CN106244991B - 一种吸波多层薄膜及其制备方法 - Google Patents

一种吸波多层薄膜及其制备方法 Download PDF

Info

Publication number
CN106244991B
CN106244991B CN201610729646.2A CN201610729646A CN106244991B CN 106244991 B CN106244991 B CN 106244991B CN 201610729646 A CN201610729646 A CN 201610729646A CN 106244991 B CN106244991 B CN 106244991B
Authority
CN
China
Prior art keywords
layer
plural layers
film
resonance absorption
absorption frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610729646.2A
Other languages
English (en)
Other versions
CN106244991A (zh
Inventor
张丽
李梦
郑菡雨
王昕�
邓龙江
谢建良
梁迪飞
周佩珩
陆海鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610729646.2A priority Critical patent/CN106244991B/zh
Publication of CN106244991A publication Critical patent/CN106244991A/zh
Application granted granted Critical
Publication of CN106244991B publication Critical patent/CN106244991B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本发明涉及磁性材料制备领域,特别涉及一种吸波多层薄膜及其制备方法。该吸波多层薄膜为制备于衬底上的多层薄膜,从下至上分为三个部分,依次为衬底、中间层和顶层。中间层是由n个单元从下至上依次依次堆叠而成,n≥1,单元是下层共振吸收频率为f1的磁性层和上层是隔离层的双层单元结构,最终依次堆叠为f1‑fn共计2n层的中间层。顶层是由均匀排布的相同条形FeCo基合金磁性薄膜组合而成,条形薄膜的数量≥2。f1‑fn的磁性层的共振吸收频率相同和/或不同。本发明将吸波多层薄膜的吸收频带有效拓宽,并且不局限于材料本身的吸收频率,且有效的将材料的吸收频带拓宽至高频,可用于噪声抑制器,传输线等器件中。

Description

一种吸波多层薄膜及其制备方法
技术领域
本发明涉及磁性材料制备领域,特别涉及一种吸波多层薄膜及其制备方法,可用于噪声抑制器,传输线等器件中。
背景技术
随着无线电通讯科技的发展和电子设备的高集成化,集成电子器件在运行中所产生的高密度、宽频谱的电磁信号充满整个空间,形成复杂的电磁环境,这要求电子设备及电源在各个频段都具有很好的电磁兼容性,这也就给抗电磁干扰技术带来了一系列的挑战。
高频磁性薄膜在高频具有非常优异的电磁损耗效果,且其薄、轻的特点使其在高集成化、小型化的电子器件中具有良好的应用前景,其吸收机制为磁矩的自然共振。为了实现在较宽频带对电磁波的吸收,从理论上讲有两种思路:一种是单层磁性薄膜,通过增大薄膜磁矩共振时的阻尼因子来展宽薄膜的共振吸收频带,可是单纯控制阻尼因子是困难的,过大的阻尼也会降低薄膜的吸收效果;另一种思路是多层薄膜,在[Zhang L,Zheng H,ZhuW,Li M,Zhang M,Wang N,Lu H P,Xie J L,Deng L J(2016),J.Alloys Compd,vol.657,pp.174-178]文中公开了FeCoB和FeCoSiB组合的多层薄膜,该薄膜的共振吸收频率将FeCoB的共振吸收频率(3~3.25GHz)和FeCoSiB的共振吸收频率(1.96~2.13GHz)组合在一起,但是此方法只能组合磁性薄膜本身的吸收频率,很难将共振吸收频率向高频进一步拓宽。FeCo基薄膜的共振吸收频率比大部分的磁性薄膜的共振吸收频率高,如果想要把共振吸收频率向高频进一步拓宽,就要寻找具有更高吸收频率的磁性材料,但这本身就是非常困难的。
因此提供一种宽频带吸波多层薄膜及其制备方法,不局限于材料本身吸收频率,实现将吸收频带向高频的拓宽,对电磁屏蔽领域发展是非常有利的。
发明内容
针对上述存在问题或不足,为解决将吸收频带拓宽至高频的宽频带吸波多层薄膜,本发明提供了一种吸波多层薄膜及其制备方法。
该吸波多层薄膜从下至上分为三个部分,依次为衬底、中间层和顶层。
中间层是由n个单元从下至上依次依次堆叠而成,n≥1,单元是下层共振吸收频率为f1的磁性层和上层是隔离层的双层单元结构,最终依次堆叠为f1-fn共计2n层的中间层,隔离 层材料为SiO2,Cu或Al2O3非磁性材料,厚度为5nm~15nm。
顶层是由均匀排布的相同条形磁性薄膜组合而成,条形薄膜的数量≥2,宽度为1μm~30μm,厚度为15nm~200nm,相邻条形磁性薄膜之间的间隔为1μm~10μm,材料为FeCo基合金材料。
整个吸波多层薄膜基于衬底、中间层和顶层的结构形成由隔离层间隔的共振吸收频率磁性层的多层薄膜材料。
进一步的,所述f1-fn的磁性层的共振吸收频率相同和/或不同,当共振吸收频率相同时可提升吸波多层薄膜的吸收率,不同时可拓宽吸波多层薄膜的频带。
其制备方法具体如下:
步骤1、将衬底清洗干净,并吹干后采用真空溅射法生成共振吸收频率为f1的第1磁性层,然后采用真空溅射法在第1磁性层上生成第1隔离层,再采用真空溅射法在第1隔离层上生成共振吸收频率为f2的第2磁性层,再采用真空溅射法在第2磁性层上生成第2隔离层,如此重复前述步骤直至完成共振吸收频率为fn的第n磁性层和隔离层,最后形成具有由隔离层间隔的不同共振吸收频率的多层薄膜衬底,最上层为第n隔离层;
步骤2、在步骤1中制得第n隔离层薄膜上光刻,形成组合胶膜;该胶膜由均匀的条形胶膜组合而成的,各条形胶膜宽度为1μm~10μm,厚度为0.5μm~1.5μm,各条形胶膜间的间距宽度为1μm~30μm,胶膜的数量≥2;
步骤3、采用真空溅射法在步骤2制得的具有胶膜薄膜衬底上溅射一层厚度为15nm~200nm的FeCo基磁性材料薄膜,溅射时沿条形胶膜长轴方向外加200Oe-2000Oe的静态磁场;然后将其置于丙酮溶液中进行超声清洗将胶膜剥离,形成均匀排布的条形磁性薄膜顶层,条形薄膜的数量≥2,宽度为1μm~30μm,相邻条形薄膜之间的间隔为1μm~10μm,厚度为15nm~200nm;至此最终制得吸波多层薄膜。
本发明将吸波多层薄膜的吸收频带有效拓宽,并且不局限于材料本身的吸收频率,且有效的将材料的吸收频带拓宽至高频。
附图说明
图1是本发明提供的吸波多层薄膜沿最上层条形薄膜短轴方向剖面结构示意图;
图2是实施例1成品在电子显微镜下的俯视图;
图3是实施例1、实施例2和实施例3的磁导率虚部测试图。
具体实施方式
实施例1:FeNi和FeCoSiB的吸波多层薄膜的制备
步骤1、将尺寸为15mm×5mm×0.5mm的Si(111)基片通过丙酮超声清洗5分钟,经过无水乙醇超声清洗5分钟,再用去离子水冲洗5次,将洗好的Si基片用压缩空气吹去表面的去离子水后,将Si基片固定于磁控溅射腔体中的沉积载台上,溅射靶材为磁性合金靶材FeNi,溅射背景真空为5×10-5Pa,通入纯度大于等于99.99%的氩气使溅射真空为0.3Pa,使用直流磁控溅射,设定溅射功率为60W,沿硅片短轴方向外加1000Oe的静态磁场;溅射速率为8.82纳米/分钟,溅射4分32秒,得到溅射有40nm厚的FeNi薄膜的衬底;
步骤2、将载有步骤1制得的衬底的沉积载台转动到靶材SiO2的靶位上方,溅射背景真空为5×10-5Pa,通入纯度大于等于99.99%的氩气使溅射真空为0.3Pa,使用射频磁控溅射,设定溅射功率为20W,溅射速率为1纳米/分钟,溅射10分钟,得到具有厚度为40nm的FeNi,20nm的SiO2的双层薄膜衬底;
步骤3、将步骤2制得的双层薄膜衬底进行光刻,在SiO2上形成一层组合胶膜,得到具有最上层为胶膜的三层薄膜衬底;该组合胶膜由均匀条形胶膜组合而成的,各条形胶膜宽度为3μm,厚度为1μm,各条形胶膜间的间距宽度为6μm,条形胶膜长轴平行于衬底短轴;
步骤4、将步骤3制得的三层薄膜衬底固定于磁控溅射腔体中的沉积载台上,溅射靶材为磁性合金靶材FeCoSiB,溅射背景真空为5×10-5Pa,通入纯度大于等于99.99%的氩气使溅射真空为0.3Pa,使用直流磁控溅射,设定溅射功率为45W,沿衬底短轴方向外加1000Oe的静态磁场;溅射速率为13.3纳米/分钟,溅射3分46秒后将衬底取出放入丙酮中进行超声清洗,再用酒精冲洗,然后用洗耳球吹干表面,得到厚度分别为40nm,10nm,50nm的FeNi,SiO2,FeCoSiB三层吸波薄膜材料。
实施例2与实施例1其他的制备条件相同,将步骤4中溅射时间设为3分钟,将衬底取出,放入丙酮中进行超声清洗,再用酒精冲洗,用洗耳球吹干表面,得到厚度分别为40nm,10nm,40nm的FeNi,SiO2,FeCoSiB三层吸波薄膜材料。
实施例3与实施例1其他的制备条件相同,将步骤4中溅射时间设为1分30秒,将衬底取出,放入丙酮中进行超声清洗,再用酒精冲洗,用洗耳球吹干表面,得到厚度分别为40nm,10nm,20nm的FeNi,SiO2,FeCoSiB三层吸波薄膜材料。
经过短路微带线法测试上述实施例中制得的薄膜材料得到如图3所示的磁导率虚部测试图,本发明没有局限于FeCoSiB的吸收频率(1.96~2.13GHz),得到两个共振峰,第二个峰的共振频率在4.5GHz到5GHz间,有效得到高频吸收频率;本方法还可以组合更多层,得到宽频带的高频吸波多层薄膜材料。

Claims (3)

1.一种吸波多层薄膜,从下至上依次为衬底、中间层和顶层,其特征在于:
所述中间层是由n个单元从下至上依次堆叠而成,n≥1,单元是下层共振吸收频率为f1的磁性层和上层是隔离层的双层单元结构,最终依次堆叠为f1-fn共计2n层的中间层,隔离层材料为SiO2,Cu或Al2O3非磁性材料,厚度为5nm~15nm;
顶层是由均匀排布的相同条形磁性薄膜组合而成,条形薄膜的数量≥2,宽度为1μm~30μm,厚度为15nm~200nm,相邻条形磁性薄膜之间的间隔为1μm~10μm,材料为FeCo基合金材料;
整个吸波多层薄膜基于衬底、中间层和顶层的结构形成由隔离层间隔的共振吸收频率磁性层的多层薄膜材料。
2.如权利要求1所述吸波多层薄膜,其特征在于:所述f1-fn的磁性层的共振吸收频率相同和/或不同,当共振吸收频率相同时可提升吸波多层薄膜的吸收率,不同时可拓宽吸波多层薄膜的频带。
3.如权利要求1所述吸波多层薄膜的制备方法,具体包括以下步骤:
步骤1、将衬底清洗干净,并吹干后采用真空溅射法生成共振吸收频率为f1的第1磁性层,然后采用真空溅射法在第1磁性层上生成第1隔离层;再采用真空溅射法在第1隔离层上生成共振吸收频率为f2的第2磁性层,然后采用真空溅射法在第2磁性层上生成第2隔离层,如此重复前述步骤直至完成共振吸收频率为fn的第n磁性层和隔离层,最后形成具有由隔离层间隔的不同共振吸收频率的多层薄膜衬底,最上层为第n隔离层;
步骤2、在步骤1中制得第n隔离层薄膜上光刻,形成组合胶膜;该胶膜由均匀的条形胶膜组合而成的,各条形胶膜宽度为1μm~10μm,厚度为0.5μm~1.5μm,各条形胶膜间的间距宽度为1μm~30μm,胶膜的数量≥2;
步骤3、采用真空溅射法在步骤2制得的具有胶膜薄膜衬底上溅射一层厚度为15nm~200nm的FeCo基磁性材料薄膜,溅射时沿条形胶膜长轴方向外加200Oe-2000Oe的静态磁场;然后将其置于丙酮溶液中进行超声清洗将胶膜剥离,形成均匀排布的条形磁性薄膜顶层,条形薄膜的数量≥2,宽度为1μm~30μm,相邻条形薄膜之间的间隔为1μm~10μm,厚度为15nm~200nm;至此最终制得吸波多层薄膜。
CN201610729646.2A 2016-08-26 2016-08-26 一种吸波多层薄膜及其制备方法 Active CN106244991B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610729646.2A CN106244991B (zh) 2016-08-26 2016-08-26 一种吸波多层薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610729646.2A CN106244991B (zh) 2016-08-26 2016-08-26 一种吸波多层薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN106244991A CN106244991A (zh) 2016-12-21
CN106244991B true CN106244991B (zh) 2018-11-13

Family

ID=57596078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610729646.2A Active CN106244991B (zh) 2016-08-26 2016-08-26 一种吸波多层薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN106244991B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342148B (zh) * 2017-06-13 2019-04-05 电子科技大学 一种宽频带吸波多层薄膜及其制备方法
CN108933335B (zh) * 2018-08-18 2020-12-22 南昌大学 一种调控雷达吸波材料吸收频率的新方法
CN111554463B (zh) * 2020-05-11 2021-09-24 电子科技大学 一种宽频低涡流损耗的人工导体
CN114682459A (zh) * 2020-12-25 2022-07-01 辽宁省轻工科学研究院有限公司 耐高温低频雷达吸波涂层的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101285170B (zh) * 2008-05-08 2010-09-08 兰州大学 制备宽频带吸波磁性多层膜的方法
CN101552043A (zh) * 2009-05-12 2009-10-07 南京大学 周期结构的铁磁性薄膜吸波材料
CN105845435B (zh) * 2016-05-23 2018-05-18 电子科技大学 一种宽频带吸波磁性薄膜及其制备方法

Also Published As

Publication number Publication date
CN106244991A (zh) 2016-12-21

Similar Documents

Publication Publication Date Title
CN106244991B (zh) 一种吸波多层薄膜及其制备方法
CN110863183B (zh) 复合结构吸气剂薄膜及其制备方法
US20140347157A1 (en) Magnetic device utilizing nanocomposite films layered with adhesives
CN101285170B (zh) 制备宽频带吸波磁性多层膜的方法
JP5536418B2 (ja) 高比誘電率及び比高透磁率を有する薄膜を備えたラジオ周波数デバイス
JP4336753B2 (ja) 超薄膜の作製方法
JP5209482B2 (ja) 酸化処理方法
CN105845435B (zh) 一种宽频带吸波磁性薄膜及其制备方法
US20230272512A1 (en) Nanogranular magnetic film and electronic component
CN107342148B (zh) 一种宽频带吸波多层薄膜及其制备方法
US20170178788A1 (en) Laminated structures for power efficient on-chip magnetic inductors
CN202949042U (zh) Fe/SiO2纳米多层膜电磁波吸波材料
US8603637B2 (en) Coated article and method for making the same
CN107895623B (zh) 一种光学模铁磁共振增强的多层膜
JP7133392B2 (ja) 強磁性積層膜および強磁性積層膜の製造方法ならびに電磁誘導性電子部品
Frommberger et al. High-frequency magnetic properties of FeCoBSi/SiO/sub 2/and (FeCo/CoB)/SiO/sub 2/multilayer thin films
US11699541B2 (en) Magnetic thin film laminated structure deposition method
JP2020088078A (ja) 強磁性積層膜およびその製造方法ならびに電磁誘導性電子部品
CN110079760A (zh) 具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备
Peng et al. High-frequency magnetic characteristics of Fe-Co-based nanocrystalline alloy films
US20210305171A1 (en) Electromagnetic wave attenuator, electronic device, film formation apparatus, and film formation method
CN104451568A (zh) 一种双磁性相纳米复合薄膜的制备方法
JP2008243307A (ja) 磁気記録媒体、及び磁気記録媒体の製造方法
CN102832009A (zh) 一种具有室温铁磁性的Ge-SiN复合薄膜材料及其制备方法
JP2023110382A (ja) ナノグラニュラー磁性膜および電子部品

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant