载的第三轴臂,其中,所述第一驱动电机的转动轴线与第二驱动电机的转动轴线非正交,其特征在于,包括:
    获取云台的实际姿态;
    根据所述云台的实际姿态和所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角确定云台的目标姿态;
    根据云台的实际姿态和云台的目标姿态确定姿态误差;
    根据所述姿态误差控制所述驱动电机使得云台从云台的实际姿态向云台的目标姿态趋近。
  2. 根据权利要求1所述的方法,其特征在于,所述目标姿态包括目标俯仰姿态;
    所述根据所述云台的实际姿态和所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角确定云台的目标姿态包括:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、所述夹角确定目标俯仰姿态;
    所述根据所述姿态误差控制所述驱动电机使得云台从云台的实际姿态向云台的目标姿态趋近包括:
    根据所述姿态误差控制所述驱动电机使得云台从云台的实际俯仰姿态向云台的目标俯仰姿态趋近。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述云台的实际姿态、所述第三驱动电机的关节角、所述夹角确定目标俯仰姿态包括:
    根据所述云台的实际姿态、所述第三驱动电机的关节角确定第二轴臂的实际姿态;
    根据所述第二轴臂的实际姿态、所述夹角确定云台的目标俯仰姿态。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述目标姿态包括目标横滚姿态;
    所述根据所述云台的实际姿态和所述第一驱动电机的转动轴线与第二 驱动电机的转动轴线之间的夹角确定云台的目标姿态包括:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、所述夹角确定目标横滚姿态;
    所述根据所述姿态误差控制所述驱动电机使得云台从云台的实际姿态向云台的目标姿态趋近包括:
    根据所述姿态误差控制所述驱动电机使得云台从云台的实际横滚姿态向云台的目标横滚姿态趋近。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、所述夹角确定目标横滚姿态包括:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、所述夹角确定第一轴臂中与第一驱动电机连接的部分轴臂的实际姿态,其中,所述目标横滚姿态为所述部分轴臂的实际姿态中的横滚姿态。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述目标姿态包括目标偏航姿态;
    所述根据所述云台的实际姿态和所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角确定云台的目标姿态包括:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的关节角、所述夹角确定云台的目标偏航姿态;
    所述根据所述姿态误差控制所述驱动电机使得云台从云台的实际姿态向云台的目标姿态趋近包括:
    根据所述姿态误差控制所述驱动电机使得云台从云台的实际偏航姿态向云台的目标偏航姿态趋近。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的关节角、所述夹角确定云台的目标偏航姿态包括:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的关节角、所述夹角确定云台的基座的实际姿态,其中,所述目标偏航姿态为所述基座的实际姿态中的实际偏航姿态。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,
    所述根据所述姿态误差控制所述驱动电机使得云台从云台的实际姿态向云台的目标姿态趋近包括:
    根据所述姿态误差确定所述驱动电机的关节角误差;
    根据所述关节角误差控制所述驱动电机使得云台从实际姿态向目标姿态趋近。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述姿态误差确定所述驱动电机的关节角误差包括:
    根据所述姿态误差和所述夹角确定所述驱动电机的关节角误差。
  10. 根据权利要求9所述的方法,其特征在于,
    所述根据所述姿态误差和所述夹角确定所述驱动电机的关节角误差包括:
    分别获取第二驱动电机、第三驱动电机的关节角;
    根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定姿态误差转换参数,其中,所述姿态误差转换参数用于将姿态误差转换成所述关节角误差;
    根据所述姿态误差转换参数和所述姿态误差确定关节角误差。
  11. 根据权利要求10所述的方法,其特征在于,
    所述根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定姿态误差转换参数包括:
    根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定关节角误差转换参数,其中,所述关节角误差转换参数用于将关节角误差转换成姿态误差;
    根据所述关节角误差转换参数确定姿态误差转换参数。
  12. 根据权利要求11所述的方法,其特征在于,所述关节角误差转换参数包括第一关节角误差转换参数分量、第二关节角误差转换参数分量、第三关节角误差转换参数分量;
    所述根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定关节角误差转换参数包括:
    根据第三驱动电机的关节角确定第二关节角误差转换参数分量;
    根据第二驱动电机的关节角、第三驱动电机的关节角和所述夹角确定第三关节角误差转换参数分量。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,当所述第三驱动电机的关节角处于零位时,第三轴臂中与第三驱动电机连接的部分轴臂与第二轴臂中与第三驱动电机连接的部分轴臂正交。
  14. 一种非正交云台的控制方法,其中,所述云台包括基座、通过第一驱动电机与基座转动连接的第一轴臂、通过第二驱动电机与第一轴臂转动连接的第二轴臂、通过第三驱动电机与第二轴臂转动连接且用于承载有效负载的第三轴臂,其中,所述第一驱动电机的转动轴线与第二驱动电机的转动轴线非正交,其特征在于,包括:
    获取云台的实际姿态;
    确定云台的目标姿态;
    根据所述实际姿态和目标姿态确定姿态误差;
    根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从实际姿态向目标姿态趋近。
  15. 根据权利要求14所述的方法,其特征在于,
    所述根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从实际姿态向目标姿态趋近包括:
    根据所述姿态误差和所述夹角确定所述驱动电机的关节角误差;
    根据所述关节角误差控制所述驱动电机使得云台从实际姿态向目标姿态趋近。
  16. 根据权利要求15所述的方法,其特征在于,
    所述根据所述姿态误差和所述夹角确定所述驱动电机的关节角误差包括:
    分别获取第二驱动电机、第三驱动电机的关节角;
    根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定姿态误差转换参数,其中,所述姿态误差转换参数用于将姿态误差转换成所述关节角误差;
    根据所述姿态误差转换参数和所述姿态误差确定关节角误差。
  17. 根据权利要求16所述的方法,其特征在于,
    所述根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定姿态误差转换参数包括:
    根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定关节角误差转换参数,其中,所述关节角误差转换参数用于将关节角误差转换成姿态误差;
    根据所述关节角误差转换参数确定姿态误差转换参数。
  18. 根据权利要求17所述的方法,其特征在于,所述关节角误差转换参数包括第一关节角误差转换参数分量、第二关节角误差转换参数分量、第三关节角误差转换参数分量;
    所述根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定关节角误差转换参数包括:
    根据第三驱动电机的关节角确定第二关节角误差转换参数分量;
    根据所述第二驱动电机的关节角、第三驱动电机的关节角和所述夹角确定第三关节角误差转换参数分量。
  19. 根据权利要求14-18任一项所述的方法,其特征在于,所述目标姿态包括目标俯仰姿态;
    所述确定云台的目标姿态包括:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、所述夹角确定云台的目标俯仰姿态;
    所述根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从实际姿态向目标姿态趋近包括:
    根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从云台的实际俯仰姿态向云台的实际俯仰姿态。
  20. 根据权利要求19所述的方法,其特征在于,所述根据所述云台的实际姿态、所述第三驱动电机的关节角、所述夹角确定目标俯仰姿态包括:
    根据所述云台的实际姿态、所述第三驱动电机的关节角确定第二轴臂 的实际姿态;
    根据所述第二轴臂的实际姿态、所述夹角确定目标俯仰姿态。
  21. 根据权利要求14-18任一项所述的方法,其特征在于,所述目标姿态包括目标横滚姿态;
    所述确定云台的目标姿态包括:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、所述夹角确定目标横滚姿态;
    所述根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从实际姿态向目标姿态趋近包括:
    根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从云台的实际偏横滚态向第二参考轴臂的实际横滚姿态。
  22. 根据权利要求21所述的方法,其特征在于,所述根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、所述夹角确定目标横滚姿态包括:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、所述夹角确定第一轴臂中与第一驱动电机连接的部分轴臂的实际姿态,其中,所述目标横滚姿态为所述部分轴臂的实际姿态中的横滚姿态。
  23. 根据权利要求14-18任一项所述的方法,其特征在于,所述目标姿态包括目标偏航姿态;
    所述确定云台的目标姿态包括:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的关节角、所述夹角确定目标偏航姿态;
    所述根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从实际姿态向目标姿态趋近包括:
    根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从云台的实际偏航姿态向 目标偏航姿态。
  24. 根据权利要求23所述的方法,其特征在于,所述根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的关节角、所述夹角确定目标偏航姿态包括:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的关节角、所述夹角确定云台的基座的实际姿态,其中,所述目标偏航姿态为所述基座的实际姿态中的实际偏航姿态。
  25. 根据权利要求14-24任一项所述的方法,其特征在于,当所述第三驱动电机的关节角处于零位时,第三轴臂中与第三驱动电机连接的部分轴臂与第二轴臂中与第三驱动电机连接的部分轴臂正交。
  26. 一种非正交云台,其特征在于,包括基座、通过第一驱动电机与基座转动连接的第一轴臂、通过第二驱动电机与第一轴臂转动连接的第二轴臂、通过第三驱动电机与第二轴臂转动连接且用于承载有效负载的第三轴臂、存储器以及处理器;其中,所述第一驱动电机的转动轴线与第二驱动电机的转动轴线非正交;
    所述存储器,用于存储程序指令;
    所述处理器,执行所述程序指令以用于:
    获取云台的实际姿态;
    根据所述云台的实际姿态和所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角确定云台的目标姿态;
    根据云台的实际姿态和云台的目标姿态确定姿态误差;
    根据所述姿态误差控制所述驱动电机使得云台从云台的实际姿态向云台的目标姿态趋近。
  27. 根据权利要求26所述的云台,其特征在于,所述目标姿态包括目标俯仰姿态;
    所述处理器在根据所述云台的实际姿态和所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角确定云台的目标姿态时,具体用于:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、所述夹角确定目标俯仰姿态;
    所述处理器在根据所述姿态误差控制所述驱动电机使得云台从云台的实际姿态向云台的目标姿态趋近时,具体用于:
    根据所述姿态误差控制所述驱动电机使得云台从云台的实际俯仰姿态向云台的目标俯仰姿态趋近。
  28. 根据权利要求27所述的云台,其特征在于,所述处理器在根据所述云台的实际姿态、所述第三驱动电机的关节角、所述夹角确定目标俯仰姿态时,具体用于:
    根据所述云台的实际姿态、所述第三驱动电机的关节角确定第二轴臂的实际姿态;
    根据所述第二轴臂的实际姿态、所述夹角确定云台的目标俯仰姿态。
  29. 根据权利要求26-28任一项所述的云台,其特征在于,所述目标姿态包括目标横滚姿态;
    所述处理器在根据所述云台的实际姿态和所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角确定云台的目标姿态时,具体用于:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、所述夹角确定目标横滚姿态;
    所述处理器在根据所述姿态误差控制所述驱动电机使得云台从云台的实际姿态向云台的目标姿态趋近时,具体用于:
    根据所述姿态误差控制所述驱动电机使得云台从云台的实际横滚姿态向云台的目标横滚姿态趋近。
  30. 根据权利要求29所述的云台,其特征在于,所述处理器在根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、所述夹角确定目标横滚姿态时,具体用于:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、所述夹角确定第一轴臂中与第一驱动电机连接的部分轴臂的实际姿态,其中,所述目标横滚姿态为所述部分轴臂的实际姿态中的横滚姿态。
  31. 根据权利要求26-30任一项所述的云台,其特征在于,所述目标姿态包括目标偏航姿态;
    所述处理器在根据所述云台的实际姿态和所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角确定云台的目标姿态时,具体用于:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的关节角、所述夹角确定云台的目标偏航姿态;
    所述处理器在根据所述姿态误差控制所述驱动电机使得云台从云台的实际姿态向云台的目标姿态趋近时,具体用于:
    根据所述姿态误差控制所述驱动电机使得云台从云台的实际偏航姿态向云台的目标偏航姿态趋近。
  32. 根据权利要求31所述的云台,其特征在于,所述处理器在根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的关节角、所述夹角确定云台的目标偏航姿态时,具体用于:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的关节角、所述夹角确定云台的基座的实际姿态,其中,所述目标偏航姿态为所述基座的实际姿态中的实际偏航姿态。
  33. 根据权利要求26-32任一项所述的云台,其特征在于,所述处理器在根据所述姿态误差控制所述驱动电机使得云台从云台的实际姿态向云台的目标姿态趋近时,具体用于:
    根据所述姿态误差确定所述驱动电机的关节角误差;
    根据所述关节角误差控制所述驱动电机使得云台从实际姿态向目标姿态趋近。
  34. 根据权利要求33所述的云台,其特征在于,所述处理器在根据所述姿态误差确定所述驱动电机的关节角误差时,具体用于:
    根据所述姿态误差和所述夹角确定所述驱动电机的关节角误差。
  35. 根据权利要求34所述的云台,其特征在于,所述处理器在根据所述姿态误差和所述夹角确定所述驱动电机的关节角误差时,具体用于:
    分别获取第二驱动电机、第三驱动电机的关节角;
    根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定姿态误差转换参数,其中,所述姿态误差转换参数用于将姿态误差转换成所述关节角误差;
    根据所述姿态误差转换参数和所述姿态误差确定关节角误差。
  36. 根据权利要求35所述的云台,其特征在于,所述处理器在根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定姿态误差转换参数时,具体用于:
    根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定关节角误差转换参数,其中,所述关节角误差转换参数用于将关节角误差转换成姿态误差;
    根据所述关节角误差转换参数确定姿态误差转换参数。
  37. 根据权利要求36所述的云台,其特征在于,所述关节角误差转换参数包括第一关节角误差转换参数分量、第二关节角误差转换参数分量、第三关节角误差转换参数分量;
    所述处理器在根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定关节角误差转换参数时,具体用于:
    根据第三驱动电机的关节角确定第二关节角误差转换参数分量;
    根据第二驱动电机的关节角、第三驱动电机的关节角和所述夹角确定第三关节角误差转换参数分量。
  38. 根据权利要求26-37任一项所述的云台,其特征在于,当所述第三驱动电机的关节角处于零位时,第三轴臂中与第三驱动电机连接的部分轴臂与第二轴臂中与第三驱动电机连接的部分轴臂正交。
  39. 一种非正交云台,其特征在于,包括基座、通过第一驱动电机与基座转动连接的第一轴臂、通过第二驱动电机与第一轴臂转动连接的第二轴臂、通过第三驱动电机与第二轴臂转动连接且用于承载有效负载的第三轴臂、存储器以及处理器;其中,所述第一驱动电机的转动轴线与第二驱动电机的转动轴线非正交;
    所述存储器,用于存储程序指令;
    所述处理器,执行所述程序指令以用于:
    获取云台的实际姿态;
    确定云台的目标姿态;
    根据所述实际姿态和目标姿态确定姿态误差;
    根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的 转动轴线之间的夹角控制所述驱动电机使得云台从实际姿态向目标姿态趋近。
  40. 根据权利要求39所述的云台,其特征在于,所述处理器在所述根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从实际姿态向目标姿态趋近时,具体用于:
    根据所述姿态误差和所述夹角确定所述驱动电机的关节角误差;
    根据所述关节角误差控制所述驱动电机使得云台从实际姿态向目标姿态趋近。
  41. 根据权利要求40所述的云台,其特征在于,所述处理器在根据所述姿态误差和所述夹角确定所述驱动电机的关节角误差时,具体用于:
    分别获取第二驱动电机、第三驱动电机的关节角;
    根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定姿态误差转换参数,其中,所述姿态误差转换参数用于将姿态误差转换成所述关节角误差;
    根据所述姿态误差转换参数和所述姿态误差确定关节角误差。
  42. 根据权利要求41所述的云台,其特征在于,所述处理器在根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定姿态误差转换参数时,具体用于:
    根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定关节角误差转换参数,其中,所述关节角误差转换参数用于将关节角误差转换成姿态误差;
    根据所述关节角误差转换参数确定姿态误差转换参数。
  43. 根据权利要求42所述的云台,其特征在于,所述关节角误差转换参数包括第一关节角误差转换参数分量、第二关节角误差转换参数分量、第三关节角误差转换参数分量;
    所述处理器在根据所述第二驱动电机、第三驱动电机的关节角、所述夹角确定关节角误差转换参数时,具体用于:
    根据第三驱动电机的关节角确定第二关节角误差转换参数分量;
    根据所述第二驱动电机的关节角、第三驱动电机的关节角和所述夹角 确定第三关节角误差转换参数分量。
  44. 根据权利要求39-43任一项所述的云台,其特征在于,所述目标姿态包括目标俯仰姿态;
    所述处理器在确定云台的目标姿态时,具体用于:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、所述夹角确定云台的目标俯仰姿态;
    所述处理器在根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从实际姿态向目标姿态趋近时,具体用于:
    根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从云台的实际俯仰姿态向云台的实际俯仰姿态。
  45. 根据权利要求44所述的云台,其特征在于,所述处理器在根据所述云台的实际姿态、所述第三驱动电机的关节角、所述夹角确定目标俯仰姿态时,具体用于:
    根据所述云台的实际姿态、所述第三驱动电机的关节角确定第二轴臂的实际姿态;
    根据所述第二轴臂的实际姿态、所述夹角确定目标俯仰姿态。
  46. 根据权利要求39-43任一项所述的云台,其特征在于,所述目标姿态包括目标横滚姿态;
    所述处理器在确定云台的目标姿态时,具体用于:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、所述夹角确定目标横滚姿态;
    所述处理器在根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从实际姿态向目标姿态趋近时,具体用于:
    根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从云台的实际偏横滚态向第二参考轴臂的实际横滚姿态。
  47. 根据权利要求46所述的云台,其特征在于,所述处理器在根据所 述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、所述夹角确定目标横滚姿态时,具体用于:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、所述夹角确定第一轴臂中与第一驱动电机连接的部分轴臂的实际姿态,其中,所述目标横滚姿态为所述部分轴臂的实际姿态中的横滚姿态。
  48. 根据权利要求39-43任一项所述的云台,其特征在于,所述目标姿态包括目标偏航姿态;
    所述处理器在确定云台的目标姿态时,具体用于:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的关节角、所述夹角确定目标偏航姿态;
    所述处理器在根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从实际姿态向目标姿态趋近时,具体用于:
    根据所述姿态误差、所述第一驱动电机的转动轴线与第二驱动电机的转动轴线之间的夹角控制所述驱动电机使得云台从云台的实际偏航姿态向目标偏航姿态。
  49. 根据权利要求48所述的云台,其特征在于,所述处理器在根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的关节角、所述夹角确定目标偏航姿态时,具体用于:
    根据所述云台的实际姿态、所述第三驱动电机的关节角、第二驱动电机的关节角、第一驱动电机的关节角、所述夹角确定云台的基座的实际姿态,其中,所述目标偏航姿态为所述基座的实际姿态中的实际偏航姿态。
  50. 根据权利要求39-49任一项所述的云台,其特征在于,当所述第三驱动电机的关节角处于零位时,第三轴臂中与第三驱动电机连接的部分轴臂与第二轴臂中与第三驱动电机连接的部分轴臂正交。
  51. 一种存储装置,其特征在于,所述存储装置存储有程序指令,当所述程序指令在处理器上运行时,执行如权利要求1-13任一项所述的方法。
  52. 一种存储装置,其特征在于,所述存储装置存储有程序指令,当所述程序指令在处理器上运行时,执行如权利要求14-25任一项所述的方法。
PCT/CN2018/071686 2018-01-06 2018-01-06 非正交云台的控制方法及其云台和存储装置 WO2019134154A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880019948.8A CN110446885B (zh) 2018-01-06 2018-01-06 非正交云台的控制方法及其云台和存储装置
PCT/CN2018/071686 WO2019134154A1 (zh) 2018-01-06 2018-01-06 非正交云台的控制方法及其云台和存储装置
US16/920,548 US11346495B2 (en) 2018-01-06 2020-07-03 Control method for non-orthogonal gimbal, gimbal thereof, and storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/071686 WO2019134154A1 (zh) 2018-01-06 2018-01-06 非正交云台的控制方法及其云台和存储装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/920,548 Continuation US11346495B2 (en) 2018-01-06 2020-07-03 Control method for non-orthogonal gimbal, gimbal thereof, and storage device

Publications (1)

Publication Number Publication Date
WO2019134154A1 true WO2019134154A1 (zh) 2019-07-11

Family

ID=67144093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071686 WO2019134154A1 (zh) 2018-01-06 2018-01-06 非正交云台的控制方法及其云台和存储装置

Country Status (3)

Country Link
US (1) US11346495B2 (zh)
CN (1) CN110446885B (zh)
WO (1) WO2019134154A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210364895A1 (en) * 2016-12-30 2021-11-25 Sz Dji Osmo Technology Co., Ltd. Gimbal control method, device, and gimbal
WO2022041575A1 (zh) * 2020-08-26 2022-03-03 深圳市大疆创新科技有限公司 手持云台

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3568733A4 (en) * 2017-04-21 2020-02-19 SZ DJI Osmo Technology Co., Ltd. METHODS AND APPARATUSES FOR STABILIZING A PAYLOAD
WO2019134117A1 (zh) * 2018-01-05 2019-07-11 深圳市大疆创新科技有限公司 云台控制方法、云台和机器可读存储介质
CN111977006A (zh) * 2020-08-11 2020-11-24 深圳市道通智能航空技术有限公司 一种关节角的初始化方法、装置及飞行器
USD967240S1 (en) * 2020-08-19 2022-10-18 SZ DJI Technology Co., Ltd. Gimbal
USD974452S1 (en) * 2020-09-16 2023-01-03 SZ DJI Technology Co., Ltd. Gimbal
CN114167902A (zh) * 2021-12-03 2022-03-11 重庆市亿飞智联科技有限公司 云台控制方法、装置、控制设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203902846U (zh) * 2014-04-18 2014-10-29 深圳市大疆创新科技有限公司 一种负载的承载平台及拍摄装置、飞行器
US20160229556A1 (en) * 2013-12-10 2016-08-11 SZ DJI Technology Co., Ltd. Carrier having non-orthogonal axes
CN106051400A (zh) * 2016-07-08 2016-10-26 极翼机器人(上海)有限公司 一种云台
CN107339569A (zh) * 2017-08-23 2017-11-10 魏承赟 稳定器及稳定器的角度调节方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6751529B1 (en) * 2002-06-03 2004-06-15 Neural Robotics, Inc. System and method for controlling model aircraft
CN1569563A (zh) * 2004-04-27 2005-01-26 上海大学 无人机姿态增稳装置及其控制方法
US20160381271A1 (en) * 2015-06-25 2016-12-29 DelTron Intelligence Technology Limited Handheld camera stabilizer with integration of smart device
WO2018023492A1 (zh) * 2016-08-03 2018-02-08 深圳市大疆灵眸科技有限公司 一种云台控制方法及系统
CN106375720A (zh) * 2016-09-12 2017-02-01 中国科学院自动化研究所 智能视觉云台系统及其实现方法
US10362228B2 (en) * 2016-10-22 2019-07-23 Gopro, Inc. Fast attitude error correction
EP3564574B1 (en) * 2016-12-30 2021-11-10 SZ DJI Osmo Technology Co., Ltd. Method and device for controlling cradle head, and cradle head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160229556A1 (en) * 2013-12-10 2016-08-11 SZ DJI Technology Co., Ltd. Carrier having non-orthogonal axes
CN203902846U (zh) * 2014-04-18 2014-10-29 深圳市大疆创新科技有限公司 一种负载的承载平台及拍摄装置、飞行器
CN106051400A (zh) * 2016-07-08 2016-10-26 极翼机器人(上海)有限公司 一种云台
CN107339569A (zh) * 2017-08-23 2017-11-10 魏承赟 稳定器及稳定器的角度调节方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210364895A1 (en) * 2016-12-30 2021-11-25 Sz Dji Osmo Technology Co., Ltd. Gimbal control method, device, and gimbal
US11852958B2 (en) * 2016-12-30 2023-12-26 Sz Dji Osmo Technology Co., Ltd. Gimbal control method, device, and gimbal
WO2022041575A1 (zh) * 2020-08-26 2022-03-03 深圳市大疆创新科技有限公司 手持云台

Also Published As

Publication number Publication date
US11346495B2 (en) 2022-05-31
CN110446885B (zh) 2021-05-11
US20200332944A1 (en) 2020-10-22
CN110446885A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2019134154A1 (zh) 非正交云台的控制方法及其云台和存储装置
WO2019223270A1 (zh) 云台电机角度和角速度估算方法、装置、云台及飞行器
CN108549399B (zh) 飞行器偏航角修正方法、装置及飞行器
US20200213518A1 (en) Method for controlling gimbal, gimbal controller, and gimbal
CN108521777B (zh) 云台的控制方法、云台以及无人飞行器
WO2018120012A1 (zh) 云台控制方法、装置及云台
CN110785601A (zh) 手持云台的控制方法和手持云台
CN108780324B (zh) 无人机、无人机控制方法和装置
WO2018032425A1 (zh) 无人机及控制无人机姿态的控制方法、控制装置
CN108513637A (zh) 云台及云台控制方法
WO2020215215A1 (zh) 一种云台控制方法、设备、云台、系统及存储介质
WO2019051640A1 (zh) 云台的控制方法、控制器和云台
JP6430661B2 (ja) 安定プラットホーム、並びにその追従制御システム及び方法
WO2020062298A1 (zh) 云台及其控制方法、可移动平台
CN109844394B (zh) 一种云台的控制方法以及云台
CN110431507A (zh) 一种云台控制方法及云台
WO2021217371A1 (zh) 可移动平台的控制方法和装置
CN111977006A (zh) 一种关节角的初始化方法、装置及飞行器
WO2021134644A1 (zh) 云台的控制方法和云台
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
WO2020062089A1 (zh) 磁传感器校准方法以及可移动平台
WO2021168821A1 (zh) 可移动平台的控制方法和设备
CN110832424A (zh) 竖向增稳机构及其控制方法以及可移动设备
WO2021016847A1 (zh) 负载増稳装置及其控制方法和计算机可读存储介质
WO2022000291A1 (zh) 云台控制方法、云台组件、装置、可移动平台和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18898283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18898283

Country of ref document: EP

Kind code of ref document: A1