CN111554463B - 一种宽频低涡流损耗的人工导体 - Google Patents
一种宽频低涡流损耗的人工导体 Download PDFInfo
- Publication number
- CN111554463B CN111554463B CN202010390086.9A CN202010390086A CN111554463B CN 111554463 B CN111554463 B CN 111554463B CN 202010390086 A CN202010390086 A CN 202010390086A CN 111554463 B CN111554463 B CN 111554463B
- Authority
- CN
- China
- Prior art keywords
- ferromagnetic
- film layer
- eddy current
- alloy
- current loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0027—Thick magnetic films
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14708—Fe-Ni based alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
- H01L23/66—High-frequency adaptations
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Dispersion Chemistry (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Thin Magnetic Films (AREA)
Abstract
一种宽频低涡流损耗的人工导体,属于射频器件及集成电路技术领域。所述人工导体为金属薄膜层和铁磁薄膜层交替层叠形成的金属薄膜层/(铁磁薄膜层/金属薄膜层)n的周期性多层膜结构,其中,第1~n/2层铁磁薄膜层的材料为铁磁材料A,第(n/2+1)~n层铁磁薄膜层的材料为铁磁材料B。本发明通过采用两种不同的铁磁材料作为铁磁薄膜层,形成非对称的结构,使得该人工导体可以在较宽的频带范围内获得涡流损耗的抑制。本发明人工导体考虑了在较低频率下抑制涡流损耗的同时,还能够在更宽频带范围内有涡流抑制效果,解决了低频补偿下抑制频带窄的问题,在射频器件及集成电路中具有很大的应用前景。
Description
技术领域
本发明涉及射频器件及集成电路技术领域,具体涉及一种宽频带低涡流损耗的人工导体及其制备方法,可以应用于需要在较高频率下工作且要求涡流损耗低的射频器件及集成电路中,例如高频电感的线圈,以及共面波导、微带线等射频互连线。
背景技术
随着微电子和通信设备工作频率的不断提高,集成射频无源器件的一个主要缺点是容易产生明显的涡流损耗。高频下的涡流效应主要是受到了趋肤效应的影响,不仅会造成RC延迟,而且会导致射频电感等器件品质因数差,功耗高。人们引入一个趋肤深度δ来描述涡流损耗的程度,此深度的电流密度大小恰好为表面电流密度的1/e倍。
其中,f为工作频率,μ0为真空磁导率,μr为金属导体的相对磁导率(≈1),σ为金属的电导率。
专利ZL201410415806.7提出了一种采用FM/Cu(铁磁层/铜层)多层膜结构的射频互连线,利用了具有单轴各向异性的铁磁薄膜(ZL 201711091911.X)在高频下的负磁导率补偿铜层的正磁导率,使得相对磁导率μr趋于零,趋肤深度趋于无穷大,从而获得涡流损耗的抑制。
铁磁层与铜层耦合后相对磁导率可以表示为:
μN为铜层的相对磁导率(≈1),μF为铁磁性薄膜的相对磁导率,tN和tF分别为铜层和铁磁性薄膜的厚度。而为了保证多层膜结构进行有效的涡流损耗抑制,必须保证补偿点频率下铜层的厚度小于它的趋肤深度。也就是:
其中μF'(f)是与频率f有关的磁导率实部值,可以由以下公式表示:
γ为材料的旋磁比,4πMs为饱和磁化强度,Hk为单轴各向异性场,α为阻尼因子。
由于铁磁薄膜的软磁性能通常与其厚度直接相关,不能有很大的变化,因此假定tF为一个固定值,从公式(3)和(4)可以知道可选取补偿点频率有一个最小值fmin,低于该频率值时,铁磁层无法对涡流损耗进行有效地抑制。而fmin又与材料的饱和磁化强度4πMs和单轴各向异性场Hk的大小有关,随4πMs和Hk的上升,fmin也会增大,因此抑制较低频率的涡流损耗需要饱和磁化强度较小的材料。又因为材料的磁导率负值出现在自然共振频率fFMR和反共振频率fAR之间,其中自然共振频率fFMR和反共振频率fAR的值又等于:
所以饱和磁化强度越大,fFMR和fAR的距离越远,负磁导率的变化速率越慢,有利于在更宽频带范围内进行涡流损耗的抑制,但是这又与前面提到的fmin的值存在矛盾。因此采用简单的FM/Cu(铁磁层/铜层)多层膜结构的射频互连线,会遇到低频补偿下抑制频带窄的两难问题,无法在更宽的频带范围抑制涡流损耗。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提供了一种宽频带、低涡流损耗的人工导体,可以应用于需要在较高频率下工作且要求涡流损耗低的射频器件及集成电路中,例如高频电感的线圈,以及共面波导、微带线等射频互连线。有效地解决了FM/Cu(铁磁层/铜层)多层膜结构的射频互连线遇到的低频补偿下抑制频带窄的问题。
为实现上述目的,本发明采用的技术方案如下:
一种宽频低涡流损耗的人工导体,其特征在于,所述人工导体为金属薄膜层和铁磁薄膜层交替层叠形成的金属薄膜层/(铁磁薄膜层/金属薄膜层)n的周期性多层膜结构,其中,第1~n/2层铁磁薄膜层的材料为铁磁材料A,第(n/2+1)~n层铁磁薄膜层的材料为铁磁材料B。铁磁材料A和铁磁材料B为两种不同的铁磁材料,具有不同的饱和磁化强度,进而使得多层膜结构中的上半部分结构与下半部分结构分别在两个不同的频率点下获得近零的相对磁导率,也就是近零的涡流损耗。并且两种材料的零磁导率补偿频率点距离较远,因此可以在距离较远的两个频率点分别进行涡流损耗的抑制,最终获得更宽的涡流损耗抑制频带范围。
进一步地,所述铁磁材料A和铁磁材料B的零磁导率补偿点频率点可以通过改变金属薄膜层与铁磁薄膜层的厚度之比进行调整,由于铁磁薄膜层的厚度与它的性能直接相关,通常会选择固定铁磁薄膜层的厚度,改变金属薄膜层的厚度进行调整。例如,当金属薄膜层与铁磁薄膜层的厚度比为10:1时,零磁导率的补偿点出现在该铁磁薄膜材料磁导率为-10的频率位置上;当金属薄膜层与铁磁薄膜层的厚度比为5:1时,补偿点出现在该材料磁导率为-5的频率上。由于该人工导体的多层膜结构中,采用了铁磁材料A和铁磁材料B两种不同种类的磁性材料,使得可调控的频率更宽。
进一步地,所述宽频低涡流损耗的人工导体的厚度为3~50微米。铁磁薄膜层厚度为50~150nm,根据需要抑制涡流损耗的频率范围,确定金属薄膜层和铁磁薄膜层的厚度比,金属薄膜层和铁磁薄膜层的厚度比通常在1:1到15:1之间。
进一步地,所述金属薄膜层为铜、铝、银、金等低电阻率的材料。
进一步地,所述铁磁材料A选自Ni-Fe合金、Fe-Co合金、NiFeCo合金、Co、Co-Cu合金、Ni-Cu合金、Fe-Cu合金、NiFeCu合金中的一种,所述铁磁材料B选自Ni-Fe合金、Fe-Co合金、Co、Co-Cu合金、Ni-Cu合金、Fe-Cu合金、NiFeCu合金中的一种,且铁磁材料A和铁磁材料B的自然共振频率相差400~800MHz。其中,选择的Ni-Cu合金、Fe-Cu合金和NiFeCu合金中,通过在磁性材料中掺杂Cu,一方面可以降低材料的饱和磁化强度,另一方面掺铜也不会使阻尼因子有较大的上升。对于实施例中采用的(Ni0.7Fe0.3)0.7Cu0.3三元材料,Ni0.7Fe0.3比例的NiFe合金同时具有低直流电阻率以及低阻尼因子的特点,且在该掺杂比例下可获得较低的自然共振频率(491.1MHz)。
本发明还提供了上述宽频低涡流损耗的人工导体在射频器件和集成电路中的应用。
与现有技术相比,本发明的有益效果为:
本发明提供了一种宽频低涡流损耗的人工导体,通过采用两种不同的铁磁材料作为铁磁薄膜层,形成非对称的结构,使得该人工导体可以在较宽的频带范围内获得涡流损耗的抑制。本发明人工导体考虑了在较低频率下抑制涡流损耗的同时,还能够在更宽频带范围内有涡流抑制效果,解决了低频补偿下抑制频带窄的问题,在射频器件及集成电路中具有很大的应用前景。
附图说明
图1为本发明实施例1提供的人工导体的多层膜结构示意图;
图2为本发明实施例1和实施例2中,(Ni0.7Fe0.3)0.7Cu0.3、Ni0.8Fe0.2和Ni0.45Fe0.55三种铁磁材料的磁谱图;
图3为本发明实施例1提供的人工导体((Ni0.7Fe0.3)0.7Cu0.3和Ni0.8Fe0.2)在5.18GHz和8.5GHz这两个补偿频率下,导体内部电流密度的分布示意图,并将其与纯铜导线(Cu)、采用一种铁磁材料作为磁性层(Ni0.8Fe0.2)、采用一种铁磁材料作为磁性层((Ni0.7Fe0.3)0.7Cu0.3)的共面波导进行对比;其中,(a)为5.18GHz频率下,实施例1、纯铜导线(Cu)、采用一种铁磁材料作为磁性层(Ni0.8Fe0.2)导体的电流密度分布图,(b)为5.18GHz频率下,实施例1、纯铜导线(Cu)、采用一种铁磁材料作为磁性层((Ni0.7Fe0.3)0.7Cu0.3)导体的电流密度分布图,(c)为8.5GHz频率下,实施例1、纯铜导线(Cu)、采用一种铁磁材料作为磁性层(Ni0.8Fe0.2)导体的电流密度分布图,(d)为8.5GHz频率下,实施例1、纯铜导线(Cu)、采用一种铁磁材料作为磁性层((Ni0.7Fe0.3)0.7Cu0.3)导体的电流密度分布图;
图4为本发明实施例1提供的人工导体((Ni0.7Fe0.3)0.7Cu0.3和Ni0.8Fe0.2)的电阻值随频率变化的示意图,并将其与纯铜导线(Cu)、采用一种铁磁材料作为磁性层(Ni0.8Fe0.2)、采用一种铁磁材料作为磁性层((Ni0.7Fe0.3)0.7Cu0.3)的共面波导进行对比;
图5为本发明实施例2提供的人工导体(Ni0.45Fe0.55和Ni0.8Fe0.2)的电阻值随频率变化的示意图,并将其与纯铜导线(Cu)、采用一种铁磁材料作为磁性层(Ni0.8Fe0.2)、采用一种铁磁材料作为磁性层(Ni0.45Fe0.55)的共面波导进行对比。
具体实施方式
下面结合附图和实施例,详述本发明的技术方案。
以下实施例中采用的磁性材料为(Ni0.7Fe0.3)0.7Cu0.3、Ni0.8Fe0.2和Ni0.45Fe0.55,这三种材料的磁谱如图2所示。实施例均是通过共面波导的结构,将本发明人工导体与纯铜材料进行对比,说明人工导体的涡流损耗的抑制效果。结果均是通过高频结构仿真软件(HFSS,v.18.2,ANSYS Inc.)仿真获得。
实施例1
本实施例人工导体结构自下而上依次为Cu/(Ni0.7Fe0.3)0.7Cu0.3/Cu/(Ni0.7Fe0.3)0.7Cu0.3/Cu/(Ni0.7Fe0.3)0.7Cu0.3/Cu/(Ni0.7Fe0.3)0.7Cu0.3/Cu/Ni0.8Fe0.2/Cu/Ni0.8Fe0.2/Cu/Ni0.8Fe0.2/Cu/Ni0.8Fe0.2/Cu,如图1所示。其中,Cu层厚度为500nm,铁磁层厚度为50nm(Cu有9层,(Ni0.7Fe0.3)0.7Cu0.3和Ni0.8Fe0.2各4层),总厚度为4.9μm。其中,(Ni0.7Fe0.3)0.7Cu0.3磁性薄膜具有低矫顽力(Hce=3.26Oe,Hch=2.15Oe),自然共振频率为491.1MHz,动态饱和磁化强度为5.77kGs,阻尼因子为0.026。
共面波导的结构参数设置如下:基底材料选择高阻硅,厚度为0.15mm,中心导带宽度为15μm,导体总厚度控制在4.9μm,中心导带与地线间的缝隙宽度为24.6μm,共面波导长度为0.25mm。制备过程具体为:
步骤1、选择高阻硅作为衬底基片,对高阻硅基片进行清洗,以去除硅单晶基片表面存在的各种杂质,力求使薄膜沉积在一个更为清洁、平滑的基片表面。首先,采用体积比为1:1的浓硫酸与过氧化氢溶液对基片清洗15分钟,以清洗基片表面依附的各种杂质;然后使用丙酮对上一步洁净后的硅基片进行超声波振荡清洗5分钟;再依次使用乙醇和去离子水分别对基片进行超声波振荡清洗5分钟,最后用氮气吹干备用。
步骤2、采用光刻胶在步骤1清洗后的高阻硅基片上进行厚胶光刻,露出互连线线路图形。
步骤3、采用磁控溅射的方法,在步骤2高阻硅基片上交替溅射Cu层和铁磁层,形成Cu/(Ni0.7Fe0.3)0.7Cu0.3/Cu/(Ni0.7Fe0.3)0.7Cu0.3/Cu/(Ni0.7Fe0.3)0.7Cu0.3/Cu/(Ni0.7Fe0.3)0.7Cu0.3/Cu/Ni0.8Fe0.2/Cu/Ni0.8Fe0.2/Cu/Ni0.8Fe0.2/Cu/Ni0.8Fe0.2/Cu的多层膜结构。在进行铁磁层溅射时,需要在基片的图案的互连线电流传输方向上添加一个外加磁场,通过这个外加磁场诱导铁磁层的面内单轴各向异性。
步骤4、多层膜溅射完成后,自然冷却至室温,然后将其浸泡于丙酮中并轻微振荡烧杯,最终在基片剥离出互连线图案,依次使用乙醇和去离子水对其进行清洗,即可得到所述共面波导。
本实施例中,对于下半部分的(Ni0.7Fe0.3)0.7Cu0.3铁磁层,该结构下的补偿频率点为5.18GHz;而对于上半部分的Ni0.8Fe0.2铁磁层,补偿频率点为8.5GHz。
图3为本发明实施例1提供的人工导体((Ni0.7Fe0.3)0.7Cu0.3和Ni0.8Fe0.2)在5.18GHz和8.5GHz这两个补偿频率下,导体内部电流密度的分布示意图,并将其与纯铜导线(Cu)、采用一种铁磁材料作为磁性层(Ni0.8Fe0.2)、采用一种铁磁材料作为磁性层((Ni0.7Fe0.3)0.7Cu0.3)的共面波导进行对比。由图3可知,使用纯铜材料的导体,在频率5.18GHz以及8.5GHz下都存在明显的趋肤效应,电流密度随深度的增加呈现指数下降;而使用单一铁磁材料的周期性结构,都只在各自对应的零磁导率补偿频率点有较好的趋肤效应抑制,电流密度不随深度明显变化,但在其各自的补偿失配点皆存在较明显的趋肤效应;而实施例1采用两种不同铁磁材料的非对称结构,该导体在5.18GHz以及8.5GHz频率下均对于涡流损耗有一定的抑制效果。
图4为本发明实施例1提供的人工导体((Ni0.7Fe0.3)0.7Cu0.3和Ni0.8Fe0.2)的电阻值随频率变化的示意图,并将其与纯铜导线(Cu)、采用一种铁磁材料作为磁性层(Ni0.8Fe0.2)、采用一种铁磁材料作为磁性层((Ni0.7Fe0.3)0.7Cu0.3)的共面波导进行对比。由图4可知,采用单一磁性材料(Ni0.7Fe0.3)0.7Cu0.3(1:10)导体的抑制范围为4-10GHz,采用单一磁性材料Ni0.8Fe0.2(1:10)导体的抑制范围为6.3-14.3GHz,而实施例1采用两种不同铁磁材料的非对称结构的导体的抑制范围为5-13GHz,表明实施例1采用两种不同铁磁材料的非对称结构有一定的频带扩宽。值得说明的是,尽管使用单一磁性材料Ni0.8Fe0.2(1:10)导体和两种磁性材料非对称结构的导体的抑制范围同样为8GHz,但是其抑制频率更低了,这是使用单一磁性材料无法实现的。
实施例2
本实施例与实施例1相比,区别在于:人工导体结构自上而下依次为Cu/Ni0.45Fe0.55/Cu/Ni0.45Fe0.55/Cu/Ni0.45Fe0.55/Cu/Ni0.45Fe0.55/Cu/Ni0.8Fe0.2/Cu/Ni0.8Fe0.2/Cu/Ni0.8Fe0.2/Cu/Ni0.8Fe0.2/Cu,其中,Cu层厚度为500nm,铁磁层厚度为50nm(Cu有9层,Ni0.45Fe0.55和Ni0.8Fe0.2各4层),总厚度为4.9μm。对于下半部分的Ni0.8Fe0.2,该结构下的补偿频率点为8.5GHz,而对于上半部分的Ni0.45Fe0.55,补偿频率点为14.3GHz。
图5为实施例2提供的人工导体(Ni0.45Fe0.55和Ni0.8Fe0.2)的电阻值随频率变化的示意图,并将其与纯铜导线(Cu)、采用一种铁磁材料作为磁性层(Ni0.8Fe0.2)、采用一种铁磁材料作为磁性层(Ni0.45Fe0.55)的共面波导进行对比。由图5可知,采用单一磁性材料Ni0.8Fe0.2(1:10)导体的抑制范围为6.3-14.3GHz,采用单一磁性材料Ni0.45Fe0.55(1:10)导体的抑制范围为10.5-21GHz,而实施例2采用两种不同铁磁材料的非对称结构的导体的抑制范围为7-19G。该例进一步说明了两种磁性材料的非对称结构相比于只使用单一材料的结构可以在很大程度上扩宽涡流损耗抑制的频带的范围。
综上,本发明提供的一种宽频低涡流损耗的人工导体,可用于射频器件的宽频带低涡流损耗互连线,能够有效消除采用铜在特定频段作为互连线时的涡流损耗。通过改变铜层与磁性层的厚度比以及选择不同的铁磁材料作为磁性层,使互连线的使用频段方便可调。这种宽频低涡流损耗的人工导体可以应用于需要在较高频率下工作且要求涡流损耗低的射频器件及集成电路中,例如高频电感的线圈,以及共面波导、微带线等射频互连线。因此,在射频器件及集成电路中具有很大应用前景。
Claims (5)
1.一种宽频低涡流损耗的人工导体,其特征在于,所述人工导体为金属薄膜层和铁磁薄膜层交替层叠形成的金属薄膜层/(铁磁薄膜层/金属薄膜层)n的周期性多层膜结构,其中,第1~n/2层铁磁薄膜层的材料为铁磁材料A,第(n/2+1)~n层铁磁薄膜层的材料为铁磁材料B;所述铁磁材料A为Ni-Fe合金、Fe-Co合金、NiFeCo合金、Co-Cu合金、Ni-Cu合金、Fe-Cu合金、NiFeCu合金中的一种,所述铁磁材料B为Ni-Fe合金、Fe-Co合金、NiFeCo、Co-Cu合金、Ni-Cu合金、Fe-Cu合金、NiFeCu合金中的一种,且铁磁材料A和铁磁材料B的自然共振频率相差400~4000MHz;所述金属薄膜层为铜、铝、银或金。
2.根据权利要求1所述的宽频低涡流损耗的人工导体,其特征在于,所述宽频低涡流损耗的人工导体的厚度为3~50微米。
3.根据权利要求1所述的宽频低涡流损耗的人工导体,其特征在于,所述铁磁薄膜层的厚度为50~150nm,金属薄膜层与铁磁薄膜层的厚度比根据需要抑制涡流损耗的频率范围确定。
4.根据权利要求1所述的宽频低涡流损耗的人工导体,其特征在于,所述金属薄膜层和铁磁薄膜层的厚度比为(1~15):1。
5.权利要求1至4任一项所述宽频低涡流损耗的人工导体在射频器件和集成电路中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010390086.9A CN111554463B (zh) | 2020-05-11 | 2020-05-11 | 一种宽频低涡流损耗的人工导体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010390086.9A CN111554463B (zh) | 2020-05-11 | 2020-05-11 | 一种宽频低涡流损耗的人工导体 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111554463A CN111554463A (zh) | 2020-08-18 |
CN111554463B true CN111554463B (zh) | 2021-09-24 |
Family
ID=72006167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010390086.9A Active CN111554463B (zh) | 2020-05-11 | 2020-05-11 | 一种宽频低涡流损耗的人工导体 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111554463B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1302827A (zh) * | 1970-06-11 | 1973-01-10 | ||
US8113436B2 (en) * | 2005-03-28 | 2012-02-14 | Rfmarq, Inc. | Semiconductor structure with communication element |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6956766B2 (en) * | 2002-11-26 | 2005-10-18 | Kabushiki Kaisha Toshiba | Magnetic cell and magnetic memory |
CN101285170B (zh) * | 2008-05-08 | 2010-09-08 | 兰州大学 | 制备宽频带吸波磁性多层膜的方法 |
JP2015162536A (ja) * | 2014-02-27 | 2015-09-07 | 国立大学法人東京工業大学 | 積層構造体、スイッチング素子、磁気デバイス、及び積層構造体の製造方法 |
CN104183570B (zh) * | 2014-08-21 | 2017-01-25 | 电子科技大学 | 一种近零涡流损耗互连线及其制备方法 |
CN105845822B (zh) * | 2016-03-23 | 2018-05-18 | 电子科技大学 | 一种调节巨磁电阻薄膜线性区域的方法 |
CN106244991B (zh) * | 2016-08-26 | 2018-11-13 | 电子科技大学 | 一种吸波多层薄膜及其制备方法 |
CN107134341B (zh) * | 2017-04-21 | 2018-11-27 | 东北大学 | 一种垂直取向强磁性介质薄膜及其制备方法 |
-
2020
- 2020-05-11 CN CN202010390086.9A patent/CN111554463B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1302827A (zh) * | 1970-06-11 | 1973-01-10 | ||
US8113436B2 (en) * | 2005-03-28 | 2012-02-14 | Rfmarq, Inc. | Semiconductor structure with communication element |
Also Published As
Publication number | Publication date |
---|---|
CN111554463A (zh) | 2020-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yamaguchi et al. | Sandwich-type ferromagnetic RF integrated inductor | |
US6118351A (en) | Micromagnetic device for power processing applications and method of manufacture therefor | |
Ikeda et al. | Thin-film inductor for gigahertz band with CoFeSiO-SiO/sub 2/multilayer granular films and its application for power amplifier module | |
Kim et al. | A megahertz switching DC/DC converter using FeBN thin film inductor | |
Yang et al. | Low-loss magnetically tunable bandpass filters with YIG films | |
Zhuang et al. | Integrated solenoid inductors with patterned, sputter-deposited Cr/Fe/sub 10/Co/sub 90//Cr ferromagnetic cores | |
TWI489613B (zh) | 積體電路中用於使電感最大化之形成磁性通孔之方法以及由此所形成之結構 | |
Lee et al. | Design and fabrication of integrated solenoid inductors with magnetic cores | |
Yamaguchi et al. | Improved RF integrated magnetic thin-film inductors by means of micro slits and surface planarization techniques | |
El-Ghazaly et al. | Gigahertz-band integrated magnetic inductors | |
Kuanr et al. | High-frequency signal processing using ferromagnetic metals | |
CN111554463B (zh) | 一种宽频低涡流损耗的人工导体 | |
Zhao et al. | Radio-frequency planar integrated inductor with Permalloy-SiO/sub 2/granular films | |
Zhuang et al. | Magnetic-multilayered interconnects featuring skin effect suppression | |
Kim et al. | Ultra-High Q-factor Through Fused-silica Via (TFV) Integrated 3D Solenoid Inductor for Millimeter Wave Applications | |
US20190051821A1 (en) | Magnetic field effect transconductors | |
Kim et al. | Microfabrication and characteristics of double-rectangular spiral type thin-film inductors with an upper NiFe magnetic core | |
Iramnaaz et al. | High quality factor RF inductors using low loss conductor featured with skin effect suppression for standard CMOS/BiCMOS | |
JP3990386B2 (ja) | マイクロ波伝送線路およびマイクロ波フィルタ | |
JPWO2005027154A1 (ja) | 高周波用磁性薄膜、その作製方法および磁気素子 | |
Iramnaaz et al. | High-quality integrated inductors based on multilayered meta-conductors | |
Kim et al. | Cu/Co metaconductor based coplanar waveguide with sub 0.1 dB/mm insertion loss at 28 GHz | |
US20070202359A1 (en) | Magnetic Thin Film For High Frequency, and Method of Manufacturing Same, and Magnetic Device | |
Iramnaaz et al. | Self-biased low loss conductor featured with skin effect suppression for high quality RF passives | |
JP3526237B2 (ja) | 半導体装置およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |