WO2015132925A1 - 地図情報処理装置及び地図情報処理方法 - Google Patents

地図情報処理装置及び地図情報処理方法 Download PDF

Info

Publication number
WO2015132925A1
WO2015132925A1 PCT/JP2014/055717 JP2014055717W WO2015132925A1 WO 2015132925 A1 WO2015132925 A1 WO 2015132925A1 JP 2014055717 W JP2014055717 W JP 2014055717W WO 2015132925 A1 WO2015132925 A1 WO 2015132925A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
event
map information
processing apparatus
information processing
Prior art date
Application number
PCT/JP2014/055717
Other languages
English (en)
French (fr)
Inventor
孟司 山本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/055717 priority Critical patent/WO2015132925A1/ja
Priority to JP2016506031A priority patent/JPWO2015132925A1/ja
Publication of WO2015132925A1 publication Critical patent/WO2015132925A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/003Maps
    • G09B29/006Representation of non-cartographic information on maps, e.g. population distribution, wind direction, radiation levels, air and sea routes

Definitions

  • the present invention relates to a map information processing apparatus and a map information processing method for performing search processing for events.
  • Patent Document 1 discloses a technology that automatically guides the nearest place where worship can be performed when the time for performing an event such as worship approaches.
  • the worship time will vary depending on the position of the longitude. Also, for example, if there is an event that is performed in time with sunrise, the execution time also varies depending on the position such as longitude.
  • the present invention has been made in view of the above-described problems.
  • the purpose is to provide.
  • the map information processing apparatus includes an information acquisition unit that acquires time information and position information regarding solar events and map information, and the solar time is the daily solar elevation angle or azimuth at the position. It is the time associated with the corner, and further includes a processing unit that performs a search process on the event based on the map information and the time and position information of the solar time.
  • FIG. 6 is a diagram showing event information according to Embodiment 1.
  • FIG. 6 is a block diagram illustrating a configuration of a navigation device according to Embodiment 2.
  • FIG. 10 is a flowchart showing a process of the navigation device according to the second embodiment.
  • 10 is a flowchart showing an event route search process of the navigation device according to the second embodiment.
  • FIG. 10 is a diagram for explaining event route search processing of the navigation device according to the second embodiment.
  • FIG. 10 is a flowchart showing a peripheral event position search process of the navigation device according to the second embodiment.
  • FIG. 10 is a diagram for explaining a peripheral event position search process of the navigation device according to the second embodiment.
  • FIG. 10 is a diagram for explaining a peripheral event position search process of the navigation device according to the second embodiment.
  • FIG. 10 is a diagram showing event information according to the third embodiment.
  • 12 is a flowchart showing event route search processing of the navigation device according to the third embodiment.
  • FIG. 10 is a diagram for explaining event route search processing of the navigation device according to the third embodiment.
  • 10 is a flowchart showing a peripheral event position search process of the navigation device according to the third embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of a navigation device according to a fourth embodiment.
  • FIG. 14 is a flowchart showing processing of the navigation device according to the fourth embodiment.
  • FIG. 10 is a diagram for explaining processing of the navigation device according to the fourth embodiment.
  • 10 is a flowchart showing a departure time calculation process of the navigation device according to the fifth embodiment. It is a block diagram which shows the structure of the server which concerns on a modification.
  • FIG. 1 is a block diagram showing the configuration of the map information processing apparatus according to Embodiment 1 of the present invention.
  • the map information processing apparatus of FIG. 1 includes an information storage unit 1 and a processing unit 2.
  • the information storage unit 1 includes a storage device such as a hard disk drive.
  • An information storage unit (information acquisition unit) 1 includes a map information database 1a (hereinafter referred to as “map information DB1a”) and an event information database 1b (hereinafter referred to as “event information DB1b”) from the outside of the map information processing apparatus. The information is acquired and stored.
  • the map information DB 1a includes map information, facility information for searching the facility on the map from the type of facility, address or telephone number, and route information for searching for a route between two points on the map. Is included.
  • the event information DB 1b includes information on the time and position of the solar time described later regarding the event.
  • an event for example, worship or first sunrise
  • the movement of the sun such as sunrise, south-west, sunset or eclipse
  • FIG. 2 is a diagram showing the event information DB 1b according to the first embodiment.
  • the event information DB 1b in FIG. 2 includes an event name indicating the name of the event, a position related to the event (for example, latitude and longitude), a date related to the event, a solar elevation angle or azimuth that can identify the movement of the sun, and an event related It includes the time of solar time.
  • the solar time related to the event is the time corresponding to the movement of the sun and the time associated with the daily solar elevation angle or azimuth at the position related to the event.
  • the time T11A when the event E1 corresponding to the sunrise is performed, that is, the time T11A when the elevation angle of the sun is 0 ° (sunrise)
  • the time T21A when the event E2 corresponding to the south-south is performed, that is, the time T21A when the solar azimuth becomes true south is applied as the time of solar time.
  • the standard time at the position P1 is applied to the time T11A and the time T21A
  • the standard time at the position P2 is applied to the time T12A and the time T22A.
  • the time according to the movement of the sun such as the sunrise time
  • the elevation angle of sunrise may not actually be 0 °
  • the elevation angle of sunrise is approximated to 0 ° for the sake of simplicity.
  • the event information DB 1b in FIG. 2 only one value of the elevation angle and azimuth angle of the sun is set, but both values may of course be set.
  • the processing unit 2 will be described. Various functions are realized in the processing unit 2 by a CPU (Central Processing Unit) (not shown) executing a program stored in a memory (not shown) of the map information processing apparatus. As one of the functions, the processing unit 2 has a function of performing an event search process based on the map information DB 1a (map information) and the event information DB 1b (time and position information of solar time). ing.
  • a CPU Central Processing Unit
  • the processing unit 2 has a function of performing an event search process based on the map information DB 1a (map information) and the event information DB 1b (time and position information of solar time). ing.
  • FIG. 3 is a flowchart showing processing of the map information processing apparatus according to the first embodiment. Hereinafter, the processing of the map information processing apparatus will be described with reference to FIG.
  • step S100 the information storage unit 1 stores (acquires) the map information DB 1a (map information) and the event information DB 1b (time and position of the solar time related to the event).
  • step S200 the processing unit 2 performs an event search process based on the map information DB 1a (map information) and the event information DB 1b (time and position of the solar time related to the event).
  • ⁇ Effect> According to the map information processing apparatus according to the first embodiment as described above, with respect to the event using the time (time of solar time) associated with the daily sun elevation angle or azimuth at the position related to the event. Perform the search process. Accordingly, for example, an appropriate time can be used for an event performed in response to the movement of the sun, such as sunrise, south-west, sunset, or solar eclipse, in other words, an event performed in accordance with the solar elevation angle or azimuth. . Therefore, an appropriate search process can be performed for the event.
  • the information acquisition unit that acquires the map information DB 1a (map information) and the event information DB 1b (time time and position information regarding the event) is described as the information storage unit 1.
  • the information acquisition unit is not limited to the information storage unit 1.
  • a communication unit that acquires the information from the Internet via wireless communication or the like may be applied, or an input for receiving the information from the user. May be applied, or a processing unit such as a CPU (for example, the above-described processing unit 2) that acquires the information as a calculation result by an algorithm may be applied.
  • FIG. 4 is a block diagram showing a configuration of the navigation device.
  • a vehicle equipped with a navigation device will be described as “own vehicle”.
  • the same or similar components as those described above are denoted by the same reference numerals, and different points will be mainly described below.
  • the 4 includes an information storage unit 1, a processing unit 2, an input unit 3, a communication unit 4, a position detection unit 5, a time detection unit 6, and a display unit 7.
  • the information storage unit 1, the input unit 3, the communication unit 4, the position detection unit 5, the time detection unit 6 and the display unit 7 are comprehensively controlled by the processing unit 2.
  • the information storage unit 1 stores a map information DB 1a (map information) and an event information DB 1b (solar time and position information related to the event).
  • FIG. 5 is a diagram showing the event information DB 1b according to the second embodiment.
  • the event information DB 1b in FIG. 5 is different from the event information DB 1b in FIG. 2 in that the event time includes the start time and end time of the event as the solar time related to the event.
  • the input unit 3 receives an operation from the user, and gives an instruction signal to the processing unit 2 according to the operation.
  • the input unit 3 includes, for example, a voice recognition device that recognizes a user's voice and outputs an instruction signal based on the voice, a button and a touch panel that output an instruction signal by a user's manual operation, and other appropriate input devices At least one of the above applies.
  • the communication unit 4 acquires various types of information from the outside of the vehicle through, for example, wireless communication from the Internet.
  • the position detection unit (position acquisition unit) 5 detects (acquires) the current position (for example, latitude / longitude) of the vehicle on the map.
  • the position detection unit 5 includes, for example, a GPS receiver that receives GPS signals from GPS (Global Positioning System) satellites, a vehicle speed sensor that detects the speed of the host vehicle, an acceleration sensor that detects acceleration of the host vehicle, It comprises at least one of angular velocity sensors that detect angular velocity such as yaw angle.
  • the time detection unit (time acquisition unit) 6 detects (acquires) the current time.
  • the same standard time as solar time is applied to the current time.
  • the time detection unit 6 may receive, for example, a GPS signal or a standard radio wave, detect (acquire) the current time based on them, or accept a time input from the user as the current time.
  • the display unit 7 is composed of, for example, a liquid crystal display provided on the touch panel, and displays various information output from the processing unit 2.
  • the function of the processing unit 2 will be described.
  • the functions of the route search unit 2a, the determination unit 2b, the determination unit 2c, the guidance processing unit 2d, and the information update unit 2e are realized in the processing unit 2.
  • the route search unit 2a searches for a route between the current position detected by the position detection unit 5 and a position related to the event based on the map information DB 1a (map information).
  • the difference between the current time detected by the time detection unit 6 and the solar time related to the event moves the vehicle from the current position to the position related to the event on the route searched by the route search unit 2a. It is determined whether or not it is longer than the travel time required.
  • the determination unit 2c determines the route determined by the determination unit 2b that the difference between the current time and the solar time related to the event is equal to or longer than the travel time. Moreover, the determination part 2c determines the position regarding the event determined by the determination part 2b that the difference between the current time and the solar time related to the event is equal to or longer than the travel time.
  • the guidance processing unit 2d performs guidance using the display unit 7 according to the route determined by the determination unit 2c and the like from the departure point such as the current position to the position (destination) related to the event.
  • the information update unit 2e updates information (such as the map information DB 1a or the event information DB 1b) stored in the information storage unit 1 based on information input from the input unit 3 or information received by the communication unit 4. .
  • FIG. 6 is a flowchart showing an overall process of the navigation device according to the second embodiment. Hereinafter, the overall processing of the navigation device will be described with reference to FIG.
  • step S1 the processing unit 2 determines whether or not an operation for performing an event route search process has been received by the input unit 3.
  • the event route search process is a process of searching for a route (hereinafter, referred to as “event route”) where the vehicle can reach the location related to the event by the time of solar time. If it is determined that the operation has been accepted, the process proceeds to step S2, and if not, the process proceeds to step S11.
  • step S2 an event route search process for searching for an event route is performed. Details of the event route search process will be described later.
  • step S3 the processing unit 2 determines whether there is an event route searched in the event route search process. If it is determined that there is a searched event route, the process proceeds to step S4, and if not, the process proceeds to step S11.
  • step S4 the processing unit 2 causes the display unit 7 to display the event route searched for in the event route search process.
  • step S5 the guidance processing unit 2d performs guidance according to the event route selected by the user in the input unit 3 among the displayed event routes. Thereafter, the process shown in FIG.
  • step S11 the processing unit 2 determines whether or not an operation for performing a peripheral event position search process has been received by the input unit 3.
  • the peripheral event position search process is a process of searching for a position where the vehicle can arrive by the time of solar time (hereinafter referred to as “peripheral event position”) among positions related to events around the current position. . If it is determined that the operation has been accepted, the process proceeds to step S12. If not, the process illustrated in FIG. 6 ends.
  • step S12 a peripheral event position search process for searching for a peripheral event position is performed. Details of the peripheral event position search process will be described later.
  • step S13 the processing unit 2 determines whether or not there is a peripheral event position searched in the peripheral event position search process. If it is determined that there is a searched peripheral event position, the process proceeds to step S14, and if not, the process proceeds to step S19.
  • step S14 the processing unit 2 causes the display unit 7 to display the peripheral event position searched in the peripheral event position search process and the route from the current position to the peripheral event position.
  • step S15 the guidance processing unit 2d performs guidance according to the route selected by the user in the input unit 3 among the displayed routes. Thereafter, the process shown in FIG.
  • step S19 the processing unit 2 causes the display unit 7 to display (notify) that it is not in time for any of the positions related to the event. Thereafter, the process shown in FIG.
  • FIG. 7 is a flowchart showing an event route search process (step S2 in FIG. 6) performed by the navigation device according to the second embodiment.
  • the event route search process will be described with reference to FIG.
  • step S21 the input unit 3 receives an event name and a position related to the event from the user.
  • step S22 the determination unit 2b acquires the event name received in step S21, the time related to the event, and the solar time corresponding to today's date from the event information DB 1b (FIG. 5).
  • the determination part 2b demonstrates as an example the case where the start time of FIG. 5 is acquired as the time of the said solar time.
  • step S23 the position detector 5 detects the current position of the vehicle, and the time detector 6 detects the current time.
  • step S24 the route search unit 2a searches for a plurality of routes between these positions based on the current position detected in step S23 and the position related to the event received in step S21.
  • the determination unit 2b calculates a travel time required for the host vehicle to travel from the current position to the position related to the event on the route searched in step S24. For example, the determination unit 2b calculates the travel time by dividing the length of the route by a predetermined speed. As the predetermined speed, a speed received from the user by the input unit 3 may be used, or an average speed calculated by an unillustrated ECU (Electronic Control Unit) of the vehicle is used. Also good. The determination unit 2b calculates the travel time for each of the routes searched in step S24.
  • a predetermined speed a speed received from the user by the input unit 3 may be used, or an average speed calculated by an unillustrated ECU (Electronic Control Unit) of the vehicle is used. Also good.
  • the determination unit 2b calculates the travel time for each of the routes searched in step S24.
  • step S26 the determination unit 2b determines whether or not the difference between the current time detected in step S23 and the start time acquired in step S22 is equal to or longer than the travel time calculated in step S25. .
  • the determination unit 2b performs this determination for each of the routes searched in step S24. If it is determined that the difference is equal to or longer than the travel time for one or more routes, the process proceeds to step S27. If not, the process illustrated in FIG. 7 is terminated.
  • step S27 the determination unit 2c determines, as an event route, a route that is determined that the difference between the current time and the start time is equal to or longer than the travel time. Thereafter, the process shown in FIG. 7 ends.
  • FIG. 8A and FIG. 8B are diagrams for explaining the processing of steps S26 and S27 in FIG. Specifically, FIGS. 8A and 8B show time comparisons when the host vehicle travels the two routes searched in step S24.
  • FIG. 8A and FIG. 8B show time comparisons when the host vehicle travels the two routes searched in step S24.
  • the current positions are the same
  • the positions related to the event are the same
  • the start times are the same accordingly.
  • FIG. 8A and FIG. 8B it is assumed that the routes are different and the travel times are different accordingly.
  • the travel time is shortened because the route for comparing the time difference and the travel time includes an expressway or a shortcut route.
  • the difference between the current time and the start time is equal to or longer than the travel time, and the estimated arrival time (the scheduled time of arrival at the position related to the event) is earlier than the start time.
  • the determination unit 2c determines, as an event route, a route in which the time difference and the travel time are compared.
  • the travel time is longer because the route in which the time difference and the travel time are compared includes a detour route.
  • the difference between the current time and the start time is smaller than the travel time, and the estimated arrival time is later than the start time. In this case, the process of FIG. 7 is terminated without passing through step S27.
  • FIG. 9 is a flowchart showing the peripheral event position search process (step S12 in FIG. 6) performed by the navigation device according to the second embodiment.
  • the surrounding event position search process will be described with reference to FIG.
  • step S31 the input unit 3 receives the event name and the peripheral range of the current position from the user.
  • step S32 the determination unit 2b determines the event name received in step S21 and the time of solar time corresponding to today's month and day as the event related position within the peripheral range received in step S21. Obtained from the information DB 1b (FIG. 5).
  • the determination unit 2b will be described by taking as an example a case where the start time of FIG. 5 is acquired as the time of the solar time. Note that if the peripheral range of the current position is not received in step S31, a range within a distance (for example, 5 km) determined from the current position may be used as the peripheral range.
  • step S33 the position detector 5 detects the current position of the vehicle, and the time detector 6 detects the current time.
  • step S34 the route search unit 2a searches for a plurality of routes between these positions based on the current position detected in step S33 and the positions related to the events in the peripheral range.
  • the route search unit 2a performs this search for each position related to the event in the peripheral range.
  • step S35 as in step S25, the determination unit 2b calculates the travel time required for the vehicle to travel from the current position to the position related to the event in the surrounding area on the route searched in step S34.
  • the determination unit 2b calculates the travel time for each of the routes searched in step S34, and acquires the shortest travel time and the route.
  • the determination part 2b performs such movement time and acquisition of a path
  • step S36 the determination unit 2b determines whether or not the difference between the current time detected in step S33 and the start time acquired in step S32 is greater than or equal to the travel time acquired in step S35. .
  • the determination unit 2b performs this determination for each position related to the event within the peripheral range. If it is determined that the difference is greater than or equal to the movement time for one or more positions, the process proceeds to step S37, and if not, the process illustrated in FIG. 9 is terminated.
  • step S37 the determination unit 2c determines, as the peripheral event position, the position related to the event for which the difference between the current time and the start time is determined to be equal to or longer than the movement time. Thereafter, the process shown in FIG. 9 ends.
  • FIG. 10A and FIG. 10B are diagrams for explaining the processing of steps S36 and S37 of FIG. Specifically, FIGS. 10 (a) and 10 (b) show time comparisons when the host vehicle moves on the two routes searched in step S34. 10A and 10B, the current positions are the same. On the other hand, the positions related to the events are different, and accordingly, the start times, the paths, and the travel times are also different.
  • the current position in FIGS. 10A and 10B is the position P0
  • the position relating to the event in FIG. 10A is the position P1
  • the position relating to the event in FIG. 10B is the position P2.
  • the event shall be held in response to sunrise (sun elevation angle 0 °).
  • the path between the position P0 and the position P1 is longer than the path between the position P0 and the position P2.
  • step S37 the determination unit 2c determines the position P1 where the difference between the times and the movement time are compared as the peripheral event position.
  • the travel time is shortened because the length of the path between the position P0 and the position P2 is short.
  • the difference between the current time and the start time is smaller than the travel time, and the estimated arrival time is later than the start time. In this case, the process of FIG. 9 is terminated without passing through step S37.
  • FIG. 11 is a diagram showing the positional relationship between the positions P0, P1, and P2 described in FIGS. 10 (a) and 10 (b).
  • FIG. 11 shows the maximum range R that can be reached by sunrise from the position P0 at a time slightly before the sunrise without considering the shape of the route.
  • the sunrise time is later in the west than in the east. Therefore, the distance R1 between the position PE on the most east side of the range R and the position P0 is the distance R2 between the position PS on the most south side of the range R and the position P0, or the position PN on the most north side of the range R. Becomes shorter than the distance R2 between the position P0 and the position P0.
  • the distance R3 between the position PW on the most west side of the range R and the position P0 is the distance R2 between the position PS on the most south side of the range R and the position P0 or the position PN on the most north side of the range R. It becomes longer than the distance R2 between the position P0.
  • the determination unit 2c can determine such a position P1 as the peripheral event position.
  • ⁇ Effect> According to the navigation device according to the second embodiment as described above, a route in which the difference between the current time and the start time (time of solar time related to the event) is equal to or longer than the travel time is determined. Therefore, it is possible to search for a route on which the host vehicle can arrive before the solar time related to the event.
  • the position related to the event in which the difference between the current time and the start time (time of solar time related to the event) is equal to or longer than the travel time is determined. Therefore, it is possible to search for a position related to the event where the host vehicle can arrive before the solar time related to the event.
  • the solar time related to the event is defined to be different depending on the date (FIG. 5), and the determination unit 2b acquires the solar time related to the event corresponding to the current date. (Step S22 or S32), and the above determination was made using the time.
  • the present invention is not limited to this, and the solar time related to the event may be defined differently depending on the day of the week. And in this case, the determination part 2b may perform the said determination using the time of the solar time regarding the event corresponding to today's day of the week.
  • the determination unit 2b acquires the start time of the event as the solar time related to the event (step S22 or S32) and searches for a route in time for the start time of the event.
  • the determination unit 2b is not limited to this, and the determination unit 2b may acquire the end time of the event as the solar time related to the event, and search for a route in time for the end time of the event.
  • the determination unit 2b may selectively acquire either the start time or the end time of the event according to the event name (event type).
  • Embodiment 3 ⁇ Configuration> Since the block configuration of the navigation device according to Embodiment 3 of the present invention is the same as that of Embodiment 2, the illustration thereof is omitted. And in the navigation apparatus which concerns on this Embodiment 3, the same referential mark is attached
  • FIG. 12 is a diagram showing the event information DB 1b according to the third embodiment.
  • the event information DB 1b in FIG. 12 has a lead time (waiting time) added to the event information DB 1b in FIG.
  • the determination unit 2b performs the above-described determination in consideration of this lead time.
  • FIG. 13 is a flowchart showing event route search processing performed by the navigation device according to the third embodiment.
  • the flowchart shown in FIG. 13 is the same as the flowchart of FIG. 7 described in the second embodiment except that steps S41, S42, and S43 are added before step S21, and step S26 is changed to step S44.
  • steps S41, S42, S43 and S44 will be mainly described.
  • step S41 the processing unit 2 determines whether or not the input unit 3 has accepted an operation for inputting a lead time. If it is determined that the operation has been accepted, the process proceeds to step S42; otherwise, the process proceeds to step S43.
  • step S42 the input unit 3 receives the lead time from the user, and sets the received lead time as the lead time used for the subsequent processing. That is, in the third embodiment, the lead time can be set by an input from the user.
  • the input unit 3 is provided as a GUI (GraphicalGraphUser Interface), so that a predetermined time (for example, 30 minutes or 60 minutes) selected by the user is set as a lead time. Alternatively, the time (for example, hours and minutes) input by the user may be set as the lead time. Then, it progresses to step S21.
  • GUI GraphicGraphUser Interface
  • step S43 the input unit 3 sets a predetermined lead time (known lead time) as a lead time used for the subsequent processing. Then, it progresses to step S21.
  • a predetermined lead time known lead time
  • step S21 to step S25 the same processes as those in the second embodiment are performed, and then the process proceeds to step S44.
  • step S44 the determination unit 2b performs the same determination as in step S26 of the second embodiment, taking into account the lead time set in step S42 or S43.
  • the determination part 2b performs determination of step S26 using the time which advanced only the lead time from the said time instead of the present
  • current time time of the solar time regarding an event. That is, the determination unit 2b calculates the difference between the current time detected in step S23 and the time that is earlier than the start time acquired in step S22 by the lead time (hereinafter referred to as “retroactive time”) in step S25. It is determined whether or not the travel time has been exceeded. The determination unit 2b performs this determination for each of the routes searched in step S24. If it is determined that the difference is equal to or longer than the travel time for one or more routes, the process proceeds to step S27. If not, the process illustrated in FIG. 13 is terminated.
  • step S27 after processing similar to that of the second embodiment is performed, the processing shown in FIG.
  • FIGS. 14 (a) and 14 (b) are diagrams for explaining the processing in steps S44 and S27 in FIG. Specifically, FIGS. 14 (a) and 14 (b) show time comparisons when the host vehicle travels along the two routes searched in step S24. 14 (a) and 14 (b), the current positions are the same, the positions related to the event are the same, and accordingly the start times (the solar time related to the events) are also the same. To do. The lead times are also the same. On the other hand, in FIG. 14A and FIG. 14B, it is assumed that the routes are different, and accordingly, the travel times are also different.
  • step S27 the determination unit 2c determines, as an event route, a route in which the time difference and the travel time are compared.
  • step S27 the difference between the current time and the retroactive time is smaller than the travel time, and the estimated arrival time is later than the start time. In this case, the process of FIG. 7 is terminated without passing through step S27.
  • FIG. 15 is a flowchart showing the peripheral event position search process performed by the navigation device according to the third embodiment.
  • the flowchart shown in FIG. 15 is the same as the flowchart of FIG. 9 described in the second embodiment except that steps S51, S52, and S53 are added before step S31, and step S36 is changed to step S54.
  • Steps S51, S52, and S53 are the same as steps S41, S42, and S43 in FIG. Therefore, S54 will be mainly described below.
  • steps S51, S52, and S53 the same operations as in steps S41, S42, and S43 described above are performed.
  • step S31 processes similar to those of the second embodiment are performed from step S31 to step S35. Thereafter, the process proceeds to step S54.
  • step S54 the determination unit 2b performs the same determination as in step S36 of the second embodiment, taking into account the lead time set in step S52 or S53.
  • the determination part 2b performs determination of step S36 using the time which advanced only lead time from the said time instead of the present
  • step S37 after processing similar to that of the second embodiment is performed, the processing shown in FIG.
  • the determination is made in consideration of the lead time.
  • the lead time can be allocated to the time required for the procedure.
  • a lead time can be assigned to the participation time.
  • the lead time can be set by an input from the user.
  • the user can set the desired time as the lead time.
  • step S44 if the event route cannot be searched in step S44, the process may return to step S42 to change the lead time setting.
  • the process may be configured to return to step S52 and change the lead time setting.
  • FIG. 16 is a block diagram showing a configuration of a navigation device according to Embodiment 4 of the present invention.
  • components that are the same as or similar to the components described above are denoted by the same reference numerals, and different points will be mainly described below.
  • the departure time calculation unit 2f included in the processing unit 2 sets a time that is earlier than the time of solar time related to the event corresponding to the date or day of the week input by the user by the above travel time (hereinafter, “ Calculated as “departure scheduled departure time”).
  • FIG. 17 is a flowchart showing the processing of the navigation device according to the fourth embodiment.
  • step S61 the input unit 3 receives an event name, a position related to the event, and a date / day of the week from the user.
  • step S62 the departure time calculation unit 2f displays the event name received in step S61, the position related to the event, and the start time (the time of the solar time related to the event) corresponding to the date or day of the week in the event information DB 1b (FIG. Obtain from 5).
  • step S63 the position detector 5 detects the current position of the vehicle.
  • step S64 the route search unit 2a searches for a plurality of routes between these positions based on the current position detected in step S63 and the position related to the event received in step S61.
  • step S65 the departure time calculation unit 2f calculates the travel time required for the vehicle to travel from the current position to the position related to the event on the route searched in step S64.
  • the departure time calculation unit 2f calculates the travel time for each of the routes searched in step S64, and acquires the shortest travel time and the route.
  • step S66 the departure time calculation unit 2f, as shown in FIG. 18, sets the time that has been advanced by the travel time acquired in step S65 from the start time acquired in step S62 (time of the solar time related to the event). Calculated as the scheduled departure time.
  • step S67 the processing unit 2 causes the display unit 7 to display the scheduled departure time calculated in step S66. Thereafter, the process shown in FIG.
  • a time that is earlier than the start time time of solar time related to the event
  • the start time time of solar time related to the event
  • the event information DB 1b according to the fifth embodiment is the same as the event information DB 1b (FIG. 12) according to the third embodiment.
  • the departure time calculation part 2f which concerns on this Embodiment 5 performs the above-mentioned calculation in consideration of lead time similarly to the determination part 2b which concerns on Embodiment 3.
  • FIG. 19 is a flowchart showing the processing of the navigation device according to the fifth embodiment.
  • the flowchart shown in FIG. 19 is the same as the flowchart of FIG. 17 described in the fourth embodiment except that steps S71, S72, and S73 are added and step S66 is changed to step S74.
  • Steps S71, S72, and S73 are the same as steps S41, S42, and S43 in FIG. 13 of the third embodiment. Therefore, S74 will be mainly described below.
  • steps S71, S72, and S73 the same operations as steps S41, S42, and S43 of the third embodiment are performed.
  • step S61 processes similar to those of the fourth embodiment are performed from step S61 to step S65. Thereafter, the process proceeds to step S74.
  • step S74 the departure time calculation unit 2f calculates step S66 in consideration of the lead time set in step S72 or S73.
  • the departure time calculation unit 2f is set in the travel time acquired in step S65 and the step S72 or S73 from the start time (time of solar time related to the event) acquired in step S62. The time earlier than the lead time is calculated as the scheduled departure time.
  • step S67 the processing unit 2 causes the display unit 7 to display the scheduled departure time calculated in step S74. Thereafter, the process shown in FIG. 19 ends.
  • the calculation is performed in consideration of the lead time.
  • the lead time can be assigned to the time required for the procedure, and for an event that only needs to participate by the end time, Lead time can be assigned to the participation time.
  • the lead time can be set by an input from the user.
  • the user can set the desired time as the lead time.
  • FIG. 20 is a block diagram showing a configuration of a server according to this modification. Note that in the server according to the present modification, the same or similar components as those described above are denoted by the same reference numerals, and the following description will focus on the main points.
  • the server in FIG. 20 includes an information storage unit 1, a processing unit 2, and a communication unit 4.
  • the information storage unit 1 stores a map information DB 1a and an event information DB 1b.
  • the communication unit (information acquisition unit) 4 receives (acquires) the map information DB 1a and the event information DB 1b stored in the information storage unit 1 from outside the server via wireless communication or the like. Further, the communication unit (position detection unit) 4 receives (acquires) the current position of the vehicle (moving body) to be noted from outside the server via wireless communication or the like. Further, the communication unit (position detection unit) 4 detects (acquires) the current time.
  • the functions of the route search unit 2a, the determination unit 2b, the determination unit 2c, and the information update unit 2e are realized in the processing unit 2 by executing a program by a CPU (not shown).
  • the route search unit 2a searches for a route between the current position received by the communication unit 4 and a position related to the event based on the map information DB 1a (map information).
  • the difference between the current time received by the communication unit 4 and the solar time related to the event moves on the route searched by the route search unit 2a from the current position to the position related to the event. It is determined whether or not it is longer than the travel time required.
  • the determination unit 2c determines the route determined by the determination unit 2b that the difference between the current time and the solar time related to the event is equal to or longer than the travel time. Moreover, the determination part 2c determines the position determined in the determination part 2b that the difference of the present time and the time of the solar time regarding an event is more than moving time.
  • the information update unit 2e updates information (such as the map information DB 1a or the event information DB 1b) stored in the information storage unit 1 based on the information received by the communication unit 4.
  • the map information processing apparatus described above is appropriately combined with a car navigation device, a PND (Portable Navigation Device), a mobile terminal (for example, a mobile phone, a smartphone, a tablet, etc.), a server, and the like that can be mounted on a vehicle. It can also be applied to a map information processing apparatus constructed as a system. In this case, each function or each component of the map information processing apparatus or the navigation apparatus described above is distributed and arranged in each device that constructs the system.
  • the moving body is a vehicle
  • the present invention is not limited to this, and the moving body may be a moving means other than the vehicle (for example, an airplane or a train).
  • 1 information storage unit 1a map information DB, 1b event information DB, 2 processing unit, 2a route search unit, 2b determination unit, 2c determination unit, 2f departure time calculation unit, 4 communication unit, 5 position detection unit, 6 time detection Department.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ecology (AREA)
  • Mathematical Physics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Instructional Devices (AREA)

Abstract

 例えば日の出などの太陽の動きに応じて実施されるイベントについて適切な検索処理を行うことが可能な技術を提供することを目的とする。地図情報処理装置は、情報保存部1と処理部2とを備える。情報保存部1は、イベントに関する太陽時の時刻及び位置の情報と、地図情報とを記憶する。太陽時の時刻は、位置での、日々の太陽仰角または方位角に対応付けられた時刻である。処理部2は、地図情報と、太陽時の時刻及び位置の情報とに基づいて、イベントについての検索処理を行う。

Description

地図情報処理装置及び地図情報処理方法
 本発明は、イベントについての検索処理を行う地図情報処理装置及び地図情報処理方法に関する。
 近年、地図情報処理装置の一種であるナビゲーション装置について、さまざまな技術が提案されている。例えば、特許文献1には、礼拝などのイベントを実施すべき時刻が近づくと、礼拝が実施できる直近の場所を自動的に案内する技術が開示されている。
特表2000-516335号公報
 例えば、礼拝が太陽の南中に合わせて行われる場合を想定すると、礼拝時刻は経度などの位置によって異なることになる。また例えば、日の出に合わせて実施されるイベントがあったとすると、その実施時刻も経度などの位置によって異なることになる。
 しかしながら、このように太陽の南中や日の出などの太陽の動きに応じて実施されるイベントの実施時刻は、位置(場所)によって異なるにもかかわらず、従来の検索処理では、当該イベントが実施される位置における太陽の動きに応じた時刻を考慮していない。このため、従来の検索処理では、当該イベントについて、適切な検索処理を行うことができなかった。
 そこで、本発明は、上記のような問題点を鑑みてなされたものであり、例えば南中や日の出などの太陽の動きに応じて実施されるイベントについて適切な検索処理を行うことが可能な技術を提供することを目的とする。
 本発明に係る地図情報処理装置は、イベントに関する太陽時の時刻及び位置の情報と、地図情報とを取得する情報取得部を備え、太陽時の時刻は、位置での、日々の太陽仰角または方位角に対応付けられた時刻であり、地図情報と、太陽時の時刻及び位置の情報とに基づいて、イベントについての検索処理を行う処理部をさらに備える。
 本発明によれば、例えば南中や日の出などの太陽の動きに応じて実施されるイベントについて適切な検索処理を行うことができる。
 本発明の目的、特徴、態様および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
実施の形態1に係る地図情報処理装置の構成を示すブロック図である。 実施の形態1に係るイベント情報を示す図である。 実施の形態1に係る地図情報処理装置の処理を示すフローチャートである。 実施の形態2に係るナビゲーション装置の構成を示すブロック図である。 実施の形態2に係るイベント情報を示す図である。 実施の形態2に係るナビゲーション装置の処理を示すフローチャートである。 実施の形態2に係るナビゲーション装置のイベント経路探索処理を示すフローチャートである。 実施の形態2に係るナビゲーション装置のイベント経路探索処理を説明するための図である。 実施の形態2に係るナビゲーション装置の周辺イベント位置検索処理を示すフローチャートである。 実施の形態2に係るナビゲーション装置の周辺イベント位置検索処理を説明するための図である。 実施の形態2に係るナビゲーション装置の周辺イベント位置検索処理を説明するための図である。 実施の形態3に係るイベント情報を示す図である。 実施の形態3に係るナビゲーション装置のイベント経路探索処理を示すフローチャートである。 実施の形態3に係るナビゲーション装置のイベント経路探索処理を説明するための図である。 実施の形態3に係るナビゲーション装置の周辺イベント位置検索処理を示すフローチャートである。 実施の形態4に係るナビゲーション装置の構成を示すブロック図である。 実施の形態4に係るナビゲーション装置の処理を示すフローチャートである。 実施の形態4に係るナビゲーション装置の処理を説明するための図である。 実施の形態5に係るナビゲーション装置の出発時刻算出処理を示すフローチャートである。 変形例に係るサーバの構成を示すブロック図である。
 <実施の形態1>
 <構成>
 図1は、本発明の実施の形態1に係る地図情報処理装置の構成を示すブロック図である。図1の地図情報処理装置は、情報保存部1と、処理部2とを備えている。
 情報保存部1は、例えばハードディスクドライブなどの記憶装置から構成されている。情報保存部(情報取得部)1は、地図情報処理装置の外部から、地図情報データベース1a(以下「地図情報DB1a」と記す)と、イベント情報データベース1b(以下「イベント情報DB1bと記す」)とを取得し、これらの情報を記憶している。
 地図情報DB1aは、地図情報と、施設の種類、住所または電話番号から地図上の当該施設を検索するための施設情報と、地図上の二つの地点の間の経路を探索するための経路情報とを含んでいる。
 イベント情報DB1bは、イベントに関する後述する太陽時の時刻及び位置の情報を含んでいる。当該イベントには、例えば日の出、南中、日の入りまたは日食などの太陽の動きに応じて実施されるイベント(例えば礼拝や初日の出)が適用される。
 図2は、本実施の形態1に係るイベント情報DB1bを示す図である。図2のイベント情報DB1bは、イベントの名称を示すイベント名と、イベントに関する位置(例えば緯度及び経度)と、イベントに関する月日と、太陽の動きを特定可能な太陽仰角または方位角と、イベントに関する太陽時の時刻とを含んでいる。
 ここで、イベントに関する太陽時の時刻とは、太陽の動きに応じた時刻であって、イベントに関する位置での、日々の太陽仰角または方位角と対応付けられた時刻である。図2の例では、1月1日の位置P1において、日の出に応じたイベントE1が実施される時刻T11A、すなわち太陽の仰角が0°(日の出)になる時刻T11Aや、1月1日の位置P1において、南中に応じたイベントE2が実施される時刻T21A、すなわち太陽の方位角が真南になる時刻T21Aなどが、太陽時の時刻として適用されている。なお、時刻T11Aや時刻T21Aには、位置P1の標準時が適用され、時刻T12Aや時刻T22Aには、位置P2の標準時が適用される。
 通常、日の出の時刻などの太陽の動きに応じた時刻は日ごとに異なることから、イベントに関する太陽時の時刻は、月日によって異なるものが規定されている。なお、日の出の仰角は、実際には0°ではないこともあるが、ここでは説明を簡単にするため日の出の仰角を0°に近似している。また、図2のイベント情報DB1bには、太陽の仰角及び方位角のいずれか一方の値しか設定されていないが、もちろん両方の値が設定されてもよい。
 図1に戻って処理部2について説明する。図示しないCPU(Central Processing Unit)が、地図情報処理装置の図示しないメモリなどに記憶されたプログラムを実行することにより、処理部2において様々な機能が実現されている。その機能の一つとして、処理部2は、地図情報DB1a(地図情報)と、イベント情報DB1b(太陽時の時刻及び位置の情報)とに基づいて、イベントについての検索処理を行う機能を有している。
 <動作>
 図3は、本実施の形態1に係る地図情報処理装置の処理を示すフローチャートである。以下、図3を用いて地図情報処理装置の処理について説明する。
 ステップS100にて、情報保存部1は、地図情報DB1a(地図情報)と、イベント情報DB1b(イベントに関する太陽時の時刻及び位置)とを記憶(取得)する。
 ステップS200にて、処理部2は、当該地図情報DB1a(地図情報)と、当該イベント情報DB1b(イベントに関する太陽時の時刻及び位置)とに基づいて、イベントについての検索処理を行う。
 <効果>
 以上のような本実施の形態1に係る地図情報処理装置によれば、イベントに関する位置での、日々の太陽仰角または方位角と対応付けられた時刻(太陽時の時刻)を用いて、イベントについての検索処理を行う。これにより、例えば日の出、南中、日の入りまたは日食などの太陽の動きに応じて実施されるイベント、換言すれば太陽仰角または方位角に応じて実施されるイベントについて適切な時刻を用いることができる。したがって、当該イベントについて適切な検索処理を行うことができる。
 なお、以上では、地図情報DB1a(地図情報)とイベント情報DB1b(イベントに関する太陽時の時刻及び位置の情報)とを取得する情報取得部は、情報保存部1であるものとして説明した。しかし情報取得部は、情報保存部1に限ったものではなく、例えば、インターネットから無線通信などを介してこれら情報を取得する通信部が適用されてもよいし、使用者からこれら情報を受け付ける入力部が適用されてもよいし、アルゴリズムによる算出結果としてこれら情報を取得するCPUなどの処理部(例えば上述の処理部2)が適用されてもよい。
 <実施の形態2>
 <構成>
 本発明の実施の形態2では、実施の形態1で説明した地図情報処理装置が、車両(移動体)に搭載可能なナビゲーション装置に適用されている。図4は、当該ナビゲーション装置の構成を示すブロック図である。以下、ナビゲーション装置が搭載された車両を「自車」と記載して説明する。また、本実施の形態2に係るナビゲーション装置において、以上で説明した構成要素と同一または類似するものについては同じ参照符号を付し、以下においては異なる点を中心に説明する。
 図4のナビゲーション装置は、情報保存部1と、処理部2と、入力部3と、通信部4と、位置検出部5と、時刻検出部6と、表示部7とを備えている。情報保存部1、入力部3、通信部4、位置検出部5、時刻検出部6及び表示部7は、処理部2によって統括的に制御される。
 情報保存部1は、実施の形態1と同様に、地図情報DB1a(地図情報)と、イベント情報DB1b(イベントに関する太陽時の時刻及び位置の情報)とを記憶している。
 図5は、本実施の形態2に係るイベント情報DB1bを示す図である。図5のイベント情報DB1bは、イベントに関する太陽時の時刻として、イベントの開始時刻及び終了時刻を含んでいる点が、図2のイベント情報DB1bと異なっている。
 図4に戻って入力部3は、使用者からの操作を受け付け、当該操作に応じて処理部2に指示信号を与える。入力部3には、例えば、使用者の音声を認識して当該音声に基づく指示信号を出力する音声認識装置、使用者の手動操作により指示信号を出力するボタン及びタッチパネル、その他の適切な入力装置の少なくともいずれかが適用される。
 通信部4は、例えば、インターネットから無線通信などを介して各種情報を自車外部から取得する。
 位置検出部(位置取得部)5は、地図上における自車の現在位置(例えば緯度・経度)を検出(取得)する。位置検出部5は、例えばGPS(Global Positioning System)衛星からのGPS信号を受信するGPS受信機、自車の速度を検出する車速センサ、自車の加速度を検出する加速度センサ、及び、自車のヨー角などの角速度を検出する角速度センサの少なくともいずれか1つから構成される。
 時刻検出部(時刻取得部)6は、現在時刻を検出(取得)する。現在時刻には、太陽時の時刻と同じ標準時が適用される。時刻検出部6は、例えば、GPS信号または標準電波を受信し、それらに基づいて現在時刻を検出(取得)してもよいし、使用者から入力された時刻を現在時刻として受け付けてもよい。
 表示部7は、例えばタッチパネルに設けられた液晶ディスプレイなどから構成され、処理部2から出力された各種情報を表示する。
 次に、処理部2の機能について説明する。図示しないCPUによりプログラムが実行されることにより、経路探索部2a、判定部2b、決定部2c、案内処理部2d、及び、情報更新部2eの機能が、処理部2に実現されている。
 経路探索部2aは、地図情報DB1a(地図情報)に基づいて、位置検出部5で検出された現在位置と、イベントに関する位置との間の経路を探索する。
 判定部2bは、時刻検出部6で検出された現在時刻とイベントに関する太陽時の時刻との差が、経路探索部2aにより探索された経路上を自車が現在位置からイベントに関する位置まで移動するのに要する移動時間以上であるか否かを判定する。
 決定部2cは、現在時刻とイベントに関する太陽時の時刻との差が移動時間以上であると判定部2bにて判定された経路を決定する。また、決定部2cは、現在時刻とイベントに関する太陽時の時刻との差が移動時間以上であると判定部2bにて判定されたイベントに関する位置を決定する。
 案内処理部2dは、現在位置などの出発地からイベントに関する位置(目的地)まで、決定部2cなどにより決定された経路に従って、表示部7を用いた案内を行う。
 情報更新部2eは、入力部3から入力された情報、または、通信部4で受信した情報に基づいて、情報保存部1に保存された情報(地図情報DB1aまたはイベント情報DB1bなど)を更新する。
 <動作>
 図6は、本実施の形態2に係るナビゲーション装置の全体処理を示すフローチャートである。以下、図6を用いてナビゲーション装置の全体処理について説明する。
 まず、ステップS1にて、処理部2は、イベント経路探索処理を行うための操作を入力部3にて受け付けたか否かを判定する。ここで、イベント経路探索処理とは、イベントに関する位置に、自車が太陽時の時刻までに到着可能な経路(以下「イベント経路」と記す)を探索する処理である。当該操作を受け付けたと判定した場合にはステップS2に進み、そうでない場合にはステップS11に進む。
 ステップS2にて、イベント経路を探索するイベント経路探索処理が行われる。このイベント経路探索処理の詳細については、後で説明する。
 ステップS3にて、処理部2は、イベント経路探索処理にて探索されたイベント経路があるか否かを判定する。探索されたイベント経路があると判定した場合にはステップS4に進み、そうでない場合にはステップS11に進む。
 ステップS4にて、処理部2は、イベント経路探索処理にて探索されたイベント経路を表示部7に表示させる。
 ステップS5にて、案内処理部2dは、表示されたイベント経路のうち、入力部3にて使用者により選択されたイベント経路に従って案内を行う。その後、図6に示す処理を終了する。
 ステップS1またはS3からステップS11に進んだ場合、ステップS11にて、処理部2は、周辺イベント位置検索処理を行うための操作を入力部3にて受け付けたか否かを判定する。ここで、周辺イベント位置検索処理とは、現在位置周辺のイベントに関する位置のうち、自車が太陽時の時刻までに到着可能な位置(以下「周辺イベント位置」と記す)を検索する処理である。当該操作を受け付けたと判定した場合にはステップS12に進み、そうでない場合には図6に示す処理を終了する。
 ステップS12にて、周辺イベント位置を検索する周辺イベント位置検索処理が行われる。この周辺イベント位置検索処理の詳細については、後で説明する。
 ステップS13にて、処理部2は、周辺イベント位置検索処理にて検索された周辺イベント位置があるか否かを判定する。検索された周辺イベント位置があると判定した場合にはステップS14に進み、そうでない場合にはステップS19に進む。
 ステップS14にて、処理部2は、周辺イベント位置検索処理にて検索された周辺イベント位置と、現在位置から周辺イベント位置までの経路とを表示部7に表示させる。
 ステップS15にて、案内処理部2dは、表示された経路のうち、入力部3にて使用者により選択された経路に従って案内を行う。その後、図6に示す処理を終了する。
 ステップS13からステップS19に進んだ場合、ステップS19にて、処理部2は、イベントに関する位置のいずれにも間に合わない旨を表示部7に表示(通知)させる。その後、図6に示す処理を終了する。
 <イベント経路探索処理(ステップS2)>
 図7は、本実施の形態2に係るナビゲーション装置が行うイベント経路探索処理(図6のステップS2)を示すフローチャートである。以下、図7を用いてイベント経路探索処理について説明する。
 まず、ステップS21にて、入力部3は、イベント名、及び、イベントに関する位置を、使用者から受け付ける。
 ステップS22にて、判定部2bは、ステップS21で受け付けたイベント名及びイベントに関する位置と本日の月日とに対応する太陽時の時刻を、イベント情報DB1b(図5)から取得する。ここでは、判定部2bは、当該太陽時の時刻として図5の開始時刻を取得する場合を例にして説明する。
 ステップS23にて、位置検出部5は自車の現在位置を検出し、時刻検出部6は現在時刻を検出する。
 ステップS24にて、経路探索部2aは、ステップS23で検出された現在位置と、ステップS21で受け付けたイベントに関する位置とに基づいて、それらの位置の間の経路を複数探索する。
 ステップS25にて、判定部2bは、ステップS24で探索された経路上を自車が現在位置からイベントに関する位置まで移動するのに要する移動時間を算出する。例えば、判定部2bは、経路の長さを、予め定められた速度で除算することによって、移動時間を算出する。なお、予め定められた速度には、入力部3にて使用者から受け付けた速度が用いられてもよいし、自車の図示しないECU(Electronic Control Unit)などで算出された平均速度が用いられもよい。判定部2bは、この移動時間の算出を、ステップS24で探索された経路のそれぞれについて行う。
 ステップS26にて、判定部2bは、ステップS23で検出された現在時刻と、ステップS22で取得された開始時刻との差が、ステップS25で算出された移動時間以上であるか否かを判定する。判定部2bは、この判定を、ステップS24で探索された経路のそれぞれについて行う。一つ以上の経路について、当該差が移動時間以上であると判定した場合にはステップS27に進み、そうでない場合には図7に示す処理を終了する。
 ステップS27にて、決定部2cは、現在時刻と、開始時刻との差が移動時間以上であると判定された経路を、イベント経路として決定する。その後、図7に示す処理を終了する。
 図8(a)及び図8(b)は、図7のステップS26及びS27の処理を説明するための図である。具体的には、図8(a)及び図8(b)は、自車が、ステップS24で探索された二つの経路を移動した場合の、時間の比較を示している。図8(a)及び図8(b)において、現在位置同士は同じであり、イベントに関する位置同士は同じであり、それに伴って開始時刻同士も同じであるものとする。一方、図8(a)及び図8(b)において、経路同士は異なり、それに伴って移動時間同士も異なっているものとする。
 図8(a)では、時刻同士の差と移動時間とが比較される経路に、高速道路、または、近道となる経路などが含まれたことによって、移動時間が短くなっている。その結果として、現在時刻と開始時刻との差が移動時間以上となり、到着予定時刻(イベントに関する位置に到着する予定の時刻)が開始時刻よりも早くなっている。この場合、ステップS27にて、決定部2cは、時刻同士の差と移動時間とが比較された経路をイベント経路として決定する。
 一方、図8(b)では、時刻同士の差と移動時間とが比較される経路に、遠回りとなる経路などが含まれたことによって、移動時間が長くなっている。その結果として、現在時刻と開始時刻との差が移動時間よりも小さくなり、到着予定時刻が開始時刻よりも遅くなっている。この場合、ステップS27を経ずに図7の処理を終了する。
 <周辺イベント位置検索処理(ステップS12)>
 図9は、本実施の形態2に係るナビゲーション装置が行う周辺イベント位置検索処理(図6のステップS12)を示すフローチャートである。以下、図9を用いて周辺イベント位置検索処理について説明する。
 まず、ステップS31にて、入力部3は、イベント名、及び、現在位置の周辺範囲を、使用者から受け付ける。
 ステップS32にて、判定部2bは、ステップS21で受け付けた周辺範囲内に存在するイベントに関する位置に関して、ステップS21で受け付けたイベント名と、本日の月日にと対応する太陽時の時刻を、イベント情報DB1b(図5)から取得する。ここでは、上述と同様に、判定部2bは、当該太陽時の時刻として図5の開始時刻を取得する場合を例にして説明する。なお、ステップS31にて現在位置の周辺範囲を受け付けていない場合には、現在位置から定められた距離(例えば5km)内の範囲を周辺範囲として用いてもよい。
 以下、周辺範囲内のイベントに関する位置が複数存在し、その結果として、このステップS32にて複数の開始時刻が取得された場合を例にして説明する。
 ステップS33にて、位置検出部5は自車の現在位置を検出し、時刻検出部6は現在時刻を検出する。
 ステップS34にて、経路探索部2aは、ステップS33で検出された現在位置と、周辺範囲内のイベントに関する位置とに基づいて、それらの位置の間の経路を複数探索する。経路探索部2aは、この探索を、周辺範囲内のイベントに関する位置のそれぞれについて行う。
 ステップS35にてステップS25と同様に、判定部2bは、ステップS34で探索された経路上を自車が現在位置から周辺範囲内のイベントに関する位置まで移動するのに要する移動時間を算出する。ここでは、判定部2bは、この移動時間の算出を、ステップS34で探索された経路のそれぞれについて行い、最も短い移動時間と、その経路とを取得する。そして、判定部2bは、このような移動時間及び経路の取得を、周辺範囲内のイベントに関する位置のそれぞれについて行う。
 ステップS36にて、判定部2bは、ステップS33で検出された現在時刻と、ステップS32で取得された開始時刻との差が、ステップS35で取得された移動時間以上であるか否かを判定する。判定部2bは、この判定を、周辺範囲内のイベントに関する位置のそれぞれについて行う。一つ以上の位置について、当該差が移動時間以上であると判定した場合にはステップS37に進み、そうでない場合には図9に示す処理を終了する。
 ステップS37にて、決定部2cは、現在時刻と、開始時刻との差が移動時間以上であると判定されたイベントに関する位置を、周辺イベント位置として決定する。その後、図9に示す処理を終了する。
 図10(a)及び図10(b)は、図9のステップS36及びS37の処理を説明するための図である。具体的には、図10(a)及び図10(b)は、自車が、ステップS34で探索された二つの経路を移動した場合の、時間の比較を示している。図10(a)及び図10(b)において、現在位置同士は同じであるものとする。一方、イベントに関する位置同士は異なり、それに伴って開始時刻同士、経路同士、及び、移動時間同士も異なっているものとする。
 なお、図10(a)及び図10(b)の現在位置は位置P0、図10(a)のイベントに関する位置は位置P1、図10(b)のイベントに関する位置は位置P2であり、それらのイベントは日の出(太陽仰角が0°)に応じて実施されるものとする。また、位置P0と位置P1との間の経路は、位置P0と位置P2との間の経路よりも長いものとする。
 図10(a)では、位置P0と位置P1との間の経路の長さが長いことから、移動時間が長くなっている。しかし、位置P1でのイベントの開始時刻が遅いので、現在時刻と開始時刻との差が移動時間以上となり、到着予定時刻が開始時刻よりも早くなっている。この場合、ステップS37にて、決定部2cは、時刻同士の差と移動時間とが比較された位置P1を周辺イベント位置として決定する。
 一方、図10(b)では、位置P0と位置P2との間の経路の長さが短いことから、移動時間が短くなっている。しかし、位置P2でのイベントの開始時刻が早いので、現在時刻と開始時刻との差が移動時間よりも小さくなり、到着予定時刻が開始時刻よりも遅くなっている。この場合、ステップS37を経ずに図9の処理を終了する。
 図11は、図10(a)及び図10(b)で説明した位置P0,P1,P2の位置関係を示す図である。
 なお、図11には、経路の形状を考慮せずに、自車が日の出よりも少し前の時刻において位置P0を出発して、日の出までに到達できる最大の範囲Rが示されている。通常、日の出の時刻は、東側よりも西側のほうが遅い。このため、範囲Rの最も東側の位置PEと位置P0との間の距離R1は、範囲Rの最も南側の位置PSと位置P0との間の距離R2、または、範囲Rの最も北側の位置PNと位置P0との間の距離R2よりも短くなる。また、範囲Rの最も西側の位置PWと位置P0との間の距離R3は、範囲Rの最も南側の位置PSと位置P0との間の距離R2、または、範囲Rの最も北側の位置PNと位置P0との間の距離R2よりも長くなる。
 このため、位置P0に近く、かつその東側の位置P2で、自車が日の出のイベントに間に合わない場合であっても、位置P0から遠く、かつその西側の位置P1では、自車が日の出のイベントに間に合うことが可能であり、決定部2cは、そのような位置P1を周辺イベント位置として決定することができる。
 <効果>
 以上のような本実施の形態2に係るナビゲーション装置によれば、現在時刻と、開始時刻(イベントに関する太陽時の時刻)との差が、移動時間以上である経路を決定する。したがって、イベントに関する太陽時の時刻までに自車が到着可能な経路を探索することができる。
 また、本実施の形態2によれば、現在時刻と、開始時刻(イベントに関する太陽時の時刻)との差が、移動時間以上であるイベントに関する位置を決定する。したがって、イベントに関する太陽時の時刻までに自車が到着可能なイベントに関する位置を検索することができる。
 なお、以上の説明では、イベントに関する太陽時の時刻は、月日によって異なるものが規定されており(図5)、判定部2bは、本日の月日に対応するイベントに関する太陽時の時刻を取得し(ステップS22またはS32)、当該時刻を用いて上記判定を行った。しかしこれに限ったものではなく、イベントに関する太陽時の時刻は、曜日によって異なるものが規定されてもよい。そしてこの場合に、判定部2bは、本日の曜日に対応するイベントに関する太陽時の時刻を用いて上記判定を行ってもよい。
 また、以上では、判定部2bは、イベントに関する太陽時の時刻としてイベントの開始時刻を取得して(ステップS22またはS32)、イベントの開始時刻に間に合うような経路などを探索する場合について説明した。しかしこれに限ったものではなく、判定部2bは、イベントに関する太陽時の時刻としてイベントの終了時刻を取得して、イベントの終了時刻に間に合うような経路などを探索してもよい。また、ステップS22またはS32にて、判定部2bは、イベント名(イベントの種類)に応じて、イベントの開始時刻及び終了時刻のいずれかを選択的に取得してもよい。
 <実施の形態3>
 <構成>
 本発明の実施の形態3に係るナビゲーション装置のブロック構成は、実施の形態2のブロック構成と同じであることから、その図示については省略する。そして、本実施の形態3に係るナビゲーション装置において、以上で説明した構成要素と同一または類似するものについては同じ参照符号を付し、以下においては異なる点を中心に説明する。
 図12は、本実施の形態3に係るイベント情報DB1bを示す図である。図12のイベント情報DB1bは、図5のイベント情報DB1bに、リードタイム(待ち時間)が追加されている。本実施の形態3では、判定部2bは、このリードタイムを加味して上述の判定を行う。
 <動作>
 本実施の形態3に係るナビゲーション装置の処理のうち、イベント経路探索処理及び周辺イベント位置検索処理が、実施の形態2と異なる。
 <イベント経路探索処理>
 図13は、本実施の形態3に係るナビゲーション装置が行うイベント経路探索処理を示すフローチャートである。図13に示すフローチャートは、実施の形態2で説明した図7のフローチャートにおいて、ステップS21の前にステップS41,S42及びS43を追加し、ステップS26をステップS44に変更したものと同じであることから、ここではステップS41,S42,S43及びS44について主に説明する。
 まず、ステップS41にて、処理部2は、リードタイムの入力を行うための操作を入力部3にて受け付けたか否かを判定する。当該操作を受け付けたと判定した場合にはステップS42に進み、そうでない場合にはステップS43に進む。
 ステップS41からステップS42に進んだ場合、ステップS42にて、入力部3は、リードタイムを使用者から受け付け、当該受け付けたリードタイムを、以降の処理に用いるリードタイムとして設定する。つまり、本実施の形態3では、リードタイムは、使用者からの入力によって設定可能となっている。なお、入力部3は、GUI(Graphical User Interface)として設けられることにより、予め定められた時間(例えば30分または60分など)のうち使用者によって選択されたものを、リードタイムとして設定してもよいし、使用者によって入力された時間(例えば時、分)を、リードタイムとして設定してもよい。その後、ステップS21に進む。
 ステップS41からステップS43に進んだ場合、ステップS43にて、入力部3は、予め定められたリードタイム(既知のリードタイム)を、以降の処理に用いるリードタイムとして設定する。その後、ステップS21に進む。
 ステップS21からステップS25まで、実施の形態2のそれらと同様の処理が行われた後、ステップS44に進む。
 ステップS44にて、判定部2bは、ステップS42またはS43で設定されたリードタイムを加味して、実施の形態2のステップS26と同様の判定を行う。本実施の形態3では、判定部2bは、現在時刻(イベントに関する太陽時の時刻)の代わりに、当該時刻からリードタイムだけ早めた時刻を用いてステップS26の判定を行う。すなわち、判定部2bは、ステップS23で検出された現在時刻と、ステップS22で取得された開始時刻からリードタイムだけ早めた時刻(以下「遡及時刻」と記す)との差が、ステップS25で算出された移動時間以上であるか否かを判定する。判定部2bは、この判定を、ステップS24で探索された経路のそれぞれについて行う。一つ以上の経路について、当該差が移動時間以上であると判定した場合にはステップS27に進み、そうでない場合には図13に示す処理を終了する。
 ステップS27にて、実施の形態2のそれと同様の処理が行われた後、図13に示す処理を終了する。
 図14(a)及び図14(b)は、図13のステップS44及びS27の処理を説明するための図である。具体的には、図14(a)及び図14(b)は、自車が、ステップS24で探索された二つの経路を移動した場合の、時間の比較を示している。図14(a)及び図14(b)において、現在位置同士は同じであり、イベントに関する位置同士は同じであり、それに伴って開始時刻(イベントに関する太陽時の時刻)同士も同じであるものとする。また、リードタイム同士も同じであるものとする。一方、図14(a)及び図14(b)において、経路同士は異なり、それに伴って移動時間同士も異なっているものとする。
 図14(a)では、現在時刻と遡及時刻との差が移動時間以上であり、到着予定時刻が遡及時刻も早い。この場合、ステップS27にて、決定部2cは、時刻同士の差と移動時間とが比較された経路をイベント経路として決定する。
 一方、図14(b)では、現在時刻と遡及時刻との差が移動時間よりも小さく、到着予定時刻が開始時刻よりも遅い。この場合、ステップS27を経ずに図7の処理を終了する。
 <周辺イベント位置検索処理>
 図15は、本実施の形態3に係るナビゲーション装置が行う周辺イベント位置検索処理を示すフローチャートである。図15に示すフローチャートは、実施の形態2で説明した図9のフローチャートにおいて、ステップS31の前にステップS51,S52及びS53を追加し、ステップS36をステップS54に変更したものと同じである。そして、ステップS51,S52及びS53は、図13のステップS41,S42及びS43と同様である。そこで、以下においてはS54について主に説明する。
 ステップS51,S52及びS53にて、上述のステップS41,S42及びS43と同じ動作が行われる。
 その後、ステップS31からステップS35まで、実施の形態2のそれらと同様の処理が行われる。その後、ステップS54に進む。
 ステップS54にて、判定部2bは、ステップS52またはS53で設定されたリードタイムを加味して、実施の形態2のステップS36と同様の判定を行う。本実施の形態3では、判定部2bは、現在時刻(イベントに関する太陽時の時刻)の代わりに、当該時刻からリードタイムだけ早めた時刻を用いてステップS36の判定を行う。すなわち、判定部2bは、ステップS33で検出された現在時刻と、ステップS32で取得された開始時刻からリードタイムだけ早めた時刻との差が、ステップS35で算出された移動時間以上であるか否かを判定する。判定部2bは、この判定を、周辺範囲内のイベントに関する位置のそれぞれについて行う。一つ以上の位置について、当該差が移動時間以上であると判定した場合にはステップS37に進み、そうでない場合には図15に示す処理を終了する。
 ステップS37にて、実施の形態2のそれと同様の処理が行われた後、図15に示す処理を終了する。
 <効果>
 以上のような本実施の形態3に係るナビゲーション装置によれば、リードタイムを加味して判定する。これにより、例えば、開始時刻までに何らかの手続きが必要なイベントに対しては、リードタイムをその手続きに要する時間に割り当てることができる。また例えば、終了時刻までに少しでも参加すればよいイベントに対しては、リードタイムをその参加時間に割り当てることができる。
 また、本実施の形態3によれば、リードタイムは、使用者からの入力によって設定可能となっている。これにより、使用者は自身が望む時間をリードタイムとして設定することができる。
 なお、イベント経路探索処理(図13)において、ステップS44にてイベント経路が探索できなかった場合には、ステップS42に戻ってリードタイムの設定を変更できるように構成されてもよい。同様に、周辺イベント位置検索処理(図15)において、ステップS54にて周辺イベント位置が検索できなかった場合には、ステップS52に戻ってリードタイムの設定を変更できるように構成されてもよい。
 <実施の形態4>
 <構成>
 図16は、本発明の実施の形態4に係るナビゲーション装置の構成を示すブロック図である。以下、本実施の形態4に係るナビゲーション装置において、以上で説明した構成要素と同一または類似するものについては同じ参照符号を付し、以下においては異なる点を中心に説明する。
 図16のナビゲーション装置は、実施の形態2で説明した図4のブロック構成において、時刻検出部6を取り除き、判定部2b及び決定部2cを出発時刻算出部2fに代えたものである。
 処理部2が備える出発時刻算出部2fは、使用者から入力された月日または曜日に対応するイベントに関する太陽時の時刻から、上述の移動時間だけ早めた時刻を、出発すべき時刻(以下「出発予定時刻」と記す)として算出する。
 <動作>
 図17は、本実施の形態4に係るナビゲーション装置の処理を示すフローチャートである。
 まず、ステップS61にて、入力部3は、イベント名、イベントに関する位置、及び、月日または曜日を、使用者から受け付ける。
 ステップS62にて、出発時刻算出部2fは、ステップS61で受け付けたイベント名、イベントに関する位置、及び、月日または曜日に対応する開始時刻(イベントに関する太陽時の時刻)を、イベント情報DB1b(図5)から取得する。
 ステップS63にて、位置検出部5は自車の現在位置を検出する。
 ステップS64にて、経路探索部2aは、ステップS63で検出された現在位置と、ステップS61で受け付けたイベントに関する位置とに基づいて、それらの位置の間の経路を複数探索する。
 ステップS65にて、出発時刻算出部2fは、ステップS64で探索された経路上を自車が現在位置からイベントに関する位置まで移動するのに要する移動時間を算出する。ここでは、出発時刻算出部2fは、この移動時間の算出を、ステップS64で探索された経路のそれぞれについて行い、最も短い移動時間と、その経路とを取得する。
 ステップS66にて、出発時刻算出部2fは、図18に示すように、ステップS62で取得した開始時刻(イベントに関する太陽時の時刻)から、ステップS65で取得された移動時間だけ早めた時刻を、出発予定時刻として算出する。
 ステップS67にて、処理部2は、ステップS66で算出された出発予定時刻を表示部7に表示させる。その後、図17に示す処理を終了する。
 <効果>
 以上のような本実施の形態4に係るナビゲーション装置によれば、使用者から入力された月日または曜日に対応する開始時刻(イベントに関する太陽時の時刻)から、上述の移動時間だけ早めた時刻を、出発すべき時刻として算出する。これにより、例えば、出発すべき時刻が表示されるので、使用者は、本日のイベントか否かに関わらず、当該イベントに間に合う出発予定時刻を事前に知ることができる。
 <実施の形態5>
 <構成>
 本発明の実施の形態5に係るナビゲーション装置のブロック構成は、実施の形態4のブロック構成と同じであることから、その図示については省略する。そして、本実施の形態5に係るナビゲーション装置において、以上で説明した構成要素と同一または類似するものについては同じ参照符号を付し、以下においては異なる点を中心に説明する。
 本実施の形態5に係るイベント情報DB1bは、実施の形態3に係るイベント情報DB1b(図12)と同様である。そして、本実施の形態5に係る出発時刻算出部2fは、実施の形態3に係る判定部2bと同様に、リードタイムを加味して上述の算出を行う。
 <動作>
 図19は、本実施の形態5に係るナビゲーション装置の処理を示すフローチャートである。図19に示すフローチャートは、実施の形態4で説明した図17のフローチャートにおいて、ステップS71,S72及びS73を追加し、ステップS66をステップS74に変更したものと同じである。そして、ステップS71,S72及びS73は、実施の形態3の図13のステップS41,S42及びS43と同様である。そこで、以下においてはS74について主に説明する。
 ステップS71,S72及びS73にて、実施の形態3のステップS41,S42及びS43と同じ動作が行われる。
 その後、ステップS61からステップS65まで、実施の形態4のそれらと同様の処理が行われる。その後、ステップS74に進む。
 ステップS74にて、出発時刻算出部2fは、ステップS72またはS73で設定されたリードタイムを加味して、ステップS66の算出を行う。本実施の形態5では、出発時刻算出部2fは、ステップS62で取得した開始時刻(イベントに関する太陽時の時刻)から、ステップS65で取得された移動時間、及び、ステップS72またはS73で設定されたリードタイムだけ早めた時刻を、出発予定時刻として算出する。
 ステップS67にて、処理部2は、ステップS74で算出された出発予定時刻を表示部7に表示させる。その後、図19に示す処理を終了する。
 <効果>
 以上のような本実施の形態5に係るナビゲーション装置によれば、リードタイムを加味して算出する。これにより、例えば、開始時刻までに何らかの手続きが必要なイベントに対しては、リードタイムをその手続きに要する時間に割り当てることができ、終了時刻までに少しでも参加すればよいイベントに対しては、リードタイムをその参加時間に割り当てることができる。
 また、本実施の形態5によれば、リードタイムは、使用者からの入力によって設定可能となっている。これにより、使用者は自身が望む時間をリードタイムとして設定することができる。
 <変形例>
 本変形例では、本発明に係る地図情報処理装置が、クラウドコンピューティングのサービスなどを提供可能なサーバに適用されている。図20は、本変形例に係るサーバの構成を示すブロック図である。なお、本変形例に係るサーバにおいて、以上で説明した構成要素と同一または類似するものについては同じ参照符号を付し、以下においては主要な点を中心に説明する。
 図20のサーバは、情報保存部1と、処理部2と、通信部4とを備えている。
 情報保存部1は、地図情報DB1aと、イベント情報DB1bとを記憶している。
 通信部(情報取得部)4は、情報保存部1に記憶される地図情報DB1a及びイベント情報DB1bを、サーバ外部から無線通信などを介して受信(取得する)。また、通信部(位置検出部)4は、着目すべき車両(移動体)の現在位置を、サーバ外部から無線通信などを介して受信(取得)する。さらに、通信部(位置検出部)4は、現在時刻を検出(取得)する。
 図示しないCPUによりプログラムが実行されることにより、経路探索部2a、判定部2b、決定部2c、及び、情報更新部2eの機能が、処理部2に実現されている。
 経路探索部2aは、地図情報DB1a(地図情報)に基づいて、通信部4で受信された現在位置と、イベントに関する位置との間の経路を探索する。
 判定部2bは、通信部4で受信された現在時刻と、イベントに関する太陽時の時刻との差が、経路探索部2aにより探索された経路上を自車が現在位置からイベントに関する位置まで移動するのに要する移動時間以上であるか否かを判定する。
 決定部2cは、現在時刻とイベントに関する太陽時の時刻との差が移動時間以上であると判定部2bにて判定された経路を決定する。また、決定部2cは、現在時刻とイベントに関する太陽時の時刻との差が移動時間以上であると判定部2bにて判定された位置を決定する。
 情報更新部2eは、通信部4で受信した情報に基づいて、情報保存部1に保存された情報(地図情報DB1aまたはイベント情報DB1bなど)を更新する。
 以上のような本変形例に係るサーバによっても、実施の形態2で説明したナビゲーション装置と同様の効果を得ることができる。
 <その他の変形例>
 以上で説明した地図情報処理装置は、車両に搭載可能な、カーナビゲーション装置、PND(Portable Navigation Device)、及び、携帯端末(例えば携帯電話、スマートフォン、及びタブレットなど)、並びにサーバなどを適宜に組み合わせてシステムとして構築される地図情報処理装置にも適用することができる。この場合、以上で説明した地図情報処理装置またはナビゲーション装置の各機能あるいは各構成要素は、前記システムを構築する各機器に分散して配置される。
 また、以上では、移動体が車両である場合について説明したが、これに限ったものではなく、移動体は、車両以外の移動手段(例えば飛行機または列車など)であってもよい。
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。
 本発明は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、本発明がそれに限定されるものではない。例示されていない無数の変形例が、本発明の範囲から外れることなく想定され得るものと解される。
 1 情報保存部、1a 地図情報DB、1b イベント情報DB、2 処理部、2a 経路探索部、2b 判定部、2c 決定部、2f 出発時刻算出部、4 通信部、5 位置検出部、6 時刻検出部。

Claims (11)

  1.  イベントに関する太陽時の時刻及び位置の情報と、地図情報とを取得する情報取得部を備え、
     前記太陽時の時刻は、前記位置での、日々の太陽仰角または方位角に対応付けられた時刻であり、
     前記地図情報と、前記太陽時の時刻及び位置の情報とに基づいて、前記イベントについての検索処理を行う処理部
    をさらに備える、地図情報処理装置。
  2.  請求項1に記載の地図情報処理装置であって、
     移動体の現在位置を取得する位置取得部と、
     現在時刻を取得する時刻取得部と
    をさらに備え、
     前記処理部は、
     前記地図情報に基づいて、前記現在位置と前記イベントに関する前記位置との間の経路を探索する経路探索部と、
     前記現在時刻と、前記イベントに関する前記太陽時の時刻との差が、前記経路探索部により探索された前記経路上を前記移動体が移動するのに要する移動時間以上であるか否かを判定する判定部と
    を備える、地図情報処理装置。
  3.  請求項2に記載の地図情報処理装置であって、
     前記処理部は、
     前記差が前記移動時間以上である前記経路を決定する決定部
    をさらに備える、地図情報処理装置。
  4.  請求項2に記載の地図情報処理装置であって、
     前記処理部は、
     前記差が前記移動時間以上である前記位置を決定する決定部
    をさらに備える、地図情報処理装置。
  5.  請求項2に記載の地図情報処理装置であって、
     前記判定部は、リードタイムを加味して判定する、地図情報処理装置。
  6.  請求項5に記載の地図情報処理装置であって、
     前記リードタイムは、使用者からの入力によって設定可能な、地図情報処理装置。
  7.  請求項2に記載の地図情報処理装置であって、
     前記イベントに関する前記太陽時の時刻は、月日または曜日によって異なるものが規定されており、
     前記判定部は、
     本日の月日または曜日に対応する前記イベントに関する前記太陽時の時刻を用いて前記判定を行う、地図情報処理装置。
  8.  請求項1に記載の地図情報処理装置であって、
     前記イベントに関する前記太陽時の時刻は、月日または曜日によって異なるものが規定されており、
     移動体の現在位置を取得する位置取得部
    をさらに備え、
     前記処理部は、
     前記地図情報に基づいて、前記現在位置と前記イベントに関する前記位置との間の経路を探索する経路探索部と、
     使用者から入力された月日または曜日に対応する前記イベントに関する前記太陽時の時刻から、前記経路探索部により探索された前記経路上を前記移動体が移動するのに要する移動時間だけ早めた時刻を、出発すべき時刻として算出する出発時刻算出部と
    を備える、地図情報処理装置。
  9.  請求項8に記載の地図情報処理装置であって、
     前記出発時刻算出部は、リードタイムを加味して算出する、地図情報処理装置。
  10.  請求項9に記載の地図情報処理装置であって、
     前記リードタイムは、使用者からの入力によって設定可能な、地図情報処理装置。
  11.  (a)イベントに関する太陽時の時刻及び位置の情報と、地図情報とを取得する工程
    を備え、
     前記太陽時の時刻は、前記位置での、日々の太陽仰角または方位角に対応付けられた時刻であり、
     (b)前記地図情報と、前記太陽時の時刻及び位置の情報とに基づいて、前記イベントについての検索処理を行う工程
    をさらに備える、地図情報処理方法。
PCT/JP2014/055717 2014-03-06 2014-03-06 地図情報処理装置及び地図情報処理方法 WO2015132925A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/055717 WO2015132925A1 (ja) 2014-03-06 2014-03-06 地図情報処理装置及び地図情報処理方法
JP2016506031A JPWO2015132925A1 (ja) 2014-03-06 2014-03-06 地図情報処理装置及び地図情報処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055717 WO2015132925A1 (ja) 2014-03-06 2014-03-06 地図情報処理装置及び地図情報処理方法

Publications (1)

Publication Number Publication Date
WO2015132925A1 true WO2015132925A1 (ja) 2015-09-11

Family

ID=54054761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055717 WO2015132925A1 (ja) 2014-03-06 2014-03-06 地図情報処理装置及び地図情報処理方法

Country Status (2)

Country Link
JP (1) JPWO2015132925A1 (ja)
WO (1) WO2015132925A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200011366A (ko) * 2018-07-24 2020-02-03 에타 쏘시에떼 아노님 마누팍투레 홀로게레 스위세 적어도 하나의 태양시를 코딩 및 송신하기 위한 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862357A (ja) * 1994-08-24 1996-03-08 Casio Comput Co Ltd 礼拝時刻表示装置
JP2002142963A (ja) * 2000-11-07 2002-05-21 Yamamoto Boeki:Kk イスラム礼拝用電子装置
JP2010019582A (ja) * 2008-07-08 2010-01-28 Pioneer Electronic Corp ナビゲーション装置、日没案内方法、及び日没案内プログラム
JP2010122077A (ja) * 2008-11-20 2010-06-03 Alpine Electronics Inc 船舶用ナビゲーション方法および船舶用ナビゲーション装置
JP2010226652A (ja) * 2009-03-25 2010-10-07 Zenrin Co Ltd 画像処理装置、画像処理方法、および、コンピュータプログラム
JP2011158281A (ja) * 2010-01-29 2011-08-18 Pioneer Electronic Corp 経路探索装置、経路探索方法、経路探索プログラムおよび記録媒体
JP2013246120A (ja) * 2012-05-29 2013-12-09 Mitsubishi Electric Corp 地図情報処理装置
JP2014006224A (ja) * 2012-06-27 2014-01-16 Zenrin Datacom Co Ltd 経路案内装置、経路案内方法およびコンピュータプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3948583B2 (ja) * 1998-10-15 2007-07-25 アルパイン株式会社 車載用ナビゲーション装置
JP2003294462A (ja) * 2002-04-01 2003-10-15 Pioneer Electronic Corp 天体検索誘導装置、そのシステム、その方法およびそのプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0862357A (ja) * 1994-08-24 1996-03-08 Casio Comput Co Ltd 礼拝時刻表示装置
JP2002142963A (ja) * 2000-11-07 2002-05-21 Yamamoto Boeki:Kk イスラム礼拝用電子装置
JP2010019582A (ja) * 2008-07-08 2010-01-28 Pioneer Electronic Corp ナビゲーション装置、日没案内方法、及び日没案内プログラム
JP2010122077A (ja) * 2008-11-20 2010-06-03 Alpine Electronics Inc 船舶用ナビゲーション方法および船舶用ナビゲーション装置
JP2010226652A (ja) * 2009-03-25 2010-10-07 Zenrin Co Ltd 画像処理装置、画像処理方法、および、コンピュータプログラム
JP2011158281A (ja) * 2010-01-29 2011-08-18 Pioneer Electronic Corp 経路探索装置、経路探索方法、経路探索プログラムおよび記録媒体
JP2013246120A (ja) * 2012-05-29 2013-12-09 Mitsubishi Electric Corp 地図情報処理装置
JP2014006224A (ja) * 2012-06-27 2014-01-16 Zenrin Datacom Co Ltd 経路案内装置、経路案内方法およびコンピュータプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200011366A (ko) * 2018-07-24 2020-02-03 에타 쏘시에떼 아노님 마누팍투레 홀로게레 스위세 적어도 하나의 태양시를 코딩 및 송신하기 위한 방법
KR102349240B1 (ko) * 2018-07-24 2022-01-07 에타 쏘시에떼 아노님 마누팍투레 홀로게레 스위세 적어도 하나의 태양시를 코딩 및 송신하기 위한 방법
US11899403B2 (en) 2018-07-24 2024-02-13 Eta Sa Manufacture Horlogere Suisse Method for coding and transmitting at least one solar time

Also Published As

Publication number Publication date
JPWO2015132925A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
EP2833098B1 (en) Method and apparatus for detecting and sharing vehicle location
JP2013148419A (ja) 誘導システム、携帯端末装置および車載装置
US10168177B2 (en) Navigation system with destination action mechanism and method of operation thereof
US20150300834A1 (en) Navigation apparatus having lane guidance function and method for performing the same
KR102235068B1 (ko) 경유지를 포함하는 추천 경로를 결정하는 방법
US9945684B2 (en) Frequency-based direction guidance
US9970775B2 (en) Determining alternative route by navigation system
US10760924B2 (en) POI information providing server, POI information providing device, POI information providing system and program
JP2013015360A (ja) ナビゲーションシステム、ナビゲーション装置及び情報提供サーバ
US20190128683A1 (en) Vehicle location system and method
JP2015059769A (ja) 端末及び制御プログラム
WO2016006040A1 (ja) 待ち合わせ支援システム、待ち合わせ支援プログラムおよび待ち合わせ支援方法
JP2012202750A (ja) ナビゲーション装置、ナビゲーションシステム
WO2015132925A1 (ja) 地図情報処理装置及び地図情報処理方法
JP6410596B2 (ja) 情報処理装置、プログラム
JP2015175818A (ja) ナビゲーション装置
JP6374772B2 (ja) 経路探索システム、経路探索方法、コンピュータプログラム
WO2014188610A1 (ja) 地図情報処理装置及び地図情報処理方法
JP2008180642A (ja) 位置検索システム、携帯端末及び位置検索方法
JP6270751B2 (ja) ナビゲーション装置及びナビゲーション方法
JP2014215144A (ja) 地図表示装置、表示制御装置、表示制御方法
EP3018449B1 (en) Method of sharing data between electronic devices
JP2017142191A (ja) 案内経路提示装置および案内経路の設定方法
WO2018185809A1 (ja) 走行支援装置及び走行支援方法
JP6407685B2 (ja) ナビゲーション装置、ナビゲーション方法及びナビゲーションプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885032

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506031

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201605326

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885032

Country of ref document: EP

Kind code of ref document: A1