CN110079760A - 具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备 - Google Patents

具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备 Download PDF

Info

Publication number
CN110079760A
CN110079760A CN201910355210.5A CN201910355210A CN110079760A CN 110079760 A CN110079760 A CN 110079760A CN 201910355210 A CN201910355210 A CN 201910355210A CN 110079760 A CN110079760 A CN 110079760A
Authority
CN
China
Prior art keywords
nano level
soft magnetic
concaveconvex structure
magnetic metal
micro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910355210.5A
Other languages
English (en)
Other versions
CN110079760B (zh
Inventor
汤如俊
王禹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201910355210.5A priority Critical patent/CN110079760B/zh
Publication of CN110079760A publication Critical patent/CN110079760A/zh
Application granted granted Critical
Publication of CN110079760B publication Critical patent/CN110079760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/20Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/20Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation
    • H01F41/205Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation by laser ablation, e.g. pulsed laser deposition [PLD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本发明涉及金属软磁薄膜技术领域,尤其涉及一种具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备方法。本发明的具有周期性微纳米级凹凸结构的金属软磁薄膜,包括自下而上依次设置在基底上方且与基底形配合的金属缓冲层、软磁层和非磁性的抗氧化保护膜层,基底具有周期性微纳米级凹凸结构,金属缓冲层的厚度为5‑50nm;软磁层的厚度为3‑1000nm;抗氧化保护膜层的厚度为5‑50nm。

Description

具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备
技术领域
本发明涉及金属软磁薄膜技术领域,尤其涉及一种具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备。
背景技术
软磁材料广泛应用于无线电电子工业、精密仪器仪表、遥控及自动控制系统中。综合起来主要用于能量转换和信息处理两大方面,是国民经济中的一种重要材料。在目前的电子器件中,软磁薄膜材料多数以二维平面薄膜形式存在。将少量的软磁材料制备在柔性基片上,其被卷曲后可形成三维结构。在某些特殊的器件应用(如信息储存和高频微波)中,软磁薄膜需要以周期性微纳结构形式存在。三维微纳米结构在光学器件领域已经得到了广泛的应用。在磁电子领域,周期性三维微纳米结构可以为器件带来新的功能或信息调制方式。但是,具有周期性三维微纳米结构的金属软磁薄膜还未见报道。
发明内容
为解决上述技术问题,本发明的目的是提供一种具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备方法,本发明制备了一种全新结构的金属软磁薄膜,其具有三维的微纳米级凹凸结构。
本发明的第一个目的是提供一种具有周期性微纳米级凹凸结构的金属软磁薄膜,包括自下而上依次设置在基底上方且与所述基底形配合的金属缓冲层、软磁层和非磁性的抗氧化保护膜层,基底具有周期性微纳米级凹凸结构,金属缓冲层的厚度为5-50nm;软磁层的厚度为3-1000nm;抗氧化保护膜层的厚度为5-50nm。
进一步地,金属缓冲层的材质为Pt、Au或Ta。
进一步地,软磁层的材质为镍铁合金、钴镍锆合金或铁钴合金。
优选地,软磁层的材质为镍铁(NiFe)合金;更优选地,软磁层的材质为Ni80Fe20或Ni81Fe19
进一步地,抗氧化保护膜层的材质为Pt、Au或Ta。抗氧化保护膜层可以防止内部的软磁层被氧化。
进一步地,周期性微纳米级凹凸结构为周期性三维金字塔结构或棋盘状结构。
进一步地,基底的材质为硅或二氧化硅。
优选地,金属缓冲层的厚度为10-30nm;软磁层的厚度为10-200nm;抗氧化保护膜层的厚度为10nm。
本发明的第二个目的是提供一种上述具有周期性微纳米级凹凸结构的金属软磁薄膜的制备方法,包括以下步骤:
使用真空镀膜技术,在具有周期性微纳米级凹凸结构的基底表面自下而上依次镀一层金属缓冲层、软磁层和抗氧化保护膜层;其中,在镀所述软磁层之前,在气压低于10-4Pa的条件下,预打靶5-10min;真空镀膜过程中,背景气压为低于10-4Pa;镀膜温度为20-150℃。
进一步地,真空镀膜技术包括磁控溅射镀膜技术、真空蒸镀镀膜技术或脉冲激光镀膜技术。
优选地,真空镀膜技术为脉冲激光镀膜技术,激光功率为2mJ/cm2,脉冲频率为5Hz-7Hz。
进一步地,在真空镀膜之前,还包括使用有机溶剂清洗所述基底表面,并在惰性气氛下进行干燥的步骤。
借由上述方案,本发明至少具有以下优点:
本发明采用真空镀膜技术,在三维的周期性微纳米级凹凸结构的基底表面上制备金属软磁薄膜,通过基片模板使薄膜具有三维形式的周期性微纳米级凹凸结构,在磁电子领域,周期性微纳米级凹凸结构可以为器件带来新的功能或信息调制方式,适用于高频信息传输和磁场探测等领域。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1是本发明金属软磁薄膜的剖面结构示意图;
图2是本发明制备的Ni81Fe19软磁薄膜的SEM扫描表面图和断面图;
图3是本发明制备的Ni81Fe19软磁薄膜与平面Ni81Fe19软磁薄膜磁滞回线对比图;
附图标记说明:
1-基底;2-金属缓冲层;3-软磁层;4-抗氧化保护膜层。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明中,可以通过商业购买或按照现有技术制备得到具有周期性微纳米级凹凸结构的基底,
本发明一优选实施例提供了一种具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备方法,图1是本实施例制备的金属软磁薄膜的剖面结构示意图,包括自下而上依次设置在基底1上方且与所述基底1形配合的金属缓冲层2、软磁层3和非磁性的抗氧化保护膜层4。在优选实施例中,基底1为三维的具有周期性金字塔结构的单晶硅基片。金属软磁薄膜的制备步骤如下:
(1)准备金属软磁靶材,靶材的材质为:Ni81Fe19
(2)将具有金字塔形式三维微米表面结构的单晶硅基片在丙酮和酒精里分别清洗10分钟去除表面灰尘杂质,取出用氮气吹干,然后迅速放入镀膜真空腔内。
(3)使用脉冲激光镀膜技术在单晶硅基片模板表面镀一层金属缓冲层,金属缓冲层材质为Ta,激光功率为2mJ/cm2,脉冲频率为5Hz。然后,继续镀Ni81Fe19软磁层。通过机械泵和分子泵将真空镀膜腔内气压抽至低于1×10-4Pa后,预打靶5min,开始镀膜,镀膜温度为室温,激光功率为2mJ/cm2,脉冲频率为5Hz。金属缓冲层厚度为30nm,Ni81Fe19金属软磁薄膜层的厚度为120nm。
(4)镀完Ni81Fe19金属软磁薄膜层后,在Ni81Fe19金属软磁薄膜层表面镀一层非磁性的抗氧化保护膜。抗氧化保护膜的材质为Ta,厚度为40nm。镀膜完成后则得到与单晶硅基片表面强结合的刚性三维的具有周期性微米尺度金字塔结构的Ni81Fe19金属软磁薄膜。
上述实施例中,步骤(1)中的软磁靶材还可以选择Ni80Fe20等具有软磁性质的磁性材料。
步骤(3)中,脉冲激光镀膜技术还可以替换为磁控溅射镀膜技术、真空蒸镀镀膜技术等真空镀膜技术。镀膜温度可以在室温至150℃范围内调节。缓冲层或抗氧化保护膜的的材质还可以选择Au或Pt。
图2是上述方法制备的Ni81Fe19软磁薄膜的SEM扫描表面图(图2a)和断面图(图2b、图2c),图2c是图2b的部分结构放大图。结果表明通过以上方法,本发明可以成功制备具有微米尺度周期性金字塔形式三维结构的Ni81Fe19软磁薄膜,薄膜的厚度可控。图3是本发明制备的Ni81Fe19软磁薄膜(图3a)与平面Ni81Fe19软磁薄膜(图3b)磁滞回线对比图;磁滞回线结果表明金字塔形式三维结构Ni81Fe19薄膜的磁性能与平面薄膜型的略有不同,矫顽力比平面型的薄膜增大,矩形度也略有增加。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

1.一种具有周期性微纳米级凹凸结构的金属软磁薄膜,其特征在于:包括自下而上依次设置在基底上方且与所述基底形配合的金属缓冲层、软磁层和抗氧化保护膜层,所述基底具有周期性微纳米级凹凸结构,所述金属缓冲层的厚度为5-50nm;所述软磁层的厚度为3-1000nm;所述抗氧化保护膜层的厚度为5-50nm。
2.根据权利要求1所述的具有周期性微纳米级凹凸结构的金属软磁薄膜,其特征在于:所述金属缓冲层的材质为Pt、Au或Ta。
3.根据权利要求1所述的具有周期性微纳米级凹凸结构的金属软磁薄膜,其特征在于:所述软磁层的材质为镍铁合金、钴镍锆合金或铁钴合金。
4.根据权利要求1所述的具有周期性微纳米级凹凸结构的金属软磁薄膜,其特征在于:所述抗氧化保护膜层的材质为Pt、Au或Ta。
5.根据权利要求1所述的具有周期性微纳米级凹凸结构的金属软磁薄膜,其特征在于:所述周期性微纳米级凹凸结构为周期性三维金字塔结构或棋盘状结构。
6.根据权利要求1所述的具有周期性微纳米级凹凸结构的金属软磁薄膜,其特征在于:所述基底的材质为硅或二氧化硅。
7.一种权利要求1-6中任一项所述的具有周期性微纳米级凹凸结构的金属软磁薄膜的制备方法,其特征在于,包括以下步骤:
使用真空镀膜技术,在具有周期性微纳米级凹凸结构的基底表面自下而上依次镀一层金属缓冲层、软磁层和抗氧化保护膜层;其中,在镀所述软磁层之前,在气压低于10-4Pa的条件下,预打靶5-10min;真空镀膜过程中,背景气压低于10-4Pa;镀膜温度为20-150℃。
8.根据权利要求7所述的制备方法,其特征在于:所述真空镀膜技术包括磁控溅射镀膜技术、真空蒸镀镀膜技术或脉冲激光镀膜技术。
9.根据权利要求8所述的制备方法,其特征在于:所述真空镀膜技术为脉冲激光镀膜技术,激光功率为2mJ/cm2,脉冲频率为5Hz至7Hz。
10.根据权利要求7所述的制备方法,其特征在于:在真空镀膜之前,还包括使用有机溶剂清洗所述基底表面,并在惰性气氛下进行干燥的步骤。
CN201910355210.5A 2019-04-29 2019-04-29 具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备 Active CN110079760B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910355210.5A CN110079760B (zh) 2019-04-29 2019-04-29 具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910355210.5A CN110079760B (zh) 2019-04-29 2019-04-29 具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备

Publications (2)

Publication Number Publication Date
CN110079760A true CN110079760A (zh) 2019-08-02
CN110079760B CN110079760B (zh) 2022-01-11

Family

ID=67417642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910355210.5A Active CN110079760B (zh) 2019-04-29 2019-04-29 具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备

Country Status (1)

Country Link
CN (1) CN110079760B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112848616A (zh) * 2019-11-28 2021-05-28 安世亚太科技股份有限公司 一种微纳米级工程立体结构材料及其制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743503B1 (en) * 1999-10-05 2004-06-01 Seagate Technology Llc Ultra-thin seed layer for multilayer superlattice magnetic recording media
CN1632965A (zh) * 2004-11-16 2005-06-29 北京科技大学 一种各向异性磁电阻坡莫合金薄膜的制备方法
CN101148754A (zh) * 2007-11-20 2008-03-26 北京科技大学 一种提高坡莫合金薄膜磁电阻变化率的方法
CN101710525A (zh) * 2009-12-17 2010-05-19 北京科技大学 一种超高灵敏磁电阻薄膜材料及其制备方法
CN102867645A (zh) * 2012-09-27 2013-01-09 北京科技大学 一种提高各向异性磁电阻坡莫合金薄膜热稳定性的方法
CN104195644A (zh) * 2014-07-27 2014-12-10 北京工业大学 一种单晶硅衬底亚微米金字塔结构激光-化学制备方法
CN106018379A (zh) * 2016-05-16 2016-10-12 华南师范大学 一种大面积表面增强拉曼散射基底及其制备方法
CN109273254A (zh) * 2018-09-25 2019-01-25 电子科技大学 一种改善各向异性磁电阻坡莫合金薄膜磁性能的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743503B1 (en) * 1999-10-05 2004-06-01 Seagate Technology Llc Ultra-thin seed layer for multilayer superlattice magnetic recording media
CN1632965A (zh) * 2004-11-16 2005-06-29 北京科技大学 一种各向异性磁电阻坡莫合金薄膜的制备方法
CN101148754A (zh) * 2007-11-20 2008-03-26 北京科技大学 一种提高坡莫合金薄膜磁电阻变化率的方法
CN101710525A (zh) * 2009-12-17 2010-05-19 北京科技大学 一种超高灵敏磁电阻薄膜材料及其制备方法
CN102867645A (zh) * 2012-09-27 2013-01-09 北京科技大学 一种提高各向异性磁电阻坡莫合金薄膜热稳定性的方法
CN104195644A (zh) * 2014-07-27 2014-12-10 北京工业大学 一种单晶硅衬底亚微米金字塔结构激光-化学制备方法
CN106018379A (zh) * 2016-05-16 2016-10-12 华南师范大学 一种大面积表面增强拉曼散射基底及其制备方法
CN109273254A (zh) * 2018-09-25 2019-01-25 电子科技大学 一种改善各向异性磁电阻坡莫合金薄膜磁性能的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
许涌等: "几种元素的界面插层对Ta/NiFe/Ta的各向异性磁电阻效应的影响", 《物理学报》 *
邸荻: "多构型周期性纳米结构的微纳融合可控制备及光学特性研究", 《中国优秀博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112848616A (zh) * 2019-11-28 2021-05-28 安世亚太科技股份有限公司 一种微纳米级工程立体结构材料及其制作方法

Also Published As

Publication number Publication date
CN110079760B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
US8137760B2 (en) Nanocrater catalyst in metal nanoparticles and method for preparing the same
Crisan et al. Direct formation of L10 FePt in as-cast FePt-based magnetic nanocomposite ribbons without post-synthesis annealing
TW584670B (en) Fabrication of nanocomposite thin films for high density magnetic recording media
CN110144484B (zh) 一种Cu-NbMoTaW合金及其制备方法
CN100457958C (zh) 一种金属氧化物纳米反阵列薄膜的制备方法
CN110079760A (zh) 具有周期性微纳米级凹凸结构的金属软磁薄膜及其制备
JP2019523984A (ja) Fe系磁性薄膜
Perumal et al. FePtAg–C nanogranular films fabricated on a heat resistant glass substrate for perpendicular magnetic recording
CN108914080A (zh) 一种制备具有室温交换偏置效应锰铋合金薄膜的方法
JP6353901B2 (ja) 磁性材料
JP2017098538A (ja) Mn−X系磁性材料
TWI473129B (zh) 導磁材料之製備方法
Chen et al. Enhanced coercivity of HCP Co–Pt alloy thin films on a glass substrate at room temperature for patterned media
CN108624852B (zh) 一种高居里温度的铁锆非晶多层膜及其制备方法
US20110171494A1 (en) Discontinuous islanded ferromagnetic recording film with perpendicular magnetic anisotropy
Yin et al. High coercivity Co-ferrite thin films on SiO/sub 2/(100) substrate prepared by sputtering and PLD
US20100124673A1 (en) High density magnetic recording film and method for manufacturing the same by using rapid thermal annealing treatment
JP2019534562A (ja) Fe−Al系合金磁性薄膜
CN110735119B (zh) 一种磁控溅射制备巨大矫顽力Mn3Ga薄膜的方法
CN112899629B (zh) 一种高熵氧化物薄膜及其制备方法和应用
Nakagawa et al. Mn–Zn spinel ferrite thin films prepared by high rate reactive facing targets sputtering
Peng et al. High-frequency magnetic characteristics of Fe-Co-based nanocrystalline alloy films
JP2001076955A (ja) 磁性体スパッタリングターゲット及びその製造方法
CN117012491A (zh) 一种FeCoNiZrx中熵合金软磁薄膜、制备方法及其应用
CN116397193A (zh) 高电阻率高截止频率软磁薄膜的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant