WO2015129865A1 - 積層構造体、スイッチング素子、磁気デバイス、及び積層構造体の製造方法 - Google Patents

積層構造体、スイッチング素子、磁気デバイス、及び積層構造体の製造方法 Download PDF

Info

Publication number
WO2015129865A1
WO2015129865A1 PCT/JP2015/055885 JP2015055885W WO2015129865A1 WO 2015129865 A1 WO2015129865 A1 WO 2015129865A1 JP 2015055885 W JP2015055885 W JP 2015055885W WO 2015129865 A1 WO2015129865 A1 WO 2015129865A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetic
ferroelectric
multilayer film
switching element
Prior art date
Application number
PCT/JP2015/055885
Other languages
English (en)
French (fr)
Inventor
智康 谷山
泰浩 白幡
亮太 椎名
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to US15/120,697 priority Critical patent/US20170178780A1/en
Priority to CN201580011040.9A priority patent/CN106062901A/zh
Publication of WO2015129865A1 publication Critical patent/WO2015129865A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/14Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys containing iron or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66984Devices using spin polarized carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3227Exchange coupling via one or more magnetisable ultrathin or granular films
    • H01F10/3231Exchange coupling via one or more magnetisable ultrathin or granular films via a non-magnetic spacer
    • H01F10/3236Exchange coupling via one or more magnetisable ultrathin or granular films via a non-magnetic spacer made of a noble metal, e.g.(Co/Pt) n multilayers having perpendicular anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/22Heat treatment; Thermal decomposition; Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • the present invention relates to a multilayer structure having a multiferroic structure having both ferroelectricity and ferromagnetism, a switching element including the multilayer structure, a magnetic device including the switching element, and a method of manufacturing the multilayer structure.
  • Patent Document 1 a heterostructure in which a ferromagnetic layer is epitaxially grown on a single crystal ferroelectric layer is prepared, and a voltage is applied to the ferroelectric layer so that the ferroelectric layer and the ferromagnetic material are applied.
  • a method is disclosed in which the magnetization orientation of a ferromagnetic material is changed by strain generated at a junction interface with a layer.
  • a magnetic recording medium that records information according to the orientation state of magnetization of a magnetic material such as a magnetic recording medium and a magneto-optical recording medium
  • a magnetic recording medium for recording information according to the magnetization orientation state of the magnetic material the recording on the magnetic recording medium is performed by switching from the longitudinal magnetic recording system having the in-plane magnetization orientation to the perpendicular magnetic recording system having the perpendicular magnetization orientation.
  • Increasing density is drawing attention.
  • the present invention has been made in view of the above problems, and has a novel and improved structure that has a stable magnetization orientation in the vertical direction and can switch the magnetization orientation between the vertical direction and the in-plane direction by a voltage.
  • Another object of the present invention is to provide a laminated structure, a switching element, a magnetic device, and a method for manufacturing the laminated structure.
  • One aspect of the present invention is a multilayer structure having a multiferroic structure having both ferroelectricity and ferromagnetism, the ferroelectric layer including the ferroelectric having the ferroelectricity, and the ferroelectric
  • a ferromagnetic / non-magnetic multilayer film composed of at least three periods laminated alternately with a ferromagnetic layer mainly composed of non-magnetic material and a non-magnetic material layer mainly composed of the non-magnetic material. It is characterized by providing.
  • the present invention it is possible to reliably form a multilayer structure having a multiferroic structure including a multilayer film layer having a stable magnetization orientation in the vertical direction.
  • the ferroelectric constituting the ferroelectric layer is barium titanate
  • the metal constituting the base layer is iron
  • the intermediate layer is iron
  • the non-magnetic body The nonmagnetic material constituting the layer may be copper, and the magnetic material constituting the magnetic layer may be nickel.
  • a multilayer structure having a multiferroic structure including a multilayer film layer having a stable magnetization orientation in the vertical direction can be easily formed by epitaxial growth.
  • the multilayer film layer may be configured such that the thickness of the nonmagnetic material layer is larger than the thickness of the ferromagnetic material layer.
  • another aspect of the present invention is a switching element including an electrode connected to a power source and any of the laminated structures described above provided between the electrodes.
  • a multilayer film layer having a stable magnetization orientation in the vertical direction is provided, and a switching element capable of switching the magnetization orientation from the vertical direction to the in-plane direction by applying a voltage is reliably formed. it can.
  • the magnetization orientation of the multilayer film layer composed of the magnetic layer and the nonmagnetic layer provided in the multilayer structure can be switched. It is good to be.
  • the magnetization orientation developed in the vertical direction of the multilayer layer including the magnetic layer can be switched to the in-plane direction with more power saving.
  • a magnetic field whose magnitude continuously changes in a predetermined direction is further applied to the multilayer film layer, and the magnitude of the magnetic field is changed from 0 to a predetermined negative minute value.
  • the magnetic orientation of the multilayer film layer may be switched by applying a voltage from the power source.
  • the magnetization orientation developed in the vertical direction of the multilayer layer including the magnetic layer can be reversed 180 degrees by applying a voltage.
  • the magnetization orientation of the multilayer film layer provided in the multilayer structure can be switched by changing the environmental temperature at which the multilayer structure is provided to a predetermined temperature. It is good.
  • the magnetization orientation of the multilayer film layer can be switched between the vertical direction and the in-plane direction by controlling the environmental temperature at which the laminated structure is provided.
  • Another aspect of the present invention is a magnetic device including any one of the switching elements described above.
  • the recording density of the magnetic device can be increased and saved. Electricity can be achieved.
  • the switching element may be provided in at least one of a magnetic head, a spin transistor, a polarization control light emitting element, and a minute motor.
  • the performance of the magnetic device can be improved and power can be saved.
  • Another aspect of the present invention is a method for manufacturing a multiferroic laminated structure having both ferroelectricity and ferromagnetism, wherein a ferroelectric layer made of a ferroelectric material having ferroelectricity is provided.
  • An intermediate layer stacking step of epitaxially growing the intermediate layer on one surface of the underlayer, a ferromagnetic layer mainly composed of a ferromagnetic material, and a nonmagnetic material layer mainly composed of the nonmagnetic material.
  • a multilayer film layer stacking step in which ferromagnetic / nonmagnetic multilayer film layers formed by alternately stacking at least three periods are epitaxially grown on one surface of the intermediate layer and stacked.
  • a multilayer structure having a multiferroic structure including a multilayer film layer having a stable magnetization orientation in the vertical direction can be easily formed by epitaxial growth.
  • the ferroelectric constituting the ferroelectric layer is barium titanate
  • the metal constituting the base layer is iron
  • the intermediate layer and the nonmagnetic layer The nonmagnetic material constituting the body layer may be copper
  • the magnetic material constituting the magnetic layer may be nickel.
  • a multilayer structure having a multiferroic structure including a multilayer film layer having a stable magnetization orientation in the vertical direction can be more reliably formed.
  • a multilayer structure having a multiferroic structure including a multilayer film layer having a stable magnetization orientation in the vertical direction can be reliably formed. Further, by applying the laminated structure to a switching element, it becomes possible to easily control the magnetization orientation by applying a voltage.
  • FIG. 1 is a schematic configuration diagram of a laminated structure according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing an outline of a method for manufacturing a laminated structure according to an embodiment of the present invention.
  • FIG. 3 is a schematic configuration diagram of a switching element including the laminated structure according to an embodiment of the present invention.
  • FIGS. 4A to 4C are schematic configuration diagrams showing application examples of a magnetic device including a switching element according to an embodiment of the present invention.
  • FIG. 5 is a characteristic diagram showing an XRD soot pattern of one example in the multilayer structure according to one embodiment of the present invention.
  • FIG. 6 is a view showing an RHEED pattern of the Cu layer on the outermost surface side of one example in the multilayer structure according to one embodiment of the present invention.
  • FIG. 7 is a diagram showing the temperature dependence of the magnetization with respect to the perpendicular magnetic field and the in-plane magnetic field of one example in the multilayer structure according to one embodiment of the present invention.
  • FIG. 8 is a schematic configuration diagram illustrating an example of a switching element including a stacked structure according to an embodiment of the present invention.
  • FIG. 9A is a diagram showing a perpendicular magnetization curve when no voltage is applied at room temperature to an example of a switching element including the stacked structure according to an embodiment of the present invention.
  • FIG. 10A is a diagram illustrating an in-plane magnetization curve when no voltage is applied at room temperature to an example of a switching element including the stacked structure according to an embodiment of the present invention.
  • (B) is a figure which shows the in-plane magnetization curve when an electric field of 10 kV / cm ⁇ 2> is applied at room temperature with respect to one Example of a switching element provided with the laminated structure which concerns on one Embodiment of this invention.
  • FIG. 10A is a diagram illustrating an in-plane magnetization curve when no voltage is applied at room temperature to an example of a switching element including the stacked structure according to an embodiment of the present invention.
  • (B) is a figure which shows the in-plane magnetization curve when an electric field of 10 kV / cm ⁇ 2> is applied at room temperature with respect to one Example of a switching element provided with the laminated structure which concerns on one Embodiment of this invention.
  • FIG. 10A is a diagram illustrating an in-plane magnetization curve
  • FIG. 11 is a diagram illustrating a change in the perpendicular magnetization due to voltage application with respect to an example of the switching element including the multilayer structure according to the embodiment of the present invention.
  • FIG. 12 shows changes in the perpendicular magnetization when a magnetization reversal control is performed between an upward direction and a downward direction due to a voltage with respect to an example of a switching element including the multilayer structure according to an embodiment of the present invention.
  • FIG. 12 shows changes in the perpendicular magnetization when a magnetization reversal control is performed between an upward direction and a downward direction due to a voltage with respect to an example of a switching element including the multilayer structure according to an embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a laminated structure according to an embodiment of the present invention.
  • the laminated structure 10 according to one embodiment of the present invention is a multiferroic crystal having both ferroelectricity and ferromagnetism, and has a stable magnetic orientation in the vertical direction. That is, the laminated structure 10 of the present embodiment has a ferromagnetic / nonmagnetic multilayer film / ferroelectric material having perpendicular magnetic anisotropy by providing a ferromagnetic / nonmagnetic multilayer film epitaxially grown on the ferroelectric material. This is a multiferroic structure.
  • the laminated structure 10 of the present embodiment has a ferromagnetic layer 11 composed of an underlayer 12, an intermediate layer 13, a magnetic layer 15, and a nonmagnetic layer 16 on a ferroelectric layer 11 serving as a substrate.
  • the non-magnetic multilayer film layer 14 and the metal film layer 17 are stacked by epitaxially growing the respective components. That is, in the present embodiment, the ferromagnetic / nonmagnetic multilayer film layer 14 is provided on the ferroelectric layer 11 with the base layer 12 and the intermediate layer 13 interposed therebetween.
  • a metal film layer 17 made of gold Au is provided on the top side, that is, the uppermost layer side of the multilayer film layer 14 in order to prevent the multilayer film layer 14 from being oxidized.
  • the ferromagnetic / nonmagnetic multilayer film layer 14 includes a ferromagnetic layer 15 mainly composed of ferromagnetic nickel Ni and a nonmagnetic body composed mainly of copper Cu.
  • the magnetic layers 16 are alternately stacked for three periods.
  • the multilayer film layer 14 has a configuration in which the ferromagnetic layers 15a, 15b, and 15c and the nonmagnetic layers 16a, 16b, and 16c are alternately stacked in three periods, but the thickness of each layer is different. In order to flatten the interface between the ferromagnetic layer 15 and the nonmagnetic layer 16 in nanometer units, it is necessary to have a structure in which at least three periods are stacked.
  • the underlayer 12 laminated on one surface of the ferroelectric layer 11 contains at least a metal having a lattice matching with at least barium titanate as a main component.
  • iron Fe is used as a metal constituting the underlayer 12.
  • An intermediate layer made of copper Cu which is the same nonmagnetic material as the nonmagnetic material layer 16 constituting the ferromagnetic / nonmagnetic multilayered film layer 14 made of Ni / Cu, is provided between the underlayer 12 and the multilayer film layer 14.
  • the layer 13 is provided.
  • a perpendicular magnetization film such as Co / Ni, Co / Pt, etc. can be applied in addition to Ni / Cu. preferable.
  • each layer laminated on the ferroelectric layer 11 is nanometer in order to make the laminated structure 10 a multiferroic crystal having stable magnetic orientation in the vertical direction. It is necessary to use a small unit value.
  • the underlayer 12 has a thickness of 1 nm
  • the intermediate layer 13 and the nonmagnetic layer 16 have a thickness of 9 nm
  • the ferromagnetic layer 15 has a thickness of 2 nm
  • the metal film layer 17 has a thickness of 5 nm.
  • the thickness of the nonmagnetic layer 16 needs to be larger than the thickness of the ferromagnetic layer 15. There is. However, if the distance between the ferromagnetic layer 15 and the ferroelectric layer 11 is increased, the piezoelectric strain of the ferroelectric layer 11 is difficult to be transmitted to the multilayer film layer 14, and the magnetization orientation is difficult to control with voltage.
  • the thickness of the nonmagnetic layer 16 is preferably not 10 nm or more.
  • the underlayer 12 is provided as a buffer layer having a function of relaxing lattice mismatch between barium titanate BaTiO 3 constituting the ferroelectric layer 11 and copper Cu constituting the intermediate layer 13. Since the difference in lattice constant between barium titanate BaTiO 3 and copper Cu is large, when copper Cu and nickel Ni are alternately laminated directly on the ferroelectric layer 11 made of barium titanate, the multilayer film layer 14 The interface is not epitaxially bonded, and the magnetization orientation of the multilayer film layer 14 is not aligned in the vertical direction. That is, in order to epitaxially grow copper Cu and nickel Ni constituting the multilayer film layer 14, it is necessary to relax the lattice mismatch.
  • a thin film-like underlayer 12 mainly composed of iron Fe serving as a buffer layer is interposed between the ferroelectric layer 11 and the intermediate layer 13.
  • the iron lattice is rotated by 45 degrees and deposited on the barium titanate lattice. That is, the diagonal direction of the iron lattice matches the lattice of barium titanate.
  • the base layer 12 is formed by epitaxial growth on the ferroelectric layer 11 made of barium titanate. That is, by interposing the underlayer 12 made of iron Fe as a buffer layer, a film is formed in lattice matching with barium titanate at a location near the ferroelectric layer 11 of the underlayer 12. On the other hand, at a location near the intermediate layer 13 of the underlayer 12, a film is formed in lattice matching with copper Cu. Then, the base layer 12 serving as the buffer layer relaxes the lattice mismatch between the barium titanate constituting the ferroelectric layer 11 and the copper constituting the intermediate layer 13.
  • the ferroelectric layer 11 by providing a thin film-like underlayer 12 made of iron Fe having good lattice matching with barium titanate constituting the ferroelectric layer 11 on the ferroelectric layer 11 as a buffer layer, the ferroelectric layer 11 The lattice mismatch between the barium titanate BaTiO 3 constituting the copper Cu and the copper Cu constituting the intermediate layer 13 is alleviated. For this reason, the multilayer film layer 14 is laminated in a stable state on the ferroelectric layer 11 made of barium titanate, and the ferromagnetic layer 15 is constituted by the lattice of copper Cu constituting the nonmagnetic layer 16. Since the nickel Ni lattice is pulled, the magnetization orientation of the multilayer film layer 14 can be stabilized in the vertical direction.
  • the intermediate layer 13 mainly composed of the same nonmagnetic material as the nonmagnetic material layer 16 constituting the multilayer film layer 14 is provided between the underlayer 12 and the multilayer film layer 14. That is, the intermediate layer 13 is laminated on one surface of the base layer 12, and then the multilayer film layer 14 is laminated on the intermediate layer 13.
  • the underlayer 12 made of the ferroelectric iron Fe is provided between the ferroelectric layer 11 and the multilayer film layer 14, but if the intermediate layer 13 is not provided.
  • the base layer 12 and the ferromagnetic layer 15a on the bottom side of the multilayer film layer 14 are in direct contact with each other.
  • the multilayer film layer 14 becomes difficult to be oriented in the vertical direction.
  • the intermediate layer 13 has a ferromagnetic material closest to the ferroelectric layer 11 among the ferromagnetic layers 15 constituting the multilayer film layer 14 because the multilayer film layer 14 has a stable perpendicular magnetization orientation.
  • the layer 15a is provided so as not to be in direct contact with the base layer 12 made of iron Fe, which is also a ferromagnetic material.
  • the ferromagnetic / nonmagnetic multilayer film layer 14 is epitaxially grown on the ferroelectric layer 11 with the base layer 12 and the intermediate layer 13 interposed therebetween, thereby stacking the multiferroic structure.
  • the structure 10 is formed.
  • the nickel Ni lattice constituting the ferromagnetic layer 15 is pulled by the copper Cu lattice constituting the nonmagnetic layer 16. Therefore, it is possible to reliably form the multilayer structure 10 having a multiferroic structure including the multilayer film layer 14 having a stable magnetization orientation in the vertical direction.
  • the present inventor applied a voltage to the magnetic switching element to which the laminated structure 10 of the present embodiment was applied, so that the multilayer film layer It has been found that the magnetization orientation of 14 can be easily switched from the vertical direction to the in-plane direction. For this reason, when the laminated structure 10 of this embodiment is applied to a magnetic switching element, the leakage magnetic field of the multilayer film layer 14 can be turned on / off by a voltage.
  • the switching element by applying the switching element to various magnetic devices such as a magnetic head and MRAM, high-speed writing and reading by magnetism can be performed, and the performance of the magnetic device can be improved.
  • various magnetic devices such as a magnetic head and MRAM
  • high-speed writing and reading by magnetism can be performed, and the performance of the magnetic device can be improved.
  • FIG. 2 is a flowchart showing an outline of a method for manufacturing a laminated structure according to an embodiment of the present invention.
  • a multilayer structure having a multi-ferroic structure having both ferroelectricity and ferromagnetism is provided with a multilayer film layer having a stable magnetization orientation in the vertical direction.
  • a multilayer film layer having a stable magnetization orientation in the vertical direction can be reliably formed by epitaxial growth. That is, in the manufacturing method of the laminated structure 10 of the present embodiment, the ferromagnetic structure / nonmagnetic multilayer film layer 14 is epitaxially bonded on the ferroelectric layer 11 as the laminated structure 10, so A ferromagnetic / nonmagnetic multilayer / ferroelectric multiferroic crystal having (magnetic anisotropy) is formed.
  • the ferroelectric layer 11 serving as the substrate of the multilayer structure 10 is heat-treated under a vacuum condition of 700 ° C. (heat treatment step S11).
  • heat treatment step S11 barium titanate BaTiO 3 is used as the ferroelectric constituting the ferroelectric layer 11 serving as the substrate.
  • a base layer 12 mainly composed of a barium titanate BaTiO 3 serving as a ferroelectric and a metal having good lattice matching is epitaxially grown on the top surface which is one surface of the ferroelectric layer 11 and stacked (underlayer) Lamination process S12).
  • iron Fe is used as the metal constituting the underlayer 12.
  • the intermediate layer 13 mainly composed of a non-magnetic material is epitaxially grown on the top surface, which is one surface of the underlayer 12, and laminated (intermediate layer lamination step S13).
  • copper Cu is used as the nonmagnetic material constituting the intermediate layer 13.
  • a ferromagnetic / nonmagnetic multilayer film layer 14 is then stacked on the top surface side that is one surface of the intermediate layer 13 (multilayer film layer stacking step S14).
  • multilayer film layer stacking step S ⁇ b> 14 first, a ferromagnetic layer 15 made of nickel Ni as a ferromagnetic material is epitaxially grown on the top surface side that is one surface of the intermediate layer 13 and stacked.
  • a nonmagnetic layer 16 containing copper Cu as a main component as a nonmagnetic material is epitaxially grown on the top surface, which is one surface of the ferromagnetic layer 15, and laminated.
  • the multilayer of the ferromagnetic layer 15 and the stack of the nonmagnetic layer 16 are similarly repeated twice to form the multilayer film layer 14. That is, in the present embodiment, the ferromagnetic layer 15 having a ferromagnetic material as a main component and the nonmagnetic material layer 16 having a nonmagnetic material as a main component are alternately stacked for at least three periods or more. A nonmagnetic multilayer film 14 is formed.
  • the multi-ferroic laminated structure 10 including the multilayer film layer 14 having a stable magnetization orientation in the vertical direction can be easily formed by epitaxial growth.
  • a ferromagnetic / nonmagnetic multilayer film 14 having a stable perpendicular magnetization orientation is formed by epitaxially bonding the ferromagnetic / nonmagnetic multilayer film layer 14 with the ferroelectric layer 11 with the underlayer 12 and the intermediate layer 13 interposed therebetween.
  • a ferroelectric multiferroic crystal can be reliably formed.
  • FIG. 3 is a schematic configuration diagram of a switching element including the laminated structure according to an embodiment of the present invention.
  • the switching element 30 is a magnetic switching element that can be turned on / off by applying a voltage.
  • the switching element 30 includes an electrode 20 (20a, 20b) connected to a power source 22 such as a voltage source and the electrode 20a, 20b provided in the present embodiment. And a laminated structure 10.
  • the laminated structure 10 is a multiferroic crystal having both ferroelectricity and ferromagnetism, and has a stable magnetic orientation in the vertical direction.
  • the laminated structure 10 of the present embodiment includes a base layer 12 made of iron Fe, a copper layer on a ferroelectric layer 11 mainly composed of barium titanate BaTiO 3 (001) serving as a substrate.
  • An intermediate layer 13 made of Cu, a ferromagnetic / nonmagnetic multilayer film layer 14 made of nickel Ni and copper Cu, and a metal film layer 17 made of gold Au are epitaxially bonded.
  • the multilayer structure 10 when the multilayer structure 10 is made of a multiferroic crystal having both ferroelectricity and ferromagnetism, it has a stable magnetic orientation in the vertical direction. Further, by applying a voltage to the switching element 30 including the laminated structure 10 of the present embodiment, the magnetization orientation of the multilayer film layer 14 can be switched from the vertical direction to the in-plane direction. Furthermore, when the laminated structure 10 of the present embodiment is applied to the switching element 30, it is possible to control on / off of the leakage magnetic field of the multilayer film layer 14 by voltage.
  • the “perpendicular direction” relating to the magnetization orientation indicates a substantially perpendicular direction (Z-axis direction shown in FIG.
  • in-plane direction Indicates a direction substantially parallel to each boundary surface of the multilayer film layer 14 of the multilayer structure 10 (X-axis direction shown in FIG. 3).
  • the magnetization orientation (magnetic anisotropy) of a ferromagnetic / nonmagnetic multilayer film is closely related to the interface strain of the multilayer film. If the interface strain can be controlled from the outside, then the perpendicular magnetization orientation It has been considered that a switching element capable of switching between a state and an in-plane magnetization orientation state can be configured.
  • a ferroelectric material such as barium titanate exhibits a piezoelectric effect. Therefore, the ferroelectric material and the ferromagnetic / nonmagnetic multilayer film are joined, and the ferroelectric / piezoelectric distortion is used to make the ferromagnetic / nonmagnetic multilayer. Since it was considered that the piezoelectric strain could be transmitted to the film with high efficiency, the switching element 30 according to an embodiment of the present invention was conceived.
  • a switching element capable of switching control of the magnetization orientation of the multilayer film layer 14 by applying a voltage can be reliably formed. That is, by applying a voltage to the multilayer structure 10 having the multiferroic structure, the piezoelectric strain of the barium titanate BaTiO 3 that is the ferroelectric constituting the ferroelectric layer 11 is transmitted to the multilayer film layer 14. As a result, the magnetization orientation can be switched between a perpendicular magnetization state and an in-plane magnetization state by voltage.
  • the coercive force can be changed by the voltage, but the vertical and in-plane magnetization orientations cannot be switched only by the voltage.
  • a large electric field of mega unit (MV / cm) or more was required.
  • the switching element 30 capable of completely controlling the perpendicular and in-plane magnetization orientation with an electric field of 10 kV / cm 2 or less that is two orders of magnitude smaller than the conventional one can be obtained.
  • the switching element 30 to which the multilayer structure 10 of the present embodiment is applied the ferromagnetic / nonmagnetic multilayer film layer 14 is used, so that it is more ferromagnetic than the conventional switching element. Since a plurality of the body layers 15 are stacked so as to alternate with the nonmagnetic layers 16, a large leakage magnetic field can be generated from the ferromagnetic material. For this reason, when the switching element 30 of this embodiment is applied to a magnetic device such as a spin transistor, for example, the spin direction can be easily controlled using such a leakage magnetic field.
  • the switching element 30 to which the laminated structure 10 of the present embodiment is applied uses a voltage and a magnetic field in combination, so that the magnetization orientation of the multilayer film layer 14 can be controlled not only in the vertical and in-plane directions but also in the perpendicular magnetization 180. It is also possible to reverse the degree. That is, when a magnetic field whose magnitude continuously changes in a predetermined direction is further applied to the multilayer film layer 14 and the magnitude of the magnetic field changes from 0 to a predetermined negative minute value, By applying a voltage, the magnetization orientation of the multilayer film layer 14 can be switched between upward in the vertical direction and downward in the vertical direction.
  • the magnetization orientation developed in the vertical direction of the multilayer film layer 14 including the magnetic layer 15 can be reversed 180 degrees by applying a voltage. Note that details of an embodiment of the reversal control of the magnetization orientation of the multilayer film layer 14 by voltage application in a magnetic field environment will be described later.
  • the magnetization orientation of the multilayer film layer 14 provided in the multilayer structure 10 can be switched by changing the environmental temperature at which the multilayer structure 10 is provided to a predetermined temperature. That is, in the laminated structure 10 applied to the switching element 30, the magnetization orientation is switched between the vertical direction and the in-plane direction at a predetermined temperature.
  • the magnetization orientation of the multilayer film layer 14 is switched from the vertical direction to the in-plane direction. This is considered to be due to the lattice distortion accompanying the structural phase transition of barium titanate BaTiO 3 constituting the ferroelectric layer 11 serving as the substrate of the laminated structure 10 at a temperature of 190K.
  • the magnetization orientation of the multilayer film layer 14 by controlling the temperature can be switched between the vertical direction and the in-plane direction. it can. Note that details of an example of the magnetization orientation control of the multilayer film layer 14 accompanying a temperature change will be described later.
  • the magnetization orientation of the multilayer film layer 14 by voltage application. Sex can be easily controlled. That is, by using the laminated structure 10 of the present embodiment, the magnetization orientation control that has been performed with current can be performed only with voltage.
  • the switching element 30 provided with the laminated structure 10 of the present embodiment can be applied to various magnetic devices.
  • a spintronic device such as a spin transistor or a spin light emitting diode
  • the multilayer structure 10 and the switching element 30 of this embodiment can be applied as a ferromagnetic electrode capable of controlling the voltage of the magnetization orientation.
  • the leakage magnetic field of the multilayer film layer 14 can be controlled by voltage, it can be applied to magnetic recording elements such as GMR elements other than MRAM, high-density HD TMR elements, magnetic heads, and spin FETs.
  • the switching element 30 including the laminated structure 10 according to the present embodiment can be applied to a micro motor that is driven by controlling the leakage magnetic field with a voltage. Further, by applying the switching element 30 including the laminated structure 10 of the present embodiment to various magnetic devices, it is possible to control the magnetization orientation by using only the voltage without using the current. Power can be significantly reduced.
  • FIG. 4A is an application example of a switching element according to an embodiment of the present invention to a magnetic head
  • FIG. 4B is an application example of the switching element according to an embodiment of the present invention to a spin transistor
  • FIG. 4C is a schematic configuration diagram illustrating an application example of the switching element according to the embodiment of the present invention to a polarization control light emitting element.
  • the switching element 30 including the multilayer structure 10 according to one embodiment of the present invention when the switching element 30 including the multilayer structure 10 according to one embodiment of the present invention is applied to the magnetic head 100, the multilayer structure 10 is not applied with a voltage from the power source 102. Since there is no electric field, the magnetization orientation is in the vertical direction (Z-axis direction shown in FIG. 4A). In contrast, when a voltage is applied to the stacked structure 10 by inputting the switch 104, the magnetization orientation is switched from the vertical direction to the in-plane direction (X-axis direction shown in FIG. 4A).
  • the magnetization orientation is switched from the vertical direction to the in-plane direction, so that writing to a magnetic medium (not shown) is performed by the leakage magnetic field from the multilayer film layer 14 (see FIG. 3) of the multilayer structure 10.
  • the write operation using the magnetic head 100 can be controlled by controlling the leakage magnetic field of the multilayer film layer 14 with the voltage.
  • not only a write operation using the magnetic head 100 is possible by controlling the magnetization orientation by applying a voltage, but also a read operation using the magnetostrictive effect and the piezoelectric effect is possible.
  • the switching element 30 including the stacked structure 10 according to an embodiment of the present invention when the switching element 30 including the stacked structure 10 according to an embodiment of the present invention is applied to the spin transistor 200 provided with the magnetic electrodes 201 and 202, a power source (not shown) When no voltage is applied, the stacked structure 10 is in an electric field-free state, so that the magnetization orientation is in the vertical direction (Z-axis direction shown in FIG. 4B). On the other hand, when a voltage is applied to the laminated structure 10, the magnetization orientation is switched from the vertical direction to the in-plane direction (X-axis direction shown in FIG. 4B).
  • the magnetization orientation is switched from the vertical direction to the in-plane direction, so that the spin direction of the semiconductor channel layer 203 can be controlled by the leakage magnetic field from the multilayer film layer 14 (see FIG. 3) of the multilayer structure 10. .
  • the switching element 30 including the stacked structure 10 according to an embodiment of the present invention is applied to a polarization control light emitting element 300 provided with a semiconductor quantum well 302, a power source (not shown)
  • the stacked structure 10 is in an electric field-free state, so that the magnetization orientation is in the vertical direction (Z-axis direction shown in FIG. 4C).
  • the magnetization orientation is switched from the vertical direction to the in-plane direction (X-axis direction shown in FIG. 4C). In this manner, the polarization of the polarization control light emitting element 300 can be controlled by switching the magnetization orientation from the vertical direction to the in-plane direction.
  • the switching element 30 including the laminated structure 10 according to the embodiment of the present invention can impart perpendicular magnetic anisotropy by applying voltage to a conventional magnetic device that is difficult to apply only by in-plane magnetization control. Therefore, its application range can be expanded.
  • the magnetization orientation can be controlled only by voltage without using current, so that during operation of these magnetic devices Power consumption can be significantly reduced.
  • the performance of the magnetic device can be enhanced by applying to the magnetic device the switching element 30 capable of switching the magnetization orientation by applying a voltage.
  • the laminated structure as an example of the present embodiment has a multiferroic structure of ferromagnetic / nonmagnetic multilayer film / ferroelectric material, [Cu / Ni] multilayer film / Cu intermediate layer / Fe underlayer / BaTiO 3. It consists of a single crystal.
  • a single crystal BaTiO 3 (001) substrate having an in-plane-perpendicular dielectric multi-polarization state is formed in vacuum at 700 ° C. using an ultrahigh vacuum MBE apparatus.
  • an Fe thin film having a thickness of 1 nm is epitaxially grown on a BaTiO 3 (001) substrate at a substrate temperature of 300 ° C.
  • a Cu layer having a thickness of 9 nm is epitaxially grown to produce a multilayer film having [Cu / Ni] of 5 periods.
  • the film thicknesses of Cu and Ni in the multilayer film are 9 nm and 2 nm, respectively.
  • an Au film having a thickness of 5 nm is epitaxially grown to obtain a ferromagnetic / nonmagnetic multilayer film / ferroelectric multiferroic structure.
  • FIG. 5 is a characteristic diagram showing an XRD soot pattern of an example in the laminated structure according to an embodiment of the present invention
  • FIG. 6 is a diagram of the example of the laminated structure according to an embodiment of the present invention. It is a figure which shows the RHEED pattern of the Cu layer of the surface side.
  • the multilayered films of barium titanate BaTiO 3 and Cu / Ni that become ferroelectrics are both in the (001) direction, that is, It can be seen that the crystal is oriented in a direction perpendicular to the interface (Z-axis direction shown in FIG. 1). Further, since the visible fringe structure at the peak of barium titanate BaTiO 3, Cu / Ni multilayer film, the interface of the Cu / Ni multilayer film laminated on barium titanate BaTiO 3 is flat stable at atomic level It can be seen that they are stacked. That is, this example demonstrates that a laminated structure having high-quality crystallinity is formed by the method for manufacturing a laminated structure according to one embodiment of the present invention.
  • the multilayer structure interface according to one embodiment of the present invention allows the interface of the multilayer film of the multilayer structure to be formed flat, so that the multilayer structure can be manufactured by stable epitaxial growth. It is proved that.
  • FIG. 7 is a diagram showing the temperature dependence of the magnetization with respect to the perpendicular magnetic field and the in-plane magnetic field of one example in the multilayer structure according to one embodiment of the present invention.
  • the black dot data plot shows the temperature dependence of magnetization with respect to the perpendicular magnetic field (vertical magnetic field)
  • the black square point data plot shows the temperature dependence of magnetization with respect to the in-plane magnetic field.
  • the laminated structure of the ferromagnetic / nonmagnetic multilayer / ferroelectric multiferroic structure of this example is more than when an in-plane magnetic field is applied when a perpendicular magnetic field is applied at room temperature. Since large magnetization is obtained, it can be seen that the orientation is perpendicular to the plane.
  • this multiferroic laminated structure is cooled, discontinuous magnetization jumps are observed at around 280K. A similar jump is also observed near 180K. These magnetization jumps are caused by interfacial strain associated with the structural phase transition from the tetragonal phase to the orthorhombic phase and from the orthorhombic phase to the rhombohedral phase of BaTiO 3 .
  • in-plane magnetization is larger than in-plane magnetization in contrast to room temperature. This indicates that magnetization orientation switching has occurred from perpendicular magnetization to in-plane magnetization due to interfacial strain accompanying the structural phase transition of BaTiO 3 . From this, it can be seen that the magnetization orientation can be controlled to be vertical or in-plane by temperature change. That is, it is demonstrated that the magnetization orientation of the multilayer film layer can be switched between the vertical direction and the in-plane direction by controlling the environmental temperature in which the laminated structure is provided.
  • FIG. 8 is a schematic configuration diagram illustrating an example of a switching element including a stacked structure according to an embodiment of the present invention.
  • the switching element 130 of the present embodiment includes a multilayer structure 114 having a multiferroic structure composed of [Cu / Ni] multilayer film / Cu intermediate layer / Fe underlayer / BaTiO 3 single crystal.
  • the Fe underlayer 112 and the Cu intermediate layer 113 are inserted between the multilayer film 114 having five cycles of [Cu / Ni] and BaTiO 3 , and as a result, the [Cu / Ni] multilayer film 114 is made of BaTiO 3.
  • This structure is epitaxially grown on the ferroelectric layer 111.
  • the upper Au layer 117 and the back surface of the BaTiO 3 layer 111 of the laminated structure 110 having a ferromagnetic / nonmagnetic multilayer / ferroelectric multiferroic structure are respectively attached to the electrodes 120 to form a voltage-controlled magnetization switching element. Yes.
  • FIG. 9 shows a surface perpendicular magnetization curve at room temperature for an example of a switching element including a multilayer structure according to an embodiment of the present invention.
  • FIG. 10 shows an in-plane magnetization curve at room temperature for an example of a switching element including the multilayer structure according to an embodiment of the present invention.
  • B) shows an in-plane magnetization curve when a voltage is applied.
  • FIG. 11 is a figure which shows the change of the surface perpendicular magnetization accompanying a voltage application with respect to one Example of the switching element provided with the laminated structure which concerns on one Embodiment of this invention.
  • the plane perpendicular magnetization curve When no voltage is applied, the plane perpendicular magnetization curve has a substantially rectangular shape near the center near 0 Oe as shown in FIG. I understand. On the other hand, when a voltage that generates an electric field of 10 kV / cm 2 is applied, the plane perpendicular magnetization curve is crushed in an oblique direction as shown in FIG. It turns out that it switched to.
  • the in-plane magnetization curve has a shape collapsed in an oblique direction as shown in FIG. 10A when no voltage is applied, and thus it can be seen that the magnetization orientation is in the vertical direction.
  • the in-plane magnetization curve has a substantially rectangular shape near the center when the magnetic field is near 0 Oe, as shown in FIG. It can be seen that the magnetization orientation has been switched in the in-plane direction.
  • the magnetization orientation of the switching element 130 including the stacked structure 110 of the present example can be switched from the plane to the plane by applying a voltage.
  • FIG. 12 shows changes in the perpendicular magnetization when a magnetization reversal control is performed between an upward direction and a downward direction due to a voltage with respect to an example of a switching element including the multilayer structure according to an embodiment of the present invention.
  • FIG. 12 the black dot data plot shows the magnetic field dependence of magnetization when no voltage is applied, and the black square dot data plot shows when the voltage is applied with the magnetic field indicated by the arrow in the figure. The change of the plane perpendicular magnetization is shown.
  • the coercivity of the magnetic field when no voltage is applied is about 100 Oe.
  • the magnetization is recorded while decreasing the magnetic field from the positive saturation magnetization state, and the sweep of the magnetic field is temporarily stopped when the predetermined negative minute value is ⁇ 33 Oe, and an electric field of 10 kV / cm having a pulse width of 1 second. Apply. Thereafter, the magnetization was recorded while further reducing the magnetic field to a negative saturation magnetization state.
  • a magnetic field whose magnitude continuously changes in a predetermined direction is further applied to the multilayer film layer 114 of the multilayer structure 110, and the magnitude of the magnetic field ranges from 0 to a predetermined negative minute value (this In the example, it can be seen that by applying a voltage when ⁇ 33 Oe), it is possible to control the reversal of the magnetic orientation of the multilayer film layer by 180 degrees from upward in the vertical direction to downward in the vertical direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Thin Magnetic Films (AREA)

Abstract

より安定した垂直磁化配向を有し、電圧によって磁化配向性を面直方向と面内方向との間に切換可能とする。強誘電性と強磁性とを併せ持つマルチフェロイック構造の積層構造体10であって、強誘電性を有する強誘電体からなる強誘電体層11と、強誘電体と格子整合性が良い金属を主成分とし、強誘電体層の一面に積層される下地層12と、非磁性体を主成分とし、下地層の一面に積層される中間層13と、強磁性体を主成分とする強磁性体層15と非磁性体を主成分とする非磁性体層16とを互い違いに少なくとも3周期以上を中間層の一面に積層させて構成される強磁性/非磁性の多層膜層14と、を備えることを特徴とする。

Description

積層構造体、スイッチング素子、磁気デバイス、及び積層構造体の製造方法
 本発明は、強誘電性と強磁性とを併せ持つマルチフェロイック構造の積層構造体、当該積層構造体を備えるスイッチング素子、当該スイッチング素子を備える磁気デバイス、及び積層構造体の製造方法に関する。本出願は、日本国において2014年2月27日に出願された日本特許出願番号特願2014-036216を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 従来、磁気ランダム・アクセス・メモリ(MRAM)、磁気ヘッド、スピントランジスタ等の磁気デバイスにおける磁化配向制御の手法として、磁場を利用する方法が主流であった。そして、近年は、更なる磁気デバイスの高密度化に向けて、電流によって当該磁化配向制御を実現しようとする試みが提案されてきている。しかしながら、電流で磁気ビットを操作するためには、莫大な電流密度を必要とし、発熱等の問題を克服する必要がある。
 このため、高密度化が進む磁気デバイスの開発において、電流を用いずに電圧のみで磁化配向を制御するための技術開発が精力的に進められている。電圧を用いた磁化配向制御として、Fe系磁性超薄膜とMgOとの接合界面の電子状態を電圧制御する方法が提案されている。しかしながら、磁性薄膜として単層磁性膜が用いられ、垂直磁化の保磁力を電気的に制御するためには、メガ単位(MV/cm)以上の大きな電界が必要であることから、電圧による完全な磁化配向の変換が困難であった。
 電圧を用いて磁化配向を制御することによって、省電力化を図る他の方法として、磁性薄膜と強誘電体との接合界面で磁気歪み効果を電圧制御する方法が提案されている。例えば、特許文献1には、単結晶強誘電体層上に、強磁性体層をエピタキシャル成長させたヘテロ構造体を準備し、強誘電体層に電圧を印加して強誘電体層と強磁性体層との接合界面に生じる歪みによって、強磁性体の磁化配向性を変化させる方法が開示されている。
特開2012-119565号公報
 書き換え可能な高密度記録媒体及びその記録再生装置として、磁気記録媒体や光磁気記録媒体等、磁性材料の磁化の配向状態によって情報を記録する磁性記録媒体及びその記録再生装置が注目されている。また、これらの磁性記録媒体の記録密度を高めて更に大容量の記録媒体とする要求が高まっている。このため、磁性材料の磁化の配向状態によって情報を記録する磁性記録媒体として、面内磁化配向を有する長手磁気記録方式から垂直磁化配向を有する垂直磁気記録方式に切り替えることによって、磁性記録媒体の記録密度を高めることが注目されている。
 すなわち、磁性記録媒体等の磁性デバイスにおいて、更なる高記録密度化を進める上で、磁性材料の面内のみの磁化配向制御でなく、磁性材料に対して垂直方向の磁化配向制御や、磁性材料の磁化配向を面内方向と垂直方向との間で切り替え可能なことが要求されている。特許文献1の磁気異方性制御方法では、面内方向における磁化配向を電気的に制御することについては、言及しているが、電圧で面内方向と垂直方向との間に磁化配向を切り替えることには、言及していない。
 本発明は、上記課題に鑑みてなされたものであり、垂直方向に安定した磁化配向を有し、電圧によって磁化配向性を垂直方向と面内方向との間に切換可能な、新規かつ改良された積層構造体、スイッチング素子、磁気デバイス、及び積層構造体の製造方法を提供することを目的とする。
 本発明の一態様は、強誘電性と強磁性とを併せ持つマルチフェロイック構造の積層構造体であって、前記強誘電性を有する強誘電体からなる強誘電体層と、前記強誘電体と格子整合性の良い金属を主成分とし、前記強誘電体層の一面に積層される下地層と、非磁性体を主成分とし、前記下地層の一面に積層される中間層と、強磁性体を主成分とする強磁性体層と前記非磁性体を主成分とする非磁性体層とを互い違いに少なくとも3周期以上を積層されて構成される強磁性/非磁性の多層膜層と、を備えることを特徴とする。
 本発明の一態様によれば、垂直方向に安定した磁化配向を有する多層膜層を備えるマルチフェロイック構造の積層構造体を確実に形成できる。
 このとき、本発明の一態様では、前記強誘電体層を構成する前記強誘電体がチタン酸バリウムであり、前記下地層を構成する前記金属が鉄であり、前記中間層及び前記非磁性体層を構成する前記非磁性体が銅であり、及び前記磁性体層を構成する前記磁性体がニッケルであることとしてもよい。
 このようにすれば、垂直方向に安定した磁化配向を有する多層膜層を備えるマルチフェロイック構造の積層構造体をエピタキシャル成長によって容易に形成できる。
 また、本発明の一態様では、前記多層膜層は、前記非磁性体層の厚さが前記強磁性体層の厚さより大きい構成となっていることとしてもよい。
 このようにすれば、強磁性体層の面歪みを大きくできるので、より確実に垂直方向に安定した磁化配向を有する結晶構造とすることができる。
 また、本発明の他の態様は、スイッチング素子であって、電源に接続される電極と、前記電極の間に設けられる前述した何れの積層構造体とを備えることを特徴とする。
 本発明の他の態様によれば、垂直方向に安定した磁化配向を有する多層膜層を備え、電圧印加によって磁化配向を垂直方向から面内方向への切換制御が可能なスイッチング素子を確実に形成できる。
 このとき、本発明の他の態様では、前記電源から電圧を印加することによって、前記積層構造体に備わる磁性体層と非磁性体層からなる多層膜層の磁化配向を切換可能な構成となっていることとしてもよい。
 このようにすれば、より省電力で磁性体層を含む多層膜層の垂直方向に展開される磁化配向を面内方向に切り替えることができる。
 また、本発明の他の態様では、前記多層膜層に対して所定の方向に連続的に大きさが変化する磁場が更に印加され、前記磁場の大きさが0から所定の負の微小値となった際に、前記電源から電圧を印加することによって、前記多層膜層の磁化配向を切換可能な構成となっていることとしてもよい。
 このようにすれば、磁性体層を含む多層膜層の垂直方向に展開される磁化配向を電圧印加によって180度反転させることができる。
 また、本発明の他の態様では、前記積層構造体が設けられる環境温度を所定温度まで変動させることによって、前記積層構造体に備わる多層膜層の磁化配向を切換可能な構成となっていることとしてもよい。
 このようにすれば、積層構造体が設けられる環境温度を制御することによって、多層膜層の磁化配向性を垂直方向と面内方向との間に切り替えることができる。
 また、本発明の他の態様は、磁気デバイスであって、前述した何れかのスイッチング素子を備えることを特徴とする。
 本発明の他の態様によれば、電圧印加によって磁化配向の切換制御が可能なスイッチング素子を磁性記録媒体等の磁気デバイスに適用することによって、当該磁気デバイスの記録密度を高められ、かつ、省電力化が図れる。
 このとき、本発明の他の態様では、前記スイッチング素子が磁気ヘッド、スピントランジスタ、偏光制御発光素子、又は微小モータの少なくとも何れかに設けられることとしてもよい。
 このような磁気デバイスに、電圧印加によって磁化配向の切換制御が可能なスイッチング素子を適用することにより、当該磁気デバイスの性能を高め、かつ、省電力化が図れる。
 また、本発明の他の態様は、強誘電性と強磁性とを併せ持つマルチフェロイック構造の積層構造体の製造方法であって、前記強誘電性を有する強誘電体からなる強誘電体層を熱処理する熱処理工程と、前記強誘電体と格子整合性の良い金属を主成分とする下地層を前記強誘電体層の一面にエピタキシャル成長させて積層させる下地層積層工程と、非磁性体を主成分とする中間層を前記下地層の一面にエピタキシャル成長させて積層させる中間層積層工程と、強磁性体を主成分とする強磁性体層と前記非磁性体を主成分とする非磁性体層とを互い違いに少なくとも3周期以上を積層させて構成される強磁性/非磁性の多層膜層を、前記中間層の一面にエピタキシャル成長させて積層させる多層膜層積層工程と、を含むことを特徴とする。
 本発明の他の態様によれば、垂直方向に安定した磁化配向を有する多層膜層を備えるマルチフェロイック構造の積層構造体をエピタキシャル成長によって、容易に形成できる。
 このとき、本発明の他の態様では、前記強誘電体層を構成する前記強誘電体がチタン酸バリウムであり、前記下地層を構成する前記金属が鉄であり、前記中間層及び前記非磁性体層を構成する前記非磁性体が銅であり、及び前記磁性体層を構成する前記磁性体がニッケルであることとしてもよい。
 このようにすれば、より確実に垂直方向に安定した磁化配向を有する多層膜層を備えるマルチフェロイック構造の積層構造体を形成できる。
 以上説明したように本発明によれば、垂直方向に安定した磁化配向を有する多層膜層を備えるマルチフェロイック構造の積層構造体を確実に形成できる。また、当該積層構造体をスイッチング素子に適用することにより、電圧印加による磁化配向性の制御が容易に行えるようになる。
図1は、本発明の一実施形態に係る積層構造体の概略構成図である。 図2は、本発明の一実施形態に係る積層構造体の製造方法の概略を示すフロー図である。 図3は、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の概略構成図である。 図4(A)乃至図4(C)は、本発明の一実施形態に係るスイッチング素子を備える磁気デバイスの適用例を示す概略構成図である。 図5は、本発明の一実施形態に係る積層構造体における一実施例のXRD パターンを示す特性図である。 図6は、本発明の一実施形態に係る積層構造体における一実施例の最表面側のCu層のRHEEDパターンを示す図である。 図7は、本発明の一実施形態に係る積層構造体における一実施例の面直磁場、面内磁場に対する磁化の温度依存性を示す図である。 図8は、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の一実施例を示す概略構成図である。 図9(A)は、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の一実施例に対して室温で電圧を印加しないときの面直磁化曲線を示す図であり、図9(B)は、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の一実施例に対して室温で10kV/cm の電界を印加した時の面直磁化曲線を示す図である。 図10(A)は、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の一実施例に対して、室温で電圧を印加しないときの面内磁化曲線を示す図であり、図10(B)は、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の一実施例に対して、室温で10kV/cm の電界を印加したときの面内磁化曲線を示す図である。 図11は、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の一実施例に対して、電圧印加に伴う面直磁化の変化を示す図である。 図12は、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の一実施例に対して、電圧による面直上向き、下向きの間の磁化反転制御を行った際における面直磁化の変化を示す図である。
 以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。
 まず、本発明の一実施形態に係る積層構造体の構成について、図面を使用しながら説明する。図1は、本発明の一実施形態に係る積層構造体の概略構成図である。
 本発明の一実施形態に係る積層構造体10は、強誘電性と強磁性とを併せ持つマルチフェロイック構造の結晶体であり、垂直方向に安定した磁化配向性を有する。すなわち、本実施形態の積層構造体10は、強磁性/非磁性多層膜を強誘電体上にエピタキシャル成長させて設けることによって、垂直磁気異方性を有する強磁性/非磁性多層膜/強誘電体のマルチフェロイック構造としたものである。
 本実施形態の積層構造体10は、図1に示すように、基板となる強誘電体層11の上に下地層12、中間層13、磁性体層15と非磁性体層16からなる強磁性/非磁性の多層膜層14、及び金属膜層17がそれぞれの成分をエピタキシャル成長させて積層した構成となっている。すなわち、本実施形態では、下地層12と中間層13を介在させて、強誘電体層11の上に強磁性/非磁性の多層膜層14が設けられた構成となっている。そして、多層膜層14の頂部側すなわち最上層側には、多層膜層14の酸化を防止するために、金Auからなる金属膜層17が設けられている。
 本実施形態では、積層構造体10の基板となる強誘電体層11を構成する強誘電体として、(001)配向を有するチタン酸バリウムBaTiOが使用される。また、強磁性/非磁性の多層膜層14は、図1に示すように、強磁性体のニッケルNiを主成分とする強磁性体層15と非磁性体の銅Cuを主成分とする非磁性体層16とを互い違いに3周期分を積層されて構成される。なお、本実施形態では、多層膜層14は、強磁性体層15a、15b、15cと非磁性体層16a、16b、16cが互い違いに3周期積層した構成としているが、層の厚さがそれぞれナノメートル単位の強磁性体層15と非磁性体層16との境界面を平坦にするためには、少なくとも3周期以上に積層した構成とする必要がある。
 また、本実施形態では、強誘電体層11の一面に積層される下地層12は、少なくともチタン酸バリウムと格子整合性の良い金属を主成分とする。具体的には、下地層12を構成する金属として鉄Feが使用される。そして、下地層12と多層膜層14との間には、Ni/Cuによる強磁性/非磁性の多層膜層14を構成する非磁性体層16と同じ非磁性体である銅Cuからなる中間層13が設けられる構成となっている。なお、強磁性/非磁性の多層膜層14の構造としては、Ni/Cu以外にもCo/Ni、Co/Pt等の垂直磁化膜が適用可能と考えられるが、保磁力が大きくないものが好ましい。
 また、強誘電体層11の上に積層される各層の厚さは、積層構造体10を垂直方向に安定した磁化配向性を有するマルチフェロイック構造の結晶体とするために、それぞれがナノメートル単位の小さい値とする必要がある。本発明の一実施形態に係る積層構造体10では、例えば、下地層12が1nm、中間層13及び非磁性体層16が9nm、強磁性体層15が2nm、金属膜層17が5nmの厚さを有する。垂直方向に安定した磁化配向とするためには、強磁性体層15の面歪みを大きくする必要があるので、非磁性体層16の厚さは、強磁性体層15の厚さより大きくする必要がある。しかしながら、強磁性体層15と強誘電体層11との距離が大きくなると、強誘電体層11の圧電歪みが多層膜層14に伝達し難くなり、磁化配向を電圧で制御し難くなるので、非磁性体層16の厚さは、10nm以上にしない方が好ましい。
 本実施形態では、下地層12は、強誘電体層11を構成するチタン酸バリウムBaTiOと中間層13を構成する銅Cuとの格子不整合性を緩和する機能を有するバッファ層として設けられる。チタン酸バリウムBaTiOと銅Cuは、格子定数の差が大きいので、チタン酸バリウムからなる強誘電体層11の上に直接、銅CuとニッケルNiを互い違いに積層させると、多層膜層14の界面がエピタキシャル接合せず、多層膜層14の磁化配向が垂直方向に揃わなくなる。すなわち、多層膜層14を構成する銅CuやニッケルNiをエピタキシャル成長させるためには、格子不整合性の緩和が必要となる。
 このため、本実施形態では、バッファ層となる鉄Feを主成分とする薄膜状の下地層12を強誘電体層11と中間層13との間に介在させる。チタン酸バリウムからなる強誘電体層11の上に鉄からなる下地層12を積層させると、チタン酸バリウムの格子の上に鉄の格子が45度回転して堆積する。すなわち、鉄の格子の対角線方向がチタン酸バリウムの格子と整合する。鉄の格子定数が0.286nmであることから、その格子の対角線の長さが0.403nmとなり、チタン酸バリウムの格子定数(a = b =0.3992nm、 c = 0.4038nm)とほぼ一致する。
 このように、鉄は、チタン酸バリウムと格子整合性が良い金属となるので、チタン酸バリウムからなる強誘電体層11の上でエピタキシャル成長して、下地層12が形成されるようになる。すなわち、バッファ層として鉄Feからなる下地層12を介在させることによって、下地層12の強誘電体層11に近い箇所では、チタン酸バリウムと格子整合して膜を形成する。一方、下地層12の中間層13に近い箇所では、銅Cuと格子整合して膜を形成する。そして、バッファ層となる下地層12が強誘電体層11を構成するチタン酸バリウムと中間層13を構成する銅の格子不整合性を緩和するようになる。
 すなわち、強誘電体層11を構成するチタン酸バリウムと格子整合性の良い鉄Feからなる薄膜状の下地層12をバッファ層として強誘電体層11の上に設けることによって、強誘電体層11を構成するチタン酸バリウムBaTiOと中間層13を構成する銅Cuとの格子不整合性が緩和される。このため、チタン酸バリウムからなる強誘電体層11の上に多層膜層14を安定した状態で積層させて、非磁性体層16を構成する銅Cuの格子によって強磁性体層15を構成するニッケルNiの格子が引っ張られるので、多層膜層14の磁化配向性を垂直方向に安定させることができる。
 また、本実施形態では、下地層12と多層膜層14との間に多層膜層14を構成する非磁性体層16と同じ非磁性体を主成分とする中間層13が設けられている。すなわち、下地層12の一面に中間層13が積層されてから、当該中間層13の上に多層膜層14が積層される構成となっている。
 前述したように、本実施形態では、強誘電体層11と多層膜層14との間に強誘電体の鉄Feからなる下地層12を設けているが、もし、中間層13を設けなければ、当該下地層12と多層膜層14の底部側に有する強磁性体層15aが直接接触する構成となる。このように、強磁性体から構成される下地層12と強磁性体層15aが重なって、強磁性体部分が厚くなると、多層膜層14が垂直方向に磁化配向が向きにくくなる。このことから、中間層13は、多層膜層14が安定した垂直磁化配向を有するために、多層膜層14を構成する強磁性体層15のうち、強誘電体層11に最も近い強磁性体層15aが同じく強磁性体となる鉄Feからなる下地層12に直接接しない構成とするために設けられる。
 このように、本実施形態では、下地層12と中間層13を介在させて、強磁性/非磁性の多層膜層14を強誘電体層11の上にエピタキシャル成長させて、マルチフェロイック構造の積層構造体10を形成する。このようなマルチフェロイック構造の積層構造体10とすることによって、非磁性体層16を構成する銅Cuの格子によって強磁性体層15を構成するニッケルNiの格子が引っ張られる。このため、垂直方向に安定した磁化配向を有する多層膜層14を備えるマルチフェロイック構造の積層構造体10を確実に形成できる。
 また、本発明者は、前述した本発明の目的を達成するために鋭意検討を重ねた結果、本実施形態の積層構造体10を適用した磁気スイッチング素子に電圧を印加することによって、多層膜層14の磁化配向を垂直方向から面内方向に容易に切り替えられることを見出した。このため、本実施形態の積層構造体10を磁気スイッチング素子に適用すると、電圧により多層膜層14の漏れ磁場のオン/オフを可能とする。
 そして、当該スイッチング素子を磁気ヘッドやMRAM等の各種磁気デバイスに適用することによって、磁気による高速な書き込みや読み込みが可能になり、当該磁気デバイスの性能を向上させられる。なお、本実施形態の積層構造体10をスイッチング素子への適用例と、当該スイッチング素子を適用した磁気デバイスに係る詳細な説明と、本実施形態の積層構造体10を磁気スイッチング素子に適用した実施例については、後述する。
 次に、本発明の一実施形態に係る積層構造体の製造方法について、図面を使用しながら説明する。図2は、本発明の一実施形態に係る積層構造体の製造方法の概略を示すフロー図である。
 本発明の一実施形態に係る積層構造体の製造方法では、強誘電性と強磁性とを併せ持つマルチフェロイック構造の積層構造体として、垂直方向に安定した磁化配向を有する多層膜層を備えるものをエピタキシャル成長によって確実に形成することを可能とする。すなわち、本実施形態の積層構造体10の製造方法では、積層構造体10として強磁性/非磁性の多層膜層14を強誘電体層11の上にエピタキシャル接合させることによって、垂直磁化配向(垂直磁気異方性)を有する強磁性/非磁性多層膜/強誘電体のマルチフェロイック構造の結晶体が形成される。
 本発明の一実施形態に係る積層構造体10を製造する際に、まず、積層構造体10の基板となる強誘電体層11を700℃の真空条件下で熱処理する(熱処理工程S11)。本実施形態では、当該基板となる強誘電体層11を構成する強誘電体として、前述したように、チタン酸バリウムBaTiOが使用される。
 次に、強誘電体となるチタン酸バリウムBaTiOと格子整合性の良い金属を主成分とする下地層12を強誘電体層11の一面となる頂面側にエピタキシャル成長させて積層させる(下地層積層工程S12)。本実施形態では、下地層12を構成する金属として、鉄Feが使用される。その後、非磁性体を主成分とする中間層13を下地層12の一面となる頂面側にエピタキシャル成長させて積層させる(中間層積層工程S13)。本実施形態では、中間層13を構成する非磁性体として、銅Cuが使用される。
 中間層13を積層したら、次に、強磁性/非磁性の多層膜層14を当該中間層13の一面となる頂面側に積層する(多層膜層積層工程S14)。本実施形態では、多層膜層積層工程S14において、まず、強磁性体としてニッケルNiから構成される強磁性体層15を中間層13の一面となる頂面側にエピタキシャル成長させて積層させる。次に、非磁性体として銅Cuを主成分とする非磁性体層16を強磁性体層15の一面となる頂面側にエピタキシャル成長させて積層させる。
 そして、強磁性体層15の積層と非磁性体層16の積層を同様に2回繰り返して、多層膜層14を形成する。すなわち、本実施形態では、強磁性体を主成分とする強磁性体層15と非磁性体を主成分とする非磁性体層16とを互い違いに少なくとも3周期以上を積層させて、強磁性/非磁性の多層膜層14を構成する。
 その後、強磁性/非磁性多層膜層14の最上位側に有する非磁性体層16cの一面となる頂面側に、多層膜層14の酸化防止のために、金Auを主成分とする金属膜層17がエピタキシャル成長によって積層される(金属膜層積層工程S15)。このようにして、本実施形態では、垂直方向に安定した磁化配向を有する多層膜層14を備えるマルチフェロイック構造の積層構造体10をエピタキシャル成長によって、容易に形成できる。すなわち、強磁性/非磁性の多層膜層14を下地層12と中間層13を介在させて強誘電体層11とエピタキシャル接合することによって、安定した垂直磁化配向を持つ強磁性/非磁性多層膜/強誘電体のマルチフェロイック構造の結晶体を確実に形成できるようになる。
 次に、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の構成について、図面を使用しながら説明する。図3は、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の概略構成図である。
 本発明の一実施形態に係るスイッチング素子30は、電圧を印加することでオン/オフを可能とした磁気スイッチング素子である。本実施形態では、スイッチング素子30は、図3に示すように、電圧源等の電源22に接続される電極20(20a、20b)と、これら電極20a、20bの間に設けられる本実施形態の積層構造体10とを備える。
 積層構造体10は、前述したように、強誘電性と強磁性とを併せ持つマルチフェロイック構造の結晶体であり、垂直方向に安定した磁化配向性を有する。本実施形態の積層構造体10は、図3に示すように、基板となるチタン酸バリウムBaTiO(001)を主成分とする強誘電体層11の上に鉄Feからなる下地層12、銅Cuからなる中間層13、ニッケルNiと銅Cuからなる強磁性/非磁性の多層膜層14、及び金Auからなる金属膜層17がエピタキシャル接合した構成となっている。
 前述したように、積層構造体10をこのような強誘電性と強磁性とを併せ持つマルチフェロイック構造の結晶体とすることによって、垂直方向に安定した磁化配向性を有するようになる。また、本実施形態の積層構造体10を備えるスイッチング素子30に電圧を印加することによって、多層膜層14の磁化配向を垂直方向から面内方向に切替可能になる。さらに、本実施形態の積層構造体10をスイッチング素子30に適用すると、電圧により多層膜層14の漏れ磁場のオン/オフの制御が可能になる。なお、本明細書中における磁化配向に係る「垂直方向」とは、積層構造体10の各層の一面に対して略垂直方向(図3に示すZ軸方向)を示し、「面内方向」とは、積層構造体10の多層膜層14の各境界面と略平行方向(図3に示すX軸方向)を示す。
 これまで、強磁性/非磁性の多層膜の磁化配向性(磁気異方性)は、多層膜の界面歪みと密接に関連していることから、当該界面歪みを外部から制御できれば、垂直磁化配向状態と面内磁化配向状態の切り替えが可能なスイッチング素子が構成可能となると考えられていた。一方、チタン酸バリウム等の強誘電体は、圧電効果を示すため、強誘電体と強磁性/非磁性多層膜を接合し、強誘電体の圧電歪みを利用して、強磁性/非磁性多層膜に当該圧電歪みを高効率に伝達可能と考えられたため、本発明の一実施形態に係るスイッチング素子30を着想した。
 本実施形態の積層構造体10をスイッチング素子30に適用することによって、電圧印加による多層膜層14の磁化配向の切換制御が可能なスイッチング素子を確実に形成できる。すなわち、マルチフェロイック構造の積層構造体10に電圧を印加することによって、強誘電体層11を構成する強誘電体であるチタン酸バリウムBaTiOの圧電歪みを多層膜層14に伝達させ、その結果、電圧で垂直磁化状態、面内磁化状態の間で磁化配向を切り替えることができる。
 換言すると、無磁場下において、電源22から電圧を印加することによって、垂直磁化状態と面内磁化状態の間の磁化配向の変換を可能にするスイッチング素子30の形成が実現される。このため、従来のように電流を用いることなく、電圧のみで垂直磁化配向状態と面内磁化配向状態との切り替えが可能となるので、当該スイッチング素子30を備える磁気デバイスの省電力化が実現される。なお、電圧印加に伴う多層膜層14の磁化配向制御の実施例の詳細については、後述する。
 また、従来の電圧印加型の垂直磁気変調素子構造では、電圧により保磁力を変化させることは可能であったが、垂直、面内磁化配向を電圧のみで切り替えることはできず、その際においても、メガ単位(MV/cm)以上の大きな電界が必要とされた。これに対して、本実施形態では、10kV/cm という従来よりも2桁以上も小さな電界で完全な垂直・面内磁化配向の制御が可能なスイッチング素子30とすることができる。
 さらに、従来の垂直磁化配向の超薄膜の電圧制御技術においては、磁性膜の膜厚が1nm程度と極めて薄いものが使用されていたので、垂直磁化状態における漏れ磁場を利用した磁気デバイスを製造することが困難であった。これに対して、本実施形態の積層構造体10を適用したスイッチング素子30では、強磁性体/非磁性体の多層膜層14を用いているために、従来のスイッチング素子と比べて、強磁性体層15が非磁性体層16と互い違いになるように複数積層されているので、強磁性体から大きな漏れ磁場を発生させられる。このため、本実施形態のスイッチング素子30を例えばスピントランジスタ等の磁気デバイスに適用した場合に、かかる漏れ磁場を利用してスピン方向の制御が容易に行えるようになる。
 また、本実施形態の積層構造体10を適用したスイッチング素子30は、電圧と磁場を併用することによって、多層膜層14の磁化配向を垂直・面内方向の制御のみでなく、垂直磁化の180度反転させることも可能である。すなわち、多層膜層14に対して所定の方向に連続的に大きさが変化する磁場が更に印加され、当該磁場の大きさが0から所定の負の微小値となった際に、電源22から電圧を印加することによって、多層膜層14の磁化配向を垂直方向上向きと垂直方向下向きとの間に切換可能とする。換言すると、磁性体層15を含む多層膜層14の垂直方向に展開される磁化配向を電圧印加によって180度反転させることができる。なお、磁場環境下における電圧印加による多層膜層14の磁化配向の反転制御の実施例の詳細については、後述する。
 さらに、本実施形態では、積層構造体10が設けられる環境温度を所定温度まで変動させることによって、積層構造体10に備わる多層膜層14の磁化配向を切換可能となっている。すなわち、スイッチング素子30に適用される積層構造体10は、所定の温度を境に磁化配向が垂直方向と面内方向に切り替わる。
 具体的には、積層構造体10が設けられる環境温度を室温から190K付近まで下げると、多層膜層14の磁化配向が垂直方向から面内方向に切り替わる。これは、温度190Kにおける積層構造体10の基板となる強誘電体層11を構成するチタン酸バリウムBaTiOの構造相転移に伴う格子歪みに起因しているためと考えられる。このように、本実施形態の積層構造体10をスイッチング素子30に適用することによって、温度を制御することによる多層膜層14の磁化配向性を垂直方向と面内方向との間に切り替えることができる。なお、温度変化に伴う多層膜層14の磁化配向制御の実施例の詳細については、後述する。
 以上説明したように、垂直方向に安定した磁化配向を有する多層膜層14を備えるマルチフェロイック構造の積層構造体10をスイッチング素子30に適用することによって、電圧印加による多層膜層14の磁化配向性の制御が容易に行えるようになる。すなわち、本実施形態の積層構造体10を利用することによって、今まで電流で行ってきた磁化配向制御を電圧のみで行うことができる。
 このため、本実施形態の積層構造体10を備えるスイッチング素子30は、各種磁気デバイスに適用することができる。例えば、スピントランジスタ、スピン発光ダイオード等のスピントロニクスデバイスにおいて、本実施形態の積層構造体10、スイッチング素子30を磁化配向の電圧制御が可能な強磁性電極として適用することができる。また、多層膜層14の漏れ磁場を電圧により制御できるため、MRAM以外のGMR素子や高密度HD用TMR素子、磁気ヘッド、スピンFET等の磁気記録素子への適用も可能となる。さらに、漏れ磁場を電圧で制御して駆動させる微小モータにも、本実施形態に係る積層構造体10を備えるスイッチング素子30を適用することができる。また、本実施形態の積層構造体10を備えるスイッチング素子30を各種磁気デバイスに適用することによって、電流を用いず電圧のみで磁化配向制御が可能となるから、これらの磁気デバイスの動作時における消費電力を著しく低減させられる。
 次に、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の磁気デバイスへの適用例について、図面を使用しながら説明する。図4(A)は、本発明の一実施形態に係るスイッチング素子の磁気ヘッドへの適用例、図4(B)は、本発明の一実施形態に係るスイッチング素子のスピントランジスタへの適用例、図4(C)は、本発明の一実施形態に係るスイッチング素子の偏光制御発光素子への適用例を示す概略構成図である。
 図4(A)に示すように、本発明の一実施形態に係る積層構造体10を備えるスイッチング素子30を磁気ヘッド100に適用すると、電源102から電圧を印加しない場合では、積層構造体10が無電界状態となるので、磁化配向が垂直方向(図4(A)に示すZ軸方向)となる。これに対して、スイッチ104を入力して、積層構造体10に電圧を印加すると、磁化配向が垂直方向から面内方向(図4(A)に示すX軸方向)に切り替わる。
 このように、磁化配向が垂直方向から面内方向に切り替わることによって、積層構造体10の多層膜層14(図3参照)からの漏れ磁場で不図示の磁気メディアへの書き込みが行われるようになる。すなわち、多層膜層14の漏れ磁場を電圧により制御することによって、磁気ヘッド100を用いた書き込み動作を制御できる。なお、本実施形態では、電圧印加による磁化配向制御によって、磁気ヘッド100を用いた書き込み動作が可能であるだけでなく、磁歪効果と圧電効果による読み込み動作も可能となる。
 また、図4(B)に示すように、本発明の一実施形態に係る積層構造体10を備えるスイッチング素子30を磁性電極201、202が設けられるスピントランジスタ200に適用すると、不図示の電源から電圧を印加しない場合では、積層構造体10が無電界状態となるので、磁化配向が垂直方向(図4(B)に示すZ軸方向)となる。これに対して、積層構造体10に電圧を印加すると、磁化配向が垂直方向から面内方向(図4(B)に示すX軸方向)に切り替わる。このように、磁化配向が垂直方向から面内方向に切り替わることによって、積層構造体10の多層膜層14(図3参照)からの漏れ磁場で半導体チャネル層203のスピン方向を制御できるようになる。
 さらに、図4(C)に示すように、本発明の一実施形態に係る積層構造体10を備えるスイッチング素子30を半導体量子井戸302が設けられる偏光制御発光素子300に適用すると、不図示の電源から電圧を印加しない場合では、積層構造体10が無電界状態となるので、磁化配向が垂直方向(図4(C)に示すZ軸方向)となる。これに対して、積層構造体10に電圧を印加すると、磁化配向が垂直方向から面内方向(図4(C)に示すX軸方向)に切り替わる。このように、磁化配向が垂直方向から面内方向に切り替わることによって、偏光制御発光素子300の偏光を制御できるようになる。
 このように、本発明の一実施形態に係る積層構造体10を備えるスイッチング素子30を各種磁気デバイス100、200、300に適用することによって、磁気デバイスへの安定した書き込み動作や読み込み動作、スピン方向の制御、偏光制御等が実現される。すなわち、本発明の一実施形態に係る積層構造体10を備えるスイッチング素子30は、従来の面内磁化制御のみでの適用が難しい磁気デバイスに対して、電圧印加で垂直磁気異方性を付与できるので、その応用範囲を広げられる。
 また、本実施形態の積層構造体10を備えるスイッチング素子30を各種磁気デバイスに適用することによって、電流を用いないで電圧のみで磁化配向を制御可能とするので、これらの磁気デバイスの動作時における消費電力を著しく低減できる。このように、電圧印加によって磁化配向の切換制御が可能なスイッチング素子30を磁気デバイスに適用することにより、当該磁気デバイスの性能を高めることができる。
 次に、本発明の一実施形態に係る積層構造体の実施例について、説明する。本実施形態の実施例となる積層構造体は、強磁性/非磁性多層膜/強誘電体のマルチフェロイック構造であり、[Cu/Ni]多層膜/Cu 中間層/Fe 下地層/BaTiO3 単結晶から構成される。本実施例では、[Cu/Ni]が5周期の多層膜とBaTiO3 の間にFe 下地層、Cu中間層が挿入され、結果、[Cu/Ni]多層膜がBaTiO3 上にエピタキシャル成長した構造となっている。これにより、強誘電体BaTiO3 の圧電歪みを[Cu/Ni]多層膜の接合界面を介して効率的に伝達させることを可能にしている。
 本実施例の積層構造体の製造方法は、まず、超高真空MBE 装置を用いて、面内-垂直誘電多分極状態を持つ単結晶BaTiO3(001)基板を700℃にて真空中で1時間熱処理した後、基板温度300℃でBaTiO3(001)基板上に膜厚1nm のFe 薄膜をエピタキシャル成長させる。その後、膜厚9nm のCu 層をエピタキシャル成長させ、[Cu/Ni]が5周期の多層膜を生成する。多層膜のCu 及びNiの膜厚は、それぞれ9nm、2nm とする。また、多層膜の酸化防止を目的として、膜厚5nmのAu膜をエピタキシャル成長させて、強磁性/非磁性多層膜/強誘電体マルチフェロイック構造とする。
 上述した本実施例の積層構造体の構成について、図面を使用しながら説明する。図5は、本発明の一実施形態に係る積層構造体における一実施例のXRD パターンを示す特性図であり、図6は、本発明の一実施形態に係る積層構造体における一実施例の最表面側のCu層のRHEEDパターンを示す図である。
 本実施例の積層構造体のXRDパターンを見ると、図5に示すように、強誘電体となるチタン酸バリウムBaTiO3、Cu/Niの多層膜が何れも(001)方向、すなわち多層膜の界面に対して垂直方向(図1に示すZ軸方向)に結晶が向いていることが分かる。また、チタン酸バリウムBaTiO3、Cu/Ni多層膜のピークにフリンジ構造が見えることから、チタン酸バリウムBaTiO3の上に積層されたCu/Ni多層膜の界面が原子レベルで平坦に安定して積層していることが分かる。すなわち、本実施例により、本発明の一実施に係る積層構造体の製造方法によって、高品質な結晶性を有する積層構造体が形成されていることが実証される。
 また、本発明の一実施形態に係る積層構造体における一実施例の最表面側すなわち頂部側の表面のCu層のRHEEDパターンを見ると、図6に示すように、白い光が所定間隔で縦方向にライン上に見えることが分かる。このことから、本実施例の積層構造体の最表面側のCu層の表面が平坦になっていることが分かる。すなわち、本実施例により、本発明の一実施に係る積層構造体の製造方法によって、積層構造体の多層膜の界面が平坦に形成されるので、安定したエピタキシャル成長による積層構造体の製造が可能なことが実証される。
 次に、上述した本実施例の積層構造体の面直磁場、面内磁場に対する磁化の温度依存性について、図面を使用しながら説明する。図7は、本発明の一実施形態に係る積層構造体における一実施例の面直磁場、面内磁場に対する磁化の温度依存性を示す図である。なお、図7において、黒丸点のデータプロットは、面直磁場(垂直磁場)に対する磁化の温度依存性を示し、黒四角点のデータプロットは、面内磁場に対する磁化の温度依存性を示す。
 図7に示すように、本実施例の強磁性/非磁性多層膜/強誘電体マルチフェロイック構造の積層構造体は、室温において面直磁場を印加したときに面内磁場を印加した時よりも大きな磁化が得られていることから、面直磁化配向していることが分かる。このマルチフェロイック構造の積層構造体を冷却すると280K 付近で磁化の不連続なとびが見られる。また、180K付近においても同様の飛びが観測される。これらの磁化の飛びはBaTiO3のtetragonal 相からorthorhombic相、orthorhombic 相からrhombohedral 相への構造相転移に伴う界面歪みに起因している。
 さらに、180Kでは、室温とは、対照的に面直磁化よりも面内磁化が大きくなっている。このことは、BaTiO3 の構造相転移に伴う界面歪みにより、垂直磁化から面内磁化に磁化配向スイッチングが生じたことを示している。このことから、温度変化によって磁化配向を垂直、面内と制御できることが分かる。すなわち、積層構造体が設けられる環境温度を制御することによって、多層膜層の磁化配向性を垂直方向と面内方向との間に切り替えられることが実証される。
 次に、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の実施例について、図面を使用しながら説明する。図8は、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の一実施例を示す概略構成図である。
 本実施例のスイッチング素子130は、図8に示すように、[Cu/Ni]多層膜/Cu 中間層/Fe 下地層/BaTiO3 単結晶から構成されるマルチフェロイック構造の積層構造体114を備える。本実施例では、[Cu/Ni]が5周期の多層膜114とBaTiO3 の間にFe 下地層112、Cu中間層113が挿入され、結果、[Cu/Ni]多層膜114がBaTiO3 からなる強誘電体層111上にエピタキシャル成長した構造となっている。そして、強磁性/非磁性多層膜/強誘電体マルチフェロイック構造の積層構造体110の上部Au 層117とBaTiO3層111の背面部、それぞれ電極120を取り付けて電圧制御型の磁化スイッチング素子としている。
 本実施例のスイッチング素子130に電圧を印加することによって、磁化配向性が制御される旨について、図面を使用しながら説明する。図9は、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の一実施例に対して室温での面直磁化曲線を示し、(A)は、電圧を印加しないとき、(B)は、電圧を印加したときの面直磁化曲線を示す。また、図10は、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の一実施例に対して室温での面内磁化曲線を示し、(A)は、電圧を印加しないとき、(B)は、電圧を印加したときの面内磁化曲線を示す。また、図11は、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の一実施例に対して、電圧印加に伴う面直磁化の変化を示す図である。
 面直磁化曲線は、電圧を印加していない場合には、図9(A)に示すように、磁場が0Oe付近で中央側に略矩形の形状を有するので、磁化配向が垂直方向であることが分かる。これに対して、10kV/cm の電界を発生させる電圧を印加すると、面直磁化曲線は、図9(B)に示すように、斜め方向につぶれた形状となるので、磁化配向が面内方向に切り替わったことが分かる。
 一方、面内磁化曲線は、電圧を印加していない場合には、図10(A)に示すように、斜め方向につぶれた形状となるので、磁化配向が垂直方向であることが分かる。これに対して、10kV/cm の電界を発生させる電圧を印加すると、面内磁化曲線は、図10(B)に示すように、磁場が0Oe付近で中央側に略矩形の形状を有するので、磁化配向が面内方向に切り替わったことが分かる。
 このように、図9に示す面直磁化曲線と図10に示す面内磁化曲線を解析すると、電圧を印加していないときには、磁化配向は、面直磁化となり、電圧を印加することによって、磁化配向が面直磁化から面内磁化に切り替わることが分かる。このことから、電圧を印加することによって、本実施例の積層構造体110を備えるスイッチング素子130の磁化配向を面直から面内に切り替えられることが実証される。
 さらに、図11のグラフの下段に示すように、本実施例のスイッチング素子130に電圧印加のON/OFFを周期的に繰り返すと、電圧のON/OFF に対応して、無磁場状態において、図11のグラフの上段のような磁化信号の周期的な変調が観測される。この磁化信号の周期的な変調は、電圧印加に伴う面直、面内の磁化スイッチングに対応しており、無磁場状態で電圧により磁化配向を面直、面内方向に制御することが可能なスイッチング素子130を構成することができる旨を実証している。
 次に、本実施例のスイッチング素子130に電圧を印加することによって、磁化配向性が制御される旨について、図面を使用しながら説明する。図12は、本発明の一実施形態に係る積層構造体を備えるスイッチング素子の一実施例に対して、電圧による面直上向き、下向きの間の磁化反転制御を行った際における面直磁化の変化を示す図である。なお、図12において、黒丸点のデータプロットが電圧を印加していない時の磁化の磁場依存性を示し、黒四角点のデータプロットが図中の矢印を示した磁場で電圧を印加した時の面直磁化の変化を示す。
 図12に示すように、電圧を印加していない時の磁場の保磁力は、約100Oe である。次に、正の飽和磁化状態から磁場を減少させながら磁化を記録し、所定の負の微小値となる-33Oe のときに磁場の掃引を一時停止し、パルス幅1秒の10kV/cm の電界を印加する。その後、さらに磁場を負の飽和磁化状態まで減少させながら磁化を記録した。
 その結果が図12に示す黒四角点のデータプロットとして示されている。磁場の保磁力の1/2 以下の大きさの磁場である-33Oe において、電圧を印加することで磁化が直ちに減少し、電圧印加により、垂直上向きから垂直下向きに磁化反転された旨が分かる。このことから、積層構造体110の多層膜層114に対して所定の方向に連続的に大きさが変化する磁場が更に印加され、当該磁場の大きさが0から所定の負の微小値(本実施例では、-33Oe)となった際に、電圧を印加することによって、多層膜層の磁化配向を垂直方向上向きから垂直方向下向きに180度の反転制御が可能であることが分かる。
 なお、上記のように本発明の一実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。
 例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、積層構造体、スイッチング素子、及び磁気デバイスの構成、動作も本発明の一実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。
10、110 積層構造体、11、111 強誘電体層、12、112 下地層、13、113 中間層、14、114 多層膜層、15、15a、15b、15c、115 非磁性体層、16、16a、16b、16c、116 磁性体層、17、117 金属膜層、20、20a、20b、120 電極、22、122 電源、30、130 スイッチング素子、100 磁気ヘッド(磁気デバイス)、200 スピントランジスタ(磁気デバイス)、300 偏光制御発光素子(磁気デバイス)、S11 熱処理工程、S12 下地層積層工程、S13 中間層積層工程、S14 多層膜層積層工程、S15 金属膜層積層工程

Claims (11)

  1.  強誘電性と強磁性とを併せ持つマルチフェロイック構造の積層構造体であって、
     前記強誘電性を有する強誘電体からなる強誘電体層と、
     前記強誘電体と格子整合性が良い金属を主成分とし、前記強誘電体層の一面に積層される下地層と、
     非磁性体を主成分とし、前記下地層の一面に積層される中間層と、
     強磁性体を主成分とする強磁性体層と前記非磁性体を主成分とする非磁性体層とを互い違いに少なくとも3周期以上を前記中間層の一面に積層させて構成される強磁性/非磁性の多層膜層と、を備えることを特徴とする積層構造体。
  2.  前記強誘電体層を構成する前記強誘電体がチタン酸バリウムであり、前記下地層を構成する前記金属が鉄であり、前記中間層及び前記非磁性体層を構成する前記非磁性体が銅であり、及び前記磁性体層を構成する前記磁性体がニッケルであることを特徴とする請求項1に記載の積層構造体。
  3.  前記多層膜層は、前記非磁性体層の厚さが前記強磁性体層の厚さより大きい構成となっていることを特徴とする請求項1又は請求項2に記載の積層構造体。
  4.  電源に接続される電極と、
     前記電極の間に設けられる請求項1乃至請求項3の何れか1項に記載の積層構造体と、を備えることを特徴とするスイッチング素子。
  5.  前記電源から電圧を印加することによって、前記積層構造体に備わる磁性体層と非磁性体層からなる多層膜層の磁化配向を切換可能な構成となっていることを特徴とする請求項4に記載のスイッチング素子。
  6.  前記多層膜層に対して所定の方向に連続的に大きさが変化する磁場が更に印加され、
     前記磁場の大きさが0から所定の負の微小値となった際に、前記電源から電圧を印加することによって、前記多層膜層の磁化配向を切換可能な構成となっていることを特徴とする請求項5に記載のスイッチング素子。
  7.  前記積層構造体が設けられる環境温度を所定温度まで変動させることによって、前記積層構造体に備わる多層膜層の磁化配向を切換可能な構成となっていることを特徴とする請求項4乃至請求項6の何れか1項に記載のスイッチング素子。
  8.  請求項4乃至請求項7の何れか1項に記載のスイッチング素子を備える磁気デバイス。
  9.  前記スイッチング素子が磁気ヘッド、スピントランジスタ、偏光制御発光素子、又は微小モータの少なくとも何れかに設けられることを特徴とする請求項8に記載の磁気デバイス。
  10.  強誘電性と強磁性とを併せ持つマルチフェロイック構造の積層構造体の製造方法であって、
     前記強誘電性を有する強誘電体からなる強誘電体層を熱処理する熱処理工程と、
     前記強誘電体と格子整合性が良い金属を主成分とする下地層を前記強誘電体層の一面にエピタキシャル成長させて積層させる下地層積層工程と、
     非磁性体を主成分とする中間層を前記下地層の一面にエピタキシャル成長させて積層させる中間層積層工程と、
     強磁性体を主成分とする強磁性体層と前記非磁性体を主成分とする非磁性体層とを互い違いに少なくとも3周期以上を積層させて構成される強磁性/非磁性の多層膜層を、前記中間層の一面にエピタキシャル成長させて積層させる多層膜層積層工程と、を含むことを特徴とする積層構造体の製造方法。
  11.  前記強誘電体層を構成する前記強誘電体がチタン酸バリウムであり、前記下地層を構成する前記金属が鉄であり、前記中間層及び前記非磁性体層を構成する前記非磁性体が銅であり、及び前記磁性体層を構成する前記磁性体がニッケルであることを特徴とする請求項10に記載の積層構造体の製造方法。
PCT/JP2015/055885 2014-02-27 2015-02-27 積層構造体、スイッチング素子、磁気デバイス、及び積層構造体の製造方法 WO2015129865A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/120,697 US20170178780A1 (en) 2014-02-27 2015-02-27 A multiferroic laminated structure, a switching element, a magnetic device and a method for manufacturing a laminated structure
CN201580011040.9A CN106062901A (zh) 2014-02-27 2015-02-27 层叠结构体、开关元件、磁装置、及层叠结构体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-036216 2014-02-27
JP2014036216A JP2015162536A (ja) 2014-02-27 2014-02-27 積層構造体、スイッチング素子、磁気デバイス、及び積層構造体の製造方法

Publications (1)

Publication Number Publication Date
WO2015129865A1 true WO2015129865A1 (ja) 2015-09-03

Family

ID=54009178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055885 WO2015129865A1 (ja) 2014-02-27 2015-02-27 積層構造体、スイッチング素子、磁気デバイス、及び積層構造体の製造方法

Country Status (4)

Country Link
US (1) US20170178780A1 (ja)
JP (1) JP2015162536A (ja)
CN (1) CN106062901A (ja)
WO (1) WO2015129865A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106679228B (zh) * 2016-11-18 2021-11-23 南方科技大学 制冷器件及其制备方法
CN111554463B (zh) * 2020-05-11 2021-09-24 电子科技大学 一种宽频低涡流损耗的人工导体
CN111613718B (zh) * 2020-05-26 2023-05-09 中国人民解放军国防科技大学 一种增强型薄膜磁性可调结构
CN112767979B (zh) * 2020-12-28 2023-10-27 西安交通大学 一种磁多层膜结构及自旋转移矩磁随机存储器
US20230240080A1 (en) * 2022-01-25 2023-07-27 Eagle Technology, Llc Multiferroic memory with piezoelectric layers and related methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091665A (ja) * 1998-09-09 2000-03-31 Nec Corp 磁気抵抗効果膜及びその製造方法
JP2001084756A (ja) * 1999-09-17 2001-03-30 Sony Corp 磁化駆動方法、磁気機能素子および磁気装置
JP2002193700A (ja) * 2000-12-27 2002-07-10 Suzuki Motor Corp 窒化鉄薄膜及びその製造方法
JP2012104758A (ja) * 2010-11-12 2012-05-31 Tomoyasu Taniyama スピン偏極率制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0914762D0 (en) * 2009-08-24 2009-09-30 Univ Glasgow Fluidics apparatus and fluidics substrate
WO2011121777A1 (ja) * 2010-03-31 2011-10-06 株式会社 東芝 磁気抵抗素子及び磁気メモリ
CN103378286B (zh) * 2012-04-19 2017-12-01 新科实业有限公司 薄膜压电元件及其制造方法、磁头折片组合及磁盘驱动器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000091665A (ja) * 1998-09-09 2000-03-31 Nec Corp 磁気抵抗効果膜及びその製造方法
JP2001084756A (ja) * 1999-09-17 2001-03-30 Sony Corp 磁化駆動方法、磁気機能素子および磁気装置
JP2002193700A (ja) * 2000-12-27 2002-07-10 Suzuki Motor Corp 窒化鉄薄膜及びその製造方法
JP2012104758A (ja) * 2010-11-12 2012-05-31 Tomoyasu Taniyama スピン偏極率制御方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RYOTA SHIINA ET AL.: "Electric field control of magnetic anisotropy of [Cu/Ni] multilayer/BaTi03(100) heterostructures", DAI 61 KAI JSAP SPRING MEETING KOEN YOKOSHU, 3 March 2014 (2014-03-03), pages 10 - 020 *
YASUHIRO SHIRAHATA ET AL.: "Correlation between Cu/Ni thickness ratio, repetition cycle and magneict properties of Cu/Ni multilayered films on GaAs(001", ABSTRACTS OF THE MEETING OF THE PHYSICAL SOCIETY OF JAPAN, vol. 68, no. 1 *

Also Published As

Publication number Publication date
CN106062901A (zh) 2016-10-26
JP2015162536A (ja) 2015-09-07
US20170178780A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP4533837B2 (ja) 電圧制御磁化反転記録方式のmram素子及びそれを利用した情報の記録及び読み出し方法
WO2015129865A1 (ja) 積層構造体、スイッチング素子、磁気デバイス、及び積層構造体の製造方法
JP5597899B2 (ja) 磁気抵抗素子および磁気メモリ
JP6135018B2 (ja) 磁気抵抗素子および磁気メモリ
JP5360774B2 (ja) 磁化制御方法、情報記憶方法、情報記憶素子及び磁気機能素子
JP5499264B2 (ja) 磁気抵抗素子および磁気メモリ
JP6119051B2 (ja) 磁気抵抗素子および磁気メモリ
US7994555B2 (en) Spin transistor using perpendicular magnetization
JP2008034087A (ja) マルチフェロイック記録媒体を使用する電界アシスト書き込み
US9419209B2 (en) Magnetic and electrical control of engineered materials
JP6355162B2 (ja) ハーフメタル強磁性体接合構造、これを用いた5層磁気トンネル接合素子、及び磁気メモリ装置
US10263181B2 (en) Laminated structure and spin modulation element
CN104851973B (zh) 一种利用电场写入数据的四态磁存储单元
JP2018014498A (ja) 積層構造体、スイッチング素子、磁気デバイスおよび高周波デバイス
JP3932356B2 (ja) 不揮発性固体磁気メモリの記録方法
WO2012014415A1 (ja) 岩塩構造薄膜をシードとして用いた低抵抗かつ高効率のスピン注入素子
JP6404065B2 (ja) 複合素子およびその製造方法ならびに情報処理装置
JP2010212342A (ja) 電圧誘起磁化反転を用いた磁気メモリとその製造方法
JP2019067900A (ja) 積層構造体、スピン変調素子及び磁気記録システム
US10355201B2 (en) Laminated structure and spin modulation element
US10461244B2 (en) Laminated structure and spin modulation element
WO2012081694A1 (ja) スピン伝導構造、メモリ素子、スピントランジスタ及びスピン伝導構造の形成方法
JP2018206859A (ja) 積層構造体及びスピン変調素子
JP2018206858A (ja) 積層構造体及びスピン変調素子
JP2018101743A (ja) 構造体、磁気デバイスおよび高周波デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15120697

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15754855

Country of ref document: EP

Kind code of ref document: A1