WO2015133119A1 - 先端加工された光照射用光ファイバー及びこれを用いた体内照灯装置 - Google Patents

先端加工された光照射用光ファイバー及びこれを用いた体内照灯装置 Download PDF

Info

Publication number
WO2015133119A1
WO2015133119A1 PCT/JP2015/001091 JP2015001091W WO2015133119A1 WO 2015133119 A1 WO2015133119 A1 WO 2015133119A1 JP 2015001091 W JP2015001091 W JP 2015001091W WO 2015133119 A1 WO2015133119 A1 WO 2015133119A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical fiber
curved
tip
light irradiation
Prior art date
Application number
PCT/JP2015/001091
Other languages
English (en)
French (fr)
Inventor
正啓 木下
欧介 岩田
望月 学
望月 貴之
Original Assignee
学校法人久留米大学
有限会社菅造型工業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人久留米大学, 有限会社菅造型工業 filed Critical 学校法人久留米大学
Priority to JP2016506133A priority Critical patent/JP6429253B2/ja
Publication of WO2015133119A1 publication Critical patent/WO2015133119A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/262Optical details of coupling light into, or out of, or between fibre ends, e.g. special fibre end shapes or associated optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/306Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using optical fibres

Definitions

  • the present invention relates to a tip-processed optical fiber for light irradiation and an internal lighting device using the same, and the tip position of the tube when a medical tube such as a nasal feeding tube is inserted into the body is externally provided. Further, the present invention relates to an apparatus for irradiating a surgical site by being attached to the surgical instrument when the surgical instrument such as a scalpel used for surgery is used.
  • a normal optical fiber receives light from a light source from one end of the fiber, transmits it entirely through the core of the fiber, and emits and irradiates light from the other end.
  • the emitted light is linear light, and the irradiation range does not expand so as to spread in the horizontal direction, and light refraction by a lens or the like is used as a means for spreading the emitted light.
  • a conical structure is formed by directly cutting the light emission side end of the fiber into a conical shape.
  • a fiber is known (Patent Document 1). By cutting the fiber tip into a conical shape, the emitted light spreads in the horizontal direction.
  • the emitted light spreads in a direction almost perpendicular to the angle from the apex to the base of the cone, and hardly spreads in a direction parallel to the plane, so that the emitted light from the optical fiber is around the central axis of the fiber.
  • unevenness is generated in the emitted light, and as a result, there is a possibility that a direction / part where the light (radiated light) does not reach is generated, and it is difficult to obtain the illuminance by the uniform emitted light on the entire circumference.
  • nasal feeding tubes used to supply nutrients through the patient's nose to the stomach. It is required to feed into position.
  • nasal feeding tubes used to supply nutrients through the patient's nose to the stomach. It is required to feed into position.
  • a nasal feeding tube if it is accidentally inserted into the trachea and a nutrient is passed through the tube without being aware of it, various risks such as pneumonia occur.
  • JP 2013-198464 A Japanese National Patent Publication No. 9-503054 JP 2013-85642 A
  • Patent Documents 2 and 3 use of a magnetic field instead of X-rays has been proposed as described in Patent Documents 2 and 3.
  • the magnetic body must be fixedly brought to the tip of the medical tube, and the magnetic body needs to have a diameter of about 10 mm. Therefore, its use is not realistic considering the burden on the patient. Moreover, if the patient becomes an infant, it is a grace period. In addition, it is not preferable to always leave the magnetic substance in the body in view of patient safety.
  • Patent Document 1 a method and an apparatus that uses an optical fiber to place the light emitting tip position of the optical fiber at the tip position of the tube, and confirms the tip position of the tube by the emitted light of the optical fiber.
  • An object of the present invention is to overcome the above-mentioned problems and disadvantages.
  • Another object of the present invention is to provide an optical fiber that can be irradiated with typical light, and further to provide an optical fiber that can accurately confirm the radiation position of the optical fiber.
  • an internal lighting device for confirming the tip position of an in-vivo introduction tube using the fiber of the above-mentioned inventive object and utilizing the property of confirming the light emission part of the fiber. It is to be.
  • the inventors of the present invention processed the fiber tip cross-sectional portion, which becomes the light irradiation / light emission portion of the optical fiber, into a curved concave or convex shape.
  • an optical fiber that is controlled so that the irradiation state is radiated in the entire circumferential direction of the cross section.
  • the present invention is a new and useful internal lighting device that uses the characteristic of clearly visual confirmation of the radiation site of the optical fiber, and when used with a medical tube, when emitting light from the fiber, The position of the light emitting tip of the fiber located at the same position as the tip position of the tube can be visually confirmed, and the burden of the tube can be reduced while ensuring the safety of the patient.
  • An internal lighting device for tip position display was developed. Furthermore, when used with a surgical instrument such as a scalpel (for example, attached to a specific part of the surgical instrument), it is used as a tip illuminator that illuminates the scalp tip position and the surgical part evenly and evenly. Developed what can be done.
  • a surgical instrument such as a scalpel (for example, attached to a specific part of the surgical instrument)
  • it is used as a tip illuminator that illuminates the scalp tip position and the surgical part evenly and evenly.
  • an invention according to claim 1 is an optical fiber having a base end portion for introducing light from a light source and a tip light emitting portion for emitting the introduced light, wherein the tip light emitting portion includes: A light irradiating optical fiber in which a leading end surface forms a curved uneven surface, and the introduced light is emitted radially through the curved uneven surface.
  • the invention according to claim 2 is the optical fiber for light irradiation according to claim 1, wherein the curved uneven surface is a partially spherical surface or a partially elliptical curved surface.
  • the invention of claim 3 is the optical fiber for light irradiation according to claim 1 or 2, wherein the shape of the curved surface of the tip light emitting portion is a curved concave surface.
  • a reflectance adjusting means for providing a light reflectance of 50% or more in the vicinity of the curved concave surface, and the radiated light is concentrated in the vicinity of the concave curved surface.
  • This is an optical fiber for light irradiation.
  • the invention according to claim 5 is the optical fiber for light irradiation according to claim 4, wherein the reflectance adjusting means is made of a metal material having a curved convex surface opposite to the curved concave surface of the optical fiber light emitting end.
  • the curved concave surface is a partial spherical shape or a partial elliptic spherical shape, and when the reflectance adjusting means is opposed to the partial spherical shape, it is a sphere or partial sphere.
  • the invention of claim 7 is the optical fiber for light irradiation according to claim 1 or 2, wherein the shape of the curved irregular surface of the tip light emitting portion is a curved convex surface.
  • the light irradiation optical fiber according to any one of the first to seventh aspects is connected to a base end side of the light irradiation optical fiber, and the light irradiation optical fiber is bundled. And a light source that is introduced into the optical fiber for light irradiation, and uses the radiated light from the tip light emitting portion of the optical fiber for light irradiation as an internal lamp.
  • the optical tube for light irradiation is arranged in parallel with the medical tube inserted into the body, and the distal end light emitting portion is brought close to the distal end of the medical tube, whereby the medical tube inserted into the body is The internal lighting device according to claim 8, wherein the tip position is illuminated in a light pool.
  • the invention of claim 10 is the internal lighting apparatus according to claim 9, comprising the optical fiber for light irradiation according to any one of claims 3 to 6.
  • the fixing tool is slidably attached to the optical fiber for light irradiation, and the fixing tool is detachably fitted and fixed to the adapter of the medical tube.
  • the optical fiber for light irradiation is the optical fiber for light irradiation according to claim 3, and a plano-convex lens is provided in a concave-convex confronting manner in the radial direction ahead of the curved concave surface that radiates in the refractive direction.
  • a thirteenth aspect of the invention is the internal lighting apparatus according to any one of the eighth to twelfth aspects, wherein the light source is composed of a red laser beam and a near infrared laser beam, and can be selectively used. .
  • the invention of claim 14 is the internal lighting apparatus according to any one of claims 8 to 13, wherein the light source device is of a storage battery drive type.
  • the lighting device equipped with the optical fiber for light irradiation for example, when used together with a medical tube, the burden on the patient can be reduced while ensuring the safety of the patient.
  • it can be used as a tube tip position display device that can be easily checked, and when attached to a surgical instrument such as a scalpel or a scissors, the tip position of the scalpel of the surgical instrument and its peripheral part are brightened. It can be used as a tip illumination device that illuminates.
  • the optical fiber for light irradiation of the present invention is a fiber in which one end of a fiber that is a radiation part that emits light is processed into a curved concave shape or a curved convex shape. Furthermore, the uneven shape is preferably a partial spherical shape or a partial elliptical shape.
  • the range of the radiation direction of the emitted light can be controlled by controlling the shape of the curved irregularities.
  • the emitted light from the radiating surface of the optical fiber tip from the tip is the center of the sphere or the center (focal point) of the elliptic sphere. Since the light is emitted toward the center, the light is concentrated in the central portion and the focal portion, and high illuminance is obtained in a spot manner as compared with the surrounding light. For this reason, when used in a lighting device or the like described below, it becomes a mark as a spot.
  • a reflectance adjusting means may be installed on an optical fiber having a curved concave surface. Thereby, the light is further concentrated in the vicinity of the curved concave surface, and a spot of light luminance is formed in the vicinity.
  • the light reflectance in the reflectance adjusting means is preferably 50% or more.
  • the reflectance adjusting means is spherical.
  • the material of the optical fiber of the present invention may be any material as long as it can be used as a normal optical fiber.
  • optical fiber of the present invention can be provided by processing a commercially available optical fiber by cutting or the like. Generally, processing of a commercial product is recommended from the viewpoint of economy, but any method can be used as long as the shape of the optical fiber of the present invention can be provided.
  • the standard of the optical fiber is not particularly limited, and the length and thickness are appropriately changed depending on the application, desired irradiation range, irradiation intensity, standard of the device used together, and the like.
  • any standard can be adopted as long as it is a commercially available optical fiber standard, and even if it has a large diameter as desired, it can be processed if it has a function as an optical fiber. Can also be provided.
  • several lighting devices are illustrated, and together with the description of the apparatus, the optical fiber of the present invention that is mounted on and used by the apparatus is further specifically illustrated.
  • the present invention is not limited to these exemplary devices and fibers.
  • the medical tube tip position display device 1 will be described with reference to the drawings.
  • the tip position display device 1 is applied to a medical tube to be inserted into a patient's body, for example, a nasal feeding tube.
  • Reference numeral 3 denotes an optical fiber, and the optical fiber 3 is composed of a single fiber.
  • the optical fiber 3 includes a core portion 5 that guides light and an extremely thin clad portion 7 that surrounds the core portion 5, and has a diameter of 0.25 to 1.5 mm, typically about 0.4 mm.
  • the core unit 5 is made of PMMA.
  • the clad portion 7 is made of a special fluororesin and can pass through light.
  • the cladding part 7 is drawn larger than the actual part with respect to the core part 5. Since the optical fiber 3 is flexible, it passes through without impairing the flexibility of the medical tube C, and the tip thereof is aligned with the tip of the medical tube C. Therefore, the movement of the medical tube C in the body is not inhibited, and the exposed optical fiber 3 is not damaged.
  • a tip light emitting portion 9 is provided on the tip side of the optical fiber 3.
  • the tip light emitting part 9 reflects light guided through the core part 5 of the optical fiber 3 in a direction intersecting the light guide direction by reflection.
  • the tip light emitting portion 9 has one large curved concave surface 11.
  • the curved concave surface 11 shows a tip contour when the optical fiber 3 is divided in the longitudinal direction, and is a semicircular arc or a smaller arc, but is preferably closer to the semicircular arc.
  • a stainless steel metal ball 13 is embedded in the curved concave surface 11.
  • the PMMA is formed by embedding a metal ball 13 after the tip end surface of the PMMA is cut and recessed by cutting.
  • the diameter (T) of the optical fiber 3 is 1.0 mm, the depth (D) constituting the curved concave surface 11 is 1.5 mm, the processing R (R) is 0.2 mm, The opening angle (X) is 5 °.
  • the diameter (M) of the metal sphere 13 is 0.5 mm.
  • 3 (2), the diameter (T) of the optical fiber 3 is 0.4 mm, the depth (D) constituting the curved concave surface 11 is 0.5 mm, the processing R (R) is 0.1 mm, The opening angle (X) is 5 °.
  • the diameter (M) of the metal sphere 13 is 0.25 mm. In any of the dimension examples, the reflectance is 80% or more. 4 (1) and 4 (2) are actual objects, and the state in which the metal ball 13 is embedded is shown.
  • FIG. 5 schematically shows the light emission state of FIG. 3, and the spread of the light emission is shown as a closed curved surface.
  • the presence of the metal sphere 13 reflects the light guided through the core portion 5 of the optical fiber 3 so that light cannot leak forward beyond the metal sphere 13. .
  • the metal sphere 13 is opposed to the curved concave surface 11, the light emitted radially from the curved concave surface 11 is reflected by the metal sphere 13 and scattered backward, and goes out of the optical fiber 3.
  • light gathers immediately behind the place where the metal sphere 13 is embedded most deeply. Accordingly, the light concentrates on the light center of gravity (where the luminance is highest), and a light pool (L) having a high contrast with the peripheral portion, particularly the front side, is generated.
  • the light pool (L) has higher luminance, that is, brighter as the light leakage is smaller, that is, the light pool (L), so that the light leakage on the cladding portion 7 side can be reduced. It is preferable to design the dimensions as narrow as possible. Therefore, even if the diameter (T) of the optical fiber 3 is smaller in FIG. 3 (2) than in FIG. 3 (1), and the metal sphere 13 to be embedded is smaller, the annular portion on the tip side is This is preferable because it can be processed into a line with almost no width.
  • the optical fiber 3 goes around the front side of the metal ball 13. Since the melting point of PMMA, which is the material of the optical fiber 3, is relatively low at 95 to 105 ° C., the heated convex mold is applied to the fiber cross section and recessed into a concave shape, and then the metal ball 13 is embedded and further concave. A metal mold 13 is applied and bent to cover the metal ball 13. In this example, light leakage from the peripheral edge side occurs slightly, but the reflection direction is mainly indicated by a line, and there is an advantage that the metal sphere 13 can be stably fixed.
  • PMMA which is the material of the optical fiber 3
  • the tip light emitting portion 9 has a large number of small curved concave surfaces 15.
  • the curved concave surface 15 is handled as a smaller curved concave surface 11 and is a semicircular arc or a smaller arc, but a semicircular arc is preferable.
  • the curved concave surface 15 is formed by spraying many white alumina fine powders (about 9.5 ⁇ m) 17, performing a sand blasting process, and embedding and fixing the powder as it is. Yes.
  • a large number of combinations of minute curved concave surface 15-alumina fine powder are arranged, and each has the same mechanism as one large curved concave surface 11-metal particle 13, and light pool (L) Is formed.
  • the light pool (L) is long in the lateral direction of the optical fiber 3, but there is no problem in detecting the tip position. A certain effect can be obtained without attaching a metal sphere to the tip of the optical fiber processed into the concave surface. In that case, the light is radiated radially in an angular direction of 360 degrees. At that time, since the radiated light is radiated toward the central part of the sphere of the hemispherical surface, the central part has high brightness, A spot image is observed. Therefore, it can be used for confirming the position of the device of the present invention without attaching a metal ball to the fiber tip. (Part indicated by arrow in FIG. 12)
  • the alumina fine powder 17 is positively left, but may be removed. In that case, the reflectivity is lowered, but there is an advantage that there is no need to worry about the metal falling off. If it is the above uneven
  • a fiber fixing tool 19 is fitted on the optical fiber 3.
  • the fiber fixture 19 is a resin molded product, and has a cylindrical shape with a tapered end and a tapered end.
  • the fiber fixing tool 19 is slidable and detachable with respect to the optical fiber 3 by utilizing its elastic deformability, and can be attached and fixed at an arbitrary position of the optical fiber 3 as required.
  • An adapter A made of an elastic resin molded product is attached to the medical tube C depending on the application.
  • the design mode of the adapter A differs depending on the use of the medical tube C, for example, for nasal nutrition, but the attachment portion to the tube is generally cylindrical, so that it is fitted on the tube. It has become.
  • the cylindrical portion is tapered so that it can be easily fitted, and the portion which becomes the leading side when fitted is reduced in diameter, but the subsequent portion is enlarged and a gap is provided.
  • the above-described fiber fixing device 19 is designed according to the type of adapter A of the medical tube C to be used, and as shown by the dotted line in FIG. In an elastically expanded / contracted state, they are relatively immovably coupled.
  • the optical fiber 3 is provided with a mark (not shown) colored in red, blue, green, etc. at regular intervals, and a so-called scale function is also added.
  • a light source device 21 is connected to the proximal end side of the optical fiber 3 as shown in FIG.
  • the light source device 21 is provided with a plugged portion 23, and the plugged portion 23 has a tapered inner surface and becomes narrower toward the back.
  • the optical fiber 3 is used for replacement.
  • an insertion adapter 25 having a tapered outer surface is attached to the base end thereof.
  • the light source device 21 side is used. Is inserted into the inserted portion 23. By this insertion, the core part 5 of the optical fiber 3 is easily light-guided and connected to the light-guiding part on the light source device 21 side in abutting state.
  • the light source device 21 includes two types of light sources.
  • the first light source is red laser light (wavelength: around 650 nm) 27, and the second light source is near-infrared laser light (wavelength: around 780 nm) 29.
  • the above two types of light sources can be selected by pressing a light source selection button 31.
  • the material of the optical fiber 3 is PMMA resin, the propagation wavelength band is visible to near infrared, but this is sufficient for the purpose.
  • the red laser light can be confirmed with the naked eye, but the near infrared laser light cannot be confirmed with the naked eye, but is imaged with the infrared camera 33 (FIG. 1) and confirmed on the screen.
  • the former can be used on human bodies and parts with low body fat. Even if both lights are emitted in the body, there is almost no adverse physiological effect, so they can be used with confidence. Since the light source device 21 has two connection ports for the optical fiber 3 for each of the two light sources described above, the optical fiber 3 is connected to the connection port of the corresponding light source and the light source selection button 31 is pressed to select the corresponding light source. By doing so, the light passing through the optical fiber 3 can be selected. Since the semiconductor laser light has high luminance and a small exit aperture, it can be efficiently emitted to the optical fiber 3 with a sufficient amount of light by using a focusing shaping optical system, and is used.
  • the light source device 21 is supplied with power from a commercial power source, is converted to DC, and is stored as a power storage battery.
  • the light source device 21 can be used even in places where the commercial power source cannot be obtained.
  • casing is black and the leakage of the light from the inside is suppressed.
  • the tip position display device 1 of the present invention uses the ultrafine optical fiber 3 as a light guide line as described above, and the optical fiber 3 is inserted into the medical tube C by using the fiber fixture 19 described above.
  • the distal end position can be fixed in the medical tube C or at a position protruding from the distal end. Since the position of each part in the patient's body can be estimated, when the medical tube C in the above state is inserted into the patient's body, not only the final stage that would have reached the target part but also the intermediate stage from the optical fiber 3. Since it can be easily confirmed from the emitted light whether it is being inserted accurately and insertion into the wrong part can be stopped halfway, the burden on the patient is reduced. Further, after the distal end of the medical tube C reaches the target site, the optical fiber 3 can be easily pulled out by removing the fiber fixing tool 19.
  • the optical fiber 3 is inserted again into the medical tube C inserted into the body, but the insertion length can be confirmed by utilizing the scale function, so that the medical fiber already in the body is used. It can be easily aligned with the tip position of the tube C.
  • the red light visible to the naked eye is used as a simple guide light until it is inserted, and the near-infrared light is used for the final positioning from the image displayed on the camera.
  • the caregiver can change the light source according to the progress of the insertion operation.
  • FIG. 11 and FIG. 12 show the results of an animal experiment using a 6Fr (outer diameter 2.0 mm) feeding catheter as a medical tube C for a newborn pig.
  • the light that can be visually recognized by the light pool is indicated by an arrow.
  • Example (A) the feeding catheter was first placed in the stomach, and then the optical fiber was passed through the feeding catheter while light was emitted. Since the optical fiber is flexible, it can be passed through the indwelling feeding catheter without difficulty.
  • Example (B) the optical fiber was inserted in a state where light was emitted to the feeding catheter first, and then passed through the feeding catheter into the stomach.
  • Example (C) an optical fiber was inserted in the state where light was emitted to the feeding catheter first, and then passed through the feeding catheter through the trachea / lung (as an example of erroneous operation).
  • FIG. 11 corresponds to the example (A) and FIG. 12 corresponds to the example (B).
  • a light pool is formed, and a sufficient inspection is possible.
  • FIG. 14 corresponds to Example (C). Light accumulation was confirmed in the trachea, but light disappeared in the bronchi. In this way, since the light is confirmed even when the stomach, trachea, and region change, it is possible to respond immediately if there is an erroneous insertion.
  • the light pool is confirmed by the camera or visual recognition, but it is also possible to capture a still image at a speed of about 1/30 SEC and reproduce and display it as a movie using a tablet with a built-in camera. .
  • the brightest position is specified by image processing (binarization) in the light pool and drawn with a “+” mark at the center, the movement locus of the tip position of the optical fiber can be easily understood.
  • the optical fiber 3 is passed through the medical tube C, if it is desired to leave it in the body together with the medical tube C, it cannot be passed through the medical tube C as it is.
  • FIG. 15 there are a single type C1 and a double lumen type C2 in the medical tube.
  • the single type C1 the optical fiber 3 is put outward and the same material as that of the medical tube is used.
  • a cover L (with a thickness of about 0.03 to 0.04 mm) may be put over and fixed.
  • the double lumen type C2 it is possible to pass the optical fiber 3 through a sub-tube (s) that is not used. Thereby, the main tube (m) side can always be used for feeding nutrients.
  • a female tip lighting device As an example, when the optical fiber of the present invention is mounted on a surgical instrument at the time of surgery and used for illumination, a female tip lighting device is illustrated.
  • the knife tip lighting device 41 will be described with reference to the drawings.
  • a radiation portion 43 is provided on the distal end side of the optical fiber 3.
  • the radiating portion 43 refracts light guided through the core portion 5 of the optical fiber 3 in a direction intersecting the radiation guiding direction by refraction.
  • the radiating portion 43 has one large curved concave surface 45.
  • a plano-convex lens (hemisphere lens) 47 is disposed in a concave-convex facing manner at a distance from the curved concave surface 45 in the radial direction. Example dimensions are shown numerically.
  • the tip of the electric knife can be surrounded and illuminated with a circle of an appropriate size.
  • the optical fiber 3 In order to illuminate the light, it is possible to simply radiate the optical fiber 3 into a convex curved surface and emit it directly radially.
  • a lens if a lens is used, a desired position can be illuminated with a desired size. That is, the illumination adjustment becomes easy. Further, since a real image can be projected, the illusion of the position can be prevented when there is something to be projected.
  • the tip position display device of the present invention emits light from the tip of an optical fiber inserted in a medical tube, and not only displays the tip position of the medical tube in the body but also emits light per neck.
  • the jugular vein and artery can be confirmed. Therefore, the possibility of use for jugular vein puncture is also conceivable.
  • the scalpel tip lighting device of the present invention can brightly illuminate the tip of the scalpel, so that the surgical environment can be improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laser Surgery Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

 光ファイバーを照灯用に用いて、経鼻栄養チューブ等の医療用チューブを体内に挿入した際の当該チューブの先端位置を体外から視認可能とする、更には手術の際に使用するメス等の術具使用の際に、該術具へ装着等により使用して手術部位を照射する装置を実現する。 光ファイバー3の先端光放射部9の先端面を湾曲した凹凸面にして光照射用にする。放射部からの放射光は、球体の中心や楕円球体の中心(焦点)に向かって放射されることから、その中心部分や焦点部分は光が集中し、周囲の光に比較してスポット的に高い照度が得られるので、先端位置の視認や手術部位の照射に利用できる。特に、先端光放射部9の湾曲した凹面11に金属球13を埋め込むと、金属球13が最も深く埋め込まれた場所の直ぐ後方側に一層明るい光溜まりが生成される。従って、より正確にチューブの体内先端位置を確認できる。

Description

先端加工された光照射用光ファイバー及びこれを用いた体内照灯装置
 本発明は、先端加工された光照射用光ファイバーと、これを用いた体内照灯装置であって、経鼻栄養チューブ等の医療用チューブを体内に挿入した際の当該チューブの先端位置を体外から視認可能とする、更には手術の際に使用するメス等の術具使用の際に、該術具へ装着等により使用して手術部位を照射するものに関するものである。
 通常の光ファイバーは光源からの光をファイバーの一端から入射し、ファイバーのコア部内を全透過し、他端から光を放出、照射する。放出光は直線状の光であり、水平方向への広がりを持つように、照射範囲が広がることはなく、放射光に広がりを持たせる手段としてレンズによる光屈折等が使用される。また、これらの器具を用いず、放出光に、水平方向(斜め水平方向)への広がりを持たせる方法としては、直接ファイバーの光放射側端を円錐形に切削加工した、円錐形構造としたファイバーが知られている(特許文献1)。ファイバー先端を円錐形に切削することで、放射光は水平方向に広がる。しかしながら、放射光は、円錐形の頂点から底辺への角度とほぼ垂直方向に広がり、該平面と平行方向への広がりは殆ど無く、この結果、光ファイバーからの放射光は、ファイバーの中心軸の周囲において、放射光にムラが生じ、この結果、光(放射光)が行き届かない方向・部位が生じる恐れがあり、全周囲的に均等な放射光による照度を得ることは難しい。
 また、患者の鼻から胃に通して、栄養分を供給するのに使用する経鼻栄養チューブのように、種々の医療用チューブが使用されているが、医療用チューブの先端は、正確に所定の位置に送り込むことが求められている。例えば、経鼻栄養チューブの場合に、誤って気管に挿入し、気が付かずにそのまま栄養剤をそのチューブに通して送り込むと肺炎を起こす等、様々な危険性が出てくるからである。
 従来は、体内に挿入された医療用チューブの先端位置を確認するのに、X線透視により確認していた。
 而して、医療用チューブは、所定期間毎に交換するものである。
 そのため、医療用チューブを使用する期間が長期化すると、確認の回数が増え、X線の被爆量の増大による健康被害への影響も無視できなくなる。また、X線の照射は専門のスタッフが行うので、自宅で手軽に確認することはできない。
 更には、2013年6月には、厚生労働省から、経鼻栄養チューブを利用する場合には、毎回、経鼻栄養チューブの先端位置が胃内部に存在することを確認してから、栄養分の送り込みを実施する旨のガイドラインが発せられたため、そのガイドラインを誠実に対応しようとすれば、自宅介護が難しくなる。
特開2013-198644号公報 特表平9-503054号公報 特開2013-85642号公報
 最近では、X線に代えて、磁界を利用することが、特許文献2、3に記載のように提案されている。
 しかしながら、磁性体を医療用チューブの先端に固定的に持ってこなければならず、その磁性体は直径として10mm程度必要なので、患者の負担を考えればその利用は現実的ではない。しかも、患者が乳幼児となれば猶更である。
 また、磁性体を常時体内に留置することは、患者の安全性を考えれば、好ましくない。
 また、光ファイバーを用いて、光ファイバーの光放射先端位置を、上記チューブの先端位置に配置し、該光ファイバーの放射光によりチューブの先端位置を確認する方法及び装置が知られている(特許文献1)。この方法装置に用いる光ファイバーの光放射側先端部は、前記したように、光ファイバー光放射側先端を円錐形となるように、切削・切り欠いたファイバーを用いた装置が、開示されている。然しながら、前記したように、光放射にムラが出来、視認の位置によっては、放射光を確認しづらい欠点を有している。加えて、光の放射が拡散的に広がるため、光の放射点である、先端位置の確認が困難となる欠点も合わせて有している。
 また、体内への切開手術、体内での摘出手術、縫合手術等において、手術部位及び該部位の周囲を明るくすることは、極めて重要であり、このためには、手術室においては、その照明装置は必須であり、手術部位照射用の照明装置が手術室には装着されている。しかしながら、手術部位によっては、当該照明装置の光が充分に照射されず、照明効果が不充分な場合が生じることもある。
 このような照明の不充分さを克服する手段として、従来、手術者の頭部にスポットライトを装着する手段が用いられている。然しながら、このような頭部装着スポットライトでは、必要とする部位へスポットライトを照射するために、術者の頭の位置、角度等を、調節し不自然な姿勢を余儀なくされることや、更には、スポットライトと手術部位との間隔が幾分隔たっていることから、複雑な手術部位へのスポットライトの光照射は充分に行えない場合も有る。
 本発明は、上記の問題点、欠点を克服することを目的とし、光源から光ファイバーの一端に、光を導入し、該ファイバーの他端から光を放射する際に、放射部位全周辺を、均一的な光で照射可能とする、光ファイバーを提供することを目的とし、更には、光ファイバーの放射位置を正確に確認することも出来る光ファイバーを提供することも目的としている。
 更に、本発明の他の目的としては、上記の発明目的のファイバーを用いて、該ファイバーの光放射部位の確認可能な性質を利用した、体内導入チューブの先端位置確認用体内照灯装置を提供することである。また、広範且つ均質に全周辺を照射する本発明の光ファイバーを用い、体内手術用器具と併用する、照明装置となる、体内照灯装置を提供することも本発明の目的である。
 本発明者らは、これらの目的を達成すべく鋭意検討した結果、光ファイバーの光照射・光放出部位となる該ファイバー先端断面部を湾曲した凹面状若しくは凸面状に加工され、先端部分での光の照射状態が該断面の全周囲方向に放射されるように制御された光ファイバーを開発した。更には、該光ファイバーの放射部位を明確に視認確認する特質を利用した新規且つ有用な体内照灯装置であって、医療用チューブと共に使用した場合には、ファイバーからの光放射時には、体外からも、チューブの先端位置と同位置に位置する、ファイバーの光放射先端位置を視認可能であり、患者の安全性を確保しながら、その負担も軽減でき、更に、自宅でも、手軽に確認できるチューブの先端位置表示用体内照灯装置を開発した。更には、メス等の体内手術器具と共に使用(例えば、手術器具の特定の部位に取り付ける)した場合には、メスの先端位置及び手術部位周囲を均等にムラ無く且つ、明るく照らす先端照明装置として利用できるものを開発した。
 上記目的を達成するための、請求項1記載の発明は、光を光源から導入する基端部と導入された光を放射する先端光放射部を有する光ファイバーであって、前記先端光放射部の先端面が湾曲した凹凸面を形成し、前記湾曲した凹凸面を介して前記導入された光が放射状に放射される、光照射用光ファイバーである。
 請求項2の発明は、湾曲した凹凸面が、部分球面状又は部分楕円球面状湾曲面である請求項1に記載の光照射用光ファイバーである。
 請求項3の発明は、前記先端光放射部の湾曲した面の形状が、湾曲した凹面である請求項1または2に記載の光照射用光ファイバーである。
 請求項4の発明は、更に前記湾曲した凹面の近傍に、光反射率50%以上とする反射率調整手段が設けられ、前記凹面状湾曲面の近傍に放射光が集中する請求項3に記載の光照射用光ファイバーである。
 請求項5の発明は、反射率調整手段が光ファイバー光放射端部の湾曲した凹面に相対する湾曲した凸面を有する金属材によって構成されている請求項4に記載の光照射用光ファイバーである。
 請求項6の発明は、湾曲した凹面が部分球面状または部分楕円球面状であり、反射率調整手段が部分球面状に相対するときには球体または部分球体、部分楕円球面状に相対するときには楕円球体または部分楕円球体である請求項4または5に記載の光照射用光ファイバーである。
 請求項7の発明は、前記先端光放射部の湾曲した凹凸面の形状が、湾曲した凸面である請求項1または2に記載の光照射用光ファイバーである。
 請求項8の発明は、請求項1から7のいずれかに記載の光照射用光ファイバーが単数または複数列束ねられたものと、前記光照射用光ファイバーの基端側に接続されて、光を前記光照射用光ファイバーに導入する光源とを備え、前記光照射用光ファイバーの先端光放射部からの放射光を体内の照灯として利用することを特徴とする体内照灯装置である。
 請求項9の発明は、体内に挿入される医療用チューブに光照射用光ファイバーを並列させ、その先端光放射部を前記医療用チューブの先端に近づけることで、体内に挿入された医療用チューブの先端位置を光溜り状に照灯させる請求項8に記載の体内照灯装置である。
 請求項10の発明は、請求項3から6のいずれかに記載の光照射用光ファイバーを備える請求項9に記載の体内照灯装置である。
 請求項11の発明は、固定具が光照射用光ファイバーに摺動可能に取り付けられており、前記固定具は医療用チューブのアダプターに着脱自在に内嵌固定されるものである請求項9または10に記載の体内照灯装置である。
 請求項12の発明は、光照射用光ファイバーが請求項3に記載の光照射用光ファイバーであり、且つ、屈折方向に放射する湾曲した凹面の放射方向先方に平凸レンズが凹―凸対向で設けられている請求項8に記載の体内照灯装置である。
 請求項13の発明は、光源が赤色光レーザー光と、近赤外線レーザー光とで構成されており、使い分けが可能になっている請求項8から12のいずれかに記載の体内照灯装置である。
 請求項14の発明は、光源機器は、蓄電池駆動型になっている請求項8から13のいずれかに記載の体内照灯装置である。
 本発明の先端加工された光照射用光ファイバーを具備した照灯装置によれば、例えば医療用チューブと共に使用した場合には、患者の安全性を確保しながら、その負担も軽減でき、さらに、自宅でも、手軽に確認できるチューブの先端位置表示装置として利用でき、また、メスやカンシ等の体内手術用器具に取り付けて使用した場合には、該手術用器具のメスの先端位置及び周辺部を明るく照らす先端照明装置として利用できる。
本発明の実施の形態に係る医療用チューブの体内先端位置表示装置の使用状態の説明図である。 図1の表示装置の光ファイバーの先端光放射部の説明図である。 図2の先端光放射部の寸法例である。 図3の実物の写真である。 図2の先端光放射部の放射状況の説明図である。 図2とは別例の先端光放射部の放射状況の説明図である。 図2とは別例の先端光放射部の放射状況の説明図である。 図1の表示装置の光ファイバー側と医療用チューブとの連結具の説明図である。 図1の表示装置の光ファイバー側と光源機器との連結具の説明図である。 図1の光源機器内の構成説明図である。 図1の装置を用いた動物実験の結果を示す写真である。 図1の装置を用いた動物実験の結果を示す写真である。 図1の装置を用いた動物実験の結果を示す写真である。 図1の装置を用いた動物実験の結果を示す写真である。 図1とは別の、光ファイバーの医療用チューブへの挿入方法の説明図である。 メス先端照灯装置の模式図である。 図16の現物の使用状況を示す写真である。
 本発明の光照射用光ファイバーは、光を放出する、放射部であるファイバーの一端を、湾曲した凹面状に窪んだ形状、若しくは湾曲した凸面状に尖った形状に加工したファイバーである。更に、凹凸の形状は、部分球面状、部分楕円球状であることが好ましい。光ファイバーの先端光放射部の先端面をこのような形状にすることで、光ファイバーの光導入部から導入された光は、ファイバー断面の全周囲方向に斜光状に放射され、この結果、照射部位における照射状態のムラが生じない。又、放射方向に関しては、上記、湾曲した凹凸の形状を制御することで、放射光の放射方向範囲を制御することが出来る。特に、放射先端部を部分球面体状または部分楕円球体状の凹形状加工した場合には、先端部からの光ファイバー先端部放射面からの放射光は、球体の中心や楕円球体の中心(焦点)に向かって放射されることから、その中心部分や焦点部分は光が集中し、周囲の光に比較してスポット的に高い照度が得られる。このことから、下記する照灯装置等に利用した場合、スポットとして目印となる。また、光放射を制御して、放射光のスポット化をする手段として、湾曲した凹状面を有する光ファイバーに反射率調整手段を設置することが挙げられる。これにより、湾曲した凹面近傍に更に、光が集約され、近傍に光輝度のスポットが形成される。この際に、反射率調整手段における光反射率が50%以上であることが好ましい。また、反射率調整手段として鉄、ステンレス、チタン等の金属を用いることが推奨される。更に、反射率調整手段が球状であることも好ましい態様となる。
 本発明の光ファイバーの材質は、通常光ファイバーとして利用しうる材質であれば如何なる材質であっても差し支えない。従って、ガラス材質や樹脂材質であっても差し支えないが、加工性やたわみや折れに対する耐久性の観点から、樹脂等の高分子材質からなる光ファイバーが推奨される。高分子材質としては、下記するようにアクリル樹脂等が例示される。従って、本発明の光ファイバーは、市販の光ファイバーを切削加工等によって加工し、提供することも出来る。一般的には市販品の加工が経済性の観点から推奨されるが、如何なる手法で製造しても、本発明の光ファイバーの形状が提供できるのであれば差し支えない。
 本発明において、光ファイバーの規格は特に限定されることは無く、用途、所望する照射範囲、照射強度、併用する器具の規格等によって、長さや太さを適宜変更して使用する。市販の光ファイバーの規格であれば如何なる規格であっても採用することが出来、更には所望に応じては太い直径のものであっても、光ファイバーとしての機能を持つものであれば、これを加工することでも提供することが出来る。
 以下、本発明をより具体的に説明するために、幾つかの照灯装置を例示し、装置としての説明と共に、該装置に装着、使用する本発明の光ファイバーについても、更に具体的に例示するが、本発明はこれら例示の装置、ファイバーのみに限定されるものではない。
<医療用チューブの先端位置表示装置>
 医療用チューブの先端位置表示装置1について、図面にしたがって説明する。
 図1で示すように、先端位置表示装置1は、患者の体内に挿入する医療用チューブ、例えば経鼻栄養チューブに適用する。
 符号3は光ファイバーを示し、この光ファイバー3は一本のファイバーで構成されている。光ファイバー3は、導光するコア部5と、そのコア部5を囲む極薄のクラッド部7とでなり、直径は0.25~1.5mm、代表的なものでは0.4mm程度である。コア部5はPMMAを素材とする。クラッド部7は特殊フッ素樹脂を素材とし光の通り抜けが可能となっている。視認の便宜のために、コア部5に対してクラッド部7が実際よりも大きく描画されている。
 この光ファイバー3は可撓性があるので、医療用チューブCの可撓性を損なわずに通されており、その先端は医療用チューブCの先端に揃えられている。従って、医療用チューブCの体内での動きを阻害したり、剥き出しの光ファイバー3が体内を傷つけたりすることはない。
 この光ファイバー3の先端側に先端光放射部9が設けられている。
 先端光放射部9は、光ファイバー3のコア部5を通って導かれた光を反射により導光方向と交差する方向に反射するものである。
 図2に示す例では、先端光放射部9は一つの大きな湾曲した凹面11を有している。この湾曲した凹面11は光ファイバー3の長さ方向で半割したときの先端輪郭を示すものであり、半円弧またはそれ以下の円弧になっているが、半円弧に近い方が好ましい。湾曲した凹面11には、ステンレス鋼製の金属球13が埋め込まれている。PMMAの先端面を切削加工により刳り貫いて凹状にした後に、金属球13を埋め込んで形成している。
 図3(1)の寸法例では、光ファイバー3の直径(T)は1.0mmで、湾曲した凹面11を構成する深さ(D)は1.5mm、加工R(R)は0.2mm、開き角度(X)は、5°になっている。また、金属球13の直径(M)は0.5mmになっている。
 図3(2)の寸法例では、光ファイバー3の直径(T)は0.4mmで、湾曲した凹面11を構成する深さ(D)は0.5mm、加工R(R)は0.1mm、開き角度(X)は、5°になっている。また、金属球13の直径(M)は0.25mmになっている。
 いずれの寸法例でも、反射率は80%以上となっている。
 図4(1)、(2)がそれぞれの実物であり、金属球13が埋め込まれた状態が映し出されている。
 図5は、図3の光の放射状態を模式的に示したものであり、光の放射の広がりが閉曲面で示されている。この図に示すように、金属球13が存在することにより、光ファイバー3のコア部5内を導かれてきた光は反射され、金属球13を超えて前方へ光漏れすることはできなくなっている。また、金属球13が湾曲した凹面11と相対しているので、湾曲した凹面11から放射状に出た光は、金属球13に反射して後方に向かって散乱し、光ファイバー3の外に出ていくことになるが、金属球13が最も深く埋め込まれた場所の直ぐ後方側に光が集まる。従って、光重心(輝度が最も高いところ)に光が集中して、周辺部、特に前方側とはコントラストの高い光溜まり(L)が生成される。
 光溜まり(L)は、光漏れが少ないほど輝度が高く、すなわち明るくなるので、クラッド部7側の光漏れが少なくできるよう、刳り貫いた後にできる先端の円環面の面積、換言すれば幅寸法を極力狭く設計することが好ましい。
 従って、図3(1)よりも図3(2)の方が、光ファイバー3の直径(T)が小さく、その分だけ埋め込まれる金属球13が小さくなっていても、先端側では円環部は殆ど幅寸法を残さずライン状に加工できるので、好ましい。
 その他、図6に示す例では、光ファイバー3が金属球13の前方側に周り込んでいる。
 光ファイバー3の素材であるPMMAの融点が95~105℃と比較的低温であることから、加熱した凸形金型をファイバー断面に当てて凹状に窪ませた後に、金属球13を埋め込み、更に凹形金型を当てて曲げて金属球13に被せている。
 この例では、周縁部側からの光抜けは若干発生するが、反射方向は主に線で示したものであり、金属球13を安定的に固定できる利点がある。
 さらに、図7に示す例では、先端光放射部9は多数の小さな湾曲した凹面15を有している。この湾曲した凹面15は、湾曲した凹面11を小さくしたものと取り扱われており、半円弧またはそれ以下の円弧になっているが、半円弧が好ましい。
 この湾曲した凹面15は、白アルミナ微粉末(約9.5μm)17を多数吹き付け、サンドブラスト処理を行い、そのまま埋め込み固定することにより形成されており、アルミナ微粉末17の粒状が転写されてできている。
 この例では、微小な湾曲した凹面15-アルミナ微粉末の組合せが多数並んだ状態になっており、其々が一つの大きな湾曲した凹面11―金属粒13と同じメカニズムで、光溜まり(L)が形成される。光溜まり(L)は光ファイバー3の横方向に長いものとなるが、先端位置の検出には何ら問題ない。
 なお、上記の凹面状に加工された光ファイバーの先端に金属球を装着せずとも一定の効果は得られる。その場合には、光は360度の角度方向に放射状に照射されるが、その際、半球状面の球の中心部分に放射光は向かって放射されることから、中心部分が高輝度となり、スポット像が認められる。このことから、ファイバー先端に金属球を装着しなくとも、本発明装置の位置の確認に使用することが出来る。(図12における矢印で示した部分)
 図7に示す例では、アルミナ微粉末17が積極的に残されているが、除去してもよい。その場合には、反射率は低くなるが、金属の脱落を心配せずに済む利点がある。
 上記のような凹凸面であれば、機械的ではなく、薬剤を使用して化学エッチング法により形成することも可能である。
 次に、上記した光ファイバー3を備えた装置全体について説明する。
 図8に示すように、光ファイバー3にはファイバー固定具19が外嵌されている。このファイバー固定具19は、樹脂成形品であり、円筒状で先端側がテーパ状で先細りになっている。ファイバー固定具19は、その弾性変形能を利用して、光ファイバー3に対して摺動可能且つ着脱可能となっており、必要に応じて光ファイバー3の任意の位置に取り付けて固定できる。
 医療用チューブCには、用途に応じて弾性のある樹脂成形品で構成されたアダプターAが取り付けられている。このアダプターAの設計態様は、医療用チューブCの用途、例えば、経鼻栄養用等に応じて異なるが、チューブへの取付け部分は、概して円筒状になっており、チューブに外嵌されるようになっている。この円筒状部分は、嵌め込み易いように、テーパ状になっており、嵌込む際に先頭側となる部位が縮径されているが、後続部位は拡径されて隙間が設けられている。
 上記したファイバー固定具19は、使用する医療用チューブCのアダプターAの種類に応じて設計されており、図8の点線で示すように、そのアダプターAの隙間に嵌合されると、両者が弾性的に拡縮した状態で相対的に移動不能に結合されるようになっている。
 また、光ファイバー3には、一定間隔毎に赤、青、緑等と色分けされた目印(図示省略)が付けられており、所謂目盛機能も付加されている。
 光ファイバー3の基端側には、図1に示すように光源機器21が接続されている。
 図9に示すように、この光源機器21には被差込み部23が設けられており、この被差込み部23は内面側がテーパ状で奥にいくほど狭くなっている。
 光ファイバー3は、交換使用するものであり、図9に示すように、その基端には、外面がテーパ状の差込みアダプター25が取り付けられており、装置を使用する際には、光源機器21側の被差込み部23に差込むようになっている。この差込みにより、光ファイバー3のコア部5が光源機器21側の導光部と突当て状態で容易に導光連結される。
 この光源機器21には、図10に示すように、2種類の光源が内蔵されている。第1の光源は、赤色レーザー光(波長:650nm付近)27であり、第2の光源は近赤外線レーザー光(波長:780nm付近)29となっている。光源機器21では、上記した2種類の光源が、光源選択ボタン31を押すことで選択できるようになっている。
 光ファイバー3の素材がPMMA樹脂であることを考慮して、伝搬波長帯は可視~近赤外となっているが、目的からもこれで十分である。
 赤色レーザー光は肉眼で確認できるが、近赤外線レーザー光は肉眼では確認できず、赤外線カメラ33(図1)で撮像し、その画面で確認することになる。前者は、体内脂肪の少ない人体や部位で使用でき。二つの光とも体内において射出させても生理的悪影響は殆どないので、安心して利用できるものである。光源機器21では光ファイバー3との接続口を上記した二つの光源毎に2つ設定されているので、光ファイバー3を該当する光源の接続口に接続させ、光源選択ボタン31を押して該当する光源を選択することで、光ファイバー3を通す光を選択できる。
 半導体レーザー光は、輝度が高く出射口径が小さいので、フォーカシング整形光学系を用いることにより、光ファイバー3に効率良く十分な光量で出射することができるので、利用されている。
 この光源機器21は、商用電源からの電源供給を受け、DCに変換された上で蓄電される蓄電池を電源としており、商用電源が取れない箇所でも利用できるようになっている。
 また、筐体は、黒色になっており、内部からの光の漏洩が抑制されている。
 本発明の先端位置表示装置1は、上記したように極細の光ファイバー3を導光ラインとして利用しており、上記のファイバー固定具19を利用することで、光ファイバー3を医療用チューブCに挿通した状態で、その先端位置をその医療用チューブC中またはその先端から突出した位置にもってきて固定することができる。
 患者の体内の各部位の位置は推定できるので、上記状態の医療用チューブCを患者の体内に挿入すると、目的部位まで到達したであろう最終段階だけでなく、その途中段階でも、光ファイバー3から出射した光から、正確に挿入しつつあるのかを容易に確認でき、間違った部位への挿入を途中で止めることができるので、患者の負担が軽減される。
 また、目的部位まで医療用チューブCの先端が到達した後には、ファイバー固定具19を取り外すことで、光ファイバー3は容易に引き抜くことができる。
 医療用チューブCが既に体内に挿入されている状況下では、挿入時には目的部位に正確に到達していても、時間の経過により、カールアップ等により間違った部位への移動が起こっていないかを確認する場合がある。その場合には、光ファイバー3をその体内に挿入された医療用チューブCに改めて挿入し直すことになるが、目盛機能を活用することで、挿入長さを確認できるので、既に体内にある医療用チューブCの先端位置と容易に合わせることができる。
 また、2種類の光源があるので、肉眼で見える赤色光を手軽なガイド光として挿入途中までは利用して、最後の位置決めで近赤外線光を利用してカメラのディスプレイに表示された画像から正確に確認するなど、介護者が挿入操作の進展に合わせて光源を切替えて使用できる。
 次に、動物実験例を示す。
 用いた光照射用光ファイバーは、図3(2)の一部を変更したものであり、金属球13が装着されていない点のみが異なる。光源からは可視光を放射させている。
 図11、図12で、新生児豚を対象とし、医療用チューブCとして、6Fr(外径2.0mm)の栄養カテーテルを使用した動物実験の結果を示している。光溜まりにより視認できる明かりは矢印で示されている。
 例(A)では、先に栄養カテーテルを胃内に留置し、その後に光が放射した状態で光ファイバーを栄養カテーテルに通した。光ファイバーは柔軟性が有るので、留置状態の栄養カテーテルに難なく通せた。
 例(B)では、先に栄養カテーテルに光が放射した状態で光ファイバーを挿入し、その後に、栄養カテーテルに胃内に通した。
 例(C)では、先に栄養カテーテルに光が放射した状態で光ファイバーを挿入し、その後に、栄養カテーテルに気管・肺に(誤り操作例として)通した。
 図11は例(A)、図12は例(B)に対応しており、光溜まりができており、十分に視診が可能であった。また、図11の確認後に解剖すると、図13で示すように、図11で明かりが確認された部位が胃内であったことが確認できた。
 図14は例(C)に対応しており、気管では光溜まりが確認されたが、気管支では、光が消えた。このように、胃内と気管内と部位は変わっても明かりが確認されるので、誤挿入があった場合には即座に対応できる。
 なお、上記では、カメラまたは視認により、光溜まりを確認しているが、カメラを内蔵したタブレットを用いて、1/30SEC程度の速度で静止画を取り込み、動画として再生表示させることも可能である。その際、光溜まり中、画像処理(2値化)により最も明るい位置を特定し、その中心で「+」マークで描画させれば、光ファイバーの先端位置の移動軌跡が分かり易い。
 また、光ファイバー3を医療用チューブCに通しているが、医療用チューブCと共にそのまま体内に留置させておきたい場合には、医療用チューブC内にそのまま通しておくことはできない。
 医療用チューブには、図15に示すように、シングルタイプC1と、ダブルルーメンタイプC2があり、シングルタイプC1の場合には、光ファイバー3を外側に這わせ、医療用チューブの素材と同じ素材のカバーL(厚さ0.03~0.04mm程度)を被せて固定してもよい。ダブルルーメンタイプC2の場合には、使用しないサブチューブ(s)の方に光ファイバー3を通しておくことも可能である。これにより、メインチューブ(m)側は栄養分の送り込みに常時利用できる。
<メスの先端照明装置>
 本発明の光ファイバーを手術時の手術器具に装着し照明用として使用する際の、例として、メス先端照灯装置を例示する。
 メス先端照灯装置41について、図面にしたがって説明する。
 図16に示すように、光ファイバー3の先端側に放射部43が設けられている。
 この放射部43は、光ファイバー3のコア部5を通って導かれた光を屈折により放射導光方向と交差する方向に屈折するものである。
 放射部43は一つの大きな湾曲した凹面45を有している。
 この湾曲した凹面45の放射方向先方には間隔をあけて平凸レンズ(半球レンズ)47が凹―凸対向で配置されている。
 寸法例は数値で示している。
 このような構成により、湾曲した凹面45から屈折により前方に向かった光が、平凸レンズ47を通ることで集束方向に向かい、焦点を越すと再び放射方向に向かう。従って、図17に示すように、電気メスの先端を適当な大きさの円で囲んで照らすことができる。
 照灯させるには、光ファイバー3の先端面を単純に凸状曲面に加工して放射状に直接出射するだけでも可能ではあるが、レンズを利用すると所望の位置に所望の大きさで照らすことができる、即ち、照明調整が容易となる。さらに、実像を映し出すことができるので、映し出したいものがある場合にはその位置の錯覚を防ぐことができる。
 本発明の先端位置表示装置は、医療用チューブに挿入された光ファイバーの先端から光を出射させるもので、医療用チューブの体内先端位置を表示させるだけでなく、頸部当りで、光を出射させると、頸静脈や動脈を確認できる。従って、頸静脈穿刺への使用可能性も考えられる。
 また、本発明のメス先端照灯装置は、メスの先端を明るく照らすことができるので、手術環境を向上させることができる。
 1…先端位置表示装置   3…光ファイバー   5…コア部
 7…クラッド部   9…放射部   11…湾曲した凹面
13…金属球   15…湾曲した凹面   17…白アルミナ微粉末
19…ファイバー固定具   21…光源機器   23…被差込み部
25…差込みアダプター   27…赤色レーザー光
29…近赤外線レーザー光   31…光源選択ボタン
33…赤外線カメラ   41…先端照灯装置   43…放射部
45…湾曲した凹面   47…平凸レンズ(半球レンズ)
 C…医療用チューブ   A…(チューブ側の)アダプター

Claims (14)

  1.  光を光源から導入する基端部と導入された光を放射する先端光放射部を有する光ファイバーであって、前記先端光放射部の先端面が湾曲した凹凸面を形成し、前記湾曲した凹凸面を介して前記導入された光が放射状に放射される、光照射用光ファイバー。
  2.  湾曲した凹凸面が、部分球面状又は部分楕円球面状湾曲面である請求項1に記載の光照射用光ファイバー。
  3.  前記先端光放射部の湾曲した面の形状が、湾曲した凹面である請求項1または2に記載の光照射用光ファイバー。
  4.  更に前記湾曲した凹面の近傍に、光反射率50%以上とする反射率調整手段が設けられ、前記凹面状湾曲面の近傍に放射光が集中する請求項3に記載の光照射用光ファイバー。
  5.  反射率調整手段が光ファイバー光放射端部の湾曲した凹面に相対する湾曲した凸面を有する金属材によって構成されている請求項4に記載の光照射用光ファイバー。
  6.  湾曲した凹面が部分球面状または部分楕円球面状であり、反射率調整手段が部分球面状に相対するときには球体または部分球体、部分楕円球面状に相対するときには楕円球体または部分楕円球体である請求項4または5に記載の光照射用光ファイバー。
  7.  前記先端光放射部の湾曲した凹凸面の形状が、湾曲した凸面である請求項1または2に記載の光照射用光ファイバー。
  8.  請求項1から7のいずれか記載の光照射用が単数または複数列束ねられたものと、前記光照射用光ファイバーの基端側に接続されて、光を前記光照射用光ファイバーに導入する光源とを備え、
     前記光照射用光ファイバーの先端光放射部からの放射光を体内の照灯として利用することを特徴とする体内照灯装置。
  9.  体内に挿入される医療用チューブに光照射用光ファイバーを並列させ、その先端光放射部を前記医療用チューブの先端に近づけることで、体内に挿入された医療用チューブの先端位置を光溜り状に照灯させる請求項8に記載の体内照灯装置。
  10.  請求項3から6のいずれか記載の光照射用光ファイバーを備える請求項9に記載の体内照灯装置。
  11.  固定具が光照射用光ファイバーに摺動可能に取り付けられており、前記固定具は医療用チューブのアダプターに着脱自在に内嵌固定されるものである請求項9または10に記載の体内照灯装置。
  12.  光照射用光ファイバーが請求項3に記載の光照射用光ファイバーであり、且つ、
     屈折方向に放射する湾曲した凹面の放射方向先方に平凸レンズが凹―凸対向で設けられている請求項8に記載の体内照灯装置。
  13.  光源が赤色光レーザー光と、近赤外線レーザー光とで構成されており、使い分けが可能になっている請求項8から12のいずれかに記載の体内照灯装置。
  14.  光源機器は、蓄電池駆動型になっている請求項8から13のいずれかに記載の体内照灯装置。
PCT/JP2015/001091 2014-03-04 2015-03-03 先端加工された光照射用光ファイバー及びこれを用いた体内照灯装置 WO2015133119A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016506133A JP6429253B2 (ja) 2014-03-04 2015-03-03 先端加工された光照射用光ファイバー及びこれを用いた体内照灯装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014041577 2014-03-04
JP2014-041577 2014-03-04

Publications (1)

Publication Number Publication Date
WO2015133119A1 true WO2015133119A1 (ja) 2015-09-11

Family

ID=54054936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001091 WO2015133119A1 (ja) 2014-03-04 2015-03-03 先端加工された光照射用光ファイバー及びこれを用いた体内照灯装置

Country Status (2)

Country Link
JP (1) JP6429253B2 (ja)
WO (1) WO2015133119A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207752A1 (ja) * 2017-05-11 2018-11-15 アルプス電気株式会社 カテーテル装置
WO2018207753A1 (ja) * 2017-05-11 2018-11-15 アルプス電気株式会社 カテーテル装置、コネクタ装置およびカテーテルシステム
WO2019215791A1 (ja) * 2018-05-07 2019-11-14 株式会社ニューロシューティカルズ 医療用チューブ位置確認システム
WO2020059087A1 (ja) * 2018-09-20 2020-03-26 株式会社ニューロシューティカルズ 医療用チューブ位置確認システム
WO2021024992A1 (ja) 2019-08-05 2021-02-11 株式会社ジェイ・エム・エス 医療用チューブの先端位置検出システム
EP3685733A4 (en) * 2017-09-22 2021-06-23 Toray Industries, Inc. PLASTIC OPTICAL FIBER FOR MEDICAL DEVICE LIGHTING AND MEDICAL DEVICE LIGHTING USING IT
WO2022168529A1 (ja) 2021-02-02 2022-08-11 株式会社ジェイ・エム・エス アダプタ
RU2769438C9 (ru) * 2018-09-20 2022-10-28 Ньюросьютикалз Инк. Система подтверждения положения медицинской трубки

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926701A (ja) * 1982-08-05 1984-02-13 Mitsubishi Rayon Co Ltd 凹端面をもつ光フアイバおよびその製造法
JPS62120705U (ja) * 1986-01-22 1987-07-31
US20020110319A1 (en) * 2001-02-14 2002-08-15 Yin-Su Chung Optical fiber having decorative effect
JP2008224979A (ja) * 2007-03-12 2008-09-25 Sumitomo Electric Ind Ltd 光照射ファイバ及び光照射ファイバの製造方法
JP2013198644A (ja) * 2012-03-26 2013-10-03 Panasonic Corp 管先端位置確認装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926701A (ja) * 1982-08-05 1984-02-13 Mitsubishi Rayon Co Ltd 凹端面をもつ光フアイバおよびその製造法
JPS62120705U (ja) * 1986-01-22 1987-07-31
US20020110319A1 (en) * 2001-02-14 2002-08-15 Yin-Su Chung Optical fiber having decorative effect
JP2008224979A (ja) * 2007-03-12 2008-09-25 Sumitomo Electric Ind Ltd 光照射ファイバ及び光照射ファイバの製造方法
JP2013198644A (ja) * 2012-03-26 2013-10-03 Panasonic Corp 管先端位置確認装置

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018207752A1 (ja) * 2017-05-11 2018-11-15 アルプス電気株式会社 カテーテル装置
CN111278405B (zh) * 2017-05-11 2022-11-18 间藤卓 导管装置
JP7081833B2 (ja) 2017-05-11 2022-06-07 卓 間藤 カテーテル装置、コネクタ装置およびカテーテルシステム
JP7122005B2 (ja) 2017-05-11 2022-08-19 卓 間藤 カテーテル装置
US11666732B2 (en) 2017-05-11 2023-06-06 Takashi Mato Catheter device
JPWO2018207753A1 (ja) * 2017-05-11 2020-06-11 間藤 卓 カテーテル装置、コネクタ装置およびカテーテルシステム
WO2018207753A1 (ja) * 2017-05-11 2018-11-15 アルプス電気株式会社 カテーテル装置、コネクタ装置およびカテーテルシステム
CN111278405A (zh) * 2017-05-11 2020-06-12 间藤卓 导管装置
JPWO2018207752A1 (ja) * 2017-05-11 2020-05-28 間藤 卓 カテーテル装置
EP3685733A4 (en) * 2017-09-22 2021-06-23 Toray Industries, Inc. PLASTIC OPTICAL FIBER FOR MEDICAL DEVICE LIGHTING AND MEDICAL DEVICE LIGHTING USING IT
JPWO2019215791A1 (ja) * 2018-05-07 2021-04-01 株式会社ニューロシューティカルズ 医療用チューブ位置確認システム
EP3791851A4 (en) * 2018-05-07 2021-12-29 Neuroceuticals Inc. Medical tube position confirmation system
JP2022081579A (ja) * 2018-05-07 2022-05-31 株式会社大塚製薬工場 医療用チューブ位置確認システム
JP7464934B2 (ja) 2018-05-07 2024-04-10 株式会社大塚製薬工場 医療用チューブ位置確認システム
WO2019215791A1 (ja) * 2018-05-07 2019-11-14 株式会社ニューロシューティカルズ 医療用チューブ位置確認システム
JP7069161B2 (ja) 2018-05-07 2022-05-17 株式会社大塚製薬工場 医療用チューブ位置確認システム
RU2769438C1 (ru) * 2018-09-20 2022-03-31 Ньюросьютикалз Инк. Система подтверждения положения медицинской трубки
EP3854373A4 (en) * 2018-09-20 2022-05-04 Neuroceuticals Inc. SYSTEM FOR DETERMINING THE POSITION OF A MEDICAL TUBE
RU2769438C9 (ru) * 2018-09-20 2022-10-28 Ньюросьютикалз Инк. Система подтверждения положения медицинской трубки
KR20210090167A (ko) * 2018-09-20 2021-07-19 뉴로슈티컬즈 인크. 의료용 튜브 위치 확인 시스템
KR102590919B1 (ko) 2018-09-20 2023-10-19 뉴로슈티컬즈 인크. 의료용 튜브 위치 확인 시스템
WO2020059087A1 (ja) * 2018-09-20 2020-03-26 株式会社ニューロシューティカルズ 医療用チューブ位置確認システム
KR20220044970A (ko) 2019-08-05 2022-04-12 가부시끼가이샤 제이엠에스 의료용 튜브의 선단 위치 검출 시스템
WO2021024992A1 (ja) 2019-08-05 2021-02-11 株式会社ジェイ・エム・エス 医療用チューブの先端位置検出システム
WO2022168529A1 (ja) 2021-02-02 2022-08-11 株式会社ジェイ・エム・エス アダプタ
KR20230137905A (ko) 2021-02-02 2023-10-05 가부시끼가이샤 제이엠에스 어댑터

Also Published As

Publication number Publication date
JP6429253B2 (ja) 2018-11-28
JPWO2015133119A1 (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6429253B2 (ja) 先端加工された光照射用光ファイバー及びこれを用いた体内照灯装置
US20170055819A1 (en) Set comprising a surgical instrument
US20130253312A1 (en) Medical tool that emits near infrared fluorescence and medical tool position-confirming system
US20050251119A1 (en) Illuminated stylet
KR20100036323A (ko) 가요성의 적외선 전달 장치 및 방법
CN104994814A (zh) 光导眼科用放射装置
US20120253204A1 (en) Systems and methods for phototherapeutic treatment of rectal diseases
Wilson et al. Miniature ureteroscope distal tip designs for potential use in thulium fiber laser lithotripsy
US10441156B2 (en) Application of highly scattering materials to surgical illumination
US20190298161A1 (en) Device for use in hysteroscopy
US10617471B2 (en) Laser therapeutic device
JP2021509622A (ja) イメージングシステム及び方法
US20150099981A1 (en) Tubular Light Guide
JP6498028B2 (ja) 内視鏡用光線力学的治療装置
WO2016203626A1 (ja) 内視鏡システムおよび照明装置
JP6134896B2 (ja) レーザハンドピース
KR100879798B1 (ko) 치과용 리트랙터
JP2016214373A (ja) 光照射器システム、子宮頸部用光線力学的治療装置および照射方法
JP5790190B2 (ja) 内視鏡
JP3194328U (ja) 導光部の周面に拡散部を有する照明器具
US20150098216A1 (en) Fan Light Element
JP2015002824A (ja) 口腔医療用照明器具
JP2015066018A (ja) 光ガイドシステム
US20220226665A1 (en) Light therapy diagnostic device and method for operating the same
KR20170122323A (ko) 레이저 수술장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506133

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758151

Country of ref document: EP

Kind code of ref document: A1