WO2012081694A1 - スピン伝導構造、メモリ素子、スピントランジスタ及びスピン伝導構造の形成方法 - Google Patents

スピン伝導構造、メモリ素子、スピントランジスタ及びスピン伝導構造の形成方法 Download PDF

Info

Publication number
WO2012081694A1
WO2012081694A1 PCT/JP2011/079168 JP2011079168W WO2012081694A1 WO 2012081694 A1 WO2012081694 A1 WO 2012081694A1 JP 2011079168 W JP2011079168 W JP 2011079168W WO 2012081694 A1 WO2012081694 A1 WO 2012081694A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor
spin
group
heusler alloy
ferromagnetic
Prior art date
Application number
PCT/JP2011/079168
Other languages
English (en)
French (fr)
Inventor
宏平 浜屋
憲太郎 澤野
Original Assignee
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学 filed Critical 国立大学法人九州大学
Priority to JP2012548845A priority Critical patent/JPWO2012081694A1/ja
Publication of WO2012081694A1 publication Critical patent/WO2012081694A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66984Devices using spin polarized carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/193Magnetic semiconductor compounds
    • H01F10/1936Half-metallic, e.g. epitaxial CrO2 or NiMnSb films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/265Magnetic multilayers non exchange-coupled
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a spin conduction structure of an all single crystal composed of ferromagnetic metal / semiconductor / ferromagnetic metal, a spin conduction element using the same, and the like.
  • CMOS complementary metal-oxide-semiconductor
  • MRAM magnetic random access memory
  • MTJ Magnetic Tunnel Junction
  • the magnitude of the output current value is determined in accordance with the magnetization arrangement of the two ferromagnetic electrodes in parallel or antiparallel, and the memory operation (binarization) of “1” or “0” is realized with non-volatility. .
  • one element is a 1-bit memory cell, and in order to increase the number of bits, parallel arrangement (high integration) by miniaturization of MTJ elements is conceivable.
  • the instability of magnetization due to thermal disturbance becomes obvious as the size and thickness of the ferromagnetic electrode are reduced. Therefore, the development of a spin transistor using a semiconductor channel is important for increasing the number of bits.
  • a semiconductor spin transistor has a lateral structure as a basic feature, it is possible to achieve an extremely short channel aiming at extremely low power consumption, and an efficient connection with many metal spintronic devices having a stacked vertical structure such as the MTJ described above. Fusion and three-dimensional high integration are difficult, and there are many problems to be overcome in terms of structure.
  • Patent Document 1 As a technique related to a semiconductor spin transistor, a technique disclosed in Patent Document 1 is disclosed.
  • the technique disclosed in Patent Document 1 includes a first source / drain layer including a layer formed of a magnetic material, and a layer formed on the first source / drain layer and formed of a semiconductor.
  • a protrusion structure including a channel layer, a second source / drain layer formed on the channel layer and including a layer formed of a magnetic material, and formed on a side surface of the channel layer.
  • a vertical spin transistor comprising a gate insulating film and a gate electrode formed on a surface of the gate insulating film.
  • Non-Patent Document 1 is a technique for forming an atomic layer control interface between a single crystal ferromagnetic alloy Fe 3 Si and a group IV semiconductor Si
  • Non-Patent Document 2 is an Fe 3 Si / Si interface. This is a technique of Schottky junction type electric spin injection and detection by controlling the conduction of the.
  • K.Hamaya, K.Ueda, Y.Kishi, Y.Ando, T.Sadoh, and M.Miyao "Epitaxial ferromagnetic Fe3Si / Si (111) structures with high-quality heterointerfaces", APPLIED PHYSICS LETTERS, AMERICAN PHY , Vol.93, No.13, 29 September 2008 Y.ANDO, K.Hamaya, K.Kasahara, Y.Kishi, K.Ueda, K.Sawano, T.Sadoh, and M.Miyao, "Electrical injection and detection of spin-polarized electrons in sillicon throuh an Fe3 / Schottky tunnel barrier ", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, Vol.94, 182105, 5 May 2009
  • Patent Document 1 describes that the surface of a semiconductor layer is a (100) plane or a (110) plane in a vertical spin transistor in which a semiconductor is sandwiched between magnetic bodies.
  • a compound is formed between the ferromagnetic metal and the semiconductor, and a defect or a reaction layer is generated at the heterointerface, so that spin injection may not be performed efficiently.
  • Non-Patent Documents 1 and 2 it has been established by the techniques of Non-Patent Documents 1 and 2 that a high-quality ferromagnetic Heusler alloy is grown on a group IV semiconductor, but there is a technique for growing a high-quality IV group semiconductor on a ferromagnetic Heusler alloy. Since it has not been established, a vertical spin memory device or a vertical spin transistor having a high-quality, defect-free heterointerface has not been realized.
  • the present invention provides a technology for epitaxially growing a group IV semiconductor (111) surface on a ferromagnetic Heusler alloy (111) surface with high quality, and a semiconductor element using the technology.
  • the spin conduction structure disclosed in the present application is a single crystal ferromagnetic Heusler alloy having a group IV semiconductor as a composition element and having a Miller index (111) plane as a growth plane, and an IV having a Miller index (111) plane as a growth plane.
  • a junction part in which a group semiconductor is laminated is formed, and the junction part has at least a junction structure in which the outermost surface of the ferromagnetic Heusler alloy is the group IV semiconductor surface. is there.
  • a junction is formed by laminating a group IV semiconductor (111) surface on a single crystal ferromagnetic Heusler alloy (111) surface. Since it has at least a junction structure in which the outermost surface of the magnetic Heusler alloy is a group IV semiconductor surface, the group IV semiconductor (111) can be epitaxially grown on the ferromagnetic Heusler alloy (111) at the atomic level.
  • the group IV semiconductor (111) is epitaxially grown at the atomic level on the ferromagnetic Heusler alloy (111), so that the metal and the metal are formed by a silicide (germanide) reaction that is expected to be more stable than crystallization of the group IV semiconductor.
  • a heterogeneous compound bonded to a semiconductor is not formed, and a high-quality, defect-free and flat planar heterointerface can be formed between a ferromagnetic Heusler alloy and a group IV semiconductor. There is an effect that spin can be efficiently injected between the magnetic Heusler alloy and the group IV semiconductor.
  • the outermost surface of the junction structure is the group IV semiconductor surface having a plurality of layers at the atomic level, and the group IV semiconductor surface is formed on the entire surface.
  • the group IV semiconductor surface functions as a high-quality substrate, and is formed on the junction structure. There is an effect that the group IV semiconductor can be grown with high quality.
  • the spin conduction structure disclosed in the present application is obtained by further laminating a single crystal ferromagnetic Heusler alloy having a Miller index (111) plane as a growth surface on the group IV semiconductor laminated on the ferromagnetic Heusler alloy. It is characterized by forming.
  • a single crystal ferromagnetic Heusler alloy (111) surface is further laminated on a group IV semiconductor laminated on a ferromagnetic Heusler alloy to form a junction.
  • the ferromagnetic Heusler alloy (111) can be epitaxially grown at the atomic level on the stacked group IV semiconductor (111).
  • the ferromagnetic Heusler alloy (111) is epitaxially grown on the group IV semiconductor (111) at the atomic level, so that the metal and the metal are formed by a silicide (germanide) reaction that is expected to be more stable than crystallization of the group IV semiconductor.
  • Ferromagnetic Heusler alloy (111) / Group IV semiconductor (111) / ferromagnetic Heusler alloy having a hetero interface having high quality, defect-free, and flatness without forming a heterogeneous compound bonded to a semiconductor It can be used for a semiconductor element (for example, transistor, memory, etc.) that can form a vertical structure of (111) and can efficiently inject spin between a ferromagnetic Heusler alloy and a group IV semiconductor. There is an effect that can be done.
  • the stacked group IV semiconductor (111) functions as a single crystal substrate having a flat surface. Therefore, the single crystal ferromagnetic Heusler alloy (111) can be epitaxially grown with high accuracy.
  • the memory element disclosed in the present application is a memory element using the spin conduction structure, wherein the spin direction in one ferromagnetic Heusler alloy layer of the spin conduction structure is fixed, and the other ferromagnetic Heusler alloy layer is provided.
  • the direction of the spin is reversible, and a current is passed in the stacking direction of the spin conduction structure to output a value corresponding to the spin direction of each layer.
  • the spin direction in one ferromagnetic Heusler alloy layer of the spin conduction structure is fixed, and the spin direction in the other ferromagnetic Heusler alloy layer can be reversed. Since a current is supplied in the stacking direction of the spin conduction structure and a value corresponding to the spin direction of each layer is output, a memory element using a vertical structure of ferromagnetic metal / semiconductor / ferromagnetic metal is realized. There is an effect that can be.
  • the memory element disclosed in the present application is characterized in that a gate voltage is applied to the group IV semiconductor layer, and a value based on an output characteristic corresponding to the value of the gate voltage is output.
  • the gate voltage is applied to the group IV semiconductor layer, and the value based on the output characteristics corresponding to the value of the gate voltage is output, so that the memory element is multi-valued.
  • the circuit configuration can be simplified and miniaturized.
  • the spin transistor disclosed in the present application is a spin transistor using the spin conduction structure, wherein a gate voltage is applied to the group IV semiconductor layer, and one ferromagnetic Heusler alloy layer in the spin conduction structure is used as a source layer. The other ferromagnetic Heusler alloy layer is used as a drain layer.
  • a gate voltage is applied to the group IV semiconductor layer, one ferromagnetic Heusler alloy layer in the spin conduction structure is used as a source layer, and the other ferromagnetic Heusler alloy is formed. Since this layer is a drain layer, it is possible to realize a spin transistor in which spin injection efficiency is remarkably improved by a high-quality, defect-free heterointerface.
  • the method of forming a spin transport structure disclosed in the present application includes a single element including a group IV semiconductor having a Miller index (111) plane as a growth plane on a group IV semiconductor substrate having a Miller index (111) as a growth plane.
  • a single crystal ferromagnetic Heusler alloy (111) surface is laminated on a group IV semiconductor (111) surface substrate, and a ferromagnetic Heusler alloy is composed.
  • the supply of the metal among the elements to be stopped is stopped, and the supply of the group IV semiconductor is stopped among the elements constituting the ferromagnetic Heusler alloy in a state where at least the junction structure having the IV group semiconductor surface as the outermost surface is formed.
  • the group IV semiconductor is stacked on at least the group IV semiconductor surface formed on the outermost surface, it is possible to epitaxially grow a single crystal of the group IV semiconductor (111) on the ferromagnetic Heusler alloy (111) at the atomic level. Obviously, the group IV semiconductor is stacked on at least the group IV semiconductor surface formed on the outermost surface, it is possible to epitaxially grow a single crystal of the group IV semiconductor (111) on the ferromagnetic Heusler alloy (111) at the atomic level. Become.
  • a silicide (germanide) reaction that is originally expected to be more stable than crystallization of a group IV semiconductor by epitaxially growing a group IV semiconductor (111) single crystal on a ferromagnetic Heusler alloy (111) at the atomic level. Does not form a heterogeneous compound in which a metal and a semiconductor are bonded to each other, and forms a hetero interface having high quality, defect-free and flatness on a ferromagnetic Heusler alloy, and a ferromagnetic Heusler alloy and a group IV. There is an effect that it is possible to form a spin conduction structure in which single crystal group IV semiconductors capable of efficiently injecting spins with a semiconductor are stacked.
  • the semiconductor supply stop step includes forming a plurality of layers of the group IV semiconductor surface on an outermost surface at an atomic level, and forming the group IV semiconductor on the entire outermost surface of the junction structure. The supply of the group IV semiconductor is stopped with the surface formed.
  • the group IV semiconductor surface functions as a high-quality substrate, and the junction structure is formed.
  • the group IV semiconductor can be grown with high quality.
  • the first ferromagnetic lamination step is performed at a substrate temperature of 0 ° C. or more and 200 ° C. or less
  • the semiconductor lamination step is performed at a substrate temperature of 300 ° C. or more and 400 ° C. or less. It is characterized by doing.
  • the substrate and the ferromagnetic Heusler alloy react.
  • the effect is that the ferromagnetic Heusler alloy can be epitaxially grown at the atomic level while suppressing this.
  • the inventors have obtained the knowledge that the substrate and the ferromagnetic Heusler alloy do not react at 400 ° C. or less after the growth of the ferromagnetic Heusler alloy is completed, the IV is obtained at 300 ° C. or more and 400 ° C. or less.
  • the substrate and the ferromagnetic Heusler alloy do not react, and the group IV semiconductor can be efficiently grown. Further, in the first ferromagnetic lamination process, even when the substrate temperature is very low, such as 0 ° C. to room temperature, the reaction between the substrate and the ferromagnetic Heusler alloy is suppressed, and the ferromagnetic Heusler alloy is suppressed. Can be epitaxially grown at the atomic level, so that a junction structure with higher accuracy can be formed.
  • the substrate temperature is temporarily set to 200 ° C. or more and less than 400 ° C., and a plurality of group IV semiconductors are stacked at an atomic level, and then the substrate temperature is set to 300 ° C. As described above, the IV group semiconductor is stacked at 400 ° C. or lower.
  • the substrate temperature is not suddenly increased to 400 ° C. in the semiconductor lamination process, but is temporarily 200 ° C. or higher and lower than 400 ° C. (lower temperature of 200 ° C. is preferable).
  • the surface of the ferromagnetic Heusler alloy is The temperature unstable portion is stabilized by a plurality of layers of the IV group semiconductor, and the subsequent epitaxial growth of the IV group semiconductor can be performed efficiently and stably while maintaining flatness.
  • the spin conduction structure forming method disclosed in the present application includes a second ferromagnetic layer in which the ferromagnetic Heusler alloy having a Miller index (111) plane as a growth surface is further laminated on the group IV semiconductor laminated in the semiconductor lamination step. And a laminating step.
  • a single crystal ferromagnetic Heusler alloy (111) surface is laminated on a group IV semiconductor laminated on a ferromagnetic Heusler alloy.
  • the ferromagnetic Heusler alloy (111) can be epitaxially grown on the group IV semiconductor (111) at the atomic level.
  • a silicide (germanide) reaction that is originally expected to be more stable than crystallization of a group IV semiconductor by epitaxially growing a group IV semiconductor (111) single crystal on a ferromagnetic Heusler alloy (111) at the atomic level.
  • a heterogeneous compound in which a metal and a semiconductor are bonded to each other, and has a high quality, defect-free, flat heterogeneous interface with a ferromagnetic Heusler alloy (111) / IV group semiconductor (111) / strong
  • a semiconductor element for example, transistor, memory, etc.
  • the laminated group IV semiconductor (111) is: Since it can function as a single crystal substrate having a flat surface, the single crystal ferromagnetic Heusler alloy (111) can be epitaxially grown with high accuracy.
  • the method for forming a spin transport structure disclosed in the present application includes a doping step of forming a doping layer after the semiconductor supply stop step.
  • the method for forming a spin conduction structure disclosed in the present application includes a doping process for forming a doping layer after the semiconductor supply stop process, the shot at the interface between the ferromagnetic Heusler alloy and the group IV semiconductor is performed.
  • FIG. 3 is a flowchart illustrating a method for forming a spin transport structure according to an embodiment of the present invention. It is the 1st figure showing the formation method of the spin conduction structure concerning the embodiment of the present invention. It is a 2nd figure which shows the formation method of the spin-conduction structure which concerns on embodiment of this invention.
  • FIG. 1 is a diagram showing a spin conduction structure according to this embodiment
  • FIG. 2 is a schematic diagram of a crystal lattice of a ferromagnetic Heusler alloy and a group IV semiconductor according to this embodiment
  • FIG. 3 is a strong diagram according to this embodiment.
  • FIG. 4 is a flow chart showing a method for forming a spin conduction structure according to the present embodiment
  • FIG. 5 is a view showing the atomic arrangement of the (100) plane and (111) plane of a magnetic Heusler alloy and a group IV semiconductor.
  • FIG. 6 is a second diagram illustrating a method for forming a spin transport structure according to the present embodiment
  • FIG. 7 is a diagram illustrating the spin transport structure according to the present embodiment
  • FIG. 8 shows a case where the outermost surface is a single element of a group IV semiconductor
  • FIG. 8 is a third diagram showing a method for forming a spin conduction structure according to this embodiment
  • FIG. 9 is a diagram of the spin conduction structure according to this embodiment.
  • FIG. 10 and FIG. 10 showing the forming method are the present embodiment.
  • FIG. 11 is a fifth flowchart illustrating a method for forming a spin transport structure according to the present embodiment
  • FIG. 12 is a diagram illustrating the spin transport structure according to the present embodiment. It is a schematic diagram of the used semiconductor element.
  • the spin transport structure according to the present embodiment is a vertical structure as shown in FIG. 1, and a ferromagnetic Heusler alloy (here, Fe 3 Si) is formed on a group IV semiconductor (here, SiGe substrate) substrate 11. 12), a SiGe semiconductor 13 is laminated on the laminated ferromagnetic Heusler alloy 12, and a ferromagnetic Heusler alloy 14 (here, Fe 3 Si) is laminated on the SiGe semiconductor 13. It is.
  • a ferromagnetic Heusler alloy here, Fe 3 Si
  • group IV semiconductor here, SiGe substrate
  • a SiGe semiconductor 13 is laminated on the laminated ferromagnetic Heusler alloy 12
  • a ferromagnetic Heusler alloy 14 here, Fe 3 Si
  • FIG. 2 shows a crystal structure 21 of DO 3 ordered Fe 3 Si and a crystal structure 22 of SiGe.
  • the atoms shown in black are Si (or Ge) atoms
  • the atoms shown in white are Fe atoms.
  • the crystal structure 21 of Fe 3 Si is viewed from the cross section 23 of (111)
  • the period of the laminated structure is (Fe ⁇ 3 + Si ⁇ 1).
  • FIG. 3 shows the atomic arrangement of the (100) plane and (111) plane of Fe 3 Si and SiGe.
  • 3A shows the atomic arrangement of the Fe 3 Si (100) plane
  • FIG. 3B shows the atomic arrangement of the SiGe (100) plane
  • FIG. 3C shows the Fe arrangement
  • 3 shows the atomic arrangement of the Si (111) plane
  • FIG. 3D shows the atomic arrangement of the SiGe (111) plane.
  • the black atoms are Si (or Ge) atoms
  • the white atoms are Fe atoms.
  • the atomic matching on the (100) plane is not good, and if SiGe is grown on the Fe surface, the silicide between Fe / Si (Ge) is more stable than crystallization of SiGe. From the (germanide) reaction, a heterogeneous compound such as FeSi or FeGe is formed.
  • SiGe is crystallized on Fe 3 Si by using the (111) plane with very good atomic matching as the growth plane. Furthermore, in that case, in order to grow SiGe, a device is adopted in which the outermost surface of Fe 3 Si is the Si surface. That is, as can be seen from FIG. 2 and FIGS. 3C and 3D, the atomic plane of Fe 3 Si (111) that can be bonded to the SiGe (111) plane is a single element Fe plane or a single element. Therefore, SiGe (111) is crystallized in a state where the outermost surface of Fe 3 Si is the Si surface.
  • a method for forming a spin conduction structure according to the present embodiment will be described with reference to FIGS.
  • a first ferromagnetic Heusler alloy lamination step is performed on a Si or Ge (111) substrate (S41).
  • Fe 3 Si (111) is grown by the MBE method (see FIG. 5). At this time, the temperature of the substrate is 0 ° C. or more and 200 ° C.
  • Fe and Si are 2.12 nm / min and 1.20 nm / min, respectively. Evaporate at the same time keeping the stoichiometric composition (3: 1) at the growth rate. As shown in FIG. 5, by this process, Fe surface ⁇ 3 and Si surface ⁇ 1 are periodically repeated on a Si or Ge (111) substrate to grow Fe 3 Si.
  • each layer all layers are not necessarily formed of a single element Fe surface or a single element Si surface as shown in FIG. 5, and a mixed surface of Fe and Si is also formed with a predetermined probability. However, in the present embodiment, at least a region where the structure shown in FIG. 5 is formed is sufficient.
  • the substrate temperature is set to 0 ° C. or higher and 200 ° C. or lower, more preferably 0 ° C. or higher and 130 ° C. or lower, so that the Si or Ge (111) substrate and Fe 3 Si do not react with each other. It can be epitaxially grown at the level. Therefore, it is possible to realize a hetero interface having high quality, no defect, and flatness. Further, after the growth of Fe 3 Si and once the bonding is completed, the inventors have found that even if the substrate temperature is increased to 400 ° C., the substrate of Si or Ge (111) does not react with Fe 3 Si. Has been obtained. Therefore, the substrate temperature can be raised to about 400 ° C. in subsequent processing.
  • a metal composition supply stop process is performed (S42).
  • the metal composition refers to the composition of Fe in Fe 3 Si.
  • the supply of Fe composition is stopped by shutter control of the MBE apparatus.
  • Si composition semiconductor composition
  • S44 semiconductor composition supply stop process
  • the outermost surface is not necessarily a single-element Si surface as shown in FIG. 6 and Fe may be formed in a mixed manner, but in this embodiment, at least FIG. It suffices if there is a region where the structure shown in FIG.
  • the Si supply stop timing may be adjusted to make the outermost surface completely Si. That is, by laminating a single element Si of a plurality of layers (for example, 2 to 3 layers) at the atomic level and making the entire outermost surface into a Si surface, this Si surface functions as a high-quality substrate, On top, SiGe can be grown with high quality (see FIG. 7).
  • the group IV semiconductor stacking step is performed with the Si surface being the outermost surface (S45).
  • SiGe is grown on the Fe 3 Si laminated up to the previous step.
  • it is once grown at a low temperature (200 ° C. or more and less than 400 ° C., more preferably about 200 ° C.) (for example, about 1 nm), and then 300 SiGe is grown at a temperature not lower than 400 ° C. and not higher than 400 ° C.
  • a low temperature 200 ° C. or more and less than 400 ° C., more preferably about 200 ° C.
  • 300 SiGe is grown at a temperature not lower than 400 ° C. and not higher than 400 ° C.
  • the substrate temperature By setting the substrate temperature to about 400 ° C., it is possible to suppress the reaction between the Si or Ge (111) substrate and Fe 3 Si as described above, and to relatively promote the growth of SiGe.
  • SiGe is once grown at a low temperature of about 200 ° C. for about 1 nm to stabilize the surface in a flattened state. That is, this SiGe of about 1 nm plays a role like a cap. Thereafter, by raising the substrate temperature to 400 ° C. and growing SiGe, SiGe can be efficiently grown while maintaining flatness.
  • FIG. 8 shows a RHEED (Reflectance High Energy Electron Diffraction) pattern of the Ge thin film when the Ge thin film is grown on Fe 3 Si. As the pattern shows, it can be seen that the single crystal growth can be realized while maintaining the flatness of the Ge thin film.
  • RHEED Reflectance High Energy Electron Diffraction
  • the second ferromagnetic Heusler alloy stacking step is performed in the same manner as in S41 (S46), and the process is terminated (see FIG. 9).
  • a vertical spin conduction structure can be formed with all single crystals as shown in FIG.
  • SiGe (111) can be epitaxially grown on Fe 3 Si (111)
  • Fe and SiGe are bonded to each other by a silicide reaction that is expected to be more stable than crystallization of SiGe.
  • the formation of a compound is prevented, the interface becomes a hetero interface having high quality, no defects, and flatness, and the spin injection efficiency is very high, and it can be used as a spin memory element or a spin transistor described later. It becomes possible.
  • the Schottky barrier width at the Fe 3 Si / SiGe interface may be controlled using a delta doping technique.
  • a method for forming a spin conduction structure including a delta doping process will be described with reference to FIGS.
  • a doping step (S95) is performed after the semiconductor composition supply stop step in step S94. That is, as shown in FIG. 11, in a state where the Si surface is the outermost surface and a substrate on which a SiGe layer can be reliably grown is formed by several nm (in this case, shown as atomic level three layers). The doping layer is inserted at the atomic level. When the doping layer is inserted, a group IV semiconductor stacking process of S96 for epitaxially growing a SiGe layer thereon is performed. Other steps are the same as those in FIG.
  • the width of the Schottky barrier can be reduced, and spin-polarized electrons can be injected efficiently.
  • the ferromagnetic Heusler alloy is Fe 3 Si and the group IV semiconductor is SiGe.
  • the ferromagnetic Heusler alloy may be of any chemical formula of X (3-x) Y x Z,
  • the composition of X is iron (Fe), cobalt (Co), manganese (Mn), nickel (Ni), ruthenium (Ru), rhodium (Rh), etc.
  • the composition of Y is manganese (Mn), iron ( Fe), chromium (Cr), titanium (Ti), vanadium (V), etc.
  • the composition of Z is silicon (Si), germanium (Ge), silicon germanium (Si y Ge (1-y) ), etc. Also good.
  • the value of x is not limited to an integer and may be a decimal (for example, Fe 2.5 Mn 0.5 Si in the case of a decimal) or 0 (for example, Fe 3 in the case of 0). It may be Si). Furthermore, a decimal number between 0 and 1 is entered in the value of y.
  • SiGe semiconductor 13 is used for the semiconductor layer, Si, Ge, Si x Ge (1-x) (x is a decimal number between 0 and 1) may be used.
  • FIG. 12 shows a memory element using the spin conduction structure according to this embodiment.
  • 12A is a schematic diagram of a memory element that outputs binary values
  • FIG. 12B is a schematic diagram of a memory element that outputs multiple values
  • FIG. 12C is a diagram of the memory shown in FIG. 12B. It is a graph which shows an output characteristic.
  • FIG. 12A shows the first Heusler alloy layer 31 as a free layer whose spin direction can be reversed, and the second Heusler alloy layer 33 as a fixed layer whose spin direction is fixed.
  • the IV layer semiconductor layer 32 is sandwiched between the alloy layer 31 and the second Heusler alloy layer 33.
  • This configuration can function as a binary memory on the same principle as in FIG. That is, binary writing and reading are performed using the fact that when the spins are parallel, a large current flows in the stacking direction, and when the spins are antiparallel, only a small current flows in the stacking direction.
  • FIG. 12B includes a voltage application unit 34 that newly applies a gate voltage to the configuration of FIG. That is, by applying a gate voltage to the group IV semiconductor layer 32, a plurality of current values in the stacking direction based on output characteristics corresponding to the gate voltage can be obtained, and the multi-level memory can be functioned. That is, as shown in FIG. 12C, different current values can be obtained depending on whether the spins are parallel or anti-parallel depending on the gate voltage, so that it can be applied as a multi-value memory, and the circuit configuration is Simplification can realize memory miniaturization.
  • the spin transport structure according to the present embodiment can function as a transistor, for example.
  • one Heusler alloy layer is used as a source layer
  • the other Heusler alloy layer is used as a drain layer
  • a gate voltage is applied to the group IV semiconductor layer.
  • the memory element using the spin conduction structure of the present embodiment has a structure in which a semiconductor is sandwiched between ferromagnetic Heusler alloys, it is possible to realize both functions of the memory and the transistor with a single element. .
  • information can be stored according to the spin orientation (function as a memory), and readout control (function as a transistor) can be realized by controlling the gate voltage. Can be realized.
  • the ferromagnetic / semiconductor / ferromagnetic vertical spin conduction structure of the present embodiment can be applied to various semiconductor elements by realizing high quality. Further, according to the present invention, it is possible to operate with extremely low power consumption by using a very short channel, to combine with a metal spintronic device whose main structure is a vertical structure, and to achieve three-dimensional high integration.
  • Fe 3 Si (hereinafter referred to as ferromagnetic Heusler alloy 12 is used as ferromagnetic Heusler alloys 12 and 14).
  • the first Fe 3 Si and the ferromagnetic Heusler alloy 14 are used as the second Fe 3 Si), and Ge is used as the SiGe semiconductor 13. Further, Ge was used as a substrate for growing the first Fe 3 Si.
  • the first Fe 3 Si is terminated at the Si surface (see FIG. 13A) and at the Fe surface (see FIG. 13B).
  • the spin conduction structure was formed, and the RHEED pattern was measured after the formation of the junction of each layer. The result is shown in FIG.
  • FIGS. 14A to 14C show RHEED patterns at the junctions of the respective layers when the termination is Si, and FIGS. 14D to 14F are junctions of the respective layers when the termination is Fe.
  • the RHEED pattern in is shown.
  • FIG. 14A shows an RHEED pattern in the case where the first Fe 3 Si is grown on a Ge (111) substrate by 25 nm at room temperature and the termination is Si. From the pattern, it can be seen that the terminal Si surface can be grown as a single crystal while maintaining flatness.
  • FIG. 14B shows an RHEED pattern when Ge is grown on the first Fe 3 Si at a thickness of 36 nm from 200 ° C. to 400 ° C.
  • FIG. 14C shows a second RHEED pattern on the Ge. The RHEED pattern is shown when Fe 3 Si is grown at room temperature by 10 nm. From the results of FIGS. 14B and 14C, it can be seen that two-dimensional single crystal growth is possible because the junctions in each layer are flat.
  • FIGS. 14D to 14E it can be seen that in the grown Ge layer and the second Fe 3 Si layer, crystal growth with flatness cannot be achieved from the RHEED pattern. This is due to the fact that the end of the first Fe 3 Si is made of Fe, and this result shows the exceptional advantage of the present invention.
  • FIG. 15 shows the case where the outermost surface of the first Fe 3 Si is Fe (FIG. 15 (A)), when Fe and Si are mixed (FIG. 15 (B)), and when Si is used (FIG. 15 (C)), the joint portion is shown, and Ge is grown in each case.
  • the subsequent RHEED pattern is shown (FIGS. 15D to 15F).
  • FIGS. 15A and 15D when the outermost surface of the first Fe 3 Si is Fe, the flatness of the surface at the joint is poor and the quality is poor as in the case of FIG. It has become.
  • FIGS. 15B and 15E since there is a region where Si is the outermost surface, the flatness at the joint is better and the quality is improved compared to the case where the outermost surface is Fe. Yes. However, since there is a region where the outermost surface is Fe, there are some defects.
  • FIGS. 15C and 15F by controlling the timing of stopping the supply of Si, a plurality of layers of Si are laminated at the atomic level, and the entire surface of the joint is Si. The flatness in the part is very good and the quality is remarkably improved.
  • the timing of stopping the supply of Si by controlling the timing of stopping the supply of Si, a plurality of layers (for example, two to three layers) of single element Si are stacked at the atomic level, and the entire surface is made Si. It is clear that the Si surface can function as a high-quality substrate and that Ge can be grown on the junction structure with high quality.
  • FIG. 16 the electron micrograph of the junction part in the case of FIG.15 (C) and (F) is shown. As is apparent from this photograph, it can be visually confirmed that the first Fe 3 Si layer and the Ge layer have a very good flatness and are laminated with high quality without any defects.
  • Group IV semiconductor substrate 12 14 Ferromagnetic Heusler alloy 13 SiGe semiconductor 21 Crystal structure (Fe 3 Si) 22 Crystal structure (SiGe) 23 Section (111) 31 First Heusler Alloy Layer 32 Group IV Semiconductor Layer 33 Second Heusler Alloy Layer 34 Voltage Application Unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Silicon Compounds (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

 強磁性ホイスラー合金(111)面上にIV族半導体(111)面を高品質にエピタキシャル成長させる技術を提供する。本願に係るスピン伝導構造の形成方法は、ミラー指数(111)とするIV族半導体の基板上に、当該IV族半導体を組成の要素に含む単結晶の強磁性ホイスラー合金(X(3-x)Z:ZがIV族半導体に相当する)を積層する第1の強磁性積層工程(S41)と、強磁性ホイスラー合金を組成する要素のうち金属(X(3-x)に相当する)の供給を停止する金属供給停止工程(S42)と、IV族半導体面が最表面に形成された状態(S43)で、強磁性ホイスラー合金を組成する要素のうちIV族半導体(Zに相当する)の供給を停止する半導体供給停止工程(S44)と、最表面に形成されたIV族半導体面に、IV族半導体を積層する半導体積層工程(S45)とを含むものである。

Description

スピン伝導構造、メモリ素子、スピントランジスタ及びスピン伝導構造の形成方法
 本発明は、強磁性金属/半導体/強磁性金属からなる全単結晶のスピン伝導構造及びそれを用いたスピン伝導素子等に関する。
 半導体を用いたLSI技術は、スケーリング則(ムーアの法則:微細化=素子性能の向上)の物理的な限界に直面しつつあり、集積化や高速動作化に伴う消費電力の増大は、デジタル家電や携帯端末等の電子機器の最大の課題となっている。また、半導体素子にとっての致命的な欠点は、電源を切ると情報を失うという揮発性であり、素子を使用しない場合でも電源をオンにしておく必要があるため、電子機器の待機電力の増大が避けられない。そのため、CMOS技術に代わって高度情報化社会における中心を担う不揮発性で高性能の新しい超低消費電力デバイス(Beyond CMOS技術)の実現が望まれている。
 最近、磁気ランダムアクセスメモリ(MRAM)等の技術発展により、スピントロニクス素子と呼ばれる不揮発メモリスイッチング素子が、Beyond CMOS技術の一つとして注目されている。図17に示すように、MRAMの動作機構は、積層型の強磁性トンネル接合(Magnetic Tunnel Junction:MTJ)に積層方向に電圧を印加した場合、強磁性ソース・ドレイン電極間に発現するスピン依存トンネル磁気抵抗効果(TMR)によって、電流値が大きく変化することに依存している。すなわち、2つの強磁性電極の磁化配置が、平行又は反平行に従って出力電流値の大小が決定し、「1」又は「0」のメモリ動作(2値化)が不揮発性を有して実現する。
 この素子では、1素子で1ビットのメモリセルであり、多ビット化をするにはMTJ素子の微細化による並列配置(高集積化)等が考えられる。しかし、MTJを構成する強磁性電極は、微細化及び薄膜化に伴って熱擾乱による磁化の不安定性が顕在化するため、微細化による多ビット化には限界が存在する。そのため、半導体をチャネルとしたスピントランジスタの開発が多ビット化に重要である。
 また、半導体スピントランジスタでは横型の構造を基本とするため、極低消費電力を狙った極短チャネル化、上述のMTJのような積層の縦型構造からなる多くの金属スピントロニクス素子との効率的な融合及び3次元高集積化などが困難であり、構造面で克服すべき課題も山積している。
 半導体スピントランジスタに関する技術として、特許文献1に示す技術が開示されている。特許文献1に示す技術は、磁性体で形成された層を含んでいる第1のソースドレイン層と、前記第1のソースドレイン層上に形成されており、半導体で形成された層を含んでいる、チャネル層と、前記チャネル層上に形成されており、磁性体で形成された層を含んでいる、第2のソースドレイン層と、を含む突起構造と、前記チャネル層の側面に形成されたゲート絶縁膜と、前記ゲート絶縁膜の表面に形成されたゲート電極と、を具備することを特徴とする縦型スピントランジスタである。
 また、発明者により非特許文献1及び2に示す技術が開示されている。非特許文献1に示す技術は、単結晶の強磁性合金FeSiとIV族半導体Siの原子層制御界面を形成する技術であり、非特許文献2に示す技術は、FeSi/Si界面の伝導制御によるショットキー接合型の電気的スピン注入及び検出の技術である。
特開2008-226901号公報
K.Hamaya, K.Ueda, Y.Kishi, Y.Ando, T.Sadoh, and M.Miyao, "Epitaxial ferromagnetic Fe3Si/Si(111) structures with high-quality heterointerfaces", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, Vol.93, No.13, 29 September 2008 Y.ANDO, K.Hamaya, K.Kasahara, Y.Kishi, K.Ueda, K.Sawano, T.Sadoh, and M.Miyao, "Electrical injection and detection of spin-polarized electrons in sillicon throuh an Fe3Si/Si Schottky tunnel barrier", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, Vol.94, 182105, 5 May 2009
 しかしながら、特許文献1に示す技術は、半導体を磁性体で挟んだ縦型のスピントランジスタにおいて、半導体層の表面が(100)面又は(110)面であることが記載されているが、その場合、強磁性金属と半導体との間で化合物が形成されてしまい、ヘテロ界面に欠陥や反応層が生じ、スピンの注入を効率的に行うことができない可能性があるという課題を有する。
 また、非特許文献1、2の技術により、IV族半導体に強磁性ホイスラー合金を高品質に成長させることが確立されているが、強磁性ホイスラー合金にIV族半導体を高品質に成長させる技術が確立されていないため、高品質で無欠損のヘテロ界面を有する縦型スピンメモリ素子や縦型スピントランジスタを実現できていなかった。
 本発明は、強磁性ホイスラー合金(111)面上にIV族半導体(111)面を高品質にエピタキシャル成長させる技術、及びその技術を利用した半導体素子を提供する。
 本願に開示するスピン伝導構造は、IV族半導体を組成の要素に含みミラー指数(111)面を成長面とする単結晶の強磁性ホイスラー合金に、ミラー指数(111)面を成長面とするIV族半導体を積層した一の接合部が形成され、当該一の接合部において、前記強磁性ホイスラー合金の最表面が前記IV族半導体面となっている接合構造を少なくとも有することを特徴とするものである。
 このように、本願に開示するスピン伝導構造においては、単結晶の強磁性ホイスラー合金(111)面に、IV族半導体(111)面を積層して接合部を形成し、当該接合部において、強磁性ホイスラー合金の最表面がIV族半導体面となっている接合構造を少なくとも有するため、強磁性ホイスラー合金(111)上にIV族半導体(111)が原子レベルでエピタキシャル成長することが可能となる。
 すなわち、強磁性ホイスラー合金(111)上にIV族半導体(111)が原子レベルでエピタキシャル成長することで、本来IV族半導体の結晶化よりも安定であると予想されるシリサイド(ジャーマナイド)反応により金属と半導体とが結合した異種化合物が形成されることがなく、強磁性ホイスラー合金とIV族半導体との間に高品質で無欠損、且つ平坦性を保ったヘテロ界面を形成することができると共に、強磁性ホイスラー合金とIV族半導体との間で効率よくスピンを注入することができるという効果を奏する。
 本願に開示するスピン伝導構造は、前記接合構造における最表面が原子レベルで複数層の前記IV族半導体面であり、前記最表面の全面に前記IV族半導体面が形成されているものである。
 このように、本願に開示するスピン伝導構造においては、接合構造の最表面の全面がIV族半導体面となっているため、このIV族半導体面が良質な基板として機能し、接合構造の上にIV族半導体を高品質に成長させることができるという効果を奏する。
 本願に開示するスピン伝導構造は、前記強磁性ホイスラー合金に積層されたIV族半導体に、さらにミラー指数(111)面を成長面とする単結晶の強磁性ホイスラー合金を積層して他の接合部を形成することを特徴とするものである。
 このように、本願に開示するスピン伝導構造においては、強磁性ホイスラー合金に積層されたIV族半導体に、さらに単結晶の強磁性ホイスラー合金(111)面を積層して接合部を形成するため、積層されたIV族半導体(111)上に強磁性ホイスラー合金(111)が原子レベルでエピタキシャル成長することが可能となる。
 すなわち、IV族半導体(111)上に強磁性ホイスラー合金(111)が原子レベルでエピタキシャル成長することで、本来IV族半導体の結晶化よりも安定であると予想されるシリサイド(ジャーマナイド)反応により金属と半導体とが結合した異種化合物が形成されることがなく、高品質で無欠損、且つ平坦性を保ったヘテロ界面を有する強磁性ホイスラー合金(111)/IV族半導体(111)/強磁性ホイスラー合金(111)の縦型構造を形成することができると共に、強磁性ホイスラー合金とIV族半導体との間で効率よくスピンを注入することを可能とする半導体素子(例えば、トランジスタ、メモリ等)に利用することができるという効果を奏する。
 また、前記一の接合部が高品質で無欠損、且つ平坦性を保ったヘテロ界面であることから、積層されたIV族半導体(111)は、平坦な面を有する単結晶の基板として機能することができるため、単結晶の強磁性ホイスラー合金(111)を高精度にエピタキシャル成長させることが可能となる。
 本願に開示するメモリ素子は、前記スピン伝導構造を用いたメモリ素子であって、前記スピン伝導構造の一方の強磁性ホイスラー合金の層におけるスピンの向きを固定し、他方の強磁性ホイスラー合金の層におけるスピンの向きを反転可能とし、前記スピン伝導構造の積層方向に電流を通電して前記各層のスピンの向きに応じた値を出力することを特徴とするものである。
 このように、本願に開示するメモリ素子においては、前記スピン伝導構造の一方の強磁性ホイスラー合金の層におけるスピンの向きを固定し、他方の強磁性ホイスラー合金の層におけるスピンの向きを反転可能とし、前記スピン伝導構造の積層方向に電流を通電して前記各層のスピンの向きに応じた値を出力するため、強磁性金属/半導体/強磁性金属の縦型構造を用いたメモリ素子を実現することができるという効果を奏する。
 本願に開示するメモリ素子は、前記IV族半導体の層にゲート電圧を印加し、当該ゲート電圧の値に応じた出力特性に基づく値を出力することを特徴とするものである。
 このように、本願に開示するメモリ素子においては、IV族半導体の層にゲート電圧を印加し、当該ゲート電圧の値に応じた出力特性に基づく値を出力するため、メモリ素子を多値化することができると共に、回路構成を単純化して微細化することができるという効果を奏する。
 本願に開示するスピントランジスタは、前記スピン伝導構造を用いたスピントランジスタであって、前記IV族半導体の層にゲート電圧を印加し、前記スピン伝導構造における一方の強磁性ホイスラー合金の層をソース層とし、他方の強磁性ホイスラー合金の層をドレイン層とすることを特徴とするものである。
 このように、本願に開示するスピントランジスタにおいては、前記IV族半導体の層にゲート電圧を印加し、前記スピン伝導構造における一方の強磁性ホイスラー合金の層をソース層とし、他方の強磁性ホイスラー合金の層をドレイン層とするため、高品質で無欠損のヘテロ界面によりスピンの注入効率が格段に向上したスピントランジスタを実現することができるという効果を奏する。
 本願に開示するスピン伝導構造の形成方法は、ミラー指数(111)を成長面とするIV族半導体の基板上に、ミラー指数(111)面を成長面としIV族半導体を組成の要素に含む単結晶の強磁性ホイスラー合金(X(3-x)Z:ZがIV族半導体に相当する)を積層する第1の強磁性積層工程と、前記強磁性積層工程において、前記強磁性ホイスラー合金を組成する要素のうち金属(X(3-x)に相当する)の供給を停止する金属供給停止工程と、前記金属供給停止工程により前記IV族半導体面が最表面となっている接合構造が少なくとも形成された状態で、前記強磁性ホイスラー合金を組成する要素のうちIV族半導体(Zに相当する)の供給を停止する半導体供給停止工程と、少なくとも前記最表面に形成されたIV族半導体面に、前記IV族半導体を積層する半導体積層工程とを含むことを特徴とするものである。
 このように、本願に開示するスピン伝導構造の形成方法においては、IV族半導体(111)面の基板上に、単結晶の強磁性ホイスラー合金(111)面を積層し、強磁性ホイスラー合金を組成する要素のうち金属の供給を停止し、IV族半導体面が最表面となっている接合構造が少なくとも形成された状態で、強磁性ホイスラー合金を組成する要素のうちIV族半導体の供給を停止し、少なくとも最表面に形成されたIV族半導体面に、IV族半導体を積層するため、強磁性ホイスラー合金(111)上にIV族半導体(111)の単結晶を原子レベルでエピタキシャル成長させることが可能となる。
 すなわち、強磁性ホイスラー合金(111)上にIV族半導体(111)の単結晶を原子レベルでエピタキシャル成長させることで、本来IV族半導体の結晶化よりも安定であると予想されるシリサイド(ジャーマナイド)反応により金属と半導体とが結合した異種化合物が形成されることがなく、強磁性ホイスラー合金上に高品質で無欠損、且つ平坦性を保ったヘテロ界面を形成すると共に、強磁性ホイスラー合金とIV族半導体との間で効率よくスピンを注入することができる単結晶のIV族半導体を積層したスピン伝導構造を形成することができるという効果を奏する。
 本願に開示するスピン伝導構造の形成方法は、前記半導体供給停止工程が、原子レベルで複数層の前記IV族半導体面が最表面に形成され、前記接合構造における最表面の全面に前記IV族半導体面が形成された状態で、前記IV族半導体の供給を停止するものである。
 このように、本願に開示するスピン伝導構造の形成方法においては、接合構造の最表面の全面がIV族半導体面となっているため、このIV族半導体面が良質な基板として機能し、接合構造の上にIV族半導体を高品質に成長させることができるという効果を奏する。
 本願に開示するスピン伝導構造の形成方法は、前記第1の強磁性積層工程を基板温度が0℃以上、200℃以下で行い、前記半導体積層工程を基板温度が300℃以上、400℃以下で行うことを特徴とするものである。
 このように、本願に開示するスピン伝導構造の形成方法においては、第1の強磁性積層工程を基板温度が0℃以上、200℃以下で行うため、基板と強磁性ホイスラー合金とが反応してしまうことを抑制しつつ、強磁性ホイスラー合金を原子レベルでエピタキシャル成長させることができるという効果を奏する。また、発明者らは強磁性ホイスラー合金の成長が完了した後は、基板と強磁性ホイスラー合金とが400℃以下では反応しないという知見を得ていることから、300℃以上、400℃以下でIV族半導体のエピタキシャル成長させても基板と強磁性ホイスラー合金とが反応してしまうことがなく、IV族半導体を効率よく成長させることができるという効果を奏する。さらに、第1の強磁性積層工程において、基板温度が0℃~室温という非常に低温の場合であっても、基板と強磁性ホイスラー合金とが反応してしまうこと抑制しつつ、強磁性ホイスラー合金を原子レベルでエピタキシャル成長させることができるため、より精度が高い接合構造を形成することが可能になる。
 本願に開示するスピン伝導構造の形成方法は、前記半導体積層工程において、基板温度を一旦200℃以上、400℃未満にして原子レベルで前記IV族半導体を複数層積層した後に、基板温度を300℃以上、400℃以下にして前記IV族半導体を積層することを特徴とするものである。
 このように、本願に開示するスピン伝導構造の形成方法においては、半導体積層工程で基板温度をいきなり400℃まで上げるのではなく、一旦200℃以上、400℃未満(より低温の200℃が好ましい)で原子レベルで複数層(例えば、1nm程度)のIV族半導体をエピタキシャル成長させてから、基板温度を300℃以上、400℃以下にして前記IV族半導体をエピタキシャル成長させるため、強磁性ホイスラー合金の表面における温度に不安定な部分を複数層のIV族半導体で安定化させ、その後のIV族半導体のエピタキシャル成長を、平坦性を保って効率よく安定的に行うことができるという効果を奏する。
 本願に開示するスピン伝導構造の形成方法は、前記半導体積層工程で積層されたIV族半導体に、さらにミラー指数(111)面を成長面とする前記強磁性ホイスラー合金を積層する第2の強磁性積層工程とを含むことを特徴とするものである。
 このように、本願に開示するスピン伝導構造の形成方法においては、強磁性ホイスラー合金に積層されたIV族半導体に、さらに単結晶の強磁性ホイスラー合金(111)面を積層するため、積層されたIV族半導体(111)上に強磁性ホイスラー合金(111)が原子レベルでエピタキシャル成長することが可能となる。
 すなわち、強磁性ホイスラー合金(111)上にIV族半導体(111)の単結晶を原子レベルでエピタキシャル成長させることで、本来IV族半導体の結晶化よりも安定であると予想されるシリサイド(ジャーマナイド)反応により金属と半導体とが結合した異種化合物が形成されることがなく、高品質で無欠損、且つ平坦性を保ったヘテロ界面を有する強磁性ホイスラー合金(111)/IV族半導体(111)/強磁性ホイスラー合金(111)の縦型構造を形成することができると共に、強磁性ホイスラー合金とIV族半導体との間で効率よくスピンを注入することを可能とする半導体素子(例えば、トランジスタ、メモリ等)に利用することができるスピン伝導素子を形成することができるという効果を奏する。
 また、強磁性ホイスラー合金(111)/IV族半導体(111)の接合面が高品質で無欠損、且つ平坦性を保ったヘテロ界面であることから、積層されたIV族半導体(111)は、平坦な面を有する単結晶の基板として機能することができるため、単結晶の強磁性ホイスラー合金(111)を高精度にエピタキシャル成長させることが可能となる。
 本願に開示するスピン伝導構造の形成方法は、前記半導体供給停止工程の後に、ドーピング層を形成するドーピング工程を含むことを特徴とするものである。
 このように、本願に開示するスピン伝導構造の形成方法においては、半導体供給停止工程の後に、ドーピング層を形成するドーピング工程を含むため、強磁性ホイスラー合金とIV族半導体との間の界面におけるショットキー障壁幅を小さくして、強磁性ホイスラー合金とIV族半導体との間にトンネル電流を流し易くすることでスピン注入効率を高め、超低消費電力のスピン伝導構造を実現することができるという効果を奏する。
本発明の実施形態に係るスピン伝導構造を示す図である。 本発明の実施形態に係る強磁性ホイスラー合金とIV族半導体の結晶格子の模式図である。 本発明の実施形態に係る強磁性ホイスラー合金とIV族半導体の(100)面、(111)面の原子配置を示す図である。 本発明の実施形態に係るスピン伝導構造の形成方法を示すフローチャートである。 本発明の実施形態に係るスピン伝導構造の形成方法を示す第1の図である。 本発明の実施形態に係るスピン伝導構造の形成方法を示す第2の図である。 本発明の実施形態に係るスピン伝導構造において最表面をIV族半導体の単元素とした場合の図である。 本発明の実施形態に係るスピン伝導構造の形成方法を示す第3の図である。 本発明の実施形態に係るスピン伝導構造の形成方法を示す第4の図である。 本発明の実施形態に係るスピン伝導構造の形成方法を示す第2のフローチャートである。 本発明の実施形態に係るスピン伝導構造の形成方法を示す第5の図である。 本発明の実施形態に係るスピン伝導構造を用いた半導体素子の模式図である。 実施例においてFeSiの終端をSi面とした場合とFe面とした場合のスピン伝導構造を示す図である。 図13のスピン伝導構造の作製過程におけるRHEEDパターンの測定結果を示す図である。 実施例においてFeSiの最表面をFe、FeとSiが混在、Siとした場合のスピン伝導構造及び対応する最上層(Ge薄膜)のRHEEDパターンの測定結果を示す図である。 FeSiの最表面の全面をSiとした場合の接合部における顕微鏡写真の図である。 従来のMRAMにおけるスピン素子の動作機構を示す図である。
 以下、本発明の実施の形態を説明する。本実施形態の全体を通して同じ要素には同じ符号を付けている。
  (本発明の実施形態)
 本実施形態に係るスピン伝導構造及びその形成方法について、図1ないし図12を用いて説明する。図1は、本実施形態に係るスピン伝導構造を示す図、図2は、本実施形態に係る強磁性ホイスラー合金とIV族半導体の結晶格子の模式図、図3は、本実施形態に係る強磁性ホイスラー合金とIV族半導体の(100)面、(111)面の原子配置を示す図、図4は、本実施形態に係るスピン伝導構造の形成方法を示すフローチャート、図5は、本実施形態に係るスピン伝導構造の形成方法を示す第1の図、図6は、本実施形態に係るスピン伝導構造の形成方法を示す第2の図、図7は、本実施形態に係るスピン伝導構造において最表面をIV族半導体の単元素とした場合の図、図8は、本実施形態に係るスピン伝導構造の形成方法を示す第3の図、図9は、本実施形態に係るスピン伝導構造の形成方法を示す第4の図、図10は、本実施形態に係るスピン伝導構造の形成方法を示す第2のフローチャート、図11は、本実施形態に係るスピン伝導構造の形成方法を示す第5の図、図12は、本実施形態に係るスピン伝導構造を用いた半導体素子の模式図である。
 本実施形態に係るスピン伝導構造は、図1に示すような縦型構造であり、IV族半導体(ここでは、SiGe基板とする)基板11上に強磁性ホイスラー合金(ここでは、FeSiとする)12を積層し、積層された強磁性ホイスラー合金12上にSiGe半導体13を積層し、さらに、SiGe半導体13上に強磁性ホイスラー合金14(ここでは、FeSiとする)を積層した構造である。
 SiGe(111)基板11上にFeSi(111)を高品質に積層する技術は、非特許文献1、2等に示すように発明者らにより確立されているため、詳細な説明は省略し、主にFeSi(111)にSiGe(111)を高品質に積層する技術について説明する。本実施形態においては、FeSi(111)面とSiGe(111)面の原子マッチングが極めて良好であることに着目し、低温MBE(Molecular Beam Epitaxy:分子線エピタキシー)法を利用して界面異種反応の究極的な低減を実現することで、FeSi(111)面上にSiGe(111)を高品質にエピタキシャル成長させて実現するものである。すなわち、本実施形態において形成されるFeSi/SiGe/FeSiからなる図1の構造は、全単結晶の縦型スピン伝導素子として機能させることが可能となる。
 図2に、DO規則化したFeSiの結晶構造21とSiGeの結晶構造22を示す。図2において、黒色で示す原子がSi(又はGe)の原子であり、白色で示す原子がFeの原子である。FeSiの結晶構造21を(111)の断面23で眺めると、(Fe×3+Si×1)という積層構造の周期となっている。これらFeSiとSiGeの両材料間には格子不整合率が0~4%存在している。また、図3に、FeSiとSiGeの(100)面と(111)面の原子配置を示す。図3(A)は、FeSi(100)面の原子配置を示しており、図3(B)は、SiGe(100)面の原子配置を示しており、図3(C)は、FeSi(111)面の原子配置を示しており、図3(D)は、SiGe(111)面の原子配置を示している。黒色で示す原子がSi(又はGe)の原子であり、白色で示す原子がFeの原子である。図から明らかなように、(100)面での原子マッチングは良好ではなく、仮にFe面上にSiGeを成長しようとすれば、SiGeの結晶化よりも安定なFe/Si(Ge)間のシリサイド(ジャーマナイド)反応から、FeSiやFeGeのような異種化合物が形成されてしまう。
 FeSiとSiGeとの間の接合部にこのような異種化合物が形成されてしまうと、そこを通るスピンが散乱されてしまい、効率よくスピンを注入することが困難となってしまう。そこで、本実施形態においては、図3(C)、(D)に示されるように、原子マッチングが極めて良好な(111)面を成長面としてFeSi上にSiGeを結晶化させる。さらに、その際にはSiGeを成長させるためにFeSiの最表面をSi面とする工夫を施す。すなわち、図2及び図3(C)、(D)からわかるように、SiGe(111)面と接合する可能性があるFeSi(111)の原子面は、単元素のFe面又は単元素のSi面であることから、FeSiの最表面がSi面となっている状態でSiGe(111)を結晶化させる。
 以下に、本実施形態に係るスピン伝導構造の形成方法について、図4ないし図8を用いて説明する。図4のフローチャートにおいて、まず、Si又はGe(111)の基板に対して、第1の強磁性ホイスラー合金積層工程を行う(S41)。この工程は、Si又はGe(111)の基板に対して、HF(フッ化水素酸)水溶液(HF:HO=1:40)で洗浄後に、MBE法室内にて450℃で20分間の熱処理を行う。その後、MBE法によりFeSi(111)を成長させる(図5を参照)。このときの基板の温度は0℃以上、200℃以下、より好ましくは0℃以上、130℃以下とし、クヌーセンセルを用いて、FeとSiをそれぞれ2.12nm/min、1.20nm/minの成長率で化学両論組成(3:1)を保って同時に蒸発させる。図5に示すように、この工程により、Si又はGe(111)の基板にFe面×3、Si面×1が周期的に繰り返されてFeSiが成長する。
 なお、各層を形成する過程において、全ての層が必ずしも図5に示すように単元素のFe面又は単元素のSi面にならず、FeとSiの混在面も所定の確率で形成されることになるが、本実施形態においては、少なくとも図5に示す構造が形成されている領域があればよい。
 このとき、基板の温度が0℃以上、200℃以下、より好ましくは0℃以上、130℃以下にすることで、Si又はGe(111)の基板とFeSiとが反応することなく、原子レベルでエピタキシャル成長することができる。そのため、高品質で無欠損、且つ平坦性を保ったヘテロ界面を実現することが可能となる。また、FeSiが成長して一旦結合が完了した後は、基板温度を400℃まで上昇させてもSi又はGe(111)の基板とFeSiとが反応しないという知見が発明者らにより得られている。したがって、以降の処理では基板温度を400℃程度まで上げることが可能である。
 ある程度の厚さまでFeSiが成長したら、金属組成供給停止工程を行う(S42)。金属組成とは、FeSiのうちFeの組成を指す。Fe組成の供給停止は、MBE装置のシャッター制御で行う。金属組成の供給を停止することで、半導体組成(Si組成)のみを蒸着し、Si面を最表面とする(S43)。Si面が最表面となったら、半導体組成供給停止工程を行う(S44)。すなわち、Si組成の供給を停止する。Si組成の供給停止は、MBE装置のシャッター制御により行う。これにより、FeSiの成長が停止されてFeSiの成長が完了する(図6を参照)。図6に示すように、まずはFeの供給を停止した後に、Siの供給を停止するシャッター制御を行うことで、最表面がSiの状態でFeSiの成長を停止することができる。
 なお、上述したように、ここでも最表面が必ずしも図6に示すように単元素のSi面にならず、Feが混在して形成される場合があるが、本実施形態においては、少なくとも図6に示す構造が形成されている領域があればよい。
 また、最表面にFeとSiが混在する場合があることから、最表面を完全なSiにするために、Siの供給停止のタイミングを調整するようにしてもよい。つまり、原子レベルで複数層(例えば、2~3層)の単元素のSiを積層し、最表面の全面をSi面とすることで、このSi面が良質な基板として機能し、接合構造の上にSiGeを高品質に成長させることができる(図7を参照)。
 図6又は図7のように、Si面が最表面となっている状態でIV族半導体積層工程を行う(S45)。ここでは、前ステップまでに積層されたFeSi上にSiGeを成長させる。このとき、FeSi側からのSiGe層への原子拡散を防止するために、一旦低温(200℃以上400℃未満、より好ましくは200℃程度)で成長させ(例えば、1nm程度)、その後300℃以上、400℃以下の温度でSiGeを成長させる。そうすることで、結晶構造の急峻な変化によらず、SiGeの原子レベルでのエピタキシャル成長を実現することができる(図8を参照)。
 基板温度を400℃程度にすることで、前述したようにSi又はGe(111)の基板とFeSiとの反応を抑制することができると共に、比較的SiGeの成長を促進することができる。しかしながら、いきなり400℃の基板温度でSiGeの成長を行うと、温度に対して不安定なFeSiの表面が平坦性を保てなくなってしまう。そこで、本実施形態では、上述したように一旦200℃程度の低温でSiGeを1nm程度成長させることで表面を平坦化した状態で安定させる。つまり、この1nm程度のSiGeがキャップのような役割を果たす。その後、基板温度を400℃まで上げてSiGeを成長させることで、平坦性を保ったまま効率よくSiGeを成長させることができる。
 ここで、図8に、FeSiにGe薄膜を成長させた場合の当該Ge薄膜のRHEED(Reflection High Energy Electron Diffraction:反射高速電子回析)パターンを示す。パターンが示すように、Ge薄膜に関しては平坦性を保ちつつ単結晶成長が実現できていることがわかる。
 SiGeがエピタキシャル成長してある程度積層されると、S41と同様の方法で、第2の強磁性ホイスラー合金積層工程を行って(S46)、処理を終了する(図9を参照)。以上の各工程を行うことで、図1に示すような全単結晶で縦型のスピン伝導構造を形成することができる。また、FeSi(111)上にSiGe(111)をエピタキシャル成長させることが可能となることで、本来SiGeの結晶化よりも安定であると予想されるシリサイド反応によりFeとSiGeとが結合した異種化合物が形成されてしまうことを防止し、界面が高品質で無欠損、且つ平坦性を保ったヘテロ界面となり、スピンの注入効率が非常に高く、後述するスピンメモリ素子やスピントランジスタとして用いることが可能となる。
 なお、本実施形態に係るスピン伝導構造をメモリ素子やトランジスタとして用いるために、FeSiとSiGe界面のショットキー障壁幅をデルタドーピング手法を用いて制御できるようにしてもよい。デルタドーピング工程を含むスピン伝導構造の形成方法について、図10及び図11を用いて説明する。
 図4のフローチャートと異なるのは、ステップS94で半導体組成供給停止工程を行った後に、ドーピング工程(S95)を行うことである。すなわち、図11に示すように、Si面が最表面の状態で、且つSiGe層が確実に成長できるような基板が数nm(ここでは、原子レベル3層で示している)形成された状態で、ドーピング層を1原子レベルで挿入する。ドーピング層が挿入されたら、その上にSiGe層をエピタキシャル成長させるS96のIV族半導体積層工程を行う。その他の工程は、図4の場合と同様である。
 このようなドーピング層をFeSiとSiGeとの界面に挿入することで、ショットキー障壁の幅を狭くすることができ、スピン偏極した電子を効率よく注入することができる。
 なお、本実施形態においては強磁性ホイスラー合金をFeSiとし、IV族半導体をSiGeとしているが、強磁性ホイスラー合金はX(3-x)Zの化学式からなるものであればよく、例えば、Xの組成として、鉄(Fe),コバルト(Co),マンガン(Mn),ニッケル(Ni),ルテニウム(Ru),ロジウム(Rh)等、Yの組成として、マンガン(Mn),鉄(Fe),クロム(Cr),チタニウム(Ti),バナジウム(V)等、Zの組成として、シリコン(Si)、ゲルマニウム(Ge)、シリコンゲルマニウム(SiGe(1-y))等であってもよい。また、xの値は整数とは限らず小数であってもよく(例えば、小数の場合は、Fe2.5Mn0.5Siとなる)、また0(例えば、0の場合は、FeSiとなる)であってもよい。さらに、yの値には0~1の間の小数が入る。
 また、半導体層にはSiGe半導体13を用いたが、Si,Ge,SiGe(1-x)(xは0~1の間の小数とする)を用いるようにしてもよい。
 上記で説明したスピン伝導構造は、様々な半導体素子に適用することができる。例えば、図12に、本実施形態に係るスピン伝導構造を用いたメモリ素子を示す。図12(A)は2値を出力するメモリ素子の模式図、図12(B)は多値を出力するメモリ素子の模式図、図12(C)は図12(B)に示されるメモリの出力特性を示すグラフである。
 図12(A)は、第1のホイスラー合金層31をスピンの向きが反転可能なフリー層とし、第2のホイスラー合金層33をスピンの向きが固定された固定層とし、それら第1のホイスラー合金層31と第2のホイスラー合金層33とで、IV族半導体層32を挟んだ構成となっている。この構成は、図17と同様の原理で2値メモリとして機能することができる。すなわち、スピンが平行の場合には積層方向に大きな電流が流れ、スピンが反平行の場合には積層方向に小さな電流しか流れないことを利用して、2値の書き込みと読み込みを行う。
 図12(B)は、図12(A)の構成に新たにゲート電圧を印加する電圧印加部34を備える。つまり、IV族半導体層32にゲート電圧を印加することで、ゲート電圧に応じた出力特性に基づく積層方向の電流値を複数得ることができ、多値メモリとして機能させることができる。すなわち、図12(C)に示すように、ゲート電圧に応じてスピンが平行か反平行かによって異なる値の電流値を得ることができるため、多値メモリとして応用することができ、回路構成を単純化してメモリの微細化を実現することができる。
 また、本実施形態に係るスピン伝導構造は、例えばトランジスタとして機能させることも可能である。その場合は、一方のホイスラー合金層をソース層、他方のホイスラー合金層をドレイン層とし、IV族半導体層にゲート電圧を印加する構成となる。
 さらに、本実施形態のスピン伝導構造を用いたメモリ素子は、強磁性ホイスラー合金で半導体を挟んだ構造であることから、メモリとトランジスタの双方の機能を1つの素子で実現することが可能となる。すなわち、スピンの配向応じて情報を記憶する(メモリとしての機能)と共に、ゲート電圧の制御により読み出しの制御(トランジスタとしての機能)を実現することができるため、回路構成を単純化してメモリを微細化することが可能となる。
 このように、本実施形態のような強磁性体/半導体/強磁性体の縦型のスピン伝導構造を高品質に実現することで、様々な半導体素子に応用することが可能となる。また、本発明により、極短チャネル化による極低消費電力動作、縦型構造が主流である金属スピントロニクス素子との融合、3次元高集積化などが可能となる。
 以下に、上記で説明したスピン伝導構造について行った実験について説明する。
 (1)Si面を終端にした場合とFe面を終端にした場合とのRHEEDパターンの比較
 本実施例においては、強磁性ホイスラー合金12,14としてFeSi(以下、強磁性ホイスラー合金12を第1のFeSi、強磁性ホイスラー合金14を第2のFeSiとする)を用い、SiGe半導体13としてGeを用いた。また、第1のFeSiを成長させる基板としてGeを用いた。上記に示した形成方法に従って、第1のFeSiの終端がSi面とした場合(図13(A)を参照)と、Fe面とした場合(図13(B)を参照)とに分けてスピン伝導構造を形成し、各層の接合部形成後においてRHEEDパターンを測定した。その結果を図14に示す。
 図14(A)~(C)は、終端をSiとした場合の各層の接合部におけるRHEEDパターンを示し、図14(D)~(F)は、終端をFeとした場合の各層の接合部におけるRHEEDパターンを示す。図14(A)は、Ge(111)基板上に第1のFeSiを室温で25nm成長させて、終端をSiとした場合のRHEEDパターンである。パターンから、終端のSi面が平坦性を保ちつつ単結晶成長できていることがわかる。図14(B)は、第1のFeSiの上にGeを200℃~400℃で36nm成長させた場合のRHEEDパターンを示し、図14(C)は、Geの上にさらに第2のFeSiを室温で10nm成長させた場合のRHEEDパターンを示している。図14(B)、(C)の結果から、各層における接合部が平坦であるために、二次元単結晶成長できていることがわかる。
 一方、図14(D)~(E)では、成長後のGe層及び第2のFeSiの層において、RHEEDパターンから平坦性を保った結晶成長ができていないことがわかる。これは、第1のFeSiの終端をFeとしたことに起因しており、この結果から本発明の格別な優位性が示される。
 (2)第1のFeSiの最表面をFe、Si+Feの混在、Siとした場合のそれぞれのRHEEDパターンの比較
 図15に、第1のFeSiの最表面をFeとした場合(図15(A))、FeとSiが混在した場合(図15(B))、Siとした場合(図15(C))の接合部の図を示すと共に、それぞれの場合においてGeを成長させた後のRHEEDパターンを示す(図15(D)~(F))。
 図15(A)及び(D)に示すように、第1のFeSiの最表面がFeの場合は、図14の場合と同様に接合部における表面の平坦性が悪く、品質が悪いものとなっている。図15(B)及び(E)の場合は、Siが最表面となっている領域が存在することから、最表面がFeの場合に比べると接合部における平坦性が良く、品質が向上している。しかしながら、最表面がFeとなっている領域も存在するため、多少の欠陥部分も存在している。図15(C)及び(F)の場合は、Siの供給停止のタイミングを制御することで、Siが原子レベルで複数層積層され、接合部の最表面の全面がSiとなっており、接合部における平坦性が非常に良好で、品質が格段に向上している。
 つまり、本発明のように、Siの供給停止のタイミングを制御して原子レベルで複数層(例えば、2~3層)の単元素のSiを積層し、最表面の全面をSiとすることで、Si面が良質な基板として機能させ、接合構造の上にGeを高品質に成長させることが可能であることが明らかである。
 図16に、図15(C)及び(F)の場合における接合部の電子顕微鏡写真を示す。この写真からも明らかなように、第1のFeSi層とGe層とが極めて良好な平坦性を保ち、欠損箇所も皆無で高品質に積層されていることを視認することができる。
  11 IV族半導体基板
  12,14 強磁性ホイスラー合金
  13 SiGe半導体
  21 結晶構造(FeSi)
  22 結晶構造(SiGe)
  23 断面(111)
  31 第1のホイスラー合金層
  32 IV族半導体層
  33 第2のホイスラー合金層
  34 電圧印加部

Claims (12)

  1.  IV族半導体を組成の要素に含みミラー指数(111)面を成長面とする単結晶の強磁性ホイスラー合金に、ミラー指数(111)面を成長面とするIV族半導体を積層した一の接合部が形成され、当該一の接合部において、前記強磁性ホイスラー合金の最表面が前記IV族半導体面となっている接合構造を少なくとも有することを特徴とするスピン伝導構造。
  2.  請求項1に記載のスピン伝導構造において、
     前記接合構造における最表面が原子レベルで複数層の前記IV族半導体面であり、前記最表面の全面に前記IV族半導体面が形成されていることを特徴とするスピン伝導構造。
  3.  請求項1又は2に記載のスピン伝導構造において、
     前記強磁性ホイスラー合金に積層されたIV族半導体に、さらにミラー指数(111)面を成長面とする単結晶の強磁性ホイスラー合金を積層して他の接合部を形成することを特徴とするスピン伝導構造。
  4.  請求項3に記載のスピン伝導構造を用いたメモリ素子であって、
     前記スピン伝導構造の一方の強磁性ホイスラー合金の層におけるスピンの向きを固定し、他方の強磁性ホイスラー合金の層におけるスピンの向きを反転可能とし、前記スピン伝導構造の積層方向に電流を通電して前記各層のスピンの向きに応じた値を出力することを特徴とするメモリ素子。
  5.  請求項4に記載のメモリ素子において、
     前記IV族半導体の層にゲート電圧を印加し、当該ゲート電圧の値に応じた出力特性に基づく値を出力することを特徴とするメモリ素子。
  6.  請求項3に記載のスピン伝導構造を用いたスピントランジスタであって、
     前記IV族半導体の層にゲート電圧を印加し、前記スピン伝導構造における一方の強磁性ホイスラー合金の層をソース層とし、他方の強磁性ホイスラー合金の層をドレイン層とすることを特徴とするスピントランジスタ。
  7.  ミラー指数(111)面を成長面とするIV族半導体の基板上に、ミラー指数(111)面を成長面としIV族半導体を組成の要素に含む単結晶の強磁性ホイスラー合金(X(3-x)Z:ZがIV族半導体に相当する)を積層する第1の強磁性積層工程と、
     前記強磁性積層工程において、前記強磁性ホイスラー合金を組成する要素のうち金属(X(3-x)に相当する)の供給を停止する金属供給停止工程と、
     前記金属供給停止工程により前記IV族半導体面が最表面となっている接合構造が少なくとも形成された状態で、前記強磁性ホイスラー合金を組成する要素のうちIV族半導体(Zに相当する)の供給を停止する半導体供給停止工程と、
     少なくとも前記最表面に形成されたIV族半導体面に、前記IV族半導体を積層する半導体積層工程とを含むことを特徴とするスピン伝導構造の形成方法。
  8.  請求項7に記載のスピン伝導構造の形成方法において、
     前記半導体供給停止工程が、原子レベルで複数層の前記IV族半導体面が最表面に形成され、前記接合構造における最表面の全面に前記IV族半導体面が形成された状態で、前記IV族半導体の供給を停止することを特徴とするスピン伝導構造の形成方法。
  9.  請求項7又は8に記載のスピン伝導構造の形成方法において、
     前記第1の強磁性積層工程を基板温度が0℃以上、200℃以下で行い、前記半導体積層工程を基板温度が300℃以上、400℃以下で行うことを特徴とするスピン伝導構造の形成方法。
  10.  請求項9に記載のスピン伝導構造の形成方法において、
     前記半導体積層工程において、基板温度を一旦200℃以上、400℃未満にして原子レベルで前記IV族半導体を複数層積層した後に、基板温度を300℃以上、400℃以下にして前記IV族半導体を積層することを特徴とするスピン伝導構造の形成方法。
  11.  請求項7ないし10のいずれかに記載のスピン伝導構造の形成方法において、
     前記半導体積層工程で積層されたIV族半導体に、さらにミラー指数(111)面を成長面とする前記強磁性ホイスラー合金を積層する第2の強磁性積層工程とを含むことを特徴とするスピン伝導構造の形成方法。
  12.  請求項7ないし11のいずれかに記載のスピン伝導構造の形成方法において、
     前記半導体供給停止工程の後に、ドーピング層を形成するドーピング工程を含むことを特徴とするスピン伝導構造の形成方法。
PCT/JP2011/079168 2010-12-17 2011-12-16 スピン伝導構造、メモリ素子、スピントランジスタ及びスピン伝導構造の形成方法 WO2012081694A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012548845A JPWO2012081694A1 (ja) 2010-12-17 2011-12-16 スピン伝導構造、メモリ素子、スピントランジスタ及びスピン伝導構造の形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-281876 2010-12-17
JP2010281876 2010-12-17

Publications (1)

Publication Number Publication Date
WO2012081694A1 true WO2012081694A1 (ja) 2012-06-21

Family

ID=46244786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079168 WO2012081694A1 (ja) 2010-12-17 2011-12-16 スピン伝導構造、メモリ素子、スピントランジスタ及びスピン伝導構造の形成方法

Country Status (2)

Country Link
JP (1) JPWO2012081694A1 (ja)
WO (1) WO2012081694A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11004465B2 (en) 2016-06-24 2021-05-11 National Institute For Materials Science Magneto-resistance element in which I-III-VI2 compound semiconductor is used, method for manufacturing said magneto-resistance element, and magnetic storage device and spin transistor in which said magneto-resistance element is used

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092147A (ja) * 2005-09-29 2007-04-12 Tokyo Institute Of Technology 積層構造体、半導体装置およびトランジスタ
JP2008226901A (ja) * 2007-03-08 2008-09-25 Toshiba Corp 縦型スピントランジスタ及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092147A (ja) * 2005-09-29 2007-04-12 Tokyo Institute Of Technology 積層構造体、半導体装置およびトランジスタ
JP2008226901A (ja) * 2007-03-08 2008-09-25 Toshiba Corp 縦型スピントランジスタ及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. HAMAYA ET AL.: "Epitaxial ferromagnetic Fe3Si/Si(111) structures with high- qualityheterointerfaces", APPLIED PHYSICS LETTERS, vol. 93, 3 October 2008 (2008-10-03), pages 132117 - 1- 132117-3 *
MASANOBU MIYAO ET AL.: "Atomically controlled hetero-epitaxy of Fe3Si/SiGe for spintronics application", THIN SOLID FILMS, vol. 517, 2008, pages 181 - 183, XP025608665, DOI: doi:10.1016/j.tsf.2008.08.055 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11004465B2 (en) 2016-06-24 2021-05-11 National Institute For Materials Science Magneto-resistance element in which I-III-VI2 compound semiconductor is used, method for manufacturing said magneto-resistance element, and magnetic storage device and spin transistor in which said magneto-resistance element is used

Also Published As

Publication number Publication date
JPWO2012081694A1 (ja) 2014-05-22

Similar Documents

Publication Publication Date Title
US10103321B2 (en) Magnetoresistive element and magnetic memory
JP4764466B2 (ja) ホイスラー合金を有する積層体、この積層体を用いた磁気抵抗素子、及びスピントランジスタ
US8878324B2 (en) Magnetoresistive element and magnetic memory
JP4455558B2 (ja) スピンmosfet
KR101929583B1 (ko) 비휘발성 자기 메모리 소자
JP4703660B2 (ja) スピンmos電界効果トランジスタ
US8520433B1 (en) Magnetoresistive element and magnetic memory
US9859491B2 (en) Magnetoresistive element and magnetic memory
JP6119051B2 (ja) 磁気抵抗素子および磁気メモリ
US20140203383A1 (en) Perpendicular magnetoresistive memory element
CN111095530A (zh) 磁性体与BiSb的层叠构造的制造方法、磁阻存储器、纯自旋注入源
WO2006022183A1 (ja) 磁気抵抗素子及びその製造方法
US20220238799A1 (en) Magnetoresistive element having a composite recording structure
US8963221B2 (en) Strongly correlated nonvolatile memory element
Graf et al. Magnetic heusler compounds
US20150069553A1 (en) Magnetic memory and method for manufacturing the same
Pan et al. Room-temperature orbit-transfer torque enabling van der Waals magnetoresistive memories
JP4998801B2 (ja) トンネル素子の製造方法
US11444239B1 (en) Magnetoresistive element having an adjacent-bias layer and a toggle writing scheme
CN108352446B (zh) 磁隧道二极管和磁隧道晶体管
JP2018206855A (ja) 積層構造体及びスピン変調素子
WO2012081694A1 (ja) スピン伝導構造、メモリ素子、スピントランジスタ及びスピン伝導構造の形成方法
Yu et al. Progress in oxygen behaviors in two-dimensional thin films
JP2009239122A (ja) 磁気抵抗効果素子及びスピンmos電界効果トランジスタ
Dang et al. Materials Relevant to Realizing a Field-Effect Transistor Based on Spin–Orbit Torques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848974

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2012548845

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848974

Country of ref document: EP

Kind code of ref document: A1