WO2015133073A1 - スイッチング素子及びスイッチング素子の製造方法 - Google Patents

スイッチング素子及びスイッチング素子の製造方法 Download PDF

Info

Publication number
WO2015133073A1
WO2015133073A1 PCT/JP2015/000758 JP2015000758W WO2015133073A1 WO 2015133073 A1 WO2015133073 A1 WO 2015133073A1 JP 2015000758 W JP2015000758 W JP 2015000758W WO 2015133073 A1 WO2015133073 A1 WO 2015133073A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
electrode layer
film
upper electrode
layer
Prior art date
Application number
PCT/JP2015/000758
Other languages
English (en)
French (fr)
Inventor
直樹 伴野
宗弘 多田
岡本 浩一郎
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/120,993 priority Critical patent/US20160359110A1/en
Priority to JP2016506109A priority patent/JP6665776B2/ja
Publication of WO2015133073A1 publication Critical patent/WO2015133073A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8416Electrodes adapted for supplying ionic species
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0009RRAM elements whose operation depends upon chemical change
    • G11C13/0011RRAM elements whose operation depends upon chemical change comprising conductive bridging RAM [CBRAM] or programming metallization cells [PMCs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/023Formation of switching materials, e.g. deposition of layers by chemical vapor deposition, e.g. MOCVD, ALD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/028Formation of switching materials, e.g. deposition of layers by conversion of electrode material, e.g. oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Shaping switching materials
    • H10N70/063Shaping switching materials by etching of pre-deposited switching material layers, e.g. lithography
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/15Current-voltage curve
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/50Resistive cell structure aspects
    • G11C2213/52Structure characterized by the electrode material, shape, etc.

Definitions

  • the present invention relates to a switching element and a method for manufacturing the switching element, and in particular, by using an electrochemical reaction, a metal bridge is formed in an ion conductive layer that conducts metal ions, and a resistance change occurs from an off state to an on state.
  • the present invention relates to a possible switching element and a manufacturing method thereof.
  • the formation of metal bridges using this electrochemical reaction means the formation of metal ions by oxidation of metals, introduction of the generated metal ions, and precipitation of metals by reduction of metal ions. ) In which metal crosslinks are formed.
  • a nonvolatile switching element In order to diversify the functions of programmable logic and promote implementation in electronic devices, it is necessary to reduce the size of switches that connect logic cells to each other and to reduce their on-resistance.
  • a nonvolatile switching element has been developed in which a metal bridge is formed in a resistance change layer by using an electrochemical reaction, thereby switching from an off state to an on state. That is, by using an electrochemical reaction, metal is deposited in a resistance change layer (ion conduction layer) that conducts metal ions to form a metal bridge in the resistance change layer, thereby turning on from an off state. It switches to the state.
  • a nonvolatile switching element is known to be smaller in size and smaller in on-resistance than a conventional semiconductor switch.
  • Non-volatile switching elements that use electrochemical reactions include “two-terminal switches” disclosed in Patent Document 1 (International Publication No. 00/48196) and Patent Document 2 (International Publication No. 2012/043502).
  • "Three-terminal switch”. 1A is a cross-sectional view illustrating a configuration of a switching element configured as a two-terminal switch disclosed in Patent Document 1.
  • FIG. 1 an ion conductive layer 203 is sandwiched between a lower electrode 201 that supplies metal ions and an upper electrode 202 that does not supply metal ions when the switching element switches the switching element from an off state to an on state. It discloses that it has a structure.
  • the upper electrode 202 is grounded and a positive voltage is applied to the lower electrode 201.
  • the metal is ionized, and the generated metal ions are introduced into the ion conductive layer 203.
  • metal ions are reduced and metal is deposited.
  • the switching element is switched from the off state to the on state.
  • the upper electrode 202 is grounded and a negative voltage is applied to the lower electrode 201.
  • the deposited metal is re-ionized, and reprecipitation of the metal proceeds in the lower electrode 201 due to reduction of the metal ion.
  • the metal bridge disappears and the switching element is switched from the on state to the off state. Since the two-terminal switch has a simple structure, the manufacturing process is simple, and a two-terminal switch having an element size on the order of nanometers can be processed.
  • FIG. 1B is a conceptual diagram showing a configuration of a switching element configured as a three-terminal switch disclosed in Patent Document 2.
  • Patent Document 2 discloses that the switching element includes a first switch 301 and a second switch 302 (see FIG. 3 of Patent Document 2).
  • the first switch 301 includes a first electrode 301a configured as an active electrode, a second electrode 301b configured as an inactive electrode, and a resistance change layer sandwiched therebetween.
  • the second switch 302 includes a first electrode 302a configured as an active electrode, a second electrode 302b configured as an inactive electrode, and a resistance change layer sandwiched therebetween.
  • the first electrode 301 a of the first switch 301 is connected to the first node 303
  • the first electrode 302 a of the second switch 302 is connected to the second node 304.
  • the second electrodes 301 b and 302 b of the first switch 301 and the second switch 302 are connected to the common node 305.
  • Patent Document 3 International Publication No. 2011/058947 discloses a preferable material for a resistance change layer (ion conductive layer) of a nonvolatile switching element utilizing an electrochemical reaction. Patent Document 3 discloses that a porous polymer containing silicon, oxygen, and carbon as main components is used as the resistance change layer. Since the porous polymer ion conductive layer can maintain a high dielectric breakdown voltage even when a metal bridge is formed, it has excellent operational reliability.
  • nonvolatile switching element As a programmable logic wiring change-over switch, it is necessary to reduce the element size and simplify the manufacturing process in response to higher wiring density.
  • copper is mainly used as a wiring material used for forming a multilayer wiring. Development of a method for efficiently forming a nonvolatile switching element in a multilayered copper wiring is desired.
  • Non-Patent Document 1 discloses a technique for integrating a switching element using an electrochemical reaction in a semiconductor device.
  • Non-Patent Document 1 describes a configuration in which when the lower electrode of the switching element is made of copper, the copper wiring on the semiconductor substrate is also used as the lower electrode of the switching element. If this structure is adopted, a step for newly forming a lower electrode in addition to the copper wiring can be omitted, and a mask for a patterning step for producing the lower electrode is not necessary. For example, in order to produce a variable resistance element having a two-terminal switch configuration, only two photomasks (PR: Photoresist mask) used in the ion conductive layer forming step and the upper electrode forming step are added. Become.
  • PR Photoresist mask
  • Non-Patent Document 1 discloses that an upper electrode is manufactured using ruthenium suitable for processing.
  • Patent Document 3 discloses a technique for forming a porous polymer ion conductive layer after providing a metal thin film functioning as an oxidation sacrificial layer on the copper wiring surface for the purpose of preventing oxidation of the copper wiring surface.
  • the metal thin film is oxidized by oxygen during the film forming process of the porous polymer ion conductive layer, and is converted into a metal oxide thin film exhibiting ion conductivity.
  • FIG. 1C is a cross-sectional view specifically showing the configuration of the switching element disclosed in Patent Document 3.
  • Patent Document 3 includes a first electrode 401, a second electrode 402, an ion conductive layer 403, and a titanium oxide film 404 (see FIG. 4 of Patent Document 3).
  • the ion conductive layer 403 and the titanium oxide film 404 are provided between the first electrode 401 and the second electrode 402.
  • the first electrode 401 is formed of a metal whose main component is copper, and the titanium oxide film 404 is provided between the ion conductive layer 403 and the first electrode 401.
  • the ion conductive layer 403 is formed of a porous polymer containing silicon, oxygen, and carbon as main components.
  • the titanium oxide film 404 is formed by oxidizing a titanium film (a metal thin film functioning as an oxidation sacrificial layer) during the film formation process of the ion conductive layer 403.
  • the titanium oxide film 404 forms a resistance change layer exhibiting ion conductivity together with the ion conductive layer 403 formed on the upper surface thereof.
  • Patent Document 4 relates to a semiconductor device, and a semiconductor device having a three-terminal variable resistance element inside a multilayer copper wiring layer on a semiconductor substrate has been proposed.
  • Patent Document 5 relates to a resistance change element including a resistance change layer sandwiched between a lower electrode and an upper electrode, and lists the material names of the lower electrode and the upper electrode of the resistance change element disclosed in Patent Document 5.
  • the upper electrode of Patent Document 5 is made of Au, Pt, Ru, Ir, Ti, Al, Cu, Ta, etc., or alloys, oxides, nitrides, fluorides, carbides, borides, etc. of these. It is described that it should be.
  • the upper electrode of Patent Document 5 is preferably made of a material that is not easily oxidized or a material that can maintain conductivity even after oxidation, and Ti—N (titanium nitride), FeN (iron nitride), Ti It is described that it is preferably made of a nitride such as —Al—N.
  • Patent Document 6 relates to a resistance change element, and it has been proposed to use an alloy of ruthenium and a metal whose negative standard Gibbs energy of oxidation is larger than that of ruthenium for the electrode of the resistance change element.
  • Non-volatile switching element using electrochemical reaction can be applied to wiring changeover switch of programmable logic.
  • a nonvolatile switching element is used for a wiring changeover switch of a programmable logic, there are two problems.
  • the first problem is to improve the yield of switching elements that can be reliably rewritten to an on state or an off state.
  • a reset operation for performing a transition to an off state is performed using a large-scale element array, there may be a small number of elements that cannot be reset.
  • Such an element once exhibits a reset behavior, and although the resistance value of the element increases, it transitions to a low resistance state again with a voltage having an absolute value smaller than a desired reset voltage.
  • the resistance change layer breaks down after the metal bridge in the resistance change layer (ion conductive layer) is recovered by the reset operation. In order to eliminate such problems, it is necessary to optimize the configuration of the nonvolatile switching element.
  • the second problem is the holding power that maintains the on-state or off-state for about 10 years in the state where there is no application of voltage / current used for rewriting after rewriting to the on-state or off-state during the initial programming. It is an improvement.
  • the amount of current used for rewriting is proportional to the total amount of metal constituting the metal bridge formed in the resistance change layer (ion conductive layer). In order to form a thick metal bridge, the total amount of metals constituting the metal bridge is large, and the amount of current used for rewriting is large. Conversely, when the amount of current used for rewriting is small, the total amount of metal constituting the metal bridge is reduced, and the formed metal bridge is thin.
  • the non-volatile switching element has a trade-off between the reduction in the amount of current used for rewriting (low power consumption) and the holding force (high reliability) for holding the low ON state resistance value for a long period of time. Exists. In order to reduce the amount of current used for rewriting (low power consumption) while achieving long-term reliability exceeding 10 years, it is necessary to optimize the configuration of the nonvolatile switching element.
  • An object of the present invention is to provide a non-volatile switching element having a high holding force even when programmed with a low current, while suppressing a dielectric breakdown of a variable resistance layer during a reset operation.
  • the switching element includes a first electrode, a second electrode, and a resistance change layer having ion conductivity provided between the first electrode and the second electrode.
  • the first electrode includes a metal that generates metal ions capable of conducting in the resistance change layer.
  • the second electrode includes a first electrode layer formed in contact with the resistance change layer and a second electrode layer formed in contact with the first electrode layer.
  • the first electrode layer is formed of a ruthenium alloy including ruthenium and a first metal having a larger standard Gibbs energy in the oxidation process than ruthenium in the negative direction, and the second electrode layer is nitrided including the first metal. Formed of things.
  • the content rate of the 1st metal in a 1st electrode layer is smaller than the content rate of the 1st metal in a 2nd electrode layer.
  • a semiconductor device in another aspect of the present invention, includes a semiconductor substrate and a multilayer wiring layer formed above the semiconductor substrate and including a wiring formed of copper and a plug formed of copper. Switching elements are formed in the multilayer wiring layer.
  • the switching element is made of copper, a lower electrode copper wiring used as a lower electrode of the switching element, an upper electrode electrically connected to the plug, and an ion formed between the lower electrode copper wiring and the upper electrode. And a variable resistance layer having conductivity.
  • the upper electrode includes a first upper electrode layer formed in contact with the resistance change layer and a second upper electrode layer formed in contact with the first upper electrode layer.
  • the first upper electrode layer is made of a ruthenium alloy containing ruthenium and a first metal having a larger standard Gibbs energy in the oxidation process than ruthenium in the negative direction.
  • the second upper electrode layer is formed of a nitride containing the first metal. The content ratio of the first metal in the first upper electrode layer is smaller than the content ratio of the first metal in the second upper electrode layer.
  • the present invention it is possible to provide a nonvolatile switching element having a high holding force even when programmed with a low current, while suppressing the dielectric breakdown of the variable resistance layer during the reset operation.
  • the switching element of 1st Embodiment it is sectional drawing which shows typically the mechanism by which metal bridge
  • FIG. 6 is a cross-sectional view schematically showing steps 1 to 4 of the method for manufacturing the semiconductor device of the first embodiment.
  • FIG. 6 is a cross-sectional view schematically showing steps 5 to 8 of the method for manufacturing the semiconductor device of the first embodiment.
  • It is sectional drawing which shows typically the processes 9 and 10 of the manufacturing method of the semiconductor device of 1st Embodiment.
  • It is sectional drawing which shows typically the processes 11 and 12 of the manufacturing method of the semiconductor device of 1st Embodiment.
  • FIG. 6 is a cross-sectional view schematically showing steps 1 to 3 of a method for manufacturing a semiconductor device of a second embodiment.
  • FIG. 6 is a cross-sectional view schematically showing steps 4 to 6 of the method for manufacturing the semiconductor device of the second embodiment.
  • FIG. 10 is a cross-sectional view schematically showing steps 7 to 9 of the method for manufacturing a semiconductor device of the second embodiment. It is sectional drawing which shows typically the processes 10 and 11 of the manufacturing method of the semiconductor device of 2nd Embodiment. It is sectional drawing which shows typically the process 12 of the manufacturing method of the semiconductor device of 2nd Embodiment.
  • the switching element (resistance change element) is provided between the first electrode, the second electrode, and the first electrode and the second electrode, and the resistance change layer having ion conductivity. It comprises.
  • the first electrode includes a metal that can conduct to the variable resistance layer.
  • the second electrode includes a first electrode layer formed in contact with the resistance change layer and a second electrode layer formed in contact with the first electrode layer.
  • the first electrode layer is formed of an alloy containing ruthenium and a first metal.
  • the second electrode layer is made of a nitride containing the first metal.
  • the content rate of the 1st metal in a 1st electrode layer is smaller than the content rate of the 1st metal in a 2nd electrode layer.
  • the first metal constituting the second electrode layer is caused to pass through the first electrode layer due to damage in the heating process or plasma process during the formation process of the switching element. Diffusion to the resistance change layer can be prevented.
  • the metal constituting the second electrode layer diffuses into the resistance change layer, a defect is formed inside the resistance change layer, and the dielectric breakdown voltage decreases.
  • the second electrode layer as a nitride, it is possible to prevent the dielectric breakdown of the variable resistance layer accompanying the reset operation, and to improve the reset yield. As a result, it is possible to prevent problems at the time of resetting and to secure the number of times of switching.
  • the addition of the first metal to the ruthenium constituting the first electrode layer improves the adhesion between the metal bridge and the first electrode layer. Therefore, even when programming at a low current, the stability of the element is improved. And the holding power is improved. Moreover, since the 1st electrode layer contains ruthenium, it can reset stably. Furthermore, the specific resistance increases due to the alloying of the first electrode layer, so that heat is easily generated by the rewriting current, and the Joule heat generated in the metal bridge due to the heat confinement effect is difficult to be dispersed. For this reason, there is an effect that the rewriting current required at the time of rewriting is reduced.
  • the content rate of the first metal in the first electrode layer is adjusted to be smaller than the content rate of the first metal in the second electrode layer.
  • the content ratio By adjusting the content ratio, the first metal contained in the first electrode layer is prevented from diffusing into the nitride constituting the second electrode layer, and the composition of the ruthenium alloy constituting the first electrode layer is prevented from changing. it can.
  • the switching element of the present embodiment can achieve both low power and high holding power by the above mechanism. Since simply increasing the holding power requires higher programming power, the use of an alloy as the first electrode layer can improve the thermal efficiency and effectively perform the programming with a small current. become able to.
  • the switching element of the present invention will be described in detail.
  • FIG. 2 is a cross-sectional view schematically illustrating a configuration example of the switching element according to the first embodiment.
  • the switching element of the first embodiment is configured as a two-terminal switch, and includes a lower electrode 21 (first electrode), an upper electrode 22 (second electrode), and a resistance change layer 23 provided therebetween. And.
  • the resistance change layer 23 has ion conductivity and is a medium that conducts metal ions.
  • the lower electrode 21 functions as an active electrode that supplies metal ions to the resistance change layer 23, and is made of, for example, copper.
  • the metal ions (copper ions) supplied from the lower electrode 21 to the resistance change layer 23 return to the metal, whereby a metal bridge is formed in the resistance change layer 23.
  • a copper wiring formed by sputtering, chemical vapor deposition (CVD (Chemical Vapor Deposition)), or electroplating may be used as the lower electrode 21.
  • the upper electrode 22 functions as an inert electrode.
  • the upper electrode 22 is configured as a stacked body of a first upper electrode layer 22a and a second upper electrode layer 22b.
  • the first upper electrode layer 22a is formed in contact with the resistance change layer 23, and the second upper electrode layer 22b is formed in contact with the first upper electrode layer 22a.
  • a ruthenium alloy (an alloy containing ruthenium as a main component) to which a first metal is added is used as the material of the first upper electrode layer 22a.
  • the standard generation Gibbs energy of the oxidation process (process of generating metal ions from the metal) is higher than that of ruthenium. It is desirable to select a metal that is large in the negative direction.
  • the fact that “the standard generation Gibbs energy of the oxidation process is larger in the negative direction than ruthenium” for a certain metal means the following state. That is, the standard generation Gibbs energy of the oxidation process of the metal is negative, and the absolute value of the standard generation Gibbs energy of the oxidation process of the metal is larger than the absolute value of the standard generation Gibbs energy of the ruthenium oxidation process. That is.
  • ruthenium Metals with standard Gibbs energy in the oxidation process greater in the negative direction than ruthenium, such as titanium, tantalum, zirconium, hafnium, and aluminum, tend to spontaneously undergo chemical reactions (eg, oxidation reactions) compared to ruthenium. .
  • a ruthenium alloy containing the first metal having such properties as a material for forming the first upper electrode layer 22a By using a ruthenium alloy containing the first metal having such properties as a material for forming the first upper electrode layer 22a, the adhesion with the metal bridge formed in the resistance change layer 23 is improved.
  • the content of the first metal in the ruthenium alloy is preferably 10 atm% or more and 40 atm% or less.
  • the first metal added to the ruthenium alloy is preferably a metal selected from the group consisting of titanium, tantalum, zirconium, hafnium, and aluminum. Note that the first metal may be two or more metals selected from the group consisting of titanium, tantalum, zirconium, hafnium, and aluminum.
  • the first upper electrode layer 22a is composed of only the first metal, it does not transition to the off state. That is, the transition from the on state to the off state proceeds by an oxidation reaction (dissolution reaction) of copper that forms a metal bridge.
  • the standard generation Gibbs energy of the oxidation process of the first metal constituting the first upper electrode layer 22a is larger in the negative direction than copper constituting the metal bridge, it is more than the oxidation reaction of copper constituting the metal bridge.
  • the oxidation reaction of the first metal constituting the first upper electrode layer 22a proceeds with priority.
  • the oxidation process of the first metal is a process of generating metal ions from the metal of the first metal constituting the first upper electrode layer 22a. Since the oxidation reaction of the first metal proceeds with priority, the dissolution of the metal bridge does not proceed and the transition from the on state to the off state cannot be performed.
  • the first upper electrode layer 22a may be formed of an alloy of ruthenium and a first metal whose standard generation Gibbs energy in the process of generating metal ions from metal (oxidation process) is smaller in the negative direction than copper. desirable. Specifically, when the content of the first metal in the alloy is 40 atm% or more, when a negative voltage is applied to the lower electrode 21 in the transition process from the on state to the off state, the insulation of the ion conductive layer is performed. The result is that destruction occurs and the transition to the off state is disabled.
  • the content of the first metal is within a predetermined range in the composition of the ruthenium alloy. It is preferable to select as such.
  • the predetermined range of the content of the first metal is a range in which the content of the first metal is 10 atm% or more and 40 atm% or less.
  • the ruthenium content in the ruthenium alloy is 60 atm% or more and 90 atm%.
  • the material of the first upper electrode layer 22a is a metal ion in the resistance change layer 23 when the upper electrode 22 is grounded and a positive voltage is applied to the lower electrode 21 in the process of switching from the off state to the on state. It is desirable to choose not to supply.
  • a sputtering method for forming the first upper electrode layer 22a.
  • a sputtering method there are a method using an alloy target of ruthenium and a first metal, and a co-sputtering method of simultaneously sputtering a ruthenium target and a first metal target in the same chamber.
  • a ruthenium alloy film is formed using a sputtering method, a first metal thin film is formed in advance, and then a ruthenium film is formed using a sputtering method and alloyed with the energy of collision atoms. There is an intermixing method.
  • the use of cosputtering and intermixing methods can change the composition of the alloy.
  • the first metal added to the ruthenium alloy is copper
  • a material having a barrier property against copper ions is preferred.
  • tantalum or titanium when titanium is used as the first metal, the transition to the off state and the stability of the on state are excellent.
  • the first upper electrode layer 22a is formed of a ruthenium alloy containing titanium, and the content of titanium is 20 atm. It is preferable to adjust in the range of not less than 30% and not more than 30 atm%.
  • the second upper electrode layer 22b has a role of protecting the first upper electrode layer 22a from etching damage. Specifically, the second upper electrode layer 22b prevents the first upper electrode layer 22a related to the switching operation from being directly exposed when the first upper electrode layer 22a is processed into a prescribed element size. More specifically, the second upper electrode layer 22b has a first switching operation when a contact hole for forming a via contact for electrical connection with the first upper electrode layer 22a is formed from the outside. The upper electrode layer 22a is not directly exposed. The second upper electrode layer 22b also has a function as an etching stop film when the contact hole is etched when the contact hole is formed. Therefore, the second upper electrode layer 22b may be formed of a material having a low etching rate with respect to a fluorocarbon gas plasma used for etching an insulating film such as silicon oxide in which a contact hole is formed. preferable.
  • the second upper electrode layer 22b is made of a nitride of the first metal contained in the ruthenium alloy constituting the first upper electrode layer 22a.
  • the first metal is preferably selected from the group consisting of titanium, tantalum, zirconium, hafnium, and aluminum.
  • the first metal nitride constituting the second upper electrode layer 22b functions as an etching stop film and has conductivity.
  • the second upper electrode layer 22b When a metal that is not nitride is used for the second upper electrode layer 22b, there is the following possibility. That is, a part of the metal diffuses into the first upper electrode layer 22a due to heating or plasma damage during the process, so that defects occur in the first upper electrode layer 22a, and the dielectric breakdown of the ion conductive layer starts from these defects. There is a possibility of lowering the voltage.
  • the second upper electrode layer 22b is a compound having electrical conductivity.
  • diffusion of metal to the first upper electrode layer 22a can be prevented.
  • the fact that the nitride metal composing the second upper electrode layer 22b and the first metal contained in the ruthenium alloy composing the first upper electrode layer 22a are the same is the first contained in the ruthenium alloy. This is preferable in that the occurrence of defects due to the diffusion of the metal can be prevented more efficiently.
  • the second upper electrode layer 22b is preferably formed of titanium nitride.
  • the second upper electrode layer 22b is preferably formed of tantalum nitride.
  • the content of the first metal of the ruthenium alloy constituting the first upper electrode layer 22a is made smaller than the content of the first metal of the nitride constituting the second upper electrode layer 22b. Thereby, it is possible to prevent the first metal contained in the first upper electrode layer 22a from diffusing into the second upper electrode layer 22b and changing the composition of the ruthenium alloy constituting the first upper electrode layer 22a.
  • the titanium content in the second upper electrode layer 22b is preferably 40 atm% or more and 80 atm% or less. If a composition outside this range is used, intermixing between the first upper electrode layer 22a and the second upper electrode layer 22b is likely to occur due to a thermal load during the process in a later step, and the switching characteristics are deteriorated.
  • a sputtering method for forming the second upper electrode layer 22b.
  • a reactive sputtering method in which a metal target is evaporated using plasma of a mixed gas of nitrogen and argon. The metal evaporated from the metal target reacts with nitrogen to form a metal nitride and is deposited on the substrate.
  • the resistance change layer 23 has ion conductivity, and functions as a medium for conducting metal ions supplied from the lower electrode 21.
  • the resistance change layer 23 includes a first ion conductive layer 23a and a second ion conductive layer 23b.
  • the first ion conductive layer 23a is a film mainly containing at least silicon, oxygen, and carbon, more specifically, a SiOCH polymer (for example, cyclic siloxane) containing silicon, oxygen, carbon, and hydrogen.
  • a SiOCH polymer for example, cyclic siloxane
  • a polymer of such an organic silica compound may be formed by a plasma CVD method.
  • the plasma CVD method refers to, for example, a gas source or a liquid source that is continuously supplied to a reaction chamber under a reduced pressure by vaporizing a molecule to an excited state by plasma energy, a gas phase reaction, or a substrate.
  • the SiOCH polymer film used as the first ion conductive layer 23a is formed as follows.
  • the raw material of the cyclic organosiloxane and helium, which is a carrier gas, are supplied to the reaction chamber.
  • RF Radio-Frequency
  • the supply amount of the raw material is 10 to 200 sccm.
  • 500 sccm of helium is supplied via the raw material vaporizer, and 500 sccm of helium is directly supplied to the reaction chamber in another line.
  • the relative permittivity of the first ion conductive layer 23a is preferably 2.1 or more and 3.1 or less.
  • the second ion conductive layer 23b is inserted between the lower electrode 21 and the first ion conductive layer 23a, and is formed of a metal oxide.
  • the second ion conductive layer 23b is formed by oxidizing a thin film of a metal (hereinafter referred to as “second metal”) constituting the metal oxide. Specifically, first, a thin film of the second metal is formed on the lower electrode 21. Further, a SiOCH polymer film constituting the first ion conductive layer 23a is formed on the second metal thin film by a plasma CVD method. During the formation of the SiOCH polymer film, the second metal thin film is oxidized by oxygen present in the reaction chamber (deposition chamber), whereby the metal oxide used as the second ion conductive layer 23b is oxidized. A thin film is formed.
  • the second metal constituting the metal oxide is desirably a metal having a large standard generation Gibbs energy in the negative direction, and can be selected from the group consisting of titanium, aluminum, zirconium, hafnium, and tantalum. These metals may be laminated and used as a second metal thin film.
  • the optimum film thickness of the second metal thin film is 0.5 nm to 1 nm. If it is thinner than the optimum film thickness, the oxidation reaches the copper wiring surface beyond the thin film of the second metal while the SiOCH polymer film is formed by the plasma CVD method. As a result, oxidation of the copper wiring surface occurs slightly.
  • the standard generation Gibbs energy of the second metal constituting the metal oxide of the second ion conductive layer 23b is large or thicker than the optimum film thickness
  • the SiOCH polymer film is formed by the plasma CVD method
  • the oxidation of the metal thin film may not be completed. If the oxidation of the metal thin film is not completed while the SiOCH polymer film is formed by the plasma CVD method, it remains as a metal on the surface of the copper wiring.
  • the second metal constituting the second ion conductive layer 23b contains the same metal as the first metal contained in the first upper electrode layer 22a and the second upper electrode layer 22b. More preferably, the second metal constituting the second ion conductive layer 23b is the same as the first metal contained in the first upper electrode layer 22a and the second upper electrode layer 22b.
  • the second metal constituting the second ion conductive layer 23b diffuses into the first upper electrode layer 22a or the second upper electrode layer 22b, the first upper electrode layer 22a or the second upper electrode layer 22b The occurrence of defects can be prevented.
  • the dielectric breakdown voltage of the first ion conductive layer 23a may be lowered starting from the defect.
  • the second metal thin film formed in the formation of the second ion conductive layer 23b may be formed using a sputtering method, a laser ablation method, or a plasma CVD method.
  • the film thickness of the second ion conductive layer 23b is desirably 50% or less of the film thickness of the first ion conductive layer 23a.
  • the switching element of the first embodiment is configured as a two-terminal switch.
  • a positive voltage is applied to the lower electrode 21 while the upper electrode 22 (the first upper electrode layer 22a and the second upper electrode layer 22b) is grounded.
  • the metal of the lower electrode 21 is dissolved in the lower electrode 21 to form metal ions 25, which are introduced into the first ion conductive layer 23a through the second ion conductive layer 23b. Then, the metal ions 25 conducted through the second ion conductive layer 23b and the first ion conductive layer 23a are deposited as metal bridges 24 on the surface of the first upper electrode layer 22a, and the lower electrode 21 is deposited by the deposited metal bridges 24. Are connected to the first upper electrode layer 22a. When the lower electrode 21 and the first upper electrode layer 22a are electrically connected by the metal bridge 24, the switching element is turned on.
  • the metal bridge 24 becomes the metal ion 25 and the second ion conductive layer 23b and the second electrode 1 It melt
  • the metal ions 25 are collected in the second ion conductive layer 23b and the metal bridge 24 dispersed in the first ion conductive layer 23a and the lower electrode 21. Thereby, the electrical connection between the lower electrode 21 and the first upper electrode layer 22a is cut off, and the switching element is turned off.
  • the upper electrode 22 is grounded and a positive voltage is applied to the lower electrode 21 again. Further, a negative voltage may be applied to the upper electrode 22 while the lower electrode 21 is grounded to turn on the switching element, or a positive voltage may be applied to the upper electrode 22 while the lower electrode 21 is grounded. The switching element may be turned off.
  • the resistance between the lower electrode 21 and the upper electrode 22 increases from the stage before the electrical connection is completely cut off, or the capacitance between the electrodes changes. There is a change in the electrical characteristics, and the electrical connection is eventually broken.
  • FIG. 4 is a cross-sectional view illustrating the method for manufacturing the switching element of the first embodiment.
  • a tantalum film 21a having a thickness of 20 nm is formed on the surface of the low resistance silicon substrate 26 by sputtering, and a copper film 21b having a thickness of 100 nm is formed on the tantalum film 21a by sputtering.
  • a laminated body of the tantalum film 21 a and the copper film 21 b is used as the lower electrode 21.
  • a titanium film having a thickness of 0.5 nm, an aluminum film having a thickness of 0.5 nm, or a laminate of a titanium film having a thickness of 0.5 nm and an aluminum film having a thickness of 0.5 nm is formed on the lower electrode 21.
  • the metal layer 27 is formed.
  • the metal layer 27 is formed by, for example, a sputtering method.
  • a SiOCH polymer film having a thickness of 6.0 nm is formed by a plasma CVD method.
  • the SiOCH polymer film is formed as follows, for example.
  • the cyclic organosiloxane raw material and the carrier gas helium are supplied to the reaction chamber, the supply of both is stabilized, and the application of RF power is started when the pressure in the reaction chamber becomes constant.
  • the supply amount of the raw material is 10 to 200 sccm.
  • 500 sccm of helium is supplied via the raw material vaporizer, and 500 sccm of helium is directly supplied to the reaction chamber in another line.
  • the metal layer 27 is oxidized by oxygen present in the reaction chamber, and a second ion conductive layer 23b made of a metal oxide film is formed.
  • the first ion conductive layer 23 a and the second ion conductive layer 23 b thus formed constitute a resistance change layer 23.
  • a thin film of ruthenium alloy containing titanium and having a thickness of 30 nm is formed on first ion conductive layer 23a as first upper electrode layer 22a by co-sputtering.
  • the content of titanium in the ruthenium alloy constituting the first upper electrode layer 22a is adjusted to, for example, 25 atm%.
  • a titanium nitride film having a thickness of 50 nm is formed as the second upper electrode layer 22b on the first upper electrode layer 22a.
  • the titanium content in the titanium nitride film is higher than the titanium content in the ruthenium alloy, and is adjusted to, for example, 50 atm%.
  • first upper electrode layer 22a and the second upper electrode layer 22b In forming the first upper electrode layer 22a and the second upper electrode layer 22b, a shadow mask made of stainless steel or silicon is used, and the first upper electrode layer 22a having a shape corresponding to the opening provided in the shadow mask. Then, the second upper electrode layer 22b is formed.
  • the first upper electrode layer 22a and the second upper electrode layer 22b are formed, for example, in a square shape with sides of 30 ⁇ m to 150 ⁇ m.
  • the first upper electrode layer 22 a and the second upper electrode layer 22 b constitute the upper electrode 22.
  • the switching element of the first embodiment described above may be integrated in the multilayer wiring layer of the semiconductor device.
  • the configuration of the semiconductor device in which the switching element of the first embodiment is integrated in the multilayer wiring layer will be described.
  • FIG. 5 is a partial cross-sectional view schematically showing the configuration of the semiconductor device in which the switching elements of the first embodiment are integrated.
  • a two-terminal switch 72 that is a switching element of the first embodiment is integrated in a multilayer wiring layer formed above the semiconductor substrate 51.
  • the multilayer wiring layer has an insulating laminate.
  • This insulating laminate is formed by sequentially laminating an interlayer insulating film 52, a barrier insulating film 53, an interlayer insulating film 54, a barrier insulating film 57, a protective insulating film 64, an interlayer insulating film 65, and an etching stopper, which are sequentially stacked above the semiconductor substrate 51.
  • a film 66, an interlayer insulating film 67, and a barrier insulating film 71 are provided.
  • wiring grooves are formed in the interlayer insulating film 54 and the barrier insulating film 53.
  • a barrier metal film 56 Side and bottom surfaces of the wiring trench are covered with a barrier metal film 56, and a first wiring 55 is formed on the barrier metal film 56 so as to fill the wiring trench.
  • contact holes are formed in the interlayer insulating film 65, the protective insulating film 64, and the hard mask film 62, and wiring grooves are formed in the interlayer insulating film 67 and the etching stopper film 66.
  • the contact hole and the side and bottom surfaces of the wiring trench are covered with a barrier metal film 70.
  • a plug 69 is formed so as to fill the contact hole, and a second wiring 68 is formed so as to fill the wiring groove.
  • the second wiring 68 and the plug 69 are integrated.
  • an opening communicating with the first wiring 55 is formed.
  • the second ion conduction layer 58b, the first ion conduction so as to cover the portion of the first wiring 55 located inside the opening, the side surface of the opening of the barrier insulating film 57, and a part of the upper surface of the barrier insulating film 57.
  • the layer 58a, the first upper electrode layer 61a, and the second upper electrode layer 61b are sequentially stacked.
  • the two-terminal switch 72 includes a first wiring 55 used as a lower electrode, an upper electrode 61 including a first upper electrode layer 61a and a second upper electrode layer 61b, a first ion conductive layer 58a, and a second ion conductive layer 58b. It has the structure which has the resistance change layer 58 provided with. Specifically, the second ion conductive layer 58b and the first wiring 55 are in direct contact with each other in the opening formed in the barrier insulating film 57, and the first ion conductive layer 58a and the first upper electrode layer 61a are directly in contact with each other. Touching.
  • the second upper electrode layer 61 b is electrically connected to the plug 69 through the barrier metal film 70.
  • a hard mask film 62 is formed on the second upper electrode layer 22b.
  • the top surface and the side surface of the laminate composed of the second ion conductive layer 58b, the first ion conductive layer 58a, the first upper electrode layer 61a, the second upper electrode layer 61b, and the hard mask film 62 are the protective insulating film 64. Covered with.
  • the two-terminal switch 72 configured in this way is switched to an on state or an off state by application of a voltage or current.
  • the two-terminal switch 72 is switched by using electric field diffusion of metal ions supplied from the metal forming the first wiring 55 to the second ion conductive layer 58b and the first ion conductive layer 58a.
  • the electrode resistance can be lowered while simplifying the number of steps. More specifically, as an additional step to the normal copper damascene wiring process, the two-terminal switch 72 can be mounted simply by creating at least two photoresist mask sets, thereby reducing the resistance and cost of the switching element. Can be achieved at the same time.
  • the semiconductor substrate 51 is a substrate on which a semiconductor element is formed.
  • a silicon substrate for example, a silicon substrate, a single crystal substrate, an SOI (Silicon-on-Insulator) substrate, a TFT (Thin-Film-Transistor) substrate, a liquid crystal manufacturing substrate, or the like can be used.
  • SOI Silicon-on-Insulator
  • TFT Thin-Film-Transistor
  • the interlayer insulating film 52 is an insulating film formed on the semiconductor substrate 51.
  • a silicon oxide film for example, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of the silicon oxide film, or the like can be used.
  • the interlayer insulating film 52 may be a laminate of a plurality of insulating films.
  • the barrier insulating film 53 is an insulating film having a barrier property provided between the interlayer insulating films 52 and 54.
  • the barrier insulating film 53 functions as an etching stop layer when forming a wiring trench in which the first wiring 55 is embedded.
  • As the barrier insulating film 53 for example, a silicon nitride film, a SiC film, a silicon carbonitride film, or the like can be used.
  • the barrier insulating film 53 can be removed depending on the selection of the etching conditions for the wiring trench.
  • the interlayer insulating film 54 is an insulating film formed on the barrier insulating film 53.
  • the interlayer insulating film 54 for example, a silicon oxide film, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of the silicon oxide film, or the like can be used.
  • the interlayer insulating film 54 may be a laminate of a plurality of insulating films.
  • a wiring groove for embedding the first wiring 55 is formed in the barrier insulating film 53 and the interlayer insulating film 54. Side and bottom surfaces of the wiring groove are covered with a barrier metal film 56, and a first wiring 55 is formed on the barrier metal film 56 so as to bury the wiring groove.
  • the barrier insulating film 53 can be removed depending on the selection of the etching conditions for the wiring trench.
  • the first wiring 55 is a wiring embedded in a wiring groove formed in the interlayer insulating film 54 and the barrier insulating film 53.
  • the first wiring 55 is a component corresponding to the lower electrode 21 of the switching element of FIG. That is, the first wiring 55 also serves as the lower electrode of the two-terminal switch 72 and is in direct contact with the second ion conductive layer 58b of the resistance change layer 58.
  • the upper surface of the second ion conductive layer 58b is in direct contact with the lower surface of the first ion conductive layer 58a, and the upper surface of the first ion conductive layer 58a is in direct contact with the first upper electrode layer 61a.
  • the metal constituting the first wiring 55 a metal that generates metal ions capable of diffusing or ionic conduction in the resistance change layer 58 is used.
  • a metal that generates metal ions capable of diffusing or ionic conduction in the resistance change layer 58 is used.
  • copper or the like can be used.
  • the first wiring 55 may be formed of an alloy including a metal (for example, copper) that generates metal ions capable of diffusion or ion conduction in the resistance change layer 58 and aluminum.
  • the barrier metal film 56 is a conductive film having a barrier property that covers the side and bottom surfaces of the first wiring 55 in order to prevent the metal forming the first wiring 55 from diffusing into the interlayer insulating film 54 and the lower layer. is there.
  • the barrier metal film 56 may be, for example, a refractory metal or a refractory metal such as tantalum, tantalum nitride, titanium nitride, or tungsten carbonitride. A nitride thin film or a laminated film thereof can be used.
  • the barrier insulating film 57 is formed so as to cover the interlayer insulating film 54 and the first wiring 55.
  • the barrier insulating film 57 prevents the metal (for example, copper) forming the first wiring 55 from being oxidized, prevents the metal forming the first wiring 55 from diffusing into the interlayer insulating film 65, and the upper electrode. It serves as an etching stop layer when processing 61 and the resistance change layer 58.
  • a SiC film, a silicon carbonitride film, a silicon nitride film, a laminated structure thereof, or the like can be used.
  • the barrier insulating film 57 is preferably made of the same material as the protective insulating film 64 and the hard mask film 62.
  • the first ion conductive layer 58a and the second ion conductive layer 58b have resistance changes in which the resistance is changed by the action of metal ions generated from the metal forming the first wiring 55 (lower electrode) (diffusion, ion conduction, etc.).
  • Layer 58 is configured.
  • the first ion conductive layer 58a and the second ion conductive layer 58b are components corresponding to the first ion conductive layer 23a and the second ion conductive layer 23b of the switching element of FIG. 2, respectively.
  • the first ion conductive layer 58a is formed of a film containing silicon, oxygen, and carbon as a main component, for example, a SiOCH polymer containing silicon, oxygen, carbon, and hydrogen (for example, a polymer of an organic silica compound such as cyclic siloxane).
  • the SiOCH polymer film used as the first ion conductive layer 58a may be formed by plasma CVD (Plasma-enhanced Chemical Vapor Deposition) method.
  • the SiOCH polymer film used as the first ion conductive layer 58a is formed as follows.
  • the cyclic organosiloxane raw material and the carrier gas helium are supplied to the reaction chamber, the supply of both is stabilized, and the application of RF power is started when the pressure in the reaction chamber becomes constant.
  • the supply amount of the raw material is 10 to 200 sccm.
  • 500 sccm of helium is supplied via the raw material vaporizer, and 500 sccm of helium is directly supplied to the reaction chamber in another line.
  • the second ion conductive layer 58b prevents the metal forming the first wiring 55 from diffusing into the first ion conductive layer 58a by heating or plasma while the first ion conductive layer 58a is being deposited. There is. Furthermore, the second ion conductive layer 58b has a role of preventing the first wiring 55 used as the lower electrode from being oxidized and facilitating diffusion.
  • the metal thin film forming the second ion conductive layer 58b is oxidized during the formation of the first ion conductive layer 58a to become a metal oxide thin film, and becomes a part of the resistance change layer 58.
  • a thin film of titanium, aluminum, zirconium, hafnium, or tantalum can be considered. These metal thin films are oxidized during the formation of the first ion conductive layer 58 a to form a thin film of titanium oxide, aluminum oxide, zirconium oxide, hafnium oxide, and tantalum oxide, and become a part of the resistance change layer 58.
  • the optimum film thickness of the metal film forming the second ion conductive layer 58b is 0.5 to 1 nm. If it is thinner than this, the surface of the first wiring 55 is slightly oxidized. During the formation of the layer 58a, the metal cannot be oxidized and remains as a metal.
  • the resistance change layer 58 is formed so as to cover a part of the upper surface of the first wiring 55, a tapered surface of the opening of the barrier insulating film 57, and a part of the upper surface of the barrier insulating film 57.
  • the outer peripheral portion of the connection portion between the first wiring 55 and the resistance change layer 58 is disposed along at least the tapered surface of the opening of the barrier insulating film 57.
  • the metal film used for forming the second ion conductive layer 58b may be formed as a laminated film or a single layer film. It is preferable that the second metal constituting the second ion conductive layer 58b contains the same metal as the first metal constituting the first upper electrode layer 61a and the second upper electrode layer 61b described later. Thus, when the second metal constituting the second ion conductive layer 58b diffuses into the first upper electrode layer 61a and the second upper electrode layer 61b, the first upper electrode layer 61a and the second upper electrode layer 61b The occurrence of defects can be prevented. When a defect is formed in the first upper electrode layer 61a and the second upper electrode layer 61b, the dielectric breakdown voltage of the resistance change layer 58 may be lowered using this defect as a starting point.
  • the first upper electrode layer 61a and the second upper electrode layer 61b constitute the upper electrode 61 of the two-terminal switch 72.
  • the first upper electrode layer 61a and the second upper electrode layer 61b are components corresponding to the first upper electrode layer 22a and the second upper electrode layer 22b of the switching element of FIG. 2, respectively.
  • the first upper electrode layer 61a is a lower electrode layer of the upper electrode 61 and is in direct contact with the first ion conductive layer 58a.
  • the first upper electrode layer 61a is preferably an alloy of ruthenium and a first metal, that is, a ruthenium alloy to which the first metal is added.
  • the ruthenium content in the ruthenium alloy is preferably 60 atm% or more and 90 atm% or less.
  • the first metal added to the ruthenium alloy forming the first upper electrode layer 61a a metal whose standard generation Gibbs energy in the oxidation process (a process of generating metal ions from the metal) is larger in the negative direction than ruthenium is selected. It is desirable. Titanium, tantalum, zirconium, hafnium, and aluminum, which have a larger Gibbs energy in the oxidation process in the negative direction than ruthenium, are more reactive than ruthenium because they tend to spontaneously undergo chemical reactions. For this reason, the ruthenium alloy forming the first upper electrode layer 61a contains the first metal as described above, thereby improving the adhesion to the metal bridge formed of the metal forming the first wiring 55.
  • the first metal contained in the ruthenium alloy constituting the first upper electrode layer 61a is preferably at least one metal selected from the group consisting of titanium, tantalum, zirconium, hafnium, and aluminum.
  • the first upper electrode layer 61a is composed of only the first metal that does not contain ruthenium, the reactivity becomes high and the transition to the off state is prevented.
  • the transition from the on state to the off state proceeds by an oxidation reaction (dissolution reaction) of the metal bridge.
  • an oxidation reaction dissolution reaction
  • the standard generation Gibbs energy of the oxidation process of the metal constituting the first upper electrode layer 61a is larger in the negative direction than that of the metal forming the first wiring 55, the following phenomenon occurs. That is, the oxidation reaction of the first upper electrode layer 61a proceeds more than the oxidation reaction of the metal bridge formed of the metal forming the first wiring 55, and thus the phenomenon cannot be changed to the off state.
  • the metal material forming the first upper electrode layer 61a is preferably an alloy of ruthenium and the first metal whose standard generation Gibbs energy in the oxidation process is smaller in the negative direction than copper. Furthermore, when copper, which is a component of metal crosslinking, is mixed into the first upper electrode layer 61a, the effect of adding a metal having a large standard Gibbs energy in the negative direction is diminished. Therefore, the first metal added to the ruthenium alloy is copper and copper. A material having a barrier property against ions is preferable. Examples of such metals include tantalum, titanium, and aluminum.
  • the transition to the off state and the stability of the on state are excellent.
  • a sputtering method for forming the first upper electrode layer 61a.
  • a method using an alloy target of ruthenium and a first metal there are a method using an alloy target of ruthenium and a first metal and a co-sputtering method of simultaneously sputtering a ruthenium target and a first metal target in the same chamber.
  • a first metal thin film is formed in advance, and then ruthenium is formed using a sputtering method, and alloying is performed using the energy of collision atoms.
  • the composition of the alloy can be adjusted appropriately.
  • the second upper electrode layer 61b is an upper electrode layer of the upper electrode 61 and is formed on the first upper electrode layer 61a.
  • the second upper electrode layer 61b has a role of protecting the first upper electrode layer 61a. That is, the second upper electrode layer 61b protects the first upper electrode layer 61a, thereby suppressing damage to the first upper electrode layer 61a during the manufacturing process and maintaining the switching characteristics of the two-terminal switch 72. it can.
  • the second upper electrode layer 61b is made of a nitride of the first metal contained in the ruthenium alloy constituting the first upper electrode layer 61a.
  • the fact that the first metal is selected from the group consisting of titanium, tantalum, zirconium, hafnium, and aluminum is that the nitride of the first metal constituting the second upper electrode layer 61b is conductive. It is also suitable in that it will have.
  • the first metal nitride constituting the second upper electrode layer 61 b has a lower etching rate than the fluorocarbon gas plasma used for etching the interlayer insulating film 65. The reduction in the etching rate is also suitable for causing the second upper electrode layer 61b to function as an etching stop film.
  • the second upper electrode layer 61b When a non-nitride metal is used for the second upper electrode layer 61b, a part of the metal diffuses into the first upper electrode layer 61a due to heating or plasma damage during the process. Due to the diffusion of the metal into the first upper electrode layer 61a, defects are generated in the first upper electrode layer 61a, and there is a possibility that the breakdown voltage of the ion conductive layer is lowered from these defects.
  • the second upper electrode layer 61b is a compound having electrical conductivity. By using a stable metal nitride, diffusion of metal to the first upper electrode layer 61a can be prevented.
  • the fact that the nitride metal constituting the second upper electrode layer 61b and the first metal contained in the ruthenium alloy constituting the first upper electrode layer 61a are the same is the first contained in the ruthenium alloy. This is preferable in that the occurrence of defects due to the diffusion of the metal can be prevented more efficiently.
  • the second upper electrode layer 61b is preferably formed of titanium nitride.
  • the second upper electrode layer 61b is preferably formed of tantalum nitride.
  • the content ratio of the first metal contained in the nitride constituting the second upper electrode layer 61b is more than the content percentage of the first metal contained in the ruthenium alloy constituting the first upper electrode layer 61a. Enlarge. Thereby, it is possible to prevent the metal constituting the first upper electrode layer 61a from diffusing into the nitride constituting the second upper electrode layer 61b and changing the composition of the ruthenium alloy constituting the first upper electrode layer 61a. .
  • the titanium content of the second upper electrode layer 61b may be 40 atm% or more and 80 atm% or less, and particularly 40 atm% or more and 50 atm%.
  • the composition is preferably. If it is 40 atm% or less, titanium in the first upper electrode layer 61a may diffuse into the second upper electrode layer 61b.
  • it is 50 atm% or more, in X-ray diffraction measurement, not only TiN, which is a stable composition of titanium nitride used for the metal electrode, but also a crystal phase derived from Ti 2 N is detected.
  • the second upper electrode 61b may be oxidized when the hard mask film 62 is formed because it is easily oxidized. If the second upper electrode 61b is oxidized, the specific resistance of the second upper electrode 61b increases, and the parasitic resistance of the two-terminal switch 72 increases.
  • a sputtering method for forming the second upper electrode layer 61b.
  • a reactive sputtering method in which a metal target is evaporated using plasma of a mixed gas of nitrogen and argon. The metal evaporated from the metal target reacts with nitrogen to form a metal nitride and is deposited on the substrate.
  • the second upper electrode layer 61b it is preferable to use co-sputtering using two of a ruthenium target electrode and a target electrode made of the first metal.
  • a ruthenium target electrode and a target electrode made of the first metal when an alloy target composed of ruthenium and the first metal is used, since the sputtering yield of each material is different, there is a deviation in the composition that is continuously used. Can no longer be controlled.
  • the composition of the film to be deposited can be precisely controlled by individually setting the power applied to each target electrode in advance. Such a technique is particularly effective when titanium or tantalum is used as the first metal.
  • the hard mask film 62 is used as a mask for etching the second upper electrode layer 61b, the first upper electrode layer 61a, the first ion conductive layer 58a, and the second ion conductive layer 58b, and is further used as a passivation film.
  • the hard mask film 62 for example, a silicon nitride film and a silicon carbonitride film can be used.
  • the hard mask film 62 is preferably made of the same material as the protective insulating film 64 and the barrier insulating film 57.
  • the entire periphery of the two-terminal switch 72 is surrounded by members of the same material so that the material interface is integrated, preventing entry of moisture and the like from the outside, and preventing detachment of the material from the two-terminal switch 72 itself. Will be able to.
  • the protective insulating film 64 is an insulating film having a function of preventing application of damage to the two-terminal switch 72 and further preventing desorption of oxygen from the first ion conductive layer 58a.
  • As the protective insulating film 64 for example, a silicon nitride film or a silicon carbonitride film can be used.
  • the protective insulating film 64 is preferably made of the same material as the hard mask film 62 and the barrier insulating film 57. When the same material is used, the protective insulating film 64, the barrier insulating film 57, and the hard mask film 62 are integrated to improve the adhesion at the interface, and the two-terminal switch 72 can be further protected. .
  • the interlayer insulating film 65 is an insulating film formed on the protective insulating film 64.
  • a silicon oxide film, a SiOC film, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of the silicon oxide film can be used.
  • the interlayer insulating film 65 may be a laminate of a plurality of insulating films.
  • the interlayer insulating film 65 may be made of the same material as the interlayer insulating film 67.
  • Contact holes for embedding the plugs 69 are formed in the interlayer insulating film 65. The contact hole is covered with a barrier metal film 70, and a plug 69 is formed on the barrier metal film 70 so as to bury the contact hole.
  • the etching stopper film 66 is an insulating film provided between the interlayer insulating films 65 and 67.
  • the etching stopper film 66 functions as an etching stop layer when processing the wiring groove in which the second wiring 68 is embedded.
  • a silicon nitride film, a SiC film, or a silicon carbonitride film can be used.
  • the interlayer insulating film 67 is an insulating film formed on the etching stopper film 66.
  • the interlayer insulating film 67 for example, a silicon oxide film, a SiOC film, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of the silicon oxide film can be used.
  • the interlayer insulating film 67 may be a laminate of a plurality of insulating films.
  • the interlayer insulating film 67 may be made of the same material as the interlayer insulating film 65.
  • a wiring groove for embedding the second wiring 68 is formed in the etching stopper film 66 and the interlayer insulating film 67.
  • the side and bottom surfaces of the wiring trench are covered with the barrier metal film 70, and the second wiring 68 is formed on the barrier metal film 70 so as to bury the wiring trench.
  • the etching stopper film 66 can be deleted depending on the selection of the etching conditions for the wiring trench.
  • the second wiring 68 is a wiring embedded in a wiring groove formed in the interlayer insulating film 67 and the etching stopper film 66.
  • the second wiring 68 is integrated with the plug 69.
  • the plug 69 is embedded in a contact hole formed in the interlayer insulating film 65, the protective insulating film 64, and the hard mask film 62.
  • the plug 69 is electrically connected to the second upper electrode layer 61 b through the barrier metal film 70.
  • copper can be used for the second wiring 68 and the plug 69.
  • the barrier metal film 70 covers the side and bottom surfaces of the second wiring 68 and the plug 69 in order to prevent the metal forming the second wiring 68 and the plug 69 from diffusing into the interlayer insulating films 65 and 67 and the lower layer.
  • a conductive film having a barrier property When the second wiring 68 and the plug 69 are made of a metal element whose main component is copper, a refractory metal or a nitride of a refractory metal or a laminated film thereof can be used for the barrier metal film 70. .
  • a refractory metal such as tantalum, tantalum nitride, titanium nitride, tungsten carbonitride, or a refractory metal nitride, or Those laminated films are conceivable. It is preferable that at least a portion of the barrier metal film 70 in contact with the second upper electrode layer 61b is made of the same material as the second upper electrode layer 61b.
  • the barrier metal film 70 is formed as a stacked body of a lower layer formed of tantalum nitride and an upper layer formed of tantalum, tantalum nitride, which is a lower layer material, is applied to the second upper electrode layer 61b. It is preferable to use it.
  • the barrier insulating film 71 is formed so as to cover the second wiring 68 and the interlayer insulating film 67, prevents oxidation of the metal (for example, copper) forming the second wiring 68, and forms the second wiring 68. It is an insulating film having a role of preventing diffusion of metal into the upper layer.
  • a silicon carbonitride film, a silicon nitride film, and a stacked structure thereof can be used as the barrier insulating film 71.
  • FIGS. 6A to 6E the operation of the switching element of the first embodiment, particularly, the first upper electrode layer 61a formed of a ruthenium alloy containing a first metal (for example, titanium) is formed.
  • the characteristics of the switching element provided will be described.
  • 6A and 6B show normal distributions of current values immediately after switching to the ON state and after 100 hours have elapsed for a switching element integrated in a multilayer wiring having the configuration shown in FIG. FIG.
  • the distribution of resistance values of semiconductors and resistance change elements is generally plotted as a normal distribution. When the distribution deviates from the normal distribution, it indicates an abnormal state such as a failure, and the normal probability plot is widely used as a plotting method for identifying such an event.
  • 6A and 6B indicates “multiple of standard deviation” or “difference of standard deviation from average” when the average value of the measured current values is set to “0”. Indicates. This value in probability display is used as a “cumulative failure probability” for reliability evaluation. All the switching elements are integrated as a 4-kilobit array (4096 elements), and the current value is measured for all the switching elements of the array. All the plots are indicated by white circles “ ⁇ ”, and a portion where the normal distribution of the current value immediately after switching to the ON state and the normal distribution of the current value after 100 hours have overlapped is a change in resistance value. You can see that there is no. In switching to the ON state, a positive voltage was applied to the first wiring 55 (lower electrode) in FIG.
  • FIG. 6A shows the measurement result of the current value of the switching element including the first upper electrode layer 61a formed only of ruthenium
  • FIG. 6B shows the first upper electrode layer 61a formed of a ruthenium alloy containing titanium.
  • the measurement result of the electric current value of the switching element provided with is shown.
  • the “ruthenium alloy containing titanium” constituting the first upper electrode layer 61a of the switching element used in the measurement of FIG. 6B has a composition of ruthenium of 75 atm% and titanium of 25 atm% by X-ray photoelectron spectroscopy. I know that As shown in FIG.
  • FIGS. 6C and 6D show current-voltage characteristics when the switching element formed in the multilayer wiring transitions from the on state to the off state.
  • a negative voltage is applied to the first wiring 55 (lower electrode) in FIG.
  • the current observed in the measurement of the current-voltage characteristic is a negative current.
  • both the current and voltage are shown as absolute values.
  • FIG. 6C shows the measurement result of the current-voltage characteristics of the switching element including the first upper electrode layer 61a formed only of ruthenium.
  • FIG. 6D shows the measurement result of the current-voltage characteristics of the switching element including the first upper electrode layer 61a formed of a ruthenium alloy containing titanium.
  • the “ruthenium alloy containing titanium” constituting the first upper electrode layer 61a of the switching element used in the measurement of FIG. 6D has a composition of ruthenium of 75 atm% and titanium of 25 atm% by X-ray photoelectron spectroscopy. I know that.
  • 6C and 6D show current-voltage curves at the time of resetting each element under the conditions of FIGS. 6C and 6D.
  • the switching element including the first upper electrode layer 61a made of only ruthenium and the switching element including the first upper electrode layer 61a made of the ruthenium alloy containing titanium transit to the on state.
  • the resistance values are almost the same.
  • 6C and 6D the absolute value of the largest current is the current required for transition from the on-state to the off-state, but is almost the same in FIGS. 6C and 6D.
  • the vertices of the triangles (around 2V to 2.5V) of the curves in FIGS. 6C and 6D indicate the maximum current at reset. 6C and 6D, the values are almost the same. From this, it can be seen that in the embodiment of the present invention, the holding power in the on state increases, but the reset current does not increase. Further, even when the first upper electrode layer 61a formed of “ruthenium alloy containing titanium” is used, the current that transitions from the on state to the off state does not increase. "Ruthenium alloy containing titanium” has a higher resistivity than ruthenium alone. For this reason, it is considered that the upper electrode 61 is easily heated by a current when transitioning from the on state to the off state. In order for the reaction in which the metal bridge formed in the first ion conductive layer 58a is dissolved by voltage application to proceed, the contribution of Joule heat generated in the metal bridge is necessary.
  • the reason why the current that transitions from the on state to the off state does not increase and has a high coercive force is that the first upper electrode layer 61a is heated by the current at the time of transition from the on state to the off state. This is thought to be due to the effect of confining the Joule heat generated in the. This Joule heat confinement effect is brought about by making the first upper electrode layer 61a of a ruthenium alloy such as “ruthenium alloy containing titanium”, for example.
  • a ruthenium alloy containing tantalum has the same performance as the holding force characteristic and electrical characteristic of the switching element in which the first upper electrode layer 61a is formed of the ruthenium alloy containing titanium. Even when used.
  • the composition of the ruthenium alloy containing titanium is ruthenium 75 atm% and titanium 25 atm%
  • the composition of the ruthenium alloy containing tantalum is ruthenium 70 atm% and tantalum 30 atm%.
  • the first upper electrode layer 61a is formed of only a metal having a small standard generation Gibbs energy in the oxidation process without containing ruthenium
  • a negative voltage is applied to the first wiring 55 (lower electrode) during the transition from the on state to the off state. Is applied, breakdown of the first ion conductive layer 58a occurs. The dielectric breakdown of the first ion conductive layer 58a occurs, and the switching element does not transition to the off state.
  • the oxidation process is a process of generating metal ions from a metal.
  • the ruthenium content is 30 atm% or less, if a negative voltage is applied to the first wiring 55 during the transition from the on state to the off state, the dielectric breakdown of the first ion conductive layer 58a is similarly observed. The switching element does not transition to the off state.
  • FIG. 7A shows a cross-sectional TEM (Transmission Electron Microscope) image of an element in which a problem occurred during the transition to OFF among the switching elements using tantalum that is not nitride for the second upper electrode layer 61b. From the cross-sectional TEM image, it is understood that a part of tantalum that is the second upper electrode layer 61b is diffused in the alloy of ruthenium and titanium that is the first upper electrode layer 61a. When such diffusion proceeds, a defect occurs in the first upper electrode layer 61a, and the dielectric breakdown of the resistance change layer 58 starting from this defect occurs at a low voltage.
  • TEM Transmission Electron Microscope
  • FIG. 7B is a graph showing the reset yield of the switching element according to the first embodiment.
  • FIG. 7B shows the material dependency of the reset yield of the second upper electrode layer 61b.
  • the vertical axis of the graph shows the percentage of elements (fail bits) that cannot be reset when a reset operation is performed as an index of reset yield.
  • the reset yield indicating the transition probability to off was improved when titanium nitride was used as the second upper electrode layer 61b. From this result, it is understood that the use of titanium nitride suppresses the diffusion of metal to the first upper electrode layer 61a and improves the dielectric breakdown voltage.
  • FIG. 8A to 8D are cross-sectional views schematically showing an example of a method for manufacturing a semiconductor device in which the switching elements of the first embodiment shown in FIG. 5 are integrated in a multilayer wiring layer.
  • an interlayer insulating film 52 is deposited on the semiconductor substrate 51, and a barrier insulating film 53 is further deposited on the interlayer insulating film 52.
  • the semiconductor substrate 51 is, for example, a substrate on which a semiconductor element is formed.
  • the interlayer insulating film 52 is, for example, a silicon oxide film having a thickness of 300 nm.
  • the barrier insulating film 53 is, for example, a silicon nitride film having a thickness of 50 nm.
  • an interlayer insulating film 54 is deposited on the barrier insulating film 53, and thereafter, a wiring trench is formed in the interlayer insulating film 54 and the barrier insulating film 53 by using a lithography method (including photoresist formation, dry etching, and photoresist removal). Is formed.
  • the interlayer insulating film 54 is, for example, a silicon oxide film having a thickness of 300 nm.
  • the wiring trench is covered with a barrier metal film 56 (for example, a laminate of a tantalum nitride film having a thickness of 5 nm and a tantalum film having a thickness of 5 nm), and the wiring trench is embedded on the barrier metal film 56.
  • First wiring 55 (for example, copper wiring) is formed.
  • the interlayer insulating films 52 and 54 can be formed by a plasma CVD method.
  • the first wiring 55 can be formed by the following series of wiring forming methods.
  • the barrier metal film 56 is formed by a PVD (Physical Vapor Deposition) method, and a copper seed is further formed by a PVD method.
  • a copper film is formed so as to fill the wiring groove by an electrolytic plating method.
  • the excess copper film other than in the wiring trench is removed by a CMP (Chemical Mechanical Polishing) method. In this way, the first wiring 55 can be formed.
  • the CMP method is a method of flattening by polishing the unevenness of the wafer surface that occurs during the multilayer wiring formation process by bringing the polishing liquid into contact with a rotating polishing pad while flowing the polishing liquid over the wafer surface.
  • embedded wiring damascene wiring
  • planarization is performed.
  • a barrier insulating film 57 (for example, a silicon nitride film or a silicon carbonitride film having a thickness of 50 nm) is formed so as to cover the first wiring 55 and the interlayer insulating film 54.
  • the barrier insulating film 57 can be formed by a plasma CVD method.
  • the thickness of the barrier insulating film 57 is preferably about 10 nm to 50 nm.
  • a hard mask film 59 (for example, a silicon oxide film) is formed on the barrier insulating film 57.
  • the hard mask film 59 is preferably made of a material different from the barrier insulating film 57 from the viewpoint of maintaining a high etching selectivity in the dry etching process, and may be an insulating film or a conductive film.
  • a silicon oxide film, a silicon nitride film, a titanium nitride film, a titanium film, a tantalum film, a tantalum nitride film, or the like can be used.
  • a stacked body of a silicon nitride film and a silicon oxide film can also be used.
  • a photoresist pattern (not shown) having an opening formed thereon is formed on the hard mask film 59, and an opening 59a is formed in the hard mask film 59 by dry etching using the photoresist pattern as a mask. Thereafter, the photoresist pattern is removed by oxygen plasma ashing or the like. At this time, dry etching is not necessarily stopped on the upper surface of the barrier insulating film 57, and a part of the barrier insulating film 57 may be etched.
  • the barrier insulating film 57 exposed from the opening 59a of the hard mask film 59 is etched back (dry etching), whereby the opening 57a is formed in the barrier insulating film 57. Is formed.
  • a part of the first wiring 55 is exposed inside the opening 57 a of the barrier insulating film 57.
  • an organic stripping process is performed with an amine-based stripping solution to remove copper oxide formed on the exposed surface of the first wiring 55 and to remove etching products generated during etch back.
  • the side surface of the opening 57a of the barrier insulating film 57 can be formed as a tapered surface by using reactive dry etching.
  • reactive dry etching a gas containing fluorocarbon can be used as an etching gas.
  • the hard mask film 59 is preferably completely removed during the etch back, but may remain as it is when it is an insulating material.
  • FIG. 8B shows a structure in which the hard mask film 59 is completely removed.
  • the shape of the opening 57a of the barrier insulating film 57 may be a circle, and the diameter of the circle may be 30 nm to 500 nm.
  • the oxide on the surface of the first wiring 55 is removed by RF (Radio Frequency) etching using a non-reactive gas.
  • RF Radio Frequency
  • a resistance change layer 58 including the first ion conductive layer 58a and the second ion conductive layer 58b is formed. Specifically, first, a titanium film having a film thickness of 0.5 nm and an aluminum film having a film thickness of 0.5 nm are deposited in this order so as to cover the first wiring 55 and the barrier insulating film 57, and a metal film having a total thickness of 1 nm. Is formed.
  • the titanium film and the aluminum film can be formed using a PVD method or a CVD method.
  • the SiOCH polymer film used as the first ion conductive layer 58a is formed as follows.
  • the cyclic organosiloxane raw material and the carrier gas helium are supplied to the reaction chamber, the supply of both is stabilized, and the application of RF power is started when the pressure in the reaction chamber becomes constant.
  • the supply amount of the raw material is 10 to 200 sccm.
  • 500 sccm of helium is supplied via the raw material vaporizer, and 500 sccm of helium is directly supplied to the reaction chamber in another line.
  • the titanium film and the aluminum film are automatically oxidized by being exposed to the raw material of the SiOCH polymer film containing oxygen during the formation of the first ion conductive layer 58a.
  • the second ion conductive layer 58b constituting a part of the resistance change layer 58 is formed.
  • degassing is performed by applying a heat treatment under reduced pressure at a temperature of about 250 ° C. to 350 ° C. before the formation of the resistance change layer 58. It is preferable to keep it.
  • Step 7 On the resistance change layer 58, a thin film of ruthenium alloy containing titanium is formed as a first upper electrode layer 61a by a co-sputtering method with a thickness of 10 nm. At this time, the ruthenium target and the titanium target exist in the same chamber, and a ruthenium alloy film is deposited by sputtering at the same time. In the deposition of the ruthenium alloy film, the ruthenium content of the ruthenium alloy containing titanium can be adjusted to a desired value by controlling the power applied to the ruthenium target and the power applied to the titanium target.
  • the applied power to the ruthenium target is 150 W, and the applied power to the titanium target is 50 W, so that the ruthenium content of the “ruthenium alloy containing titanium” is 75 atm% and the titanium content is It could be adjusted to 25 atm%.
  • the second upper electrode layer 61b is formed on the first upper electrode layer 61a.
  • the first upper electrode layer 61 a and the second upper electrode layer 61 b constitute the upper electrode 61.
  • a titanium nitride film with a film thickness of 25 nm is formed by reactive sputtering.
  • nitrogen gas and argon gas are introduced into the chamber.
  • the titanium content of the titanium nitride film can be adjusted by adjusting the power applied to the titanium target and the ratio of nitrogen gas and argon gas supplied to the chamber.
  • the power applied to the titanium target is set to 600 W, and the ratio of the nitrogen gas flow rate to the argon gas flow rate is set to 2: 1, so that the titanium content of the titanium nitride film is 50 atm%.
  • the ratio of the nitrogen gas flow rate to the argon gas flow rate is set to 2: 1, so that the titanium content of the titanium nitride film is 50 atm%.
  • a hard mask film 62 for example, a silicon nitride film or a silicon carbonitride film having a thickness of 30 nm
  • a hard mask film 63 for example, a silicon oxide film having a thickness of 90 nm
  • the hard mask films 62 and 63 can be formed using a plasma CVD method.
  • the hard mask films 62 and 63 can be formed using a general plasma CVD method in this technical field.
  • the hard mask films 62 and 63 are preferably films formed of different materials.
  • the hard mask film 62 is formed of a silicon nitride film and the hard mask film 63 is formed of a silicon oxide film.
  • the hard mask film 62 is preferably made of the same material as a protective insulating film 64 and a barrier insulating film 57 described later. That is, by surrounding all of the periphery of the switching element with the same material, the interface of the members surrounding the switching element can be integrated to prevent intrusion of moisture and the like from the outside and prevent the material from detaching from the switching element. It becomes like this.
  • the hard mask film 62 is preferably a high-density silicon nitride film formed by generating a high-density plasma using a mixed gas of SiH 4 / N 2 as a raw material.
  • Step 9 a photoresist pattern (not shown) for patterning the first ion conductive layer 58a, the second ion conductive layer 58b, the first upper electrode layer 61a, and the second upper electrode layer 61b on the hard mask film 63. ) Is formed. Thereafter, as shown in FIG. 8C, using the photoresist pattern as a mask, the hard mask film 63 is etched by dry etching until the hard mask film 62 appears. Thereafter, the photoresist pattern is removed using oxygen plasma ashing and organic peeling.
  • the hard mask film 63 As a mask, the hard mask film 62, the second upper electrode layer 61b, the first upper electrode layer 61a, the first ion conductive layer 58a, and the second ion conductive layer 58b are continuously etched by dry etching. . At this time, the hard mask film 63 is preferably completely removed during the etching, but may remain as it is.
  • etching can be performed by RIE (Reactive Ion Etching) using Cl 2 gas as a reaction gas.
  • RIE Reactive Ion Etching
  • the first upper electrode layer 61a is formed of a ruthenium alloy containing titanium, it can be etched by RIE using a mixed gas of Cl 2 gas and O 2 gas as a reaction gas.
  • the first ion conductive layer 58a is a SiOCH polymer film containing silicon, oxygen, carbon, and hydrogen
  • the barrier insulating film 57 is a silicon nitride film or a silicon carbonitride film
  • etching by RIE can be performed. Etching with the RIE, CF 4 gas, a mixed gas of CF 4 gas and Cl 2 gas, or by adjusting the etching conditions using a mixed gas of CF 4 gas and Cl 2 gas and Ar gas, it is carried out it can.
  • the film constituting the two-terminal switch 72 can be etched without being exposed to oxygen plasma ashing for resist removal.
  • the films constituting the two-terminal switch 72 are the second upper electrode layer 61b, the first upper electrode layer 61a, the first ion conductive layer 58a, and the second ion conductive layer 58b. Further, when the oxidation treatment is performed by oxygen plasma after the processing, the oxidation plasma treatment can be irradiated without depending on the resist peeling time.
  • the protective insulating film 64 is formed.
  • the protective insulating film 64 is, for example, a silicon nitride film or a silicon carbonitride film having a thickness of 30 nm.
  • the protective insulating film 64 can be formed by a plasma CVD method, it is necessary to maintain it under reduced pressure in the reaction chamber before film formation. At this time, oxygen is desorbed from the side surface of the first ion conductive layer 58a, There may be a problem that the leakage current of the first ion conductive layer 58a increases.
  • the protective insulating film 64 be formed at a temperature of 250 ° C. or lower. Further, in forming the protective insulating film 64, it is preferable not to use a reducing gas as a source gas because the protective insulating film 64 is exposed to a film forming gas under reduced pressure before the film formation. For example, it is preferable to use as the protective insulating film 64 a silicon nitride film formed by using a mixed gas of SiH 4 / N 2 by high-density plasma at a substrate temperature of 200 ° C.
  • Step 12 On the protective insulating film 64, an interlayer insulating film 65 (for example, silicon oxide film), an etching stopper film 66 (for example, silicon nitride film), and an interlayer insulating film 67 (for example, silicon oxide film) are deposited in this order. Thereafter, a wiring groove in which the second wiring 68 is formed and a contact hole in which the plug 69 is formed are formed. Furthermore, using a copper dual damascene wiring process, a barrier metal film 70 (for example, a laminate of a tantalum nitride film and a tantalum film) and a second wiring 68 (for example, copper) in the wiring trench and the contact hole, A plug 69 (for example, copper) is formed.
  • a barrier metal film 70 for example, a laminate of a tantalum nitride film and a tantalum film
  • a second wiring 68 for example, copper
  • a barrier insulating film 71 (for example, a silicon nitride film) is deposited so as to cover the second wiring 68 and the interlayer insulating film 67.
  • the formation of the second wiring 68 can use the same process as the formation of the wiring (for example, the first wiring 55) located in the lower layer.
  • the barrier metal film 70 and the second upper electrode layer 61b with the same material, the contact resistance between the plug 69 and the second upper electrode layer 61b can be reduced, and the device performance can be improved.
  • the interlayer insulating film 65 and the interlayer insulating film 67 can be formed by a plasma CVD method.
  • the interlayer insulating film 65 may be deposited thickly, and the interlayer insulating film 65 may be cut and planarized by CMP so that the interlayer insulating film 65 has a desired thickness.
  • FIG. 9 is a cross-sectional view showing a configuration of a semiconductor device in which the switching elements of the second embodiment are integrated in a multilayer wiring layer.
  • the switching element is configured as a three-terminal switch.
  • the three-terminal switch is referred to by reference numeral 132.
  • the multilayer wiring layer includes a pair of first wirings 115 a and 115 b and a plug 129
  • the three-terminal switch 132 includes an upper electrode 121 and a resistance change layer 118. It has become.
  • the upper electrode 121 includes a first upper electrode layer 121a and a second upper electrode layer 121b.
  • the first wirings 115a and 115b of the multilayer wiring layer also serve as the lower electrode of the three-terminal switch 132. That is, the resistance change layer 118 is inserted between the upper electrode 121 and the first wirings 115a and 115b.
  • the resistance change layer 118 includes a first ion conduction layer 118a and a second ion conduction layer 118b, and the resistance change layer 118 is connected to the pair of first wirings 115a and 115b through one opening.
  • the opening is formed so as to reach a portion between the interlayer insulating film 114 and the first wirings 115a and 115b.
  • the method for forming the multilayer wiring structure in FIG. 9 is the same as the method for forming the multilayer wiring structure (see FIG. 5) in the first embodiment.
  • the multilayer wiring layer has an insulating stacked body that is sequentially stacked above the semiconductor substrate 111.
  • This insulating laminate includes an interlayer insulating film 112, a barrier insulating film 113, an interlayer insulating film 114, a barrier insulating film 117, a protective insulating film 124, an interlayer insulating film 125, an etching stopper film 126, an interlayer insulating film 127, and a barrier insulating film 131. Is provided.
  • a pair of wiring grooves are formed in the interlayer insulating film 114 and the barrier insulating film 113.
  • the side and bottom surfaces of the wiring trench are covered with barrier metal films 116a and 116b, respectively, and a pair of first wirings 115a and 115b are formed so as to fill the pair of wiring trenches.
  • contact holes are formed in the interlayer insulating film 125, the protective insulating film 124, and the hard mask film 122, and wiring grooves are formed in the interlayer insulating film 127 and the etching stopper film 126.
  • the contact holes and the side and bottom surfaces of the wiring grooves are covered with a barrier metal film 130.
  • a plug 129 is formed so as to fill the contact hole, and a second wiring 128 is formed so as to fill the wiring groove. The second wiring 128 and the plug 129 are integrated.
  • openings communicating with the first wirings 115a and 115b are formed.
  • the second ion conductive layer 118b, the first ion conductive layer 118a, the first upper electrode layer 121a, and the second upper electrode layer 121b are sequentially stacked. These are sequentially stacked so as to cover the portion of the first wiring 115a, 115b located inside the opening, the side surface of the opening of the barrier insulating film 117, and a part of the upper surface of the barrier insulating film 117. .
  • the three-terminal switch 132 includes a pair of first wirings 115a and 115b used as a lower electrode, an upper electrode 121 including a first upper electrode layer 121a and a second upper electrode layer 121b, and a resistance change layer 118. It has become.
  • the resistance change layer 118 includes a first ion conductive layer 118a and a second ion conductive layer 118b.
  • the second ion conductive layer 118b and the first wirings 115a and 115b are in direct contact with each other inside the opening formed in the barrier insulating film 117, and the second upper electrode layer 121b is interposed through the barrier metal film 130. It is electrically connected to the plug 129.
  • a hard mask film 122 is formed on the second upper electrode layer 121b.
  • the protective insulating film 124 is the top surface and the side surface of the laminate composed of the second ion conductive layer 118b, the first ion conductive layer 118a, the first upper electrode layer 121a, the second upper electrode layer 121b, and the hard mask film 122. Covered.
  • the three-terminal switch 132 configured in this manner is switched to an on state or an off state by application of a voltage or current.
  • the switching of the three-terminal switch 132 is performed using electric field diffusion of metal ions supplied from the metal forming the first wirings 115a and 115b to the second ion conductive layer 118b and the first ion conductive layer 118a.
  • the second upper electrode layer 121b and the barrier metal film 130 are preferably made of the same material. By doing so, the barrier metal film 130 of the plug 129 and the second upper electrode layer 121b of the three-terminal switch 132 are integrated, reducing the contact resistance and improving the reliability by improving the adhesion. can do.
  • the electrode resistance can be lowered while simplifying the number of processes. More specifically, the three-terminal switch 132 can be mounted only by creating at least two photoresist mask sets as an additional step to the normal copper damascene wiring process. This makes it possible to simultaneously achieve a reduction in resistance and a reduction in cost of the switching element.
  • the semiconductor substrate 111 is a substrate on which a semiconductor element is formed.
  • a silicon substrate for example, a silicon substrate, a single crystal substrate, an SOI (Silicon-on-Insulator) substrate, a TFT (Thin-Film Transistor) substrate, a liquid crystal manufacturing substrate, or the like can be used.
  • SOI Silicon-on-Insulator
  • TFT Thin-Film Transistor
  • the interlayer insulating film 112 is an insulating film formed on the semiconductor substrate 111.
  • a silicon oxide film, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of the silicon oxide film, or the like can be used.
  • the interlayer insulating film 112 may be a stack of a plurality of insulating films.
  • the barrier insulating film 113 is an insulating film having a barrier property provided between the interlayer insulating films 112 and 114.
  • the barrier insulating film 113 functions as an etching stop layer when forming a wiring trench in which the first wirings 115a and 115b are embedded.
  • As the barrier insulating film 113 for example, a silicon nitride film, a silicon carbonitride film, or the like can be used.
  • the barrier insulating film 113 can be removed depending on the selection of the etching conditions for the wiring trench.
  • the interlayer insulating film 114 is an insulating film formed on the barrier insulating film 113.
  • the interlayer insulating film 114 for example, a silicon oxide film, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of the silicon oxide film, or the like can be used.
  • the interlayer insulating film 114 may be a stack of a plurality of insulating films.
  • the first wirings 115 a and 115 b are wirings embedded in wiring grooves formed in the interlayer insulating film 114 and the barrier insulating film 113.
  • the first wirings 115 a and 115 b also serve as the lower electrode of the three-terminal switch 132 and are in direct contact with the second ion conductive layer 118 b of the resistance change layer 118.
  • a conductive layer such as an electrode layer may be inserted between the first wirings 115 a and 115 b and the resistance change layer 118.
  • the lower surface of the resistance change layer 118 is not connected to the lower layer wiring via the contact plug.
  • a metal that generates metal ions capable of diffusing and ion-conducting in the resistance change layer 118 is used.
  • copper or the like can be used.
  • the first wirings 115a and 115b may be formed of an alloy including a metal (for example, copper) that generates metal ions capable of diffusion or ion conduction in the resistance change layer 118 and aluminum.
  • the barrier metal films 116a and 116b are formed on the side and bottom surfaces of the first wirings 115a and 115b in order to prevent the metal (for example, copper) forming the first wirings 115a and 115b from diffusing into the interlayer insulating film 114 and the lower layer. Is a conductive film having a barrier property.
  • the barrier metal films 116a and 116b can be configured as follows, for example.
  • barrier metal films 116a and 116b for example, a refractory metal such as tantalum, tantalum nitride, titanium nitride, or tungsten carbonitride, or a thin film of a refractory metal nitride, or a laminated film thereof is used. it can.
  • a refractory metal such as tantalum, tantalum nitride, titanium nitride, or tungsten carbonitride, or a thin film of a refractory metal nitride, or a laminated film thereof is used. it can.
  • the barrier insulating film 117 is formed so as to cover the interlayer insulating film 114 and the first wirings 115a and 115b.
  • the barrier insulating film 117 serves to prevent oxidation of the metal (for example, copper) forming the first wirings 115a and 115b, and to prevent diffusion of the metal forming the first wirings 115a and 115b into the interlayer insulating film 125.
  • the barrier insulating film 117 serves as an etching stop layer when the upper electrode 121 and the resistance change layer 118 are processed.
  • a SiC film, a silicon carbonitride film, a silicon nitride film, and a stacked structure thereof can be used.
  • the barrier insulating film 117 is preferably made of the same material as the protective insulating film 124 and the hard mask film 122.
  • the barrier insulating film 117 has openings communicating with the first wirings 115a and 115b, and the first wirings 115a and 115b are in contact with the resistance change layer 118 in the openings. By doing so, the three-terminal switch 132 can be formed on the surfaces of the first wirings 115a and 115b with small unevenness.
  • the side surface of the opening of the barrier insulating film 117 is a tapered surface that becomes wider as the distance from the first wirings 115a and 115b increases.
  • the tapered surface of the opening of the barrier insulating film 117 is set to 85 ° or less with respect to the upper surfaces of the first wirings 115a and 115b.
  • the resistances of the first ion conductive layer 118a and the second ion conductive layer 118b change due to the action (diffusion, ion conduction, etc.) of metal ions generated from the metal forming the first wirings 115a and 115b (lower electrode).
  • the resistance change layer 118 is configured.
  • the first ion conductive layer 118a is formed of a film containing silicon, oxygen, and carbon as main components, for example, a SiOCH polymer containing silicon, oxygen, carbon, and hydrogen (for example, a polymer of an organic silica compound such as cyclic siloxane).
  • a SiOCH polymer containing silicon, oxygen, carbon, and hydrogen for example, a polymer of an organic silica compound such as cyclic siloxane.
  • the SiOCH polymer film used as the first ion conductive layer 118a may be formed by plasma CVD (Chemical Vapor Deposition) method.
  • the second ion conductive layer 118b has a metal (for example, copper) that forms the first wirings 115a and 115b in the first ion conductive layer 118a by heating or plasma while the first ion conductive layer 118a is being deposited. There is a role to prevent spreading. Further, the second ion conductive layer 118b has a role of preventing the first wirings 115a and 115b used as the lower electrode from being oxidized and facilitating diffusion. For example, titanium, aluminum, zirconium, hafnium, or tantalum can be used as the metal of the second ion conductive layer 118b.
  • the metal of the second ion conductive layer 118b is oxidized during the film formation of the first ion conductive layer 118a to form a thin film of titanium oxide, aluminum oxide, zirconium oxide, hafnium oxide, tantalum oxide, and a part of the resistance change layer 118. It becomes.
  • the optimum film thickness of the metal film forming the second ion conductive layer 118b is 0.5 to 1 nm. If it is thinner than this, the surface of the first wirings 115a and 115b slightly oxidizes. It remains as metal without being able to fill.
  • the resistance change layer 118 is formed so as to cover a part of the upper surfaces of the first wirings 115a and 115b, a tapered surface of the opening of the barrier insulating film 117, and a part of the upper surface of the barrier insulating film 117.
  • the outer peripheral portion of the connection portion between the first wiring 55 and the resistance change layer 118 is disposed at least on the tapered surface of the opening of the barrier insulating film 117.
  • the metal film used for forming the second ion conductive layer 118b may be formed as a laminated film or a single layer film.
  • the metal (second metal) constituting the second ion conductive layer 118b includes the same metal as the metal (first metal) included in the first upper electrode layer 121a and the second upper electrode layer 121b described later. It is preferable.
  • the second metal constituting the second ion conductive layer 118b diffuses into the first upper electrode layer 121a and the second upper electrode layer 121b, the first upper electrode layer 121a and the second upper electrode layer 121b The occurrence of defects can be prevented.
  • the breakdown voltage of the first ion conductive layer 118a may be lowered using this defect as a starting point.
  • the first upper electrode layer 121a is a lower electrode layer of the upper electrode 121 and is in direct contact with the first ion conductive layer 118a.
  • the first upper electrode layer 121a is preferably an alloy of ruthenium and a first metal, that is, a ruthenium alloy to which the first metal is added.
  • the first metal added to the ruthenium alloy forming the first upper electrode layer 121a a metal whose standard generation Gibbs energy in the oxidation process (a process of generating metal ions from the metal) is larger in the negative direction than ruthenium is selected. It is desirable. Titanium, tantalum, zirconium, hafnium, and aluminum, which have a larger Gibbs energy in the oxidation process in the negative direction than ruthenium, are more reactive than ruthenium because they tend to spontaneously undergo chemical reactions. For this reason, the ruthenium alloy forming the first upper electrode layer 121a contains the first metal as described above, thereby improving the adhesion with the metal bridge formed of the metal forming the first wirings 115a and 115b.
  • the first metal contained in the ruthenium alloy constituting the first upper electrode layer 121a is at least one metal selected from the group consisting of titanium, tantalum, zirconium, hafnium, and aluminum.
  • the first upper electrode layer 121a is composed of only the first metal that does not contain ruthenium, the reactivity becomes high and the transition to the off state does not occur.
  • the transition from the on state to the off state proceeds by an oxidation reaction (dissolution reaction) of the metal bridge.
  • an oxidation reaction dissolution reaction
  • the transition to the off state cannot be made. This is because the oxidation reaction of the first upper electrode layer 121a proceeds more than the oxidation reaction of the metal bridge formed of the metal forming the first wirings 115a and 115b.
  • the metal material forming the first upper electrode layer 121a is an alloy of ruthenium and the first metal whose standard generation Gibbs energy in the oxidation process is smaller in the negative direction than copper. Furthermore, if copper, which is a component of metal crosslinking, is mixed into the first upper electrode layer 121a, the effect of adding a metal having a large standard Gibbs energy in the negative direction is diminished, so the first metal added to the ruthenium alloy is copper and copper.
  • a material having a barrier property against ions is preferable. Examples of such metals include tantalum, titanium, and aluminum.
  • the first upper electrode layer 121a is preferably formed of a ruthenium alloy containing titanium, and the titanium content of the ruthenium alloy is preferably adjusted to a range of 20 atm% to 30 atm%.
  • the ruthenium content in the ruthenium alloy is preferably 60 atm% or more and 90 atm% or less.
  • a sputtering method for forming the first upper electrode layer 121a.
  • a method using an alloy target of ruthenium and a first metal there are a method using an alloy target of ruthenium and a first metal and a co-sputtering method of simultaneously sputtering a ruthenium target and a first metal target in the same chamber.
  • a first metal thin film is formed in advance, and then ruthenium is formed using a sputtering method, and alloying is performed using the energy of collision atoms.
  • the composition of the alloy can be adjusted appropriately.
  • the second upper electrode layer 121b is an upper electrode layer of the upper electrode 121, and is formed on the first upper electrode layer 121a.
  • the second upper electrode layer 121b has a role of protecting the first upper electrode layer 121a. That is, the second upper electrode layer 121b protects the first upper electrode layer 121a, thereby suppressing damage to the first upper electrode layer 121a during the manufacturing process and maintaining the switching characteristics of the three-terminal switch 132. it can.
  • the second upper electrode layer 121b is made of a nitride of the first metal contained in the ruthenium alloy constituting the first upper electrode layer 121a.
  • the fact that the first metal is selected from the group consisting of titanium, tantalum, zirconium, hafnium, and aluminum is that the first metal nitride constituting the second upper electrode layer 121b is conductive. It is also suitable in that it will have.
  • the first metal nitride constituting the second upper electrode layer 121b has a lower etching rate than the fluorocarbon gas plasma used for etching the interlayer insulating film 65. The reduction in the etching rate is also suitable for causing the second upper electrode layer 61b to function as an etching stop film.
  • the second upper electrode layer 61b When a non-nitride metal is used for the second upper electrode layer 61b, a part of the metal diffuses into the first upper electrode layer 121a due to heating or plasma damage during the process. Due to the diffusion of the metal into the first upper electrode layer 121a, defects may be generated in the first upper electrode layer 121a, and the breakdown voltage of the ion conductive layer may be lowered starting from these defects.
  • the second upper electrode layer 121b is a compound having electrical conductivity, and by using a stable metal nitride, metal diffusion into the first upper electrode layer 121a can be prevented.
  • the fact that the nitride metal constituting the second upper electrode layer 121b and the first metal contained in the ruthenium alloy constituting the first upper electrode layer 121a are identical is the first contained in the ruthenium alloy. This is preferable in that the occurrence of defects due to the diffusion of the metal can be prevented more efficiently.
  • the second upper electrode layer 121b is preferably formed of titanium nitride.
  • the second upper electrode layer 121b is preferably formed of tantalum nitride.
  • the content of the first metal contained in the nitride constituting the second upper electrode layer 121b is more than the content of the first metal contained in the ruthenium alloy constituting the first upper electrode layer 121a. Enlarge. Accordingly, it is possible to prevent the metal constituting the first upper electrode layer 121a from diffusing into the nitride constituting the second upper electrode layer 121b and changing the composition of the ruthenium alloy constituting the first upper electrode layer 121a.
  • the titanium content of the second upper electrode layer 121b may be 40 atm% or more and 80 atm% or less, and in particular, 40 atm% or more and 50 atm%.
  • the composition is preferably. If it is 40 atm% or less, titanium in the first upper electrode layer 121a may diffuse into the second upper electrode layer 121b.
  • it is 50 atm% or more in the X-ray diffraction measurement, not only TiN, which is a stable composition of titanium nitride used for the metal electrode, but also a crystal phase derived from Ti 2 N is detected.
  • the second upper electrode 121b Since Ti 2 N is easily oxidized, there is a possibility that the second upper electrode 121b is oxidized when the hard mask film 122 is formed. If the second upper electrode 121b is oxidized, the specific resistance of the second upper electrode 121b increases and the parasitic resistance of the three-terminal switch 132 increases.
  • a sputtering method it is desirable to use a sputtering method to form the second upper electrode layer 121b.
  • a reactive sputtering method in which a metal target is evaporated using plasma of a mixed gas of nitrogen and argon. The metal evaporated from the metal target reacts with nitrogen to form a metal nitride and is deposited on the substrate.
  • the hard mask film 122 is used as a mask when etching the second upper electrode layer 121b, the first upper electrode layer 121a, the first ion conductive layer 118a, and the second ion conductive layer 118b.
  • the hard mask film 122 for example, a silicon nitride film or a silicon carbonitride film can be used.
  • the hard mask film 122 is preferably made of the same material as the protective insulating film 124 and the barrier insulating film 117.
  • the entire periphery of the three-terminal switch 132 is surrounded by members of the same material so that the material interface is integrated, preventing entry of moisture and the like from the outside, and preventing the material from detaching from the three-terminal switch 132 itself. Will be able to.
  • the protective insulating film 124 is an insulating film having a function of preventing application of damage to the three-terminal switch 132 and further preventing desorption of oxygen from the first ion conductive layer 118a.
  • a silicon nitride film, a silicon carbonitride film, or the like can be used for the protective insulating film 124.
  • the protective insulating film 124 is preferably made of the same material as the hard mask film 122 and the barrier insulating film 117. In the case of the same material, the protective insulating film 124, the barrier insulating film 117, and the hard mask film 122 are integrated to improve the adhesion at the interface, and the three-terminal switch 132 can be further protected. .
  • the interlayer insulating film 125 is an insulating film formed on the protective insulating film 124.
  • the interlayer insulating film 125 for example, a silicon oxide film, a SiOC film, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of the silicon oxide film can be used.
  • the interlayer insulating film 125 may be a stack of a plurality of insulating films.
  • the interlayer insulating film 125 may be made of the same material as the interlayer insulating film 127.
  • a contact hole for embedding the plug 129 is formed in the interlayer insulating film 125.
  • the contact hole is covered with a barrier metal film 130, and a plug 129 is formed on the barrier metal film 130 so as to bury the contact hole.
  • the etching stopper film 126 is an insulating film provided between the interlayer insulating films 125 and 127.
  • the etching stopper film 126 functions as an etching stop layer when processing the wiring groove in which the second wiring 128 is embedded.
  • a silicon nitride film, a SiC film, or a silicon carbonitride film can be used.
  • the interlayer insulating film 127 is an insulating film formed on the etching stopper film 126.
  • the interlayer insulating film 127 for example, a silicon oxide film, a SiOC film, a low dielectric constant film (for example, a SiOCH film) having a relative dielectric constant lower than that of a silicon oxide film can be used.
  • the interlayer insulating film 127 may be a stack of a plurality of insulating films.
  • the interlayer insulating film 127 may be made of the same material as the interlayer insulating film 125.
  • a wiring groove for embedding the second wiring 128 is formed in the etching stopper film 126 and the interlayer insulating film 127.
  • the side and bottom surfaces of the wiring trench are covered with the barrier metal film 130, and the second wiring 128 is formed on the barrier metal film 130 so as to bury the wiring trench.
  • the etching stopper film 126 can be deleted depending on the selection of the etching conditions for the wiring trench.
  • the second wiring 128 is a wiring embedded in a wiring groove formed in the interlayer insulating film 127 and the etching stopper film 126.
  • the second wiring 128 is integrated with the plug 129.
  • the plug 129 is embedded in contact holes formed in the interlayer insulating film 125, the protective insulating film 124, and the hard mask film 122.
  • the plug 129 is electrically connected to the second upper electrode layer 121b through the barrier metal film 130.
  • copper can be used for the second wiring 128 and the plug 129.
  • the diameter or area of the region where the plug 129 (strictly, the barrier metal film 130) is in contact with the second upper electrode layer 121b is smaller than the diameter or area of the region where the first wirings 115a and 115b are in contact with the resistance change layer 118. It is set to be. By setting in this way, it is possible to suppress poor filling of the plating into the contact hole.
  • the barrier metal film 130 covers the side surfaces and bottom surface of the second wiring 128 and the plug 129.
  • the barrier metal film 130 is a conductive film having a barrier property that prevents the metal (for example, copper) forming the second wiring 128 (including the plug 129) from diffusing into the interlayer insulating films 125 and 127 and the lower layer. is there.
  • the second wiring 128 and the plug 129 are made of a metal element whose main component is copper, a refractory metal or a nitride of a refractory metal or a laminated film thereof can be used for the barrier metal film 130. .
  • a refractory metal such as tantalum, tantalum nitride, titanium nitride, tungsten carbonitride, or a refractory metal nitride, or Those laminated films are conceivable.
  • the barrier metal film 130 in contact with the second upper electrode layer 121b is made of the same material as that of the second upper electrode layer 121b.
  • the barrier metal film 130 is formed as a laminated body of a lower layer formed of tantalum nitride and an upper layer formed of tantalum, tantalum nitride, which is a lower layer material, is applied to the second upper electrode layer 121b. It is preferable to use it.
  • the barrier insulating film 131 is formed so as to cover the second wiring 128 and the interlayer insulating film 127, prevents oxidation of a metal (for example, copper) forming the second wiring 128, and forms the second wiring 128. It is an insulating film having a role of preventing diffusion of metal into the upper layer.
  • a silicon carbonitride film, a silicon nitride film, a stacked structure thereof, or the like can be used as the barrier insulating film 131.
  • 10A to 10E are cross-sectional views schematically showing an example of a method of manufacturing a semiconductor device in which the switching elements of the second embodiment shown in FIG. 9 are integrated in a multilayer wiring layer.
  • an interlayer insulating film 112 (for example, a silicon oxide film having a thickness of 300 nm) is deposited on a semiconductor substrate 111 (for example, a substrate on which a semiconductor element is formed). Further, a barrier insulating film 113 (for example, a 30 nm-thickness silicon nitride film) is deposited on the interlayer insulating film 112.
  • an interlayer insulating film 114 (for example, a silicon oxide film having a thickness of 200 nm) is deposited on the barrier insulating film 113.
  • wiring grooves corresponding to the first wirings 115a and 115b are formed in the interlayer insulating film 114 and the barrier insulating film 113 by using a lithography method (including photoresist formation, dry etching, and photoresist removal).
  • the wiring groove is covered with barrier metal films 116a and 116b, and first wirings 115a and 115b (for example, copper wiring) are formed on the barrier metal films 116a and 116b so as to fill the wiring grooves.
  • the barrier metal films 116a and 116b for example, a stacked body of a tantalum nitride film having a thickness of 5 nm and a tantalum film having a thickness of 5 nm is used.
  • the interlayer insulating films 112 and 114 can be formed by a plasma CVD method.
  • the first wirings 115a and 115b can be formed by a series of forming methods as follows.
  • the barrier metal films 116a and 116b are formed by the PVD method
  • the copper seed is further formed by the PVD method
  • the copper film is formed by the electrolytic plating method so as to fill the wiring groove.
  • the excess copper film other than in the wiring trench is removed by a CMP method.
  • the first wirings 115a and 115b can be formed.
  • a general method in this technical field can be used. By polishing excess copper embedded in the trench, a buried wiring (damascene wiring) is formed, and by planarizing the interlayer insulating film 114, planarization is performed.
  • a barrier insulating film 117 (for example, a silicon carbonitride film having a thickness of 30 nm) is formed so as to cover the first wirings 115a and 115b and the interlayer insulating film 114.
  • the barrier insulating film 117 can be formed by a plasma CVD method.
  • the thickness of the barrier insulating film 117 is preferably about 10 nm to 50 nm.
  • a hard mask film 119 (for example, a silicon oxide film) is formed on the barrier insulating film 117.
  • the hard mask film 119 is preferably made of a material different from the barrier insulating film 117 from the viewpoint of maintaining a high etching selectivity in the dry etching process, and may be an insulating film or a conductive film.
  • a silicon oxide film, a silicon nitride film, TiN, Ti, tantalum, tantalum nitride, or the like can be used.
  • a stacked body of a silicon nitride film and a silicon oxide film can be used.
  • a photoresist pattern (not shown) having openings is formed on the hard mask film 119.
  • an opening 119a is formed in the hard mask film 119 as shown in FIG. 10B.
  • the photoresist pattern is peeled off by oxygen plasma ashing or the like. At this time, dry etching is not necessarily stopped on the upper surface of the barrier insulating film 117, and a part of the barrier insulating film 117 may be etched.
  • Step 5 shows a state where a portion of the interlayer insulating film 114 inside the opening 117a of the barrier insulating film 117 is partially etched.
  • an organic stripping process is performed with an amine stripping solution or the like to remove copper oxide formed on the exposed surfaces of the first wirings 115a and 115b and to remove etching products generated during etch back.
  • the hard mask film 119 is preferably completely removed during the etch back, but may be left as it is if it is an insulating material.
  • the shape of the opening 117a of the barrier insulating film 117 can be a circle, a square, or a rectangle, and the diameter of the circle or the length of one side of the square or the rectangle can be 20 nm to 500 nm.
  • the side surface of the opening 117a of the barrier insulating film 117 can be tapered by using reactive dry etching.
  • reactive dry etching a gas containing fluorocarbon can be used as an etching gas.
  • a resistance change layer 118 including the first ion conductive layer 118a and the second ion conductive layer 118b is formed. Specifically, first, a titanium film having a film thickness of 0.5 nm and an aluminum film having a film thickness of 0.5 nm are deposited in this order so as to cover the first wirings 115a and 115b and the barrier insulating film 117. A metal film is formed. The titanium film and the aluminum film can be formed using a PVD method or a CVD method.
  • the SiOCH polymer film used as the first ion conductive layer 118a is formed as follows.
  • the cyclic organosiloxane raw material and the carrier gas helium are supplied to the reaction chamber, the supply of both is stabilized, and the application of RF power is started when the pressure in the reaction chamber becomes constant.
  • the supply amount of the raw material is 10 to 200 sccm.
  • 500 sccm of helium is supplied via the raw material vaporizer, and 500 sccm of helium is directly supplied to the reaction chamber in another line.
  • the titanium film and the aluminum film are automatically oxidized by being exposed to the raw material of the SiOCH polymer film containing oxygen during the formation of the first ion conductive layer 118a.
  • the second ion conductive layer 118b constituting a part of the resistance change layer 118 is formed.
  • Step 6 since the moisture 117 is attached to the opening 117a of the barrier insulating film 117 by the organic peeling process in Step 5, the pressure is reduced at a temperature of about 250 ° C. to 350 ° C. before the resistance change layer 118 is formed. It is preferable to degas by applying a heat treatment. At this time, degassing is preferably performed under vacuum or in a nitrogen atmosphere so that the surfaces of the first wirings 115a and 115b formed of copper are not oxidized again.
  • Step 6 before the variable resistance layer 118 is formed, a gas cleaning or plasma cleaning process using H 2 gas is performed on the first wirings 115a and 115b exposed from the opening of the barrier insulating film 117. May be.
  • the resistance change layer 118 is formed, copper oxidation of the first wirings 115a and 115b can be suppressed, and thermal diffusion (mass transfer) of copper during the process can be suppressed. It becomes like this.
  • Step 7 As shown in FIG. 10C, a thin film of ruthenium alloy containing titanium is formed on the variable resistance layer 118 as a first upper electrode layer 121a with a thickness of 10 nm by co-sputtering. At this time, the ruthenium target and the titanium target exist in the same chamber, and a ruthenium alloy film is deposited by sputtering at the same time. By controlling the power applied to the ruthenium target and the power applied to the titanium target, the ruthenium content of the ruthenium alloy containing titanium can be adjusted to a desired value.
  • the applied power to the ruthenium target is 150 W, and the applied power to the titanium target is 50 W, so that the ruthenium content of the “ruthenium alloy containing titanium” is 75 atm% and the titanium content is It could be adjusted to 25 atm%.
  • the second upper electrode layer 121b is formed on the first upper electrode layer 121a.
  • the first upper electrode layer 121 a and the second upper electrode layer 121 b constitute the upper electrode 121.
  • a titanium nitride film with a film thickness of 25 nm is formed by reactive sputtering.
  • nitrogen gas and argon gas are introduced into the chamber.
  • the titanium content of the titanium nitride film can be adjusted by adjusting the power applied to the titanium target and the ratio of nitrogen gas and argon gas supplied to the chamber.
  • the power applied to the titanium target is set to 600 W, and the ratio of the nitrogen gas flow rate to the argon gas flow rate is set to 2: 1, so that the titanium content of the titanium nitride film is 50 atm%.
  • the ratio of the nitrogen gas flow rate to the argon gas flow rate is set to 2: 1, so that the titanium content of the titanium nitride film is 50 atm%.
  • a hard mask film 122 for example, a silicon nitride film or a silicon carbonitride film with a thickness of 30 nm
  • a hard mask film 123 for example, a silicon oxide film with a thickness of 90 nm
  • the hard mask films 122 and 123 can be formed using a plasma CVD method.
  • the hard mask films 122 and 123 can be formed using a general plasma CVD method in this technical field.
  • the hard mask films 122 and 123 are preferably films formed of different materials.
  • the hard mask film 122 is formed of a silicon nitride film
  • the hard mask film 123 is formed of a silicon oxide film. it can.
  • the hard mask film 122 is preferably made of the same material as a protective insulating film 124 and a barrier insulating film 117 described later. That is, by surrounding all of the periphery of the switching element with the same material, the interface of the members surrounding the switching element can be integrated to prevent intrusion of moisture and the like from the outside and prevent the material from detaching from the switching element. It becomes like this.
  • the hard mask film 122 can be formed by a plasma CVD method, but must be maintained under reduced pressure in the reaction chamber before film formation. While being held under reduced pressure, oxygen may be desorbed from the first ion conductive layer 118a, and a leakage current of the first ion conductive layer 118a may increase due to oxygen defects.
  • the film forming temperature is preferably 350 ° C. or lower, preferably 250 ° C. or lower.
  • a reducing gas as a raw material gas for the hard mask film 122.
  • the hard mask film 122 is preferably a high-density silicon nitride film formed by generating a high-density plasma using a mixed gas of SiH 4 / N 2 as a raw material.
  • Step 9 a photoresist pattern (not shown) for patterning the first ion conductive layer 58a, the second ion conductive layer 58b, the first upper electrode layer 61a, and the second upper electrode layer 61b on the hard mask film 123. ).
  • the hard mask film 123 is etched by dry etching using the photoresist pattern as a mask until the hard mask film 122 appears as shown in FIG. 10C. Thereafter, the photoresist pattern is removed using oxygen plasma ashing and organic peeling.
  • the hard mask film 123, the second upper electrode layer 121b, the first ion conductive layer 118a, and the second ion conductive layer 118b are continuously formed using the hard mask film 123 as a mask. Etched by dry etching. At this time, the hard mask film 123 is preferably completely removed during the etch back, but may remain as it is.
  • the second upper electrode layer 121b when the second upper electrode layer 121b is formed of titanium nitride, the second upper electrode layer 121b can be processed by RIE using Cl 2 gas as a reaction gas.
  • the first upper electrode layer 121a is formed of a ruthenium alloy containing titanium, the first upper electrode layer 121a can be processed by RIE using a mixed gas of Cl 2 gas and O 2 gas as a reaction gas.
  • etching by RIE can be performed.
  • Etching with RIE for example, CF 4 gas, a mixed gas of CF 4 gas and Cl 2 gas, or by adjusting the etching conditions using a mixed gas of CF 4 gas and Cl 2 gas and Ar gas, performed be able to.
  • RIE reactive ion etching
  • the films constituting the three-terminal switch 132 are the second upper electrode layer 121b, the first upper electrode layer 121a, the first ion conductive layer 118a, and the second ion conductive layer 118b. Further, when the oxidation treatment is performed by oxygen plasma after the processing, the oxidation plasma treatment can be irradiated without depending on the resist peeling time.
  • the protective insulating film 124 is formed so as to cover the hard mask film 122, the second upper electrode layer 121b, the first upper electrode layer 121a, the first ion conductive layer 118a, the second ion conductive layer 118b, and the barrier insulating film 117.
  • a silicon nitride film having a thickness of 30 nm is formed.
  • the protective insulating film 124 can be formed by a plasma CVD method, but it is necessary to maintain the pressure in the reaction chamber under reduced pressure before the film formation. At this time, oxygen may be desorbed from the side surface of the first ion conductive layer 118a, and the leakage current of the first ion conductive layer 118a may increase.
  • the deposition temperature of the protective insulating film 124 is preferably set to 250 ° C. or lower. Further, in forming the protective insulating film 124, it is preferable not to use a reducing gas as a source gas because the protective insulating film 124 is exposed to a deposition gas under reduced pressure before the deposition. For example, it is preferable to use as the protective insulating film 124 a silicon nitride film formed by using a mixed gas of SiH 4 / N 2 with high-density plasma at a substrate temperature of 200 ° C.
  • Step 12 Next, an interlayer insulating film 125 (for example, a SiOC film) and an interlayer insulating film 127 (for example, a silicon oxide film) are deposited on the protective insulating film 124 in this order. Further, an etching stopper film 126 is formed on the interlayer insulating film 127. Thereafter, a wiring groove in which the second wiring 128 is formed and a contact hole in which the plug 129 is formed are formed.
  • a wiring groove in which the second wiring 128 is formed and a contact hole in which the plug 129 is formed are formed.
  • a barrier metal film 130 for example, a laminate of a tantalum nitride film and a tantalum film
  • a second wiring 128 for example, copper
  • Plug 129 eg, copper
  • a barrier insulating film 131 for example, a silicon nitride film
  • the second wiring 128 can be formed using a process similar to that of the wiring (eg, the first wirings 115a and 115b) located in the lower layer.
  • the interlayer insulating film 125 and the interlayer insulating film 127 can be formed by a plasma CVD method. Further, in step 12, in order to eliminate the step formed by the three-terminal switch 132, the interlayer insulating film 125 is deposited thickly, and the interlayer insulating film 125 is cut and planarized by CMP to form the interlayer insulating film 125 as a desired film. It is good also as thickness.
  • the content of the first metal of the ruthenium alloy constituting the first upper electrode layer 22a is set to the nitride constituting the second upper electrode layer 22b. It explained as what makes it smaller than the content rate of the 1st metal. This is to make the content of the first metal of the nitride constituting the second upper electrode layer 22b larger than the content of the first metal of the ruthenium alloy constituting the first upper electrode layer 22a. Is equivalent.
  • the second upper electrode layer 61b is configured with respect to the content ratio of the first metal contained in the ruthenium alloy configuring the first upper electrode layer 61a.
  • the content of the first metal contained in the nitride is increased. This is because the content rate of the first metal contained in the ruthenium alloy constituting the first upper electrode layer 61a is made smaller than the content rate of the first metal contained in the nitride constituting the second upper electrode layer 61b. Is equivalent to.
  • the second upper electrode layer 121b is constituted by the content ratio of the first metal contained in the ruthenium alloy constituting the first upper electrode layer 121a.
  • the content of the first metal contained in the nitride is increased. This is because the content rate of the first metal contained in the ruthenium alloy constituting the first upper electrode layer 121a is smaller than the content rate of the first metal contained in the nitride constituting the second upper electrode layer 121b. Is equivalent to.
  • a first electrode, a second electrode, a variable resistance layer provided between the first electrode and the second electrode and having ion conductivity The first electrode includes a metal that generates metal ions capable of conducting in the resistance change layer;
  • the second electrode includes a first electrode layer formed in contact with the variable resistance layer, and a second electrode layer formed in contact with the first electrode layer,
  • the first electrode layer is made of a ruthenium alloy containing ruthenium and a first metal having a larger standard generation Gibbs energy in the negative direction than ruthenium.
  • the second electrode layer is formed of a nitride containing the first metal, The switching element in which the content rate of the first metal in the first electrode layer is smaller than the content rate of the first metal in the second electrode layer.
  • the switching element according to supplementary note 1 wherein the first metal is at least one metal selected from the group consisting of titanium, tantalum, zirconium, hafnium, and aluminum.
  • the said 1st electrode layer is a switching element of Additional remark 1 or 2 which has ruthenium as a main component and the content rate of a said 1st metal is 10 atm% or more and 40 atm% or less.
  • the first metal is titanium
  • the titanium content of the first electrode layer is 20 atm% or more and 30 atm% or less
  • the titanium content of the second electrode layer is 40 atm% or more and 80 atm%.
  • or 4 with which the metal which can conduct to the said resistance change layer contains copper.
  • the said resistance change layer is provided with the 1st ion conduction layer which has at least silicon
  • the relative dielectric constant of the said 1st ion conduction layer is 2.1-3.0
  • the switching element according to supplementary note 7, wherein the first metal and the second metal are the same.
  • Appendix 9 A semiconductor substrate, and a multilayer wiring layer formed above the semiconductor substrate and including a wiring formed of copper and a plug formed of copper, A switching element is formed in the multilayer wiring layer, The switching element is made of copper, a lower electrode copper wiring used as a lower electrode of the switching element, an upper electrode electrically connected to the plug, and between the lower electrode copper wiring and the upper electrode A variable resistance layer having ion conductivity formed,
  • the upper electrode includes a first upper electrode layer formed in contact with the variable resistance layer, and a second upper electrode layer formed in contact with the first upper electrode layer,
  • the first upper electrode layer is formed of a ruthenium alloy including ruthenium and a first metal having a larger standard production Gibbs energy in the negative direction than ruthenium.
  • the second upper electrode layer is formed of a nitride containing the first metal, The semiconductor device, wherein a content ratio of the first metal in the first upper electrode layer is smaller than a content ratio of the first metal in the second upper electrode layer.
  • the semiconductor device according to supplementary note 9 wherein the first metal is at least one metal selected from the group consisting of titanium, tantalum, zirconium, hafnium, and aluminum.
  • the said 1st electrode layer is a semiconductor device of Additional remark 9 or 10 which has ruthenium as a main component and whose content rate of a said 1st metal is 10 atm% or more and 40 atm% or less.
  • the first metal is titanium, the titanium content of the first electrode layer is 20 atm% or more and 30 atm% or less, and the titanium content of the second electrode layer is 40 atm% or more and 80 atm%.
  • or 12 with which the metal which can be conducted to the said resistance change layer contains copper.
  • the said resistance change layer is provided with the 1st ion conduction layer which has at least silicon
  • the relative dielectric constant of the said 1st ion conduction layer is 2.1-3.0 14.
  • the semiconductor device according to supplementary note 15 wherein the first metal and the second metal are the same.
  • a method of manufacturing a switching element including a first electrode, a second electrode, and a resistance change layer provided between the first electrode and the second electrode and having ion conductivity.
  • a ruthenium alloy that generates metal ions that can conduct in the variable resistance layer the ruthenium alloy including ruthenium and a first metal having a larger standard Gibbs energy in the negative oxidation process than ruthenium.
  • Forming one electrode; The second electrode is formed so as to include a first electrode layer in contact with the variable resistance layer and a second electrode layer in contact with the first electrode layer and formed of a nitride containing the first metal.
  • a process The method for manufacturing a switching element, wherein a content ratio of the first metal in the first electrode layer of the second electrode is smaller than a content ratio of the first metal in the second electrode layer of the second electrode.
  • the switching element according to supplementary note 17 wherein the first electrode layer and the second electrode layer of the second electrode are sequentially stacked on the variable resistance layer and then patterned with a common mask.
  • Production method (Supplementary note 19)
  • the resistance change layer, the first electrode layer of the second electrode, and the second electrode layer of the second electrode are sequentially stacked and then patterned with a common mask. 18.
  • the first metal is titanium
  • the titanium content of the first electrode layer of the second electrode is 20 atm% or more and 30 atm% or less
  • the second electrode layer of the second electrode The method for manufacturing a switching element according to any one of appendices 17 to 21, wherein the titanium content is 40 atm% or more and 80 atm% or less.
  • the variable resistance layer includes a first ion conductive layer containing at least silicon, oxygen, and carbon as main components, and a relative dielectric constant of the first ion conductive layer is 2.1 or more and 3.0 or less.
  • the method for manufacturing a switching element according to any one of appendices 17 to 23. (Supplementary Note 25) A second ion conductive layer further provided between the first ion conductive layer and the first electrode, The second ion conductive layer is formed of an oxide of a second metal; 25.
  • the method for manufacturing a switching element according to supplementary note 25 wherein the first metal and the second metal are the same.
  • the resistance change element according to the present invention can be used as a nonvolatile switching element, and in particular, the present invention can be suitably used as a nonvolatile switching element constituting an electronic device such as a programmable logic and a memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

 リセット動作時における抵抗変化層の絶縁破壊が抑制される一方で、低電流でプログラミングした場合にも高い保持力を有する不揮発性スイッチング素子を提供する。スイッチング素子が、第1電極と、第2電極と、第1電極と第2電極との間に設けられた、イオン伝導性を有する抵抗変化層とを具備する。第1電極は、抵抗変化層において伝導可能な金属イオンを生成する金属を含む。第2電極は、抵抗変化層に接して形成される第1電極層と、第1電極層に接して形成される第2電極層とを備えている。第1電極層は、ルテニウムと、ルテニウムよりも酸化過程の標準生成ギブスエネルギーが負方向に大きい第1の金属とを含むルテニウム合金で形成され、第2電極層は、第1の金属を含む窒化物で形成される。第1電極層における第1の金属の含有率は、第2電極層における第1の金属の含有率よりも小さい。

Description

スイッチング素子及びスイッチング素子の製造方法
 本発明は、スイッチング素子及びスイッチング素子の製造方法に関し、特に、電気化学反応を利用して、金属イオンを伝導するイオン伝導層内に金属架橋を形成し、オフ状態からオン状態へと抵抗変化が可能なスイッチング素子とその製造方法に関する。この電気化学反応を利用した金属架橋の形成とは、金属の酸化による金属イオンの生成、生成した金属イオンの導入、金属イオンの還元による金属の析出を利用して、抵抗変化層(イオン伝導層)内に金属架橋を形成するものである。
 プログラマブルロジックの機能を多様化し、電子機器などへの実装を推進して行くためには、ロジックセル間を相互に結線するスイッチのサイズを小さくし、そのオン抵抗を小さくすることが必要となる。このような要求を満たすデバイスとして、電気化学反応を利用して抵抗変化層内に金属架橋を形成し、これにより、オフ状態からオン状態へとスイッチングする不揮発性スイッチング素子が開発されている。すなわち、電気化学反応を利用して、金属イオンを伝導する抵抗変化層(イオン伝導層)内において金属の析出を行って該抵抗変化層内に金属架橋を形成し、これにより、オフ状態からオン状態へとスイッチングするものである。このような不揮発性スイッチング素子は、旧来の半導体スイッチよりもサイズが小さく、オン抵抗が小さいことが知られている。
 電気化学反応を利用する不揮発性スイッチング素子には、特許文献1(国際公開第00/48196号)に開示された「二端子スイッチ」と、特許文献2(国際公開第2012/043502号)に開示された「三端子スイッチ」とがある。図1Aは、特許文献1に開示された、二端子スイッチとして構成されたスイッチング素子の構成を示す断面図である。特許文献1は、スイッチング素子が、該スイッチング素子をオフ状態からオン状態へ切り替える過程で金属イオンを供給する下部電極201と、金属イオンを供給しない上部電極202とで、イオン伝導層203を挟んだ構造を有していることを開示している。
 該スイッチング素子をオフ状態からオン状態へ切り替える過程では、上部電極202を接地し、下部電極201に正電圧を印加する。下部電極201では、金属がイオン化され、生成した金属イオンは、イオン伝導層203に導入される。上部電極202では、金属イオンが還元され、金属が析出する。析出する金属によって、イオン伝導層203の中に上部電極202から下部電極201に達する金属架橋の形成がなされる結果、該スイッチング素子がオフ状態からオン状態へとスイッチングされる。逆に、該スイッチング素子をオン状態からオフ状態へ切り替える過程では、上部電極202を接地し、下部電極201に負電圧を印加する。その際、析出している金属が再イオン化し、下部電極201では、金属イオンの還元により、金属の再析出が進行する。この結果、金属架橋が消滅し、該スイッチング素子がオン状態からオフ状態へとスイッチングされる。二端子スイッチは、構造が単純であるため、作製プロセスが簡便であり、ナノメートルオーダーの素子サイズを有する二端子スイッチの加工も可能である。
 一方、図1Bは、特許文献2に開示された、三端子スイッチとして構成されたスイッチング素子の構成を示す概念図である。特許文献2は、スイッチング素子が、第1スイッチ301と第2スイッチ302とを備えていることを開示している(特許文献2の図3参照)。第1スイッチ301は、活性電極として構成された第1電極301aと、不活性電極として構成された第2電極301bと、これらの間に挟まれた抵抗変化層を備えている。
 同様に、第2スイッチ302は、活性電極として構成された第1電極302aと、不活性電極として構成された第2電極302bと、これらの間に挟まれた抵抗変化層を備えている。第1スイッチ301の第1電極301aは、第1ノード303に接続され、第2スイッチ302の第1電極302aは、第2ノード304に接続される。第1スイッチ301及び第2スイッチ302の第2電極301b、302bは、共通ノード305に接続される。第1ノード303に印加される電圧VL1と、第2ノード304に印加される電圧VL2を制御することにより、該スイッチング素子がオン状態とオフ状態との間でスイッチングされる。特許文献2に開示されたスイッチング素子では、2つの二端子スイッチの不活性電極を一体化した構造を有するため、高い信頼性が確保される。
 特許文献3(国際公開第2011/058947号)は、電気化学反応を利用する不揮発性スイッチング素子の抵抗変化層(イオン伝導層)の好ましい材料を開示している。特許文献3は、シリコン、酸素、炭素を主成分としたポーラスポリマーを抵抗変化層として用いることを開示している。ポーラスポリマーイオン伝導層は、金属架橋が形成しても、絶縁破壊電圧を高く保つことができるため、動作信頼性に優れている。
 不揮発性スイッチング素子をプログラマブルロジックの配線切り替えスイッチとして搭載(応用)するためには、配線の高密度化に対応して、素子サイズの小型化及び作製工程の簡略化を図る必要がある。最先端の半導体装置では、多層配線の形成に利用する配線材料として、主に、銅が利用される。多層構造の銅配線内に、不揮発性スイッチング素子を効率的に形成する手法の開発が望まれている。
 電気化学反応を利用するスイッチング素子を半導体装置に集積化する技術については、例えば、非特許文献1に開示されている。非特許文献1には、スイッチング素子の下部電極を銅で作製する際、半導体基板上の銅配線と、スイッチング素子の下部電極を兼用する構成が記載されている。該構造を採用すると、銅配線に加えて、下部電極を新たに形成するための工程を省くことができ、下部電極を作製するためのパターニング工程用のマスクは不要となる。例えば、二端子スイッチの構成を有する抵抗変化素子を作製するためには、イオン伝導層の形成工程と上部電極の形成工程で使用する、フォトマスク(PR: Photoresist mask)2枚を追加するのみとなる。
 スイッチング素子の下部電極を銅で作製する場合、スイッチング素子をオフ状態からオン状態へ切り替える過程で金属イオンを供給しない上部電極は、酸化し難い白金や金、又は、酸化しても導電性を有するルテニウムを用いて形成される。非特許文献1は、加工に適したルテニウムを使用して上部電極を作製することを開示している。
 半導体基板上の銅配線をスイッチング素子の下部電極として兼用する場合、シリコン、酸素、炭素を主成分としたポーラスポリマーで形成されるポーラスポリマーイオン伝導層を銅配線上に直接成膜すると、銅配線表面が酸化を受ける。特許文献3は、銅配線表面の酸化を防止する目的で、銅配線表面に、酸化犠牲層として機能する金属薄膜を設けた後、ポーラスポリマーイオン伝導層を成膜する技術を開示している。該金属薄膜は、ポーラスポリマーイオン伝導層の成膜工程中、酸素によって酸化され、イオン伝導性を示す金属酸化物の薄膜に変換される。
 図1Cは、特許文献3に開示されたスイッチング素子の構成を具体的に示す断面図である。特許文献3は、第1の電極401と、第2の電極402と、イオン伝導層403と、酸化チタン膜404とを備えている(特許文献3の図4参照)。イオン伝導層403と、酸化チタン膜404とは、第1の電極401と第2の電極402の間に設けられている。
 第1の電極401は、銅を主成分とする金属から形成されており、酸化チタン膜404は、イオン伝導層403と第1の電極401の間に設けられている。イオン伝導層403は、シリコン、酸素、炭素を主成分としたポーラスポリマーで形成される。一方、酸化チタン膜404は、チタン膜(酸化犠牲層として機能する金属薄膜)がイオン伝導層403の成膜工程中に酸化されることによって形成される。酸化チタン膜404は、その上面に成膜されるイオン伝導層403と共に、イオン伝導性を示す抵抗変化層を構成する。
 特許文献4は半導体装置に関するものであり、半導体基板上の多層銅配線層の内部に三端子型抵抗変化素子を有する半導体装置が提案されている。特許文献5は下部電極及び上部電極により挟持された抵抗変化層を備える抵抗変化素子に関するものであり、特許文献5が開示する抵抗変化素子の下部電極や上部電極の材料名を列挙している。特許文献5では、特許文献5の上部電極がAu、Pt、Ru、Ir、Ti、Al、Cu、Taなど、或いは、これらの合金、酸化物、窒化物、弗化物、炭化物、硼化物などからなればよい、ことが記載されている。また、特許文献5の上部電極は、酸化されにくい材料、又は、酸化後も導電性を保持できる材料からなることが好ましいこと、また、Ti-N(窒化チタン)、FeN(窒化鉄)、Ti-Al-Nなどの窒化物からなることが好ましいことが記載されている。特許文献6は抵抗変化素子に関するものであり、抵抗変化素子の電極に、ルテニウムと、ルテニウムよりも酸化の標準生成ギブズエネルギーが負に大きな金属との合金を用いることが提案されている。
国際公開第00/48196号 国際公開第2012/043502号 国際公開第2011/058947号 国際公開第2011/158821号 特開2007-288008号公報 国際公開第2013/190988号
IEEE TRANSACTIONS ON ELECTRON DEVICES(アイ・イー・イー・イー トランズアクションズ オン エレクトロン デバイセズ)、57巻、1987ページ~1995ページ、2010年
 電気化学反応を利用する不揮発性スイッチング素子は、プログラマブルロジックの配線切り換えスイッチに応用可能である。かかる不揮発性スイッチング素子を、プログラマブルロジックの配線切り換えスイッチに使用する場合、2つの課題がある。
 第1の課題は、オン状態、又は、オフ状態に確実に書換えを行うことができるスイッチング素子の歩留まりの向上である。大規模の素子アレイを用いてオフ状態への遷移を行うリセット動作を行った場合、リセットできない素子がわずかに存在することがある。このような素子は一度リセット挙動を示し、素子の抵抗値が増加するものの、所望のリセット電圧よりも絶対値の小さい電圧で再度低抵抗状態に遷移する。このような素子は、リセット動作によって抵抗変化層(イオン伝導層)中の金属架橋が回収された後に、抵抗変化層が絶縁破壊している。このような不具合を解消するためには、不揮発性スイッチング素子の構成を最適化する必要がある。
 第2の課題は、当初のプログラミングの際、オン状態又はオフ状態に書換えを終えた後、書換えに使用する電圧・電流の印加が無い状態で、オン状態又はオフ状態を10年程度保つ保持力の向上である。書換えに使用する電流量は、抵抗変化層(イオン伝導層)内に形成される金属架橋を構成する金属の総量に比例する。太い金属架橋を形成するには、金属架橋を構成する金属の総量は多く、書換えに使用する電流量は多くなる。逆に、書換えに使用する電流量が少ない場合、金属架橋を構成する金属の総量は少なくなり、形成される金属架橋は細くなる。「細い金属架橋」を使用すると、長期間を経る間に、該「細い金属架橋」を流れる電流に起因するエレクトロマイグレーション及び金属のイオン化のため、「細い金属架橋」中に細線化が進行する部位が生じ、不揮発性スイッチング素子の抵抗値が急激に上昇する。なお、エレクトロマイグレーション、金属のイオン化は温度が上昇すると、一層加速されるため、最終的に「細い金属架橋」中に断線部位が生じる場合もある。すなわち、不揮発性スイッチング素子は、書換えに使用する電流量の低減化(低電力化)と、オン状態の低い抵抗値を長期間保持する保持力(高信頼化)の間には、トレードオフが存在する。10年間を超える長期の信頼性を達成しつつ、書換えに使用する電流量の低減化(低電力化)を進めるためには、不揮発性スイッチング素子の構成を最適化する必要がある。
 本発明は、上記の課題を解決するものである。本発明の目的は、リセット動作時における抵抗変化層の絶縁破壊が抑制される一方で、低電流でプログラミングした場合にも高い保持力を有する不揮発性スイッチング素子を提供することにある。
 本発明の一の観点では、スイッチング素子が、第1電極と、第2電極と、第1電極と第2電極との間に設けられた、イオン伝導性を有する抵抗変化層とを具備する。第1電極は、抵抗変化層において伝導可能な金属イオンを生成する金属を含む。第2電極は、抵抗変化層に接して形成される第1電極層と、第1電極層に接して形成される第2電極層とを備えている。第1電極層は、ルテニウムと、ルテニウムよりも酸化過程の標準生成ギブスエネルギーが負方向に大きい第1の金属とを含むルテニウム合金で形成され、第2電極層は、第1の金属を含む窒化物で形成される。第1電極層における第1の金属の含有率は、第2電極層における第1の金属の含有率よりも小さい。
 本発明の他の観点では、半導体装置が、半導体基板と、半導体基板の上方に形成され、銅で形成された配線と銅で形成されたプラグとを含む多層配線層とを具備する。多層配線層にはスイッチング素子が形成される。スイッチング素子は、銅で形成され、スイッチング素子の下部電極として用いられる下部電極銅配線と、プラグに電気的に接続された上部電極と、下部電極銅配線と上部電極の間に形成された、イオン伝導性を有する抵抗変化層とを備えている。上部電極は、抵抗変化層に接して形成される第1上部電極層と、第1上部電極層に接して形成される第2上部電極層とを備えている。第1上部電極層は、ルテニウムと、ルテニウムよりも酸化過程の標準生成ギブスエネルギーが負方向に大きい第1の金属とを含むルテニウム合金で形成される。第2上部電極層は、第1の金属を含む窒化物で形成される。第1上部電極層における第1の金属の含有率は、第2上部電極層における第1の金属の含有率よりも小さい。
 本発明によれば、リセット動作時における抵抗変化層の絶縁破壊が抑制される一方で、低電流でプログラミングした場合にも高い保持力を有する不揮発性スイッチング素子が提供される。
二端子スイッチの構成を採用するスイッチング素子の構造の一例を模式的に示す断面図である。 三端子スイッチの構成を採用するスイッチング素子の構造の一例を模式的に示す図である。 酸化チタン膜と、その上面に成膜されるポーラスポリマーイオン伝導層とを備えるスイッチング素子の構造の一例を模式的に示す断面図である。 第1の実施形態のスイッチング素子の構造の一例を模式的に示す断面図である。 第1の実施形態のスイッチング素子において、オフ状態からオン状態へのスイッチング過程でイオン伝導層中に金属架橋が生成される機構を模式的に示す断面図である。 第1の実施形態のスイッチング素子の製造方法を模式的に示す断面図である。 第1の実施形態のスイッチング素子を多層配線層内部に形成した半導体装置の一構成例を模式的に示す断面図である。 第1上部電極層がルテニウムで形成されたスイッチング素子のオン状態の抵抗値の保持特性の分布を示すグラフである。 第1上部電極層が25atm%のチタンを含むルテニウム合金で形成されたスイッチング素子のオン状態の抵抗値の保持特性の分布を示すグラフである。 第1上部電極層がルテニウムで形成されたスイッチング素子のオフ状態へのスイッチングに要する電流値の分布を示すグラフである。 第1上部電極層が25atm%のチタンを含むルテニウム合金で形成されたスイッチング素子のオフ状態へのスイッチングに要する電流値の分布を示すグラフである。 第1の実施形態のスイッチング素子の断面TEM(Transmission Electron Microscope)像を示す図である。 第1の実施形態のスイッチング素子のリセット歩留まりを示すグラフである。 第1の実施形態の半導体装置の製造方法の工程1~4を模式的に示す断面図である。 第1の実施形態の半導体装置の製造方法の工程5~8を模式的に示す断面図である。 第1の実施形態の半導体装置の製造方法の工程9、10を模式的に示す断面図である。 第1の実施形態の半導体装置の製造方法の工程11、12を模式的に示す断面図である。 第2の実施形態の半導体装置の一構成例を模式的に示す断面図である。 第2の実施形態の半導体装置の製造方法の工程1~3を模式的に示す断面図である。 第2の実施形態の半導体装置の製造方法の工程4~6を模式的に示す断面図である。 第2の実施形態の半導体装置の製造方法の工程7~9を模式的に示す断面図である。 第2の実施形態の半導体装置の製造方法の工程10、11を模式的に示す断面図である。 第2の実施形態の半導体装置の製造方法の工程12を模式的に示す断面図である。
 本発明の一実施形態では、スイッチング素子(抵抗変化素子)が、第1電極と、第2電極と、第1電極と第2電極との間に設けられた、イオン伝導性を有する抵抗変化層とを具備する。第1電極は、抵抗変化層に伝導可能な金属を含む。第2電極は、抵抗変化層に接して形成される第1電極層と、第1電極層に接して形成される第2電極層とを備えている。第1電極層は、ルテニウムと第1の金属とを含む合金で形成される。第2電極層は、第1の金属を含む窒化物で形成される。第1電極層における第1の金属の含有率は、第2電極層における第1の金属の含有率よりも小さい。
 第2電極層を金属の窒化物で形成することで、スイッチング素子の形成プロセス中の加熱工程やプラズマ工程におけるダメージで、第2電極層を構成する第1の金属が第1電極層を介して抵抗変化層に拡散することを防ぐことができる。抵抗変化層に第2電極層を構成する金属が拡散すると、抵抗変化層の内部に欠陥が形成し、絶縁破壊電圧が低下する。第2電極層を窒化物とすることで、リセット動作に伴う抵抗変化層の絶縁破壊を防止でき、リセット歩留まりを向上できる。上記により、リセット時の不具合を防ぎ、スイッチングの繰り返し回数を確保できる。
 一方、第1電極層を構成するルテニウムに第1の金属を添加することによって、金属架橋と第1電極層の密着性が向上するため、低電流でプログラミングした場合にも、素子の安定性が向上し、保持力が向上する。また、第1電極層がルテニウムを含んでいるため、安定にリセットできる。さらに第1電極層の合金化によって比抵抗が増加することで、書換え電流によって発熱し易くなり、熱の閉じ込め効果によって金属架橋に発生したジュール熱が離散し難くなる。このため、書換え時に必要な書換え電流が低減する効果もある。
 ここで、前記第1電極層における前記第1の金属の含有率が、前記第2電極層における前記第1の金属の含有率よりも小さくなるように、調節する。この含有率の調整により、第1電極層に含まれる第1の金属が第2電極層を構成する窒化物に拡散し、第1電極層を構成するルテニウム合金の組成が変化することを、防止できる。
 本実施形態のスイッチング素子は、上記のメカニズムにより、低電力化と高保持力化を両立させることができる。単純に保持力だけを向上させるとより高いプログラミング電力が必要となってしまうため、第1電極層として合金を使用することで熱効率を改善することで、少ない電流でも効果的にプログラミングを行うことができるようになる。以下では、本発明のスイッチング素子のより具体的な実施形態を詳細に説明する。
 (第1の実施形態)
 図2は、第1の実施形態のスイッチング素子の一構成例を模式的に示す断面図である。第1の実施形態のスイッチング素子は、二端子スイッチとして構成されており、下部電極21(第1電極)と、上部電極22(第2電極)と、これらの間に設けられた抵抗変化層23とを備えている。抵抗変化層23は、イオン伝導性を有しており、金属イオンを伝導する媒体である。
 下部電極21は、金属イオンを抵抗変化層23に供給する活性電極として機能し、例えば、銅で形成される。後述されるように、下部電極21から抵抗変化層23に供給された金属イオン(銅イオン)が金属に戻ることで抵抗変化層23に金属架橋が形成される。例えば、スパッタ法、化学気相成長法(CVD(Chemical Vapor Deposition)法)、電気めっき法で形成される銅配線を、下部電極21として使用してもよい。
 上部電極22は、不活性電極として機能する。本実施形態では、上部電極22は、第1上部電極層22aと第2上部電極層22bの積層体として構成される。第1上部電極層22aは、抵抗変化層23に接して形成され、第2上部電極層22bは、第1上部電極層22aに接して形成される。
 本実施形態では、第1上部電極層22aの材料として、第1の金属が添加されているルテニウム合金(ルテニウムを主成分とする合金)が使用される。発明者らの検討によれば、第1上部電極層22aにおいて、ルテニウム合金に添加する第1の金属としては、酸化過程(金属から金属イオンを生成する過程)の標準生成ギブズエネルギーがルテニウムよりも負方向に大きい金属を選択することが望ましい。
 ある金属の「酸化過程の標準生成ギブズエネルギーがルテニウムよりも負方向に大きい」とは、厳密には次の状態を意味している。すなわち、当該金属の酸化過程の標準生成ギブズエネルギーが負であり、且つ、当該金属の酸化過程の標準生成ギブズエネルギーの絶対値が、ルテニウムの酸化過程の標準生成ギブズエネルギーの絶対値よりも大きい、ことである。
 酸化過程の標準生成ギブズエネルギーがルテニウムより負方向に大きい金属、例えば、チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムは、ルテニウムに比べて化学反応(例えば、酸化反応)が自発的に起こりやすい性質を示す。このような性質を有する第1の金属を含むルテニウム合金を第1上部電極層22aを形成する材料として用いることで、抵抗変化層23に形成される金属架橋との密着性が向上する。ルテニウム合金中における、第1の金属の含有率は10atm%以上40atm%以下であることが好ましい。
 ルテニウム合金に添加される第1の金属は、チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムからなる群から選択された金属であることが好ましい。なお、第1の金属は、チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムからなる群から選択された2以上の金属としても良い。
 ここで、第1の金属のみで第1上部電極層22aを構成すると、オフ状態へ遷移しなくなることに留意されたい。すなわち、オン状態からオフ状態への遷移は、金属架橋を形成する銅の酸化反応(溶解反応)によって進行する。金属架橋を構成する銅よりも、第1上部電極層22aを構成する第1の金属の酸化過程の標準生成ギブズエネルギーが負方向に大きくなった場合、金属架橋を構成する銅の酸化反応よりも、第1上部電極層22aを構成する第1の金属の酸化反応が優先して進行する。ここで、第1の金属の酸化過程とは、第1上部電極層22aを構成する第1の金属の金属から金属イオンを生成する過程である。第1の金属の酸化反応が優先して進行するために、金属架橋の溶解が進行せず、オン状態からオフ状態への遷移できなくなる。
 このため、第1上部電極層22aは、金属から金属イオンを生成する過程(酸化過程)の標準生成ギブズエネルギーが銅よりも負方向に小さいルテニウムと、第1の金属の合金で形成することが望ましい。具体的には、合金中における、第1の金属の含有量が40atm%以上になると、オン状態からオフ状態への遷移過程において、下部電極21に負電圧を印加する際、イオン伝導層の絶縁破壊が発生し、オフ状態に遷移できなくなる結果が得られている。
 一方、第1の金属の量は大きいほど、オン状態が安定化することがわかっており、5atm%の添加によっても安定性が向上することがわかっている。
 オン状態からオフ状態へのスイッチング過程においてスイッチング特性を劣化させることなく、同時に、オン状態の安定性を向上するためには、ルテニウム合金の組成を、第1の金属の含有率が所定範囲となるよう、選択することが好ましい。この第1の金属の含有率の所定範囲は、第1の金属の含有率が10atm%以上40atm%以下の範囲である。これにより、第1上部電極層22aをルテニウムのみで作製する場合に比べて、上記スイッチング特性を劣化させずに、同時にオン状態の安定性を向上させることができる。この場合、ルテニウム合金におけるルテニウムの含有率は、60atm%以上90atm%となる。
 また、第1上部電極層22aの材料は、オフ状態からオン状態へとスイッチングする過程で、上部電極22を接地し、下部電極21に正電圧を印加した際に、抵抗変化層23に金属イオンを供給しないように選択されることが望ましい。
 第1上部電極層22aの形成には、スパッタリング法を用いることが望ましい。スパッタリング法を用いてルテニウム合金膜を成膜する場合、ルテニウムと第1の金属との合金ターゲットを用いる方法、ルテニウムターゲットと第1の金属のターゲットを同一チャンバー内で同時にスパッタリングするコスパッタ法、がある。その他、スパッタリング法を用いてルテニウム合金膜を成膜する場合、予め第1の金属の薄膜を形成し、その上に、スパッタリング法を用いてルテニウムを成膜し、衝突原子のエネルギーで合金化するインターミキシング法がある。コスパッタ法及びインターミキシング法を用いると、合金の組成を変えることができる。インターミキシング法を採用する際には、ルテニウムの成膜を完了した後に、混合状態の均一化のため、400℃以下での熱処理を加えることが好ましい。
 さらに、第1上部電極層22aに金属架橋の成分である銅が混入すると、標準ギブズエネルギーが負方向に大きい金属を添加した効果が薄れるため、ルテニウム合金に添加する第1の金属は、銅、及び銅イオンに対してバリア性のある材料が好ましい。例えば、タンタル、チタンなどである。特に第1の金属をチタンとした場合にオフへの遷移とオン状態の安定性に優れており、特に第1上部電極層22aを、チタンを含むルテニウム合金で形成し、チタンの含有率を20atm%以上30atm%以下の範囲に調節することが好ましい。
 第2上部電極層22bは、第1上部電極層22aをエッチングのダメージから保護する役割を有する。具体的には、第2上部電極層22bは、第1上部電極層22aを規定の素子サイズに加工する場合に、スイッチング動作に係る第1上部電極層22aが直接露出しないようにする。また具体的には、第2上部電極層22bは、外部より第1上部電極層22aと電気的な接続を行うビアコンタクトを形成するためのコンタクトホールを形成する場合に、スイッチング動作に係る第1上部電極層22aが直接露出しないようにする。第2上部電極層22bは、コンタクトホール形成時にはコンタクトホールのエッチング時にエッチングストップ膜としての機能も有する。そのため、第2上部電極層22bは、コンタクトホールが形成される酸化シリコンなどの絶縁膜のエッチングに使用するフッ化炭素系のガスのプラズマに対して、エッチング速度が小さい材料で形成されることが好ましい。
 本実施形態では、第2上部電極層22bは、第1上部電極層22aを構成するルテニウム合金に含まれる第1の金属の窒化物で構成される。上述のように、第1の金属を、チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムからなる群から選択することが好適である。これにより、第2上部電極層22bを構成する第1の金属の窒化物が、エッチングストップ膜として機能し、且つ、導電性を有することになる。
 第2上部電極層22bに窒化物ではない金属を使用すると、次の可能性がある。すなわち、プロセス中の加熱やプラズマダメージで金属の一部が第1上部電極層22aに拡散することで、第1上部電極層22aに欠陥が生じ、これらの欠陥を起点としてイオン伝導層の絶縁破壊電圧を低下させる可能性がある。
 第2上部電極層22bに電気伝導性を有する化合物であり、安定な金属窒化物を用いることで第1上部電極層22aへの金属の拡散を防止できる。特に、第2上部電極層22bを構成する窒化物の金属と、第1上部電極層22aを構成するルテニウム合金に含まれる第1の金属とが同一であることは、ルテニウム合金に含まれる第1の金属の拡散による不良の発生をより効率的に防止できる点で好適である。
 例えば、第1上部電極層22aがチタンを含むルテニウム合金で形成される場合には、第2上部電極層22bは窒化チタンで形成することが好ましい。或いは、第1上部電極層22aがタンタルを含むルテニウム合金で形成される場合には、第2上部電極層22bは窒化タンタルで形成することが好ましい。第1上部電極層22aと第2上部電極層22bに含まれる金属成分を一致させることで、第2上部電極層22bの金属が第1上部電極層22aに拡散した場合にも、欠陥が形成し難くなる。
 この時、第1上部電極層22aを構成するルテニウム合金の第1の金属の含有率を、第2上部電極層22bを構成する窒化物の第1の金属の含有率よりも、小さくする。これにより、第1上部電極層22aに含まれる第1の金属が第2上部電極層22bに拡散し、第1上部電極層22aを構成するルテニウム合金の組成が変化することを、防止できる。具体的には、第2上部電極層22bが窒化チタンで形成される場合、第2上部電極層22bのチタンの含有率が40atm%以上80atm%以下であることがよい。この範囲外の組成を用いると、後工程におけるプロセス中の熱負荷などにより第1上部電極層22aと第2上部電極層22bとの間のインターミキシングが生じ易くなり、スイッチング特性が劣化する。
 第2上部電極層22bの形成には、スパッタリング法を用いることが望ましい。スパッタリング法を用いて金属窒化物を成膜する場合、窒素とアルゴンの混合ガスのプラズマを用いて金属ターゲットを蒸発させるリアクティブスパッタ法を用いることが好ましい。金属ターゲットより蒸発した金属は窒素と反応し、金属窒化物となって基板上に成膜される。
 抵抗変化層23は、イオン伝導性を有しており、下部電極21から供給された金属イオンを伝導する媒体として機能する。本実施形態では、抵抗変化層23が、第1イオン伝導層23aと第2イオン伝導層23bとを備えている。
 本実施形態では、第1イオン伝導層23aが、少なくとも、シリコン、酸素、炭素を主成分とする膜、より具体的には、シリコン、酸素、炭素、水素を含むSiOCHポリマー(例えば、環状シロキサンのような有機シリカ化合物のポリマー)で形成される。第1イオン伝導層23aとして使用されるSiOCHポリマー膜は、プラズマCVD法により成膜されてもよい。ここで、プラズマCVD法とは、例えば、気体原料、或いは液体原料を気化させることで減圧下の反応室に連続的に供給し、プラズマエネルギーによって、分子を励起状態にし、気相反応、或いは基板表面反応などによって基板上に連続膜を形成する手法である。一実施形態では、第1イオン伝導層23aとして使用されるSiOCHポリマー膜は、下記のようにして形成される。環状有機シロキサンの原料とキャリアガスであるヘリウムが反応室に供給され、両者の供給が安定化し、反応室の圧力が一定になったところでRF(Radio Frequency:高周波)電力の印加が開始される。原料の供給量は10~200sccmであり、ヘリウムについては、原料気化器経由で500sccmのヘリウムが供給され、別ラインで反応室に直接500sccmのヘリウムが供給される。第1イオン伝導層23aの比誘電率は2.1以上3.1以下が好ましい。
 第2イオン伝導層23bは、下部電極21と第1イオン伝導層23aの間に挿入されており、金属酸化物で形成されている。第2イオン伝導層23bは、該金属酸化物を構成する金属(以下、「第2の金属」という)の薄膜を酸化することで形成される。詳細には、まず、該第2の金属の薄膜が、下部電極21の上に成膜される。さらに、該第2の金属の薄膜の上に、第1イオン伝導層23aを構成するSiOCHポリマー膜がプラズマCVD法により成膜される。SiOCHポリマー膜の成膜の際、反応室(成膜チャンバー)内に存在する酸素で、該第2の金属の薄膜が酸化され、これにより、第2イオン伝導層23bとして用いられる金属酸化物の薄膜が形成される。
 該金属酸化物を構成する第2の金属は、標準生成ギブズエネルギーが負方向に大きい金属が望ましく、チタン、アルミニウム、ジルコニウム、ハフニウム、タンタルからなる群より選択することができる。これらの金属を積層して、第2の金属の薄膜として使用しても良い。第2の金属の薄膜の最適膜厚は、0.5nmから1nmである。最適膜厚より薄いと、SiOCHポリマー膜をプラズマCVD法により成膜する間に、酸化は、第2の金属の薄膜を超えて、銅配線表面に達する。その結果、僅かであるが、銅配線表面の酸化が生じる。一方、第2イオン伝導層23bの金属酸化物を構成する第2の金属の標準生成ギブズエネルギーが大きかったり、最適膜厚より厚かったりすると、SiOCHポリマー膜をプラズマCVD法により成膜する間に、該金属の薄膜の酸化が完了しない可能性がある。SiOCHポリマー膜をプラズマCVD法により成膜する間に、該金属の薄膜の酸化が完了しないと、銅配線表面に金属として残ってしまう。
 第2イオン伝導層23bを構成する第2の金属は、第1上部電極層22a及び第2上部電極層22bに含まれる第1の金属と同一の金属を含んでいることが、好ましい。第2イオン伝導層23bを構成する第2の金属は、第1上部電極層22a及び第2上部電極層22bに含まれる第1の金属と同一であることが、さらに好ましい。これにより、第2イオン伝導層23bを構成する第2の金属が第1上部電極層22aや第2上部電極層22bに拡散した場合に、第1上部電極層22aや第2上部電極層22bにおける欠陥の発生を防止できる。この第1上部電極層22aや第2上部電極層22bに欠陥が形成された場合、この欠陥を起点として第1イオン伝導層23aの絶縁破壊電圧を低下させる場合がある。
 第2イオン伝導層23bの形成において成膜される第2の金属の薄膜は、スパッタ法、レーザーアブレーション法、プラズマCVD法を用いて形成してもよい。また、第2イオン伝導層23bの膜厚は、第1イオン伝導層23aの膜厚の50%以下であることが望ましい。
 続いて、図3を参照しながら、第1の実施形態のスイッチング素子の駆動方法を説明する。第1の実施形態のスイッチング素子は、二端子スイッチとして構成されていることに留意されたい。
 当該スイッチング素子をオン状態にするためには、上部電極22(第1上部電極層22a及び第2上部電極層22b)が接地された状態で下部電極21に正電圧が印加される。
 下部電極21に下部電極21の金属が溶解して金属イオン25になり、第2イオン伝導層23bを介して第1イオン伝導層23aに導入される。そして、第2イオン伝導層23b、及び第1イオン伝導層23aを伝導した金属イオン25が第1上部電極層22aの表面に金属架橋24になって析出し、析出した金属架橋24により下部電極21と第1上部電極層22aとが接続される。金属架橋24で下部電極21と第1上部電極層22aが電気的に接続することで、当該スイッチング素子がオン状態になる。
 一方、当該スイッチング素子がオン状態になっているときに上部電極22を接地して、下部電極21に負電圧を印加すると、金属架橋24が金属イオン25となって第2イオン伝導層23b及び第1イオン伝導層23aに溶解し、金属架橋24の一部が切れる。この際、金属イオン25は第2イオン伝導層23b及び第1イオン伝導層23a内に分散した金属架橋24と下部電極21に回収される。これにより、下部電極21と第1上部電極層22aとの電気的接続が切れ、当該スイッチング素子がオフ状態になる。
 当該スイッチング素子がオフ状態にスイッチングした後、当該スイッチング素子を、再度、オン状態にスイッチングするには、上部電極22を接地して、再び下部電極21に正電圧を印加すればよい。また、下部電極21を接地した状態で上部電極22に負電圧を印加してスイッチング素子をオン状態にしてもよく、また、下部電極21を接地した状態で上部電極22に正電圧を印加してスイッチング素子をオフ状態にしてもよい。
 なお、当該スイッチング素子をオフ状態にスイッチングする過程では、電気的接続が完全に切れる前の段階から下部電極21と上部電極22の間の抵抗が大きくなったり、電極間容量が変化したりするなど電気特性の変化があって、最終的に電気的接続が切れる。
 続いて、第1の実施形態のスイッチング素子の好適な製造方法について説明する。図4は、第1の実施形態のスイッチング素子の製造方法を示す断面図である。
 (工程1)
 低抵抗シリコン基板26の表面に、膜厚が20nmのタンタル膜21aがスパッタ法で成膜され、該タンタル膜21aの上に膜厚100nmの銅膜21bがスパッタ法で成膜される。タンタル膜21aと銅膜21bの積層体が、下部電極21として用いられる。
 (工程2)
 膜厚が0.5nmのチタン膜、膜厚が0.5nmのアルミニウム膜、又は、膜厚が0.5nmのチタン膜と膜厚が0.5nmのアルミニウム膜の積層体が、下部電極21上に金属層27として形成される。金属層27は、例えば、スパッタリング法によって成膜される。
 (工程3)
 第1イオン伝導層23aとして、膜厚が6.0nmのSiOCHポリマー膜がプラズマCVD法によって形成される。当該SiOCHポリマー膜は、例えば、下記のようにして形成される。環状有機シロキサンの原料とキャリアガスであるヘリウムが反応室に供給され、両者の供給が安定化し、反応室の圧力が一定になったところでRF電力の印加が開始される。原料の供給量は10~200sccmであり、ヘリウムについては、原料気化器経由で500sccmのヘリウムが供給され、別ラインで反応室に直接500sccmのヘリウムが供給される。また、第1イオン伝導層23aの成膜の際に反応室内に存在する酸素により金属層27は酸化され、金属酸化膜からなる第2イオン伝導層23bが形成される。こうして形成された、第1イオン伝導層23a及び第2イオン伝導層23bは、抵抗変化層23を構成する。
 (工程4)
 第1イオン伝導層23aの上にコスパッタ法により膜厚30nmの、チタンを含むルテニウム合金の薄膜が、第1上部電極層22aとして形成される。第1上部電極層22aを構成するルテニウム合金におけるチタンの含有量は、例えば、25atm%に調節される。続けて、第1上部電極層22aの上に、膜厚50nmの窒化チタン膜が、第2上部電極層22bとして形成される。窒化チタン膜におけるチタンの含有率は、ルテニウム合金におけるチタンの含有量よりも高く、例えば、50atm%に調節される。第1上部電極層22a、第2上部電極層22bの形成においては、ステンレスもしくはシリコンで作製されたシャドーマスクが用いられ、該シャドーマスクに設けられた開口に対応する形状の第1上部電極層22a、第2上部電極層22bが形成される。第1上部電極層22a、第2上部電極層22bは、例えば、1辺30μm~150μmの正方形に形成される。第1上部電極層22a及び第2上部電極層22bは、上部電極22を構成する。
 上述された第1の実施形態のスイッチング素子は、半導体装置の多層配線層の内部に集積化してもよい。以下では、第1の実施形態のスイッチング素子が多層配線層の内部に集積化された半導体装置の構成を説明する。
 図5は、第1の実施形態のスイッチング素子が集積化された半導体装置の構成を模式的に示す部分断面図である。半導体基板51の上方に形成された多層配線層の内部に、第1の実施形態のスイッチング素子である二端子スイッチ72が集積化されている。
 第1の実施形態では、多層配線層が絶縁積層体を有している。この絶縁積層体は、半導体基板51の上方に順次に積層された、層間絶縁膜52、バリア絶縁膜53、層間絶縁膜54、バリア絶縁膜57、保護絶縁膜64、層間絶縁膜65、エッチングストッパ膜66、層間絶縁膜67及びバリア絶縁膜71を、備えている。当該多層配線層においては、層間絶縁膜54及びバリア絶縁膜53に配線溝が形成されている。該配線溝の側面及び底面は、バリアメタル膜56で被覆されており、さらに、該配線溝を埋め込むように該バリアメタル膜56の上に第1配線55が形成されている。また、層間絶縁膜65、保護絶縁膜64、及びハードマスク膜62にコンタクトホールが形成され、さらに、層間絶縁膜67及びエッチングストッパ膜66に配線溝が形成されている。該コンタクトホールと配線溝の側面及び底面は、バリアメタル膜70によって被覆される。プラグ69が、該コンタクトホールを埋め込むように形成され、第2配線68が該配線溝を埋め込むように形成されている。第2配線68とプラグ69とは、一体となっている。
 バリア絶縁膜57には、第1配線55に連通する開口が形成されている。第1配線55の該開口の内部に位置する部分、バリア絶縁膜57の該開口の側面及びバリア絶縁膜57の上面の一部を被覆するように、第2イオン伝導層58b、第1イオン伝導層58a、第1上部電極層61a及び第2上部電極層61bが順次に積層されている。
 二端子スイッチ72は、下部電極として用いられる第1配線55と、第1上部電極層61a及び第2上部電極層61bを備える上部電極61と、第1イオン伝導層58a及び第2イオン伝導層58bを備える抵抗変化層58を有する構成となっている。詳細には、バリア絶縁膜57に形成された開口の内部において、第2イオン伝導層58bと第1配線55とが直接接しており、第1イオン伝導層58aと第1上部電極層61aが直接接している。さらにバリア絶縁膜57に形成された開口の内部において、第2上部電極層61bは、バリアメタル膜70を介してプラグ69に電気的に接続されている。加えて、第2上部電極層22bの上に、ハードマスク膜62が形成されている。さらに、第2イオン伝導層58b、第1イオン伝導層58a、第1上部電極層61a、第2上部電極層61b及びハードマスク膜62で構成される積層体の上面及び側面が、保護絶縁膜64で覆われている。
 このように構成された二端子スイッチ72は、電圧又は電流の印加によってオン状態又はオフ状態にスイッチングされる。例えば、第1配線55を形成する金属から供給される金属イオンの第2イオン伝導層58b及び第1イオン伝導層58aへの電界拡散を利用して、二端子スイッチ72のスイッチングが行われる。
 ここで、第1配線55を二端子スイッチ72の下部電極として兼用することで、工程数を簡略化しながら、電極抵抗を下げることができる。より具体的には、通常の銅ダマシン配線プロセスに追加工程として、少なくとも2つのフォトレジストマスクセットを作成するだけで二端子スイッチ72を搭載することができ、スイッチング素子の低抵抗化と低コスト化を同時に達成することができるようになる。
 半導体基板51は、半導体素子が形成された基板である。半導体基板51としては、例えば、シリコン基板、単結晶基板、SOI(Silicon on Insulator)基板、TFT(Thin Film Transistor)基板、液晶製造用基板等を用いることができる。
 層間絶縁膜52は、半導体基板51上に形成された絶縁膜である。層間絶縁膜52としては、例えば、酸化シリコン膜、酸化シリコン膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)等を用いることができる。層間絶縁膜52は、複数の絶縁膜を積層したものであってもよい。
 バリア絶縁膜53は、層間絶縁膜52、54の間に設けられたバリア性を有する絶縁膜である。バリア絶縁膜53は、第1配線55が埋め込まれる配線溝の形成の際にエッチングストップ層として機能する。バリア絶縁膜53としては、例えば、窒化シリコン膜、SiC膜、炭窒化シリコン膜等を用いることができる。バリア絶縁膜53は、配線溝のエッチング条件の選択によっては削除することもできる。
 層間絶縁膜54は、バリア絶縁膜53上に形成された絶縁膜である。層間絶縁膜54としては、例えば、酸化シリコン膜、酸化シリコン膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)等を用いることができる。層間絶縁膜54は、複数の絶縁膜を積層したものであってもよい。
 バリア絶縁膜53及び層間絶縁膜54には、第1配線55を埋め込むための配線溝が形成されている。当該配線溝の側面及び底面がバリアメタル膜56で被覆され、さらに、第1配線55がバリアメタル膜56の上に当該配線溝を埋め込むように形成されている。バリア絶縁膜53は、配線溝のエッチング条件の選択によっては削除することもできる。
 第1配線55は、層間絶縁膜54及びバリア絶縁膜53に形成された配線溝に埋め込まれた配線である。ここで、第1配線55は、図2のスイッチング素子の下部電極21に対応する構成要素である。即ち、第1配線55は、二端子スイッチ72の下部電極を兼ね、抵抗変化層58の第2イオン伝導層58bと直接接している。第2イオン伝導層58bの上面は第1イオン伝導層58aの下面に直接接しており、第1イオン伝導層58aの上面は第1上部電極層61aに直接接している。第1配線55を構成する金属には、抵抗変化層58において拡散又はイオン伝導が可能な金属イオンを生成する金属が用いられ、例えば、銅等を用いることができる。第1配線55は、抵抗変化層58において拡散又はイオン伝導が可能な金属イオンを生成する金属(例えば、銅)とアルミニウムとを含む合金で形成されていてもよい。
 バリアメタル膜56は、第1配線55を形成する金属が層間絶縁膜54や下層へ拡散することを防止するために、第1配線55の側面及び底面を被覆するバリア性を有する導電性膜である。第1配線55が銅を主成分とする金属で形成される場合には、バリアメタル膜56としては、例えば、タンタル、窒化タンタル、窒化チタン、炭窒化タングステンのような高融点金属又は高融点金属の窒化物の薄膜、若しくは、それらの積層膜を用いることができる。
 バリア絶縁膜57は、層間絶縁膜54及び第1配線55を被覆するように、形成されている。これによりバリア絶縁膜57は、第1配線55を形成する金属(例えば、銅)の酸化を防いだり、第1配線55を形成する金属の層間絶縁膜65中への拡散を防いだり、上部電極61及び抵抗変化層58の加工時にエッチングストップ層となる役割を有する。バリア絶縁膜57には、例えば、SiC膜、炭窒化シリコン膜、窒化シリコン膜、及びそれらの積層構造等を用いることができる。バリア絶縁膜57は、保護絶縁膜64及びハードマスク膜62と同一材料であることが好ましい。
 第1イオン伝導層58a及び第2イオン伝導層58bは、第1配線55(下部電極)を形成する金属から生成される金属イオンの作用(拡散、イオン伝導など)により、抵抗が変化する抵抗変化層58を構成している。第1イオン伝導層58a及び第2イオン伝導層58bは、それぞれ、図2のスイッチング素子の第1イオン伝導層23a及び第2イオン伝導層23bに対応する構成要素である。
 第1イオン伝導層58aは、シリコン、酸素、炭素を主成分とする膜、例えば、シリコン、酸素、炭素、水素を含むSiOCHポリマー(例えば、環状シロキサンのような有機シリカ化合物のポリマー)で形成される。第1イオン伝導層58aとして使用されるSiOCHポリマー膜は、プラズマCVD(Plasma-enhanced Chemical Vapor Deposition)法により成膜されてもよい。一実施形態では、第1イオン伝導層58aとして使用されるSiOCHポリマー膜は、下記のようにして形成される。環状有機シロキサンの原料とキャリアガスであるヘリウムが反応室に供給され、両者の供給が安定化し、反応室の圧力が一定になったところでRF電力の印加が開始される。原料の供給量は10~200sccmであり、ヘリウムについては、原料気化器経由で500sccmのヘリウムが供給され、別ラインで反応室に直接500sccmのヘリウムが供給される。
 第2イオン伝導層58bには、第1配線55を形成する金属が、第1イオン伝導層58aを堆積している間の加熱やプラズマで第1イオン伝導層58aに拡散することを防止する役割がある。さらに第2イオン伝導層58bには、下部電極として用いられる第1配線55が酸化され、拡散が促進されやすくなることを防止する役割がある。
 第2イオン伝導層58bを形成する金属の薄膜は、第1イオン伝導層58aの成膜中に酸化されて金属酸化物の薄膜となり、抵抗変化層58の一部となる。第2イオン伝導層58bを形成する金属の薄膜としては、例えば、チタン、アルミニウム、ジルコニウム、ハフニウム、タンタルの薄膜が考えられる。これら金属の薄膜は、第1イオン伝導層58aの成膜中に酸化されて、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化タンタルの薄膜となり、抵抗変化層58の一部となる。
 第2イオン伝導層58bを形成する金属膜の最適膜厚は0.5~1nmであり、これより薄いと第1配線55の表面の酸化がわずかに起こり、これより厚いと、第1イオン伝導層58aの成膜中に酸化しきれずに金属として残ってしまう。
 抵抗変化層58は、第1配線55の上面の一部、バリア絶縁膜57の開口のテーパ面及びバリア絶縁膜57の上面の一部を被覆するように形成されている。抵抗変化層58は、第1配線55と抵抗変化層58の接続部の外周部分が少なくともバリア絶縁膜57の開口部のテーパ面上に沿って配設されている。
 第2イオン伝導層58bの形成に使用する金属膜は、積層膜として形成されてもよいし、単層膜として形成されても良い。第2イオン伝導層58bを構成する第2の金属に、後述する第1上部電極層61a及び第2上部電極層61bを構成する第1の金属と同一の金属が含まれていることが好ましい。これにより、第2イオン伝導層58bを構成する第2の金属が第1上部電極層61a及び第2上部電極層61bに拡散した場合に、第1上部電極層61a及び第2上部電極層61bにおける欠陥の発生を防止できる。第1上部電極層61a及び第2上部電極層61bに欠陥が形成された場合、この欠陥を起点として抵抗変化層58の絶縁破壊電圧を低下させる場合がある。
 上述のように、第1上部電極層61a及び第2上部電極層61bは、二端子スイッチ72の上部電極61を構成している。第1上部電極層61a及び第2上部電極層61bは、それぞれ、図2のスイッチング素子の第1上部電極層22a及び第2上部電極層22bに対応する構成要素である。
 第1上部電極層61aは、上部電極61の下側の電極層であり、第1イオン伝導層58aと直接接している。第1上部電極層61aは、ルテニウムと第1の金属の合金、即ち、第1の金属が添加されたルテニウム合金であることが好ましい。該ルテニウム合金におけるルテニウムの含有率は、60atm%以上90atm%以下が望ましい。
 第1上部電極層61aを形成するルテニウム合金に添加される第1の金属は、酸化過程(金属から金属イオンを生成する過程)の標準生成ギブズエネルギーがルテニウムよりも負方向に大きい金属を選択することが望ましい。酸化過程の標準生成ギブズエネルギーがルテニウムより負方向に大きいチタン、タンタル、ジルコニウム、ハフニウム、アルミニウムは、ルテニウムに比べて化学反応が自発的に起こりやすいため、反応性が高い。このため、第1上部電極層61aを形成するルテニウム合金が上記のような第1の金属を含むことで、第1配線55を形成する金属で形成された金属架橋との密着性が向上する。即ち、第1上部電極層61aを構成するルテニウム合金に含まれる第1の金属は、チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムからなる群から選択される少なくとも一の金属であることが好ましい。一方、ルテニウムを含まない第1の金属のみで第1上部電極層61aを構成すると、反応性が高くなってしまい、オフ状態に遷移しなくなる。
 オン状態からオフ状態への遷移は、金属架橋の酸化反応(溶解反応)によって進行する。第1上部電極層61aを構成する金属の、酸化過程の標準生成ギブズエネルギーが負方向に、第1配線55を形成する金属のそれよりも大きい場合、次の現象が起きる。すなわち、第1配線55を形成する金属で形成された金属架橋の酸化反応よりも第1上部電極層61aの酸化反応が進行するため、オフ状態に遷移できなくなる現象である。
 このため、第1上部電極層61aを形成する金属材料は、酸化過程の標準生成ギブズエネルギーが銅よりも負方向に小さいルテニウムと第1の金属の合金とすることが好ましい。さらに、第1上部電極層61aに金属架橋の成分である銅が混入すると、標準ギブズエネルギーが負方向に大きい金属を添加した効果が薄れるため、ルテニウム合金に添加する第1の金属は銅及び銅イオンに対してバリア性のある材料が好ましい。このような金属としては、例えば、タンタル、チタン、アルミニウムが挙げられる。
 一方、第1の金属の量は大きいほど、オン状態が安定化することがわかっており、5atm%の添加によっても安定性が向上することがわかっている。特に、第1の金属としてチタンを用いる場合にオフ状態への遷移とオン状態の安定性に優れている。具体的には、チタンを含むルテニウム合金で、第1上部電極層61aを形成し、該ルテニウム合金のチタンの含有率を20atm%以上30atm%以下の範囲に調節することが、好ましい。
 第1上部電極層61aの形成には、スパッタリング法を用いることが望ましい。スパッタリング法を用いて合金を成膜する場合、ルテニウムと第1の金属との合金ターゲットを用いる方法、ルテニウムターゲットと第1の金属のターゲットを同一チャンバー内で同時にスパッタリングするコスパッタ法、がある。その他、スパッタリング法を用いて合金を成膜する場合、予め第1の金属の薄膜を形成し、その上に、スパッタリング法を用いてルテニウムを成膜し、衝突原子のエネルギーで合金化するインターミキシング法がある。コスパッタ法及びインターミキシング法を用いると、合金の組成を適宜に調節することができる。インターミキシング法を採用する際には、ルテニウムの成膜を完了した後に、混合状態の均一化のため、400℃以下での熱処理を加えることが好ましい。
 第2上部電極層61bは、上部電極61の上側の電極層であり、第1上部電極層61aの上に形成されている。第2上部電極層61bは、第1上部電極層61aを保護する役割を有する。すなわち、第2上部電極層61bが第1上部電極層61aを保護することで、製造プロセス中の第1上部電極層61aへのダメージを抑制し、二端子スイッチ72のスイッチング特性を維持することができる。
 第2上部電極層61bは、第1上部電極層61aを構成するルテニウム合金に含まれる第1の金属の窒化物で構成される。上述のように、第1の金属が、チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムからなる群から選択されることは、第2上部電極層61bを構成する第1の金属の窒化物が、導電性を有することになる点でも好適である。加えて、第2上部電極層61bを構成する第1の金属の窒化物が、層間絶縁膜65のエッチングに使用するフッ化炭素系のガスのプラズマに対して、エッチング速度が小さくなる。このエッチング速度が小さくなることは、第2上部電極層61bをエッチングストップ膜として機能させる上でも、好適である。
 第2上部電極層61bに窒化物ではない金属を使用すると、プロセス中の加熱やプラズマダメージで金属の一部が第1上部電極層61aに拡散する。この金属の第1上部電極層61aへの拡散により、第1上部電極層61aに欠陥が生じ、これらの欠陥を起点としてイオン伝導層の絶縁破壊電圧を低下させる可能性がある。第2上部電極層61bに電気伝導性を有する化合物であり、安定な金属窒化物を用いることで第1上部電極層61aへの金属の拡散を防止できる。特に、第2上部電極層61bを構成する窒化物の金属と、第1上部電極層61aを構成するルテニウム合金に含まれる第1の金属とが同一であることは、ルテニウム合金に含まれる第1の金属の拡散による不良の発生をより効率的に防止できる点で好適である。
 例えば、第1上部電極層61aがチタンを含有するルテニウム合金で形成される場合には、第2上部電極層61bが窒化チタンで形成されることが好ましい。また、第1上部電極層61aがタンタルを含有するルテニウム合金で形成される場合には、第2上部電極層61bが窒化タンタルで形成されることが好ましい。第1上部電極層61aと第2上部電極層61bを構成する金属成分を一致させることで、第2上部電極層61bの金属が第1上部電極層61aに拡散した場合にも、欠陥が形成し難くなる。
 このとき、第1上部電極層61aを構成するルテニウム合金に含まれる第1の金属の含有率よりも、第2上部電極層61bを構成する窒化物に含まれる第1の金属の含有率を、大きくする。これにより、第1上部電極層61aを構成する金属が第2上部電極層61bを構成する窒化物に拡散し、第1上部電極層61aを構成するルテニウム合金の組成が変化することを、防止できる。
 具体的には、第2上部電極層61bが窒化チタンで形成される場合、第2上部電極層61bのチタンの含有率が40atm%以上80atm%以下であればよく、特に、40atm%以上50atm%の組成であることが好ましい。40atm%以下だと第1上部電極層61a中のチタンが第2上部電極層61bに拡散する恐れがある。また、50atm%以上だと、X線回折測定において、金属電極に用いられる安定な窒化チタンの組成であるTiNだけではなく、TiNに由来する結晶相が検出される。TiNが存在すると酸化されやすくなるため、ハードマスク膜62の成膜時などに第2上部電極61bが酸化されてしまう可能性がある。第2上部電極61bが酸化されてしまうと、第2上部電極61bの比抵抗が増加し、二端子スイッチ72の寄生抵抗が増加してしまう。
 第2上部電極層61bの形成には、スパッタリング法を用いることが望ましい。スパッタリング法を用いて金属窒化物を成膜する場合、窒素とアルゴンの混合ガスのプラズマを用いて金属ターゲットを蒸発させるリアクティブスパッタ法を用いることが好ましい。金属ターゲットより蒸発した金属は窒素と反応し、金属窒化物となって基板上に成膜される。
 より好ましい第2上部電極層61bの形成方法としては、ルテニウムターゲット電極と、第1の金属からなるターゲット電極の二つを用いたコスパッタを用いることが好ましい。ルテニウムと第1の金属からなる合金ターゲットを用いた場合には、それぞれの材料のスパッタリングイールドが異なるため、連続して使用している組成にずれを生じるため、成膜される膜の組成を緻密に制御することができなくなる。一方、コスパッタ法については、あらかじめ各ターゲット電極に印加する電力を個別に設定することで、成膜させる膜の組成を精密に制御することができる。このような手法は、特に、第1の金属としてチタン又はタンタルを用いた場合に効果が大きい。
 ハードマスク膜62は、第2上部電極層61b、第1上部電極層61a、第1イオン伝導層58a及び第2イオン伝導層58bをエッチングする際のマスクとして使用され、さらに、パッシベーション膜として使用される。ハードマスク膜62としては、例えば、窒化シリコン膜及び炭窒化シリコン膜を用いることができる。ハードマスク膜62は、保護絶縁膜64及びバリア絶縁膜57と同一材料であることが好ましい。これにより、二端子スイッチ72の周囲が全て同一材料の部材で囲まれて材料界面が一体化され、外部からの水分などの浸入を防ぐとともに、二端子スイッチ72自身からの材料の脱離を防ぐことができるようになる。
 保護絶縁膜64は、二端子スイッチ72へのダメージの印加を防ぎ、さらに、第1イオン伝導層58aからの酸素の脱離を防ぐ機能を有する絶縁膜である。保護絶縁膜64には、例えば、窒化シリコン膜、炭窒化シリコン膜を用いることができる。保護絶縁膜64は、ハードマスク膜62及びバリア絶縁膜57と同一材料であることが好ましい。同一材料である場合には、保護絶縁膜64とバリア絶縁膜57及びハードマスク膜62とが一体化して、界面の密着性が向上し、二端子スイッチ72をより保護することができるようになる。
 層間絶縁膜65は、保護絶縁膜64の上に形成された絶縁膜である。層間絶縁膜65には、例えば、酸化シリコン膜、SiOC膜、酸化シリコン膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)などを用いることができる。層間絶縁膜65は、複数の絶縁膜を積層したものであってもよい。層間絶縁膜65は、層間絶縁膜67と同一材料としてもよい。層間絶縁膜65には、プラグ69を埋め込むためのコンタクトホールが形成されている。当該コンタクトホールはバリアメタル膜70で被覆されており、プラグ69が、バリアメタル膜70の上に当該コンタクトホールを埋め込むように形成されている。
 エッチングストッパ膜66は、層間絶縁膜65、67の間に設けられた絶縁膜である。エッチングストッパ膜66は、第2配線68が埋め込まれる配線溝の加工時にエッチングストップ層として機能する。エッチングストッパ膜66には、例えば、窒化シリコン膜、SiC膜、炭窒化シリコン膜を用いることができる。
 層間絶縁膜67は、エッチングストッパ膜66の上に形成された絶縁膜である。層間絶縁膜67には、例えば、酸化シリコン膜、SiOC膜、酸化シリコン膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)などを用いることができる。層間絶縁膜67は、複数の絶縁膜を積層したものであってもよい。層間絶縁膜67は、層間絶縁膜65と同一材料としてもよい。
 エッチングストッパ膜66及び層間絶縁膜67には、第2配線68を埋め込むための配線溝が形成されている。当該配線溝の側面及び底面がバリアメタル膜70で被覆されており、バリアメタル膜70の上に第2配線68が当該配線溝を埋め込むように形成されている。エッチングストッパ膜66は、配線溝のエッチング条件の選択によっては削除することもできる。
 第2配線68は、層間絶縁膜67及びエッチングストッパ膜66に形成された配線溝に埋め込まれた配線である。第2配線68は、プラグ69と一体になっている。プラグ69は、層間絶縁膜65、保護絶縁膜64、及びハードマスク膜62に形成されたコンタクトホールに埋め込まれている。プラグ69は、バリアメタル膜70を介して第2上部電極層61bと電気的に接続されている。第2配線68及びプラグ69には、例えば、銅を用いることができる。
 バリアメタル膜70は、第2配線68及びプラグ69を形成する金属が層間絶縁膜65、67や下層へ拡散することを防止するために、第2配線68及びプラグ69の側面及び底面を被覆する、バリア性を有する導電性膜である。第2配線68及びプラグ69が銅を主成分とする金属元素からなる場合には、高融点金属又は高融点金属の窒化物、若しくは、それらの積層膜を、バリアメタル膜70に用いることができる。この高融点金属又は高融点金属の窒化物、若しくは、それらの積層膜としては、例えば、タンタル、窒化タンタル、窒化チタン、炭窒化タングステンのような高融点金属又は高融点金属の窒化物、若しくは、それらの積層膜が考えられる。バリアメタル膜70の少なくとも第2上部電極層61bに接する部分は、第2上部電極層61bと同一材料であることが好ましい。例えば、バリアメタル膜70が、窒化タンタルで形成された下層と、タンタルで形成された上層の積層体として形成されている場合には、下層の材料である窒化タンタルを第2上部電極層61bに用いることが好ましい。
 バリア絶縁膜71は、第2配線68及び層間絶縁膜67を被覆するように形成され、第2配線68を形成する金属(例えば、銅)の酸化を防ぎ、また、第2配線68を形成する金属の上層への拡散を防ぐ役割を有する絶縁膜である。バリア絶縁膜71には、例えば、炭窒化シリコン膜、窒化シリコン膜、及びそれらの積層構造を用いることができる。
 続いて、図6A~図6Eを参照しながら、第1の実施形態のスイッチング素子の動作、特に、第1の金属(例えば、チタン)を含むルテニウム合金で形成された第1上部電極層61aを備えるスイッチング素子の特性について説明する。図6A及び図6Bは、図5に図示されているような構成の、多層配線中に集積化したスイッチング素子について、オン状態にスイッチングされた直後と、100時間経過した後の電流値の正規分布を重ねて示した図である。半導体や抵抗変化素子の抵抗値の分布は、一般的に正規分布でプロットされる。正規分布より外れる場合は故障などの異常状態を示しており、そのような事象を見極めるプロット方法として、正規確率プロットは広く用いられている。一般的に正規確率プロットでは、直線性があれば正規分布を示すので、図6Aの点線で囲んだ部分は正規分布にのっておらず異常(故障)を示している。図6A、図6Bの縦軸「累積確率」は、より正確には「標準偏差の倍数」もしくは「平均からの標準偏差の差」を示す。いわゆるヒストグラムの横軸において、平均値(度数が最も大きい値。通常50%)からの標準偏差分だけずらした位置にあたる。図6A、図6Bの縦軸「累積確率」の目盛は、測定された電流値の平均値を目盛「0」とした場合の、「標準偏差の倍数」もしくは「平均からの標準偏差の差」を示す。この値を確率表示にしたものを「累積故障確率」として、信頼性評価に使用される。スイッチング素子は、いずれも、4キロビットのアレイ(4096個の素子)として集積化されており、該アレイの全てのスイッチング素子について電流値が測定されている。プロットは全て白丸「○」で示してあり、オン状態にスイッチングされた直後の電流値の正規分布と、100時間経過した後の電流値の正規分布とが重なっている箇所は、抵抗値の変化が無いことが分かる。オン状態へのスイッチングでは、図5における第1配線55(下部電極)に正電圧が印加された。
 図6Aは、ルテニウムのみで形成された第1上部電極層61aを備えるスイッチング素子の電流値の測定結果を示しており、図6Bは、チタンを含むルテニウム合金で形成された第1上部電極層61aを備えるスイッチング素子の電流値の測定結果を示している。図6Bの測定で使用されたスイッチング素子の第1上部電極層61aを構成する「チタンを含むルテニウム合金」は、X線光電子分光法によって、ルテニウムが75atm%、チタンが25atm%の組成となっていることがわかっている。図6Aに図示されているように、ルテニウムで形成された第1上部電極層61aを備えるスイッチング素子のアレイについては、100時間後に6個のスイッチング素子が高抵抗化している(点線で囲まれたプロット)。一方、図6Bに示されているように、チタンを含むルテニウム合金で形成された第1上部電極層61aを備えるスイッチング素子のアレイについては、100時間後に高抵抗化したスイッチング素子はなかった。
 一方、図6C及び図6Dは、多層配線中に形成したスイッチング素子について、オン状態からオフ状態へ遷移する時の電流‐電圧特性を示している。オン状態からオフ状態へのスイッチングでは、図5における第1配線55(下部電極)に負電圧が印加されている。電流‐電圧特性の計測の際に観測される電流は負電流であるが、図6C及び図6Dでは、電流、電圧ともに絶対値で示されている。
 図6Cは、ルテニウムのみで形成された第1上部電極層61aを備えるスイッチング素子の電流‐電圧特性の測定結果を示している。図6Dは、チタンを含むルテニウム合金で形成された第1上部電極層61aを備えるスイッチング素子の電流‐電圧特性の測定結果を示している。図6Dの測定で使用されたスイッチング素子の第1上部電極層61aを構成する「チタンを含むルテニウム合金」は、X線光電子分光法によってルテニウムが75atm%、チタンが25atm%の組成となっていることがわかっている。
 図6C、図6Dの各曲線は図6C、図6Dの条件下の素子1つ1つのリセット時の電流電圧曲線を示している。オン状態の保持力が向上した場合、オン状態の安定性が増すため、オフ状態への遷移(リセット)時に必要な電流が増加する懸念がある。図6C、図6Dに図示のとおり、ルテニウムのみからなる第1上部電極層61aを備えるスイッチング素子と、チタンを含むルテニウム合金からなる第1上部電極層61aを備えるスイッチング素子とでは、オン状態に遷移した際の抵抗値がほぼ一致している。図6C、図6Dの両図において、最も大きい電流の絶対値が、オン状態からオフ状態に遷移する際に必要な電流となるが、図6C、図6Dで、ほぼ一致している。図6C、図6Dの曲線の三角形の頂点(2V~2.5V付近)は、リセット時の最大電流を示している。図6C、図6Dではほぼ同じ値である。このことから、本発明の実施形態においてはオン状態の保持力は増加するが、リセット電流は増加しない利点があることが分かる。また、「チタンを含むルテニウム合金」で形成される第1上部電極層61aを使用しても、オン状態からオフ状態に遷移する電流は増加しない。「チタンを含むルテニウム合金」は、ルテニウムのみに比べて抵抗率が高い。このため、オン状態からオフ状態に遷移する際の電流で、上部電極61が加熱し易くなると考えられる。第1イオン伝導層58a中に形成した金属架橋が電圧印加によって溶解する反応が進行するためには、金属架橋に発生するジュール熱の寄与が必要である。
 ここで、オン状態からオフ状態に遷移する電流が増加せず、高い保持力を有する原因は、オン状態からオフ状態に遷移時の電流で第1上部電極層61aを加熱することで、金属架橋に発生するジュール熱を閉じ込めている効果によるもの、と考えられる。このジュール熱の閉じ込め効果は、第1上部電極層61aを、例えば、「チタンを含むルテニウム合金」などのルテニウム合金で作製したことにより、もたらされる。
 図6B及び図6Dに図示されているような、チタンを含むルテニウム合金で第1上部電極層61aを形成しているスイッチング素子の保持力特性及び電気特性と同等の性能が、タンタルを含むルテニウム合金を使用した場合でも、観察された。ここで、チタンを含むルテニウム合金の組成は、ルテニウム75atm%、チタン25atm%であり、タンタルを含むルテニウム合金の組成は、ルテニウム70atm%、タンタル30atm%である。
 一方、ルテニウムを含まずに、酸化過程の標準生成ギブズエネルギーの小さい金属のみで第1上部電極層61aを形成した場合、オン状態からオフ状態に遷移時に第1配線55(下部電極)に負電圧を印加すると、第1イオン伝導層58aの絶縁破壊が発生する。第1イオン伝導層58aの絶縁破壊が発生し、スイッチング素子がオフ状態に遷移しない。上記酸化過程は、金属から金属イオンを生成する過程である。
 また、ルテニウムの含有率が30atm%以下になった場合にも、オン状態からオフ状態に遷移時に第1配線55に負電圧を印加すると、同様に第1イオン伝導層58aの絶縁破壊が観測され、スイッチング素子がオフ状態に遷移しない。
 さらに、25atm%のルテニウム、75atm%のチタンで構成される合金を第1上部電極層61aとして用いた場合には、スイッチング素子がオフ状態に遷移しないことが観察された。さらに、30atm%のルテニウム、70atm%のタンタルで構成された合金を第1上部電極層61aとして用いた場合には、スイッチング素子がオフ状態に遷移しないことが観察された。
 図7Aは、窒化物では無いタンタルを第2上部電極層61bに用いたスイッチング素子のうち、オフへの遷移時に問題の発生した素子の断面TEM(Transmission Electron Microscope)像を示す。当該断面TEM像からは、第2上部電極層61bであるタンタルの一部が第1上部電極層61aであるルテニウムとチタンの合金中に拡散していることが理解される。このような拡散が進行すると、第1上部電極層61aに欠陥が生じ、この欠陥を起点とした抵抗変化層58の絶縁破壊が低電圧で起こる。
 図7Bは、第1の実施形態のスイッチング素子のリセット歩留まりを示すグラフである。図7Bは、リセット歩留まりの第2上部電極層61bの材料依存性を示す。グラフの縦軸にはリセット歩留りの指標として、リセット動作を行った場合に、リセットできない素子(フェイルビット)の百分率を示す。第2上部電極層61bとしてタンタルを用いた場合と比較して、第2上部電極層61bとして窒化チタンを用いた場合には、オフへの遷移確率を示すリセット歩留まりが向上した。この結果から、窒化チタンを使用することで第1上部電極層61aへの金属の拡散が抑制されて絶縁破壊電圧が向上することが理解される。絶縁破壊が抑制され、リセットの歩留まりが向上すると、オフへの遷移過程で低抵抗状態に固定されてしまう不良が発生する可能性が低減されるため、スイッチング素子のオンとオフの繰り返し耐性(サイクル特性)が向上すると考えられる。
 図8A~図8Dは、図5に図示されている、第1の実施形態のスイッチング素子を多層配線層に集積化した半導体装置の製造方法の一例を模式的に示す断面図である。
 (工程1)
 図8Aに示されているように、半導体基板51の上に層間絶縁膜52が堆積され、さらに、層間絶縁膜52の上にバリア絶縁膜53が堆積される。ここで、半導体基板51は、例えば、半導体素子が形成された基板である。またここで、層間絶縁膜52は、例えば、膜厚が300nmの酸化シリコン膜である。またここで、バリア絶縁膜53は、例えば、膜厚が50nmの窒化シリコン膜である。
 その後、バリア絶縁膜53上に層間絶縁膜54が堆積され、その後、リソグラフィ法(フォトレジスト形成、ドライエッチング、フォトレジスト除去を含む)を用いて、層間絶縁膜54及びバリア絶縁膜53に配線溝が形成される。ここで層間絶縁膜54は、例えば、膜厚が300nmの酸化シリコン膜である。当該配線溝がバリアメタル膜56(例えば、膜厚が5nmの窒化タンタル膜と膜厚が5nmのタンタル膜の積層体)で被覆され、そのバリアメタル膜56の上に当該配線溝を埋め込むように第1配線55(例えば、銅配線)が形成される。工程1において、層間絶縁膜52、54は、プラズマCVD法によって形成することができる。
 第1配線55は、次のような一連の配線の形成方法によって、形成することができる。例えば、PVD(Physical Vapor Deposition)法によってバリアメタル膜56を形成し、さらにPVD法によって銅シードを形成する。この銅シード形成の後に、電解めっき法によって配線溝を埋め込むように、銅膜を形成する。さらに、200℃以上の温度で熱処理後、CMP(Chemical Mechanical Polishing)法によって配線溝内以外の余剰の銅膜を除去する。このようにして、第1配線55を形成することができる。
 このような一連の銅配線の形成方法は、当該技術分野における一般的な手法を用いることができる。ここで、CMP法とは、多層配線形成プロセス中に生じるウェハ表面の凹凸を、研磨液をウェハ表面に流しながら回転させた研磨パッドに接触させて研磨することによって平坦化する方法である。溝に埋め込まれた余剰の銅膜を研磨することによって埋め込み配線(ダマシン配線)が形成され、また、層間絶縁膜54を研磨することで平坦化が行われる。
 (工程2)
 第1配線55と層間絶縁膜54を被覆するようにバリア絶縁膜57(例えば、膜厚が50nmの窒化シリコン膜又は炭窒化シリコン膜)が形成される。ここで、バリア絶縁膜57は、プラズマCVD法によって形成することができる。バリア絶縁膜57の膜厚は、10nm~50nm程度であることが好ましい。
 (工程3)
 バリア絶縁膜57の上にハードマスク膜59(例えば、酸化シリコン膜)が形成される。このとき、ハードマスク膜59は、ドライエッチング加工におけるエッチング選択比を大きく保つ観点から、バリア絶縁膜57とは異なる材料であることが好ましく、絶縁膜であっても導電膜であってもよい。ハードマスク膜59としては、例えば、酸化シリコン膜、シリコン窒化膜、窒化チタン膜、チタン膜、タンタル膜、窒化タンタル膜等を用いることができる。また、ハードマスク膜59としては、窒化シリコン膜と酸化シリコン膜の積層体を用いることもできる。
 (工程4)
 ハードマスク膜59の上に開口が形成されたフォトレジストパターン(図示せず)が形成され、そのフォトレジストパターンをマスクとして用いてドライエッチングすることによりハードマスク膜59に開口59aが形成される。その後、酸素プラズマアッシング等によってフォトレジストパターンが剥離される。このとき、ドライエッチングは必ずしもバリア絶縁膜57の上面で停止される必要はなく、バリア絶縁膜57の一部がエッチングされてもよい。
 (工程5)
 図8Bに図示されているように、ハードマスク膜59をマスクとして、ハードマスク膜59の開口59aから露出するバリア絶縁膜57をエッチバック(ドライエッチング)することにより、バリア絶縁膜57に開口57aが形成される。バリア絶縁膜57の開口57aの内部では、第1配線55の一部が露出されることになる。その後、アミン系の剥離液などで有機剥離処理を行うことで、第1配線55の露出面に形成された酸化銅が除去されるとともに、エッチバック時に発生したエッチング生成物が除去される。バリア絶縁膜57のエッチバックでは、反応性ドライエッチングを用いることで、バリア絶縁膜57の開口57aの側面をテーパ面として形成することができる。反応性ドライエッチングでは、エッチングガスとしてフルオロカーボンを含むガスを用いることができる。ハードマスク膜59は、エッチバック中に完全に除去されることが好ましいが、絶縁材料である場にはそのまま残存してもよい。図8Bには、ハードマスク膜59が完全に除去された構造が図示されている。また、バリア絶縁膜57の開口57aの形状は円形とし、円の直径は30nmから500nmとすることができる。さらに、非反応性ガスを用いたRF(Radio Frequency:高周波)エッチングによって、第1配線55の表面の酸化物が除去される。非反応性ガスとしては、ヘリウムやアルゴンを用いることができる。
 (工程6)
 第1イオン伝導層58aと第2イオン伝導層58bとを備える抵抗変化層58が、形成される。詳細には、まず、第1配線55とバリア絶縁膜57とを被覆するように、膜厚0.5nmのチタン膜と膜厚0.5nmのアルミニウム膜がこの順に堆積され、合計1nmの金属膜が形成される。チタン膜及びアルミニウム膜はPVD法やCVD法を用いて形成することができる。
 さらに、第1イオン伝導層58aとして、膜厚が6nmのSiOCHポリマー膜がプラズマCVDによって形成される。本実施形態では、第1イオン伝導層58aとして使用されるSiOCHポリマー膜は、下記のようにして形成される。環状有機シロキサンの原料とキャリアガスであるヘリウムが反応室に供給され、両者の供給が安定化し、反応室の圧力が一定になったところでRF電力の印加が開始される。原料の供給量は10~200sccmであり、ヘリウムについては、原料気化器経由で500sccmのヘリウムが供給され、別ラインで反応室に直接500sccmのヘリウムが供給される。
 チタン膜及びアルミニウム膜は、第1イオン伝導層58aの形成の間に酸素を含むSiOCHポリマー膜の原料に曝されることで、自動的に酸化する。チタン膜及びアルミニウム膜が酸化されることで、抵抗変化層58の一部を構成する第2イオン伝導層58bが形成される。
 バリア絶縁膜57の開口57aは有機剥離処理によって水分などが付着しているため、抵抗変化層58の形成の前に250℃から350℃程度の温度にて、減圧下で熱処理を加えて脱ガスしておくことが好ましい。
 (工程7)
 抵抗変化層58の上に、第1上部電極層61aとして、チタンを含むルテニウム合金の薄膜が、10nmの膜厚でコスパッタ法にて形成される。この際、ルテニウムターゲットとチタンターゲットは同一チャンバー内に存在し、同時にスパッタリングすることでルテニウム合金膜が堆積される。ルテニウム合金膜の堆積においては、ルテニウムターゲットへの印加パワーとチタンターゲットへの印加パワーとを制御することで、チタンを含むルテニウム合金のルテニウムの含有率を所望の値に調節することができる。発明者の実験系では、ルテニウムターゲットへの印加パワーを150W、チタンターゲットへの印加パワーを50Wとすることで、「チタンを含むルテニウム合金」のルテニウムの含有率を75atm%、チタンの含有率を25atm%に調節することができた。
 さらに、第1上部電極層61aの上に第2上部電極層61bが形成される。第1上部電極層61a及び第2上部電極層61bは、上部電極61を構成する。第2上部電極層61bとしては、例えば、膜厚25nmの窒化チタン膜がリアクティブスパッタ法にて形成される。リアクティブスパッタ法による窒化チタン膜の形成においては、窒素ガスとアルゴンガスがチャンバーに導入される。このとき、チタンターゲットへの印加パワーと、チャンバーに供給される窒素ガスとアルゴンガスの比率を調節することにより、窒化チタン膜のチタンの含有率を調節することができる。発明者の実験系では、チタンターゲットへの印加パワーを600Wに設定し、窒素ガスの流量とアルゴンガスの流量の比を2:1とすることで、窒化チタン膜のチタンの含有率を50atm%に調節することができた。
 (工程8)
 第2上部電極層61b上に、ハードマスク膜62(例えば、膜厚30nmの窒化シリコン膜又は炭窒化シリコン膜)と、ハードマスク膜63(例えば、膜厚90nmの酸化シリコン膜)とが、この順に積層される。ハードマスク膜62、63は、プラズマCVD法を用いて成膜することができる。ハードマスク膜62、63は当該技術分野における一般的なプラズマCVD法を用いて形成することができる。また、ハードマスク膜62、63は、異なる材料で形成された膜であることが好ましく、例えば、ハードマスク膜62を窒化シリコン膜で形成し、ハードマスク膜63を酸化シリコン膜で形成することができる。このとき、ハードマスク膜62は、後述する保護絶縁膜64及びバリア絶縁膜57と同一材料であることが好ましい。すなわち、スイッチング素子の周囲の全てを同一材料で囲むことでスイッチング素子を取り囲む部材の界面を一体化し、外部からの水分などの浸入を防ぐとともに、スイッチング素子からの材料の脱離を防ぐことができるようになる。また、ハードマスク膜62は、SiH/Nの混合ガスを原料として高密度プラズマを発生させて形成された高密度な窒化シリコン膜を用いることが好ましい。
 (工程9)
 次に、ハードマスク膜63の上に、第1イオン伝導層58a、第2イオン伝導層58b、第1上部電極層61a及び第2上部電極層61bをパターニングするためのフォトレジストパターン(図示せず)が形成される。その後、図8Cに図示のように、当該フォトレジストパターンをマスクとして、ハードマスク膜62が表れるまでハードマスク膜63がドライエッチングによってエッチングされる。その後、酸素プラズマアッシングと、有機剥離を用いてフォトレジストパターンが除去される。
 (工程10)
 ハードマスク膜63をマスクとして、ハードマスク膜62、第2上部電極層61b、第1上部電極層61a、第1イオン伝導層58a及び第2イオン伝導層58bが連続的にドライエッチングによってエッチングされる。このとき、ハードマスク膜63は、エッチング中に完全に除去されることが好ましいが、そのまま残存してもよい。
 この連続的なドライエッチングでは、例えば、第2上部電極層61bが窒化チタンで形成されている場合にはClガスを反応ガスとして用いるRIE(Reactive Ion Etching)でエッチングすることができる。また例えば、第1上部電極層61aがチタンを含むルテニウム合金で形成されている場合には、ClガスとOガスの混合ガスを反応ガスとして用いるRIEでエッチングすることができる。
また、第1イオン伝導層58a及び第2イオン伝導層58bのエッチングでは、それらの下方に位置するバリア絶縁膜57の表面でドライエッチングを停止させることが好ましい。
 第1イオン伝導層58aがシリコン、酸素、炭素、水素を含むSiOCHポリマー膜であり、バリア絶縁膜57が窒化シリコン膜又は炭窒化シリコン膜である場合には、RIEによるエッチングを行うことができる。このRIEによるエッチングは、CFガス、CFガスとClガスの混合ガス、又は、CFガスとClガスとArガスの混合ガスを用いてエッチング条件を調節することで、行うことができる。このようなハードマスクRIE法を用いることで、レジスト除去のための酸素プラズマアッシングに曝すことなく、二端子スイッチ72を構成する膜をエッチングすることができる。ここで、二端子スイッチ72を構成する膜とは、第2上部電極層61b、第1上部電極層61a、第1イオン伝導層58a及び第2イオン伝導層58bである。また、加工後に酸素プラズマによって酸化処理する場合には、レジストの剥離時間に依存することなく酸化プラズマ処理を照射することができるようになる。
 (工程11)
 図8Dに図示されているように、ハードマスク膜62、第2上部電極層61b、第1上部電極層61a、第1イオン伝導層58a、第2イオン伝導層58b及びバリア絶縁膜57を被覆するように、保護絶縁膜64が成膜される。ここで、保護絶縁膜64は、例えば、膜厚が30nmの窒化シリコン膜又は炭窒化シリコン膜とする。保護絶縁膜64は、プラズマCVD法によって形成することができるが、成膜前には反応室内で減圧下に維持する必要があり、このとき第1イオン伝導層58aの側面から酸素が脱離し、第1イオン伝導層58aのリーク電流が増加する、という問題が生じ得る。
 このリーク電流の増加を抑制するためには、保護絶縁膜64の成膜温度を250℃以下とすることが好ましい。さらに、保護絶縁膜64の成膜においては、成膜前に減圧下で成膜ガスに曝されるため、原料ガスとして還元性のガスを用いないことが好ましい。例えば、SiH/Nの混合ガスを高密度プラズマによって、基板温度200℃で形成した窒化シリコン膜を保護絶縁膜64として用いることが好ましい。
 (工程12)
 保護絶縁膜64上に、層間絶縁膜65(例えば、酸化シリコン膜)、エッチングストッパ膜66(例えば、窒化シリコン膜)、層間絶縁膜67(例えば、酸化シリコン膜)がこの順に堆積される。その後、第2配線68が形成される配線溝と、プラグ69が形成されるコンタクトホールが形成される。さらに、銅デュアルダマシン配線プロセスを用いて、当該配線溝及び当該コンタクトホール内にバリアメタル膜70(例えば、窒化タンタル膜とタンタル膜の積層体)と、第2配線68(例えば、銅)と、プラグ69(例えば、銅)とが形成される。その後、第2配線68と層間絶縁膜67とを被覆するようにバリア絶縁膜71(例えば、窒化シリコン膜)が堆積される。第2配線68の形成は、その下層に位置する配線(例えば、第1配線55)の形成と同様のプロセスを用いることができる。このとき、バリアメタル膜70と第2上部電極層61bとを同一材料で形成することでプラグ69と第2上部電極層61bの間の接触抵抗を低減し、素子性能を向上させることができる。層間絶縁膜65及び層間絶縁膜67はプラズマCVD法で形成することができる。二端子スイッチ72によって形成される段差を解消するため、層間絶縁膜65を厚く堆積し、CMPによって層間絶縁膜65を削り込んで平坦化し、層間絶縁膜65を所望の膜厚としてもよい。
 以上の工程により、二端子スイッチ72及びそれに接続される配線(プラグ69、第2配線68)の形成が完了する。
 (第2の実施形態)
 図9は、第2の実施形態のスイッチング素子が多層配線層の内部に集積化された半導体装置の構成を示す断面図である。第2の実施形態では、スイッチング素子が三端子スイッチとして構成されている。図9においては、該三端子スイッチが、符号132で参照されている。
 第2の実施形態では、多層配線層が、一対の第1配線115a、115bと、プラグ129とを備えており、三端子スイッチ132が、上部電極121と抵抗変化層118とを備えた構成となっている。上部電極121は、第1上部電極層121aと第2上部電極層121bとを備えている。多層配線層の第1配線115a、115bは、三端子スイッチ132の下部電極を兼ねている。即ち、抵抗変化層118は、上部電極121と第1配線115a、115bの間に挿入されている。抵抗変化層118は、第1イオン伝導層118aと第2イオン伝導層118bとを備えており、該抵抗変化層118は、一つの開口を通じ一対の第1配線115a、115bと接続されている。該開口は、層間絶縁膜114第1配線115a、115bの間の部分に到達するように形成されている。
 図9の多層配線構造の形成方法は、第1の実施形態における、多層配線構造(図5参照)の形成方法と同様である。多層配線層は、半導体基板111の上方に順次に積層された絶縁積層体を有する。この絶縁積層体は、層間絶縁膜112、バリア絶縁膜113、層間絶縁膜114、バリア絶縁膜117、保護絶縁膜124、層間絶縁膜125、エッチングストッパ膜126、層間絶縁膜127及びバリア絶縁膜131を、備える。
 当該多層配線層においては、層間絶縁膜114及びバリア絶縁膜113に一対の配線溝が形成されている。該配線溝の側面及び底面は、それぞれ、バリアメタル膜116a、116bで被覆されており、さらに、一対の配線溝を埋め込むように一対の第1配線115a、115bが形成されている。
 また、層間絶縁膜125、保護絶縁膜124及びハードマスク膜122にコンタクトホールが形成され、さらに、層間絶縁膜127及びエッチングストッパ膜126に配線溝が形成されている。該コンタクトホールと配線溝の側面及び底面は、バリアメタル膜130によって被覆されている。プラグ129が該コンタクトホールを埋め込むように形成され、第2配線128が該配線溝を埋め込むように形成されている。第2配線128とプラグ129とは、一体となっている。
 バリア絶縁膜117には、第1配線115a、115bに連通する開口が形成されている。第2イオン伝導層118b、第1イオン伝導層118a、第1上部電極層121a及び第2上部電極層121bが、順次に積層されている。これらは、第1配線115a、115bの該開口の内部に位置する部分、バリア絶縁膜117の該開口の側面及びバリア絶縁膜117の上面の一部を被覆するように、順次に積層されている。
 三端子スイッチ132は、下部電極として用いられる一対の第1配線115a、115bと、第1上部電極層121a及び第2上部電極層121bを備える上部電極121と、抵抗変化層118と、を有する構成となっている。ここで抵抗変化層118は、第1イオン伝導層118a及び第2イオン伝導層118bを備えている。詳細には、バリア絶縁膜117に形成された開口の内部において第2イオン伝導層118bと第1配線115a、115bが直接接しており、第2上部電極層121bは、バリアメタル膜130を介してプラグ129に電気的に接続されている。加えて、第2上部電極層121bの上にハードマスク膜122が形成されている。さらに、第2イオン伝導層118b、第1イオン伝導層118a、第1上部電極層121a、第2上部電極層121b及びハードマスク膜122で構成される積層体の上面及び側面が保護絶縁膜124で覆われている。
 このように構成された三端子スイッチ132は、電圧又は電流の印加によってオン状態又はオフ状態にスイッチングされる。例えば、第1配線115a、115bを形成する金属から供給される金属イオンの第2イオン伝導層118b及び第1イオン伝導層118aへの電界拡散を利用して、三端子スイッチ132のスイッチングが行われる。第2上部電極層121bとバリアメタル膜130は、同一の材料で構成されることが好ましい。このようにすることで、プラグ129のバリアメタル膜130と三端子スイッチ132の第2上部電極層121bとが一体化し、接触抵抗を低減し、かつ、密着性の向上による信頼性の向上を実現することができる。
 また、第1配線115a、115bが三端子スイッチ132の下部電極を兼ねることで、工程数を簡略化しながら、電極抵抗を下げることができる。より具体的には、通常の銅ダマシン配線プロセスに追加工程として、少なくとも2つのフォトレジストマスクセットを作成するだけで、三端子スイッチ132を搭載することができる。これにより、スイッチング素子の低抵抗化と低コスト化とを同時に達成することができるようになる。
 半導体基板111は、半導体素子が形成された基板である。半導体基板111としては、例えば、シリコン基板、単結晶基板、SOI(Silicon on Insulator)基板、TFT(Thin Film Transistor)基板、液晶製造用基板等を用いることができる。
 層間絶縁膜112は、半導体基板111上に形成された絶縁膜である。層間絶縁膜112としては、例えば、酸化シリコン膜、酸化シリコン膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)等を用いることができる。層間絶縁膜112は、複数の絶縁膜を積層したものであってもよい。
 バリア絶縁膜113は、層間絶縁膜112、114の間に設けられたバリア性を有する絶縁膜である。バリア絶縁膜113は、第1配線115a、115bが埋め込まれる配線溝の形成の際にエッチングストップ層として機能する。バリア絶縁膜113には、例えば、窒化シリコン膜、炭窒化シリコン膜等を用いることができる。バリア絶縁膜113は、配線溝のエッチング条件の選択によっては削除することもできる。
 層間絶縁膜114は、バリア絶縁膜113上に形成された絶縁膜である。層間絶縁膜114としては、例えば、酸化シリコン膜、酸化シリコン膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)等を用いることができる。層間絶縁膜114は、複数の絶縁膜を積層したものであってもよい。
 第1配線115a、115bは、層間絶縁膜114及びバリア絶縁膜113に形成された配線溝に埋め込まれた配線である。ここで、第1配線115a、115bは、三端子スイッチ132の下部電極を兼ね、抵抗変化層118の第2イオン伝導層118bと直接接している。なお、第1配線115a、115bと抵抗変化層118の間には、電極層などの導電層が挿入されていてもよい。電極層が形成される場合は、電極層と抵抗変化層118は連続工程にて堆積され、連続工程にて加工される。また、抵抗変化層118の下面がコンタクトプラグを介して下層配線に接続されることはない。第1配線115a、115bを構成する金属には、抵抗変化層118において拡散、イオン伝導可能な金属イオンを生成する金属が用いられ、例えば、銅等を用いることができる。第1配線115a、115bは、抵抗変化層118において拡散又はイオン伝導が可能な金属イオンを生成する金属(例えば、銅)とアルミニウムとを含む合金で形成されていてもよい。
 バリアメタル膜116a、116bは、第1配線115a、115bを形成する金属(例えば、銅)が層間絶縁膜114や下層へ拡散することを防止するために、第1配線115a、115bの側面及び底面を被覆する、バリア性を有する導電性膜である。第1配線115a、115bが銅を主成分とする金属で形成される場合には、バリアメタル膜116a、116bは例えば次のように構成することができる。すなわち、バリアメタル膜116a、116bには、例えば、タンタル、窒化タンタル、窒化チタン、炭窒化タングステンのような高融点金属又は高融点金属の窒化物の薄膜、若しくは、それらの積層膜を用いることができる。
 バリア絶縁膜117は、層間絶縁膜114及び第1配線115a、115bを被覆するように形成される。バリア絶縁膜117は、第1配線115a、115bを形成する金属(例えば、銅)の酸化を防いだり、第1配線115a、115bを形成する金属の層間絶縁膜125中への拡散を防ぐ役割を有する。さらにバリア絶縁膜117は、上部電極121及び抵抗変化層118の加工時にエッチングストップ層となる役割を有する。バリア絶縁膜117には、例えば、SiC膜、炭窒化シリコン膜、窒化シリコン膜、及びそれらの積層構造等を用いることができる。バリア絶縁膜117は、保護絶縁膜124及びハードマスク膜122と同一材料であることが好ましい。
 上述のように、バリア絶縁膜117は、第1配線115a、115bに連通する開口を有しており、該開口の内部において、第1配線115a、115bと抵抗変化層118が接している。このようにすることで、凹凸の小さい第1配線115a、115bの表面上に三端子スイッチ132を形成することができるようになる。バリア絶縁膜117の開口の側面は、第1配線115a、115bから離れるにしたがい広くなったテーパ面となっている。バリア絶縁膜117の開口のテーパ面は、第1配線115a、115bの上面に対し85°以下に設定されている。このようにすることで、第1配線115a、115bと抵抗変化層118の接続部の外周(バリア絶縁膜117の開口の外周部付近)における電界集中が緩和され、絶縁耐性を向上させることができる。
 第1イオン伝導層118a及び第2イオン伝導層118bは、第1配線115a、115b(下部電極)を形成する金属から生成される金属イオンの作用(拡散、イオン伝導など)により、抵抗が変化する抵抗変化層118を構成している。
 第1イオン伝導層118aは、シリコン、酸素、炭素を主成分とする膜、例えば、シリコン、酸素、炭素、水素を含むSiOCHポリマー(例えば、環状シロキサンのような有機シリカ化合物のポリマー)で形成される。第1イオン伝導層118aとして使用されるSiOCHポリマー膜は、プラズマCVD(Chemical Vapor Deposition)法により成膜されてもよい。
 第2イオン伝導層118bは、第1配線115a、115bを形成する金属(例えば、銅)が、第1イオン伝導層118aを堆積している間の加熱やプラズマで第1イオン伝導層118a中に拡散することを防止する役割がある。さらに第2イオン伝導層118bは、下部電極として用いられる第1配線115a、115bが酸化され、拡散が促進されやすくなることを防止する役割がある。第2イオン伝導層118bの金属は、例えばチタン、アルミニウム、ジルコニウム、ハフニウム、タンタルを用いることができる。これら第2イオン伝導層118bの金属は、第1イオン伝導層118aの成膜中に酸化され、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム、酸化タンタルの薄膜となり、抵抗変化層118の一部となる。第2イオン伝導層118bを形成する金属膜の最適膜厚は0.5~1nmであり、これより薄いと、第1配線115a、115bの表面の酸化がわずかに起こり、これより厚いと、酸化しきれずに金属として残ってしまう。
 抵抗変化層118は、第1配線115a、115bの上面の一部、バリア絶縁膜117の開口のテーパ面及びバリア絶縁膜117の上面の一部を被覆するように形成されている。抵抗変化層118は、第1配線55と抵抗変化層118の接続部の外周部分が少なくともバリア絶縁膜117の開口部のテーパ面上に沿って配設されている。
 第2イオン伝導層118bの形成に使用する金属膜は、積層膜として形成されてもよいし、単層膜として形成されても良い。第2イオン伝導層118bを構成する金属(第2の金属)に、後述する第1上部電極層121a、第2上部電極層121bに含まれる金属(第1の金属)と同一の金属が含まれていることが好ましい。これにより、第2イオン伝導層118bを構成する第2の金属が第1上部電極層121a及び第2上部電極層121bに拡散した場合に、第1上部電極層121a及び第2上部電極層121bにおける欠陥の発生を防止できる。第1上部電極層121a及び第2上部電極層121bに欠陥が形成された場合、この欠陥を起点として第1イオン伝導層118aの絶縁破壊電圧を低下させる場合がある。
 第1上部電極層121aは、上部電極121の下側の電極層であり、第1イオン伝導層118aと直接接している。第1上部電極層121aは、ルテニウムと第1の金属の合金、即ち、第1の金属が添加されたルテニウム合金であることが好ましい。
 第1上部電極層121aを形成するルテニウム合金に添加される第1の金属は、酸化過程(金属から金属イオンを生成する過程)の標準生成ギブズエネルギーがルテニウムよりも負方向に大きい金属を選択することが望ましい。酸化過程の標準生成ギブズエネルギーがルテニウムより負方向に大きいチタン、タンタル、ジルコニウム、ハフニウム、アルミニウムは、ルテニウムに比べて化学反応が自発的に起こりやすいため、反応性が高い。このため、第1上部電極層121aを形成するルテニウム合金が上記のような第1の金属を含むことで、第1配線115a、115bを形成する金属で形成された金属架橋との密着性が向上する。即ち、第1上部電極層121aを構成するルテニウム合金に含まれる第1の金属が、チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムからなる群から選択される少なくとも一の金属であることが好ましい。一方、ルテニウムを含まない第1の金属のみで第1上部電極層121aを構成すると、反応性が高くなってしまい、オフ状態に遷移しなくなる。
 オン状態からオフ状態への遷移は、金属架橋の酸化反応(溶解反応)によって進行する。第1上部電極層121aを構成する金属の、酸化過程の標準生成ギブズエネルギーが負方向に、第1配線115a、115bを形成する金属のそれよりも大きい場合、オフ状態に遷移できなくなる。これは、第1配線115a、115bを形成する金属で形成された金属架橋の酸化反応よりも、第1上部電極層121aの酸化反応が進行するためである。
 このため、第1上部電極層121aを形成する金属材料は、酸化過程の標準生成ギブズエネルギーが銅よりも負方向に小さいルテニウムと第1の金属の合金とすることが好ましい。さらに、第1上部電極層121aに金属架橋の成分である銅が混入すると、標準ギブズエネルギーが負方向に大きい金属を添加した効果が薄れるため、ルテニウム合金に添加する第1の金属は銅及び銅イオンに対してバリア性のある材料が好ましい。このような金属としては、例えば、タンタル、チタン、アルミニウムが挙げられる。一方、第1の金属の量は大きいほど、オン状態が安定化することがわかっており、5atm%の添加によっても安定性が向上することがわかっている。特に、第1の金属としてチタンを用いる場合にオフ状態への遷移とオン状態の安定性に優れている。具体的には、第1上部電極層121aをチタンを含むルテニウム合金で形成し、該ルテニウム合金のチタンの含有率を20atm%以上30atm%以下の範囲に調節することが好ましい。該ルテニウム合金における、ルテニウムの含有率は、60atm%以上90atm%以下が望ましい。
 第1上部電極層121aの形成には、スパッタリング法を用いることが望ましい。スパッタリング法を用いて合金を成膜する場合、ルテニウムと第1の金属との合金ターゲットを用いる方法、ルテニウムターゲットと第1の金属のターゲットを同一チャンバー内で同時にスパッタリングするコスパッタ法、がある。その他、スパッタリング法を用いて合金を成膜する場合、予め第1の金属の薄膜を形成し、その上に、スパッタリング法を用いてルテニウムを成膜し、衝突原子のエネルギーで合金化するインターミキシング法がある。コスパッタ法及びインターミキシング法を用いると、合金の組成を適宜に調節することができる。インターミキシング法を採用する際には、ルテニウムの成膜を完了した後に、混合状態の均一化のため、400℃以下での熱処理を加えることが好ましい。
 第2上部電極層121bは、上部電極121の上側の電極層であり、第1上部電極層121aの上に形成されている。第2上部電極層121bは、第1上部電極層121aを保護する役割を有する。すなわち、第2上部電極層121bが第1上部電極層121aを保護することで、製造プロセス中の第1上部電極層121aへのダメージを抑制し、三端子スイッチ132のスイッチング特性を維持することができる。
 第2上部電極層121bは、第1上部電極層121aを構成するルテニウム合金に含まれる第1の金属の窒化物で構成される。上述のように、第1の金属が、チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムからなる群から選択されることは、第2上部電極層121bを構成する第1の金属の窒化物が、導電性を有することになる点でも好適である。加えて、第2上部電極層121bを構成する第1の金属の窒化物が、層間絶縁膜65のエッチングに使用するフッ化炭素系のガスのプラズマに対して、エッチング速度が小さくなる。このエッチング速度が小さくなることは、第2上部電極層61bをエッチングストップ膜として機能させる上でも、好適である。
 第2上部電極層61bに窒化物ではない金属を使用すると、プロセス中の加熱やプラズマダメージで金属の一部が第1上部電極層121aに拡散する。この金属の第1上部電極層121aへの拡散により、第1上部電極層121aに欠陥が生じ、これらの欠陥を起点としてイオン伝導層の絶縁破壊電圧を低下させる可能性がある。
 第2上部電極層121bに電気伝導性を有する化合物であり、安定な金属窒化物を用いることで第1上部電極層121aへの金属の拡散を防止できる。特に、第2上部電極層121bを構成する窒化物の金属と、第1上部電極層121aを構成するルテニウム合金に含まれる第1の金属とが同一であることは、ルテニウム合金に含まれる第1の金属の拡散による不良の発生をより効率的に防止できる点で好適である。
 例えば、第1上部電極層121aがチタンを含有するルテニウム合金で形成される場合には、第2上部電極層121bは窒化チタンで形成されることが好ましい。また、第1上部電極層121aがタンタルを含有するルテニウム合金で形成さ場合には、第2上部電極層121bが窒化タンタルで形成されることが好ましい。第1上部電極層121aと第2上部電極層121bを構成する金属成分を一致させることで、第2上部電極層121bの金属が第1上部電極層121aに拡散した場合にも、欠陥が形成し難くなる。
 このとき、第1上部電極層121aを構成するルテニウム合金に含まれる第1の金属の含有率よりも、第2上部電極層121bを構成する窒化物に含まれる第1の金属の含有率を、大きくする。これにより、第1上部電極層121aを構成する金属が第2上部電極層121bを構成する窒化物に拡散し、第1上部電極層121aを構成するルテニウム合金の組成が変化することを防止できる。
 具体的には、第2上部電極層121bが窒化チタンで形成される場合、第2上部電極層121bのチタンの含有率が40atm%以上80atm%以下であればよく、特に、40atm%以上50atm%の組成であることが好ましい。40atm%以下だと第1上部電極層121a中のチタンが第2上部電極層121bに拡散する恐れがある。また、50atm%以上だと、X線回折測定において、金属電極に用いられる安定な窒化チタンの組成であるTiNだけではなく、TiNに由来する結晶相が検出される。
 TiNが存在すると酸化されやすくなるため、ハードマスク膜122の成膜時などに第2上部電極121bが酸化されてしまう可能性がある。第2上部電極121bが酸化されてしまうと、第2上部電極121bの比抵抗が増加し、三端子スイッチ132の寄生抵抗が増加してしまう。
 第2上部電極層121bの形成には、スパッタリング法を用いることが望ましい。スパッタリング法を用いて金属窒化物を成膜する場合、窒素とアルゴンの混合ガスのプラズマを用いて金属ターゲットを蒸発させるリアクティブスパッタ法を用いることが好ましい。金属ターゲットより蒸発した金属は窒素と反応し、金属窒化物となって基板上に成膜される。
 ハードマスク膜122は、第2上部電極層121b、第1上部電極層121a、第1イオン伝導層118a及び第2イオン伝導層118bをエッチングする際のマスクとして使用される。ハードマスク膜122としては、例えば、窒化シリコン膜もしくは炭窒化シリコン膜等を用いることができる。ハードマスク膜122は、保護絶縁膜124及びバリア絶縁膜117と同一材料であることが好ましい。これにより、三端子スイッチ132の周囲を全て同一材料の部材で囲まれて材料界面が一体化され、外部からの水分などの浸入を防ぐとともに、三端子スイッチ132自身からの材料の脱離を防ぐことができるようになる。
 保護絶縁膜124は、三端子スイッチ132へのダメージの印加を防ぎ、さらに、第1イオン伝導層118aからの酸素の脱離を防ぐ機能を有する絶縁膜である。保護絶縁膜124には、例えば、窒化シリコン膜、炭窒化シリコン膜等を用いることができる。保護絶縁膜124は、ハードマスク膜122及びバリア絶縁膜117と同一材料であることが好ましい。同一材料である場合には、保護絶縁膜124とバリア絶縁膜117及びハードマスク膜122とが一体化して、界面の密着性が向上し、三端子スイッチ132をより保護することができるようになる。
 層間絶縁膜125は、保護絶縁膜124の上に形成された絶縁膜である。層間絶縁膜125には、例えば、酸化シリコン膜、SiOC膜、酸化シリコン膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)などを用いることができる。層間絶縁膜125は、複数の絶縁膜を積層したものであってもよい。層間絶縁膜125は、層間絶縁膜127と同一材料としてもよい。層間絶縁膜125には、プラグ129を埋め込むためのコンタクトホールが形成されている。当該コンタクトホールはバリアメタル膜130で被覆されており、プラグ129が、バリアメタル膜130の上に当該コンタクトホールを埋め込むように形成されている。
 エッチングストッパ膜126は、層間絶縁膜125、127の間に設けられた絶縁膜である。エッチングストッパ膜126は、第2配線128が埋め込まれる配線溝の加工時にエッチングストップ層として機能する。エッチングストッパ膜126には、例えば、窒化シリコン膜、SiC膜、炭窒化シリコン膜を用いることができる。
 層間絶縁膜127は、エッチングストッパ膜126の上に形成された絶縁膜である。層間絶縁膜127には、例えば、酸化シリコン膜、SiOC膜、酸化シリコン膜よりも比誘電率の低い低誘電率膜(例えば、SiOCH膜)などを用いることができる。層間絶縁膜127は、複数の絶縁膜を積層したものであってもよい。層間絶縁膜127は、層間絶縁膜125と同一材料としてもよい。
 エッチングストッパ膜126及び層間絶縁膜127には、第2配線128を埋め込むための配線溝が形成されている。当該配線溝の側面及び底面がバリアメタル膜130で被覆されており、バリアメタル膜130の上に第2配線128が当該配線溝を埋め込むように形成されている。エッチングストッパ膜126は、配線溝のエッチング条件の選択によっては削除することもできる。
 第2配線128は、層間絶縁膜127及びエッチングストッパ膜126に形成された配線溝に埋め込まれた配線である。第2配線128は、プラグ129と一体になっている。プラグ129は、層間絶縁膜125、保護絶縁膜124、及びハードマスク膜122に形成されたコンタクトホールに埋め込まれている。プラグ129は、バリアメタル膜130を介して第2上部電極層121bと電気的に接続されている。第2配線128及びプラグ129には、例えば、銅を用いることができる。
 プラグ129(厳密にはバリアメタル膜130)と第2上部電極層121bとが接する領域の直径又は面積は、第1配線115a、115bと抵抗変化層118とが接する領域の直径又は面積よりも小さくなるように、設定されている。このように設定することによって、コンタクトホールへのめっきの埋め込み不良を抑制することができる。
 バリアメタル膜130は、第2配線128及びプラグ129の側面及び底面を被覆している。バリアメタル膜130は、第2配線128(プラグ129を含む)を形成する金属(例えば、銅)が層間絶縁膜125、127や下層へ拡散することを防止する、バリア性を有する導電性膜である。第2配線128及びプラグ129が銅を主成分とする金属元素からなる場合には、高融点金属又は高融点金属の窒化物、若しくは、それらの積層膜を、バリアメタル膜130に用いることができる。この高融点金属又は高融点金属の窒化物、若しくは、それらの積層膜としては、例えば、タンタル、窒化タンタル、窒化チタン、炭窒化タングステンのような高融点金属又は高融点金属の窒化物、若しくは、それらの積層膜が考えられる。
 バリアメタル膜130の少なくとも第2上部電極層121bに接する部分は、第2上部電極層121bと同一材料であることが好ましい。例えば、バリアメタル膜130が、窒化タンタルで形成された下層と、タンタルで形成された上層の積層体として形成されている場合には、下層の材料である窒化タンタルを第2上部電極層121bに用いることが好ましい。
 バリア絶縁膜131は、第2配線128及び層間絶縁膜127を被覆するように形成され、第2配線128を形成する金属(例えば、銅)の酸化を防ぎ、また、第2配線128を形成する金属の上層への拡散を防ぐ役割を有する絶縁膜である。バリア絶縁膜131には、例えば、炭窒化シリコン膜、窒化シリコン膜、及びそれらの積層構造等を用いることができる。
 図10A~図10Eは、図9に図示されている、第2の実施形態のスイッチング素子を多層配線層に集積化した半導体装置の製造方法の一例を模式的に示す断面図である。
 (工程1)
 図10Aに図示されているように、まず、半導体基板111(例えば、半導体素子が形成された基板)の上に層間絶縁膜112(例えば、膜厚が300nmの酸化シリコン膜)が堆積される。さらに、層間絶縁膜112の上に、バリア絶縁膜113(例えば、膜厚30nmの窒化シリコン膜)が堆積される。
 その後、バリア絶縁膜113上に層間絶縁膜114(例えば、膜厚が200nmの酸化シリコン膜)が堆積される。その後、リソグラフィ法(フォトレジスト形成、ドライエッチング、フォトレジスト除去を含む)を用いて、層間絶縁膜114及びバリア絶縁膜113に第1配線115a、115bに対応する配線溝が形成される。その後、当該配線溝がバリアメタル膜116a、116bで被覆され、そのバリアメタル膜116a、116bの上に当該配線溝を埋め込むように第1配線115a、115b(例えば、銅配線)が形成される。ここでバリアメタル膜116a、116bとしては、例えば、膜厚が5nmの窒化タンタル膜と膜厚が5nmのタンタル膜の積層体を用いる。この工程1において、層間絶縁膜112、114は、プラズマCVD法によって形成することができる。
 また、工程1において、第1配線115a、115bは、次のような一連の形成方法によって形成できる。例えば、PVD法によってバリアメタル膜116a、116bを形成し、さらにPVD法によって銅シードを形成した後、配線溝を埋め込むように電解めっき法によって銅膜を形成する。さらに、200℃以上の温度で熱処理後、CMP法によって配線溝内以外の余剰の銅膜を除去する。このようにして、第1配線115a、115bを形成することができる。このような一連の銅配線の形成方法は、当該技術分野における一般的な手法を用いることができる。溝に埋め込まれた余剰の銅を研磨することによって埋め込み配線(ダマシン配線)が形成され、層間絶縁膜114を研磨することで平坦化が行われる。
 (工程2)
 次に、第1配線115a、115bと層間絶縁膜114とを被覆するようにバリア絶縁膜117(例えば、膜厚が30nmの炭窒化シリコン膜)が形成される。ここで、バリア絶縁膜117は、プラズマCVD法によって形成することができる。バリア絶縁膜117の膜厚は、10nm~50nm程度であることが好ましい。
 (工程3)
 次に、バリア絶縁膜117の上にハードマスク膜119(例えば、酸化シリコン膜)が形成される。このとき、ハードマスク膜119は、ドライエッチング加工におけるエッチング選択比を大きく保つ観点から、バリア絶縁膜117とは異なる材料であることが好ましく、絶縁膜であっても導電膜であってもよい。ハードマスク膜119としては、例えば、酸化シリコン膜、シリコン窒化膜、TiN、Ti、タンタル、窒化タンタル等を用いることができる。また、ハードマスク膜119としては、窒化シリコン膜と酸化シリコン膜の積層体を用いることができる。
 (工程4)
 ハードマスク膜119の上に、開口が形成されたフォトレジストパターン(図示せず)を形成する。このフォトレジストパターンをマスクとして用いてドライエッチングすることにより、図10Bに図示されているように、ハードマスク膜119に開口119aが形成される。その後、酸素プラズマアッシング等によって、フォトレジストパターンが剥離される。このとき、ドライエッチングは必ずしもバリア絶縁膜117の上面で停止される必要はなく、バリア絶縁膜117の一部がエッチングされてもよい。
 (工程5)
 次に、ハードマスク膜119をマスクとして、ハードマスク膜119の開口119aから露出するバリア絶縁膜117をエッチバック(ドライエッチング)することにより、バリア絶縁膜117に開口117aが形成される。バリア絶縁膜117の開口117aの内部では、第1配線115a、115bの一部が露出される。このとき、層間絶縁膜114のバリア絶縁膜117の開口117aの内部にある部分が、部分的にエッチングされてもよい。図10Bの工程5は、層間絶縁膜114のバリア絶縁膜117の開口117aの内部にある部分が、部分的にエッチングされた様子を示している。その後、アミン系の剥離液などで有機剥離処理を行うことで、第1配線115a、115bの露出面に形成された酸化銅を除去するとともに、エッチバック時に発生したエッチング生成物を除去する。工程5において、ハードマスク膜119は、エッチバック中に完全に除去されることが好ましいが、絶縁材料である場合にはそのまま残存してもよい。また、バリア絶縁膜117の開口117aの形状は、円形、正方形又は長方形とし、円の直径、又は正方形、長方形の一辺の長さは、20nmから500nmとすることができる。また、工程5において、バリア絶縁膜117のエッチバックでは、反応性ドライエッチングを用いることで、バリア絶縁膜117の開口117aの側面をテーパ面とすることができる。反応性ドライエッチングでは、エッチングガスとしてフルオロカーボンを含むガスを用いることができる。
 (工程6)
 第1イオン伝導層118aと第2イオン伝導層118bとを備える抵抗変化層118が、形成される。詳細には、まず、第1配線115a、115bとバリア絶縁膜117とを被覆するように、膜厚0.5nmのチタン膜と膜厚0.5nmのアルミニウム膜がこの順に堆積され、合計1nmの金属膜が形成される。チタン膜及びアルミニウム膜はPVD法やCVD法を用いて形成することができる。
 さらに、第1イオン伝導層118aとして、膜厚が6nmのSiOCHポリマー膜がプラズマCVDによって形成される。本実施形態では、第1イオン伝導層118aとして使用されるSiOCHポリマー膜は、下記のようにして形成される。環状有機シロキサンの原料とキャリアガスであるヘリウムが反応室に供給され、両者の供給が安定化し、反応室の圧力が一定になったところでRF電力の印加が開始される。原料の供給量は10~200sccmであり、ヘリウムについては、原料気化器経由で500sccmのヘリウムが供給され、別ラインで反応室に直接500sccmのヘリウムが供給される。
 チタン膜及びアルミニウム膜は、第1イオン伝導層118aの形成の間に酸素を含むSiOCHポリマー膜の原料に曝されることで、自動的に酸化する。チタン膜及びアルミニウム膜が酸化されることで、抵抗変化層118の一部を構成する第2イオン伝導層118bが形成される。
 工程6では、バリア絶縁膜117の開口117aは工程5の有機剥離処理によって水分などが付着しているため、抵抗変化層118の形成の前に250℃~350℃程度の温度にて、減圧下で熱処理を加えて脱ガスしておくことが好ましい。その際、銅で形成された第1配線115a、115bの表面を再度酸化させないよう、脱ガスは、真空下又は窒素雰囲気で行われることが好ましい。また、工程6では、抵抗変化層118の形成前に、バリア絶縁膜117の開口部から露出する第1配線115a、115bに対して、Hガスを用いた、ガスクリーニング又はプラズマクリーニング処理を行ってもよい。このようにすることで、抵抗変化層118を形成する際、第1配線115a、115bの銅の酸化を抑制することができ、プロセス中の銅の熱拡散(物質移動)を抑制することができるようになる。
 (工程7)
 図10Cに図示されているように、抵抗変化層118の上に、第1上部電極層121aとして、チタンを含むルテニウム合金の薄膜が、10nmの膜厚でコスパッタ法にて形成される。この際、ルテニウムターゲットとチタンターゲットは同一チャンバー内に存在し、同時にスパッタリングすることでルテニウム合金膜が堆積される。ルテニウムターゲットへの印加パワーとチタンターゲットへの印加パワーとを制御することで、チタンを含むルテニウム合金のルテニウムの含有率を所望の値に調節することができる。発明者の実験系では、ルテニウムターゲットへの印加パワーを150W、チタンターゲットへの印加パワーを50Wとすることで、「チタンを含むルテニウム合金」のルテニウムの含有率を75atm%、チタンの含有率を25atm%に調節することができた。
 さらに、第1上部電極層121aの上に第2上部電極層121bが形成される。第1上部電極層121a及び第2上部電極層121bは、上部電極121を構成する。第2上部電極層121bとしては、例えば、膜厚25nmの窒化チタン膜がリアクティブスパッタ法にて形成される。リアクティブスパッタ法による窒化チタン膜の形成においては、窒素ガスとアルゴンガスがチャンバーに導入される。このとき、チタンターゲットへの印加パワーと、チャンバーに供給される窒素ガスとアルゴンガスの比率を調節することにより、窒化チタン膜のチタンの含有率を調節することができる。発明者の実験系では、チタンターゲットへの印加パワーを600Wに設定し、窒素ガスの流量とアルゴンガスの流量の比を2:1とすることで、窒化チタン膜のチタンの含有率を50atm%に調節することができた。
 (工程8)
 ハードマスク膜122(例えば、膜厚30nmの窒化シリコン膜又は炭窒化シリコン膜)と、ハードマスク膜123(例えば、膜厚90nmの酸化シリコン膜)とが、この順に積層される。ハードマスク膜122、123は、プラズマCVD法を用いて成膜することができる。ハードマスク膜122、123は当該技術分野における一般的なプラズマCVD法を用いて形成することができる。また、ハードマスク膜122、123は、異なる材料で形成された膜であることが好ましく、例えば、ハードマスク膜122を窒化シリコン膜で形成し、ハードマスク膜123を酸化シリコン膜で形成することができる。このとき、ハードマスク膜122は、後述する保護絶縁膜124及びバリア絶縁膜117と同一材料であることが好ましい。すなわち、スイッチング素子の周囲の全てを同一材料で囲むことでスイッチング素子を取り囲む部材の界面を一体化し、外部からの水分などの浸入を防ぐとともに、スイッチング素子からの材料の脱離を防ぐことができるようになる。
 また、ハードマスク膜122は、プラズマCVD法によって形成することができるが、成膜前には反応室内で減圧下に維持する必要がある。減圧下に保持される間に、第1イオン伝導層118aから酸素が脱離し、酸素欠陥によって第1イオン伝導層118aのリーク電流が増加する、という問題が生じ得る。
 このリーク電流の増加を抑制するためには、成膜温度を350℃以下、好ましくは250℃以下とすることが好ましい。さらに、成膜前に減圧下で成膜ガスに曝されるため、ハードマスク膜122の原料ガスとして還元性のガスを用いないことが好ましい。例えば、ハードマスク膜122は、SiH/Nの混合ガスを原料として高密度プラズマを発生させて形成された高密度な窒化シリコン膜を用いることが好ましい。
 (工程9)
 次に、ハードマスク膜123の上に、第1イオン伝導層58a、第2イオン伝導層58b、第1上部電極層61a及び第2上部電極層61bをパターニングするためのフォトレジストパターン(図示せず)を形成する。このフォトレジストパターン形成の後、当該フォトレジストパターンをマスクとして、図10Cに図示のようにハードマスク膜122が表れるまでハードマスク膜123がドライエッチングによってエッチングされる。その後、酸素プラズマアッシングと有機剥離を用いてフォトレジストパターンが除去される。
 (工程10)
 次に、図10Dに図示されているように、ハードマスク膜123をマスクとして、ハードマスク膜122、第2上部電極層121b、第1イオン伝導層118a及び第2イオン伝導層118bが連続的にドライエッチングによってエッチングされる。このとき、ハードマスク膜123は、エッチバック中に完全に除去されることが好ましいが、そのまま残存してもよい。
 工程10において、例えば、第2上部電極層121bが窒化チタンで形成されている場合には、Clガスを反応ガスとして用いるRIEで加工することができる。また、第1上部電極層121aがチタンを含むルテニウム合金で形成されている場合には、ClガスとOガスの混合ガスを反応ガスとして用いるRIEで加工することができる。また、第1イオン伝導層118a及び第2イオン伝導層118bのエッチングでは、それらの下方に位置するバリア絶縁膜117上でドライエッチングを停止させることが好ましい。
 第1イオン伝導層118aがシリコン、酸素、炭素、水素を含むSiOCHポリマー膜であり、バリア絶縁膜117が窒化シリコン膜又は炭窒化シリコン膜である場合には、RIEによるエッチングを行うことができる。このRIEによるエッチングは、例えば、CFガス、CFガスとClガスの混合ガス、又は、CFガスとClガスとArガスの混合ガスを用いてエッチング条件を調節することで、行うことができる。このようなハードマスクRIE法を用いることで、レジスト除去のための酸素プラズマアッシングに曝すことなく、三端子スイッチ132を構成する膜をエッチングすることができる。ここで三端子スイッチ132を構成する膜は、即ち、第2上部電極層121b、第1上部電極層121a、第1イオン伝導層118a及び第2イオン伝導層118bである。また、加工後に酸素プラズマによって酸化処理する場合には、レジストの剥離時間に依存することなく酸化プラズマ処理を照射することができるようになる。
 (工程11)
 次に、ハードマスク膜122、第2上部電極層121b、第1上部電極層121a、第1イオン伝導層118a、第2イオン伝導層118b及びバリア絶縁膜117を被覆するように、保護絶縁膜124(例えば、膜厚が30nmの窒化シリコン膜)が成膜される。
 工程11において、保護絶縁膜124は、プラズマCVD法によって形成することができるが、成膜前には反応室内で減圧下に維持する必要がある。このとき第1イオン伝導層118aの側面から酸素が脱離し、第1イオン伝導層118aのリーク電流が増加する、という問題が生じ得る。
 このリーク電流の増加を抑制するためには、保護絶縁膜124の成膜温度を250℃以下とすることが好ましい。さらに、保護絶縁膜124の成膜においては、成膜前に減圧下で成膜ガスに曝されるため、原料ガスとして還元性のガスを用いないことが好ましい。例えば、SiH/Nの混合ガスを高密度プラズマによって、基板温度200℃で形成した窒化シリコン膜を保護絶縁膜124として用いることが好ましい。
 (工程12)
 次に、保護絶縁膜124上に、層間絶縁膜125(例えば、SiOC膜)、層間絶縁膜127(例えば、酸化シリコン膜)がこの順に堆積される。さらに、層間絶縁膜127の上にエッチングストッパ膜126を形成する。その後、第2配線128が形成される配線溝と、プラグ129が形成されるコンタクトホールが、形成される。さらに、銅デュアルダマシン配線プロセスを用いて、当該配線溝及び当該コンタクトホール内にバリアメタル膜130(例えば、窒化タンタル膜とタンタル膜の積層体)と、第2配線128(例えば、銅)と、プラグ129(例えば、銅)とが形成される。その後、第2配線128と層間絶縁膜127とを被覆するようにバリア絶縁膜131(例えば、窒化シリコン膜)が堆積される。工程12において、第2配線128の形成は、その下層に位置する配線(例えば、第1配線115a、115b)と同様のプロセスを用いることができる。このとき、バリアメタル膜130と第2上部電極層121bを同一材料とすることでプラグ129と第2上部電極層121bの間の接触抵抗を低減し、素子性能を向上(オン時の三端子スイッチ132の抵抗を低減)させることができる。また、工程12において、層間絶縁膜125及び層間絶縁膜127はプラズマCVD法で形成することができる。また、工程12において、三端子スイッチ132によって形成される段差を解消するため、層間絶縁膜125を厚く堆積し、CMPによって層間絶縁膜125を削り込んで平坦化し、層間絶縁膜125を所望の膜厚としてもよい。
 以上の工程により、三端子スイッチ132及びそれに接続される配線(プラグ129、第2配線128)の形成が完了する。
 以上には、本発明の実施形態が具体的に記述されているが、本発明は、上記の実施形態に限定されると解釈してはならない。本発明が様々な変更と共に実施され得ることは、当業者には自明的であろう。請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲に含まれるものであることはいうまでもない。
 図2などに図示される、第1の実施形態のスイッチング素子では、第1上部電極層22aを構成するルテニウム合金の第1の金属の含有率を、第2上部電極層22bを構成する窒化物の第1の金属の含有率よりも小さくする、ものとして説明した。これは、第2上部電極層22bを構成する窒化物の第1の金属の含有率を、第1上部電極層22aを構成するルテニウム合金の第1の金属の含有率よりも大きくする、ことと等価である。
 図5などに図示される、第1の実施形態の半導体装置では、第1上部電極層61aを構成するルテニウム合金に含まれる第1の金属の含有率よりも、第2上部電極層61bを構成する窒化物に含まれる第1の金属の含有率を大きくする、ものとして説明した。これは、第2上部電極層61bを構成する窒化物に含まれる第1の金属の含有率よりも、第1上部電極層61aを構成するルテニウム合金に含まれる第1の金属の含有率を小さくする、ことと等価である。
 図9などに図示される、第2の実施形態の半導体装置では、第1上部電極層121aを構成するルテニウム合金に含まれる第1の金属の含有率よりも、第2上部電極層121bを構成する窒化物に含まれる第1の金属の含有率を大きくする、ものとして説明した。これは、第2上部電極層121bを構成する窒化物に含まれる第1の金属の含有率よりも、第1上部電極層121aを構成するルテニウム合金に含まれる第1の金属の含有率を小さくする、ことと等価である。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)第1電極と、第2電極と、前記第1電極と前記第2電極との間に設けられ、イオン伝導性を有する抵抗変化層とを具備し、
 前記第1電極は、前記抵抗変化層において伝導可能な金属イオンを生成する金属を含み、
 前記第2電極は、前記抵抗変化層に接して形成される第1電極層と、前記第1電極層に接して形成される第2電極層とを備え、
 前記第1電極層は、ルテニウムと、ルテニウムよりも酸化過程の標準生成ギブスエネルギーが負方向に大きい第1の金属とを含むルテニウム合金で形成され、
 前記第2電極層は、前記第1の金属を含む窒化物で形成され、
 前記第1電極層における前記第1の金属の含有率が、前記第2電極層における前記第1の金属の含有率よりも小さいスイッチング素子。
(付記2)前記第1の金属は、チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムからなる群から選択された少なくとも一の金属である、付記1に記載のスイッチング素子。
(付記3)前記第1電極層は、ルテニウムを主成分とし、前記第1の金属の含有率が10atm%以上40atm%以下である、付記1又は2に記載のスイッチング素子。
(付記4)前記第1の金属はチタンであり、前記第1電極層のチタンの含有率が20atm%以上30atm%以下であり、前記第2電極層のチタンの含有率が40atm%以上80atm%以下である、付記1乃至3のいずれか一つに記載のスイッチング素子。
(付記5)前記抵抗変化層に伝導可能な金属が銅を含む、付記1乃至4のいずれか一つに記載のスイッチング素子。
(付記6)前記抵抗変化層が、少なくともシリコン、酸素、炭素を主成分とする第1イオン伝導層を備えており、前記第1イオン伝導層の比誘電率が2.1以上3.0以下である、付記1乃至5のいずれか一つに記載のスイッチング素子。
(付記7)前記第1イオン伝導層と前記第1電極との間に設けられた第2イオン伝導層をさらに具備し、
 前記第2イオン伝導層は第2の金属の酸化物で形成され、
 前記第2の金属は、チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムからなる群から選択される少なくとも一つの金属である、付記6に記載のスイッチング素子。
(付記8)前記第1の金属と前記第2の金属は同一である、付記7に記載のスイッチング素子。
(付記9)半導体基板と、前記半導体基板の上方に形成され、銅で形成された配線と銅で形成されたプラグとを含む多層配線層とを具備し、
 前記多層配線層にスイッチング素子が形成され、
 前記スイッチング素子は、銅で形成され、前記スイッチング素子の下部電極として用いられる下部電極銅配線と、前記プラグに電気的に接続された上部電極と、前記下部電極銅配線と前記上部電極の間に形成された、イオン伝導性を有する抵抗変化層とを備え、
 前記上部電極は、前記抵抗変化層に接して形成される第1上部電極層と、前記第1上部電極層に接して形成される第2上部電極層とを備え、
 前記第1上部電極層は、ルテニウムと、ルテニウムよりも酸化過程の標準生成ギブスエネルギーが負方向に大きい第1の金属とを含むルテニウム合金で形成され、
 前記第2上部電極層は、前記第1の金属を含む窒化物で形成され、
 前記第1上部電極層における前記第1の金属の含有率が、前記第2上部電極層における前記第1の金属の含有率よりも小さい、半導体装置。
(付記10)前記第1の金属は、チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムからなる群から選択された少なくとも一の金属である、付記9に記載の半導体装置。
(付記11)前記第1電極層は、ルテニウムを主成分とし、前記第1の金属の含有率が10atm%以上40atm%以下である、付記9又は10に記載の半導体装置。
(付記12)前記第1の金属はチタンであり、前記第1電極層のチタンの含有率が20atm%以上30atm%以下であり、前記第2電極層のチタンの含有率が40atm%以上80atm%以下である、付記9乃至11のいずれか一つに記載の半導体装置。
(付記13)前記抵抗変化層に伝導可能な金属が銅を含む、付記9乃至12のいずれか一つに記載の半導体装置。
(付記14)前記抵抗変化層が、少なくともシリコン、酸素、炭素を主成分とする第1イオン伝導層を備えており、前記第1イオン伝導層の比誘電率が2.1以上3.0以下である、付記9乃至13のいずれか一つに記載の半導体装置。
(付記15)前記第1イオン伝導層と前記第1電極との間に設けられた第2イオン伝導層をさらに具備し、
 前記第2イオン伝導層は第2の金属の酸化物で形成され、
 前記第2の金属は、チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムからなる群から選択される少なくとも一つの金属である、付記14に記載の半導体装置。
(付記16)前記第1の金属と前記第2の金属は同一である、付記15に記載の半導体装置。
(付記17)第1電極と、第2電極と、前記第1電極と前記第2電極との間に設けられ、イオン伝導性を有する抵抗変化層とを具備するスイッチング素子の製造方法であって、
 前記抵抗変化層において伝導可能な金属イオンを生成するルテニウム合金であって、ルテニウムと、ルテニウムよりも酸化過程の標準生成ギブスエネルギーが負方向に大きい第1の金属とを含むルテニウム合金で、前記第1電極を形成する工程と、
 前記抵抗変化層に接する第1電極層と、前記第1電極層に接し、前記第1の金属を含む窒化物で形成された第2電極層と、を含むように前記第2電極を形成する工程と、を備え、
 前記第2電極の前記第1電極層における前記第1の金属の含有率は、前記第2電極の前記第2電極層における前記第1の金属の含有率よりも小さい、スイッチング素子の製造方法。
(付記18)前記第2電極の前記第1電極層及び前記第2電極層が、前記抵抗変化層上に順に積層された後、共通のマスクでパターニングされる、付記17に記載のスイッチング素子の製造方法。
(付記19)前記抵抗変化層と、前記第2電極の前記第1電極層と、前記第2電極の前記第2電極層とが、順に積層された後、共通のマスクでパターニングされる、付記17に記載のスイッチング素子の製造方法。
(付記20)前記第1の金属は、チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムからなる群から選択された少なくとも一の金属である、付記17乃至19のいずれか一つに記載のスイッチング素子の製造方法。
(付記21)前記第2電極の前記第1電極層は、ルテニウムを主成分とし、前記第1の金属の含有率が10atm%以上40atm%以下である、付記17乃至20のいずれか一つに記載のスイッチング素子の製造方法。
(付記22)前記第1の金属はチタンであり、前記第2電極の前記第1電極層のチタンの含有率が20atm%以上30atm%以下であり、前記第2電極の前記第2電極層のチタンの含有率が40atm%以上80atm%以下である、付記17乃至21のいずれか一つに記載のスイッチング素子の製造方法。
(付記23)前記抵抗変化層に伝導可能な金属が銅を含む、付記17乃至22のいずれか一つに記載のスイッチング素子の製造方法。
(付記24)前記抵抗変化層が、少なくともシリコン、酸素、炭素を主成分とする第1イオン伝導層を備えており、前記第1イオン伝導層の比誘電率が2.1以上3.0以下である、付記17乃至23のいずれか一つに記載のスイッチング素子の製造方法。
(付記25)前記第1イオン伝導層と前記第1電極との間に設けられた第2イオン伝導層をさらに具備し、
 前記第2イオン伝導層は第2の金属の酸化物で形成され、
 前記第2の金属は、チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムからなる群から選択される少なくとも一つの金属である、付記24に記載のスイッチング素子の製造方法。
(付記26)前記第1の金属と前記第2の金属は同一である、付記25に記載のスイッチング素子の製造方法。
 本発明に係る抵抗変化素子は、不揮発性スイッチング素子として利用でき、特には、本発明は、プログラマブルロジック及びメモリ等の電子デバイスを構成する、不揮発性スイッチング素子として好適に利用できる。
 この出願は、2014年3月7日に出願された日本出願特願2014-45013号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 21  下部電極
 21a  タンタル膜
 21b  銅膜
 22  上部電極
 22a  第1上部電極層
 22b  第2上部電極層
 23  抵抗変化層
 23a  第1イオン伝導層
 23b  第2イオン伝導層
 24  金属架橋
 25  金属イオン
 26  低抵抗シリコン基板
 27  金属層
 51  半導体基板
 52  層間絶縁膜
 53  バリア絶縁膜
 54  層間絶縁膜
 55  第1配線
 56  バリアメタル膜
 57  バリア絶縁膜
 57a  開口
 58  抵抗変化層
 58a  第1イオン伝導層
 58b  第2イオン伝導層
 59  ハードマスク膜
 59a  開口
 61  上部電極
 61a  第1上部電極層
 61b  第2上部電極層
 62、63  ハードマスク膜
 64  保護絶縁膜
 65  層間絶縁膜
 66  エッチングストッパ膜
 67  層間絶縁膜
 68  第2配線
 69  プラグ
 70  バリアメタル膜
 71  バリア絶縁膜
 72  二端子スイッチ
 111  半導体基板
 112  層間絶縁膜
 113  バリア絶縁膜
 114  層間絶縁膜
 115a、115b  第1配線
 116a、116b  バリアメタル膜
 117  バリア絶縁膜
 117a   開口
 118  抵抗変化層
 118a  第1イオン伝導層
 118b  第2イオン伝導層
 119  ハードマスク膜
 119a  開口
 121  上部電極
 121a  第1上部電極層
 121b  第2上部電極層
 122、123  ハードマスク膜
 124  保護絶縁膜
 125  層間絶縁膜
 126  エッチングストッパ膜
 127  層間絶縁膜
 128  第2配線
 129  プラグ
 130  バリアメタル膜
 131  バリア絶縁膜
 132  三端子スイッチ
 201  下部電極
 202  上部電極
 203  イオン伝導層
 301  第1スイッチ
 301a  第1電極(活性電極)
 301b  第2電極(不活性電極)
 302  第2スイッチ
 302a  第1電極(活性電極)
 302b  第2電極(不活性電極)
 303  第1ノード
 304  第2ノード
 305  共通ノード
 401  第1の電極
 402  第2の電極
 403  イオン伝導層
 404  酸化チタン膜

Claims (10)

  1.  第1電極と、
     第2電極と、
     前記第1電極と前記第2電極との間に設けられた、イオン伝導性を有する抵抗変化層
    とを具備し、
     前記第1電極は、前記抵抗変化層において伝導可能な金属イオンを生成する金属を含み、
     前記第2電極は、
      前記抵抗変化層に接して形成される第1電極層と、
      前記第1電極層に接して形成される第2電極層
    とを備え、
     前記第1電極層は、ルテニウムと、ルテニウムよりも酸化過程の標準生成ギブスエネルギーが負方向に大きい第1の金属とを含むルテニウム合金で形成され、
     前記第2電極層は、前記第1の金属を含む窒化物で形成され、
     前記第1電極層における前記第1の金属の含有率が、前記第2電極層における前記第1の金属の含有率よりも小さい
     スイッチング素子。
  2.  請求項1に記載のスイッチング素子であって、
     前記第1の金属は、チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムからなる群から選択された少なくとも一の金属である
     スイッチング素子。
  3.  請求項1又は2に記載のスイッチング素子であって、
     前記第1電極層は、ルテニウムを主成分とし、前記第1の金属の含有率が10atm%以上40atm%以下である
     スイッチング素子。
  4.  請求項1乃至3のいずれか一項に記載のスイッチング素子であって、
     前記第1の金属はチタンであり、
     前記第1電極層のチタンの含有率が20atm%以上30atm%以下であり、
     前記第2電極層のチタンの含有率が40atm%以上80atm%以下である
     スイッチング素子。
  5.  請求項1乃至4のいずれか一項に記載のスイッチング素子であって、
     前記抵抗変化層に伝導可能な金属が銅を含む
     スイッチング素子。
  6.  請求項1乃至5のいずれか一項に記載のスイッチング素子であって、
     前記抵抗変化層が、少なくともシリコン、酸素、炭素を主成分とする第1イオン伝導層を備えており、
     前記第1イオン伝導層の比誘電率が2.1以上3.0以下である
     スイッチング素子。
  7.  請求項6に記載のスイッチング素子であって、
     さらに、
     前記第1イオン伝導層と前記第1電極との間に設けられた第2イオン伝導層
    を具備し、
     前記第2イオン伝導層は第2の金属の酸化物で形成され、
     前記第2の金属は、
     チタン、タンタル、ジルコニウム、ハフニウム、アルミニウムからなる群から選択される、少なくとも一つの金属である
     スイッチング素子。
  8.  請求項7に記載のスイッチング素子であって、
     前記第1の金属と前記第2の金属は同一である
     スイッチング素子。
  9.  半導体基板と、
     前記半導体基板の上方に形成され、銅で形成された配線と銅で形成されたプラグとを含む多層配線層
    とを具備し、
     前記多層配線層にスイッチング素子が形成され、
     前記スイッチング素子は、
      銅で形成され、前記スイッチング素子の下部電極として用いられる下部電極銅配線と、
      前記プラグに電気的に接続された上部電極と、
      前記下部電極銅配線と前記上部電極の間に形成された、イオン伝導性を有する抵抗変化層
    とを備え、
     前記上部電極は、
      前記抵抗変化層に接して形成される第1上部電極層と、
      前記第1上部電極層に接して形成される第2上部電極層
    とを備え、
     前記第1上部電極層は、ルテニウムと、ルテニウムよりも酸化過程の標準生成ギブスエネルギーが負方向に大きい第1の金属とを含むルテニウム合金で形成され、
     前記第2上部電極層は、前記第1の金属を含む窒化物で形成され、
     前記第1上部電極層における前記第1の金属の含有率が、前記第2上部電極層における前記第1の金属の含有率よりも小さい
     半導体装置。
  10.  請求項9に記載の半導体装置であって、
     前記第1電極層は、ルテニウムを主成分とし、前記第1の金属の含有率が10atm%以上40atm%以下である
     半導体装置。
PCT/JP2015/000758 2014-03-07 2015-02-18 スイッチング素子及びスイッチング素子の製造方法 WO2015133073A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/120,993 US20160359110A1 (en) 2014-03-07 2015-02-18 Switching element, and method for producing switching element
JP2016506109A JP6665776B2 (ja) 2014-03-07 2015-02-18 スイッチング素子及びスイッチング素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014045013 2014-03-07
JP2014-045013 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133073A1 true WO2015133073A1 (ja) 2015-09-11

Family

ID=54054893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000758 WO2015133073A1 (ja) 2014-03-07 2015-02-18 スイッチング素子及びスイッチング素子の製造方法

Country Status (3)

Country Link
US (1) US20160359110A1 (ja)
JP (1) JP6665776B2 (ja)
WO (1) WO2015133073A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170089726A (ko) * 2016-01-27 2017-08-04 에스케이하이닉스 주식회사 스위칭 소자, 이의 제조 방법, 스위칭 소자를 선택 소자로서 포함하는 저항 변화 메모리 장치

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6860871B2 (ja) * 2015-12-07 2021-04-21 ナノブリッジ・セミコンダクター株式会社 抵抗変化素子、半導体装置、及び半導体装置の製造方法
KR102646467B1 (ko) * 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조
US11088323B2 (en) 2018-08-30 2021-08-10 Taiwan Semiconductor Manufacturing Company, Ltd. Top electrode last scheme for memory cell to prevent metal redeposit
US11245073B2 (en) 2018-09-04 2022-02-08 Samsung Electronics Co., Ltd. Switching element, variable resistance memory device, and method of manufacturing the switching element
US11527713B2 (en) * 2020-01-31 2022-12-13 Taiwan Semiconductor Manufacturing Company, Ltd. Top electrode via with low contact resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300082A (ja) * 2006-05-04 2007-11-15 Samsung Electronics Co Ltd 下部電極上に形成されたバッファ層を備える可変抵抗メモリ素子
JP2011238875A (ja) * 2010-05-13 2011-11-24 Nec Corp スイッチング素子、スイッチング素子の製造方法および半導体装置
WO2012105139A1 (ja) * 2011-02-02 2012-08-09 日本電気株式会社 スイッチング素子、半導体装置およびそれぞれの製造方法
WO2013190988A1 (ja) * 2012-06-22 2013-12-27 日本電気株式会社 スイッチング素子およびスイッチング素子の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127236B1 (ko) * 2008-12-29 2012-03-29 주식회사 하이닉스반도체 저항성 메모리 소자의 제조 방법
US8946672B2 (en) * 2009-11-11 2015-02-03 Nec Corporation Resistance changing element capable of operating at low voltage, semiconductor device, and method for forming resistance change element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007300082A (ja) * 2006-05-04 2007-11-15 Samsung Electronics Co Ltd 下部電極上に形成されたバッファ層を備える可変抵抗メモリ素子
JP2011238875A (ja) * 2010-05-13 2011-11-24 Nec Corp スイッチング素子、スイッチング素子の製造方法および半導体装置
WO2012105139A1 (ja) * 2011-02-02 2012-08-09 日本電気株式会社 スイッチング素子、半導体装置およびそれぞれの製造方法
WO2013190988A1 (ja) * 2012-06-22 2013-12-27 日本電気株式会社 スイッチング素子およびスイッチング素子の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170089726A (ko) * 2016-01-27 2017-08-04 에스케이하이닉스 주식회사 스위칭 소자, 이의 제조 방법, 스위칭 소자를 선택 소자로서 포함하는 저항 변화 메모리 장치
KR102464065B1 (ko) * 2016-01-27 2022-11-08 에스케이하이닉스 주식회사 스위칭 소자, 이의 제조 방법, 스위칭 소자를 선택 소자로서 포함하는 저항 변화 메모리 장치

Also Published As

Publication number Publication date
JPWO2015133073A1 (ja) 2017-04-06
US20160359110A1 (en) 2016-12-08
JP6665776B2 (ja) 2020-03-13

Similar Documents

Publication Publication Date Title
JP6428860B2 (ja) スイッチング素子およびスイッチング素子の製造方法
JP5692297B2 (ja) 半導体装置及びその製造方法
JP5382001B2 (ja) 半導体装置及びその製造方法
WO2015133073A1 (ja) スイッチング素子及びスイッチング素子の製造方法
JP5799504B2 (ja) 半導体装置及びその製造方法
JP5565570B2 (ja) スイッチング素子、スイッチング素子の製造方法および半導体装置
JP5527321B2 (ja) 抵抗変化素子及びその製造方法
JP5895932B2 (ja) 抵抗変化素子、それを含む半導体装置およびそれらの製造方法
WO2016203751A1 (ja) 整流素子、スイッチング素子および整流素子の製造方法
JP2016192510A (ja) 抵抗変化素子およびその形成方法
WO2013103122A1 (ja) スイッチング素子及びその製造方法
JP5493703B2 (ja) スイッチング素子およびスイッチング素子を用いた半導体装置
JP5807789B2 (ja) スイッチング素子、半導体装置およびそれぞれの製造方法
WO2016157820A1 (ja) スイッチング素子、半導体装置、及びスイッチング素子の製造方法
WO2012074131A1 (ja) 半導体装置及びその製造方法
WO2014050198A1 (ja) スイッチング素子およびスイッチング素子の製造方法
JP2019047003A (ja) 抵抗変化素子と半導体装置および製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15757815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506109

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15120993

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15757815

Country of ref document: EP

Kind code of ref document: A1