WO2021016847A1 - 负载増稳装置及其控制方法和计算机可读存储介质 - Google Patents

负载増稳装置及其控制方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2021016847A1
WO2021016847A1 PCT/CN2019/098336 CN2019098336W WO2021016847A1 WO 2021016847 A1 WO2021016847 A1 WO 2021016847A1 CN 2019098336 W CN2019098336 W CN 2019098336W WO 2021016847 A1 WO2021016847 A1 WO 2021016847A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
motion sensor
base
ground
gravity
Prior art date
Application number
PCT/CN2019/098336
Other languages
English (en)
French (fr)
Inventor
陈子寒
许文
宾朋
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/098336 priority Critical patent/WO2021016847A1/zh
Priority to CN201980034338.XA priority patent/CN112236734B/zh
Publication of WO2021016847A1 publication Critical patent/WO2021016847A1/zh
Priority to US17/584,274 priority patent/US11889192B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/04Balancing means
    • F16M2200/044Balancing means for balancing rotational movement of the undercarriage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M2200/00Details of stands or supports
    • F16M2200/06Arms
    • F16M2200/063Parallelogram arms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation

Definitions

  • the embodiments of the present invention relate to the field of control, and in particular to a load stabilization device, a control method thereof, and a computer-readable storage medium.
  • pan-tilt devices which can realize the function of stabilizing the load in the direction of rotation.
  • a three-axis pan/tilt head can actively compensate for the jitter of the shooting load in the rotation direction of the pitch axis, yaw axis, and roll axis through a driving device (such as a stabilization motor) to stabilize the load.
  • a driving device such as a stabilization motor
  • the jitter of the load may come from the direction of gravity.
  • the stabilization device cannot realize the ideal stabilization function for the load.
  • the embodiment of the present invention provides a load stabilization device, a control method thereof, and a computer-readable storage medium to realize load stabilization in the direction of gravity.
  • the first aspect of the embodiments of the present invention is to provide a load stabilization device, which includes a base, a parallelogram mechanism, a motion sensor, a stabilization motor, and a processor, wherein:
  • the parallelogram mechanism includes a first end and a second end away from the first end, the parallelogram mechanism is rotatably connected to the base through the first end, and the second end is used to carry a load;
  • the processor is used for:
  • the stabilization motor is used to drive the parallelogram mechanism to rotate relative to the base according to the control command to stabilize the load carried on the second end.
  • the second aspect of the embodiments of the present invention is to provide a method for controlling a load stabilization device, wherein the load stabilization device includes a base and a parallelogram mechanism, and a first end of the parallelogram mechanism is connected to the base In a rotary connection, the second end of the parallelogram mechanism away from the first end is used to carry a load, and the method includes:
  • the stabilization motor is controlled according to the speed of the second end relative to the ground in the direction of gravity to drive the parallelogram mechanism to rotate relative to the base.
  • a third aspect of the embodiments of the present invention is to provide a computer-readable storage medium in which a computer program is stored, and when the computer program is executed by a processor, the load increase described in the second aspect is realized. Stabilizing device control method.
  • the load stabilization device and its control method and computer-readable storage medium provided in this embodiment constitute a closed-loop feedback control system through a motion sensor, a processor, a stabilization motor, and a parallelogram mechanism.
  • the parallelogram mechanism is used to carry the load.
  • the speed of the second end relative to the ground in the direction of gravity generates a control command for the stabilization motor, and the control stabilization motor drives the parallelogram mechanism to rotate relative to the base according to the control command to at least partially offset or compensate
  • the jitter of the load carried on the second end of the parallelogram mechanism in the direction of gravity realizes the stabilization of the load in the direction of gravity.
  • FIG. 1 is a schematic diagram of the mechanical structure of a load stabilization system provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the system structure of a load stabilization device provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of some parts of a load stabilization device provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another working state of the load stabilization system provided by an embodiment of the present invention.
  • Fig. 5 is a flowchart of a control method of a load stabilization device provided by an embodiment of the present invention.
  • 1201 the first crossbar part
  • 1202 the second crossbar part
  • 1203 the vertical rod part
  • 131 Inertial measurement unit; 132: Visual odometer + magnetic encoder;
  • 141 Digital controller
  • 142 Kalman filter
  • 151 First stabilization motor
  • a component when a component is said to be “fixed to” another component, it can be directly on the other component or a central component may also exist. When a component is considered to be “connected” to another component, it can be directly connected to the other component or a centered component may exist at the same time.
  • FIG. 1 is a schematic diagram of the mechanical structure of a load stabilization system provided by an embodiment of the present invention
  • FIG. 2 is a system structure diagram of a load stabilization device provided by an embodiment of the present invention.
  • the load stabilization system may include a load stabilization device 10 and a load 30.
  • the load 30 may include a photographing device, where the photographing device may be an optical camera, a thermal infrared camera, or other types of devices with photographing functions.
  • the load stabilization device 10 includes a base 11, a parallelogram mechanism 12, a motion sensor 13, a processor 14 and a stabilization motor 15.
  • the parallelogram mechanism 12 includes a first end and a second end away from the first end.
  • the parallelogram mechanism is rotatably connected with the base 11 through the first end, and the second end of the parallelogram mechanism 12 is used to carry a load.
  • the load 30 is detachably installed at the second end of the parallelogram mechanism 12.
  • the load 30 shown in FIG. 1 can be used to capture images/videos.
  • the motion sensor 13 is electrically connected to the processor 14, and the motion sensor 13 is used to output sensor data including the motion state information of the parallelogram mechanism 12 to the processor 14 for determining the speed of the second end.
  • the processor 14 is electrically connected to the stabilizing motor 15, and the processor 14 is used for: acquiring the sensing data output by the motion sensor 13, and determining the speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity according to the sensing data; A control command for the stabilization motor 15 is generated according to the speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity.
  • the processor may specifically be a microcontroller, and in addition, the number of the processors may be one or more.
  • the processor 14 generates a control command for the stabilization motor according to the speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity and the target speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity. , Wherein the target speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity is zero.
  • the stabilization motor 15 is used to drive the parallelogram mechanism 12 to rotate relative to the base 11 according to a control command to stabilize the load carried on the second end of the parallelogram mechanism 12, so that the second end is relative to the ground in the direction of gravity. The speed tends to zero.
  • the processor 14 may include a digital controller 141.
  • the processor 14 is used to calculate the speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity according to the sensing data obtained from the motion sensor 13, and calculate the relative speed of the second end of the parallelogram mechanism 12 in the direction of gravity
  • the error value between the ground speed and the desired speed is input to the digital controller 141, and the digital controller 141 generates a control command for the stabilization motor 15 according to the error value.
  • the motion sensor 13 may include multiple sensor combinations, and each sensor combination includes at least one motion sensor. Any combination of sensors can measure a set of sensor data.
  • the processor 14 calculates the speed of the second end of one parallelogram mechanism 12 relative to the ground in the direction of gravity according to each set of sensor data, so that at least two second ends of the parallelogram mechanism 12 are opposite in the direction of gravity. Speed above the ground.
  • the processor 14 further includes a Kalman filter 142.
  • the processor 14 uses the Kalman filter 142 to fuse the speeds of the second ends of the at least two parallelogram mechanisms 12 relative to the ground in the direction of gravity to obtain the fusion speed, that is, the fusion speed of the second end relative to the ground in the direction of gravity.
  • the speed based on the fusion speed, generates a control command for the stabilization motor 15.
  • the stabilization motor 15 includes a first stabilization motor 151 and a second stabilization motor 152.
  • the first stabilization motor 151 and the second stabilization motor 152 are used to jointly drive the parallelogram according to a control command.
  • the mechanism 12 rotates relative to the base 11.
  • the load stabilization device 10 includes a motor drive logic circuit, and the motor drive logic circuit is used to receive a control command from the processor to drive the stabilization motor to rotate. In this way, the stabilization motor drives the stabilization motor according to the control command.
  • the parallelogram mechanism rotates relative to the base to stabilize the load carried on the second end.
  • the load stabilization device further includes a first transmission component 153 and a second transmission component 154, wherein the first transmission component 153 is rotatably connected with the first stabilization motor 151 and the parallelogram mechanism 12 ,
  • the second transmission component 154 is rotatably connected with the second stabilization motor 152 and the parallelogram mechanism 12, the first stabilization motor 151 and the second stabilization motor 152 are jointly driven by the first transmission component 153 and the second transmission component 154
  • the parallelogram mechanism 12 rotates relative to the base 11.
  • first transmission component 153 and the second transmission component 154 are rotatably connected to the rotors of the first stabilization motor 151 and the second stabilization motor 152, and the other ends of the first transmission component 153 and the second transmission component 154 The rotation is connected to the parallelogram mechanism 12.
  • first stabilization motor 151 and the second stabilization motor 152 rotate, the first stabilization motor 151 and the second stabilization motor 152 drive the first transmission component 153 and the second transmission component 154 to move, and then the first transmission component 153 and the second transmission component 154 can drive the angle between the parallelogram mechanism 12 and the base 11 to change, thereby driving the parallelogram mechanism 12 to rotate relative to the base 11.
  • the parallelogram mechanism 12 may include a four-bar linkage mechanism 120 and a load connection part 121.
  • One end of the four-bar linkage 120 is connected to the load connecting portion 121, and the other end is rotatably connected to the base 11.
  • the load connection part 121 may be provided with a quick-release interface for carrying load equipment for mechanical coupling.
  • the quick-release interface is also used as an electrical interface, and the electrical interface is used to transmit power. Signal and/or data signal.
  • the four-bar linkage 120 can rotate around the support 111.
  • the load connecting portion 121 and the load carried by it can move in the direction of gravity.
  • the jitter of the load in the direction of gravity can be at least partially offset to stabilize the load.
  • the four-bar linkage mechanism 120 includes a first cross-bar portion 1201, a second cross-bar portion 1202 opposite to the first cross-bar portion 1201, and connected to the first cross-bar portion 1201 and a second cross-bar portion 1202
  • One end of the first cross bar 1201 and the second cross bar 1202 is connected to the vertical bar 1203, and the other end of the first cross bar 1201 and the second cross bar 1202 is connected to a certain portion 112 of the base 11.
  • the fixed portion 112 is a part of the base 11 and is fixedly connected to the support 111 of the base 11, wherein the support 111 can be used to install the first stabilization motor 151 and the second stabilization motor 152,
  • the portion 112 is opposite to the vertical rod portion 1203.
  • the first cross-bar portion 1201, the second cross-bar portion 1202, and the vertical rod portion 1203 move around the fixed portion 112.
  • the first cross bar portion 1201, the second cross bar portion 1202, and the vertical bar portion 1203 can be regarded as the bars of the four-bar linkage 120.
  • the two ends of the first horizontal rod portion 1201 are respectively hinged to the vertical rod portion 1203 and the fixed portion 112, and the hinge points are respectively S1 and S3.
  • Two ends of the second horizontal rod portion 1202 are hinged to the vertical rod portion 1203 and the fixed portion 112 respectively, and the hinge points are respectively S2 and S4.
  • the connection line between the hinge points S1 and S3 is S1S3, the connection point between the hinge points S2 and S4 is S2S4, and S1S3 and S2S4 are parallel and equal.
  • the stabilizing motor can drive the first cross-bar portion 1201 or the second cross-bar portion 1202 directly or through the transmission component, so that the first cross-bar portion 1201 and the second cross-bar portion 1202 rotate clockwise or counterclockwise relative to the fixed portion , Thereby driving the vertical rod portion 1203 to rise or lower.
  • the load connection portion 121 moves synchronously with the vertical rod portion 1203.
  • the first stabilization motor 151 and the second stabilization motor 152 are fixed on the base 11, and the first cross-bar 1201 is formed by the first transmission member 153 and the second transmission member 154 And the second crossbar 1202 provides rotational power.
  • the load stabilization device 10 may further include an elastic member 50, wherein the elastic member 50 may be installed in the receiving space formed by the parallelogram mechanism 12. Specifically, one acting end of the elastic member 50 may be installed on the fixed portion 112 and the other acting end on the vertical rod portion 1203.
  • the component of the elastic force (balance force) generated by the elastic member 50 in the direction of gravity can be used to balance the gravity of the load equipment and the weight of the load stabilization device 10.
  • the load stabilization device 10 can balance the load and/or the gravity of the parallelogram mechanism by the elastic force of the elastic member 50.
  • the base 11 may further include a support.
  • the support may be a handheld support device that can be held by the user.
  • the support may be a connection device for connecting the load stabilization device to a movable platform (aircraft, ground robot, etc.).
  • the load stabilization system or the load stabilization device has two working states, such as a forward state and an inverted state.
  • the load stabilization system shown in Fig. 1 is a load stabilization system in a forward state
  • the corresponding load stabilization device shown in Fig. 1 is a load stabilization device in a forward state.
  • the load stabilization system shown in Fig. 4 is a load stabilization system in the inverted state
  • the corresponding load stabilization device shown in Fig. 4 is a load stabilization device in the inverted state.
  • the load stabilization system shown in Fig. 1 can be used as the load stabilization system in the inverted state
  • the corresponding load stabilization device shown in Fig. 1 is the load stabilization device in the inverted state.
  • the load stabilization system shown in Fig. 4 is taken as the load stabilization system in the forward state
  • the corresponding load stabilization device shown in Fig. 4 is the load stabilization device in the forward state.
  • the load stabilization device 10 further includes a three-axis pan/tilt, wherein the second end of the parallelogram mechanism 12 carries the load through the three-axis pan/tilt, and the processor 14 is used to control the three-axis pan/tilt in the yaw direction, One or more of the roll direction and the pitch direction stabilize the load.
  • the motion sensor 13, the processor 14, the stabilization motor 15, and the parallelogram mechanism 12 constitute a closed-loop feedback control system, which is based on the ground velocity of the second end of the parallelogram mechanism 12 in the direction of gravity. , Controlling the stabilizing motor 15 to drive the parallelogram mechanism 12 to move relative to the base 11 to at least partially offset or compensate the vertical vibration of the load 30 mounted on the second end of the parallelogram mechanism 12.
  • the motion sensor 13 may include a first motion sensor provided at the second end of the parallelogram mechanism 12.
  • the processor 14 may obtain the first sensing data output by the first motion sensor, and determine the speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity according to the first sensing data.
  • the first motion sensor may include one or more of an inertial measurement unit, a vision sensor, an ultrasonic sensor, and a barometer.
  • the first motion sensor may include an inertial measurement unit
  • the processor 14 may obtain the first sensor data output by the inertial measurement unit, and determine the parallelogram mechanism 12 according to the first sensor data output by the inertial measurement unit. The speed of the second end relative to the ground in the direction of gravity.
  • the motion sensor 13 includes an inertial measurement unit 131.
  • the inertial measurement unit 131 may be arranged at the second end of the parallelogram mechanism 12, for example, it may be arranged on the load connection part 121, or the inertial measurement unit may be directly arranged on the load. On the device.
  • the inertial measurement unit is used to measure the movement state of the second end of the parallelogram mechanism 12 to output sensor data and send the sensor data to the processor 14.
  • the inertial measurement unit can sense the linear acceleration of the second end of the parallelogram mechanism 12 relative to the inertial space, and the second end of the parallelogram mechanism 12 relative to the inertial space The angular velocity.
  • the linear acceleration of the second end of the parallelogram mechanism 12 with respect to the inertial space can be expressed as Among them, a bx is the X axis component of the linear acceleration of the second end of the parallelogram mechanism 12 in the body coordinate system; a by is the linear acceleration of the second end of the parallelogram mechanism 12 in the Y axis in the body coordinate system Component; a bz is the Z-axis component of the linear acceleration of the second end of the parallelogram mechanism 12 in the body coordinate system.
  • the angular velocity of the second end of the parallelogram mechanism 12 relative to the inertial space can be expressed in the body coordinate system as Among them, ⁇ bx is the X-axis component of the angular velocity of the second end of the parallelogram mechanism 12 in the body coordinate system; ⁇ by is the Y-axis component of the angular velocity of the second end of the parallelogram mechanism 12 in the body coordinate system; ⁇ bz is the Z-axis component of the angular velocity of the second end of the parallelogram mechanism 12 in the body coordinate system.
  • the processor 14 further includes a Kalman filter 142.
  • the processor 14 is used to calculate the speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity according to the linear acceleration and angular velocity of the second end of the parallelogram mechanism 12. It can be implemented in the following ways:
  • the processor 14 uses the Kalman filter 142 to fuse the linear acceleration a b and the angular velocity ⁇ b to obtain the rotation matrix of the body coordinate system relative to the earth coordinate system.
  • the rotation matrix is denoted as
  • the processor 14 can obtain the linear acceleration of the second end of the parallelogram mechanism 12 relative to the inertial space based on the inertial coordinate system:
  • a gz is the acceleration of the second end of the parallelogram mechanism 12 in the direction of gravity relative to the inertial coordinate system.
  • the first motion sensor may include a vision sensor or an ultrasonic sensor, and the vision sensor or ultrasonic sensor is used to measure the height of the second end of the parallelogram mechanism 12 relative to the ground.
  • the first motion sensor sends the generated first motion motion sensor to the processor 14.
  • the processor 14 determines the height of the second end of the parallelogram mechanism 12 relative to the ground according to the first sensing data, and according to the relative The height of the ground calculates the speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity.
  • the motion sensor 13 may include a second motion sensor and a third motion sensor arranged on the base.
  • the second motion sensor is used to measure the rotation angle of the parallelogram mechanism 12 relative to the base 11.
  • the second motion sensor may be provided at the first end of the parallelogram mechanism 12 to facilitate measuring the rotation angle of the parallelogram mechanism 12 relative to the base 11.
  • the processor 14 can obtain the second sensor data output by the second motion sensor and the third sensor data output by the third motion sensor; determine the rotation angle of the parallelogram mechanism 12 relative to the base 11 according to the second sensor data;
  • the third sensor data determines the speed of the base 11; the speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity is determined according to the rotation angle and the speed of the base 11.
  • the processor 14 determines the speed of the second end of the parallelogram mechanism 12 relative to the base according to the rotation angle; determines the speed of the parallelogram mechanism 12 according to the speed of the second end of the parallelogram mechanism 12 relative to the base and the speed of the base. The speed of the second end relative to the ground in the direction of gravity.
  • the second motion sensor may be any sensor that measures angle, such as a magnetic encoder, a potentiometer, or a Hall sensor.
  • the second motion sensor can be arranged at the hinge point S3 where the first crossbar portion 1201 and the fixed portion 112 are hinged in the four-bar linkage 120 of the parallelogram mechanism 12 shown in FIG. 3, or the second crossbar At the hinge point S4 where the part 1202 and the fixed part 112 are hinged, it is convenient to measure the angle between the parallelogram mechanism 12 and the fixed part 112 of the base.
  • the processor 14 may be arranged at the second end of the parallelogram mechanism 12 to facilitate electrical connection between the processor 14 and the motion sensor 13 also arranged at the second end of the parallelogram mechanism 12.
  • the processor 14 may also be arranged on the base 11, or may be arranged at other parts of the load stabilization device 10 or the load stabilization system, which is not specifically limited in this embodiment.
  • the third motion sensor may be any speed sensor capable of realizing speed measurement, for measuring the speed of the base, specifically, for measuring the speed of the base relative to the ground.
  • the third motion sensor includes a visual sensor, such as a visual odometer.
  • the sensing direction of the vision sensor can face the ground.
  • the vision sensor can be arranged at any position on the base that is not blocked by other components. This embodiment does not specifically limit the position of the visual odometer here.
  • the processor determines the position of the parallelogram mechanism 12 relative to the base 11 according to the second sensing data output by the second motion sensor.
  • the angle of rotation; the speed of the base 11 is determined according to the third sensor data output by the third motion sensor; the speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity is determined according to the angle of rotation and the speed of the base 11
  • the process is illustrated exemplarily.
  • the X-axis direction, the Y-axis direction and the Z-axis direction represent three two-by-two orthogonal directions, and the Z-axis direction is the direction of gravity.
  • the visual odometer can measure the speed (denoted as v p ) of the base 11 of the load stabilization device 10 relative to the inertial space, which can be expressed as: Where v px is the X-axis component of the speed of the base 11 relative to the inertial space; v py is the Y-axis component of the speed of the base 11 relative to the inertial space; v pz is the speed of the base 11 relative to the inertial space The component on the Z axis.
  • the magnetic encoder can measure the angle between the parallelogram mechanism 12 and the base 11, denoted as ⁇ .
  • the processor 14 can receive the speed v p of the base 11 relative to the inertial space measured and sent by the visual odometer, and the rotation angle ⁇ of the parallelogram mechanism 12 relative to the base 11 measured and sent by the angle sensor.
  • the processor 14 can calculate the speed of the second end of the parallelogram mechanism 12 relative to the ground based on the speed v p of the base 11 relative to the inertial space and the rotation angle ⁇ of the parallelogram mechanism 12 relative to the base 11 (denoted as v g2 ):
  • the speed of the second end of the parallelogram mechanism 12 relative to the ground is relative to the speed of the inertial coordinate system
  • l represents the length of the parallelogram mechanism 12
  • v g2x represents the X-axis component of the speed of the second end of the parallelogram mechanism 12 relative to the ground
  • v g2y represents the Y-axis component of the speed of the second end of the parallelogram mechanism 12 relative to the ground
  • V g2z represents the Z-axis component of the speed of the second end of the parallelogram mechanism 12 relative to the ground, That is, the speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity can be obtained as
  • the motion sensor 13 may include a first motion sensor arranged at the second end of the parallelogram mechanism 12, a second motion sensor for measuring the rotation angle of the parallelogram mechanism 12 relative to the base 11, and a second motion sensor arranged at The third motion sensor on the base 11.
  • the processor 14 separately calculates the first speed and the second speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity through a combination of two different motion sensors, and combines the first speed and The second speed determines the speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity.
  • the first combination of motion sensors is: the first motion sensor arranged at the second end of the parallelogram mechanism 12.
  • the processor 14 can obtain the first sensor data output by the first motion sensor, and determine the first speed of the second end relative to the ground in the direction of gravity according to the first sensor data.
  • the first motion sensor may be an inertial measurement unit for measuring the linear acceleration and angular velocity at the second end of the parallelogram mechanism 12.
  • the processor 14 calculates the second end of the parallelogram mechanism 12 based on the linear acceleration and angular velocity at the second end. The first speed of the end relative to the ground in the direction of gravity. This process has been described in detail in the foregoing embodiment, and will not be repeated here in this embodiment.
  • the second combination of motion sensors is: a second motion sensor for measuring the rotation angle of the parallelogram mechanism 12 relative to the base 11 and a third motion sensor arranged on the base 11.
  • the processor 14 can obtain the second sensor data output by the second motion sensor and the third sensor data output by the third motion sensor; according to the second sensor data, it is determined that the parallelogram mechanism 12 is relative to the base.
  • the rotation angle of 11; the speed of the base is determined according to the third sensor data; the second speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity is determined according to the rotation angle and the speed of the base.
  • the second motion sensor may be an encoder, such as a magnetic encoder.
  • the third motion sensor may be a speed sensor for measuring the speed of the base.
  • the third motion sensor includes a visual sensor, such as a visual odometer.
  • the second motion sensor is a magnetic encoder and the third motion sensor is a visual odometer as an example.
  • the processor determines that the parallelogram mechanism 12 is relative to the base 11 according to the second sensing data output by the second motion sensor. Determine the speed of the base 11 according to the third sensor data output by the third motion sensor; determine the speed of the second end of the parallelogram mechanism 12 relative to the ground in the direction of gravity according to the rotation angle and the speed of the base 11 The process is described in detail, and will not be repeated here in this embodiment.
  • the embodiment of the present invention provides a control method of a load stabilization device.
  • Fig. 5 is a flowchart of a control method of a load stabilization device provided by an embodiment of the present invention.
  • the load stabilization device includes a base and a parallelogram mechanism. The first end of the parallelogram mechanism is rotatably connected with the base, and the second end of the parallelogram mechanism away from the first end is used to carry the load.
  • the specific structure of the load stabilization device is shown in Figure 1, Figure 2, Figure 3, Figure 4, and will not be repeated here.
  • the method for controlling the vertical stabilization device of this embodiment may be specifically executed by the load stabilization device, specifically executed by the processor of the load stabilization device. As shown in Figure 5, the method in this embodiment may include the following steps:
  • Step S501 Obtain sensing data output by the motion sensor, and determine the speed of the second end relative to the ground in the direction of gravity according to the sensing data.
  • the motion sensor includes a first motion sensor arranged at the second end, and the processor obtains the first sensing data output by the first motion sensor, and determines the position of the second end relative to the ground according to the first sensing data. speed.
  • the first motion sensor includes one or more of an inertial measurement unit, a vision sensor, an ultrasonic sensor, and a barometer.
  • the first motion sensor includes an inertial measurement unit
  • the processor determines the speed of the second end relative to the ground in the direction of gravity according to the first sensing data output by the inertial measurement unit.
  • the motion sensor includes a second motion sensor and a third motion sensor arranged on the base, and the second motion sensor is used to measure the rotation angle of the parallelogram mechanism relative to the base.
  • the processor acquires the second sensor data output by the second motion sensor and the third sensor data output by the third motion sensor; determines the rotation angle of the parallelogram mechanism relative to the base according to the second sensor data; according to the third sensor The data determines the speed of the base; the speed of the second end relative to the ground in the direction of gravity is determined according to the rotation angle and the speed of the base.
  • the processor determines the speed of the second end relative to the base according to the rotation angle; and determines the speed of the second end relative to the ground in the direction of gravity according to the speed of the second end relative to the base and the speed of the base.
  • the third motion sensor includes a visual sensor, such as a visual odometer.
  • the second motion sensor includes an encoder, such as a magnetic encoder.
  • the motion sensor includes a first motion sensor provided at the second end, a second motion sensor used to measure the rotation angle of the parallelogram mechanism relative to the base, and a third motion sensor provided on the base sensor.
  • the processor acquires the first sensor data, the second sensor data, and the third sensor data output by the first motion sensor, the second motion sensor, and the third motion sensor; according to the first sensor data, it is determined that the second end is in the direction of gravity
  • the first speed of the upper relative to the ground; the rotation angle of the parallelogram mechanism relative to the base is determined according to the second sensor data; the speed of the base is determined according to the third sensor data; the second is determined according to the rotation angle and the speed of the base
  • the second speed of the end relative to the ground in the direction of gravity; the first speed and the second speed are merged to determine the speed of the second end relative to the ground in the direction of gravity.
  • the processor acquires the sensor data output by the motion sensor and determines the speed of the second end relative to the ground in the direction of gravity according to the sensor data.
  • Step S502 Control the stabilization motor according to the speed of the second end relative to the ground in the direction of gravity to drive the parallelogram mechanism to rotate relative to the base.
  • the processor calculates the speed of the second end of the parallelogram mechanism relative to the ground in the direction of gravity, according to the speed of the second end of the parallelogram mechanism relative to the ground in the direction of gravity and the second end of the parallelogram mechanism is opposite in the direction of gravity
  • the target speed on the ground generates a control command for the stabilization motor to control the stabilization motor to drive the parallelogram mechanism to rotate relative to the base according to the control command, so as to stabilize the load carried on the second end.
  • the target velocity of the second end relative to the ground in the direction of gravity is zero.
  • the processor controls the stabilization motor to drive the parallelogram mechanism to rotate relative to the base according to the speed of the second end relative to the ground in the direction of gravity.
  • the stabilization motor includes a first stabilization motor and a second stabilization motor.
  • the first stabilization motor and the second stabilization motor are used to jointly drive the parallelogram mechanism to rotate relative to the base according to a control command.
  • the first stabilization motor includes a motor drive logic circuit, the first stabilization motor is electrically connected to the processor, and is used to receive a control instruction from the processor, and control the magnitude of the input current of the second stabilization motor according to the control instruction to The second stabilization motor is driven to generate torque.
  • the load stabilization device may further include a first transmission component and a second transmission component, wherein the first transmission component is rotatably connected with the second stabilization motor and the parallelogram mechanism, and the second transmission component is rotatably connected with the second stabilization
  • the motor and the parallelogram mechanism are rotatably connected.
  • the first stabilization motor and the second stabilization motor jointly drive the parallelogram mechanism to rotate relative to the base through the first transmission component and the second transmission component.
  • the load carried on the second end of the parallelogram mechanism in the load stabilization device may be a photographing device.
  • the photographing device can be used to capture images/videos. It can be a camera, a video camera, or a mobile phone or tablet with a camera function. Wait.
  • the load may also be other load equipment other than the camera, which is not specifically limited in this embodiment.
  • the load stabilization device further includes a three-axis gimbal, wherein the second end of the parallelogram mechanism carries the load through the tri-axis gimbal, and the processor is used to control the three-axis gimbal to roll in the yaw direction and roll One or more of the direction and the pitch direction stabilize the load.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated unit implemented in the form of a software functional unit may be stored in a computer readable storage medium.
  • the above-mentioned software functional unit is stored in a storage medium and includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor execute the method described in the various embodiments of the present invention. Part of the steps.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gyroscopes (AREA)
  • Accessories Of Cameras (AREA)
  • Studio Devices (AREA)

Abstract

一种负载増稳装置及其控制方法和计算机可读存储介质,负载増稳装置(10),通过运动传感器(13),处理器(14),増稳电机(15)和平行四边形机构(12)构成闭环的反馈控制系统,根据平行四边形机构(12)用于承载负载的第二端在重力方向上相对于地面的速度,生成增稳电机(15)的控制指令,控制増稳电机(15)根据控制指令驱动平行四边形机构(12)相对于基座(11)转动,以至少部分抵消或补偿承载在平行四边形机构(12)的第二端的负载在重力方向上的抖动,主动抑制平行四边形机构(12)的第一端产生的扰动,从而实现对承载在所述第二端的负载进行增稳,可改善拍摄时因拍摄装置抖动而引起的画面抖动现象。

Description

负载増稳装置及其控制方法和计算机可读存储介质 技术领域
本发明实施例涉及控制领域,尤其涉及一种负载増稳装置及其控制方法和计算机可读存储介质。
背景技术
为实现对负载(例如拍摄装置)进行增稳的目的,很多负载都搭配云台装置使用,云台装置能够实现对负载旋转方向上的增稳功能。例如,三轴云台可以可以通过驱动装置(例如增稳电机)在俯仰(pitch)轴、航向(yaw)轴和横滚(roll)轴旋转方向主动地补偿拍负载的抖动以对负载增稳。
然而,负载的抖动可能来自于重力方向,目前,增稳装置不能实现对负载理想的增稳功能。
发明内容
本发明实施例提供一种负载増稳装置及其控制方法和计算机可读存储介质,以实现在重力方向对负载的增稳。
本发明实施例的第一方面是提供一种负载增稳装置,包括:基座、平行四边形机构、运动传感器、增稳电机和处理器,其中,
所述平行四边形机构包括第一端和远离所述第一端的第二端,所述平行四边形机构通过所述第一端与所述基座转动连接,所述第二端用于承载负载;
所述处理器,用于:
获取运动传感器输出的传感数据,根据所述传感数据确定所述第二端在重力方向上相对于地面的速度;
根据所述第二端在重力方向上相对于地面的速度生成增稳电机的控制指令;
所述增稳电机,用于根据所述控制指令驱动所述平行四边形机构相对于所述基座转动以对承载在所述第二端的负载进行增稳。
本发明实施例的第二方面是提供一种负载增稳装置的控制方法,其中,所述负载增稳装置包括基座和平行四边形机构,所述平行四边形机构的第一端与所述基座转动连接,所述平行四边形机构的远离第一端的第二端用于承载负载,所述方法包括:
获取运动传感器输出的传感数据,根据所述传感数据确定所述第二端在重力方向上相对于地面的速度;
根据所述第二端在重力方向上相对于地面的速度控制增稳电机以驱动所述平行四边形机构相对于所述基座转动。
本发明实施例的第三方面是提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现上述第二方面所述的负载增稳装置的控制方法。
本实施例提供的负载増稳装置及其控制方法和计算机可读存储介质,通过运动传感器,处理器,増稳电机和平行四边形机构构成闭环的反馈控制系统,根据平行四边形机构用于承载负载的第二端在重力方向上相对于地面的速度,生成增稳电机的控制指令,控制増稳电机根据所述控制指令驱动所述平行四边形机构相对于所述基座转动,以至少部分抵消或补偿承载在平行四边形机构的第二端的负载在重力方向上的抖动,实现在重力方向对负载的增稳。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附 图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种负载增稳系统的机械结构示意图;
图2为本发明实施例提供的一种负载増稳装置的系统结构示意图;
图3为本发明实施例提供的一种负载增稳装置的部分部件的结构示意图;
图4为本发明实施例提供的负载增稳系统另一种工作状态的示意图;
图5为本发明实施例提供的负载増稳装置的控制方法的流程图。
附图标记:
10:负载増稳装置;     30:拍摄装置;
11:基座;         12:平行四边形机构;   13:运动传感器;
14:处理器;       15:増稳电机;         111:支撑件;
112:定部;        121:负载连接部;      120:四连杆机构;
1201:第一横杆部; 1202:第二横杆部;    1203:竖杆部;
131:惯性测量单元; 132:视觉里程计+磁编码器;
141:数字控制器; 142:卡尔曼滤波器;    151:第一増稳电机;
152:第二増稳电机; 153:第一传动部件; 154:第二传动部件;
50:弹性件。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组 件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本发明实施例提供一种负载増稳装置。图1为本发明实施例提供的一种负载增稳系统的机械结构示意图,图2为本发明实施例提供的负载增稳装置的系统结构图。其中,所述负载增稳系统可以包括负载增稳装置10和负载30。其中,负载30可以包括拍摄装置,其中,所述拍摄装置可以为光学相机、热红外相机或者其他类型的带有拍摄功能的装置等等。
负载増稳装置10包括:基座11、平行四边形机构12、运动传感器13、处理器14和增稳电机15。其中,平行四边形机构12包括第一端和远离第一端的第二端,平行四边形机构通过第一端与基座11转动连接,平行四边形机构12的第二端用于承载负载。
该负载增稳系统中,负载30可拆卸地安装于平行四边形机构12的第二端。为了进行示意性说明,图1中示出的负载30可用于拍摄图像/视频。
运动传感器13与处理器14电连接,运动传感器13用于向处理器14输出包括平行四边形机构12的运动状态信息的传感数据以用于确定第二端的速度。
处理器14与増稳电机15电连接,处理器14用于:获取运动传感器13输出的传感数据,根据传感数据确定平行四边形机构12的第二端在重力方向上相对于地面的速度;根据平行四边形机构12的第二端在重力方向上相对于地面的速度生成增稳电机15的控制指令。可选的,该处理器 具体可以是微控制器,另外,所述处理器的数量可以是一个或多个。
进一步的,处理器14根据平行四边形机构12的第二端在重力方向上相对于地面的速度和平行四边形机构12的第二端在重力方向上相对于地面的目标速度生成增稳电机的控制指令,其中,平行四边形机构12的第二端在重力方向上相对于地面的目标速度为0。增稳电机15用于根据控制指令驱动平行四边形机构12相对于基座11转动,以对承载在平行四边形机构12的第二端的负载进行增稳,使得第二端在重力方向上相对于地面的速度趋于0。
如图2所示,处理器14可以包括数字控制器141。处理器14用于根据从运动传感器13获取的传感数据,计算平行四边形机构12的第二端在重力方向上相对于地面的速度,并计算平行四边形机构12的第二端在重力方向上相对于地面的速度与期望速度之间的误差值,将该误差值输入数字控制器141,数字控制器141根据该误差值生成增稳电机15的控制指令。
作为一种可能的实现方式,运动传感器13可以包括多种传感器组合,每种传感器组合包括至少一种运动传感器。其中的任意一种传感器组合可以测得一组传感数据。处理器14根据每一组传感数据计算得到一个平行四边形机构12的第二端在重力方向上相对于地面的速度,从而可以得到至少两个平行四边形机构12的第二端在重力方向上相对于地面的速度。如图2所示,处理器14还包括卡尔曼滤波器142。处理器14对至少两个平行四边形机构12的第二端在重力方向相对于地面的速度使用卡尔曼滤波器142进行融合得到融合速度,即融合之后的第二端在重力方向上相对于地面的速度,根据融合速度生成增稳电机15的控制指令。
示例性地,参见图3,増稳电机15包括第一增稳电机151和第二增稳电机152,第一增稳电机151以及第二增稳电机152,用于根据控制指令共同驱动平行四边形机构12相对于基座11转动。可选的,负载增稳装置10包括电机驱动逻辑电路,电机驱动逻辑电路用于接收处理器的控制指令 以驱动增稳电机转动,通过这种方式,增稳电机根据所述控制指令驱动所述平行四边形机构相对于所述基座转动以对承载在所述第二端的负载进行增稳。
可选的,如图3所示,负载増稳装置还包括第一传动部件153和第二传动部件154,其中,第一传动部件153与第一增稳电机151和平行四边形机构12可转动连接,第二传动部件154与第二增稳电机152和平行四边形机构12可转动连接,第一增稳电机151以及第二增稳电机152,通过第一传动部件153和第二传动部件154共同驱动平行四边形机12构相对于基座11转动。
具体的,第一传动部件153和第二传动部件154的一端分别转动连接于第一增稳电机151和第二增稳电机152的转子,第一传动部件153和第二传动部件154的另一端转动连接于平行四边形机构12。当第一增稳电机151和第二增稳电机152转动时,第一增稳电机151和第二增稳电机152分别驱动第一传动部件153和第二传动部件154运动,进而第一传动部件153和第二传动部件154能够带动平行四边形机构12与基座11的夹角发送变化,从而带动平行四边形机构12相对基座11转动。
在一个实施例中,如图3所示,平行四边形机构12可包括四连杆机构120和负载连接部121。四连杆机构120的一端与负载连接部121相连,另一端可转动地连接基座11上。负载连接部121可以设置用于搭载负载设备的快拆接口,用于实现机械耦合,在某些实施例中,所述快拆接口还用于电性接口,所述电性接口用于传输电源信号和/或数据信号。在第二増稳电机152的驱动下,四连杆机构120可绕支撑件111转动。在转动的四连杆机构120的带动下,负载连接部121及其承载的负载可在重力方向上运动。通过控制第一增稳电机152和第二増稳电机152的转动方向和转动角度等,即可至少部分抵消负载在重力方向上的抖动量以对负载进行增稳。
继续参见图3,该四连杆机构120包括第一横杆部1201、与第一横杆 部1201相对的第二横杆部1202以及连接在第一横杆部1201、第二横杆部1202之间的竖杆部1203,其中,所述竖杆部1203与负载连接部121相连,所述平行四边形机构12的第二端至少包括负载连接部121,所述第二端还可以包括竖杆部1203。第一横杆部1201和第二横杆部1202的一端连接在竖杆部1203上,第一横杆部1201和第二横杆部1202的另一端连接在基座11的一定部112上。定部112为基座11的一部分,并与基座11的支撑件111固定连接,其中,所述支撑件111可以用于安装所述第一增稳电机151和第二增稳电机152,定部112与竖杆部1203相对设置。在四连杆机构120的运动中,第一横杆部1201、第二横杆部1202和竖杆部1203围绕该定部112运动。第一横杆部1201、第二横杆部1202和竖杆部1203可看作是四连杆机构120的各杆。
第一横杆部1201的两端分别与竖杆部1203、定部112铰接,铰接点分别为S1、S3。第二横杆部1202的两端分别与竖杆部1203、定部112铰接,铰接点分别为S2、S4。铰接点S1与S3的连线为S1S3,铰接点S2与S4的连线为S2S4,S1S3与S2S4平行且相等。上述设置使得邻杆的夹角(比如,第一横杆部1201与竖杆部1203之间的夹角、或者第二横杆部1202与竖杆部1203之间的夹角)能够变化。不论夹角如何变化,对边总是保持平行。这样,在定部112的姿态不变时,竖杆部1203的姿态可以不变,这样,平行四边形机构的第二端可以带动负载平移运动。更准确地讲,将相邻铰接点的连线S1S3、S2S4、S1S2和S3S4看作是四连杆机构的四边。
増稳电机可直接地或者通过所述传动部件驱动第一横杆部1201或第二横杆部1202,使第一横杆部1201、第二横杆部1202相对定部顺时针或逆时针转动,进而带动竖杆部1203上升或降低,竖杆部1203运动时,负载连接部121随着竖杆部1203同步运动。在图3中所示实施例中,第一増稳电机151和第二增稳电机152固定在基座11上,并通过第一传动部 件153和第二传动部件154为第一横杆部1201和第二横杆部1202提供转动的动力。
可选的,所述负载增稳装置10还可以包括弹性件50,其中,所述弹性件50可以安装在平行四边形机构12形成的收容空间内。具体地,弹性件50的一个作用端可以安装在定部112上,另一作用端安装在竖杆部1203上。弹性件50所产生的弹力(平衡力)在重力方向上的分量可用于平衡负载设备的重力以及负载増稳装置10的自重。换言之,负载増稳装置10依靠弹性件50的弹力能够平衡负载和/或平行四边形机构的重力。
可选的,基座11还可包括支撑件。支撑件可以是可供用户手持的手持式支撑装置,在某些实施例中,所述支撑件可以是用于将负载增稳装置连接到可移动平台(飞行器、地面机器人等)的连接装置。
可以理解,负载增稳系统或负载増稳装置有两种工作状态,例如正向状态和倒置状态。假设如图1所示的负载增稳系统是正向状态下的负载增稳系统,相应的如图1中所示负载増稳装置是正向状态下的负载増稳装置。如图4所示的负载增稳系统是倒置状态下的负载增稳系统,相应的如图4中所示负载増稳装置是倒置状态下的负载増稳装置。在其他实施例中,可以将如图1所示的负载增稳系统作为倒置状态下的负载增稳系统,相应的如图1中所示负载増稳装置是倒置状态下的负载増稳装置。将如图4所示的负载增稳系统作为正向状态下的负载增稳系统,相应的如图4中所示负载増稳装置是正向状态下的负载増稳装置。
可选的,负载增稳装置10还包括三轴云台,其中,平行四边形机构12的第二端通过三轴云台承载负载,处理器14用于控制三轴云台以在偏航方向、横滚方向和俯仰方向中的一个或多个方向对负载进行增稳。
本实施例提供的负载増稳装置中,运动传感器13,处理器14,増稳电机15和平行四边形机构12构成闭环的反馈控制系统,根据平行四边形机构12第二端在重力方向的对地速度,控制増稳电机15驱动平行四边形 机构12相对于基座11运动,以至少部分抵消或补偿搭载在平行四边形机构12第二端的负载30在竖向上的抖动。
本发明另一实施例提供一种负载増稳装置。在上述实施例的基础上,运动传感器13可以包括设置在平行四边形机构12第二端的第一运动传感器。处理器14可以获取第一运动传感器输出的第一传感数据,根据第一传感数据确定平行四边形机构12第二端在重力方向上相对于地面的速度。
可选的,第一运动传感器可以包括惯性测量单元、视觉传感器、超声波传感器、气压计中的一种或多种。
作为一种可能的实现方式,第一运动传感器可以包括惯性测量单元,处理器14可以获取惯性测量单元输出的第一传感数据,根据惯性测量单元输出的第一传感数据确定平行四边形机构12第二端在重力方向上相对于地面的速度。
具体的,运动传感器13包括惯性测量单元131,惯性测量单元131可以设置在平行四边形机构12的第二端,例如,可以设置在负载连接部121上,或者还可以将惯性测量单元直接设置于负载设备上。惯性测量单元用于测量平行四边形机构12的第二端的运动状态以输出传感数据,并将传感数据发送给处理器14。
由于惯性测量单元设置在平行四边形机构12的第二端,惯性测量单元可以感测平行四边形机构12的第二端相对于惯性空间的线加速度,以及平行四边形机构12的第二端相对于惯性空间的角速度。
平行四边形机构12的第二端相对于惯性空间的线加速度基于体坐标系可以表示为
Figure PCTCN2019098336-appb-000001
其中,a bx为平行四边形机构12的第二端在体坐标系下的线加速度在X轴的分量;a by为平行四边形机构12的第二端在体坐标系下的线加速度在Y轴的分量;a bz为平行四边形机构12的第二端 在体坐标系下的线加速度在Z轴的分量。
平行四边形机构12的第二端相对于惯性空间的角速度于体坐标系可以表示为
Figure PCTCN2019098336-appb-000002
其中,ω bx为平行四边形机构12的第二端在体坐标系下的角速度在X轴的分量;ω by为平行四边形机构12的第二端在体坐标系下的角速度在Y轴的分量;ω bz为平行四边形机构12的第二端在体坐标系下的角速度在Z轴的分量。
进一步的,如图2所示,处理器14还包括卡尔曼滤波器142。处理器14用于根据平行四边形机构12的第二端的线加速度和角速度计算平行四边形机构12的第二端在重力方向上相对于地面的速度。具体可以采用如下方式实现:
处理器14将线加速度a b和角速度ω b使用卡尔曼滤波器142进行数据融合可以得出体坐标系相对于大地坐标系的旋转矩阵,本实施例中将该旋转矩阵记为
Figure PCTCN2019098336-appb-000003
根据该旋转矩阵,处理器14可以得到平行四边形机构12的第二端相对于惯性空间的线加速度基于惯性坐标系的表示:
Figure PCTCN2019098336-appb-000004
其中,a gz即是平行四边形机构12的第二端相对于惯性坐标系在重力方向的加速度。
将a gz与重力加速度分量g之差进行积分即可得到平行四边形机构12的第二端相对于惯性坐标系在重力方向上相对于地面的速度(记为v gz1):v gz1=∫(a gz-g)。
作为一种可能的实现方式:第一运动传感器可以包括视觉传感器或超声波传感器,视觉传感器或超声波传感器用于测量平行四边形机构12第二端相对于地面的高度。第一运动传感器将生成的第一运动运动传感器发送给处理器14,处理器14根据所述第一传感数据确定平行四边形机构12 的第二端相对于地面的高度,并根据所述相对于地面的高度计算平行四边形机构12第二端在重力方向上相对于地面的速度。
本发明另一实施例提供一种负载増稳装置。在上述实施例的基础上,运动传感器13可以包括第二运动传感器和设置在基座上的第三运动传感器,第二运动传感器用于测量平行四边形机构12相对于基座11的转动角度。可选的,第二运动传感器可以设置于平行四边形机构12的第一端,以便于测量平行四边形机构12相对于基座11的转动角度。
处理器14可以获取第二运动传感器输出的第二传感数据和第三运动传感器输出的第三传感数据;根据第二传感数据确定平行四边形机构12相对于基座11的转动角度;根据第三传感数据确定基座11的速度;根据转动角度和基座11的速度确定平行四边形机构12的第二端在重力方向上相对于地面的速度。
具体的,处理器14根据转动角度确定平行四边形机构12的第二端相对于基座的速度;根据平行四边形机构12的第二端相对于基座的速度和基座的速度确定平行四边形机构12的第二端在重力方向上相对于地面的速度。
可选的,第二运动传感器可以是可以是任何测量角度的传感器,例如磁编码器、电位计或者霍尔传感器等。可选的,可以将第二运动传感器设置于图3中所示平行四边形机构12的四连杆机构120中第一横杆部1201与定部112铰接的铰接点S3处,或者第二横杆部1202与定部112铰接的铰接点S4处,以便于测量平行四边形机构12与基座定部112的夹角。
可选的,处理器14可以设置于平行四边形机构12的第二端,以便于实现处理器14与同样设置于平行四边形机构12的第二端的运动传感器13的电连接。另外,处理器14还可设置在基座11上,也可以设置在负载増稳装置10、或者负载增稳系统的其它部位处,本实施例此处不做具体限定。
可选的,该第三运动传感器可以是任何用于能够实现速度测量的速度传感器,用于测量基座的速度,具体地,用于测量基座相对于地面的速度。
可选的,第三运动传感器包括视觉传感器,例如视觉里程计等。视觉传感器的感测方向可以朝向地面,另外视觉传感器可以设置于基座上任何不被其他部件遮挡的位置上,本实施例此处对于视觉里程计的位置不做具体限定。
下面以第二运动传感器为编码器和第三运动传感器为视觉里程计的组合132为例,对处理器根据第二运动传感器输出的第二传感数据确定平行四边形机构12相对于基座11的转动角度;根据第三运动传感器输出的第三传感数据确定基座11的速度;根据转动角度和基座11的速度确定平行四边形机构12的第二端在重力方向上相对于地面的速度的过程进行示例性地说明。
本实施方式中用X轴方向,Y轴方向和Z轴方向表示三个两两正交方向,并且,Z轴方向为重力方向。
视觉里程计可以测量出负载増稳装置10的基座11相对于惯性空间的速度(记为v p),可以表示为:
Figure PCTCN2019098336-appb-000005
其中,v px为基座11相对于惯性空间的速度在X轴的分量;v py为基座11相对于惯性空间的速度在Y轴的分量;v pz为基座11相对于惯性空间的速度在Z轴的分量。
磁编码器可以测量得到平行四边形机构12与基座11的夹角,记为θ。
处理器14可以接收视觉里程计测量并发送的基座11相对于惯性空间的速度v p,以及角度传感器测量并发送的平行四边形机构12相对于基座11的旋转角度θ。
处理器14根据基座11相对于惯性空间的速度v p,以及平行四边形机构12相对于基座11的旋转角度θ,可以计算出平行四边形机构12的第二 端相对于地面的速度(记为v g2):
Figure PCTCN2019098336-appb-000006
其中,平行四边形机构12的第二端相对于地面的速度是相对于惯性坐标系的速度,l表示平行四边形机构12的长度;
Figure PCTCN2019098336-appb-000007
表示对θ做微分运算;v g2x表示平行四边形机构12的第二端相对于地面的速度在X轴的分量;v g2y表示平行四边形机构12的第二端相对于地面的速度在Y轴的分量;v g2z表示平行四边形机构12的第二端相对于地面的速度在Z轴的分量,
Figure PCTCN2019098336-appb-000008
Figure PCTCN2019098336-appb-000009
也即是,可以得到平行四边形机构12的第二端在重力方向上相对于地面的速度为
Figure PCTCN2019098336-appb-000010
本发明另一实施例提供一种负载増稳装置。在上述实施例的基础上,运动传感器13可以包括设置在平行四边形机构12第二端的第一运动传感器、用于测量平行四边形机构12相对于基座11的转动角度的第二运动传感器和设置在基座11上的第三运动传感器。
本实施方式中,处理器14通过两种不同运动传感器的组合方式,分别计算得到平行四边形机构12第二端在重力方向上相对于地面的第一速度和第二速度,通过融合第一速度和第二速度以确定平行四边形机构12第二端在重力方向上相对于地面的速度。
第一种运动传感器的组合方式为:设置在平行四边形机构12第二端的第一运动传感器。
这一组合方式中,处理器14能够获取第一运动传感器输出的第一传感数据,根据第一传感数据确定第二端在重力方向上相对于地面的第一速度。
其中,第一运动传感器可以是惯性测量单元,用于测量平行四边形机构12第二端的线加速度和角速度,处理器14根据平行四边形机构12第 二端的线加速度和角速度计算得到平行四边形机构12第二端在重力方向上相对于地面的第一速度,这一过程在上述实施例中已经做了详细地说明,本实施例此处不再赘述。
第二种运动传感器的组合方式为:用于测量平行四边形机构12相对于基座11的转动角度的第二运动传感器和设置在基座11上的第三运动传感器。
这一组合方式中,处理器14能够获取第二运动传感器输出的第二传感数据和第三运动传感器输出的第三传感数据;根据第二传感数据确定平行四边形机构12相对于基座11的转动角度;根据第三传感数据确定基座的速度;根据转动角度和基座的速度确定平行四边形机构12的第二端在重力方向上相对于地面的第二速度。
其中,第二运动传感器可以是编码器,例如磁编码器等。该第三运动传感器可以是速度传感器,用于测量基座的速度。可选的,第三运动传感器包括视觉传感器,例如视觉里程计等。
上述实施例中以第二运动传感器为磁编码器,第三运动传感器为视觉里程计为例,对处理器根据第二运动传感器输出的第二传感数据确定平行四边形机构12相对于基座11的转动角度;根据第三运动传感器输出的第三传感数据确定基座11的速度;根据转动角度和基座11的速度确定平行四边形机构12的第二端在重力方向上相对于地面的速度的过程进行了详细地说明,本实施例此处不再赘述。
本发明实施例提供一种负载増稳装置的控制方法。图5为本发明实施例提供的负载増稳装置的控制方法的流程图。本实施例中,负载增稳装置包括基座和平行四边形机构,平行四边形机构的第一端与基座转动连接,平行四边形机构的远离第一端的第二端用于承载负载。负载增稳装置的具体结构如图1、图2、图3、图4所示,此处不再赘述。本实施例的竖向增 稳装置的控制方法具体可以由负载增稳装置来执行,具体地由所述负载增稳装置的处理器执行。如图5所示,本实施例中的方法,可以包括以下步骤:
步骤S501、获取运动传感器输出的传感数据,根据传感数据确定第二端在重力方向上相对于地面的速度。
作为一种可行的实现方式:运动传感器包括设置在第二端的第一运动传感器,处理器获取第一运动传感器输出的第一传感数据,根据第一传感数据确定第二端相对于地面的速度。
可选的,第一运动传感器包括惯性测量单元、视觉传感器、超声波传感器、气压计中的一种或多种。
示例性的,第一运动传感器包括惯性测量单元,处理器根据惯性测量单元输出的第一传感数据确定第二端在重力方向上相对于地面的速度。
作为另一种可行的实现方式:运动传感器包括第二运动传感器和设置在基座上的第三运动传感器,第二运动传感器用于测量平行四边形机构相对于基座的转动角度。
处理器获取第二运动传感器输出的第二传感数据和第三运动传感器输出的第三传感数据;根据第二传感数据确定平行四边形机构相对于基座的转动角度;根据第三传感数据确定基座的速度;根据转动角度和基座的速度确定第二端在重力方向上相对于地面的速度。
具体的,处理器根据转动角度确定第二端相对于基座的速度;根据第二端相对于基座的速度和基座的速度确定第二端在重力方向上相对于地面的速度。
可选的,第三运动传感器包括视觉传感器,例如视觉里程计。第二运动传感器包括编码器,例如磁编码器。
作为另一种可行的实现方式:运动传感器包括设置在第二端的第一运动传感器、用于测量平行四边形机构相对于基座的转动角度的第二运动传 感器和设置在基座上的第三运动传感器。
处理器获取第一运动传感器、第二运动传感器和第三运动传感器输出的第一传感数据、第二传感数据和第三传感数据;根据第一传感数据确定第二端在重力方向上相对于地面的第一速度;根据第二传感数据确定平行四边形机构相对于基座的转动角度;根据第三传感数据确定基座的速度;根据转动角度和基座的速度确定第二端在重力方向上相对于地面的第二速度;融合第一速度和第二速度以确定第二端在重力方向上相对于地面的速度。
在本实施例中,处理器获取运动传感器输出的传感数据根据传感数据确定第二端在重力方向上相对于地面的速度的实现方式和具体原理与上述实施例均一致,此处不再赘述。
步骤S502、根据第二端在重力方向上相对于地面的速度控制增稳电机以驱动平行四边形机构相对于基座转动。
处理器在计算得到平行四边形机构第二端在重力方向上相对于地面的速度之后,根据平行四边形机构第二端在重力方向上相对于地面的速度和平行四边形机构第二端在重力方向上相对于地面的目标速度生成增稳电机的控制指令,以控制增稳电机根据控制指令驱动平行四边形机构相对于基座转动,以对承载在第二端的负载进行增稳。
其中,第二端在重力方向上相对于地面的目标速度为0。
在本实施例中,处理器根据第二端在重力方向上相对于地面的速度控制增稳电机以驱动平行四边形机构相对于基座转动的实现方式和具体原理与上述实施例均一致,此处不再赘述。
示例性地,増稳电机包括第一增稳电机和第二增稳电机,第一增稳电机以及第二增稳电机,用于根据控制指令共同驱动平行四边形机构相对于基座转动。
可选的,第一增稳电机包括电机驱动逻辑电路,第一增稳电机与处理 器电连接,用于接收处理器的控制指令,根据控制指令控制第二增稳电机输入电流的大小,以驱动第二增稳电机产生扭矩。
可选的,负载増稳装置还可以包括第一传动部件和第二传动部件,其中,第一传动部件与第二增稳电机和平行四边形机构可转动连接,第二传动部件与第二增稳电机和平行四边形机构可转动连接,第一增稳电机以及第二增稳电机,通过第一传动部件和第二传动部件共同驱动平行四边形机构相对于基座转动。
可选的,负载増稳装置中承载于平行四边形机构的第二端的负载可以是拍摄装置,拍摄装置可用于拍摄图像/视频,可以是相机、摄像机,也可以是具有摄像功能的手机或平板电脑等。另外,该负载还可以是拍摄装置之外的其他负载设备,本实施例此处不做具体限定。
可选的,负载增稳装置还包括三轴云台,其中,平行四边形机构的第二端通过三轴云台承载负载,处理器,用于控制三轴云台以在偏航方向、横滚方向和俯仰方向中的一个或多个方向对负载进行增稳。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (29)

  1. 一种负载增稳装置,其特征在于,包括:基座、平行四边形机构、运动传感器、增稳电机和处理器,其中,
    所述平行四边形机构包括第一端和远离所述第一端的第二端,所述平行四边形机构通过所述第一端与所述基座转动连接,所述第二端用于承载负载;
    所述处理器,用于:
    获取运动传感器输出的传感数据,根据所述传感数据确定所述第二端在重力方向上相对于地面的速度;
    根据所述第二端在重力方向上相对于地面的速度生成增稳电机的控制指令;
    所述增稳电机,用于根据所述控制指令驱动所述平行四边形机构相对于所述基座转动以对承载在所述第二端的负载进行增稳。
  2. 根据权利要求1所述的装置,其特征在于,所述运动传感器包括设置在所述第二端的第一运动传感器,其中,
    所述处理器获取运动传感器输出的传感数据,根据所述传感数据确定所述第二端在重力方向上相对于地面的速度时,具体用于:
    获取第一运动传感器输出的第一传感数据,根据所述第一传感数据确定第二端相对于地面的速度。
  3. 根据权利要求2所述的装置,其特征在于,所述第一运动传感器包括惯性测量单元、视觉传感器、超声波传感器、气压计中的一种或多种。
  4. 根据权利要求3所述的装置,其特征在于,所述第一运动传感器包括惯性测量单元,
    所述获取第一运动传感器输出的第一传感数据,根据所述第一传感数据确定第二端相对于地面的速度,包括:
    根据所述惯性测量单元输出的第一传感数据确定所述第二端在重力方向上相对于地面的速度。
  5. 根据权利要求1所述的装置,其特征在于,所述运动传感器包括第二运动传感器和设置在所述基座上的第三运动传感器,所述第二运动传感器用于测量所述平行四边形机构相对于所述基座的转动角度,
    所述处理器获取运动传感器输出的传感数据,根据所述传感数据确定所述第二端在重力方向上相对于地面的速度时,具体用于:
    获取所述第二运动传感器输出的第二传感数据和所述第三运动传感器输出的第三传感数据;
    根据所述第二传感数据确定所述平行四边形机构相对于所述基座的转动角度;
    根据所述第三传感数据确定所述基座的速度;
    根据所述转动角度和所述基座的速度确定所述第二端在重力方向上相对于地面的速度。
  6. 根据权利要求5所述的装置,其特征在于,所述处理器根据所述转动角度和所述基座的速度确定所述第二端在重力方向上相对于地面的速度时,具体用于:
    根据所述转动角度确定所述第二端相对于所述基座的速度;
    根据所述第二端相对于所述基座的速度和所述基座的速度确定所述第二端在重力方向上相对于地面的速度。
  7. 根据权利要求5或6所述的装置,其特征在于,所述第三运动传感器包括视觉传感器。
  8. 根据权利要求5-7任一项所述的装置,其特征在于,所述第二运动传感器包括编码器。
  9. 根据权利要求1所述的装置,其特征在于,所述运动传感器包括设置在所述第二端的第一运动传感器、用于测量所述平行四边形机构相对于所述基座的转动角度的第二运动传感器和设置在所述基座上的第三运 动传感器,其中,
    所述处理器获取运动传感器输出的传感数据,根据所述传感数据确定所述第二端在重力方向上相对于地面的速度时,具体用于:
    获取第一运动传感器、第二运动传感器和第三运动传感器输出的第一传感数据、第二传感数据和第三传感数据;
    根据所述第一传感数据确定所述第二端在重力方向上相对于地面的第一速度;
    根据所述第二传感数据确定所述平行四边形机构相对于所述基座的转动角度;
    根据所述第三传感数据确定所述基座的速度;
    根据所述转动角度和所述基座的速度确定所述第二端在重力方向上相对于地面的第二速度;
    融合所述第一速度和第二速度以确定所述第二端在重力方向上相对于地面的速度。
  10. 根据权利要求1-9任一项所述的装置,其特征在于,所述处理器根据所述第二端在重力方向上相对于地面的速度生成增稳电机的控制指令时,具体用于:
    根据所述第二端在重力方向上相对于地面的速度和所述第二端在重力方向上相对于地面的目标速度生成增稳电机的控制指令,其中,所述第二端在重力方向上相对于地面的目标速度为0。
  11. 根据权利要求1-10任一项所述的装置,其特征在于,所述增稳电机包括第一增稳电机和第二增稳电机,所述第一增稳电机以及所述第二增稳电机,用于根据所述控制指令共同驱动所述平行四边形机构相对于所述基座转动。
  12. 根据权利要求11所述的装置,其特征在于,还包括第一传动部件和第二传动部件,其中,所述第一传动部件与所述第二增稳电机和所述平行四边形机构可转动连接,所述第二传动部件与所述第二增稳电机和所 述平行四边形机构可转动连接,所述第一增稳电机以及所述第二增稳电机,通过所述第一传动部件和第二传动部件共同驱动所述平行四边形机构相对于所述基座转动。
  13. 根据权利要求1-12任一项所述的装置,其特征在于,所述负载为拍摄装置。
  14. 根据权利要求1-13任一项所述的装置,其特征在于,还包括三轴云台,其中,所述第二端通过所述三轴云台承载所述负载,
    所述处理器,还用于控制三轴云台以在偏航方向、横滚方向和俯仰方向中的一个或多个方向对所述负载进行增稳。
  15. 一种负载增稳装置的控制方法,其中,所述负载增稳装置包括基座、平行四边形机构、运动传感器和增稳电机,所述平行四边形机构的第一端与所述基座转动连接,所述平行四边形机构的远离第一端的第二端用于承载负载,其特征在于,包括:
    获取运动传感器输出的传感数据,根据所述传感数据确定所述第二端在重力方向上相对于地面的速度;
    根据所述第二端在重力方向上相对于地面的速度控制增稳电机以驱动所述平行四边形机构相对于所述基座转动。
  16. 根据权利要求15所述的方法,其特征在于,所述运动传感器包括设置在所述第二端的第一运动传感器,其中,
    所述获取运动传感器输出的传感数据,根据所述传感数据确定所述第二端在重力方向上相对于地面的速度,包括:
    获取第一运动传感器输出的第一传感数据,根据所述第一传感数据确定第二端相对于地面的速度。
  17. 根据权利要求16所述的方法,其特征在于,所述第一运动传感器包括惯性测量单元、视觉传感器、超声波传感器、气压计中的一种或多 种。
  18. 根据权利要求17所述的方法,其特征在于,所述第一运动传感器包括惯性测量单元,
    所述获取第一运动传感器输出的第一传感数据,根据所述第一传感数据确定第二端相对于地面的速度时,具体用于:
    根据所述惯性测量单元输出的第一传感数据确定所述第二端在重力方向上相对于地面的速度。
  19. 根据权利要求15所述的方法,其特征在于,所述运动传感器包括第二运动传感器和设置在所述基座上的第三运动传感器,所述第二运动传感器用于测量所述平行四边形机构相对于所述基座的转动角度,
    所述获取运动传感器输出的传感数据,根据所述传感数据确定所述第二端在重力方向上相对于地面的速度,包括:
    获取所述第二运动传感器输出的第二传感数据和所述第三运动传感器输出的第三传感数据;
    根据所述第二传感数据确定所述平行四边形机构相对于所述基座的转动角度;
    根据所述第三传感数据确定所述基座的速度;
    根据所述转动角度和所述基座的速度确定所述第二端在重力方向上相对于地面的速度。
  20. 根据权利要求19所述的方法,其特征在于,所述根据所述转动角度和所述基座的速度确定所述第二端在重力方向上相对于地面的速度,包括:
    根据所述转动角度确定所述第二端相对于所述基座的速度;
    根据所述第二端相对于所述基座的速度和所述基座的速度确定所述第二端在重力方向上相对于地面的速度。
  21. 根据权利要求19或20所述的方法,其特征在于,所述第三运动 传感器包括视觉传感器。
  22. 根据权利要求19-21任一项所述的方法,其特征在于,所述第二运动传感器包括编码器。
  23. 根据权利要求15所述的方法,其特征在于,所述运动传感器包括设置在所述第二端的第一运动传感器、用于测量所述平行四边形机构相对于所述基座的转动角度的第二运动传感器和设置在所述基座上的第三运动传感器,其中,
    所述获取运动传感器输出的传感数据,根据所述传感数据确定所述第二端在重力方向上相对于地面的速度,包括:
    获取第一运动传感器、第二运动传感器和第三运动传感器输出的第一传感数据、第二传感数据和第三传感数据;
    根据所述第一传感数据确定所述第二端在重力方向上相对于地面的第一速度;
    根据所述第二传感数据确定所述平行四边形机构相对于所述基座的转动角度;
    根据所述第三传感数据确定所述基座的速度;
    根据所述转动角度和所述基座的速度确定所述第二端在重力方向上相对于地面的第二速度;
    融合所述第一速度和第二速度以确定所述第二端在重力方向上相对于地面的速度。
  24. 根据权利要求15-23任一项所述的方法,其特征在于,所述根据所述第二端在重力方向上相对于地面的速度控制增稳电机以驱动所述平行四边形机构相对于所述基座转动,包括:
    根据所述第二端在重力方向上相对于地面的速度和所述第二端在重力方向上相对于地面的目标速度生成增稳电机的控制指令,以控制所述增稳电机根据所述控制指令驱动所述平行四边形机构相对于所述基座转动,其中,所述第二端在重力方向上相对于地面的目标速度为0。
  25. 根据权利要求15-24任一项所述的方法,其特征在于,所述增稳电机包括第一增稳电机和第二增稳电机,所述第一增稳电机以及所述第二增稳电机,用于共同驱动所述平行四边形机构相对于所述基座转动。
  26. 根据权利要求25所述的方法,其特征在于,还包括第一传动部件和第二传动部件,其中,所述第一传动部件与所述第一增稳电机和所述平行四边形机构可转动连接,所述第二传动部件与所述第二增稳电机和所述平行四边形机构可转动连接,所述第一增稳电机以及所述第二增稳电机,通过所述第一传动部件和第二传动部件共同驱动所述平行四边形机构相对于所述基座转动。
  27. 根据权利要求15-26任一项所述的方法,其特征在于,所述负载为拍摄装置。
  28. 根据权利要求15-27任一项所述的方法,其特征在于,所述负载增稳装置还包括三轴云台,其中,所述第二端通过所述三轴云台承载所述负载,所述方法还包括:
    控制三轴云台以在偏航方向、横滚方向和俯仰方向中的一个或多个方向对所述负载进行增稳。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求15-28中任一项所述的方法。
PCT/CN2019/098336 2019-07-30 2019-07-30 负载増稳装置及其控制方法和计算机可读存储介质 WO2021016847A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/098336 WO2021016847A1 (zh) 2019-07-30 2019-07-30 负载増稳装置及其控制方法和计算机可读存储介质
CN201980034338.XA CN112236734B (zh) 2019-07-30 2019-07-30 负载増稳装置及其控制方法和计算机可读存储介质
US17/584,274 US11889192B2 (en) 2019-07-30 2022-01-25 Load stabilization device, control method thereof, and computer readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098336 WO2021016847A1 (zh) 2019-07-30 2019-07-30 负载増稳装置及其控制方法和计算机可读存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/584,274 Continuation US11889192B2 (en) 2019-07-30 2022-01-25 Load stabilization device, control method thereof, and computer readable storage medium

Publications (1)

Publication Number Publication Date
WO2021016847A1 true WO2021016847A1 (zh) 2021-02-04

Family

ID=74111540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098336 WO2021016847A1 (zh) 2019-07-30 2019-07-30 负载増稳装置及其控制方法和计算机可读存储介质

Country Status (3)

Country Link
US (1) US11889192B2 (zh)
CN (1) CN112236734B (zh)
WO (1) WO2021016847A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113163115B (zh) * 2021-04-02 2023-05-26 桂林智神信息技术股份有限公司 増稳方法、増稳装置、计算机可读介质及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107241912A (zh) * 2016-02-01 2017-10-10 深圳市大疆灵眸科技有限公司 竖向增稳机构及云台装置和拍摄设备
CN107278246A (zh) * 2016-02-01 2017-10-20 深圳市大疆灵眸科技有限公司 竖向增稳机构、云台装置及拍摄设备
CN107483781A (zh) * 2017-08-17 2017-12-15 上海大学 一种无人艇云台摄像机自调平的稳定装置
WO2018170882A1 (en) * 2017-03-24 2018-09-27 Sz Dji Osmo Technology Co., Ltd. Method and system for adaptive gimbal
CN109542125A (zh) * 2018-11-21 2019-03-29 东南大学 一种测量无人机机载相机振动的激光装置
CN109981974A (zh) * 2017-12-27 2019-07-05 深圳市优必选科技有限公司 一种摄像装置联动方法、联动装置和录像设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1234767B (it) * 1989-09-01 1992-05-26 C M S S P A Costruzioni Macchi Apparecchiatura per la movimentazione a distanza di una telecamera per riprese televisive speciali
US20050052531A1 (en) * 2003-09-04 2005-03-10 Chapman/Leonard Studio Equipment Stabilized camera platform system
US7522213B2 (en) * 2004-04-16 2009-04-21 Chapman/Leonard Studio Equipment Shock and vibration isolator for a camera
GB2459303B (en) * 2008-04-18 2013-01-09 Peter John Taylor Apparatus for support and movement of a camera

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107241912A (zh) * 2016-02-01 2017-10-10 深圳市大疆灵眸科技有限公司 竖向增稳机构及云台装置和拍摄设备
CN107278246A (zh) * 2016-02-01 2017-10-20 深圳市大疆灵眸科技有限公司 竖向增稳机构、云台装置及拍摄设备
WO2018170882A1 (en) * 2017-03-24 2018-09-27 Sz Dji Osmo Technology Co., Ltd. Method and system for adaptive gimbal
CN107483781A (zh) * 2017-08-17 2017-12-15 上海大学 一种无人艇云台摄像机自调平的稳定装置
CN109981974A (zh) * 2017-12-27 2019-07-05 深圳市优必选科技有限公司 一种摄像装置联动方法、联动装置和录像设备
CN109542125A (zh) * 2018-11-21 2019-03-29 东南大学 一种测量无人机机载相机振动的激光装置

Also Published As

Publication number Publication date
CN112236734B (zh) 2023-10-13
CN112236734A (zh) 2021-01-15
US20220150393A1 (en) 2022-05-12
US11889192B2 (en) 2024-01-30

Similar Documents

Publication Publication Date Title
US11962905B2 (en) Apparatus and methods for stabilization and vibration reduction
WO2019223270A1 (zh) 云台电机角度和角速度估算方法、装置、云台及飞行器
US10642130B2 (en) Motorized monopod jib for cameras
CN109000612B (zh) 设备的角度估算方法、装置、摄像组件及飞行器
WO2019223271A1 (zh) 飞行器偏航角修正方法、装置及飞行器
CN109196266B (zh) 云台的控制方法、云台控制器及云台
CN110446885B (zh) 非正交云台的控制方法及其云台和存储装置
CN206413079U (zh) 云台增稳系统
US20210048734A1 (en) Differential gear device, stabilization mechanism, gimbal device, and image capturing device
CN106029501A (zh) Uav全景成像
JP6114865B1 (ja) 移動体、移動体の制御方法、及びプログラム
CN108700252B (zh) 云台的控制方法以及云台
CN109844394B (zh) 一种云台的控制方法以及云台
WO2021217371A1 (zh) 可移动平台的控制方法和装置
WO2021016847A1 (zh) 负载増稳装置及其控制方法和计算机可读存储介质
CN111977006A (zh) 一种关节角的初始化方法、装置及飞行器
CN112544065A (zh) 云台的控制方法和云台
CN109669482A (zh) 云台控制方法、装置及设备
WO2021168821A1 (zh) 可移动平台的控制方法和设备
CN110832424A (zh) 竖向增稳机构及其控制方法以及可移动设备
CN213168592U (zh) 一种云台装置及应用其的无人机
Kung Design of agile two-wheeled robot with machine vision
KR102127962B1 (ko) 팬틸트-짐벌 일체형 시스템 및 그 제어 방법
KR20200082395A (ko) Ahrs 센서, 그 바이어스 및 스케일 오차 보정 장치 및 방법
TWI680079B (zh) 旋翼機模擬飛行系統與模擬飛行方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940152

Country of ref document: EP

Kind code of ref document: A1