WO2015129410A1 - 4輪駆動車のクラッチ制御装置 - Google Patents
4輪駆動車のクラッチ制御装置 Download PDFInfo
- Publication number
- WO2015129410A1 WO2015129410A1 PCT/JP2015/053032 JP2015053032W WO2015129410A1 WO 2015129410 A1 WO2015129410 A1 WO 2015129410A1 JP 2015053032 W JP2015053032 W JP 2015053032W WO 2015129410 A1 WO2015129410 A1 WO 2015129410A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clutch
- oil
- wheel drive
- chamber
- lubricating oil
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K23/00—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
- B60K23/08—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/02—Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of clutch
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/34—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
- B60K17/344—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear
- B60K17/346—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear the transfer gear being a differential gear
- B60K17/3467—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear the transfer gear being a differential gear combined with a change speed gearing, e.g. range gear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/34—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
- B60K17/348—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K23/00—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
- B60K23/04—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for differential gearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D13/00—Friction clutches
- F16D13/58—Details
- F16D13/72—Features relating to cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D13/00—Friction clutches
- F16D13/58—Details
- F16D13/74—Features relating to lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D21/00—Systems comprising a plurality of actuated clutches
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/02—Control by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/06—Control by electric or electronic means, e.g. of fluid pressure
- F16D48/066—Control of fluid pressure, e.g. using an accumulator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0409—Features relating to lubrication or cooling or heating characterised by the problem to increase efficiency, e.g. by reducing splash losses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0447—Control of lubricant levels, e.g. lubricant level control dependent on temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0467—Elements of gearings to be lubricated, cooled or heated
- F16H57/0473—Friction devices, e.g. clutches or brakes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/048—Type of gearings to be lubricated, cooled or heated
- F16H57/0482—Gearings with gears having orbital motion
- F16H57/0483—Axle or inter-axle differentials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/34—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
- B60K17/348—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
- B60K17/35—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K17/00—Arrangement or mounting of transmissions in vehicles
- B60K17/34—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
- B60K17/348—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed
- B60K17/35—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches
- B60K17/3515—Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having differential means for driving one set of wheels, e.g. the front, at one speed and the other set, e.g. the rear, at a different speed including arrangements for suppressing or influencing the power transfer, e.g. viscous clutches with a clutch adjacent to traction wheel, e.g. automatic wheel hub
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K23/00—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
- B60K23/08—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
- B60K2023/085—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles automatically actuated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60K—ARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
- B60K23/00—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
- B60K23/08—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles
- B60K23/0808—Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for for changing number of driven wheels, for switching from driving one axle to driving two or more axles for varying torque distribution between driven axles, e.g. by transfer clutch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/02—Control by fluid pressure
- F16D2048/0218—Reservoirs for clutch control systems; Details thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/02—Control by fluid pressure
- F16D2048/0221—Valves for clutch control systems; Details thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/02—Control by fluid pressure
- F16D2048/0224—Details of conduits, connectors or the adaptors therefor specially adapted for clutch control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/104—Clutch
- F16D2500/10406—Clutch position
- F16D2500/10431—4WD Clutch dividing power between the front and the rear axle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/104—Clutch
- F16D2500/10443—Clutch type
- F16D2500/1045—Friction clutch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/104—Clutch
- F16D2500/10443—Clutch type
- F16D2500/10462—Dog-type clutch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/302—Signal inputs from the actuator
- F16D2500/3026—Stroke
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/304—Signal inputs from the clutch
- F16D2500/30401—On-off signal indicating the engage or disengaged position of the clutch
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/305—Signal inputs from the clutch cooling
- F16D2500/3055—Cooling oil properties
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/305—Signal inputs from the clutch cooling
- F16D2500/3055—Cooling oil properties
- F16D2500/3056—Cooling oil temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/50—Problem to be solved by the control system
- F16D2500/51—Relating safety
- F16D2500/5104—Preventing failures
- F16D2500/5106—Overheat protection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/70—Details about the implementation of the control system
- F16D2500/704—Output parameters from the control unit; Target parameters to be controlled
- F16D2500/70446—Clutch cooling parameters
- F16D2500/70448—Clutch cooling parameters for regulating the amount of fluid flow
- F16D2500/7045—On/off switching of the cooling fluid flow
Definitions
- the present invention relates to a clutch control device for a four-wheel drive vehicle having a meshing clutch and a friction clutch in a driving force transmission system from a main drive wheel to a sub drive wheel.
- both the meshing clutch and the friction clutch are released during the two-wheel drive running, but the differential oil passes through the supply path and circulates to the rear differential via the return path. For this reason, drag torque due to the resistance of the differential oil is generated, making it difficult to improve fuel efficiency.
- a clutch control device for a four-wheel drive vehicle is conceivable that improves the fuel efficiency by limiting the amount of lubricating oil supplied to the friction clutch when the friction clutch is released and reducing the oil agitation resistance in the friction clutch.
- the amount of lubricating oil supplied to the friction clutch is limited, the heat capacity of the lubricating oil is reduced. Therefore, there has been a problem that the lubricating oil supplied to the friction clutch becomes high temperature.
- the present invention has been made paying attention to the above-described problem, and can suppress an increase in the temperature of the lubricating oil supplied to the friction clutch during two-wheel drive running with the friction clutch released.
- An object of the present invention is to provide a clutch control device.
- a clutch control device for a four-wheel drive vehicle is configured such that one of left and right front wheels and left and right rear wheels is a main drive wheel connected to a drive source and the other is a clutch using the drive source. It is mounted on a four-wheel drive vehicle serving as a sub-drive wheel connected via a clutch, and includes a meshing clutch, a friction clutch, and a clutch controller.
- the meshing clutch is provided at a driving branch position from the main driving wheel to the sub driving wheel, and disengages the driving force transmission system to the sub driving wheel from the driving force transmission system to the main driving wheel by releasing the clutch. .
- the friction clutch is provided at a position downstream of the meshing clutch, and a part of the driving force from the driving source is distributed to the auxiliary driving wheel according to the clutch fastening capacity, and is stored in the clutch case.
- the clutch controller performs engagement / release control of the meshing clutch and engagement / release control of the friction clutch.
- the clutch case includes a clutch chamber that houses the friction clutch, an oil chamber that is defined by a partition wall from the clutch chamber, the clutch chamber, and the oil chamber. And an oil passage through which lubricating oil flows from the clutch chamber to the oil chamber by centrifugal force generated by rotation of the friction clutch, and an openable and closable flow port provided in the partition wall.
- the clutch controller selects the disconnect two-wheel drive mode for releasing the meshing clutch and the friction clutch, the clutch controller closes the flow port and stores the lubricating oil in the oil chamber.
- the flow port is opened and the lubricating oil is allowed to flow from the oil chamber into the clutch chamber.
- the clutch control device for a four-wheel drive vehicle when the disconnect two-wheel drive mode for releasing the meshing clutch and the friction clutch is selected, the lubricating oil is stored in the oil chamber. After that, when the oil agitation condition that the temperature of the lubricating oil remaining in the clutch chamber supplied to the friction clutch rises is satisfied, the lubricating oil flows from the oil chamber into the clutch chamber in which the friction clutch is stored. Let Therefore, even if the oil temperature in the clutch chamber rises, the oil temperature in the clutch chamber can be lowered by flowing lubricating oil that is stored in the oil chamber and has a relatively low temperature into the clutch chamber. . As a result, it is possible to suppress an increase in the oil temperature supplied to the friction clutch during two-wheel drive running with the friction clutch released.
- FIG. 1 is a drive system configuration diagram illustrating a drive system configuration of a front wheel drive-based four-wheel drive vehicle to which a clutch control device according to a first embodiment is applied.
- 1 is a control system configuration diagram showing a control system configuration of a front wheel drive-based four-wheel drive vehicle to which a clutch control device of Example 1 is applied.
- FIG. It is a basic map figure which shows the drive mode switching map according to the vehicle speed at the time of "auto mode" selection of Example 1, and an accelerator opening.
- FIG. 6 is a drive mode transition diagram showing switching transition of drive modes (disconnect two-wheel drive mode, standby two-wheel drive mode, and connect four-wheel drive mode) when “auto mode” is selected in the first embodiment.
- FIG. 3 is a flowchart illustrating a flow of an oil temperature control process executed by the 4WD control unit according to the first embodiment.
- 6 is a time chart showing characteristics of an electric coupling coupling engagement capacity and a dog clutch engagement / disengagement state when switching from a connected four-wheel drive mode to a disconnect two-wheel drive mode in the first embodiment. It is explanatory drawing which shows the flow of the lubricating oil in the oil stirring conditions unfulfilled at the time of the disconnect two-wheel drive mode of Example 1. It is explanatory drawing which shows the flow of the lubricating oil in oil stirring conditions establishment at the time of the disconnect two-wheel drive mode of Example 1.
- FIG. It is an example of the map which shows the relationship between the stirring condition time in Example 1, and lubricating oil estimated temperature.
- Example 1 First, the configuration will be described.
- the configuration of the clutch control device of the front wheel drive-based four-wheel drive vehicle (an example of a four-wheel drive vehicle) in the first embodiment is referred to as “four-wheel drive vehicle drive system configuration”, “four-wheel drive vehicle control system configuration”, The description will be divided into “drive mode switching configuration” and “oil temperature control processing configuration”.
- FIG. 1 shows a drive system configuration of a front wheel drive-based four-wheel drive vehicle to which a clutch control device is applied.
- the drive system configuration of the four-wheel drive vehicle will be described with reference to FIG.
- the front wheel drive system of the four-wheel drive vehicle includes a horizontally mounted engine 1 (drive source), a transmission 2, a front differential 3, a left front wheel drive shaft 4, and a right front wheel drive shaft 5. And a left front wheel 6 (main drive wheel) and a right front wheel 7 (main drive wheel). That is, the driving force that has passed through the horizontally mounted engine 1 and the transmission 2 is transmitted to the left and right front wheel drive shafts 4 and 5 via the front differential 3, and always drives the left and right front wheels 6 and 7 while allowing the differential.
- a horizontally mounted engine 1 drive source
- a transmission 2 a transmission 2
- a front differential 3 a left front wheel drive shaft 4
- a right front wheel 7 main drive wheel
- the rear wheel drive system of the four-wheel drive vehicle includes a dog clutch 8 (meshing clutch), a bevel gear 9, an output pinion 10, a rear wheel output shaft 11, a propeller shaft 12, and a drive pinion. 13, ring gear 14, rear differential 15, electric control coupling 16 (friction clutch), left rear wheel drive shaft 17, right rear wheel drive shaft 18, left rear wheel 19 (sub drive wheel), Right rear wheel 20 (sub drive wheel).
- 21 is a universal joint. That is, the rear wheel drive system of the four-wheel drive vehicle releases two dog clutches 8 and the electric control coupling 16 so that the left and right rear wheels 19 and 20 as auxiliary drive wheels are separated from the horizontally mounted engine 1.
- the dog clutch 8 is provided at a driving branch position from the left and right front wheels 6 and 7 to the left and right rear wheels 19 and 20, and a drive force transmission system to the left and right rear wheels 19 and 20 is released to the left and right front wheels 6 and 7 by releasing the clutch.
- This is a meshing clutch that is disconnected from the driving force transmission system.
- An input side meshing member (not shown) of the dog clutch 8 is connected to the differential case of the front differential 3, and an output side meshing member (not shown) of the dog clutch 8 is connected to the bevel gear 9.
- the dog clutch 8, the bevel gear 9, the output pinion 10, and a part of the rear wheel output shaft 11 are built in a transfer case 23 fixed at a position adjacent to the front differential housing 22.
- one of a pair of meshing members is a fixed member and the other is a movable member, and a spring (not shown) that biases in the fastening direction is provided between the fixed member and the movable member.
- a screw groove (not shown) that can be fitted to a solenoid pin (not shown) is formed on the outer periphery of the.
- the electric control coupling 16 is provided at a position downstream of the dog clutch 8 (a position between the dog clutch 8 and the auxiliary drive wheels, here, the left and right rear wheels 19 and 20), and is installed horizontally according to the clutch engagement capacity.
- the friction clutch distributes a part of the driving force from the left and right rear wheels 19 and 20.
- the input side clutch plate 16a of the electric control coupling 16 is connected to the left side gear of the rear differential 15 via the clutch input shaft 16b.
- the output side clutch plate 16c of the electric control coupling 16 is connected to the left rear wheel drive shaft 17 via a clutch output shaft 16d.
- This electric control coupling 16 is built in a coupling case 25 (clutch case) fixed at a position adjacent to the rear differential housing 24.
- Examples of the electric coupling 16 include a multi-plate friction clutch in which a plurality of input-side clutch plates 16a and output-side clutch plates 16c are alternately arranged, a fixed cam piston (not shown) having a cam surface facing each other, and a movable cam. A piston having a piston (not shown) and a cam member (not shown) interposed between opposing cam surfaces is used.
- the electric coupling 16 is fastened by a cam action that expands a piston interval that is generated when an electric motor (not shown) rotates the movable cam piston, and the movable cam piston strokes in the clutch engagement direction according to the rotation angle. This is done by increasing the frictional engagement force of the multi-plate friction clutch.
- the electric coupling 16 is released by a cam action that reduces the piston interval caused by the electric motor rotating the movable cam piston in the direction opposite to the fastening direction, so that the movable cam piston moves in the clutch release direction according to the rotation angle. Stroke and reduce the frictional engagement force of the multi-plate friction clutch.
- a clutch chamber 25b and an oil chamber 25c are defined by a partition wall 25a.
- the partition wall 25a is formed with a circulation port 25e that can be opened and closed by an on-off valve 25d so that the lubricating oil sealed in the coupling case 25 can be circulated.
- the clutch chamber 25b and the oil chamber 25c communicate with each other through an oil passage 25f.
- the clutch chamber 25b is an area for storing the electric control coupling 16 in the coupling case 25.
- the oil chamber 25c is an area in which lubricating oil moved from the clutch chamber 25b via the oil passage 25f due to the centrifugal force generated by the rotation of the electric control coupling 16 in the coupling case 25 is stored.
- the circulation port 25e is a through hole formed in the partition wall 25a, and communicates the clutch chamber 25b and the oil chamber 25c.
- the on-off valve 25d opens and closes the circulation port 25e in conjunction with the release / fastening operation of the electric control coupling 16. That is, the on-off valve 25d can be interlocked with the movable cam piston, and is driven in a direction to close the flow port 25e when the movable cam piston strokes in the clutch release direction. Further, when the movable cam piston strokes in the clutch fastening direction, the movable cam piston is driven in the direction to open the flow port 25e. The on-off valve 25d closes the circulation port 25e when the electric control coupling 16 is in a completely released state.
- the flow port 25e is gradually opened.
- the flow port 25e is opened to the maximum, and the maximum open state of the flow port 25e is maintained while the electric control coupling 16 is fastened.
- the oil passage 25f is a communication path that always bypasses the partition wall 25a and allows the clutch chamber 25b and the oil chamber 25c to communicate with each other. Lubricating oil adhering to the inner surface of the clutch chamber 25b flows into the oil passage 25f due to the centrifugal force accompanying the rotation of the electric control coupling 16.
- the oil passage 25f is inclined toward the oil chamber 25c, and the lubricating oil that has flowed in flows into the oil chamber 25c.
- the clutch input shaft 16b passes through the coupling case 25 and is inserted into the clutch chamber 25b.
- the clutch output shaft 16d passes through the coupling case 25 and the partition wall 25a, passes through the oil chamber 25c, and is inserted into the clutch chamber 25b.
- 25g is an oil seal
- 25h is a bearing.
- the oil seal 25g rotatably supports the clutch input shaft 16b and the clutch output shaft 16d while preventing the lubricating oil from leaking from the coupling case 25.
- the bearing 25h enables the circulation of the lubricating oil, and the lubricating oil stored in the oil chamber 25c is always supplied to the clutch chamber 25b little by little through the bearing 25h even when the flow port 25e is closed by the on-off valve 25d. It is possible to leak.
- FIG. 2 shows a control system configuration of a front wheel drive-based four-wheel drive vehicle to which the clutch control device is applied.
- the control system configuration of the four-wheel drive vehicle will be described with reference to FIG.
- the control system of the four-wheel drive vehicle includes an engine control module 31 (shown as “ECM” in FIG. 2), a transmission control module 32 (shown as “TCM” in FIG. 2), An ABS actuator control unit 33 (shown as “ABS actuator C / U” in FIG. 2) and a 4WD control unit 34 (shown as “4WCC / U” in FIG. 2) are provided.
- ECM engine control module
- TCM transmission control module
- An ABS actuator control unit 33 shown as “ABS actuator C / U” in FIG. 2
- 4WD control unit 34 shown as “4WCC / U” in FIG. 2 are provided.
- the engine control module 31 is a control device for the horizontal engine 1 and receives detection signals from the engine speed sensor 35, the accelerator opening sensor 36, and the like. From the engine control module 31, engine speed information and accelerator opening information (ACC information) are input to the 4WD control unit 34 via the CAN communication line 37.
- the transmission control module 32 is a control device for the transmission 2, and receives detection signals from the transmission input rotational speed sensor 38, the transmission output rotational speed sensor 39, and the like.
- Gear ratio information (gear ratio information) is input from the transmission control module 32 to the 4WD control unit 34 via the CAN communication line 37.
- the ABS actuator control unit 33 is a control device of an ABS actuator (not shown) for controlling the brake fluid pressure of each wheel, and includes a yaw rate sensor 40, a lateral G sensor 41, a front / rear G sensor 42, wheel speed sensors 43, 44, Detection signals from 45, 46, etc. are input. From the ABS actuator control unit 33, yaw rate information, lateral G information, front and rear G information, and wheel speed information of each wheel are input to the 4WD control unit 34 via the CAN communication line 37. In addition to the above information, steering angle information is input from the steering angle sensor 47 to the 4WD control unit 34 via the CAN communication line 37.
- the 4WD control unit 34 is a control device that controls the engagement / release of the dog clutch 8 and the electric control coupling 16, and performs arithmetic processing based on various input information. That is, the 4WD control unit 34 corresponds to a clutch controller that performs engagement / release control of the dog clutch 8 and engagement / release control of the electric control coupling 16.
- the 4WD control unit 34 outputs a drive control command to the dog clutch actuator 48 (solenoid pin) and the electric control coupling actuator 49 (electric motor).
- a drive mode selection switch 50 for detecting the presence or absence of a brake operation
- a brake switch 51 for detecting the presence or absence of a brake operation a ring gear rotation speed sensor 52, a dog clutch stroke sensor 53, a motor rotation angle sensor 54, and the like.
- the drive mode selection switch 50 is a switch for the driver to select and select “2WD mode”, “lock mode”, and “auto mode”.
- “2WD mode” the front wheel drive 2WD state (two-wheel drive running) in which the dog clutch 8 and the electric coupling 16 are released is maintained.
- the “lock mode” the complete 4WD state (four-wheel drive running) in which the dog clutch 8 and the electric coupling 16 are engaged is maintained.
- the “auto mode” the engagement / release of the dog clutch 8 and the electric coupling 16 is automatically controlled according to the vehicle state (vehicle speed, accelerator opening), and the drive mode is automatically switched.
- the “auto mode” has options of “eco-auto mode” selected when importance is attached to fuel efficiency improvement and “sports auto mode” selected when importance is attached to four-wheel drive performance.
- the state of the electric control coupling 16 in the standby two-wheel drive mode that is fastened and releases the electric control coupling 16 differs depending on the selection mode. That is, when the “eco-auto mode” is selected, the control coupling 16 is completely released and stands by during the standby two-wheel drive mode. At this time, the circulation port 25e is closed by the on-off valve 25d, and the lubricating oil is stored in the oil chamber 25c.
- the control coupling 16 is put into a released state immediately before fastening and is on standby.
- the on-off valve 25d opens the flow port 25e, and the lubricating oil flows into the clutch chamber 25b.
- the “eco auto mode” and “sport auto mode” are arbitrarily selected by the driver.
- the input clutch plate 16a and the output clutch plate 16c of the electric control coupling 16 are separated from each other, and immediately after the movable cam piston is stroked to the clutch engagement side, the plates 16a and 16c are There is no contact and no clutch engagement capacity is generated.
- the “released state immediately before engagement” means that the clutch engagement capacity is zero, but the input side clutch plate 16a and the output side clutch plate 16c are in slight contact with each other, and the movable cam piston is slightly engaged with the clutch engagement side. In this state, the clutch engagement capacity is generated immediately after the stroke is made.
- the ring gear rotation speed sensor 52 is a sensor for acquiring the output rotation speed information of the dog clutch 8, and by considering the rear side gear ratio and the front side gear ratio in the calculation for the ring gear rotation speed detection value, The output rotational speed of the dog clutch 8 is calculated.
- the input rotation speed information of the dog clutch 8 is acquired by calculation using the engine rotation speed, the gear ratio, and the final gear ratio.
- FIG. 3 shows a drive mode switching map according to the vehicle speed and the accelerator opening when the “auto mode” of the first embodiment is selected
- FIG. 4 shows the drive modes (disconnect two-wheel drive mode, standby two-wheel drive mode, (4) Connected four-wheel drive mode) switching transition.
- a drive mode switching configuration will be described with reference to FIGS. 3 and 4.
- the drive modes are a disconnect two-wheel drive mode (Disconnect), a standby two-wheel drive mode (Stand-by), and a connect four-wheel drive mode (Connect). And have. These three drive modes are switched to each other by the 4WD control unit 34 based on the vehicle speed (VSP), the accelerator opening (ACC) indicating the driver's required driving force, and the drive mode switching map shown in FIG. .
- VSP vehicle speed
- ACC accelerator opening
- the drive mode switching map includes a disconnect two-wheel drive mode (shown as “differential rotation control region (Disconnect)” in FIG. 3) and a standby two-wheel according to the vehicle speed and the accelerator opening.
- the setting is divided into a drive mode (shown as “differential rotation control region (Stand-by)” in FIG. 3) and a connected four-wheel drive mode (shown as “drive force distribution region (Connect)” in FIG. 3).
- the three drive modes are: an intersection b between a region dividing line A (threshold vehicle speed) in which the accelerator opening increases in proportion to an increase in the vehicle speed from the base point a of the set vehicle speed VSP0 with the accelerator opening being zero, and the region dividing line A It is divided by a region dividing line B (threshold required driving force) of a constant accelerator opening ACC0 drawn from the vehicle to the high vehicle speed side.
- the accelerator opening is equal to or less than the set opening ACC0, and the accelerator opening is zero, the vehicle speed axis, the region dividing line A, and the region dividing line B Set to the enclosed area. That is, even in the high vehicle speed range, the accelerator opening is equal to or less than the set opening ACC0 (the driver's required driving force is low), and therefore a differential rotation occurs between the left and right front wheels 6 and 7 and the left and right rear wheels 19 and 20 due to driving slip.
- the frequency is extremely low, and it is set in a region where the demand for four-wheel drive performance in which slip increases slowly even if drive slip occurs is low.
- the accelerator opening exceeds the set opening ACC0 and is set to a region surrounded by the region dividing line A and the region dividing line B. . That is, in the high vehicle speed range, the accelerator opening exceeds the set opening ACC0 (the driver's required driving force is high), so the four-wheel drive performance requirement is low, but the left and right front wheels 6, 7 are driven by the drive slip.
- the differential rotation between the left and right rear wheels 19 and 20 occurs, it is set in a region where there is a high possibility that the slip will increase rapidly.
- the connected four-wheel drive mode (driving force distribution region (Connect)) is set in a region surrounded by an accelerator opening axis line where the vehicle speed is zero, a vehicle speed axis line where the accelerator opening is zero, and a region dividing line A. ing.
- the vehicle is set in a region where the demand for four-wheel drive performance is high, such as when the vehicle is started or when the vehicle speed is low (low vehicle speed range) but the accelerator opening is high and the load is high.
- the dog clutch 8 and the electric control coupling 16 are both released to “2WD travel (Disconnect)”.
- the front wheel drive two-wheel drive traveling (hereinafter referred to as “2WD traveling”) is basically maintained by transmitting the driving force only to the left and right front wheels 6 and 7.
- the driving slip amount or driving slip ratio
- the electric control coupling 16 is frictionally engaged.
- the dog clutch 8 When the standby two-wheel drive mode is selected, as shown in the frame line D of FIG. 4, the dog clutch 8 is engaged and the electric coupling 16 is released to “2WD travel (Stand-by)”.
- the front wheel drive 2WD traveling is basically maintained by transmitting the driving force only to the left and right front wheels 6 and 7.
- the driving slip amount or driving slip ratio
- the dog clutch 8 is engaged and fastened in advance. Only the friction fastening of the ring 16 is performed. Due to the frictional engagement of the electric control coupling 16, the differential rotation control for suppressing the driving slip is performed by distributing the driving force to the left and right rear wheels 19, 20 with good response.
- the “4WD travel (Connect)” is established in which the dog clutch 8 and the electric control coupling 16 are both engaged.
- the optimal driving force distribution according to the road surface condition is basically applied to the left and right front wheels 6 and 7 and the left and right rear wheels 19 and 20 (for example, front and rear wheel distribution control when starting).
- Driving force distribution control is performed.
- the electric coupling 16 is engaged. Control is performed to reduce the capacity and suppress the tight corner braking phenomenon.
- the switching transition speed of 2WD traveling (Disconnect) ⁇ 2WD traveling (Stand-by) is switched to the switching transition speed of 2WD traveling (Stand-by) ⁇ 2WD traveling (Disconnect) (FIG. 4).
- Slow down arrow G the switching transition speed of 4WD traveling (Connect) ⁇ 2WD traveling (Disconnect) (arrow I of FIG. 4) with respect to the switching transition speed of 2WD traveling (Disconnect) ⁇ 4WD traveling (Connect) (arrow H in FIG. 4).
- the switching transition speed of 2WD traveling (Stand-by) ⁇ 4WD traveling (Connect) (arrow J in FIG.
- the “transition speed” is the time from when the switching request is generated until the transition is completed.
- the transition speed is slow (arrow G, arrow I)
- mode transition control is started after a predetermined time has elapsed after the switching request is output. If the transition speed is high (arrow F, arrow H, arrow J, arrow K), mode transition control is started immediately after the switching request is output.
- the circulation port 25e is closed by the opening / closing valve 25d provided in the coupling case 25 in conjunction with the release control of the electric control coupling 16.
- the lubricating oil moved from the clutch chamber 25b to the oil chamber 25c by the centrifugal force generated by the rotation of the electric control coupling 16 is stored in the oil chamber 25c.
- the lubricating oil leaks from the oil chamber 25c to the clutch chamber 25b via the bearing 25h, the amount of the lubricating oil supplied to the electric coupling 16 housed in the clutch chamber 25b is limited, and the clutch chamber The amount of lubricating oil in 25b is reduced.
- FIG. 5 is a flowchart illustrating the flow of the oil temperature control process executed by the 4WD control unit according to the first embodiment. Hereinafter, each step of FIG. 5 showing the oil temperature control processing configuration will be described.
- step S1 it is determined whether or not the disconnect two-wheel drive mode (2WD travel (Disconnect)) is selected as the current drive mode. If YES (disconnect 2-wheel drive mode selection), the process proceeds to step S2. If NO (selected other than disconnected two-wheel drive mode), proceed to return.
- the selected drive mode is determined based on the position on the drive mode switching map shown in FIG. 3 of the operating point determined by the vehicle speed and the accelerator opening. That is, if the operating point is in the disconnect two-wheel drive mode region (region indicated by “differential rotation control region (Disconnect)” in FIG. 3) on the drive mode switching map, it is determined that the disconnect drive mode is selected. To do.
- the vehicle speed (VSP) is calculated from the wheel speeds of the left and right rear wheels 19, 20 detected by the wheel speed sensors 45, 46.
- the accelerator opening (ACC) is detected by an accelerator opening sensor 36.
- step S2 following the determination that the disconnect two-wheel drive mode is being selected in step S1, it is determined whether or not the oil agitation condition is satisfied. If YES (oil stirring condition is satisfied), the process proceeds to step S3. If NO (oil stirring condition is not satisfied), proceed to return.
- the “oil stirring condition” is a condition for determining that the temperature of the lubricating oil (the lubricating oil in the clutch chamber 25b) supplied to the electric control coupling 16 has risen above a predetermined threshold temperature. Here, it is assumed that the release time of the electric coupling 16 in the disconnect two-wheel drive mode has reached a predetermined time.
- step S3 following the determination that the oil stirring condition is established in step S2, a fastening command for completely fastening the electric coupling 16 is output, and the process proceeds to step S4.
- the movable cam piston is stroked in the fastening direction by the electric control coupling actuator 49 in response to the output of the electric connection command of the electric control coupling 16, and the electric control coupling 16 is in the engaged state.
- the flow opening 25e is opened by the on-off valve 25d.
- the lubricating oil in the oil chamber 25c flows into the clutch chamber 25b via the flow port 25e, and the amount of lubricating oil supplied to the electric coupling 16 in the clutch chamber 25b increases.
- the lubricating oil that has flowed into the clutch chamber 25b is agitated by the rotation of the electric control coupling 16, flows into the oil passage 25f by the centrifugal force generated by this rotation, moves again to the oil chamber 25c, and is coupled to the coupling case 25. Circulate inside.
- step S4 following the output of the electric coupling coupling instruction in step S3, it is determined whether or not the oil agitation stop condition is satisfied. If YES (oil stirring stop condition is satisfied), the process proceeds to step S5. If NO (oil stirring stop condition is not satisfied), the process returns to step S3.
- the “oil stirring stop condition” is a condition for determining that the temperature of the lubricating oil (the lubricating oil in the clutch chamber 25b) supplied to the electric control coupling 16 is lower than a predetermined threshold temperature. .
- the electric coupling coupling time during the disconnect two-wheel drive mode has reached a predetermined time.
- step S5 following the determination that the oil stirring stop condition is satisfied in step S4, a release command for completely releasing the electric coupling 16 is output, and the process proceeds to return.
- the movable cam piston in response to the output of the complete release command of the electric control coupling 16, the movable cam piston is stroked in the release direction by the electric control coupling actuator 49, and the electric control coupling 16 enters the complete release state.
- the flow opening 25e is closed by the on-off valve 25d. Thereby, lubricating oil is stored in the oil chamber 25c, and the amount of lubricating oil supplied to the electric coupling 16 in the clutch chamber 25b is limited again.
- FIG. 6 is a time chart showing the characteristics of the engagement capacity of the electric coupling and the engagement / release state of the dog clutch when the connection four-wheel drive mode is switched to the disconnect two-wheel drive mode in the first embodiment.
- FIG. 7 is an explanatory diagram showing the flow of the lubricating oil when the oil stirring condition is not satisfied in the disconnect two-wheel drive mode of the first embodiment, and
- FIG. 8 is the flow of the lubricating oil when the oil stirring condition is satisfied. It is explanatory drawing which shows.
- the oil temperature control operation of the first embodiment will be described with reference to FIGS.
- the lubricating oil in the oil chamber 25c leaks to the clutch chamber 25b via the bearing 25h that supports the clutch output shaft 16d.
- the amount of inflow at this time is from the clutch chamber 25b to the oil chamber 25c by centrifugal force. Less than the amount of lubricating oil moving. Therefore, the amount of lubricating oil in the clutch chamber 25b does not increase.
- the amount of lubricating oil in the clutch chamber 25b falls below a predetermined amount, it hardly moves to the oil chamber 25c.
- step S1 the oil agitation conditions are satisfied at time t 3, in the flowchart shown in FIG. 5, step S1 ⁇
- step S2 the movable cam piston is stroked in the fastening direction by the electric control coupling actuator 49, and the electric control coupling 16 is in the fastening state as shown in FIG.
- the flow opening 25e of the coupling case 25 is opened by the on-off valve 25d.
- the lubricating oil O stored in the oil chamber 25c flows into the clutch chamber 25b through the circulation port 25e.
- the lubricating oil O stored in the oil chamber 25c is stored without being stirred.
- the oil heat capacity is high. That is, the temperature of the lubricating oil O in the oil chamber 25c is relatively lower than that of the lubricating oil O in the clutch chamber 25b. Then, when the lubricating oil O in the oil chamber 25c having a relatively low temperature flows into the clutch chamber 25b, the low-temperature lubricating oil O is added to the high-temperature lubricating oil O, and the lubricating oil O in the clutch chamber 25b is added.
- the temperature can be lowered. Further, since the amount of lubricating oil in the clutch chamber 25b increases, the oil heat capacity in the clutch chamber 25b can be increased, and the temperature rise of the lubricating oil O supplied to the electric control coupling 16 can be suppressed. it can. As a result, the temperature increase of the lubricating oil O (the lubricating oil O in the clutch chamber 25b) supplied to the electric control coupling 16 can be suppressed, and the oil temperature can be controlled to an appropriate temperature.
- the input side clutch plate 16a and the output side clutch plate 16c rotate together. Then, the rotation causes the lubricating oil O in the clutch chamber 25b to be agitated, flows into the oil flow path 25f by the centrifugal force due to the rotation, moves again to the oil chamber 25c, and circulates in the coupling case 25. As described above, the lubricating oil O is stirred in the clutch chamber 25b, whereby the lubricating oil O can circulate in the coupling case 25, and the lubricating oil temperature can be quickly lowered.
- the electric coupling 16 is completely fastened when the oil stirring condition is established. For this reason, in the electric control coupling 16, the input side clutch plate 16a and the output side clutch plate 16c can be rotated integrally. As a result, the oil stirring performance in the clutch chamber 25b can be maximized, and the lubricating oil temperature can be lowered more quickly.
- the on-off valve 25d maintains the flow opening 25e in the maximum open state. For this reason, the amount of lubricating oil flowing from the oil chamber 25c into the clutch chamber 25b can be maximized, and the temperature of the lubricating oil in the clutch chamber 25b can be lowered as quickly as possible.
- the on-off valve 25d opens and closes the flow port 25e in conjunction with the release / fastening control of the electric coupling 16
- the open / close valve 25d can be opened and closed by an on-off valve 25d that does not require an individual actuator or the like.
- the lubricating oil temperature can be controlled with a simple configuration.
- step S4 a release command for completely releasing the electric control coupling 16 is output.
- the movable cam piston is stroked in the releasing direction by the electric coupling actuator 49, and the electric coupling 16 is released as shown in FIG.
- the flow opening 25e of the coupling case 25 is closed by the on-off valve 25d.
- the lubricating oil O is stored again in the oil chamber 25c, and the amount of lubricating oil in the clutch chamber 25b is regulated. And the drag torque by the lubricating oil in the electric control coupling 16 can be suppressed again, and the fuel efficiency can be improved.
- the electronically controlled coupling 16 is again fastened, by circulating a lubricating oil O from the oil chamber 25c to the clutch chamber 25b, The lubricating oil O is agitated to lower the oil temperature in the clutch chamber 25b. Further, when the oil agitation stop condition is satisfied, the electric control coupling 16 is released, and the lubricating oil O is stored in the oil chamber 25c to improve fuel efficiency. In this way, while the disconnect two-wheel drive mode is selected, the lubricating oil O remaining in the clutch chamber 25b and supplied to the electric control coupling 16 by repeatedly releasing and engaging the electric control coupling 16 is provided. Oil temperature can be controlled so that the temperature does not become high.
- the establishment of the oil stirring condition for determining that the temperature of the lubricating oil in the clutch chamber 25b has risen is “the release time of the electric coupling 16 in the disconnect two-wheel drive mode (hereinafter referred to as“ stirring condition time ”).
- the stirring condition time is set according to the estimated lubricating oil temperature in the clutch chamber 25b as shown in FIG. That is, the stirring condition time is set longer as the estimated lubricating oil temperature is lower and the lubricating oil temperature is not increased.
- the stirring condition temperature is set to the maximum time ta.
- the stirring condition time is set to the minimum time tb.
- the estimated lubricating oil temperature in the clutch chamber 25b is estimated based on the vehicle speed, the cruising distance, the clutch engagement capacity in the electric coupling 16, the differential rotation, and the like. Further, it may be detected directly by a temperature sensor provided in the coupling case 25.
- One of the left and right front wheels 6 and 7 and the left and right rear wheels 19 and 20 is a main drive wheel connected to a drive source (horizontal engine 1), and the other is clutched to the drive source (horizontal engine 1). It is mounted on a four-wheel drive vehicle as a sub drive wheel connected via It is provided at a driving branch position from the main driving wheel (left and right front wheels 6, 7) to the auxiliary driving wheel (left and right rear wheels 19, 20), and is released to the auxiliary driving wheel (left and right rear wheels 19, 20) by releasing the clutch.
- a meshing clutch for separating a driving force transmission system (rear wheel driving system) from a driving force transmission system (front wheel driving system) to the main driving wheels (left and right front wheels 6, 7); A portion of the driving force from the drive source (horizontal engine 1) is provided downstream of the meshing clutch (dog clutch 8) according to the clutch engagement capacity, and the auxiliary driving wheels (left and right rear wheels 19, 20).
- the clutch case (coupling case 25) includes a clutch chamber 25b that houses the friction clutch (electric coupling 16), an oil chamber 25c that is defined by a partition wall 25a from the clutch chamber 25b, An oil passage 25f that connects the clutch chamber 25b and the oil chamber 25c, and causes the lubricating oil O to flow from the clutch chamber 25b to the oil chamber 25c by centrifugal force generated by the rotation of the friction clutch (electric control coupling 16); An openable and closable flow opening 25e provided in the partition wall 25a, The clutch controller (4WD control unit 34) closes the circulation port 25e when the disconnect two-wheel drive mode for releasing the mesh clutch (dog clutch 8) and the friction clutch (electric
- the flow port 25e is opened.
- the lubricating oil O is allowed to flow from the oil chamber 25c into the clutch chamber 25b.
- the clutch controller (4WD control unit 34) is configured to engage the friction clutch (electric control coupling 16) when the oil stirring condition is satisfied.
- the lubricating oil O can be stirred in the clutch chamber 25b and circulated in the coupling case 25, so that the lubricating oil temperature can be quickly lowered.
- the clutch controller (4WD control unit 34) is configured to fully engage the friction clutch (electric control coupling 16) when the oil agitation condition is satisfied.
- the oil stirring performance in the clutch chamber 25b can be maximized, and the lubricating oil temperature can be lowered more quickly.
- the partition wall 25a is provided with an opening / closing valve 25d for opening and closing the circulation port 25e,
- the on-off valve 25d is driven in a direction to close the flow port 25e in conjunction with a stroke of the friction clutch (electric control coupling 16) in the release direction, and an engagement direction of the friction clutch (electric control coupling 16).
- the flow port 25e is driven in a direction to open in conjunction with the stroke to the front.
- the clutch controller (4WD control unit 34) closes the flow port 25e and closes the circulation port 25e when the oil stirring stop condition in which the lubricating oil temperature in the clutch chamber 25b is lowered is established.
- the lubricating oil O is stored in the oil chamber 25c.
- Example 1 As mentioned above, although the clutch control apparatus of the four-wheel drive vehicle of this invention has been demonstrated based on Example 1, it is not restricted to this Example 1 about a concrete structure, Each claim of a Claim Design changes and additions are allowed without departing from the gist of the invention.
- the dog clutch 8 is disposed upstream of the bevel gear 9 provided at the driving branch position to the left and right rear wheels 19 and 20 that are auxiliary drive wheels (position between the horizontally mounted engine 1 and the bevel gear 9).
- the electric control coupling 16 is disposed at the position of the left rear wheel drive shaft 17 from the bevel gear 9 to the left and right rear wheels 19 and 20 via the propeller shaft 12 and the rear differential 15
- the present invention is not limited to this.
- the dog clutch 8 may be disposed between the bevel gear 9 and the propeller shaft 12.
- the electric control coupling 16 may be disposed at the position of the right rear wheel drive shaft 18 or may be disposed between the propeller shaft 12 and the rear differential 15.
- the dog clutch 8 may be constituted by a meshing clutch that is released / fastened using a shift fork driven by hydraulic pressure.
- the electric control coupling 16 may be constituted by a hydraulic friction clutch that releases / fastens the multi-plate clutch by hydraulic pressure.
- Example 1 shows an example in which the clutch control device for a four-wheel drive vehicle of the present invention is applied to a four-wheel drive vehicle based on a front wheel drive.
- the control device of the present invention can be applied to a four-wheel drive vehicle based on a rear wheel drive.
- the present invention can also be applied to a hybrid vehicle having an engine and a motor as a drive source, and an electric vehicle having only a motor.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
- Arrangement And Driving Of Transmission Devices (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
- General Details Of Gearings (AREA)
Abstract
Description
このクラッチ制御装置では、リアデファレンシャルを潤滑するデフオイルを摩擦クラッチの内部に供給する供給経路と、摩擦クラッチに供給されたデフオイルをリアデファレンシャルに戻す戻し経路と、が形成されている。そして、リアデファレンシャルの回転によってデフオイルをかき上げ、供給経路から摩擦クラッチを経由し、戻し経路を介してリアデファレンシャルへとデフオイルを循環させる。
そこで、摩擦クラッチを解放したときには、摩擦クラッチに供給される潤滑オイル量を制限し、摩擦クラッチでのオイル撹拌抵抗を低減することで燃費向上を図る4輪駆動車のクラッチ制御装置が考えられる。
しかしながら、この場合では、摩擦クラッチに供給される潤滑オイル量が制限されているために潤滑オイルの熱容量が小さくなる。そのため、摩擦クラッチに供給された潤滑オイルが高温になってしまうという問題があった。
前記噛み合いクラッチは、前記主駆動輪から前記副駆動輪への駆動分岐位置に設けられ、クラッチ解放により前記副駆動輪への駆動力伝達系を、前記主駆動輪への駆動力伝達系から切り離す。
前記摩擦クラッチは、前記噛み合いクラッチよりも下流位置に設けられ、クラッチ締結容量に応じて前記駆動源からの駆動力の一部を前記副駆動輪へ配分すると共に、クラッチケースに収納される。
前記クラッチコントローラは、前記噛み合いクラッチの締結/解放制御と前記摩擦クラッチの締結/解放制御を行う。
この4輪駆動車のクラッチ制御装置において、前記クラッチケースは、前記摩擦クラッチを収納するクラッチ室と、前記クラッチ室とは仕切り壁を介して画成したオイル室と、前記クラッチ室と前記オイル室を連通し、前記摩擦クラッチの回転によって生じる遠心力により前記クラッチ室から前記オイル室へ潤滑オイルを流すオイル流路と、前記仕切り壁に設けられた開閉可能な流通口と、を有する。
そして、前記クラッチコントローラは、前記噛み合いクラッチと前記摩擦クラッチを解放するディスコネクト2輪駆動モードを選択したとき、前記流通口を閉じて前記オイル室に前記潤滑オイルを貯留する。また、ディスコネクト2輪駆動モードの選択後、前記クラッチ室内の潤滑オイル温度が上昇するオイル撹拌条件が成立したとき、前記流通口を開いて前記オイル室から前記クラッチ室へと潤滑オイルを流入させる。
そのため、クラッチ室内のオイル温度が上昇しても、オイル室に貯留されていて、比較的温度の低い潤滑オイルをクラッチ室へと流入させることで、クラッチ室内のオイル温度の低下を図ることができる。
これにより、摩擦クラッチを解放しての2輪駆動走行時、摩擦クラッチに供給されるオイル温度の上昇を抑制することができる。
まず、構成を説明する。
実施例1における前輪駆動ベースの4輪駆動車(4輪駆動車の一例)のクラッチ制御装置の構成を、「4輪駆動車の駆動系構成」、「4輪駆動車の制御系構成」、「駆動モード切り替え構成」、「オイル温度制御処理構成」に分けて説明する。
図1は、クラッチ制御装置が適用された前輪駆動ベースの4輪駆動車の駆動系構成を示す。以下、図1に基づき、4輪駆動車の駆動系構成を説明する。
すなわち、前記4輪駆動車の後輪駆動系は、ドグクラッチ8と電制カップリング16を共に解放することで、副駆動輪である左右後輪19,20を横置きエンジン1から切り離した2輪駆動走行(=ディスコネクト2輪駆動モード)と、ドグクラッチ8と電制カップリング16を共に締結することで、副駆動輪である左右後輪19,20を横置きエンジン1に接続した4輪駆動走行(=コネクト4輪駆動モード)と、を選択することが可能な駆動系構成としている。なお、このドグクラッチ8を解放することにより、ドグクラッチ8より下流側(ドグクラッチ8から左右後輪19,20までの間)の駆動系回転(プロペラシャフト12等の回転)を停止することができ、フリクション損失やオイル撹拌損失などが抑えられ、燃費向上が達成される。
このドグクラッチ8としては、例えば、一対の噛み合い部材のうち一方を固定部材とし他方を可動部材とし、固定部材と可動部材との間に締結方向に付勢するバネ(不図示)を設け、可動部材の外周にソレノイドピン(不図示)と嵌合可能なネジ溝(不図示)が形成されたものを用いる。このドグクラッチ8は、ネジ溝に対しソレノイドピンを突出させて嵌合すると、可動部材が回転しながら解放方向にストロークし、ストローク量が所定量を超えることで噛み合い締結を解放する。一方、ネジ溝に対するソレノイドピンの嵌合を解除すると、バネ付勢力により固定部材に向かって可動部材が締結方向にストロークし、両者の歯部が噛み合って締結する。
この電制カップリング16としては、例えば、入力側クラッチプレート16aと出力側クラッチプレート16cを交互に複数配置した多板摩擦クラッチと、対向するカム面を有する固定カムピストン(不図示)及び可動カムピストン(不図示)と、対向するカム面間に介装されたカム部材(不図示)と、を有するものを用いる。電制カップリング16の締結は、電動モータ(不図示)が可動カムピストンを回転させることで生じるピストン間隔を拡大するカム作用により、可動カムピストンが回転角に応じてクラッチ締結方向にストロークし、多板摩擦クラッチの摩擦締結力を増すことで行う。電制カップリング16の解放は、電動モータが可動カムピストンを締結方向とは逆方向に回転させることで生じるピストン間隔を縮小するカム作用により、可動カムピストンが回転角に応じてクラッチ解放方向にストロークし、多板摩擦クラッチの摩擦締結力を減じることで行う。
すなわち、この開閉弁25dは可動カムピストンと連動可能になっており、可動カムピストンがクラッチ解放方向にストロークすると、流通口25eを閉じる方向に駆動される。また、可動カムピストンがクラッチ締結方向にストロークすると、流通口25eを開く方向に駆動される。そして、この開閉弁25dは、電制カップリング16が完全解放状態のとき、流通口25eを閉じる。また、可動カムピストンが電制カップリング16を完全解放する位置からクラッチ締結方向にストロークすると、次第に流通口25eを開いていく。そして、電制カップリング16が締結直前の解放状態のとき、流通口25eを最大開放し、電制カップリング16が締結している間、流通口25eの最大開放状態を維持する。
図2は、クラッチ制御装置が適用された前輪駆動ベースの4輪駆動車の制御系構成を示す。以下、図2に基づき、4輪駆動車の制御系構成を説明する。
そして、この4WDコントロールユニット34は、ドグクラッチアクチュエータ48(ソレノイドピン)と電制カップリングアクチュエータ49(電動モータ)に駆動制御指令を出力する。ここで、CAN通信線37以外からの入力情報源として、駆動モード選択スイッチ50、ブレーキ操作の有無を検出するブレーキスイッチ51、リングギア回転数センサ52、ドグクラッチストロークセンサ53、モータ回転角度センサ54等を有する。
つまり、「エコオートモード」の選択時には、スタンバイ2輪駆動モード中、電制カップリング16を完全解放状態にして待機する。このとき、開閉弁25dによって流通口25eは閉じられ、潤滑オイルはオイル室25cに貯留する。これに対し、「スポーツオートモード」の選択時には、スタンバイ2輪駆動モード中、電制カップリング16を締結直前の解放状態にして待機する。このとき、開閉弁25dは流通口25eを開き、潤滑オイルはクラッチ室25bに流入する。
なお、この「エコオートモード」と「スポーツオートモード」は、ドライバーによって任意に選択される。
図3は、実施例1の「オートモード」選択時の車速とアクセル開度に応じた駆動モード切り替えマップを示し、図4は、駆動モード(ディスコネクト2輪駆動モード・スタンバイ2輪駆動モード・コネクト4輪駆動モード)の切り替え遷移を示す。以下、図3及び図4に基づき、駆動モード切り替え構成を説明する。
この3つの駆動モードは、アクセル開度ゼロで設定車速VSP0の基点aから車速の上昇に比例してアクセル開度が上昇する領域区分線A(閾値車速)と、領域区分線Aとの交点bから高車速側に引いた一定アクセル開度ACC0の領域区分線B(閾値要求駆動力)と、により分けている。
また、「遷移速度」とは、切り替え要求が発生してから遷移完了までの時間である。ここでは、この遷移速度が遅い場合(矢印G、矢印I)には、切り替え要求出力後所定時間が経過してからモード遷移制御を開始する。また、遷移速度が速い場合(矢印F、矢印H、矢印J、矢印K)には、切り替え要求出力後直ちにモード遷移制御を開始する。
図5は、実施例1の4WDコントロールユニットにて実行されるオイル温度制御処理の流れを示すフローチャートである。以下、オイル温度制御処理構成をあらわす図5の各ステップについて説明する。
ここで、選択された駆動モードは、車速とアクセル開度によって決まる運転点の図3に示す駆動モード切替マップ上の位置に基づいて判断する。つまり、運転点が駆動モード切替マップ上のディスコネクト2輪駆動モード領域(図3において「差回転制御領域(Disconnect)」で示す領域)にあれば、ディスコネクト駆動モードが選択されていると判断する。なお、車速(VSP)は、車輪速センサ45,46によって検出された左右後輪19,20の車輪速から演算する。また、アクセル開度(ACC)は、アクセル開度センサ36によって検出する。
また、ディスコネクト2輪駆動モードが選択されているときには、ドグクラッチ8及び電制カップリング16のいずれも解放される。さらに、電制カップリング16の解放制御に連動して、カップリングケース25に設けた開閉弁25dによって流通口25eを閉じる。これにより、オイル室25cに潤滑オイルが貯留され、クラッチ室25b内の電制カップリング16に供給される潤滑オイル量が制限される。
ここで、「オイル撹拌条件」とは、電制カップリング16に供給された潤滑オイル(クラッチ室25b内の潤滑オイル)の温度が所定の閾値温度よりも上昇したと判断される条件である。ここでは、ディスコネクト2輪駆動モード中の電制カップリング16の解放時間が所定時間に達したこととする。
ここで、電制カップリング16の締結指令の出力により、電制カップリングアクチュエータ49によって可動カムピストンが締結方向にストロークされ、電制カップリング16が締結状態になる。また、電制カップリング16の締結制御に連動して、開閉弁25dにより流通口25eが開かれる。これにより、オイル室25c内の潤滑オイルが流通口25eを介してクラッチ室25bへと流入し、クラッチ室25b内の電制カップリング16に供給される潤滑オイル量が増加する。
さらに、クラッチ室25bに流入した潤滑オイルは、電制カップリング16の回転によって撹拌され、この回転による遠心力でオイル流路25fへと流れ込み、再びオイル室25cへと移動し、カップリングケース25内を循環する。
ここで、「オイル撹拌停止条件」とは、電制カップリング16に供給された潤滑オイル(クラッチ室25b内の潤滑オイル)の温度が所定の閾値温度よりも低下したと判断される条件である。ここでは、ディスコネクト2輪駆動モード中の電制カップリング締結時間が所定時間に達したこととする。
ここで、電制カップリング16の完全解放指令の出力により、電制カップリングアクチュエータ49によって可動カムピストンが解放方向にストロークされ、電制カップリング16が完全解放状態になる。また、電制カップリング16の解放制御に連動して、開閉弁25dにより流通口25eが閉じられる。これにより、オイル室25cに潤滑オイルが貯留され、クラッチ室25b内の電制カップリング16に供給される潤滑オイル量が再び制限される。
図6は、実施例1においてコネクト4輪駆動モードからディスコネクト2輪駆動モードに切り替えたときの電制カップリングの締結容量とドグクラッチの締結/解放状態の特性を示すタイムチャートである。また、図7は、実施例1のディスコネクト2輪駆動モード時におけるオイル撹拌条件未成立中の潤滑オイルの流れを示す説明図であり、図8は、オイル撹拌条件成立中の潤滑オイルの流れを示す説明図である。以下、図6~図8を用いて、実施例1のオイル温度制御作用を説明する。
これにより、オイル室25cには潤滑オイルが貯留し、電制カップリング16に供給されるクラッチ室25b内の潤滑オイル量は規制される。なお、オイル室25c内の潤滑オイルは、クラッチ出力軸16dを支持する軸受25hを介してクラッチ室25bへと漏れ出るが、このときの流入量は、遠心力でクラッチ室25bからオイル室25cに移動する潤滑オイル量よりも少ない。そのため、クラッチ室25b内の潤滑オイル量が増加することはない。
そして、クラッチ室25b内の潤滑オイル量が所定量を下回ったら、オイル室25cへほとんど移動することがなくなる。つまり、軸受25hを介してクラッチ室25bへと漏れ出る潤滑オイル量と、遠心力でオイル室25cへと移動する潤滑オイル量が釣り合うと、クラッチ室25b内の潤滑オイル量は少量で安定する。
しかしながら、クラッチ室25b内に残り、電制カップリング16に供給される潤滑オイル量が少量であるため、クラッチ室25b内のオイル熱容量は小さい。そのため、電制カップリング16の入力側クラッチプレート16aと出力側クラッチプレート16cの接触はないものの、両プレート16a,16c間の潤滑オイル温度が下がりにくくなっている。
これにより、電制カップリングアクチュエータ49によって可動カムピストンが締結方向にストロークされ、図8に示すように、電制カップリング16が締結状態になる。さらにこのとき、電制カップリング16の締結制御に連動して、カップリングケース25の流通口25eは開閉弁25dにより開かれる。
そして、比較的温度の低いオイル室25c内の潤滑オイルOがクラッチ室25bに流れ込むことで、高温の潤滑オイルOに低温の潤滑オイルOを追加することになり、クラッチ室25b内の潤滑オイルOの温度を低下することができる。また、クラッチ室25b内の潤滑オイル量が増加するため、このクラッチ室25b内のオイル熱容量を高くすることができ、電制カップリング16に供給される潤滑オイルOの温度上昇を抑制することができる。
この結果、電制カップリング16に供給される潤滑オイルO(クラッチ室25b内の潤滑オイルO)の温度上昇を抑制し、オイル温度を適温に制御することができる。
このように、クラッチ室25b内で潤滑オイルOが撹拌されることで、潤滑オイルOがカップリングケース25内を循環することができ、潤滑オイル温度を速やかに低下することができる。
しかも、ここでは、電制カップリング16が完全締結したとき、開閉弁25dは流通口25eを最大開放状態に維持する。そのため、オイル室25cからクラッチ室25bへ流れ込む潤滑オイル量を最大量とすることができ、できるだけ速やかにクラッチ室25b内の潤滑オイル温度の低下を図ることができる。
これにより、電制カップリングアクチュエータ49によって可動カムピストンが解放方向にストロークされ、図7に示すように、電制カップリング16が解放状態になる。さらにこのとき、電制カップリング16の解放制御に連動して、カップリングケース25の流通口25eは開閉弁25dにより閉じられる。
このように、ディスコネクト2輪駆動モードが選択されている間、電制カップリング16の解放と締結を繰り返すことで、クラッチ室25b内に残り、電制カップリング16に供給される潤滑オイルOが高温にならないようにオイル温度制御を行うことができる。
つまり、潤滑オイル推定温度が低く、潤滑オイル温度が上昇していないほど撹拌条件時間は長くなるように設定される。ここでは、潤滑オイル推定温度が下限温度Tα以下の場合には、撹拌条件温度は最大時間taに設定される。また、潤滑オイル推定温度が上限温度Tβ以上の場合には、撹拌条件時間は最少時間tbに設定される。
実施例1の4輪駆動車のクラッチ制御装置にあっては、下記に列挙する効果を得ることができる。
前記主駆動輪(左右前輪6,7)から前記副駆動輪(左右後輪19,20)への駆動分岐位置に設けられ、クラッチ解放により前記副駆動輪(左右後輪19,20)への駆動力伝達系(後輪駆動系)を、前記主駆動輪(左右前輪6,7)への駆動力伝達系(前輪駆動系)から切り離す噛み合いクラッチ(ドグクラッチ8)と、
前記噛み合いクラッチ(ドグクラッチ8)よりも下流位置に設けられ、クラッチ締結容量に応じて前記駆動源(横置きエンジン1)からの駆動力の一部を前記副駆動輪(左右後輪19,20)へ配分すると共に、クラッチケース(カップリングケース25)に収納される摩擦クラッチ(電制カップリング16)と、
前記噛み合いクラッチ(ドグクラッチ8)の締結/解放制御と前記摩擦クラッチ(電制カップリング16)の締結/解放制御を行うクラッチコントローラ(4WDコントロールユニット34)と、
を備えた4輪駆動車のクラッチ制御装置において、
前記クラッチケース(カップリングケース25)は、前記摩擦クラッチ(電制カップリング16)を収納するクラッチ室25bと、前記クラッチ室25bとは仕切り壁25aを介して画成したオイル室25cと、前記クラッチ室25bと前記オイル室25cを連通し、前記摩擦クラッチ(電制カップリング16)の回転によって生じる遠心力により前記クラッチ室25bから前記オイル室25cへ潤滑オイルOを流すオイル流路25fと、前記仕切り壁25aに設けられた開閉可能な流通口25eと、を有し、
前記クラッチコントローラ(4WDコントロールユニット34)は、前記噛み合いクラッチ(ドグクラッチ8)と前記摩擦クラッチ(電制カップリング16)を解放するディスコネクト2輪駆動モードの選択時、前記流通口25eを閉じて前記オイル室25cに前記潤滑オイルOを貯留し、前記ディスコネクト2輪駆動モードの選択後、前記クラッチ室25b内の潤滑オイル温度が上昇するオイル撹拌条件が成立したとき、前記流通口25eを開いて前記オイル室25cから前記クラッチ室25bへと潤滑オイルOを流入させる構成とした。
これにより、摩擦クラッチ(電制カップリング16)を解放しての2輪駆動走行時、この摩擦クラッチ(電制カップリング16)に供給される潤滑オイル温度の上昇を抑制することができる。
これにより、上記(1)の効果に加え、クラッチ室25b内で潤滑オイルOを撹拌し、カップリングケース25内を循環させて、潤滑オイル温度を速やかに低下することができる。
これにより、上記(2)の効果に加え、クラッチ室25b内でのオイル撹拌性能を最大にすることができ、さらに速やかに潤滑オイル温度を低下することができる。
前記開閉弁25dは、前記摩擦クラッチ(電制カップリング16)の解放方向へのストロークに連動して前記流通口25eを閉じる方向に駆動し、前記摩擦クラッチ(電制カップリング16)の締結方向へのストロークに連動して前記流通口25eを開く方向に駆動する構成とした。
これにより、上記(2)又は(3)の効果に加え、個別のアクチュエータ等が不要な開閉弁25dによって流通口25eの開閉を行うことができ、簡易な構成で潤滑オイル温度の制御を行うことができる。
これにより、上記(1)から(4)のいずれかの効果に加え、オイル撹拌停止条件成立後、再び潤滑オイルOをオイル室25cに貯留し、クラッチ室25b内の潤滑オイル量が規制して潤滑オイルによる引きずりトルクを抑制することができ、燃費向上を図ることができる。
例えば、ドグクラッチ8をベベルギア9とプロペラシャフト12の間に配置してもよい。また、電制カップリング16を右後輪ドライブシャフト18の位置に配置してもよいし、プロペラシャフト12とリアデファレンシャル15の間に配置してもよい。
Claims (5)
- 左右前輪と左右後輪のうち、一方を駆動源に接続される主駆動輪とし、他方を前記駆動源にクラッチを介して接続される副駆動輪とする4輪駆動車に搭載され、
前記主駆動輪から前記副駆動輪への駆動分岐位置に設けられ、クラッチ解放により前記副駆動輪への駆動力伝達系を、前記主駆動輪への駆動力伝達系から切り離す噛み合いクラッチと、
前記噛み合いクラッチよりも下流位置に設けられ、クラッチ締結容量に応じて前記駆動源からの駆動力の一部を前記副駆動輪へ配分すると共に、クラッチケースに収納される摩擦クラッチと、
前記噛み合いクラッチの締結/解放制御と前記摩擦クラッチの締結/解放制御を行うクラッチコントローラと、
を備えた4輪駆動車のクラッチ制御装置において、
前記クラッチケースは、前記摩擦クラッチを収納するクラッチ室と、前記クラッチ室とは仕切り壁を介して画成したオイル室と、前記クラッチ室と前記オイル室を連通し、前記摩擦クラッチの回転によって生じる遠心力により前記クラッチ室から前記オイル室へ潤滑オイルを流すオイル流路と、前記仕切り壁に設けられた開閉可能な流通口と、を有し、
前記クラッチコントローラは、前記噛み合いクラッチと前記摩擦クラッチを解放するディスコネクト2輪駆動モードの選択時、前記流通口を閉じて前記オイル室に前記潤滑オイルを貯留し、前記ディスコネクト2輪駆動モードの選択後、前記クラッチ室内の潤滑オイル温度が上昇するオイル撹拌条件が成立したとき、前記流通口を開いて前記オイル室から前記クラッチ室へと潤滑オイルを流入させる
ことを特徴とする4輪駆動車のクラッチ制御装置。 - 請求項1に記載された4輪駆動車のクラッチ制御装置において、
前記クラッチコントローラは、前記オイル撹拌条件の成立時、前記摩擦クラッチを締結する
ことを特徴とする4輪駆動車のクラッチ制御装置。 - 請求項2に記載された4輪駆動車のクラッチ制御装置において、
前記クラッチコントローラは、前記オイル撹拌条件の成立時、前記摩擦クラッチを完全締結状態にする
ことを特徴とする4輪駆動車のクラッチ制御装置。 - 請求項2又は請求項3に記載された4輪駆動車のクラッチ制御装置において、
前記仕切り壁に、前記流通口を開閉する開閉弁を設け、
前記開閉弁は、前記摩擦クラッチの解放方向へのストロークに連動して前記流通口を閉じる方向に駆動し、前記摩擦クラッチの締結方向へのストロークに連動して前記流通口を開く方向に駆動する
ことを特徴とする4輪駆動車のクラッチ制御装置。 - 請求項1から請求項4のいずれか一項に記載された4輪駆動車のクラッチ制御装置において、
前記クラッチコントローラは、前記オイル撹拌条件の成立後、前記クラッチ室内の潤滑オイル温度が低下したオイル撹拌停止条件が成立したとき、前記流通口を閉じて前記オイル室に潤滑オイルを貯留する
ことを特徴とする4輪駆動車のクラッチ制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/117,822 US9688141B2 (en) | 2014-02-27 | 2015-02-04 | Clutch control device for four-wheel drive vehicle |
CN201580009261.2A CN106062426B (zh) | 2014-02-27 | 2015-02-04 | 4轮驱动车的离合器控制装置 |
JP2016505123A JP6183535B2 (ja) | 2014-02-27 | 2015-02-04 | 4輪駆動車のクラッチ制御装置 |
EP15756056.6A EP3112726B1 (en) | 2014-02-27 | 2015-02-04 | Clutch control device for four-wheel drive vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-036741 | 2014-02-27 | ||
JP2014036741 | 2014-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015129410A1 true WO2015129410A1 (ja) | 2015-09-03 |
Family
ID=54008736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/053032 WO2015129410A1 (ja) | 2014-02-27 | 2015-02-04 | 4輪駆動車のクラッチ制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9688141B2 (ja) |
EP (1) | EP3112726B1 (ja) |
JP (1) | JP6183535B2 (ja) |
CN (1) | CN106062426B (ja) |
WO (1) | WO2015129410A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3217041A1 (en) * | 2016-03-09 | 2017-09-13 | Toyota Jidosha Kabushiki Kaisha | Lubricating system for engagement mechanism |
JP2017190855A (ja) * | 2016-04-15 | 2017-10-19 | 株式会社ジェイテクト | 駆動力伝達装置 |
KR20190123231A (ko) * | 2018-04-23 | 2019-10-31 | 도요타 지도샤(주) | 4륜 구동 차량 |
JP2021038808A (ja) * | 2019-09-03 | 2021-03-11 | 本田技研工業株式会社 | 車両用駆動装置 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8042642B2 (en) * | 2008-08-14 | 2011-10-25 | American Axle & Manufacturing, Inc. | Motor vehicle with disconnectable all-wheel drive system |
JP6168232B2 (ja) * | 2014-04-11 | 2017-07-26 | 日産自動車株式会社 | 4輪駆動車のクラッチ制御装置 |
CA2917373A1 (en) * | 2016-01-12 | 2017-07-12 | 2Low | Two wheel drive low range devices and systems |
PL3589857T3 (pl) * | 2017-03-03 | 2021-09-06 | Gkn Automotive Ltd. | Sposób i urządzenie do obsługi układu napędowego |
JP2019006173A (ja) * | 2017-06-21 | 2019-01-17 | 株式会社ジェイテクト | 補助駆動装置 |
US10207582B2 (en) * | 2017-06-30 | 2019-02-19 | Shaeffler Technologies Ag & Co. Kg | Differential assembly with clutch |
US10774883B2 (en) | 2018-06-06 | 2020-09-15 | Borgwarner Inc. | Passive wet clutch lube valve with a bailing system and transmission including the same |
SE1850961A1 (en) * | 2018-08-08 | 2019-10-01 | C Falk Remote Control Ab | Torque-limiting clutch comprising an electric control system |
US10927937B2 (en) | 2018-09-06 | 2021-02-23 | American Axle & Manufacturing, Inc. | Modular disconnecting drive module with torque vectoring augmentation |
US10704663B2 (en) | 2018-09-06 | 2020-07-07 | American Axle & Manufacturing, Inc. | Modular disconnecting drive module with torque vectoring augmentation |
CN112234770B (zh) * | 2019-07-15 | 2022-01-14 | 华为技术有限公司 | 油冷电机控制装置和方法 |
CN111791869B (zh) * | 2019-10-31 | 2021-10-08 | 长城汽车股份有限公司 | 一种智能四驱控制方法、系统及车辆 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007285459A (ja) * | 2006-04-18 | 2007-11-01 | Gkn ドライブライン トルクテクノロジー株式会社 | 動力伝達装置の潤滑構造 |
JP2009243577A (ja) * | 2008-03-31 | 2009-10-22 | Univance Corp | 駆動力配分装置 |
JP2011235757A (ja) * | 2010-05-10 | 2011-11-24 | Toyota Motor Corp | 四輪駆動車の制御装置 |
JP2013100079A (ja) * | 2011-10-19 | 2013-05-23 | Jtekt Corp | 駆動力伝達装置 |
JP2013132996A (ja) * | 2011-12-26 | 2013-07-08 | Aisin Aw Co Ltd | 車輌用駆動装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5260080B2 (ja) * | 2008-02-25 | 2013-08-14 | 株式会社ユニバンス | 四輪駆動車用駆動力伝達装置 |
US8215440B2 (en) | 2008-05-06 | 2012-07-10 | Getrag Driveline Systems, Gmbh | Drive train for a vehicle with connectable secondary axle |
US8388486B2 (en) * | 2009-08-11 | 2013-03-05 | Magna Powertrain Of America, Inc. | AWD vehicle with active disconnect coupling having multi-stage ball ramp |
JP2011105256A (ja) | 2009-11-20 | 2011-06-02 | Toyota Motor Corp | 動力伝達装置 |
JP5728861B2 (ja) * | 2010-09-15 | 2015-06-03 | 株式会社ジェイテクト | 四輪駆動車及びその制御装置 |
JP5720165B2 (ja) | 2010-10-05 | 2015-05-20 | 株式会社ジェイテクト | 四輪駆動車 |
DE112012001518T5 (de) | 2011-03-31 | 2014-01-09 | Jtekt Corp. | Antriebskraftverteilungssteuergerät und Fahrzeug mit Vierradantrieb |
JP2014514987A (ja) | 2011-04-28 | 2014-06-26 | ジャガー・ランド・ローバー・リミテッド | 自動車及び、自動車を制御する方法、動力伝達装置及び、動力伝達装置を制御する方法 |
US9688142B2 (en) * | 2014-02-27 | 2017-06-27 | Nissan Motor Co., Ltd. | Clutch control device for 4-wheel drive vehicle |
JP6064972B2 (ja) * | 2014-10-16 | 2017-01-25 | トヨタ自動車株式会社 | 車両用4輪駆動装置の制御装置 |
-
2015
- 2015-02-04 EP EP15756056.6A patent/EP3112726B1/en not_active Not-in-force
- 2015-02-04 WO PCT/JP2015/053032 patent/WO2015129410A1/ja active Application Filing
- 2015-02-04 JP JP2016505123A patent/JP6183535B2/ja not_active Expired - Fee Related
- 2015-02-04 US US15/117,822 patent/US9688141B2/en active Active
- 2015-02-04 CN CN201580009261.2A patent/CN106062426B/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007285459A (ja) * | 2006-04-18 | 2007-11-01 | Gkn ドライブライン トルクテクノロジー株式会社 | 動力伝達装置の潤滑構造 |
JP2009243577A (ja) * | 2008-03-31 | 2009-10-22 | Univance Corp | 駆動力配分装置 |
JP2011235757A (ja) * | 2010-05-10 | 2011-11-24 | Toyota Motor Corp | 四輪駆動車の制御装置 |
JP2013100079A (ja) * | 2011-10-19 | 2013-05-23 | Jtekt Corp | 駆動力伝達装置 |
JP2013132996A (ja) * | 2011-12-26 | 2013-07-08 | Aisin Aw Co Ltd | 車輌用駆動装置 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3217041A1 (en) * | 2016-03-09 | 2017-09-13 | Toyota Jidosha Kabushiki Kaisha | Lubricating system for engagement mechanism |
CN107178566A (zh) * | 2016-03-09 | 2017-09-19 | 丰田自动车株式会社 | 润滑装置 |
CN107178566B (zh) * | 2016-03-09 | 2019-11-05 | 丰田自动车株式会社 | 润滑装置 |
JP2017190855A (ja) * | 2016-04-15 | 2017-10-19 | 株式会社ジェイテクト | 駆動力伝達装置 |
KR20190123231A (ko) * | 2018-04-23 | 2019-10-31 | 도요타 지도샤(주) | 4륜 구동 차량 |
KR102135273B1 (ko) | 2018-04-23 | 2020-07-17 | 도요타 지도샤(주) | 4륜 구동 차량 |
JP2021038808A (ja) * | 2019-09-03 | 2021-03-11 | 本田技研工業株式会社 | 車両用駆動装置 |
JP7079755B2 (ja) | 2019-09-03 | 2022-06-02 | 本田技研工業株式会社 | 車両用駆動装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015129410A1 (ja) | 2017-03-30 |
EP3112726B1 (en) | 2018-08-22 |
US20170008396A1 (en) | 2017-01-12 |
EP3112726A4 (en) | 2017-04-12 |
CN106062426A (zh) | 2016-10-26 |
US9688141B2 (en) | 2017-06-27 |
EP3112726A1 (en) | 2017-01-04 |
CN106062426B (zh) | 2017-10-13 |
JP6183535B2 (ja) | 2017-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6183535B2 (ja) | 4輪駆動車のクラッチ制御装置 | |
JP6168232B2 (ja) | 4輪駆動車のクラッチ制御装置 | |
JP6112256B2 (ja) | 4輪駆動車のクラッチ制御装置 | |
US9783053B2 (en) | Clutch control device for 4-wheel drive vehicle | |
JP6354203B2 (ja) | 4輪駆動車のトランスファ装置 | |
US9845006B2 (en) | Clutch control device for 4-wheel drive vehicle | |
JP6123942B2 (ja) | 4輪駆動車のクラッチ制御装置 | |
JP2015217810A (ja) | 四輪駆動車両の制御装置 | |
CN104279319A (zh) | 混合动力车辆的油泵系统及用于控制该油泵系统的方法 | |
US10899351B2 (en) | Hybrid powertrain system and operation with transfer case in low gear | |
JP6287567B2 (ja) | 四輪駆動車両の制御装置 | |
JP6194815B2 (ja) | 4輪駆動車のトランスファ装置 | |
WO2023047587A1 (ja) | 4輪駆動車の走行駆動制御装置 | |
JP2012091571A (ja) | 車両の走行制御装置 | |
JP2015017624A (ja) | 車両用潤滑装置 | |
KR20150012817A (ko) | 4륜 구동 차량용 부변속기 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15756056 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016505123 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15117822 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015756056 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015756056 Country of ref document: EP |