JP3526237B2 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法

Info

Publication number
JP3526237B2
JP3526237B2 JP12827999A JP12827999A JP3526237B2 JP 3526237 B2 JP3526237 B2 JP 3526237B2 JP 12827999 A JP12827999 A JP 12827999A JP 12827999 A JP12827999 A JP 12827999A JP 3526237 B2 JP3526237 B2 JP 3526237B2
Authority
JP
Japan
Prior art keywords
thin film
magnetic thin
soft magnetic
insulator layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12827999A
Other languages
English (en)
Other versions
JP2000323656A (ja
Inventor
淳一 小舘
充 原田
恒夫 束原
英州 菅原
秀夫 鈴木
正博 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Tokin Corp
Original Assignee
Nippon Telegraph and Telephone Corp
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, NEC Tokin Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12827999A priority Critical patent/JP3526237B2/ja
Publication of JP2000323656A publication Critical patent/JP2000323656A/ja
Application granted granted Critical
Publication of JP3526237B2 publication Critical patent/JP3526237B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、インダクタ素子を
含む半導体装置およびその製造方法に関し、特に、イン
ダクタ素子の上面側および下面側の少なくとも一方の側
に磁性体薄膜が配置された半導体装置およびその製造方
法に関する。
【0002】
【従来の技術】シリコン基板上に作製する半導体回路に
含まれるインダクタ素子には、基板面に対して垂直方向
にらせん形状をもつトロイダルインダクタ、図10に示
すように基板面に対して水平方向にうずまき形状をもつ
スパイラルインダクタ(111)、などがある。このう
ち、スパイラルインダクタは、シリコンLSIプロセス
を用いて作製することが比較的容易なことから、半導体
回路のなかで広く用いられている。
【0003】このスパイラルインダクタに関して、形状
をそのままに高いインダクタンスを得る方法として、ス
パイラルインダクタの上面側および下面側の少なくとも
一方の側に磁性体薄膜を形成する方法があり、電源回路
用のインダクタ素子のインダクタンス向上などに用いら
れている。図11は、この方法を用いてインダクタ素子
111を形成した従来の半導体装置の断面図である。イ
ンダクタ素子111は、シリコン基板101上のインダ
クタ素子領域に形成された素子分離絶縁膜102の上
に、磁性体薄膜121,122に挟まれて形成されてい
る。インダクタ素子111および磁性体薄膜121,1
22は、配線層間絶縁膜106により電気的に絶縁分離
されている。
【0004】
【発明が解決しようとする課題】磁性体薄膜121,1
22は、その比透磁率が大きいほど、高いインダクタン
スをもつインダクタ素子111を実現できる。このよう
な比透磁率の大きいの磁性体には、パーマロイ薄膜、セ
ンダスト薄膜、アモルファス薄膜など、各種薄膜が開発
されており、使用周波数帯域においてそれぞれ特徴があ
る。パーマロイ薄膜およびセンダスト薄膜は、比抵抗が
小さく、数10MHz〜数100MHzの範囲で大きな
比透磁率を示す。しかし、これらの磁性体薄膜はGHz
の高周波帯域で比透磁率が低下してしまうので、高周波
帯域で高いインダクタンスを得られなかった。
【0005】これに対して、アモルファス薄膜などの軟
磁性薄膜は、他の材料に比較して比抵抗が大きく、磁気
異方性を大きく制御することによってGHzの高周波数
帯域まで大きな比透磁率が維持される。しかし、軟磁性
薄膜は大きな一軸磁気異方性を有するため、磁化困難軸
方向の比透磁率は大きいが、これに垂直な磁化容易軸方
向の比透磁率は小さい。したがって、一軸磁気異方性を
有する軟磁性薄膜で全方位に高い比透磁率を実現するこ
とは困難であり、このような軟磁性薄膜をインダクタ素
子111の上下に配置しても高周波帯域で全方位にわた
って高いインダクタンスを得ることができなかった。
【0006】本発明はこのような課題を解決するために
なされたものであり、その目的は、高周波用インダクタ
素子のインダクタンスを全方位にわたって向上させるこ
とにある。
【0007】
【課題を解決するための手段】上記の目的を達成するた
めに、本発明の半導体装置は、半導体基板上に形成され
た第1の絶縁体層と、この第1の絶縁体層上に形成され
たインダクタ素子と、このインダクタ素子を覆うように
第1の絶縁体層上に形成された第2の絶縁体層と、イン
ダクタ素子が形成された領域に対応する部分の半導体基
板を除去して形成された開口部と、この開口部内におけ
第1の絶縁体層の下面側に形成されかつ一軸磁気異方
性を有する軟磁性薄膜の第1の多層構造とを備え、この
第1の多層構造の各層の軟磁性薄膜は、膜面内におい
て、膜面に平行な成分の磁化容易軸方向が互いに異なる
ことを特徴とする。磁化容易軸方向の異なる軟磁性薄膜
を多層化することにより、高周波帯域でも全方位に高い
比透磁率を得られる。また、半導体基板の開口部内に軟
磁性薄膜を形成することにより、インダクタ素子の下面
側の近傍に軟磁性薄膜を形成できる。しかも、インダク
タ素子を含めた半導体素子の製造プロセスの終了後に軟
磁性薄膜を形成できるので、軟磁性薄膜は熱履歴を受け
なくてすむ。
【0008】また、この半導体装置は、第2の絶縁体層
の上面側に形成されかつ一軸磁気異方性を有する軟磁性
薄膜の第2の多層構造を備え、この第2の多層構造の各
層の軟磁性薄膜は、膜面内において、膜面に平行な成分
の磁化容易軸方向が互いに異なるものであってもよい
【0009】また、本発明の半導体装置の製造方法は、
半導体基板の表側の面上にある絶縁体層上にインダクタ
素子を形成する第1の工程と、半導体基板の裏側の面か
ら絶縁体層が露出するまでインダクタ素子が形成された
領域に対応する部分の半導体基板を除去する第2の工程
と、絶縁体層の露出した面に対して平行成分を有する第
1の磁界を印加した中で絶縁体層の露出した面の所定の
領域に第1の軟磁性薄膜を成膜する第3の工程と、絶縁
体層の露出した面に対して第1の磁界と異なる平行成分
を有する第2の磁界を印加した中で第1の軟磁性薄膜上
に第2の軟磁性薄膜を成膜する第4の工程とを備えてい
る。このように半導体装置を製造することにより、磁化
容易軸方向の異なる軟磁性薄膜を多層化することがで
き、前述した作用が得られる。
【0010】
【発明の実施の形態】発明の実施の形態を説明する
に、本発明に関連する参考例を説明する。図1は、本発
明に関連する参考例の半導体装置の断面図であり、シリ
コンLSIを構成する半導体装置のインダクタ素子領域
を示している。図2は、図1に示したインダクタ素子1
1の平面形状を示す透視図である。なお、図1には図2
におけるインダクタ素子11のI−I′線断面が示され
ている。インダクタ素子11は、シリコン基板(半導体
基板)1上のインダクタ素子領域に形成された素子分離
絶縁膜(第1の絶縁体層)2の上に形成されており、図
2に示すようなスパイラル形状を有している。
【0011】図1に示すように、素子分離絶縁膜2上に
配線層間絶縁膜3が形成され、この配線層間絶縁膜3上
にインダクタ素子11が形成されている。さらに、この
インダクタ素子11を覆うように配線層間絶縁膜3上に
配線層間絶縁膜(第2の絶縁体層)4が形成されてい
る。配線層間絶縁膜4には開口部5a,5bが形成され
ており、開口部5a内の電極12aはインダクタ素子1
1の一端に接続されている。また、開口部5b内の電極
12bは、コンタクト13a,13bと配線14とを介
して、インダクタ素子11の他端に接続されている。イ
ンダクタ素子11は、Alなどの配線材料で形成され
る。
【0012】さらに、配線層間絶縁膜4を介してインダ
クタ素子6上に、多層軟磁性薄膜21が形成されてい
る。この薄膜21は、一軸磁気異方性を有する軟磁性薄
膜の多層構造を有しており、多層構造の各層の軟磁性薄
膜は、膜面内における磁化容易軸方向が互いに異なって
いる。図1に示すように、多層軟磁性薄膜21を第1の
軟磁性薄膜21aと第2の軟磁性薄膜21bとからなる
2層構造とする場合、各薄膜21a,21bの膜面内に
おける磁化容易軸方向は90゜ずれていることが望まし
い。なお、多層軟磁性薄膜21は3層以上の多層構造を
有していてもよい。この薄膜21がn層構造(nは2以
上の整数)を有している場合、各層の膜面内における磁
化容易軸方向は180゜/2n-1 ずつずれていることが
望ましい。
【0013】一軸磁気異方性を有する軟磁性薄膜21
a,21bには、CoFeSiB系、CoNbZr系な
どのアモルファス系薄膜、CoFeAl−O系、CoF
ePd−O系、CoFeB−F系、FeCoAl−N系
などの微結晶系薄膜など、多くのガス元素を含んだ組成
系を利用できる。このように一軸磁気異方性を有する軟
磁性薄膜21a,21bを多層化することにより、高周
波帯域で全方位に高い比透磁率を得られる。したがっ
て、インダクタ素11の形状や方向によらず、GHzの
高周波帯域において高いインダクタンスをもつインダク
タ11を作製できる。
【0014】なお、図1には図示していないが、軟磁性
薄膜21a,21b間にシリコン酸化膜などの絶縁層が
成膜されていてもよい。軟磁性薄膜21a,21bが接
触している構成で高温に加熱されると、各薄膜21a,
21bが互いに影響をおよぼして磁化容易軸方向が変化
することがあるからである。しかし、熱処理をしない限
りは前記絶縁層の有無に関わらず同等の特性が得られ
る。また、図1には図示していないが、保護層としてシ
リコン酸化膜などが薄膜21を覆うように成膜されてい
てもよい。これにより、多層軟磁性薄膜21の材料の蒸
発や不純物の侵入を防止できる。
【0015】なお、多層軟磁性薄膜21はインダクタ素
子領域の全域にわたって形成されているが、インダクタ
素子領域の一部の領域に形成されても効果はある。ま
た、図1では配線層間絶縁膜4の上面のみに多層軟磁性
薄膜21が形成されているが、さらにシリコン基板1の
下面に同様の多層軟磁性薄膜が形成されてもよい。逆
に、シリコン基板1の下面のみに同様の多層軟磁性薄膜
が形成されても効果はある。
【0016】図3は、図1に示した多層軟磁性薄膜21
を成膜するための成膜装置を模式的に示す断面図であ
る。また、図4は、図3におけるIV−IV′線方向の要部
断面図である。図3に示す成膜装置30は通常のスパッ
タ装置に一対の磁石37a,37bを付加して構成され
る。各磁石37a,37bは、多層軟磁性薄膜21の各
層に一軸磁気異方性を与えるためのものであり、多層軟
磁性薄膜21が形成されるシリコン基板1の面に対して
平行方向の磁界Hが均等に生じるようにシリコン基板1
の両側にそれぞれ配置される。磁石37a,37bは、
図3では真空容器34の外部に設置されているが、スパ
ッタリングされたターゲット原子(または分子)が磁石
37a,37bに付着しないようにされていれば真空容
器34の内部に設置されてもよい。
【0017】また、シリコン基板1に与えられる磁界H
を回転できるように、各磁石37a,37bは図4
(A),(B)に示すようにシリコン基板1を中心に回
転自在に構成されている。あるいは、シリコン基板1を
搭載するための基板台31を回転自在に構成してもよ
い。
【0018】次に、図3に示した成膜装置30を用いて
図1に示した半導体装置を製造する方法を説明する。図
5は、図1に示した半導体装置を製造する際の主要な工
程を示す断面図である。ここでは、多層軟磁性薄膜21
としてCoFeSiB系のアモルファス薄膜を成膜する
場合を例に説明する。まず、公知のLSIプロセスを用
いてインダクタ素子11が形成された基板10を用意す
る(図5(A))。次に、図5(A)に示した基板10
を、配線層間絶縁膜4側を上にして、図3に示した真空
容器34内の基板台31にセットする。次に、多層軟磁
性薄膜21が形成される領域に穴のあいているマスク
(図示せず)を配線層間絶縁膜4上に置く。
【0019】次に、真空ポンプによって排気口35から
排気を行い、真空容器34内の真空度を2×10-7To
rrとする。続いて、吸気口36からArガスを10S
CCM(Standard Cubic Centimeter per Minute)導入
して、真空容器34内の真空度を4×10-3Torrと
する。この状態で基板台31に負の電位を印加するとと
もに、高周波電源33のRF出力を1W/cm2 程度の
低出力としてスパッタエッチングを行ない、配線層間絶
縁膜4の表面をクリーニングする。
【0020】次に、組成がCo80Fe5Si87 (at
%)のターゲット32を用意して、このターゲット32
に負の電位を印加するとともに、高周波電源33のRF
出力を3W/cm2 程度としてスパッタリングを行い、
配線層間絶縁膜4上にCoFeSiBからなる軟磁性薄
膜21aを0.3μm程度堆積する。このとき、磁石3
7a,37bは図4(A)に示すように配置されてお
り、矢印で示す方向の第1の磁界H1がかけられてい
る。すなわち、配線層間絶縁膜4の表面に対して平行成
分を有する磁界H1を印加した中で、軟磁性薄膜21a
を成膜する。
【0021】次に、真空容器34内の真空度を保持した
まま、磁石37a,37bをシリコン基板1を中心にし
て90゜回転し、図4(B)に示すように配置する。そ
して、磁界H1と直交する方向の第2の磁界H2の中で
再度スパッタリングを行い、軟磁性薄膜21a上に軟磁
性薄膜21bを0.3μm程度堆積する。すなわち、配
線層間絶縁膜4の表面に対する平行成分が磁界H1と直
交する方向の磁界H2を印加した中で、軟磁性薄膜21
bを成膜する。これにより、磁化容易軸方向が90゜異
なる軟磁性薄膜21a,21bの2層構造を形成でき
る。
【0022】最後に、軟磁性薄膜21a,21bからな
る多層軟磁性薄膜21を覆うようにSiO2 を成膜し
て、保護層を形成する。このようにして形成された多層
軟磁性薄膜21の比抵抗は例えば120μΩcm程度であ
り、銅、アルミニウムに比較して1桁以上大きな比抵抗
を有している。
【0023】なお、ここで示したプロセスは多層軟磁性
薄膜21の成膜方法の一例であり、本発明はここで挙げ
た諸数値には限定されない。また、多層軟磁性薄膜21
の組成が酸化物であるときは、Ar:O2 =10:2の
ガス流量比で成膜する。
【0024】ここで、図11に示した従来の半導体装置
の製造方法と、図1に示した本発明の半導体装置の製造
方法とを比較する。従来はその構造上、LSIプロセス
と組み合わせた形で磁性体薄膜121を形成しなければ
ならなかった。しかし、LSI配線プロセスでは少なく
とも400℃程度の温度で処理される工程が必要であ
り、熱履歴を受けることで磁性体薄膜121,122の
結晶構造が変化してしまう。このため、磁性体薄膜を単
独で形成した場合と比較して、比透磁率が低下してしま
うという問題があった。
【0025】これに対して、図1に示した半導体装置で
は、LSIプロセスが終了した後の追加プロセスで多層
軟磁性薄膜21を形成できる。このため、薄膜21はL
SIプロセスによる熱履歴を受けなくてすむので、熱処
理による軟磁性薄膜21a,21bの結晶構造の劣化を
抑えられる。この結果、多層軟磁性薄膜を単独で形成し
たときの比透磁率の値を保持できるので、高いインダク
タンスをもつインダクタ素子11を作製することが可能
となる。
【0026】次に、図1に示した半導体装置の特性につ
いて説明する。一般に、回路素子の効率Qは、 Q=(回路素子のもつエネルギー)/(回路素子で損失
するエネルギー) で定義される。すなわち、蓄えられるエネルギーが大き
いほど、損失エネルギーが小さいほど、効率Qがよいこ
とを意味する。
【0027】次に、インダクタ素子の効率Qは、 Q=(素子の磁気エネルギー)/(素子の熱エネルギー) =2πfL/R と表すことができる。ここで、fは周波数、Rは周波数
fにおけるインダクタ素子の抵抗、Lは周波数fにおけ
るインダクタ素子のインダクタンスである。すなわち、
インダクタンス成分Lが大きいほど、抵抗成分Rが小さ
いほど、効率Qがよいことを意味する。図1に示したよ
うにインダクタ素子11の上面に磁性体薄膜を形成する
と、後述する磁性体薄膜の効率Qmに応じてインダクタ
素子11のインダクタンスLが向上し、その結果効率Q
が向上する。図1のような開磁路構造の場合は、理想的
には4倍までインダクタンスLが向上する。
【0028】次に、磁性体薄膜の効率Qmは、 Qm=(薄膜の保持できる磁気エネルギー)/(損失エ
ネルギー) と表すことができる。一方、磁性体薄膜に関して、その
比透磁率μは、 μ=μ’+jμ” と表すことができる。ここで、μ’は実数項比透磁率、
μ”は虚数項比透磁率である。μ’は一般に言われる比
透磁率を表し、μ’が大きいほど磁性体薄膜の保持でき
る磁気エネルギーが大きくなる。また、μ”は(μ’と
位相が90゜異なるため)損失項となり、μ”が大きい
ほど損失エネルギーが大きくなる。したがって、μ’、
μ”を用いて磁性体薄膜の効率Qmは、 Qm=μ’/μ” と表すことができる。
【0029】図6は、磁性材料の効率Qmの計算結果を
示すグラフである。磁性材料の厚みが0.2μmで、飽
和磁化量Bsが13000gauss、異方性磁界Hk
が130Oe、材料の比抵抗ρが700μΩcmのと
き、図6に示したように1GHzでQm=19.8,2
GHzでQm=5.9の値が得られる。
【0030】この計算結果に基づきCo83Fe10Pd7-
O系の軟磁性薄膜を図5で説明した方法を用いて形成し
た結果、軟磁性薄膜のQm値として1GHzでQm=1
7、2GHzでQm=5が得られた。次に、このCo83
Fe10Pd7-O系薄膜を空心インダクタ上に成膜して、
磁心インダクタを形成した。そして、1GHzでインダ
クタンスLを測定したところ、空心インダクタでL=8
nHであったものが、磁心インダクタではL=12nH
となり、インダクタンス値が50%向上した。また、1
GHzにおけるインダクタの効率Qは、空心インダクタ
のQ=15に対して、磁心インダクタではQ=17に向
上した。2GHzではインダクタンスLは同様に向上す
るが、効率Qの改善は図れなかった。さらに、上記軟磁
性薄膜を付与することで、導体を流れる電流のGHz帯
のノイズレベルが10dB改善された。
【0031】次に、本発明の一実施の形態を説明する。
図7は、本発明による半導体装置の実施の形態の断面
図であり、シリコンLSIを構成する半導体装置のイン
ダクタ素子領域を示している。図7において、図1と同
一部分については同一符号を付し、その説明を適宜省略
する。図7に示した半導体装置では、シリコン基板1に
開口部1aが設けられており、この開口部1a内に軟磁
性薄膜の多層構造を有する多層軟磁性薄膜21と同様の
構成の多層軟磁性薄膜22が形成されており、この点で
図1に示した半導体装置と異なっている。
【0032】シリコン基板1の開口部1aは、インダク
タ素子領域(すなわちインダクタ素子11が形成された
領域)に対応する部分のシリコン基板1を除去して形成
される。この開口部1aの開口面積は、開口部1a内に
形成される多層軟磁性薄膜22の大きさによって決めら
れる。多層軟磁性薄膜22が形成される領域について
は、図7に示すように、素子分離絶縁膜2が露出するま
で、シリコン基板1が完全に除去される。シリコン基板
1が除去されて素子分離絶縁膜2が露出した部分に、多
層軟磁性薄膜22が密着形成される。この薄膜22は、
一軸磁気異方性を有する軟磁性薄膜22a,22bの2
層構造を有しており、軟磁性薄膜22a,22bの膜面
内における磁化容易軸方向は互いに異なっている。ただ
し、多層軟磁性薄膜22が3層以上の多層構造を有して
いてもよい。
【0033】このように、シリコン基板1に開口部1a
を設けて、この開口部1a内のシリコン基板1が露出し
た部分に多層軟磁性薄膜22を形成することにより、多
層軟磁性薄膜22をインダクタ素子11の下側に近接配
置できる。インダクタ素子11と多層軟磁性薄膜22と
の距離が近いほどインダクタンスの向上に効果的なの
で、開口部1aを形成してその内部に多層軟磁性薄膜2
2を配置することにより高いインダクタンスを実現でき
る。
【0034】次に、図7に示した半導体装置の製造方法
を説明する。図8および図9は、この半導体装置を製造
する際の主要な工程を示す断面図である。まず、シリコ
ン基板1としてシリコン(100)基板を用意して、公
知のLSIプロセスを用いてインダクタ素子11が形成
された基板10を作製する(図8(A))。
【0035】次に、シリコン基板1の裏側の面の全域
に、例えばプラズマCVD法などによりシリコン酸化膜
9を形成する(図8(B))。次いで、公知のフォトリ
ソグラフィ技術とエッチング技術を用いて、インダクタ
素子領域に対応する部分のシリコン酸化膜9を除去し
て、開口部9aを形成する(図8(C))。そして、こ
のようにパターンニングされたシリコン酸化膜9をエッ
チングマスクとして、シリコン基板1をKOH水溶液な
どに浸し、素子分離絶縁膜2が露出するまでシリコン基
板1のエッチングを行って、開口部1aを形成する(図
9(A))。
【0036】KOH水溶液には、シリコン(100)面
のエッチング速度が速く、シリコン(111)面および
シリコン酸化膜のエッチング速度が非常に遅いという特
徴がある。この特徴により、シリコン基板1はシリコン
(111)面を境界としてテーパ状にエッチングされる
とともに、シリコン酸化膜である素子分離絶縁膜2でエ
ッチングが止まるので、制御性よく加工できる。
【0037】また、開口部1aの形成は、KOH水溶液
などのアルカリ性溶液を用いたシリコンの選択的ウエッ
トエッチング方法の他に、SF6 ガスなどを用いたシリ
コンの選択的気相エッチング方法、研削装置などを用い
た機械的研削方法、またはこれらの方法の組み合わせに
よって行える。いずれの方法でもシリコン基板1上に素
子分離絶縁膜2が形成されているので、所望の部分のシ
リコン基板1を制御性よく除去できる。
【0038】次に、図5を用いて説明した多層軟磁性薄
膜21の成膜方法を用いて、シリコン基板1の開口部1
a内の所望の領域に、シリコン基板1の下面から多層軟
磁性薄膜22を形成する(図9(B))。このとき、軟
磁性薄膜22aの成膜は、素子分離絶縁膜2の露出した
面に対して平行成分を有する磁界H1を印加した中で行
われ、軟磁性薄膜22bの成膜は、素子分離絶縁膜2の
露出した面に対する平行成分が磁界H1と直交する方向
の磁界H2を印加した中で行われる。
【0039】次に、真空容器34内の真空度を保持した
まま、磁石37a,37bをシリコン基板1を中心にし
て90゜回転し、図4(B)に示すように配置する。そ
して、磁界H1と直交する方向の第2の磁界H2の中で
再度スパッタリングを行い、軟磁性薄膜21a上に軟磁
性薄膜21bを0.3μm程度堆積する。すなわち、配
線層間絶縁膜4の表面に対する平行成分が磁界H1と直
交する方向の磁界H2を印加した中で、軟磁性薄膜21
bを成膜する。これにより、磁化容易軸方向が90゜異
なる軟磁性薄膜21a,21bの2層構造を形成でき
る。最後に、層間絶縁膜4上に多層軟磁性薄膜21を形
成して、インダクタ素子11を上下から多層軟磁性薄膜
で挟んだ構成を実現できる(図9(C))。このような
手順で製造することにより、半導体素子の製造プロセス
が終了した後の追加プロセスによって多層軟磁性薄膜2
1,22を形成できる。このため、多層軟磁性薄膜2
1,22が半導体素子の製造プロセスによる熱履歴を受
けないですむので、多層軟磁性薄膜21,22を単独で
形成したときの特性を保持するできる。
【0040】
【発明の効果】以上説明したように、本発明によれば、
インダクタ素子とともに配置される磁性体薄膜を、膜面
に平行な成分の磁化容易軸方向が互いに異なる軟磁性薄
膜の多層構造とすることにより、インダクタ素子の形状
や方向によらず、GHzの高周波帯域でもインダクタン
スの高いインダクタ素子を形成できる。また、半導体基
板に開口部を形成し、この開口部に軟磁性薄膜を形成す
ることにより、インダクタ素子の下面側の近傍に軟磁性
薄膜を形成できる。軟磁性薄膜とインダクタ素子とを近
づけて形成するほど、インダクタンスの向上に効果的で
ある。しかも、インダクタ素子を含めた半導体素子の製
造プロセスの終了後に軟磁性薄膜を形成できるので、軟
磁性薄膜は熱履歴を受けなくてすむ。したがって、高温
による結晶構造の劣化により防止できるので、高いイン
ダクタンスをもつインダクタ素子を作製できる。
【図面の簡単な説明】
【図1】 本発明に関連する参考例の半導体装置の断面
図である。
【図2】 図1に示したインダクタ素子の平面形状を示
す透視図である。
【図3】 図1に示した多層軟磁性薄膜を成膜するため
の成膜装置を模式的に示す断面図である。
【図4】 図3におけるIV−IV′線方向の要部断面図で
ある。
【図5】 図1に示した半導体装置を製造する際の主要
な工程を示す断面図である。
【図6】 磁性材料の効率の計算結果を示すグラフであ
る。
【図7】 本発明による半導体装置の実施の形態の断
面図である。
【図8】 図7に示した半導体装置を製造する際の主要
な工程を示す断面図である。
【図9】 図8に引き続く工程を示す断面図である。
【図10】 スパイラルインダクタの平面図である。
【図11】 スパイラルインダクタが形成された従来の
半導体装置の断面図である。
【符号の説明】
1…シリコン基板、2…素子分離絶縁膜、3,4配線層
間絶縁膜、5a,5b…開口部、9…シリコン酸化膜、
9a…開口部、11…インダクタ素子、12a,12b
…電極、13a,13b…コンタクト、14…配線、2
1,22…多層軟磁性薄膜、21a,21b,22a,
22b…軟磁性薄膜、30…成膜装置、31…基板台、
32…ターゲット、33…高周波電源、34…真空容
器、35…排気口、36…吸気口、37a,37b…磁
石。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 束原 恒夫 東京都新宿区西新宿三丁目19番2号 日 本電信電話株式会社内 (72)発明者 菅原 英州 宮城県仙台市太白区郡山6丁目7番1号 株式会社トーキン内 (72)発明者 鈴木 秀夫 宮城県仙台市太白区郡山6丁目7番1号 株式会社トーキン内 (72)発明者 佐藤 正博 宮城県仙台市太白区郡山6丁目7番1号 株式会社トーキン内 (56)参考文献 特開 平4−363006(JP,A) 特開 平6−13256(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/822 H01F 10/06 H01F 17/00 H01L 27/04

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】 半導体基板上に形成された第1の絶縁体
    層と、 この第1の絶縁体層上に形成されたインダクタ素子と、 このインダクタ素子を覆うように前記第1の絶縁体層上
    に形成された第2の絶縁体層と、前記インダクタ素子が形成された領域に対応する部分の
    前記半導体基板を除去して形成された開口部と、 この開口部内における 前記第1の絶縁体層の下面側に
    成されかつ一軸磁気異方性を有する軟磁性薄膜の第1の
    多層構造とを備え、 この第1の多層構造の各層の前記軟磁性薄膜は、膜面内
    おいて、膜面に平行な成分の磁化容易軸方向が互いに
    異なることを特徴とする半導体装置。
  2. 【請求項2】 請求項1記載の半導体装置において、前記第2の絶縁体層の上面側に形成されかつ一軸磁気異
    方性を有する軟磁性薄膜の第2の多層構造を備え、 この第2の多層構造の各層の前記軟磁性薄膜は、膜面内
    において、膜面に平行な成分の磁化容易軸方向が互いに
    異なる ことを特徴とする半導体装置。
  3. 【請求項3】 半導体基板の表側の面上にある絶縁体層
    上にインダクタ素子を形成する第1の工程と、 前記半導体基板の裏側の面から前記絶縁体層が露出する
    まで前記インダクタ素子が形成された領域に対応する部
    分の前記半導体基板を除去する第2の工程と、 前記絶縁体層の露出した面に対して平行成分を有する第
    1の磁界を印加した中で前記絶縁体層の露出した面の所
    定の領域に第1の軟磁性薄膜を成膜する第3の工程と、 前記絶縁体層の露出した面に対して前記第1の磁界と異
    なる平行成分を有する第2の磁界を印加した中で前記第
    1の軟磁性薄膜上に第2の軟磁性薄膜を成膜する第4の
    工程とを備えることを特徴とする半導体装置の製造方
    法。
JP12827999A 1999-05-10 1999-05-10 半導体装置およびその製造方法 Expired - Fee Related JP3526237B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12827999A JP3526237B2 (ja) 1999-05-10 1999-05-10 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12827999A JP3526237B2 (ja) 1999-05-10 1999-05-10 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
JP2000323656A JP2000323656A (ja) 2000-11-24
JP3526237B2 true JP3526237B2 (ja) 2004-05-10

Family

ID=14980906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12827999A Expired - Fee Related JP3526237B2 (ja) 1999-05-10 1999-05-10 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP3526237B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761622B1 (ko) * 2001-12-20 2007-09-27 매그나칩 반도체 유한회사 인덕터 및 인덕터의 제조 방법
CN101615619B (zh) 2004-03-12 2011-11-30 株式会社半导体能源研究所 半导体器件
JP4545617B2 (ja) * 2004-03-12 2010-09-15 株式会社半導体エネルギー研究所 半導体装置
JP2007049115A (ja) 2005-07-13 2007-02-22 Seiko Epson Corp 半導体装置
US7935549B2 (en) * 2008-12-09 2011-05-03 Renesas Electronics Corporation Seminconductor device

Also Published As

Publication number Publication date
JP2000323656A (ja) 2000-11-24

Similar Documents

Publication Publication Date Title
US7369027B2 (en) High frequency magnetic thin film, composite magnetic thin film and magnetic device using them
US6440750B1 (en) Method of making integrated circuit having a micromagnetic device
TW200945497A (en) Integrated passive device and method with low cost substrate
JP3526237B2 (ja) 半導体装置およびその製造方法
US6207303B1 (en) Multilayered magnetic film having buffer layer inserted between resin layer and laminated magnetic film layer and thin film inductor using the same
US6642608B1 (en) MoNx resistor for superconductor integrated circuit
US20170294504A1 (en) Laminated structures for power efficient on-chip magnetic inductors
JP2000114047A (ja) 薄膜トランス及び薄膜トランスの製造方法
Takamura et al. Fabrication of CoFeB-SiO 2 Films with Large Uniaxial Anisotropic by Facing Target Sputtering and its Application to High Frequency Planar Type Spiral Inductors
US20070202359A1 (en) Magnetic Thin Film For High Frequency, and Method of Manufacturing Same, and Magnetic Device
Munakata et al. Very high electrical resistivity and heteroamorphous structure of soft magnetic (Co/sub 35.6/Fe/sub 50/B/sub 14.4/)-(SiO/sub 2/) thin films
KR100227449B1 (ko) 자성 박막 및 그를 사용한 박막 자기 소자
JP2004235355A (ja) 軟磁性部材およびそれを用いた磁気素子
Shin et al. Fabrication of double rectangular type FeTaN film inductors
JPH0963844A (ja) 積層磁性膜およびそれを用いた薄膜磁気素子
JPWO2005027154A1 (ja) 高周波用磁性薄膜、その作製方法および磁気素子
CN110607503B (zh) 一种高频磁芯用软磁复合膜及其制备方法
JPH0955316A (ja) 平面型磁気素子およびその製造方法
JP3373350B2 (ja) 磁性部品およびその製法
JPH0677055A (ja) 平面磁気素子
JPH0766050A (ja) 薄膜インダクタおよび薄膜トランス
JPS5877208A (ja) 多層磁性薄膜とその製造方法
JP2000114041A (ja) 薄膜積層体、薄膜積層体の製造方法、並びにこの薄膜積層体を用いた薄膜トランス、薄膜インダクタ、および薄膜磁気ヘッド
JP2001036017A (ja) インダクタ及びその製造方法
CN115631916A (zh) 一种基于条纹型软磁薄膜的平面电感及其制备方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees