WO2015129815A1 - 活性光線硬化型インクジェットマゼンタインクおよびインクジェット記録方法 - Google Patents

活性光線硬化型インクジェットマゼンタインクおよびインクジェット記録方法 Download PDF

Info

Publication number
WO2015129815A1
WO2015129815A1 PCT/JP2015/055658 JP2015055658W WO2015129815A1 WO 2015129815 A1 WO2015129815 A1 WO 2015129815A1 JP 2015055658 W JP2015055658 W JP 2015055658W WO 2015129815 A1 WO2015129815 A1 WO 2015129815A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
pigment
meth
gelling agent
acrylate
Prior art date
Application number
PCT/JP2015/055658
Other languages
English (en)
French (fr)
Inventor
克典 五井
亮 青山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US15/115,048 priority Critical patent/US9587123B2/en
Priority to EP15754727.4A priority patent/EP3091055B1/en
Priority to JP2016505301A priority patent/JP6414200B2/ja
Publication of WO2015129815A1 publication Critical patent/WO2015129815A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B68/00Organic pigments surface-modified by grafting, e.g. by establishing covalent or complex bonds, in order to improve the pigment properties, e.g. dispersibility or rheology
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/34Hot-melt inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes

Definitions

  • the present invention relates to an actinic ray curable inkjet magenta ink and an inkjet recording method.
  • the ink jet recording method is used in various printing fields because it can form an image easily and inexpensively.
  • an actinic ray curable ink jet method in which droplets of ultraviolet curable ink are landed on a recording medium and then cured by irradiation with actinic rays to form an image.
  • the actinic ray curable ink jet method has been attracting attention in recent years because an image having high adhesion can be formed even on a recording medium having no ink absorbability.
  • a technique for incorporating a gelling agent in the actinic radiation curable inkjet ink for the purpose of preventing adjacent dots from being identical and improving the scratching property of the obtained image. It has been.
  • the gelling agent crystallizes at the time of landing and the ink gels, so that the dots can be prevented from spreading, and the viscosity of the ink can be increased even at a low temperature. It is possible to obtain a printed material having excellent scratch resistance.
  • Patent Document 1 by adding an oil gelling agent to an ink-jet ink containing a pigment and a photopolymerizable compound, solidification of ink droplets landed on a recording medium is completed in a short time, thereby preventing dot identity. It is out.
  • Patent Document 2 an image having good fastness is efficiently formed by adding a gelling agent that gels at a low temperature to a radiation-curable ink containing a pigment or a dye.
  • the dispersibility of the pigment can be improved and the ink can be stably stored by adding a polymer dispersant to the ink.
  • the dispersion of the pigment is stabilized by adding a larger amount of the polymer dispersant than the pigment by weight.
  • dispersion stability is further enhanced by adding a polymer dispersant in an amount larger than that of the pigment by weight ratio to the ink and adding a dispersion synergist.
  • the pigment particles are surface-treated to give an acidic adsorption functional group such as sulfonic acid, so that the basic functional group of the polymer dispersant and the pigment are easily associated with each other, and the storage stability of the ink is improved. Can be increased.
  • Quinacridones are known as magenta pigments for inkjet inks. Among them, formation is performed using a solid solution of Pigment Violet 19 (PV19) and Pigment Red 202 (PR202) (hereinafter also referred to as PV19 / PR202). The color gamut of the obtained image can be further expanded.
  • PV19 Pigment Violet 19
  • PR202 Pigment Red 202
  • the color gamut of the obtained image can be further expanded.
  • the affinity between the polymer dispersant and the pigment in the ink but also the affinity between the photopolymerizable compound and the pigment is improved. It is also important.
  • Alumina can be applied to the surface of the pigment particles, for example, by the method described in Patent Document 5 and Patent Document 6.
  • the degree of crystallization of the gelling agent may vary depending on the surface treatment state of the pigment. For example, in an inkjet ink containing a gelling agent, when a pigment provided with alumina on the surface is used, crystallization of the gelling agent is inhibited due to the association of alumina and the gelling agent. If the gelling agent does not crystallize, excessive leveling occurs and the gloss of the image surface tends to occur. Further, when the gelling agent that has not been crystallized is deposited on the surface of the cured ink, gloss is generated on the surface of the image and the contrast ratio with other colors is lost. In particular, a magenta ink such as PV19 / PR202 tends to cause such a problem of gloss difference.
  • an object of the present invention is to provide an ink-jet ink having good storage stability and pinning property in an actinic ray curable ink-jet magenta ink using a solid solution pigment of PV19 / PR202 subjected to surface treatment and containing a gelling agent. And A further object of the present invention is to provide an actinic ray curable ink jet magenta ink having a small gloss difference from other colors.
  • the present invention relates to the actinic ray curable inkjet magenta ink described below.
  • An actinic ray curable inkjet magenta ink wherein the ink contains a pigment, a polymer dispersant, a crystalline gelling agent, a photopolymerizable compound and a photopolymerization initiator, and the pigment is surface-treated with alumina and sulfonic acid.
  • the solid solution of PV19 and PR202 is applied, the amount of the alumina applied to the pigment is 1500 to 7500 ppm in mass ratio, and the content of the crystalline gelling agent is 1.5 to 3 based on the whole ink. Ink which is 0.0 mass%. 2.
  • the present invention also relates to the following ink jet recording method. 5.
  • an actinic ray curable inkjet magenta ink using a solid solution pigment of PV19 / PR202 which has been surface-treated and containing a gelling agent it has good storage stability and pinning properties, and other colors Ink with a low gloss difference is provided.
  • FIG. 1 is a side view illustrating an example of a configuration of a main part of a line recording type inkjet recording apparatus.
  • FIG. 1B is a top view of FIG. 1A. It is a figure which shows an example of a structure of the principal part of the inkjet recording device of a serial recording system.
  • the ink according to the present invention is an actinic ray curable inkjet magenta ink, and the ink includes a pigment, a polymer dispersant, a crystalline gelling agent, a photopolymerizable compound, and a photopolymerization initiator, and the pigment is alumina. And a solid solution of PV19 and PR202 surface-treated with sulfonic acid, the amount of the alumina applied to the pigment is 1500-7500 ppm by mass, and the content of the crystalline gelling agent is in the whole ink The ink is 1.5 to 3.0% by mass with respect to the ink.
  • the actinic radiation curable inkjet magenta ink according to the present invention will be described through a detailed description of each component.
  • a solid solution of PV19 and PR202 surface-treated with alumina and sulfonic acid is used as the pigment.
  • the color gamut can be expanded, for example, a magenta color closer to a standard sample such as Japan color 2011 can be obtained.
  • the surface treatment can be performed by a known method.
  • the surface treatment with alumina can be performed by the method described in Patent Document 5 or Patent Document 6, or the method of suspending alumina in a dispersion in which a pigment is dispersed and then adjusting the pH.
  • the amount of alumina applied can be adjusted to a desired amount by changing the amount of alumina added in each method.
  • the surface treatment with sulfonic acid can be performed by a method in which a sulfonating agent is added to the slurry-like pigment dispersion and both are reacted at a high temperature.
  • the application amount of the sulfonic acid can be adjusted to a desired amount by adjusting the amount of the sulfonating agent to be added.
  • the amount of applied alumina or sulfonic acid is determined by measuring the pigment with an inductively coupled plasma emission spectrometer (ICP-AES) or the like and quantifying the amount of alumina (or Al element) or sulfonic acid (or S element). You can confirm it.
  • ICP-AES inductively coupled plasma emission spectrometer
  • alumina or sulfonic acid may be detached from the pigment during storage, so the amount of alumina (or Al element) or sulfonic acid (or S element) in the ink is quantified.
  • the alumina application amount or the sulfonic acid application amount of the present invention may be used.
  • Alumina is preferably applied in a mass ratio of 1500 to 7500 ppm with respect to the pigment.
  • the applied amount of alumina is 1500 ppm or more, the affinity for the photopolymerizable compound and the polymer dispersant is increased, and the pigment can be stably stored.
  • the application amount of alumina is 7500 ppm or less, it is possible to suppress insufficient crystallization of the gelling agent due to the association between alumina and the gelling agent, and thus it is possible to suppress the occurrence of gloss due to excessive leveling. .
  • the amount of alumina applied can be changed according to the properties required for the actinic ray type ink jet magenta ink. For example, when the applied amount of alumina is 5000 to 7500 ppm, the affinity with the photopolymerizable compound is increased, so that the storage stability of the magenta ink can be further increased. Further, when the applied amount of alumina is 2500 to 3000 ppm, Since the gelling agent is appropriately crystallized, the gloss difference from other colors can be further reduced.
  • the amount of the sulfonic acid is not particularly limited, but it is preferably 1000 to 1500 ppm by mass with respect to the pigment.
  • the solid solution preferably contains more PV19 than PR202 by mass ratio. By setting such a ratio, it is possible to expand the usable color gamut in the dark color direction.
  • solid solutions may be commercially available. Commercially available examples of such solid solutions include CINQUASIA Magenta L4540, D4500J manufactured by BASF, CINQUASIA Red L4330, RT-355D, 228-2120 manufactured by Sun chemical, and Inkjet MagentaE manufactured by Clariant.
  • the pigment can be dispersed by, for example, a ball mill, sand mill, attritor, roll mill, agitator, Henschel mixer, colloid mill, ultrasonic homogenizer, pearl mill, wet jet mill, paint shaker, or the like.
  • the pigment is dispersed so that the average particle diameter of the pigment particles is preferably 0.08 to 0.5 ⁇ m, and the maximum particle diameter is preferably 0.3 to 10 ⁇ m, more preferably 0.3 to 3 ⁇ m. Is preferred.
  • the dispersion of the pigment is adjusted by the selection of the pigment, the polymer dispersant, and the dispersion medium, the dispersion conditions, the filtration conditions, and the like.
  • the average particle diameter of the pigment particles in the present invention means a value obtained by a dynamic light scattering method using a data sizer nano ZSP manufactured by Malvern.
  • D diffusion coefficient
  • D diffusion coefficient
  • T temperature
  • viscosity of the diluent
  • a particle size
  • the content of the pigment is preferably 0.1 to 20% by mass, more preferably 0.4 to 10% by mass with respect to the actinic ray curable inkjet magenta ink. This is because if the pigment content is too low, the resulting image will not be sufficiently colored, and if it is too high, the viscosity of the ink will increase and the ejection properties will decrease.
  • the actinic ray curable inkjet magenta ink contains a polymer dispersant. By including the polymer dispersant, the dispersibility of the pigment can be enhanced.
  • the type of polymer dispersant is not particularly limited.
  • Preferred examples of the polymer dispersant include BYK-2164, BYK-168, BYK N-22024, manufactured by BYK Chemie, BYK JET-9150, BYK JET-9151, BYK JET-9151, EFKA 7701, EFKA 4310, manufactured by BASF. , EFKA 4320, EFKA 4401, SOLPERSE 24000GR, SOLSPERSE 39000, Ajinomoto Fine Techno Co., Ajisper PB821, PB824, etc. manufactured by Avecia.
  • the content of the polymer dispersant is preferably 20% to 70% by mass, more preferably 30 to 60% by mass, and further preferably 35 to 50% by mass with respect to the pigment. If the content of the polymer dispersant relative to the pigment is too high, the polymer dispersant associates with the gelling agent to inhibit gelation, and pinning does not work when the ink droplets land, causing the droplets to spread and liquid. This is because the droplets overlap and a so-called liquid deviation occurs and the image quality deteriorates. On the other hand, if the content of the polymer dispersant with respect to the pigment is small, the polymer surface cannot be sufficiently covered with the polymer dispersant, and the stability is lowered.
  • the polymer dispersant preferably has a comb block structure.
  • polymer dispersants in particular, by using a polymer dispersant having a block copolymer (comb-shaped) skeleton, it becomes easier to obtain a steric hindrance effect that suppresses aggregation between pigments by extending side chains. This is because dispersibility is improved.
  • a hydroxyl group-containing carboxylic acid ester for example, a hydroxyl group-containing carboxylic acid ester, a salt of a long chain polyaminoamide and a high molecular weight acid ester, a salt of a high molecular weight polycarboxylic acid, a salt of a long chain polyaminoamide and a polar acid ester, Molecular weight unsaturated acid ester, polymer copolymer, modified polyurethane, modified polyacrylate, polyether ester type anionic activator, naphthalene sulfonic acid formalin condensate salt, aromatic sulfonic acid formalin condensate salt, polyoxyethylene alkyl phosphoric acid Esters, polyoxyethylene nonylphenyl ether, stearylamine acetate, and the like may be added.
  • examples of commercially available dispersants include Avecia's Solsperse series and Ajinomoto Fine-Techno's PB series.
  • the actinic ray curable inkjet magenta ink may further contain a dispersion aid as required.
  • the dispersion aid may be selected according to the pigment.
  • the total amount of the polymer dispersant and the dispersion aid is preferably 1 to 50% by mass with respect to the pigment.
  • the actinic ray curable inkjet magenta ink may further include a dispersion medium for dispersing the pigment as necessary.
  • a solvent may be included in the ink as the dispersion medium, but in order to suppress the residual solvent in the formed image, a photopolymerizable compound (particularly a monomer having a low viscosity) described below is preferably the dispersion medium. .
  • the actinic ray curable inkjet magenta ink contains a crystalline gelling agent (also referred to as a gelling agent).
  • Gelling agents are generally defined as organic substances that are solid at room temperature and become liquid when heated.
  • the melting point of the gelling agent is preferably 30 ° C or higher and lower than 150 ° C.
  • the gelling agent contained in the actinic radiation curable inkjet magenta ink is at least 1) soluble in the photopolymerizable compound at a temperature higher than the sol-gel phase transition temperature, and 2) in the ink at a temperature lower than the sol-gel phase transition temperature. It is preferable to crystallize with.
  • sol-gel phase transition temperature refers to the temperature at the change (transition) point at which the sol state changes to the gel state (transition).
  • Gelation temperature, gel transition temperature, gel dissolution temperature, gel softening temperature It is synonymous with terms called sol-gel phase transition temperature, sol-gel transition point, and gel point.
  • the structure in which the photopolymerizable compound is encapsulated in the space three-dimensionally surrounded by the plate crystal is sometimes referred to as “card house structure”.
  • the liquid photopolymerizable compound can be held and ink droplets can be pinned. Thereby, coalescence of droplets can be suppressed.
  • the photopolymerizable compound dissolved in the ink and the gelling agent are compatible.
  • the photopolymerizable compound dissolved in the ink and the gelling agent are phase-separated, it may be difficult to form a card house structure.
  • phase separation occurs because there are a portion in which the ink component including the liquid photopolymerizable compound is held in the ink by the card house structure and a portion in which the ink component is not.
  • the inventors have found that this phenomenon occurs more prominently in the magenta ink containing quinacridone as a main component compared to other pigments.
  • the pigment is treated with alumina, the surface of the pigment is charged.
  • the interaction with the charged pigment works more strongly with the photopolymerizable compound than with the gelling agent in the ink. Therefore, it is estimated that the pinning property is improved because the gelling agent is less susceptible to the gelation from other ink components and the card house structure can be normally formed. Further, it is presumed that the dispersion stability of the ink is improved because the pigment is treated with the sulfonic acid so that the binding with the dispersant is more reliably performed. With such a configuration, the gloss stability can be improved and the difference in glossiness with other inks can be easily adjusted without reducing the content of the gelling agent.
  • the kind of gelling agent is not particularly limited.
  • Preferred examples of gelling agents include Ketone waxes such as dilignoceryl ketone, dibehenyl ketone, distearyl ketone, diecosyl ketone, dipalmityl ketone, dilauryl ketone, dimyristyl ketone, myristyl palmityl ketone, palmityl stearyl ketone, etc.
  • Ester waxes such as benenyl behenate, icosyl icosanoate, stearyl stearate, palmityl stearate, cetyl palmitate, myristyl myristate, cetyl myristate, myricyl serotate (eg Unistar M-2222SL (manufactured by NOF Corporation), Exepearl SS (manufactured by Kao Corporation, melting point 60 ° C.), EMALEXCC-18 (manufactured by Nippon Emulsion Co., Ltd.), Amreps PC (manufactured by Higher Alcohol Industry Co., Ltd.), EXCEPARL MY-M (manufactured by Kao Corporation), SPALM ACETI (NOF Corporation Company-
  • ketone wax, ester wax, higher fatty acid, higher alcohol, and fatty acid amide are particularly preferable, and ketone wax or ester wax is more preferable.
  • Particularly preferred gelling agents include compounds represented by the following general formulas (G1) and (G2).
  • General formula (G1) R1-CO-R2
  • General formula (G2) R3-COO-R4
  • R1 to R4 each independently represents an alkyl chain having a straight chain portion having 12 or more carbon atoms and which may have a branch.
  • General formula (G1) is called ketone wax, and general formula (G2) is called fatty acid ester. These gelling agents are preferable because the ink droplets can be gelled more stably (with good reproducibility), and coalescence of ink droplets (dots) landed on the recording medium can be suppressed.
  • the sol-gel phase transition temperature of the ink jet magenta ink is arbitrarily set, but is preferably in the range of 30 to 100 ° C. from the viewpoint of stable ejection properties of ink droplets, adverse effects associated with high-temperature heating, and the like.
  • the sol-gel phase transition temperature is preferably between the ink temperature in the ink jet recording head and the temperature of the recording medium.
  • the sol-gel phase transition temperature is measured by, for example, placing a gel-like test piece on a heat plate, heating the heat plate, measuring the temperature at which the shape of the test piece collapses, and using this as the sol-gel phase transition temperature. Can be sought. It can also be measured using a commercially available viscoelasticity measuring device (for example, Physica viscoelasticity measuring device MCR300).
  • the sol-gel phase transition temperature can be adjusted by the type and amount of the photopolymerizable compound described below.
  • Actinic ray curable inkjet magenta ink contains a predetermined amount of gelling agent, so it is ejected from the inkjet recording head and landed on the recording medium as ink droplets, and the temperature drops to a temperature lower than the sol-gel phase transition temperature. Then, it will be in a gel state immediately. For this reason, mixing of dots and dot coalescence are suppressed, and high image quality can be formed during high-speed printing. Thereafter, the gelled ink droplets are irradiated with light and cured, whereby the ink droplets are fixed on the recording medium to form a strong image film.
  • the actinic ray curable inkjet magenta ink is a gel that quickly forms an ink droplet that has landed on the recording medium, so that the ink droplet does not diffuse on the recording medium, so that oxygen in the environment does not easily enter the ink droplet. .
  • curing is less susceptible to oxygen inhibition.
  • the content of the gelling agent in the actinic ray curable inkjet magenta ink is 1.5 to 3.0% by mass, and more preferably 2.0 to 2.5% by mass with respect to the entire ink.
  • the total amount of these is preferably in the above range.
  • the gelling agent content is less than 1.5% by mass, the pinning property of the ink is lowered, so that the actinic ray curable inkjet magenta ink does not sufficiently undergo the sol-gel phase transition and the ink dot system spreads. There is.
  • the gelling agent content exceeds 3.0% by mass, the gelling agent deposited on the image surface may cause excessive glossiness in the ink, and ink ejection properties from the inkjet head may be reduced.
  • the actinic ray curable inkjet magenta ink may further contain a fatty acid different from the above-described gelling agent. This is because the storage stability and the ejection stability are improved by improving the dispersion stability of the ink. In addition, the surface slipperiness of the ink when ink is ejected onto the recording medium is improved.
  • the fatty acid is preferably a compound having 12 or more carbon atoms. Specific examples of fatty acids include behenic acid (C 22 H 44 O 2 ), arachidic acid (C 20 H 40 O 2 ), stearic acid (C 18 H 36 O 2 ), palmitic acid (C 16 H 32 O 2 ).
  • LUNAC BA Myristic acid (C 14 H 28 O 2 ), lauric acid (C 12 H 24 O 2 ), oleic acid (C 18 H 34 O 2 ), and erucic acid (C 22 H 42 O 2 ), such as LUNAC BA , LUNAC S-90V, LUNAC S-98, LUNAC P-70, LUNAC P-95, LUNAC MY-98, LUNAC L-70, LUNAC L-98 (all manufactured by Kao), NAA-222S beads, NAA-222 Powder, Beads stearic acid sakura, Beads stearic acid Tsubaki, Powdered stearic acid sakura, Powdered stearic acid Tsubaki, NAA-160, NAA-142, NAA-1 2, NAA-34, NAA-35, include erucic acid (all day manufactured oils Corporation).
  • the content of the fatty acid is preferably 0.01 mass ppm to 10 mass ppm, more preferably 0.01 mass ppm to 0.18 mass ppm with respect to the total mass of the ink. This is because if it is less than 0.01 ppm by mass, the dispersion stability of the ink is poor and good storage stability and ejection stability cannot be obtained. In addition, the surface slipperiness of the ink when ink is ejected onto the recording medium is deteriorated, and so-called paper jam is likely to occur. On the other hand, if it exceeds 10 ppm by mass, the dispersion stability of the ink is lowered.
  • the actinic ray curable inkjet magenta ink contains a photopolymerizable compound.
  • the photopolymerizable compound is a compound that crosslinks or polymerizes with actinic rays.
  • the actinic rays are, for example, electron beams, ultraviolet rays, ⁇ rays, ⁇ rays, and X-rays, and preferably ultraviolet rays and electron beams.
  • the photopolymerizable compound is a radically polymerizable compound or a cationically polymerizable compound, preferably a radically polymerizable compound.
  • the radical polymerizable compound is a compound (monomer, oligomer, polymer or mixture thereof) having an ethylenically unsaturated bond capable of radical polymerization. Only one kind of radically polymerizable compound may be contained in the actinic ray curable inkjet magenta ink, or two or more kinds thereof may be contained.
  • Examples of the compound having an ethylenically unsaturated bond capable of radical polymerization include an unsaturated carboxylic acid and a salt thereof, an unsaturated carboxylic acid ester compound, an unsaturated carboxylic acid urethane compound, an unsaturated carboxylic acid amide compound and an anhydride thereof, Examples include acrylonitrile, styrene, unsaturated polyester, unsaturated polyether, unsaturated polyamide, and unsaturated urethane.
  • Examples of the unsaturated carboxylic acid include (meth) acrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid and the like.
  • the radical polymerizable compound is preferably an unsaturated carboxylic acid ester compound, and more preferably a (meth) acrylate compound.
  • the (meth) acrylate compound may be not only a monomer described later, but also an oligomer, a mixture of a monomer and an oligomer, a modified product, an oligomer having a polymerizable functional group, and the like.
  • (meth) acrylate includes acrylate monomer and / or acrylate oligomer, methacrylate monomer and / or methacrylate oligomer.
  • Examples of (meth) acrylate compounds include isoamyl (meth) acrylate, stearyl (meth) acrylate, lauryl (meth) acrylate, octyl (meth) acrylate, decyl (meth) acrylate, isomyristyl (meth) acrylate, isostearyl (meth) ) Acrylate, 2-ethylhexyl-diglycol (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, butoxyethyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate , Methoxydiethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypropylene glycol (meth) acrylate, phenoxyethyl (meth)
  • (meth) acrylate compounds are stearyl (meth) acrylate, lauryl (meth) acrylate, isostearyl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, isobornyl (meth) acrylate, tetraethylene glycol di (Meth) acrylate, glycerin propoxytri (meth) acrylate and the like are preferable.
  • the (meth) acrylate compound may be a modified product.
  • modified products include ethylene oxide-modified (meth) acrylate compounds such as ethylene oxide-modified trimethylolpropane tri (meth) acrylate and ethylene oxide-modified pentaerythritol tetraacrylate; caprolactone such as caprolactone-modified trimethylolpropane tri (meth) acrylate Modified (meth) acrylate compounds; and caprolactam-modified (meth) acrylate compounds such as caprolactam-modified dipentaerythritol hexa (meth) acrylate.
  • the photopolymerizable compound is an ethylene oxide-modified (meth) acrylate compound.
  • the ethylene oxide-modified (meth) acrylate compound has high photosensitivity and easily forms a card house structure (described later) when the ink gels at a low temperature.
  • the ethylene oxide-modified (meth) acrylate compound is easily dissolved in other ink components at high temperatures and has little curing shrinkage, so that curling of the printed matter hardly occurs.
  • Examples of ethylene oxide-modified (meth) acrylate compounds include 4EO-modified hexanediol diacrylate CD561 (molecular weight 358), 3EO-modified trimethylolpropane triacrylate SR454 (molecular weight 429), 6EO-modified trimethylolpropane triacrylate SR499 manufactured by Sartomer. (Molecular weight 560), 4EO-modified pentaerythritol tetraacrylate SR494 (molecular weight 528); Shin-Nakamura Chemical Co., Ltd.
  • polyethylene glycol diacrylate NK ester A-400 (molecular weight 508), polyethylene glycol diacrylate NK ester A-600 (molecular weight 742) , Polyethylene glycol dimethacrylate NK ester 9G (molecular weight 536), polyethylene glycol dimethacrylate NK Este 14G (molecular weight 770); Tetraethylene glycol diacrylate V # 335HP (molecular weight 302) manufactured by Osaka Organic Chemical Co .; 3PO-modified trimethylolpropane triacrylate Photomer 4072 (molecular weight 471) manufactured by Cognis; 1 manufactured by Shin-Nakamura Chemical Co., Ltd.
  • 10-decanediol dimethacrylate NK ester DOD-N (molecular weight 310)
  • tricyclodecane dimethanol diacrylate NK ester A-DCP molecular weight 304
  • tricyclodecane dimethanol dimethacrylate NK ester DCP molecular weight 302.
  • the (meth) acrylate compound may be a polymerizable oligomer.
  • polymerizable oligomers include epoxy (meth) acrylate oligomers, aliphatic urethane (meth) acrylate oligomers, aromatic urethane (meth) acrylate oligomers, polyester (meth) acrylate oligomers, and linear (meth) acrylic oligomers. included.
  • the cationically polymerizable compound can be an epoxy compound, a vinyl ether compound, an oxetane compound, or the like. Only one kind of the cationic polymerizable compound may be contained in the actinic ray curable inkjet magenta ink, or two or more kinds thereof may be contained.
  • the epoxy compound is an aromatic epoxide, an alicyclic epoxide, an aliphatic epoxide, or the like, and an aromatic epoxide or an alicyclic epoxide is preferable in order to increase curability.
  • the aromatic epoxide may be a di- or polyglycidyl ether obtained by reacting a polyhydric phenol or an alkylene oxide adduct thereof with epichlorohydrin.
  • examples of the polyhydric phenol to be reacted or its alkylene oxide adduct include bisphenol A or its alkylene oxide adduct.
  • the alkylene oxide in the alkylene oxide adduct can be ethylene oxide, propylene oxide, and the like.
  • the alicyclic epoxide can be a cycloalkane oxide-containing compound obtained by epoxidizing a cycloalkane-containing compound with an oxidizing agent such as hydrogen peroxide or peracid.
  • the cycloalkane in the cycloalkane oxide-containing compound can be cyclohexene or cyclopentene.
  • the aliphatic epoxide can be a di- or polyglycidyl ether obtained by reacting an aliphatic polyhydric alcohol or an alkylene oxide adduct thereof with epichlorohydrin.
  • the aliphatic polyhydric alcohol include ethylene glycol, propylene glycol, alkylene glycol such as 1,6-hexanediol, and the like.
  • the alkylene oxide in the alkylene oxide adduct can be ethylene oxide, propylene oxide, and the like.
  • vinyl ether compounds include ethyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, octadecyl vinyl ether, cyclohexyl vinyl ether, hydroxybutyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexanedimethanol monovinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, isopropenyl ether.
  • monovinyl ether compounds such as -o-propylene carbonate, dodecyl vinyl ether, diethylene glycol monovinyl ether, octadecyl vinyl ether; Diethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, cyclohexane dimethanol divinyl ether, trimethylolpropane trivinyl ether, etc. Or a trivinyl ether compound etc. are contained. Of these vinyl ether compounds, di- or trivinyl ether compounds are preferred in view of curability and adhesion.
  • An oxetane compound is a compound having an oxetane ring, and examples thereof include oxetane compounds described in JP-A Nos. 2001-220526, 2001-310937, and JP-A-2005-255821.
  • the compound represented by the general formula (1) described in paragraph No. 0089 of JP-A No. 2005-255821 the compound represented by the general formula (2) described in paragraph No. 0092 of the same publication
  • the paragraph Examples include a compound represented by general formula (7) of number 0107, a compound represented by general formula (8) of paragraph number 0109, a compound represented by general formula (9) of paragraph number 0116, and the like.
  • the general formulas (1), (2), (7), (8), and (9) described in JP-A-2005-255821 are shown below.
  • the content of the photopolymerizable compound in the actinic ray curable inkjet magenta ink is preferably 1 to 97% by mass, and more preferably 30 to 95% by mass.
  • the actinic ray curable inkjet magenta ink further contains a photopolymerization initiator.
  • the photopolymerization initiator includes an intramolecular bond cleavage type and an intramolecular hydrogen abstraction type.
  • intramolecular bond cleavage type photopolymerization initiators include diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2.
  • intramolecular hydrogen abstraction type photopolymerization initiators examples include benzophenone, methyl 4-phenylbenzophenone o-benzoylbenzoate, 4,4′-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyl-diphenyl.
  • Benzophenones such as sulfide, acrylated benzophenone, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 3,3′-dimethyl-4-methoxybenzophenone; 2-isopropylthioxanthone, 2,4 -Thioxanthone series such as dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone; Aminobenzophenone series such as Michler ketone, 4,4'-diethylaminobenzophenone; 10-butyl-2-chloroacridone, 2-ethyl Anthraquinone, 9,10-phenanthrene Quinone, include camphor quinone and the like.
  • the content of the photopolymerization initiator in the actinic ray curable inkjet magenta ink is preferably 0.01% by mass to 10% by mass, although it depends on the type of actinic ray or photopolymerizable compound.
  • the actinic ray curable inkjet magenta ink may contain a photoacid generator as a photopolymerization initiator.
  • photoacid generators include chemically amplified photoresists and compounds used for photocationic polymerization (Organic Electronics Materials Study Group, “Organic Materials for Imaging”, Bunshin Publishing (1993), 187. See page 192).
  • the actinic ray curable inkjet magenta ink may further contain a photopolymerization initiator auxiliary agent or a polymerization inhibitor, if necessary.
  • the photopolymerization initiator assistant may be a tertiary amine compound, preferably an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds include N, N-dimethylaniline, N, N-diethylaniline, N, N-dimethyl-p-toluidine, N, N-dimethylamino-p-benzoic acid ethyl ester, N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester, N, N-dihydroxyethylaniline, triethylamine, N, N-dimethylhexylamine and the like are included.
  • N, N-dimethylamino-p-benzoic acid ethyl ester and N, N-dimethylamino-p-benzoic acid isoamyl ethyl ester are preferred. Only one kind of these compounds may be contained in the actinic ray curable inkjet magenta ink, or two or more kinds thereof may be contained.
  • polymerization inhibitors include (alkyl) phenol, hydroquinone, catechol, resorcin, p-methoxyphenol, t-butylcatechol, t-butylhydroquinone, pyrogallol, 1,1-picrylhydrazyl, phenothiazine, p-benzoquinone , Nitrosobenzene, 2,5-di-t-butyl-p-benzoquinone, dithiobenzoyl disulfide, picric acid, cuperone, aluminum N-nitrosophenylhydroxylamine, tri-p-nitrophenylmethyl, N- (3-oxyanilino- 1,3-dimethylbutylidene) aniline oxide, dibutylcresol, cyclohexanone oxime cresol, guaiacol, o-isopropylphenol, butyraloxime, methyl ethyl ketoxime, cyclohexanone oxime
  • the actinic ray curable inkjet magenta ink may further contain other components as necessary.
  • Other components may be various additives, other resins, and the like.
  • the additive include a surfactant, a leveling additive, a matting agent, an ultraviolet absorber, an infrared absorber, an antibacterial agent, and a basic compound for enhancing the storage stability of the ink.
  • basic compounds include basic alkali metal compounds, basic alkaline earth metal compounds, basic organic compounds such as amines, and the like.
  • other resins include resins for adjusting the physical properties of the cured film, such as polyester resins, polyurethane resins, vinyl resins, acrylic resins, rubber resins, and waxes. It is.
  • the actinic ray curable inkjet magenta ink can be obtained by mixing the above-mentioned pigment, polymer dispersant, gelling agent, photopolymerizable compound and photopolymerization initiator with any of the components under heating. it can. It is preferable to filter the obtained liquid mixture with a predetermined filter. At this time, a dispersion containing a pigment and a polymer dispersant may be prepared in advance, and the remaining components may be added thereto and mixed while heating.
  • the actinic ray curable inkjet magenta ink is an ink that undergoes a sol-gel phase transition reversibly with temperature. Since the sol-gel phase transition type actinic ray curable ink is a sol at a high temperature (for example, about 80 ° C.), it can be ejected from an ink jet recording head. When actinic ray curable inkjet magenta ink is ejected at a high temperature, ink droplets (dots) land on the recording medium and then naturally cool to gel. Thereby, coalescence of adjacent dots can be suppressed and image quality can be improved.
  • a high temperature for example, about 80 ° C.
  • the viscosity of the ink at a high temperature is not more than a certain level.
  • the viscosity of the actinic ray curable inkjet magenta ink at 80 ° C. is preferably 3 to 20 mPa ⁇ s.
  • the viscosity of the ink at normal temperature after landing is a certain level or more.
  • the viscosity at 25 ° C. of the actinic ray curable inkjet magenta ink is preferably 1000 mPa ⁇ s or more.
  • the gelation temperature of the sol-gel phase transition ink is preferably 40 ° C. or higher and 70 ° C. or lower, and more preferably 50 ° C. or higher and 65 ° C. or lower. If the gelation temperature of the ink exceeds 70 ° C. when the ejection temperature is in the vicinity of 80 ° C., gelation tends to occur at the time of ejection, resulting in poor ejection properties. On the other hand, if the gelation temperature is less than 40 ° C., the gelation does not occur immediately after landing on the recording medium.
  • the gelation temperature is a temperature at which the fluidity decreases due to gelation in the process of cooling the ink in the sol state.
  • the viscosity at 80 ° C., the viscosity at 25 ° C. and the gelation temperature of the sol-gel phase transition type ink can be determined by measuring the temperature change of the dynamic viscoelasticity of the ink with a rheometer. Specifically, a temperature change curve of viscosity is obtained when the ink is heated to 100 ° C. and cooled to 20 ° C. under conditions of a shear rate of 11.7 (1 / s) and a temperature decrease rate of 0.1 ° C./s. . And the viscosity in 80 degreeC and the viscosity in 25 degreeC can be calculated
  • the gelation temperature can be determined as the temperature at which the viscosity becomes 200 mPa ⁇ s in the temperature change curve of the viscosity.
  • the rheometer can be a stress control type rheometer Physica MCR series manufactured by Anton Paar.
  • the cone plate can have a diameter of 75 mm and a cone angle of 1.0 °.
  • the sol-gel phase transition type ink has an ink temperature of (gelation temperature + 10) ° C. to (increase temperature) of the ink when filled in the ejection recording head in order to improve the ejection property of the ink from the ejection recording head.
  • the gelling temperature is preferably set to +30) ° C.
  • the temperature of the ink in the ejection recording head is less than (gelation temperature + 10) ° C.
  • the ink is gelled in the ejection recording head or on the nozzle surface, and the ink ejection property is likely to deteriorate.
  • the temperature of the ink in the ejection recording head exceeds (gelation temperature + 30) ° C., the ink becomes too high, and the ink component may deteriorate.
  • the inkjet recording method includes: 1) a step of ejecting ink contained in an ink set including the above-described actinic ray curable inkjet magenta ink from an inkjet recording head to a recording medium; and 2) ink landing on the recording medium. Irradiating actinic rays.
  • the ink contained in the ink set containing the inkjet magenta ink housed in the ejection recording head may be ejected as droplets toward the recording medium through the nozzles.
  • the temperature of the inkjet magenta ink accommodated in the ejection recording head is set to a temperature at which the content of the wax contained in the ink is equal to or less than the saturated dissolution amount of the wax in the ink. That is, the wax is dissolved as much as possible in the inkjet magenta ink accommodated in the ejection recording head.
  • the ink set includes at least the actinic ray curable inkjet magenta ink of the present invention.
  • the ink set may be composed of only the actinic ray curable inkjet magenta ink of the present invention.
  • an image is formed by combining a plurality of colors, for example, a known cyan ink or yellow ink is used. You may use combining the ink of any or all the colors of an ink and a black ink, and the actinic-light curable inkjet magenta ink of this invention.
  • an image is formed using the ink set containing the actinic ray curable inkjet magenta ink of the present invention
  • the color gamut of the magenta can be widened, and magenta dots in the obtained image are difficult to merge with other dots.
  • an ink set including the actinic ray curable inkjet magenta ink of the present invention includes a plurality of colors, the gloss difference between magenta and other colors is small, so that the appearance of the obtained image can be improved.
  • actinic rays are irradiated to the ink that has landed on the recording medium.
  • the ink can be cured by irradiation with actinic rays.
  • the light to be irradiated may be appropriately selected depending on the type of the photopolymerizable compound, and may be ultraviolet rays or electron beams.
  • the ink jet recording method of the present invention can be carried out using an actinic ray curable ink jet recording apparatus.
  • Actinic ray curable ink jet recording apparatuses include a line recording method (single pass recording method) and a serial recording method.
  • the line recording method (single-pass recording method) is preferable from the viewpoint of high-speed recording, although it may be selected according to the required image resolution and recording speed.
  • FIG. 1A is a side view illustrating an example of a configuration of a main part of an ink jet recording apparatus of a line recording type
  • FIG. 1B is a top view thereof.
  • the ink jet recording apparatus 10 covers a head carriage 16 that houses a plurality of ink ejection recording heads 14 and the entire width of the recording medium 12, and the head carriage 16 (recording medium
  • the actinic ray irradiation unit 18 disposed on the downstream side in the transport direction) and the temperature control unit 19 disposed on the lower surface of the recording medium 12 are provided.
  • the head carriage 16 is fixedly disposed so as to cover the entire width of the recording medium 12, and accommodates a plurality of ink ejection recording heads 14 provided for each color.
  • the ink discharge recording head 14 is supplied with ink of any color from the ink set.
  • an ink set may be prepared in the ink cartridge 31 that is detachably attached to the ink jet recording apparatus 10, and the ink may be supplied directly or by the ink supply means 30.
  • a plurality of ink ejection recording heads 14 are arranged in the transport direction of the recording medium 12 for each color.
  • the number of ink ejection recording heads 14 arranged in the conveyance direction of the recording medium 12 is set according to the nozzle density of the ink ejection recording head 14 and the resolution of the print image. For example, when an image having a resolution of 1440 dpi is formed using the ink ejection recording head 14 having a droplet amount of 2 pl and a nozzle density of 360 dpi, four ink ejection recording heads 14 are provided in the transport direction of the recording medium 12. What is necessary is just to shift and arrange.
  • the two ink discharge recording heads 14 may be arranged in a shifted manner.
  • dpi represents the number of ink droplets (dots) per 2.54 cm.
  • the actinic ray irradiation unit 18 covers the entire width of the recording medium 12 and is arranged on the downstream side of the head carriage 16 in the conveyance direction of the recording medium.
  • the actinic ray irradiation unit 18 irradiates the droplets ejected by the ink ejection recording head 14 and landed on the recording medium with actinic rays to cure the droplets.
  • examples of the active light irradiation unit 18 include a fluorescent tube (low pressure mercury lamp, germicidal lamp), a cold cathode tube, an ultraviolet laser, and an operating pressure of several hundred Pa to 1 MPa. These include low pressure, medium pressure, high pressure mercury lamps, metal halide lamps and LEDs. From the viewpoint of curability, ultraviolet irradiation means for irradiating ultraviolet rays having an illuminance of 100 mW / cm 2 or more; specifically, high-pressure mercury lamps, metal halide lamps, and LEDs are preferable, and LEDs are more preferable from the viewpoint of low power consumption. Specifically, a 395 nm, water-cooled LED manufactured by Phoseon Technology can be used.
  • examples of the actinic ray irradiating unit 18 include electron beam irradiating means such as a scanning method, a curtain beam method, and a broad beam method. Therefore, a curtain beam type electron beam irradiation means is preferable.
  • Examples of electron beam irradiation means include “Curetron EBC-200-20-30” manufactured by Nissin High Voltage Co., Ltd., “Min-EB” manufactured by AIT Co., Ltd., and the like.
  • the temperature control unit 19 is disposed on the lower surface of the recording medium 12 and maintains the recording medium 12 at a predetermined temperature.
  • the temperature control unit 19 can be, for example, various heaters.
  • the pinning property can be improved by setting the temperature of the recording medium to 42 ° C. to 50 ° C., preferably 45 ° C. to 48 ° C.
  • the recording medium 12 is conveyed between the head carriage 16 and the temperature control unit 19 of the inkjet recording apparatus 10.
  • the recording medium 12 is adjusted to a predetermined temperature by the temperature control unit 19.
  • high-temperature ink is ejected from the ink ejection recording head 14 of the head carriage 16 and adhered (landed) on the recording medium 12.
  • the actinic ray irradiating unit 18 irradiates the ink droplets attached on the recording medium 12 with an actinic ray to cure.
  • the temperature of the ink in the ink ejection recording head 14 is 10 to 30 ° C. higher than the gelation temperature of the ink in order to improve ink ejection properties. It is preferable to set the temperature.
  • the ink temperature in the ink discharge recording head 14 is less than (gelation temperature + 10) ° C., the ink is gelled in the ink discharge recording head 14 or on the nozzle surface, and the ink ejection property is likely to be lowered.
  • the temperature of the ink in the ink ejection recording head 14 exceeds (gelling temperature + 30) ° C., the ink becomes too high, and the ink component may deteriorate.
  • the amount of droplets ejected from each nozzle of the ink ejection recording head 14 is preferably 1 pl to 10 pl in order to form a high resolution image, although it depends on the resolution of the image. More preferably, it is 0.5 to 4.0 pl.
  • first ink When forming an intermediate color image by superimposing inks, after applying a first ink containing a color material of a certain color, it contains another color material having a hue different from that of the applied first ink.
  • the first ink may be applied in an overlapping manner.
  • Irradiation with actinic rays is performed within 10 seconds, preferably within 0.001 seconds to 5 seconds, more preferably after the ink droplets are deposited on the recording medium, in order to prevent adjacent ink droplets from coalescing. It is preferable to carry out within 0.01 second to 2 seconds. Irradiation with actinic rays is preferably performed after ink is ejected from all the ink ejection recording heads 14 accommodated in the head carriage 16.
  • the acceleration voltage for electron beam irradiation is preferably 30 to 250 kV and more preferably 30 to 100 kV in order to perform sufficient curing.
  • the electron beam irradiation amount is preferably 30 to 100 kGy, and more preferably 30 to 60 kGy.
  • the total ink film thickness after curing is preferably 2 to 25 ⁇ m.
  • the “total ink film thickness” is the maximum value of the ink film thickness drawn on the recording medium.
  • FIG. 2 is a diagram illustrating an example of a configuration of a main part of the serial recording type inkjet recording apparatus 20.
  • the inkjet recording apparatus 20 has a width narrower than the entire width of the recording medium, instead of the head carriage 16 fixedly arranged so as to cover the entire width of the recording medium, and a plurality of ink ejection devices.
  • 1A and 1B can be configured except that a head carriage 26 that accommodates the recording head 24 and a guide portion 27 for moving the head carriage 26 in the width direction of the recording medium 12 are provided.
  • the head carriage 26 ejects ink from the ink ejection recording head 24 accommodated in the head carriage 26 while moving in the width direction of the recording medium 12 along the guide portion 27. After the head carriage 26 has completely moved in the width direction of the recording medium 12 (for each pass), the recording medium 12 is sent in the transport direction, and the actinic light irradiation unit 28 irradiates the active light. Except for these operations, an image is recorded in substantially the same manner as the line recording type inkjet recording apparatus 10 described above.
  • magenta pigment powder was filtered, washed with water and dried to obtain a surface-treated magenta pigment.
  • This treatment provided 5000 ppm of alumina to the magenta pigment powder.
  • the type of magenta pigment and the amount of sodium aluminate were changed according to Table 1 to prepare magenta pigments provided with different amounts of alumina.
  • the prepared pigment powder was measured by ICP-AES, and the amount of Al element was determined to confirm whether a predetermined amount of alumina was applied.
  • the magenta pigment not subjected to surface treatment (untreated) was measured, only the Al element originally contained in the pigment was quantified.
  • the alumina-added magenta pigment prepared above is dispersed in a solvent (2-pyrrolidone) using a disper, and the mixed solution of the dispersed solvent and the pigment paste is transferred to a container that can be vacuum degassed and reduced in pressure to 50 Torr or less with an aspirator.
  • the mixture was heated to 100 to 120 ° C., and water contained in the system was removed as much as possible, and then controlled to 55 ° C.
  • a sulfonating agent sulfur trioxide
  • sulfuric anhydride sulfuric anhydride
  • the surface-treated magenta pigment was washed several times with an excess solvent, poured into water, and filtered to obtain surface-treated magenta pigment 1.
  • This treatment provided 1500 ppm of sulfonic acid to the magenta pigment powder.
  • magenta pigments 2 to 9 and 11 to which sulfonic acid was added were prepared.
  • the prepared pigment powder was measured by ICP-AES, and the amount of S element was determined to confirm whether or not a predetermined amount of sulfonic acid was applied.
  • the magenta pigment not subjected to surface treatment (untreated) was measured, only 20 to 30 ppm of S element originally contained in the pigment was quantified.
  • Magenta pigments 10 and 12 were not subjected to surface treatment with alumina or sulfonic acid.
  • magenta pigment dispersion 1 was prepared with the following components.
  • Magenta pigment 1 9.0 g
  • Photopolymerization compound 32.7 g of tripropylene glycol diacrylate (manufactured by Toa Gosei)
  • Polymer dispersing agent BYK Jet-9151 (manufactured by Big Chemie Japan Co., Ltd.)
  • Polymerization inhibitor Irgastab UV-10 (manufactured by BASF) 0.1 g
  • the above predetermined amount of the components are put into a 200 cc plastic bottle, 120 g of zirconia beads having a diameter of 0.5 mm ⁇ are further put therein, and the lid is closed. Time dispersed. After dispersion, the beads were separated and the dispersion was taken out.
  • Magenta pigment dispersions 2 to 12 were prepared by the same procedure except that the magenta pigment 1 was changed to the magenta pigments 2 to 12.
  • Actinic ray curable inks 1-2 to 12-7 were prepared in the same manner by changing the type of magenta pigment dispersion and the amount of Kao wax T-1 as a crystalline gelling agent according to Tables 2 to 4. did.
  • Each actinic ray curable ink was filtered with a WAC filter (0.3 ⁇ m accuracy) manufactured by Pall Corporation. Thereafter, each ink was introduced into a Konica Minolta inkjet head (HA512), and a solid image was printed under the conditions of a printing width of 100 mm ⁇ 100 mm and a resolution of 720 ⁇ 720 dpi.
  • An OK top coat (printing paper) was used as a printing substrate.
  • a Kyocera LED lamp was used as a UV irradiation light source, and the ink was cured by irradiating the ink printed with ultraviolet rays with an energy of 250 mJ.
  • the 60 ° C. reflection gloss value of the solid image with each actinic ray curable ink was measured with a digital handy gloss meter (Gloss Checker IG-331 manufactured by Horiba, Ltd.).
  • the average gloss value (40) of the yellow, cyan and black solid images is examined to determine how much the reflection gloss value of the magenta solid image by each actinic ray curable ink is decreased, and the absolute value of the difference in the reflection gloss values Is less than 5.0 (indicated by + in Tables 2 to 4), and when the absolute value of the difference from the reflection gloss value is 3.0 or less, the gloss difference is further increased. It was judged to be small (indicated by ++ in Tables 2 to 4).
  • the content of the gelling agent is less than 1.5 wt%, the pinning property is deteriorated, and when the content of the gelling agent is more than 3.0 wt%, the gloss difference tends to increase. This is presumably because if the amount of the gelling agent is small, the ink is not sufficiently gelled, so that the ink diameter becomes large, and if the amount of the gelling agent is large, the gelling agent deposited on the image surface causes excessive gloss.
  • the image formed from the actinic ray curable inkjet magenta ink of the present invention has good storage stability and pinning properties, and has little gloss difference from other colors. Therefore, the present invention is suitable for production of various printed materials that require glossiness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet (AREA)

Abstract

 活性光線硬化型インクジェットマゼンタインクであって、前記インクはすくなくとも顔料、高分子分散剤、結晶性ゲル化剤、光重合性化合物、光重合開始剤を含み、前記顔料はアルミナおよびスルホン酸により表面処理が施されたPV19とPR202との固溶体であり、前記顔料に対する前記アルミナの付与量は質量比率で1500~7500ppmであり、前記結晶性ゲル化剤の含有量はインク全体に対して1.5~3.0質量%である、インクは、良好な保存安定性およびピニング性を有し、かつ他色との光沢差が少ない。

Description

活性光線硬化型インクジェットマゼンタインクおよびインクジェット記録方法
 本発明は、活性光線硬化型インクジェットマゼンタインクおよびインクジェット記録方法に関する。
 インクジェット記録方式は、簡易かつ安価に画像を形成できることから、各種印刷分野で用いられている。インクジェット記録方式の一つとして、紫外線硬化型インクの液滴を記録媒体に着弾させた後、活性光線を照射して硬化させて画像を形成する活性光線硬化型インクジェット方式がある。活性光線硬化型インクジェット方式は、インク吸収性のない記録媒体においても、高い密着性を有する画像を形成できることから、近年注目されつつある。
 活性光線硬化型のインクジェットインクにおいては、隣り合うドットの同一を防ぐことや得られる画像の擦過性をより高めることを目的として、ゲル化剤を、活性光線硬化型インクジェットインクに含有させる技術が知られている。この技術では、着弾時にゲル化剤が結晶化してインクがゲル化することで、ドットが広がるのを防ぐことができる、また、低い温度でもインクの粘度を高くすることができるため、室温での擦過性にも優れた印刷物を得ることができる。たとえば、特許文献1では、顔料、光重合性化合物を含有するインクジェットインクにオイルゲル化剤を加えることで、記録媒体状に着弾したインク液滴の固化を短時間に完遂させてドットの同一を防いでいる。特許文献2では、顔料または染料を含む放射線硬化性インクに低い温度でゲル化するゲル化剤を加えることで、堅牢性が良好な画像を効率的に形成している。
 ところで、インクの色材として顔料を用いる場合、インクに高分子分散剤を含有させることで、顔料の分散性を高め、インクを安定して保存することができる。例えば、特許文献3では、重量比で顔料よりも多い量の高分子分散剤を加えることで、顔料を分散安定化させている。また、特許文献4では、重量比で顔料よりも多い量の高分子分散剤をインクに加えるほか、分散シナジストも加えることで、さらに分散安定性を高めている。このとき、顔料粒子に表面処理を施してスルホン酸等の酸性の吸着官能基を付与することで、高分子分散剤の塩基性官能基と顔料とを会合しやすくし、インクの保存安定性を高めることができる。
 インクジェットインク用のマゼンタ顔料としては、キナクリドン類が知られており、その中でも、Pigment Violet 19(PV19)とPigment Red 202(PR202)の固溶体(以下、PV19/PR202ともいう。)を用いると、形成した画像の色域をより拡大することができる。ここで、PV19/PR202を含有するインクの保存安定性を高めるためには、インク中の高分子分散剤と顔料との親和性のみならず、光重合性化合物と顔料との親和性をよくすることも重要である。これに対し、顔料粒子に表面処理を施してアルミナをキナクリドン骨格に付与することで、顔料と光重合性化合物との親和性を高め、インクの保存安定性を高めることができる。アルミナは、たとえば特許文献5や特許文献6に記載の方法によって、顔料粒子表面に付与することができる。
特許第4556414号公報 特開2006-193745号公報 特表2007-521368号公報 米国特許第8197584号明細書 特公昭59-34737号公報 特開2002-121411号公報
 ゲル化剤を含むようなインクが色材として顔料を含むような場合、顔料の表面処理状態によってゲル化剤の結晶化の程度が変化することがある。たとえば、ゲル化剤を含むインクジェットインクにおいて、アルミナを表面に付与した顔料を用いると、アルミナとゲル化剤との会合によって、ゲル化剤の結晶化が阻害される。ゲル化剤が結晶化しないと、過剰なレベリングが生じて、画像表面の光沢が生じやすい。また、結晶化しなかったゲル化剤が硬化したインクの表面に析出すると、画像表面に光沢が生じ、他の色とのコントラスト比が崩れてしまう。特にPV19/PR202のようなマゼンタインクでは、このような光沢差の問題が生じやすい。
 これに対し、ゲル化剤の量を減らすことで画像の光沢差を低下させることはできるが、一方でゲル化剤が少ないためピニング性も低下し、着弾時の液滴径が広がることによるドットの合一が発生してしまう。
 そのため、本発明は、表面処理をしたPV19/PR202の固溶体顔料を用い、かつゲル化剤を含む活性光線硬化型インクジェットマゼンタインクにおいて、良好な保存安定性およびピニング性を有するインクジェットインクの提供を目的とする。本発明のさらなる目的は、他色との光沢差が少ない活性光線硬化型インクジェットマゼンタインクを提供することである。
 本発明は、以下に示す活性光線硬化型インクジェットマゼンタインクに関する。
 1.活性光線硬化型インクジェットマゼンタインクであって、前記インクは顔料、高分子分散剤、結晶性ゲル化剤、光重合性化合物および光重合開始剤を含み、前記顔料はアルミナおよびスルホン酸により表面処理が施されたPV19とPR202との固溶体であり、前記顔料に対する前記アルミナの付与量は質量比率で1500~7500ppmであり、前記結晶性ゲル化剤の含有量はインク全体に対して1.5~3.0質量%である、インク。
 2.前記顔料は前記PV19を質量比率で前記PR202よりも多く含む、上記1に記載のインク。
 3.前記顔料に対する該アルミナの付与量は質量比率で5000~7500ppmである、上記1または2に記載のインク。
 4.前記顔料に対する該アルミナの付与量は質量比率で2500~3000ppmである、上記1または2に記載のインク。
 また、本発明は、以下に示すインクジェット記録方法に関する。
 5.上記1~4のいずれかに記載の光硬化型インクジェットマゼンタインクを含むインクセットに含まれるインクをインクジェット記録ヘッドから記録媒体に射出する工程と、該記録媒体上に着弾した該インクに活性光線を照射する工程と、を有する、インクジェット記録方法。
 本発明によれば、表面処理をしたPV19/PR202の固溶体顔料を用い、かつゲル化剤を含む活性光線硬化型インクジェットマゼンタインクにおいて、良好な保存安定性およびピニング性を有し、かつ他色との光沢差が少ないインクが提供される。
ライン記録方式のインクジェット記録装置の要部の構成の一例を示す側面図である。 図1Aの上面図である。 シリアル記録方式のインクジェット記録装置の要部の構成の一例を示す図である。
 [活性光線硬化型インクジェットマゼンタインク]
 本発明に係るインクは、活性光線硬化型インクジェットマゼンタインクであって、前記インクは顔料、高分子分散剤、結晶性ゲル化剤、光重合性化合物および光重合開始剤を含み、前記顔料はアルミナおよびスルホン酸により表面処理が施されたPV19とPR202との固溶体であり、前記顔料に対する前記アルミナの付与量は質量比率で1500~7500ppmであり、前記結晶性ゲル化剤の含有量はインク全体に対して1.5~3.0質量%である、インクである。
 以下、各成分の詳細な説明を通じて本発明に係る活性光線硬化型インクジェットマゼンタインクについて説明を行う。
 [顔料]
 本発明では、顔料としてアルミナおよびスルホン酸により表面処理が施されたPV19とPR202との固溶体を用いる。これらの固溶体を用いることで、色域を拡大することができるため、たとえばJapan color2011等の標準試料により近いマゼンタ色を出すことが可能となる。
 表面処理は、既知の方法で行うことができる。たとえば、アルミナによる表面処理は、特許文献5もしくは特許文献6に記載の方法、または、顔料が分散された分散液にアルミナを懸濁し、その後pHを調整する方法で行うことができる。アルミナの付与量は、それぞれの方法において添加するアルミナの量を変化させることによって所望の量に調整することができる。また、スルホン酸による表面処理は、スラリー状の顔料分散体にスルホン化剤を添加し、高温下で両者を反応させる方法によって行うことができる。スルホン酸の付与量は、添加するスルホン化剤の量を調節することによって所望の量に調整することができる。付与されたアルミナまたはスルホン酸の量は、誘導結合プラズマ発光分光分析装置(ICP-AES)等で顔料を測定し、アルミナ(またはAl元素)またはスルホン酸(またはS元素)の量を定量することで、確認することができる。なお、顔料を含むインクを保存する際には、保存中にアルミナまたはスルホン酸が顔料から離脱することもあるため、インク中のアルミナ(またはAl元素)またはスルホン酸(またはS元素)を定量して、本発明のアルミナ付与量またはスルホン酸付与量としてもよい。
 アルミナは、顔料に対して質量比率で1500~7500ppm付与されていることが好ましい。アルミナの付与量を1500ppm以上とすることによって、光重合性化合物および高分子分散剤への親和性が高くなり、顔料を安定して保存することができるようになる。また、アルミナの付与量を7500ppm以下とすることによって、アルミナとゲル化剤との会合によるゲル化剤の結晶化不足を抑制することができるため、過剰なレベリングによる光沢の発生を抑えることができる。
 なお、活性光線型インクジェットマゼンタインクに求める性質に応じてアルミナの付与量を変えることもできる。たとえば、アルミナの付与量を5000~7500ppmとすると、光重合性化合物との親和性が高まるため、マゼンタインクの保存安定性をより高めることができる、また、アルミナの付与量を2500~3000ppmとすると、ゲル化剤を適度に結晶化するため、他の色との光沢差をより少なくすることができる。
 スルホン酸の量は特に限定されないが、顔料に対して質量比率で1000~1500ppm付与されていることが好ましい。
 固溶体は、質量比率でPV19をPR202よりも多く含むことが好ましい。このような比率とすることで、用いることのできる色域をより暗色系の方向に広げることが可能となる。
 これらの固溶体は、市販のものを用いることもできる。このような固溶体の市販されている例として、BASF社製のCINQUASIA Magenta L4540、D4500J、CINQUASIA Red L4330、RT-355D、Sun chemical社製の228-2120、Clariant社製のInkjet Magenta E7B等がある。
 顔料の分散は、例えばボールミル、サンドミル、アトライター、ロールミル、アジテータ、ヘンシェルミキサ、コロイドミル、超音波ホモジナイザー、パールミル、湿式ジェットミル、およびペイントシェーカー等により行うことができる。顔料の分散は、顔料粒子の平均粒子径が、好ましくは0.08~0.5μm、最大粒子径が好ましくは0.3~10μm、より好ましくは0.3~3μmとなるように行われることが好ましい。顔料の分散は、顔料、高分子分散剤、および分散媒体の選定、分散条件、およびろ過条件等によって、調整される。
 本発明における顔料粒子の平均粒子径とは、Malvern社製のデータサイザーナノZSPを使用して動的光散乱法によって求めた値を意味する。動的光散乱法では、ブラウン運動により動く粒子の拡散(動的光散乱)を測定し、その結果(拡散係数D)をストークス・アインシュタインの式(D=kT/6πμa)に代入して粒子径および粒度分布に変換することができる(上記ストークス・アインシュタインの式において、kはボルツマン定数、Tは温度(K)、μは希釈液の粘度、aは粒径を表す)。なお、色材を含むインクは濃度が高く、この測定機器では光が透過しないので、インクを200倍で希釈してから測定する。測定温度は常温(25℃)とする。
 顔料の含有量は、活性光線硬化型インクジェットマゼンタインクに対して0.1~20質量%であることが好ましく、0.4~10質量%であることがより好ましい。顔料の含有量が少なすぎると、得られる画像の発色が十分ではなく、多すぎるとインクの粘度が高くなり、射出性が低下するからである。
 [高分子分散剤]
 活性光線硬化型インクジェットマゼンタインクには、高分子分散剤が含まれる。高分子分散剤を含むことで、顔料の分散性を高めることができる。
 高分子分散剤の種類は特に限定されない。高分子分散剤の好ましい例には、ビックケミー社製のBYK-2164、BYK-168、BYK N-22024、アルタナ社製のBYK JET-9150、BYK JET-9151、EFKA 7701、BASF社製のEFKA 4310、EFKA 4320、EFKA 4401、Avecia社のSOLSPERSE 24000GR,SOLSPERSE 39000、味の素ファインテクノ社製のアジスパーPB821、PB824等が含まれる。
 高分子分散剤の含有量は、好ましくは顔料に対して20質量%~70質量%であり、より好ましくは30~60質量%であり、さらに好ましくは35~50質量%である。顔料に対する高分子分散剤の含有量が多すぎると、高分子分散剤がゲル化剤と会合してゲル化が阻害され、インクの液滴の着弾時にピニングが効かなくなり、液滴が拡がって液滴同士が重なりいわゆる液寄りが発生して画質が低下するからである。一方、顔料に対する高分子分散剤の含有量が少ないと、顔料表面を高分子分散剤が十分に被覆できなくなるため、安定性が低下するからである。
 高分子分散剤は、櫛型ブロック構造を有することが好ましい。高分子分散剤の中でも、特にブロックコポリマー(櫛型)骨格を有する高分子分散剤を用いることで、側鎖が伸張して顔料間の凝集を抑制する立体障害効果が得られやすくなり、顔料の分散性が向上するからである。
 上述の高分子分散剤の他に、例えば、水酸基含有カルボン酸エステル、長鎖ポリアミノアマイドと高分子量酸エステルの塩、高分子量ポリカルボン酸の塩、長鎖ポリアミノアマイドと極性酸エステルの塩、高分子量不飽和酸エステル、高分子共重合物、変性ポリウレタン、変性ポリアクリレート、ポリエーテルエステル型アニオン系活性剤、ナフタレンスルホン酸ホルマリン縮合物塩、芳香族スルホン酸ホルマリン縮合物塩、ポリオキシエチレンアルキル燐酸エステル、ポリオキシエチレンノニルフェニルエーテル、およびステアリルアミンアセテート等を添加してもよい。分散剤の市販品の例には、Avecia社のSolsperseシリーズや、味の素ファインテクノ社のPBシリーズ等が含まれる。
 活性光線硬化型インクジェットマゼンタインクには、必要に応じて分散助剤がさらに含まれていてもよい。分散助剤は、顔料に応じて選択されればよい。高分子分散剤および分散助剤の合計量は、顔料に対して1~50質量%であることが好ましい。
 活性光線硬化型インクジェットマゼンタインクには、必要に応じて顔料を分散させるための分散媒体がさらに含まれていてもよい。分散媒体として溶剤がインクに含まれてもよいが、形成された画像における溶剤の残留を抑制するためには、後述する光重合性化合物(特に粘度の低いモノマー)が分散媒体であることが好ましい。
 [結晶性ゲル化剤]
 活性光線硬化型インクジェットマゼンタインクには、結晶性ゲル化剤(ゲル化剤ともいう。)が含まれる。
 ゲル化剤とは、一般に常温で固体、加熱すると液体となる有機物と定義されるものである。ゲル化剤の融点は、好ましくは融点が30℃以上150℃未満である。活性光線硬化型インクジェットマゼンタインクに含まれるゲル化剤は、少なくとも1)ゾルゲル相転移温度よりも高い温度で、光重合性化合物に溶解すること、2)ゾルゲル相転移温度以下の温度で、インク中で結晶化すること、が好ましい。
 1)において、「ゾルゲル相転移温度」とは、ゾル状態からゲル状態に変化(転移)する変化(転移)点の温度をいい、ゲル化温度、ゲル転移温度、ゲル溶解温度、ゲル軟化温度、ゾルゲル相転移温度、ゾルゲル転移点、ゲル化点と称される用語と同義である。
 2)において、ゲル化剤がインク中で結晶化するときに、ゲル化剤の結晶化物である板状結晶が三次元的に囲む空間を形成し、前記空間に光重合性化合物を内包することが好ましい。このように、板状結晶が三次元的に囲む空間に光重合性化合物が内包された構造を「カードハウス構造」ということがある。カードハウス構造が形成されると、液体の光重合性化合物を保持することができ、インク液滴をピニングすることができる。それにより、液滴同士の合一を抑制することができる。カードハウス構造を形成するには、インク中で溶解している光重合性化合物とゲル化剤とが相溶していることが好ましい。これに対して、インク中で溶解している光重合性化合物とゲル化剤とが相分離していると、カードハウス構造を形成しにくい場合がある。
 インク中で溶解している光重合性化合物とゲル化剤が相分離する原因は定かではないものの、インク中の顔料とゲル化剤が相互作用を行うことによって、インク中のカードハウス構造が部分的に崩れてしまうためであると考えられる。これにより、インク中にカードハウス構造により液体の光重合性化合物を含めたインク成分が保持されている部分とそうでない部分とが存在するため、相分離が起こるものと推定される。この現象は、理由は不明であるものの、他顔料に比べ、キナクリドンが主成分であるマゼンタインクにおいてより顕著に起こることが発明者らの検討から分かっている。これに対し、顔料をアルミナで処理を行うことによって、顔料の表面が電荷を帯びる。電荷を帯びた顔料との相互作用は、インク中のゲル化剤との間よりも光重合性化合物との間でより強く働く。そのため、他のインク成分からのゲル化に対する制限をゲル化剤が受けにくくなり、カードハウス構造を正常に作ることができるため、ピニング性が向上するものと推測される。また、顔料をスルホン酸によって処理することにより、分散剤との結合がより確実に行われるため、インクの分散安定性が向上するものと推測される。このような構成とすることにより、ゲル化剤の含有量を低下させることなく、光沢安定性が向上し、他のインクとの光沢度差調整も容易にすることができる。
 ゲル化剤の種類は特に限定されない。ゲル化剤の好ましい例には、
 ジリグノセリルケトン、ジベヘニルケトン、ジステアリルケトン、ジエイコシルケトン、ジパルミチルケトン、ジラウリルケトン、ジミリスチルケトン、ミリスチルパルミチルケトン、パルミチルステアリルケトン等のケトンワックス(例えば18-Pentatriacontanon(AlfaAeser社製)、Hentriacontan-16-on(Alfa Aeser社製)、カオーワックスT1(花王株式会社製)等);
 ベヘニン酸ベヘニル、イコサン酸イコシル、ステアリン酸ステアリル、ステアリン酸パルミチル、パルミチン酸セチル、ミリスチン酸ミリスチル、ミリスチン酸セチル、セロチン酸ミリシル等のエステルワックス(例えばユニスターM-2222SL(日油株式会社製)、エキセパールSS(花王株式会社製、融点60℃)、EMALEXCC-18(日本エマルジョン株式会社製)、アムレプスPC(高級アルコール工業株式会社製)、エキセパールMY-M(花王株式会社製)、スパームアセチ(日油株式会社製)、EMALEX CC-10(日本エマルジョン株式会社製)等);
 パラフィンワックス、マイクロクリスタリンワックス、ペトロラクタム等の石油系ワックス;
 キャンデリラワックス、カルナウバワックス、ライスワックス、木ロウ、ホホバ油、ホホバ固体ロウ、およびホホバエステル等の植物系ワックス;
 ミツロウ、ラノリンおよび鯨ロウ等の動物系ワックス;
 モンタンワックス、および水素化ワックス等の鉱物系ワックス;
 硬化ヒマシ油または硬化ヒマシ油誘導体;
 モンタンワックス誘導体、パラフィンワックス誘導体、マイクロクリスタリンワックス誘導体またはポリエチレンワックス誘導体等の変性ワックス;
 ステアリルアルコール、ベヘニルアルコール等の高級アルコール;
 12-ヒドロキシステアリン酸等のヒドロキシステアリン酸;
 12-ヒドロキシステアリン酸誘導体;ラウリン酸アミド、ステアリン酸アミド、ベヘン酸アミド、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、12-ヒドロキシステアリン酸アミド等の脂肪酸アミド(例えば日本化成社製 ニッカアマイドシリーズ、伊藤製油社製 ITOWAXシリーズ、花王社製 FATTYAMIDシリーズ等);
 N-ステアリルステアリン酸アミド、N-オレイルパルミチン酸アミド等のN-置換脂肪酸アミド;
 N,N'-エチレンビスステアリルアミド、N,N'-エチレンビス-12-ヒドロキシステアリルアミド、およびN,N'-キシリレンビスステアリルアミド等の特殊脂肪酸アミド;
 ドデシルアミン、テトラデシルアミンまたはオクタデシルアミンなどの高級アミン;
 ステアリルステアリン酸、オレイルパルミチン酸、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、エチレングリコール脂肪酸エステル、ポリオキシエチレン脂肪酸エステル等の脂肪酸エステル化合物(例えば日本エマルジョン社製 EMALLEXシリーズ、理研ビタミン社製 リケマールシリーズ、理研ビタミン社製 ポエムシリーズ等);
 ショ糖ステアリン酸、ショ糖パルミチン酸等のショ糖脂肪酸のエステル(例えばリョートーシュガーエステルシリーズ 三菱化学フーズ社製);
 ポリエチレンワックス、α-オレフィン無水マレイン酸共重合体ワックス等の合成ワックス(Baker-Petrolite社製 UNILINシリーズ等);
 ダイマー酸;
 ダイマージオール(CRODA社製 PRIPORシリーズ等)等が含まれる。
 これらのゲル化剤は、活性光線硬化型インクジェットマゼンタインク中に、一種のみが含まれていてもよく、二種類以上が含まれていてもよい。
 ゲル化剤としては、特にケトンワックス、エステルワックス、高級脂肪酸、高級アルコール、脂肪酸アミドが好ましく、ケトンワックスもしくはエステルワックスがさらに好ましい。
 特に好ましいゲル化剤としては、下記一般式(G1)及び(G2)で表される化合物が挙げられる。
 一般式(G1):R1-CO-R2
 一般式(G2):R3-COO-R4
 式中、R1~R4は、それぞれ独立に、炭素原子数12以上の直鎖部分を持ち、かつ分岐を持っても良いアルキル鎖を表す。
 一般式(G1)はケトンワックスと称され、一般式(G2)は脂肪酸エステルと称される。これらのゲル化剤は、インク液滴をより安定に(再現性良く)ゲル化させることができ、記録媒体に着弾したインク液滴(ドット)の合一が抑制できるので好ましい。
 インクジェットマゼンタインクのゾルゲル相転移温度は、任意に設定されるが、インク液滴の安定した出射性、高温加熱に伴う弊害等の観点から、30~100℃の範囲内であることが好ましい。また、ゾルゲル相転移温度は、インクジェット記録ヘッド内でのインク温度と記録媒体の温度の間であることが好ましい。
 当該ゾルゲル相転移温度の測定方法は、例えば、ヒートプレート上にゲル状の試験片を置き、ヒートプレートを加熱していき、試験片の形状が崩れる温度を測定し、これをゾルゲル相転移温度として求めることができる。また、市販の粘弾性測定装置(例えば、Physica社製粘弾性測定装置 MCR300)を用いても測定できる。
 ゾルゲル相転移温度は、後述の光重合性化合物等の種類、添加量等により調整することが可能である。
 活性光線硬化型インクジェットマゼンタインクは、ゲル化剤を所定量含有するので、インクジェット記録ヘッドから吐出されて、インク液滴として記録媒体上に着弾して、ゾルゲル相転移温度よりも低い温度にまで低下すると速やかにゲル状態となる。そのため、ドット同士の混じり合いやドットの合一が抑制されて、高速印字時の高画質形成が可能となる。その後、ゲル化したインク液滴が光照射を受けて硬化することにより、記録媒体上に定着され強固な画像膜を形成する。
 活性光線硬化型インクジェットマゼンタインクは、記録媒体に着弾したインク液滴が速やかにゲル化することで、記録媒体上でインク液滴が拡散しないため、インク液滴中に環境中の酸素が入り込みにくい。そのため、硬化が酸素阻害による影響を受けにくくなる。
 活性光線硬化型インクジェットマゼンタインク中のゲル化剤の含有量は、インク全体に対して1.5~3.0質量%であり、2.0~2.5質量%であることがより好ましい。二種類以上のゲル化剤が含まれる場合には、これらの総量が上記範囲であることが好ましい。ゲル化剤含有量が1.5質量%未満であると、インクのピニング性が低下するため、活性光線硬化型インクジェットマゼンタインクが十分にゾルゲル相転移せず、インクのドット系が広がってしまう場合がある。一方、ゲル化剤含有量が3.0質量%を超えると、画像表面に析出したゲル化剤によってインクに過剰な光沢が発生するほか、インクジェットヘッドからのインク射出性が低下する場合がある。
 活性光線硬化型インクジェットマゼンタインクは、上述のゲル化剤とは異なる脂肪酸をさらに含んでもよい。インクの分散安定性が向上することで、保存安定性と吐出安定性が向上するからである。また記録媒体にインクを吐出したときのインクの表面滑り性が良好になるからである。
 脂肪酸としては、炭素原子数12以上の化合物であることが好ましい。
 脂肪酸の具体例としては、ベヘン酸(C2244)、アラキジン酸(C2040)、ステアリン酸(C1836)、パルミチン酸(C1632)、ミリスチン酸(C1428)、ラウリン酸(C1224)、オレイン酸(C1834)、およびエルカ酸(C2242)、例えば、ルナックBA、ルナックS-90V、ルナックS-98、ルナックP-70、ルナックP-95、ルナックMY-98、ルナックL-70、ルナックL-98(全て花王社製)、NAA-222Sビーズ、NAA-222粉末、ビーズステアリン酸さくら、ビーズステアリン酸つばき、粉末ステアリン酸さくら、粉末ステアリン酸つばき、NAA-160、NAA-142、NAA-122、NAA-34、NAA-35、エルカ酸(全て日油社製)等が挙げられる。
 脂肪酸の含有量は、インクの全質量に対して0.01質量ppm~10質量ppmであることが好ましく、0.01質量ppm~0.18質量ppmであることがより好ましい。0.01質量ppm未満であると、インクの分散安定性が悪く、良好な保存安定性と吐出安定性が得られないからである。また記録媒体にインクを吐出したときのインクの表面滑り性が悪くなり、いわゆる紙詰まりを起こしやすくなるからである。一方、10質量ppmを超えると、インクの分散安定性が低下するからである。
 [光重合性化合物]
 活性光線硬化型インクジェットマゼンタインクには、光重合性化合物が含まれる。
 光重合性化合物は、活性光線により架橋または重合する化合物である。活性光線は、例えば電子線、紫外線、α線、γ線、およびエックス線等であり、好ましくは紫外線および電子線である。光重合性化合物は、ラジカル重合性化合物またはカチオン重合性化合物であり、好ましくはラジカル重合性化合物である。
 ラジカル重合性化合物は、ラジカル重合可能なエチレン性不飽和結合を有する化合物(モノマー、オリゴマー、ポリマーあるいはこれらの混合物)である。ラジカル重合性化合物は、活性光線硬化型インクジェットマゼンタインク中に、一種のみが含まれていてもよく、二種類以上が含まれていてもよい。
 ラジカル重合可能なエチレン性不飽和結合を有する化合物の例には、不飽和カルボン酸とその塩、不飽和カルボン酸エステル化合物、不飽和カルボン酸ウレタン化合物、不飽和カルボン酸アミド化合物およびその無水物、アクリロニトリル、スチレン、不飽和ポリエステル、不飽和ポリエーテル、不飽和ポリアミド、不飽和ウレタン等が挙げられる。不飽和カルボン酸の例には、(メタ)アクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸などが含まれる。
 なかでも、ラジカル重合性化合物は、不飽和カルボン酸エステル化合物であることが好ましく、(メタ)アクリレート化合物であることがより好ましい。(メタ)アクリレート化合物は、後述するモノマーだけでなく、オリゴマー、モノマーとオリゴマーの混合物、変性物、重合性官能基を有するオリゴマーなどであってよい。
 なお、本明細書において、「(メタ)アクリレート」には、アクリレートモノマーおよび/またはアクリレートオリゴマー、メタアクリレートモノマーおよび/またはメタアクリレートオリゴマーが含まれる。
 (メタ)アクリレート化合物の例には、イソアミル(メタ)アクリレート、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、オクチル(メタ)アクリレート、デシル(メタ)アクリレート、イソミルスチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、2-エチルヘキシル-ジグリコール(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、ブトキシエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチル-フタル酸、t-ブチルシクロヘキシル(メタ)アクリレート等の単官能モノマー;
 トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ビスフェノールAのPO付加物ジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート等の二官能モノマー;
 トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート等の三官能以上の多官能モノマー等が含まれる。
 (メタ)アクリレート化合物は、感光性などの観点から、ステアリル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート等が好ましい。
 (メタ)アクリレート化合物は、変性物であってもよい。変性物の例には、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールテトラアクリレート等のエチレンオキサイド変性(メタ)アクリレート化合物;カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート等のカプロラクトン変性(メタ)アクリレート化合物;およびカプロラクタム変性ジペンタエリスリトールヘキサ(メタ)アクリレート等のカプロラクタム変性(メタ)アクリレート化合物等が含まれる。
 活性光線硬化型インクジェットマゼンタインクは、光重合性化合物の少なくとも一部がエチレンオキサイド変性(メタ)アクリレート化合物であることが好ましい。エチレンオキサイド変性(メタ)アクリレート化合物は感光性が高く、インクが低温下でゲル化する際に、カードハウス構造(後述)を形成しやすいからである。また、エチレンオキサイド変性(メタ)アクリレート化合物は、高温下で他のインク成分に対して溶解しやすく、硬化収縮も少ないことから、印刷物のカールも起こりにくい。
 エチレンオキサイド変性(メタ)アクリレート化合物の例には、Sartomer社製の4EO変性ヘキサンジオールジアクリレートCD561(分子量358)、3EO変性トリメチロールプロパントリアクリレートSR454(分子量429)、6EO変性トリメチロールプロパントリアクリレートSR499(分子量560)、4EO変性ペンタエリスリトールテトラアクリレートSR494(分子量528);新中村化学社製のポリエチレングリコールジアクリレートNKエステルA-400(分子量508)、ポリエチレングリコールジアクリレートNKエステルA-600(分子量742)、ポリエチレングリコールジメタクリレートNKエステル9G(分子量536)、ポリエチレングリコールジメタクリレートNKエステル14G(分子量770);大阪有機化学社製のテトラエチレングリコールジアクリレートV#335HP(分子量302);Cognis社製の3PO変性トリメチロールプロパントリアクリレートPhotomer 4072(分子量471);新中村化学社製の1,10-デカンジオールジメタクリレート NKエステルDOD-N(分子量310)、トリシクロデカンジメタノールジアクリレート NKエステルA-DCP(分子量304)およびトリシクロデカンジメタノールジメタクリレート NKエステルDCP(分子量332)等が含まれる。
 (メタ)アクリレート化合物は、重合性オリゴマーであってもよい。重合性オリゴマーの例には、エポキシ(メタ)アクリレートオリゴマー、脂肪族ウレタン(メタ)アクリレートオリゴマー、芳香族ウレタン(メタ)アクリレートオリゴマー、ポリエステル(メタ)アクリレートオリゴマー、および直鎖(メタ)アクリルオリゴマー等が含まれる。
 カチオン重合性化合物は、エポキシ化合物、ビニルエーテル化合物、およびオキセタン化合物等でありうる。カチオン重合性化合物は、活性光線硬化型インクジェットマゼンタインク中に、一種のみが含まれていてもよく、二種類以上が含まれていてもよい。
 エポキシ化合物は、芳香族エポキシド、脂環式エポキシド、または脂肪族エポキシド等であり、硬化性を高めるためには、芳香族エポキシドおよび脂環式エポキシドが好ましい。
 芳香族エポキシドは、多価フェノールあるいはそのアルキレンオキサイド付加体と、エピクロルヒドリンとを反応させて得られるジまたはポリグリシジルエーテルでありうる。反応させる多価フェノールあるいはそのアルキレンオキサイド付加体の例には、ビスフェノールAあるいはそのアルキレンオキサイド付加体等が含まれる。アルキレンオキサイド付加体におけるアルキレンオキサイドは、エチレンオキサイドおよびプロピレンオキサイド等でありうる。
 脂環式エポキシドは、シクロアルカン含有化合物を、過酸化水素や過酸等の酸化剤でエポキシ化して得られるシクロアルカンオキサイド含有化合物でありうる。シクロアルカンオキサイド含有化合物におけるシクロアルカンは、シクロヘキセンまたはシクロペンテンでありうる。
 脂肪族エポキシドは、脂肪族多価アルコールあるいはそのアルキレンオキサイド付加体と、エピクロルヒドリンとを反応させて得られるジまたはポリグリシジルエーテルでありうる。脂肪族多価アルコールの例には、エチレングリコール、プロピレングリコール、1,6-ヘキサンジオール等のアルキレングリコール等が含まれる。アルキレンオキサイド付加体におけるアルキレンオキサイドは、エチレンオキサイドおよびプロピレンオキサイド等でありうる。
 ビニルエーテル化合物の例には、エチルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、オクタデシルビニルエーテル、シクロヘキシルビニルエーテル、ヒドロキシブチルビニルエーテル、2-エチルヘキシルビニルエーテル、シクロヘキサンジメタノールモノビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、イソプロペニルエーテル-o-プロピレンカーボネート、ドデシルビニルエーテル、ジエチレングリコールモノビニルエーテル、オクタデシルビニルエーテル等のモノビニルエーテル化合物;
 エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、ブタンジオールジビニルエーテル、ヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリメチロールプロパントリビニルエーテル等のジまたはトリビニルエーテル化合物等が含まれる。これらのビニルエーテル化合物のうち、硬化性や密着性などを考慮すると、ジまたはトリビニルエーテル化合物が好ましい。
 オキセタン化合物は、オキセタン環を有する化合物であり、その例には、特開2001-220526号公報、特開2001-310937号公報、特開2005-255821号公報に記載のオキセタン化合物等が含まれる。なかでも、特開2005-255821号公報の段落番号0089に記載の一般式(1)で表される化合物、同号公報の段落番号0092に記載の一般式(2)で表される化合物、段落番号0107の一般式(7)で表される化合物、段落番号0109の一般式(8)で表される化合物、段落番号0116の一般式(9)で表される化合物等が挙げられる。特開2005-255821号公報に記載された一般式(1)、(2)、(7)、(8)、(9)を以下に示す。
Figure JPOXMLDOC01-appb-C000001
 活性光線硬化型インクジェットマゼンタインクにおける光重合性化合物の含有量は、1~97質量%であることが好ましく、30~95質量%であることがより好ましい。
 [光重合開始剤]
 活性光線硬化型インクジェットマゼンタインクには、光重合開始剤がさらに含まれる。
 光重合開始剤は、分子内結合開裂型と分子内水素引き抜き型とがある。分子内結合開裂型の光重合開始剤の例には、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等のアセトフェノン系;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソプロピルエーテル等のベンゾイン類;2,4,6-トリメチルベンゾインジフェニルホスフィンオキシド等のアシルホスフィンオキシド系;ベンジルおよびメチルフェニルグリオキシエステル等が含まれる。
 分子内水素引き抜き型の光重合開始剤の例には、ベンゾフェノン、o-ベンゾイル安息香酸メチル-4-フェニルベンゾフェノン、4,4'-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4'-メチル-ジフェニルサルファイド、アクリル化ベンゾフェノン、3,3',4,4'-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3'-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン系;2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン等のチオキサントン系;ミヒラーケトン、4,4'-ジエチルアミノベンゾフェノン等のアミノベンゾフェノン系;10-ブチル-2-クロロアクリドン、2-エチルアンスラキノン、9,10-フェナンスレンキノン、カンファーキノン等が含まれる。
 活性光線硬化型インクジェットマゼンタインクにおける光重合開始剤の含有量は、活性光線や光重合性化合物の種類などにもよるが、0.01質量%~10質量%であることが好ましい。
 活性光線硬化型インクジェットマゼンタインクは、光重合開始剤として、光酸発生剤を含んでもよい。光酸発生剤の例には、化学増幅型フォトレジストや光カチオン重合に利用される化合物が用いられる(有機エレクトロニクス材料研究会編、「イメージング用有機材料」、ぶんしん出版(1993年)、187~192ページ参照)。
 活性光線硬化型インクジェットマゼンタインクには、必要に応じて光重合開始剤助剤や重合禁止剤などがさらに含まれていてもよい。光重合開始剤助剤は、第3級アミン化合物であってよく、芳香族第3級アミン化合物が好ましい。芳香族第3級アミン化合物の例には、N,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N-ジメチル-p-トルイジン、N,N-ジメチルアミノ-p-安息香酸エチルエステル、N,N-ジメチルアミノ-p-安息香酸イソアミルエチルエステル、N,N-ジヒドロキシエチルアニリン、トリエチルアミンおよびN,N-ジメチルヘキシルアミン等が含まれる。なかでも、N,N-ジメチルアミノ-p-安息香酸エチルエステル、N,N-ジメチルアミノ-p-安息香酸イソアミルエチルエステルが好ましい。活性光線硬化型インクジェットマゼンタインクに、これらの化合物が、一種のみ含まれていてもよく、二種類以上が含まれていてもよい。
 重合禁止剤の例には、(アルキル)フェノール、ハイドロキノン、カテコール、レゾルシン、p-メトキシフェノール、t-ブチルカテコール、t-ブチルハイドロキノン、ピロガロール、1,1-ピクリルヒドラジル、フェノチアジン、p-ベンゾキノン、ニトロソベンゼン、2,5-ジ-t-ブチル-p-ベンゾキノン、ジチオベンゾイルジスルフィド、ピクリン酸、クペロン、アルミニウムN-ニトロソフェニルヒドロキシルアミン、トリ-p-ニトロフェニルメチル、N-(3-オキシアニリノ-1,3-ジメチルブチリデン)アニリンオキシド、ジブチルクレゾール、シクロヘキサノンオキシムクレゾール、グアヤコール、o-イソプロピルフェノール、ブチラルドキシム、メチルエチルケトキシム、シクロヘキサノンオキシム等が含まれる。
 [その他の成分]
 活性光線硬化型インクジェットマゼンタインクには、必要に応じて他の成分がさらに含まれていてもよい。他の成分は、各種添加剤や他の樹脂等であってよい。添加剤の例には、界面活性剤、レベリング添加剤、マット剤、紫外線吸収剤、赤外線吸収剤、抗菌剤、インクの保存安定性を高めるための塩基性化合物等も含まれる。塩基性化合物の例には、塩基性アルカリ金属化合物、塩基性アルカリ土類金属化合物、アミンなどの塩基性有機化合物などが含まれる。他の樹脂の例には、硬化膜の物性を調整するための樹脂などが含まれ、例えばポリエステル系樹脂、ポリウレタン系樹脂、ビニル系樹脂、アクリル系樹脂、ゴム系樹脂、およびワックス類等が含まれる。
 活性光線硬化型インクジェットマゼンタインクは、前述の顔料、高分子分散剤、ゲル化剤、光重合性化合物および光重合開始剤と、任意の各成分とを、加熱下において混合することにより得ることができる。得られた混合液を所定のフィルターで濾過することが好ましい。このとき、顔料および高分子分散剤を含む分散体をあらかじめ調製しておき、これに残りの成分を添加して加熱しながら混合してもよい。
 [活性光線硬化型インクジェットマゼンタインクの物性]
 活性光線硬化型インクジェットマゼンタインクは、前述のように、温度により可逆的にゾルゲル相転移するインクである。ゾルゲル相転移型の活性光線硬化型インクは、高温(例えば80℃程度)ではゾルであるため、インクジェット記録ヘッドから吐出することができる。高温下で活性光線硬化型インクジェットマゼンタインクを吐出すると、インク滴(ドット)が記録媒体に着弾した後、自然冷却されてゲル化する。これにより、隣り合うドット同士の合一を抑制し、画質を高めることができる。
 ゾルゲル相転移型のインクの射出性を高めるためには、高温下におけるインクの粘度が一定以下であることが好ましい。具体的には、活性光線硬化型インクジェットマゼンタインクの、80℃における粘度が3~20mPa・sであることが好ましい。一方、隣り合うドットの合一を抑制するためには、着弾後の常温下におけるインクの粘度が一定以上であることが好ましい。具体的には、活性光線硬化型インクジェットマゼンタインクの25℃における粘度は1000mPa・s以上であることが好ましい。
 ゾルゲル相転移型のインクのゲル化温度は、40℃以上70℃以下であることが好ましく、50℃以上65℃以下であることがより好ましい。射出温度が80℃近傍である場合に、インクのゲル化温度が70℃を超えると、射出時にゲル化が生じやすいため射出性が低くなる。一方、ゲル化温度が40℃未満であると、記録媒体に着弾後、速やかにゲル化しないからである。ゲル化温度とは、ゾル状態にあるインクを冷却する過程において、ゲル化して流動性が低下するときの温度である。
 ゾルゲル相転移型のインクの80℃における粘度、25℃における粘度およびゲル化温度は、レオメータにより、インクの動的粘弾性の温度変化を測定することにより求めることができる。具体的には、インクを100℃に加熱し、剪断速度11.7(1/s)、降温速度0.1℃/sの条件で20℃まで冷却したときの、粘度の温度変化曲線を得る。そして、80℃における粘度と25℃における粘度は、粘度の温度変化曲線において80℃、25℃における粘度をそれぞれ読み取ることにより求めることができる。ゲル化温度は、粘度の温度変化曲線において、粘度が200mPa・sとなる温度として求めることができる。
 レオメータは、Anton Paar社製 ストレス制御型レオメータ PhysicaMCRシリーズを用いることができる。コーンプレートの直径は75mm、コーン角は1.0°とすることができる。
 ゾルゲル相転移型のインクは、吐出用記録ヘッドからのインクの射出性を高めるために、吐出用記録ヘッドに充填されたときのインクの温度が、当該インクの(ゲル化温度+10)℃~(ゲル化温度+30)℃に設定されることが好ましい。吐出用記録ヘッド内のインクの温度が、(ゲル化温度+10)℃未満であると、吐出用記録ヘッド内もしくはノズル表面でインクがゲル化して、インクの射出性が低下しやすい。一方、吐出用記録ヘッド内のインクの温度が(ゲル化温度+30)℃を超えると、インクが高温になりすぎるため、インク成分が劣化することがある。
 [インクジェット記録方法]
 本発明に係るインクジェット記録方法は、1)上述の活性光線硬化型インクジェットマゼンタインクを含むインクセットに含まれるインクをインクジェット記録ヘッドから記録媒体に射出する工程と、2)記録媒体に着弾したインクに活性光線を照射する工程と、を含む。
 1)射出する工程においては、吐出用記録ヘッドに収納されたインクジェットマゼンタインクを含むインクセットに含まれるインクを、ノズルを通して記録媒体に向けて液滴として吐出すればよい。このとき、吐出用記録ヘッドに収納されたインクジェットマゼンタインクの温度は、当該インクに含まれるワックスの含有量が、当該インクにおけるワックスの飽和溶解量以下となる温度とする。つまり、吐出用記録ヘッドに収納されたインクジェットマゼンタインクにおいて、ワックスはできるだけ溶解させておく。
 インクセットには、少なくとも本発明の活性光線硬化型インクジェットマゼンタインクが含まれる。マゼンタ単色で画像を形成する場合は、本発明の活性光線硬化型インクジェットマゼンタインクのみからなるインクセットとしてもよいし、複数の色を組み合わせて画像を形成する場合は、たとえば公知のシアンインク、イエローインクおよびブラックインクのうちいずれかまたはすべての色のインクと本発明の活性光線硬化型インクジェットマゼンタインクとを組み合わせて用いてもよい。本発明の活性光線硬化型インクジェットマゼンタインクを含むインクセットを用いて画像を形成すると、マゼンタの色域を広げることができるほか、得られた画像におけるマゼンタのドットが他のドットと合一しにくい。また、本発明の活性光線硬化型インクジェットマゼンタインクを含むインクセットが複数の色を含む場合、マゼンタと他の色の光沢差が少ないため、得られる画像の見栄えをよくすることができる。
 2)照射する工程においては、記録媒体に着弾したインクに活性光線を照射する。活性光線の照射によって、インクを硬化させることができる。照射する光は、光重合性化合物の種類によって適宜選択すればよく、紫外線や電子線などでありうる。
 本発明のインクジェット記録方法は、活性光線硬化型インクジェット方式のインクジェット記録装置を用いて実施することができる。活性光線硬化型インクジェット方式のインクジェット記録装置には、ライン記録方式(シングルパス記録方式)のものと、シリアル記録方式のものと、がある。求められる画像の解像度や記録速度に応じて選択されればよいが、高速記録の観点では、ライン記録方式(シングルパス記録方式)が好ましい。
 図1Aは、ライン記録方式のインクジェット記録装置の要部の構成の一例を示す側面図であり、図1Bはその上面図である。図1A、図1Bに示されるように、インクジェット記録装置10は、複数のインク吐出用記録ヘッド14を収容するヘッドキャリッジ16と、記録媒体12の全幅を覆い、かつヘッドキャリッジ16の(記録媒体の搬送方向)下流側に配置された活性光線照射部18と、記録媒体12の下面に配置された温度制御部19と、を有する。
 ヘッドキャリッジ16は、記録媒体12の全幅を覆うように固定配置されており、色毎に設けられた複数のインク吐出用記録ヘッド14を収容する。インク吐出用記録ヘッド14にはいずれかの色のインクがインクセットから供給されるようになっている。たとえば、インクジェット記録装置10に着脱自在に装着されたインクカートリッジ31にインクセットを用意し、直接またはインク供給手段30によりインクが供給されるようになっていてもよい。
 インク吐出用記録ヘッド14は、色ごとに、記録媒体12の搬送方向に複数配置される。記録媒体12の搬送方向に配置されるインク吐出用記録ヘッド14の数は、インク吐出用記録ヘッド14のノズル密度と、印刷画像の解像度によって設定される。例えば、液滴量2pl、ノズル密度360dpiのインク吐出用記録ヘッド14を用いて1440dpiの解像度の画像を形成する場合には、記録媒体12の搬送方向に対して4つのインク吐出用記録ヘッド14をずらして配置すればよい。また、液滴量6pl、ノズル密度360dpiのインク吐出用記録ヘッド14を用いて720×720dpiの解像度の画像を形成する場合には、2つのインク吐出用記録ヘッド14をずらして配置すればよい。dpiとは、2.54cm当たりのインク滴(ドット)の数を表す。
 活性光線照射部18は、記録媒体12の全幅を覆い、かつ記録媒体の搬送方向についてヘッドキャリッジ16の下流側に配置されている。活性光線照射部18は、インク吐出用記録ヘッド14により吐出されて、記録媒体に着弾した液滴に活性光線を照射し、液滴を硬化させる。
 活性光線が紫外線である場合、活性光線照射部18(紫外線照射手段)の例には、蛍光管(低圧水銀ランプ、殺菌灯)、冷陰極管、紫外レーザー、数100Pa~1MPaまでの動作圧力を有する低圧、中圧、高圧水銀ランプ、メタルハライドランプおよびLED等が含まれる。硬化性の観点から、照度100mW/cm以上の紫外線を照射する紫外線照射手段;具体的には、高圧水銀ランプ、メタルハライドランプおよびLED等が好ましく、消費電力の少ない点から、LEDがより好ましい。具体的には、Phoseon Technology社製 395nm、水冷LEDを用いることができる。
 活性光線が電子線である場合、活性光線照射部18(電子線照射手段)の例には、スキャニング方式、カーテンビーム方式、ブロードビーム方式等の電子線照射手段が含まれるが、処理能力の観点から、カーテンビーム方式の電子線照射手段が好ましい。電子線照射手段の例には、日新ハイボルテージ(株)製の「キュアトロンEBC-200-20-30」、AIT(株)製の「Min-EB」等が含まれる。
 温度制御部19は、記録媒体12の下面に配置されており、記録媒体12を所定の温度に維持する。温度制御部19は、例えば各種ヒータ等でありうる。記録媒体の温度は、42℃~50℃、好ましくは45℃~48℃とすることで、ピニング性を高めることができる。
 以下、ライン記録方式のインクジェット記録装置10を用いた画像記録方法を説明する。記録媒体12を、インクジェット記録装置10のヘッドキャリッジ16と温度制御部19との間に搬送する。一方で、記録媒体12を、温度制御部19により所定の温度に調整する。次いで、ヘッドキャリッジ16のインク吐出用記録ヘッド14から高温のインクを吐出して、記録媒体12上に付着(着弾)させる。そして、活性光線照射部18により、記録媒体12上に付着したインク滴に活性光線を照射して硬化させる。
 インク吐出用記録ヘッド14からインクを吐出する際の、インク吐出用記録ヘッド14内のインクの温度は、インクの射出性を高めるためには、当該インクのゲル化温度よりも10~30℃高い温度に設定されることが好ましい。インク吐出用記録ヘッド14内のインク温度が、(ゲル化温度+10)℃未満であると、インク吐出用記録ヘッド14内もしくはノズル表面でインクがゲル化して、インクの射出性が低下しやすい。一方、インク吐出用記録ヘッド14内のインクの温度が(ゲル化温度+30)℃を超えると、インクが高温になりすぎるため、インク成分が劣化することがある。
 インク吐出用記録ヘッド14の各ノズルから吐出される1滴あたりの液滴量は、画像の解像度にもよるが、高解像度の画像を形成するためには、1pl~10plであることが好ましく、0.5~4.0plであることがより好ましい。
 なお、インクを重ね合わせて中間色の画像を形成する場合、ある色の色材を含有する第1のインクを付与した後、前記付与した第1のインクとは色相が異なる別の色材を含有する第1のインクを重ねて付与してもよい。
 活性光線の照射は、隣り合うインク滴同士が合一するのを抑制するために、インク滴が記録媒体上に付着した後10秒以内、好ましくは0.001秒~5秒以内、より好ましくは0.01秒~2秒以内に行うことが好ましい。活性光線の照射は、ヘッドキャリッジ16に収容された全てのインク吐出用記録ヘッド14からインクを吐出した後に行われることが好ましい。
 活性光線が電子線である場合、電子線照射の加速電圧は、十分な硬化を行うためには、30~250kVとすることが好ましく、30~100kVとすることがより好ましい。加速電圧が100~250kVである場合、電子線照射量は30~100kGyであることが好ましく、30~60kGyであることがより好ましい。
 硬化後の総インク膜厚は、2~25μmであることが好ましい。「総インク膜厚」とは、記録媒体に描画されたインク膜厚の最大値である。
 図2は、シリアル記録方式のインクジェット記録装置20の要部の構成の一例を示す図である。図2に示されるように、インクジェット記録装置20は、記録媒体の全幅を覆うように固定配置されたヘッドキャリッジ16の代わりに、記録媒体の全幅よりも狭い幅であり、かつ複数のインク吐出用記録ヘッド24を収容するヘッドキャリッジ26と、ヘッドキャリッジ26を記録媒体12の幅方向に可動させるためのガイド部27と、を有する以外は図1A、図1Bと同様に構成されうる。
 シリアル記録方式のインクジェット記録装置20では、ヘッドキャリッジ26がガイド部27に沿って記録媒体12の幅方向に移動しながら、ヘッドキャリッジ26に収容されたインク吐出用記録ヘッド24からインクを吐出する。ヘッドキャリッジ26が記録媒体12の幅方向に移動しきった後(パス毎に)、記録媒体12を搬送方向に送り、活性光線照射部28で活性光線を照射する。これらの操作以外は、前述のライン記録方式のインクジェット記録装置10とほぼ同様にして画像を記録する。
 以下において、実施例を参照して本発明をより詳細に説明するが、これらの記載によって本発明の範囲は限定して解釈されない。
 [マゼンタ顔料の表面処理]
 マゼンタ顔料(PV19/PR202、未処理のBASF社製 CINQUASIA Magenta D4500J)1.0kgを水に投入して撹拌・分散した後に、NaOH水溶液を加えてpH=10とした。次にアルミン酸ナトリウム(和光純薬工業社製)の水溶液100g(顔料100部に対してAl(OH)換算で0.5部に相当)を添加して撹拌混合した後、該懸濁液を撹拌しながら酢酸水溶液を加えてpH=6に調整した。その後すぐに濾別、水洗、乾燥して表面処理マゼンタ顔料を得た。この処理で5000ppmのアルミナをマゼンタ顔料粉末に付与することができた。同様の方法で、マゼンタ顔料の種類およびアルミン酸ナトリウムの量を表1にしたがって変更し、異なる量のアルミナが付与されたマゼンタ顔料を調製した。調製した顔料の粉末をICP-AESで測定し、Al元素量を求めてアルミナが所定量付与されたかどうかを確認した。なお、表面処理付与されていない(未処理の)マゼンタ顔料を測定すると、顔料がもとから有しているAl元素のみが定量された。
 上記調製したアルミナ付与マゼンタ顔料を溶剤(2-ピロリドン)中にディスパーを用いて分散させ、分散された溶剤と顔料ペーストの混合液を真空脱気できる容器に移し、アスピレーターで50Torr以下に減圧しながら100~120℃に加温し、系内に含まれる水分をできるだけ留却したのち、55℃に制御した。次いでスルホン化剤(三酸化硫黄)(日本曹達社製、無水硫酸)をマゼンタ顔料100部に対して、0.15部になるようにして添加し、2~3時間撹拌しながら反応させ、反応終了後、表面処理されたマゼンタ顔料を過剰の溶剤で数回洗浄し、水中に注ぎ、ろ過して、表面処理マゼンタ顔料1を得た。この処理で1500ppmのスルホン酸をマゼンタ顔料粉末に付与することができた。同様の方法で、スルホン酸が付与されたマゼンタ顔料2~9および11を調製した。調製した顔料の粉末をICP-AESで測定し、S元素量を求めてスルホン酸が所定量付与されたかどうかを確認した。なお、表面処理付与されていない(未処理の)マゼンタ顔料を測定すると、通常20~30ppmの、顔料がもとから有しているS元素のみが定量された。
 マゼンタ顔料10および12にはアルミナおよびスルホン酸による表面処理を行わなかった。
Figure JPOXMLDOC01-appb-T000002
 [マゼンタ顔料分散体の調製]
 以下の成分により、マゼンタ顔料分散体1を調製した。
 マゼンタ顔料1: 9.0g
 光重合化合物:トリプロピレングリコールジアクリレート(東亜合成製) 32.7g
 高分子分散剤:BYK Jet-9151(ビックケミージャパン(株)製) 3.2g
 重合禁止剤:Irgastab UV-10(BASF製) 0.1g
 以上の所定量の成分をポリビン200cc容器に入れて、その中にさらに直径0.5mmφのジルコニアビーズを120g入れて蓋を締めてから、振動ミル((株)西村製作所製レッドデビル4500L)で4時間分散した。分散した後にビーズを分離して分散体を取出した。
 マゼンタ顔料1をマゼンタ顔料2~12に変更した以外は同様の手順により、マゼンタ顔料分散体2~12を調製した。
 [活性光線硬化型インクの調製]
 その後、分散体を60℃に加熱しながら以下の光重合化合物および添加剤を加えて、活性光線硬化型インク1-1を調製した。
 マゼンタ顔料分散体1:20.0g 
 光重合化合物:ポリエチレングリコールジアクリレート(PEGDA)(ダイセル化学製) 6.2g
 光重合化合物:3PO変性トリメチロールプロパントリアクリレート(東亜合成製) 6.2g
 界面活性剤:TSF-4452(信越シリコーン(株)製) 0.3g
 光重合開始剤:Irgacure 819(BASF製) 0.3g
 光重合開始剤:DAROCURE TPO(BASF製) 0.3g
 結晶性ゲル化剤:カオーワックスT-1(花王(株)製) 0.8g
 マゼンタ顔料分散体の種類および結晶性ゲル化剤としてのカオーワックスT-1の配合量を表2~表4に従って変更し、同様の手順により活性光線硬化型インク1-2~12-7を調製した。
 [インクジェットによる印字]
 それぞれの活性光線硬化型インクをポール(株)製 WACフィルター(0.3μm精度)でろ過した。その後、それぞれのインクをコニカミノルタインクジェットヘッド(HA512)に導入し、印字幅100mm×100mm、解像度720×720dpiの条件でベタ画像を印字した。印字基材はOKトップコート(印刷用紙)を使用した。UV照射光源として京セラ製LEDランプを使用し、250mJのエネルギーで紫外線を印字したインクに照射してインクを硬化させた。
 [評価方法]
 (1)保存安定性(平均径増加量)
 それぞれの活性光線硬化型インクを耐熱管に採取して、85℃で1ヶ月間高温槽に保存した。
 保存前の平均粒子径と保存後の平均粒子径とをそれぞれをMalvern社製のデータサイザーナノZSPを使用して動的光散乱法によって測定した。その際、インクをポリエチレングリコールジアクリレート(PEGDA)で200倍に希釈した。保存前と保存後の測定値の差が15nm以下である場合に粒子の安定性は良好である(表2~4中、+で表記。)と判定し、測定値の差が7nm以下である場合には粒子の安定性はさらに良好である(表2~4中、++で表記。)と判定した。
 (2)色域差、光沢差
 Japan color2011標準試料によるMagentaベタ画像の印字濃度(100%)を測定した。標準試料のa*、b*の値と、それぞれの活性光線硬化型インクによる印字ベタ濃度を測定した色域のa*、b*の値のそれぞれの差の2乗の和の平方根を算出して、標準試料からの色域差とした。標準試料との色域差が1.5以下の場合に色域差は少ない(表2~4中、+で表記。)と判定し、色域差が1.0以下の場合には色域差はさらに少ない(表2~4中、++で表記。)と判定した。
 それぞれの活性光線硬化型インクによるベタ画像の60℃反射光沢値をデジタルハンディ光沢計(堀場製作所製グロスチェッカーIG-331)で測定した。Yellow、Cyan、Blackのベタ画像の平均光沢値(40)からそれぞれの活性光線硬化型インクによるマゼンタのベタ画像の反射光沢値がどれだけ減少しているかを調べ、反射光沢値の差の絶対値が5.0以下の場合に光沢差は少ない(表2~4中、+で表記。)と判定し、反射光沢値との差の絶対値が3.0以下の場合には光沢差はさらに少ない(表2~4中、++で表記。)と判定した。
 (3)ピニング性
 印字する際の基材の温度を50℃にしてベタ100%画像を形成し硬化させ、印字後の画像を顕微鏡(×200)で観察し、ランダムに選択した10か所の液滴径を測定した。測定した値の平均値が50μm以下の場合にピニング性は良好である(表2~4中、+で表記。)と判定し、平均値が45μm以下の場合にはピニング性は良好である(表2~4中、++で表記。)と判定した。
 結果を表2~表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 顔料のアルミナ含有量およびインクのゲル化剤含有量が本発明の範囲内である場合に、保存安定性、色域差、光沢差、ピニング性のいずれもが良好な値となった。
 ゲル化剤の含有量が1.5wt%より少ないとピニング性が悪くなり、ゲル化剤の含有量が3.0wt%より多いと光沢差が大きくなる傾向があった。これは、ゲル化剤が少ないとインクが十分にゲル化しないためインク径が大きくなり、またゲル化剤が多いと画像表面に析出したゲル化剤によって光沢が生じすぎたものと考えられる。
 PV19のみ、またはPR202のみの顔料を用いた場合に比べて、PV19/PR202の固溶体を用いると、色域差が改善されてより標準試料に近い色を出すことができた。また、表面処理をしていないマゼンタ顔料を用いると、保存中に平均粒子系が増加しており、保存安定性が良好とはならなかった。これは、顔料表面のアルミナまたはスルホン酸等が少ないため、光重合性化合物等の非水系ビヒクルや高分子分散剤との親和性が低下し、顔料同士が会合してしまったものと考えられる。
 PV19/PR202の固溶体を用いた場合でも、アルミナの含有量が1500ppmより低い場合は、保存中に平均粒子径が増加しており、保存安定性が良好とはならなかった。これは、顔料表面のアルミナが少ないために光重合性化合物等の非水系ビヒクルや高分子分散剤との親和性が低下し、顔料同士が会合してしまったものと考えられる。
 また、PV19/PR202の固溶体を用いた場合でも、アルミナの含有量が7500ppmよりも大きい場合は、光沢差とピニング性を両立させることができなかった。これは、顔料表面のアルミナが多いために、アルミナとゲル化剤とが会合してしまったためと考えられる。つまり、ゲル化剤の量が少ないときには、アルミナとゲル化剤とが会合したことによりインクが十分にはゲル化しなかったため、インク径が大きくなり、一方でゲル化剤の量を多くしても、アルミナとゲル化剤との会合によりゲル化剤の結晶成長が阻害されたため、過剰なレベリングによって光沢が生じすぎたものと考えられる。
 本発明の活性光線硬化型インクジェットマゼンタインクから形成される画像は、良好な保存安定性およびピニング性を有し、かつ他色との光沢差が少ない。そのため、本発明は、光沢感が必要とされる各種印刷物の作製に好適である。
 本出願は、2014年2月27日出願の日本国出願番号2014-036614号に基づく優先権を主張する出願であり、当該出願の明細書および図面に記載された内容は本出願に援用される。
 10、20 インクジェット記録装置
 12 記録媒体
 14、24 インク吐出用記録ヘッド
 16、26 ヘッドキャリッジ
 18、28 活性光線照射部
 19 温度制御部
 27 ガイド部
 

Claims (5)

  1.  活性光線硬化型インクジェットマゼンタインクであって、
     該インクは顔料、高分子分散剤、結晶性ゲル化剤、光重合性化合物および光重合開始剤を含み、
     該顔料はアルミナおよびスルホン酸により表面処理が施されたPV19とPR202との固溶体であり、
     該顔料に対する該アルミナの付与量は質量比率で1500~7500ppmであり、
     該結晶性ゲル化剤の含有量はインク全体に対して1.5~3.0質量%である、インク。
  2.  前記顔料は前記PV19を質量比率で前記PR202よりも多く含む、請求項1に記載のインク。
  3.  前記顔料に対する前記アルミナの付与量は質量比率で5000~7500ppmである、請求項1または2に記載のインク。
  4.  前記顔料に対する前記アルミナの付与量は質量比率で2500~3000ppmである、請求項1または2に記載のインク。
  5.  請求項1~4のいずれか1項に記載の光硬化型インクジェットマゼンタインクを含むインクセットに含まれるインクをインクジェット記録ヘッドから記録媒体に射出する工程と、該記録媒体上に着弾した該インクに活性光線を照射する工程と、を有する、インクジェット記録方法。
     
PCT/JP2015/055658 2014-02-27 2015-02-26 活性光線硬化型インクジェットマゼンタインクおよびインクジェット記録方法 WO2015129815A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/115,048 US9587123B2 (en) 2014-02-27 2015-02-26 Active light beam-curable inkjet magenta ink and inkjet recording method
EP15754727.4A EP3091055B1 (en) 2014-02-27 2015-02-26 Active light beam-curing inkjet magenta ink and inkjet recording method
JP2016505301A JP6414200B2 (ja) 2014-02-27 2015-02-26 活性光線硬化型インクジェットマゼンタインクおよびインクジェット記録方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014036614 2014-02-27
JP2014-036614 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015129815A1 true WO2015129815A1 (ja) 2015-09-03

Family

ID=54009129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055658 WO2015129815A1 (ja) 2014-02-27 2015-02-26 活性光線硬化型インクジェットマゼンタインクおよびインクジェット記録方法

Country Status (4)

Country Link
US (1) US9587123B2 (ja)
EP (1) EP3091055B1 (ja)
JP (1) JP6414200B2 (ja)
WO (1) WO2015129815A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088805A (ja) * 2015-11-16 2017-05-25 株式会社リコー 活性エネルギー線硬化型組成物、活性エネルギー線硬化型インク、組成物収容容器、2次元又は3次元の像の形成方法及び形成装置、並びに成形加工品
WO2017164164A1 (ja) * 2016-03-22 2017-09-28 コニカミノルタ株式会社 画像形成方法
JP2020192707A (ja) * 2019-05-27 2020-12-03 株式会社リコー インク吐出装置、及びインク

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125908A1 (ja) * 2015-02-05 2016-08-11 コニカミノルタ株式会社 インクセットおよび画像形成方法
WO2017134962A1 (ja) * 2016-02-05 2017-08-10 サカタインクス株式会社 光硬化型インクジェット印刷用インク組成物
US20190100665A1 (en) * 2016-03-24 2019-04-04 Konica Minolta, Inc. Inkjet ink and image forming method
JP2021172788A (ja) * 2020-04-30 2021-11-01 ブラザー工業株式会社 インクジェット記録用水性インク

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934737B2 (ja) * 1978-04-17 1984-08-24 東ソー株式会社 顔料の表面処理方法
JP2001323191A (ja) * 2000-05-16 2001-11-20 Mitsubishi Chemicals Corp インクジェット記録液
JP2002121411A (ja) * 2000-10-16 2002-04-23 Toyo Ink Mfg Co Ltd 表面処理顔料およびその製造方法
WO2006028267A1 (ja) * 2004-09-08 2006-03-16 Canon Kabushiki Kaisha 被覆微粒子、分散微粒子、被覆微粒子の製造方法、インク、記録方法及び記録画像
JP2013121992A (ja) * 2011-12-09 2013-06-20 Konica Minolta Inc 活性光線硬化型インクジェットインク、およびインクジェット記録方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934737A (ja) 1982-08-20 1984-02-25 Japan Storage Battery Co Ltd 遠隔制御装置
US7041163B2 (en) 2003-03-28 2006-05-09 E.I. Du Pont De Nemours And Company Non-aqueous inkjet ink set
JP4556414B2 (ja) 2003-10-22 2010-10-06 コニカミノルタホールディングス株式会社 インクジェット用インク及びそれを用いたインクジェット記録方法
US7459014B2 (en) 2005-01-14 2008-12-02 Xerox Corporation Radiation curable inks containing curable gelator additives
JP4757574B2 (ja) * 2005-09-07 2011-08-24 富士フイルム株式会社 インク組成物、インクジェット記録方法、印刷物、平版印刷版の製造方法、及び、平版印刷版
EP2801594B1 (en) * 2006-10-11 2017-06-28 Agfa Graphics Nv Methods for preparing curable pigment inkjet ink sets
JP5591774B2 (ja) * 2011-08-31 2014-09-17 富士フイルム株式会社 インク組成物、インクセット、及び画像形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5934737B2 (ja) * 1978-04-17 1984-08-24 東ソー株式会社 顔料の表面処理方法
JP2001323191A (ja) * 2000-05-16 2001-11-20 Mitsubishi Chemicals Corp インクジェット記録液
JP2002121411A (ja) * 2000-10-16 2002-04-23 Toyo Ink Mfg Co Ltd 表面処理顔料およびその製造方法
WO2006028267A1 (ja) * 2004-09-08 2006-03-16 Canon Kabushiki Kaisha 被覆微粒子、分散微粒子、被覆微粒子の製造方法、インク、記録方法及び記録画像
JP2013121992A (ja) * 2011-12-09 2013-06-20 Konica Minolta Inc 活性光線硬化型インクジェットインク、およびインクジェット記録方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017088805A (ja) * 2015-11-16 2017-05-25 株式会社リコー 活性エネルギー線硬化型組成物、活性エネルギー線硬化型インク、組成物収容容器、2次元又は3次元の像の形成方法及び形成装置、並びに成形加工品
US10604666B2 (en) 2015-11-16 2020-03-31 Ricoh Company, Ltd. Active-energy-ray-curable composition, active-energy-ray-curable ink, composition stored container, two-dimensional or three-dimensional image forming method, two-dimensional or three-dimensional image forming apparatus, and processed product
US11193028B2 (en) 2015-11-16 2021-12-07 Ricoh Company, Ltd Active-energy-ray-curable composition, active-energy-ray-curable ink, composition stored container, two-dimensional or three-dimensional image forming method, two-dimensional or three-dimensional image forming apparatus, and processed product
WO2017164164A1 (ja) * 2016-03-22 2017-09-28 コニカミノルタ株式会社 画像形成方法
JPWO2017164164A1 (ja) * 2016-03-22 2019-01-31 コニカミノルタ株式会社 画像形成方法
JP2020192707A (ja) * 2019-05-27 2020-12-03 株式会社リコー インク吐出装置、及びインク
JP7230689B2 (ja) 2019-05-27 2023-03-01 株式会社リコー インク吐出装置、及びインク

Also Published As

Publication number Publication date
US20160347959A1 (en) 2016-12-01
EP3091055B1 (en) 2018-05-09
JP6414200B2 (ja) 2018-10-31
JPWO2015129815A1 (ja) 2017-03-30
EP3091055A1 (en) 2016-11-09
US9587123B2 (en) 2017-03-07
EP3091055A4 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6414200B2 (ja) 活性光線硬化型インクジェットマゼンタインクおよびインクジェット記録方法
JP6390701B2 (ja) 活性光線硬化型インクジェット白色インクおよび画像形成方法
JP5991371B2 (ja) インクジェットインクセット、及びこれを用いた画像形成方法
JP5780358B2 (ja) 画像形成方法
JP5741870B2 (ja) 活性線硬化型インクジェット用インクおよびそれを用いた画像記録方法
JP6176240B2 (ja) 活性光線硬化型インクジェットインク、及びこれを用いた画像形成方法
JP6451733B2 (ja) 画像形成方法
JP5862258B2 (ja) 活性光線硬化型インクジェットインク、およびインクジェット記録方法
JP6269424B2 (ja) 活性光線硬化型インクジェットインクおよび画像形成方法
JP6569674B2 (ja) 活性光線硬化型インクジェットインク及び画像形成方法
JP6451739B2 (ja) インクジェット記録方法およびインクジェット記録装置
WO2017056860A1 (ja) インクセット及び画像形成方法
JP2014058623A (ja) 活性光線硬化型インクジェットインク、および画像形成方法
JP2015052082A (ja) 活性光線硬化型インクジェットインク
JP5807608B2 (ja) 活性光線硬化型インクジェットインク
JP2017132861A (ja) 活性光線硬化型インクジェットインク及びインクジェット画像形成方法
JP6809457B2 (ja) 活性光線硬化型インクジェットインク、硬化膜の製造方法およびインクジェット画像形成方法
JP6627782B2 (ja) インクセットおよび画像形成方法
JP6690248B2 (ja) 活性光線硬化型インクジェットインクおよびインクジェット画像形成方法
JP2014148684A (ja) 活性光線硬化型インク及びインクジェット記録方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754727

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015754727

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015754727

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016505301

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15115048

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE