WO2015127762A1 - 柔性显示基板母板及柔性显示基板的制造方法 - Google Patents

柔性显示基板母板及柔性显示基板的制造方法 Download PDF

Info

Publication number
WO2015127762A1
WO2015127762A1 PCT/CN2014/084087 CN2014084087W WO2015127762A1 WO 2015127762 A1 WO2015127762 A1 WO 2015127762A1 CN 2014084087 W CN2014084087 W CN 2014084087W WO 2015127762 A1 WO2015127762 A1 WO 2015127762A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
flexible
area
pattern layer
flexible substrate
Prior art date
Application number
PCT/CN2014/084087
Other languages
English (en)
French (fr)
Inventor
谢明哲
谢春燕
刘陆
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/437,180 priority Critical patent/US9577202B2/en
Publication of WO2015127762A1 publication Critical patent/WO2015127762A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8794Arrangements for heating and cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • At least one embodiment of the present invention is directed to a flexible display substrate mother board and a method of fabricating the flexible display substrate. Background technique
  • Flexible display technology has developed rapidly in recent years, which has led to great progress in the flexible display from the size of the screen to the quality of the display. Whether it is the Cathode Ray Tube (CRT), which is on the verge of disappearing, or the current mainstream liquid crystal display (LCD), it is essentially a rigid display. Compared with rigid displays, flexible displays have many advantages, such as impact resistance, shock resistance, light weight, small size, and portability.
  • CTR Cathode Ray Tube
  • LCD liquid crystal display
  • Flexible displays can be mainly divided into three types: electronic paper (flexible electrophoretic display), flexible organic light-emitting diode (OLED), and flexible LCD.
  • the method for preparing the display substrate generally comprises: forming a flexible substrate on the carrier substrate, then forming each film layer or the like constituting the display structure, and finally peeling the flexible substrate from the hard carrier substrate by laser irradiation. Summary of the invention
  • At least one embodiment of the present invention provides a flexible display substrate mother board and a method of manufacturing the flexible display substrate to avoid damage to the display element on the flexible substrate and avoid uneven separation when the flexible substrate and the carrier substrate are separated The phenomenon.
  • At least one embodiment of the present invention provides a flexible display substrate motherboard including: a carrier substrate; a heating pattern layer disposed on the carrier substrate, the heating pattern layer including a plurality of regions arranged at intervals And a flexible substrate disposed on the heating pattern layer, and a display element disposed on the flexible substrate.
  • At least one embodiment of the present invention provides a method of manufacturing a flexible display substrate, comprising: forming a heating pattern layer on a carrier substrate, wherein the heating pattern layer includes a spacer arrangement a plurality of area blocks; forming a flexible substrate on the substrate on which the heating pattern layer is formed, and forming a display element on the flexible substrate; and heating the flexible substrate with the heating pattern layer, and Cutting is performed, and the flexible substrate corresponding to the area block is peeled off from the carrier substrate and the heating pattern layer to form a flexible display substrate.
  • FIG. 1 is a schematic flow chart of manufacturing a flexible display substrate according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram 1 of a region block for forming a heating pattern layer on a carrier substrate according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram 2 of a region block for forming a heating pattern layer on a carrier substrate according to an embodiment of the present invention
  • FIG. 4 is a first schematic diagram of a corresponding relationship between a region block of a heating pattern layer and a flexible display substrate to be formed according to an embodiment of the present invention
  • FIG. 5 is a second schematic diagram of a corresponding relationship between a region block of a heating pattern layer and a flexible display substrate to be formed according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a display panel of a flexible passive OLED according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a display panel of a flexible active OLED according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram 1 of an array substrate of a flexible LCD according to an embodiment of the present invention
  • FIG. 8b is a schematic structural diagram of an array substrate of a flexible LCD according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a color filter substrate of a flexible LCD according to an embodiment of the present invention
  • FIG. 10 is a schematic structural diagram of a flexible display substrate motherboard according to an embodiment of the present invention. Reference mark:
  • the inventors of the present application have noticed that when the laser beam is used for the lift-off process, although the intensity and depth of focus of the laser beam are controlled, the pattern layers of the flexible substrate and the display element formed on the flexible substrate are very thin. The light of the laser beam still inevitably damages the display element. Further, since the beam area of the laser beam is limited, when the peeling is performed, the flexible substrate and the rigid carrier substrate are gradually peeled off by moving the laser beam, which may cause uneven peeling of the flexible substrate and the carrier substrate.
  • At least one embodiment of the present invention provides a method of fabricating a flexible display substrate. As shown in FIG. 1, the method includes the following steps.
  • heating pattern layer includes a plurality of area blocks arranged in a spaced relationship.
  • the area of the flexible substrate is larger than the area of the heating pattern layer.
  • the heating pattern layer is provided with a plurality of area blocks arranged at intervals, since each of the area blocks has a smaller area relative to the entire flexible substrate located above the heating pattern layer, it is possible to uniformly pass each of the area blocks The heat is applied to the flexible substrate above it, so that the separation effect and process parameters are more stable when the flexible substrate and the carrier substrate corresponding to each of the block blocks are separated.
  • the patterned design of the block it is also possible to control the separation zone and the non-separation zone of the flexible substrate, making the product design or process easier to master.
  • the area of the flexible substrate is larger than the area of the heating pattern layer, that is, after the flexible substrate corresponding to the area block is completely peeled off from the carrier substrate and the area block, it does not correspond to the area block.
  • the flexible substrate is still located on the carrier substrate, so that even if the flexible substrate corresponding to the block is in a stripped state, the flexible substrate can be embedded on the carrier substrate in consideration of the convenience of the subsequent process. Between the peeled flexible substrates, the thus peeled flexible substrate does not fall.
  • the heating pattern layer and the flexible substrate are located on the same side of the carrier substrate.
  • the flexible substrate may be heated first, then cut, or advanced, and then the cut flexible substrate may be heated.
  • the flexible substrate is heated by the heating pattern layer, only the flexible substrate and the carrier substrate corresponding to the region block are separated, and the region between any two region blocks is separated.
  • the corresponding flexible substrate is also in contact with the carrier substrate. Therefore, the carrier substrate and the flexible substrate corresponding to the region block can be completely peeled off only after the cutting is performed, thereby forming a flexible display substrate.
  • one of the area blocks may correspond to at least one flexible display substrate to be formed. Based on this, if one area block corresponds to a plurality of flexible display substrates, when cutting, cutting may be performed along the edge area of the area block, and then cutting along the area of the adjacent flexible display substrate, thereby finally forming A complete flexible display substrate.
  • the relationship between the flexible substrate and the carrier substrate corresponding to the region block is referred to as separation; After the cutting, the relationship between the carrier substrate and the flexible substrate corresponding to the block is referred to as peeling.
  • the flexible substrate and the carrier substrate corresponding to the area block are completely peeled off, a complete flexible display substrate needs to be formed, and therefore, it needs to be separated from the carrier substrate during cutting.
  • the flexible substrate is not provided with a peripheral region of any device for cutting, so as to ensure a complete flexible display substrate after cutting.
  • the dicing area can be set to include an area within the area block that corresponds to the flexible display substrate and that corresponds to the flexible display substrate.
  • the area of any of the area blocks needs to be slightly larger than the corresponding at least one flexible display to be formed.
  • the area of the substrate is such that the flexible substrate of the flexible display substrate to be formed corresponding to the area block is completely separated from the carrier substrate, and a certain cutting area can be reserved to ensure the integrity of the cutting.
  • any device includes a display element, and when a peripheral driving circuit is also formed on the flexible substrate, any device also includes a peripheral driving circuit.
  • the number of the area blocks is not limited, and may be determined according to the number of flexible display substrates that need to be formed.
  • the display element referred to in the embodiment of the present invention means that, according to the type of the flexible display substrate, corresponding to a minimum display unit of the flexible display substrate, an essential display function is realized, and a structure consisting of layers of patterns; the flexible display substrate comprising a plurality of display elements.
  • the display element when the flexible display substrate is an array substrate of a liquid crystal display (LCD), for a minimum display unit of the array substrate, the display element includes at least a thin film transistor and a pixel electrode. A common electrode or the like may also be included; when the flexible display substrate is a color film substrate of a flexible LCD, the display element includes a red or green or blue photoresist and a black matrix for a minimum display unit of the color filter substrate.
  • the flexible display substrate is an organic light-emitting diode (OLED) array substrate, the display element includes at least a cathode and an anode for a minimum display unit of the array substrate. And functional layers of organic materials.
  • OLED organic light-emitting diode
  • the display element may also include some necessary pattern layers such as a protective layer or the like or some pattern layers added to improve the display effect or overcome certain defects.
  • Embodiments of the present invention provide a method of manufacturing a flexible display substrate, the method comprising: forming a heating pattern layer on a carrier substrate, the heating pattern layer comprising a plurality of area blocks arranged at intervals; forming the heating Forming a flexible substrate on the substrate of the patterned layer, and forming a display element on the flexible substrate; heating the flexible substrate with the heating pattern layer, and performing cutting, corresponding to the area block
  • the flexible substrate is peeled off from the carrier substrate and the heating pattern layer to form a flexible display substrate.
  • the area of the flexible substrate is larger than the area of the heating pattern layer.
  • the thermal energy reaching the flexible substrate can be penetrated only to a certain thickness of the bottom of the flexible substrate in contact with the heating pattern layer, And the bottom of the flexible substrate corresponding to the area block of the heating pattern layer is separated from the carrier substrate by the decomposition of the heat-receiving material, thereby avoiding damage to the display element above the flexible substrate, and saving Energy consumption.
  • each of the region blocks of the heating pattern layer may be uniformly applied to apply a heat to the flexible substrate corresponding thereto, thereby making the flexible substrate corresponding to each of the region blocks Uniform separation from the carrier substrate is achieved.
  • the carrier substrate and the flexible layer corresponding to the region block can be sequentially ordered by heating to any of the region blocks. The substrate is separated to avoid separation unevenness in large-area separation.
  • the method for manufacturing the flexible display substrate may include the following steps:
  • a heating pattern layer is formed on the carrier substrate 10, and the heating pattern layer includes a plurality of area blocks 20 arranged at intervals.
  • the material of the block 20 may be, for example, a metal element, an alloy, a metal oxide or the like.
  • S102 as shown in Figs. 4 and 5, a flexible substrate 30 is formed on the substrate on which the heating pattern layer is formed, and a display element (not shown) is formed on the flexible substrate 30.
  • the heating pattern layer and the flexible substrate 30 are located on the same side of the carrier substrate 10; in one embodiment, the flexible substrate 30 has an area larger than the area of the heating pattern layer. .
  • the flexible substrate 30 may be a plastic film, and the material thereof may include, for example, at least one of a polyimide, a polycarbonate, a polyacrylate, a polyetherimide, or a combination of several.
  • the film may be formed by directly attaching a film made of the above material to the substrate on which the heating pattern layer is formed, or coating the material on the substrate on which the heating pattern layer is formed, thereby forming the Flexible substrate 30.
  • the flexible substrate 30 may be a single layer film or a multilayer film structure.
  • the flexible substrate 30 is heated by the heating pattern layer, and is cut, and the flexible substrate 30 corresponding to the region block 20 and the carrier substrate 10 are peeled off to form a flexible display substrate.
  • This step may be, for example, generating Joule heat by applying a voltage to the area block 20, and the generated Joule heat is applied to the flexible substrate 30 corresponding to the area block 20, thereby corresponding to the area block 20.
  • the flexible substrate 30 and the carrier substrate 10 are separated and form a flexible shape after cutting Display the substrate.
  • the thermal energy is converted into thermal energy applied to the flexible substrate 30 corresponding to the area block 20, under the action of thermal energy acting on the flexible substrate 30,
  • the adhesion of the flexible substrate 30 is lowered to separate the flexible substrate 30 from the carrier substrate 10 within a range corresponding to the region block 20.
  • the depth of thermal penetration of the bottom 30 is controlled, that is, after the electrical energy is converted into thermal energy, the thermal energy preferably only penetrates into the bottom of the flexible substrate 30 in contact with the block 20, thus minimizing the heat energy applied to the flexible substrate 30. Destruction occurs on the display element.
  • heating the flexible substrate 30 by using the heating pattern layer may be achieved by: using each of the area blocks 20 of the heating pattern layer, sequentially and each The flexible substrate 30 corresponding to the area block 20 is heated; or, by using all of the area blocks 20 of the heating pattern layer, the flexible substrate 30 corresponding to all of the area blocks 20 is simultaneously heated.
  • the heating pattern layer may be first divided into several large pattern blocks, each large pattern block includes the above several area blocks 20, and then the flexible substrate 30 corresponding to each pattern block is sequentially performed. heating.
  • the heating pattern layer further includes two convex portions 21 connected to each of the area blocks 20, the two convex portions 21 being used to give The area block 20 provides a voltage.
  • the metal block 20 is not limited to the two protruding portions 21, and the two or more protruding portions 21 may be connected, which is not limited herein.
  • the flexible substrate 30 can be made slightly smaller than the area of the carrier substrate 10, that is, the edge of the carrier substrate 10 is exposed, so that when the two protruding portions 21 are formed, the two can be made
  • the protruding portions 21 extend to the edge of the carrier substrate 10, i.e., are exposed outside the flexible substrate 30, such that, by directly contacting the two protruding portions 21 by an external power source, for example, a pulse can be applied to the region block 20. Voltage.
  • any of the area blocks 20 are rectangular in shape. Since most of the currently formed display substrates are rectangular, thus, the shape of the area block 20 is set to a rectangle, which facilitates the alignment of subsequent cuts and avoids damaging the integrity of the flexible display.
  • any of the area blocks 20 corresponds to a flexible display substrate of a predetermined size.
  • the flexible display substrate includes the flexible substrate 30 corresponding to the area block 20 and the display element formed on the flexible substrate.
  • a closed virtual line frame corresponds to a flexible display substrate of a predetermined size.
  • any of the area blocks 20 corresponds to two flexible display substrates of predetermined dimensions.
  • the flexible display substrate includes a portion of the flexible substrate 30 corresponding to the area block 20 and the display element formed on the flexible substrate.
  • a closed dashed box corresponds to two flexible display substrates of predetermined dimensions.
  • the board can be set according to the actual situation.
  • the display elements are formed on the flexible substrate 30, and may include, for example, the following cases.
  • the manufactured flexible display substrate is a display panel of a flexible passive OLED
  • an anode 401, a cathode 402, and the anode 401 and the cathode 402 are formed on the flexible substrate 30.
  • An organic material functional layer 403 is interposed, and of course, a flexible encapsulation layer 60 is also formed.
  • the organic material functional layer 403 may include at least an electron transport layer, a light emitting layer, and a hole transport layer.
  • the organic material functional layer 403 may further include an electron injection disposed between the cathode 402 and the electron transport layer. a layer, and a hole injection layer between the anode 401 and the hole transport layer.
  • any one of the anodes 401, a cathode 402 corresponding thereto, and an organic material functional layer 403 between the anodes 401 and the cathodes 402 constitute a display element 40.
  • a pixel isolation layer 50 may be disposed between any adjacent two display elements to isolate the display element 40.
  • the manufactured flexible display substrate is a display panel of a flexible active OLED
  • a thin film transistor 404, an anode 401, a cathode 402, and the anode 401 are formed on the flexible substrate 30.
  • the thin film transistor 404 includes a gate, a gate insulating layer, and A source layer, a source and a drain, the drain and the anode 401 are electrically connected.
  • the functional layer 403 constitutes a display element 40.
  • a pixel isolation layer 50 may also be disposed between any adjacent two display elements 40 to isolate the display element 40.
  • the thin film transistor is a semiconductor unit having a switching characteristic, and may be, for example, an amorphous silicon thin film transistor, a low temperature polysilicon thin film transistor, an oxide thin film transistor, or an organic thin film transistor, etc. limited. Based on this, the thin film transistor may be of a top gate type or a bottom gate type.
  • the order of forming the anode 401 and the cathode 402 is not limited, and the anode 401 may be formed first, and then the organic material functional layer 403 is formed, and then formed. Cathode 402; It is also possible to form cathode 402 first, then form organic material functional layer 403, and then form anode 401.
  • the flexible substrate is heated and cut by the heating pattern layer, on the display element 40, the necessary pattern layer, and The encapsulation layers are formed after formation.
  • the display panel of the OLED may further include a color film structure, which is specifically set according to the implementation, and details are not described herein again.
  • a thin film transistor 404 is formed on the flexible substrate, and is electrically connected to a drain of the thin film transistor 404.
  • Pixel electrode 405. As shown in Fig. 8b, the common electrode 406 can also be formed.
  • any of the thin film transistors 404, the pixel electrode 405 electrically connected to the drain of the thin film transistor 404 constitutes a display element 40.
  • the common electrode 406 is further formed on the array substrate, any one of the thin film transistors 404, the pixel electrode 405 electrically connected to the drain of the thin film transistor 404, and the common electrode 406 corresponding to the pixel electrode 405 A display element 40 is formed.
  • the flexible display substrate manufactured is a color filter substrate of a flexible LCD
  • a color layer and a black matrix 408 are formed on the flexible substrate 30; of course, a common electrode may also be formed.
  • 406 (not identified in Figure 9).
  • the color layer it includes a red photoresist 4071, a green photoresist 4072, and a blue photoresist 4073, and may also include a white photoresist.
  • the photoresist of any color and the black matrix 408 therearound constitute a display element 40.
  • the array substrate and the color filter substrate may be heated and cut, and then the array substrate and the color are further
  • the film substrate is subjected to a pair of cassettes, and after the display elements are formed, the cassette may be directly placed, and then the liquid crystal display panel after the cassette is heated, cut, and peeled off.
  • an electrophoretic display unit can also be formed on the flexible substrate 30, and is specifically set according to actual conditions, and details are not described herein again.
  • the surface roughness of the flexible substrate 30 is often larger than the surface roughness of the carrier substrate such as the glass substrate, so that in the case of bending, it is easy to cause unevenness and stress on the surface of the flexible substrate 30. This causes cracking or peeling of the film layer disposed on the flexible substrate 30. Therefore, in one embodiment, a film layer having a strong adhesion may be formed on the flexible substrate 30, and then the display element 40 is formed on the film layer, thereby solving the problem of roughness and avoiding Cracking or peeling of the film layer disposed on the flexible substrate.
  • At least one embodiment of the present invention provides a flexible display substrate motherboard 01, as shown in FIG. 10, comprising a carrier substrate 10; a heating pattern layer disposed on the carrier substrate 10, the heating pattern layer comprising A plurality of area blocks 20 arranged at intervals; a flexible substrate 30 disposed on the heating pattern layer, and a display element 40 disposed on the flexible substrate 30.
  • the area of the flexible substrate 30 is larger than the area of the heating pattern layer.
  • the flexible display substrate mother board 01 can only be heated after the flexible substrate 30 is heated by the heating pattern layer and cut.
  • the flexible substrate 30 and the carrier substrate 10 corresponding to the region block 20 of the heating pattern layer are completely peeled off, thereby forming one flexible display substrate. That is, the flexible display substrate includes a part or all of the flexible substrate 30 corresponding to the area block 20 and the display element 40 located above the flexible substrate 30.
  • the flexible substrate 30 located in a specific region above the region block 20 and the display member located above the flexible substrate 30 are referred to as a flexible display substrate to be formed.
  • one of the area blocks 20 may correspond to at least one flexible display substrate to be formed.
  • FIG. 10 Only a schematic structural view of the flexible display substrate motherboard 01 is schematically illustrated in FIG. 10, only to illustrate that the flexible display substrate motherboard 01 includes a plurality of flexible display substrates to be formed, and each is to be formed.
  • the flexible display substrate includes a flexible substrate 30 corresponding to the area block 20, and all of the display elements 40 located on the substrate; in FIG. 10, only one display element 40 is simply represented by one display element 40.
  • the display element 40 referred to in the embodiment of the present invention means that, according to the type of the flexible display substrate, corresponding to a minimum display unit of the flexible display substrate, an essential display function is realized. And a structure consisting of layers of patterns; the flexible display substrate comprises a plurality of display elements 40.
  • the display element 40 when the flexible display substrate is an array substrate of an LCD, the display element 40 includes at least a thin film transistor 404 and a pixel electrode 405 for a minimum display unit of the array substrate, and of course A common electrode 406 or the like may be included, as shown in FIG. 8b; when the flexible display substrate is a color filter substrate of the LCD, a minimum display for the color filter substrate is
  • the display element 40 when the flexible display substrate is an array substrate of an OLED, the display element 40 includes at least an anode 401 and a cathode 402 for a minimum display unit of the array substrate. And an organic material functional layer 403, as shown in FIGS. 6 and 7.
  • some necessary pattern layers such as a protective layer or the like or some pattern layers added to improve the display effect or some defects may be included.
  • At least one embodiment of the present invention provides a flexible display substrate mother board 01 including a carrier substrate 10; a heating pattern layer disposed on the carrier substrate 10, the heating pattern layer including a plurality of regions arranged at intervals Block 20; a flexible substrate 30 disposed on the heating pattern layer, and a display element 40 disposed on the flexible substrate 30.
  • the area of the flexible substrate 30 is larger than the area of the heating pattern layer.
  • the heat reaching the flexible substrate 30 can be infiltrated only to the flexible substrate 30 and the heating by controlling the heat applied to the flexible substrate 30 by the heating pattern layer. a certain thickness of the bottom portion that is in contact with the patterned layer, thereby The bottom portion of the flexible substrate 30 corresponding to the region block 20 of the heating pattern layer is separated from the carrier substrate 10 by the decomposition of the heat-receiving material, thereby avoiding damage to the display element 40 above the flexible substrate 30, and saving energy Consumption.
  • each of the region blocks 20 of the heating pattern layer may be hooked to apply heat to the corresponding flexible substrate 30, thereby making the corresponding to each of the region blocks 20.
  • the flexible substrate 30 and the carrier substrate 10 achieve uniform separation.
  • separation can be performed by heating to any of the region blocks 20, that is, the small area of the block can be first partitioned.
  • the carrier substrate 10 and the flexible substrate 30 corresponding to the area block 20 are separated, and then one flexible display substrate is formed by cutting, thereby avoiding uneven separation at the time of large-area separation.
  • the heating pattern layer may further include two convex portions 21 connected to each of the area blocks 20, and the two convex portions 21 are used for A voltage is supplied to the block of area.
  • the two protruding portions 21 are not limited to be connected, and two or more protruding portions 21 may be connected, which is not limited herein.
  • the flexible substrate 30 can be made slightly smaller than the area of the carrier substrate 10, that is, the edge of the carrier substrate 10 is exposed, so that when the two protruding portions 21 are formed, the two can be made
  • the protruding portions 21 extend to the edge of the carrier substrate 10, i.e., are exposed outside the flexible substrate 30, so that a voltage can be applied to the region block 20 by directly contacting the two protruding portions 21 by an external power source.
  • the material of the heating pattern layer comprises at least one of a metal element, an alloy, a metal oxide, or a combination of several.
  • any of the area blocks 20 are rectangular in shape. Since most of the currently formed display substrates are rectangular, the shape of the block 20 is rectangular, which facilitates the alignment of subsequent cuts and avoids the integrity of the flexible display.
  • any one of the area blocks 20 corresponds to a flexible display substrate of a predetermined size to be formed, and the flexible display substrate includes the flexible substrate 30 corresponding to the area block 20. And the display element 40 disposed on the flexible substrate.
  • a closed dashed box corresponds to a flexible display substrate of a predetermined size to be formed.
  • any one of the area blocks 20 corresponds to two flexible display substrates of a predetermined size to be formed, and the flexible display substrate includes a portion of the flexibility corresponding to the area block 20.
  • a closed dashed box corresponds to two flexible display substrates of a predetermined size to be formed. The board can be set according to the actual situation.
  • the flexible display substrate for example, the following cases may be included.
  • the flexible display substrate to be formed is a display panel of a flexible passive OLED, it includes an anode 401, a cathode 402, and the anode 401 disposed on the flexible substrate 30.
  • the organic material functional layer 403 between the cathodes 402, of course, is also provided with a flexible encapsulation layer 60.
  • the organic material functional layer 403 may include at least an electron transport layer, a light emitting layer, and a hole transport layer.
  • the organic material functional layer 403 may further include an electron injection disposed between the cathode 402 and the electron transport layer. a layer, and a hole injection layer between the anode 401 and the hole transport layer.
  • any one of the anodes 401, a cathode 402 corresponding thereto, and an organic material functional layer 403 between the anodes 401 and the cathodes 402 constitute a display element 40.
  • a pixel isolation layer 50 may be disposed between any adjacent two display elements to isolate the display element 40.
  • the flexible display substrate to be formed is a display panel of a flexible active OLED, it includes a thin film transistor 404, an anode 401, a cathode 402, and a location disposed on the flexible substrate 30.
  • the organic material functional layer 403 between the anode 401 and the cathode 402 is of course provided with a flexible encapsulation layer 60.
  • the thin film transistor 404 includes a gate, a gate insulating layer, an active layer, a source and a drain, and the drain and the anode 401 are electrically connected.
  • any one of the thin film transistors 404, an anode 401 electrically connected to the drain of the thin film transistor 404, a cathode corresponding to the anode 401, and an organic material function between the anode 401 and the cathode 402 Layer 403 forms a display element 40.
  • a pixel isolation layer 60 may also be disposed between any adjacent two display elements 40 to isolate the display element 40.
  • the thin film transistor is a semiconductor unit having switching characteristics, and for example, may be The amorphous silicon thin film transistor, the low temperature polysilicon thin film transistor, the oxide thin film transistor, or the organic thin film transistor is not limited herein. Based on this, the thin film transistor may be of a top gate type or a bottom gate type.
  • the order of setting the anode 401 and the cathode 402 is not limited, and the anode 401 may be formed first, then the organic material functional layer 403 is formed, and then formed. Cathode 402; It is also possible to form cathode 402 first, then form organic material functional layer 403, and then form anode 401.
  • the flexible substrate is heated and cut by the heating pattern layer, on the display element 40, the necessary pattern layer, and After the encapsulation layers are formed, the OLED display panel includes the above-mentioned film layer.
  • the OLED display panel when the light emitted by the organic material function layer 403 is white light, the OLED display panel may further include a color film structure, which is specifically set according to the implementation, and details are not described herein again.
  • the flexible display substrate to be formed is an array substrate of a flexible LCD, it includes a thin film transistor 404 disposed on the flexible substrate, and the thin film transistor 404 The drain electrode is electrically connected to the pixel electrode 405.
  • a common electrode 406 can also be included.
  • any of the thin film transistors 404, the pixel electrode 405 electrically connected to the drain of the thin film transistor 404 constitutes a display element 40.
  • the array substrate further includes the common electrode 406, any one of the thin film transistors 404, the pixel electrode 405 electrically connected to the drain of the thin film transistor 404, and the common electrode 406 corresponding to the pixel electrode 405 form a Display element 40.
  • the flexible display substrate to be formed is a color film substrate of a flexible LCD, it includes a color layer and a black matrix 408 disposed on the flexible substrate 30;
  • a common electrode 406 can be included.
  • the color layer it includes a red photoresist 4071, a green photoresist 4072, and a blue photoresist 4073, and may also include a white photoresist.
  • the photoresist of any color and the surrounding black matrix 408 constitute a display element 40.
  • the array substrate and the color filter substrate may be heated and cut, and then the array substrate and the color are further
  • the film substrate is subjected to a pair of boxes, and after the display elements are formed, the boxes are directly processed, and then The liquid crystal display panel after the cassette is heated, cut, and peeled off.
  • the flexible display substrate to be formed may also be a liquid crystal display panel behind the box of the LCD array substrate and the color film substrate.
  • the surface roughness of the flexible substrate 30 is often larger than the surface roughness of the carrier substrate such as the glass substrate, so that in the case of bending, it is easy to cause unevenness and stress on the surface of the flexible substrate 30. This causes cracking or peeling of the film layer disposed on the flexible substrate 30. Therefore, in one embodiment, a film layer having a strong adhesion can be disposed next to the flexible substrate 30, that is, the display element 40 is disposed on the film layer, so that the problem of roughness can be solved. Cracking or peeling of the film layer disposed on the flexible substrate is avoided.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonlinear Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Ceramic Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种柔性显示基板母板及柔性显示基板的制造方法,该方法包括:在承载基板(10)上形成加热用图案层,加热用图案层包括间隔排列的多个区域块(20);在形成有加热用图案层的基板上形成柔性基底(30),并在柔性基底(30)上形成显示元件(40);利用加热用图案层对柔性基底(30)进行加热,并进行切割,将与区域块对应的承载基板(10)和柔性基底(30)剥离,形成柔性显示基板。该方法可以在柔性基底(30)和承载基板(10)分离时,避免对位于柔性基底(30)上的显示元件造成损坏,并避免分离不均的现象。

Description

柔性显示基板母板及柔性显示基板的制造方法 技术领域
本发明至少一个实施例涉及一种柔性显示基板母板及柔性显示基板的制 造方法。 背景技术
柔性显示技术在近几年有了飞速的发展, 由此带动柔性显示器从屏幕的 尺寸到显示的质量都取得了很大进步。 无论是濒临消失的阴极射线管 ( Cathode Ray Tube,简称 CRT ),还是现今主流的液晶显示器( Liquid Crystal Display, 简称 LCD ), 本质上都属于刚性显示器。 与刚性显示器相比, 柔性 显示器具有诸多优点, 例如耐冲击, 抗震能力强, 重量轻, 体积小, 携带更 加方便等。
柔性显示器主要可分为三种: 电子纸(柔性电泳显示) 、 柔性有机电致 发光二极管 (Organic Light-Emitting Diode, 简称 OLED ) 、 以及柔性 LCD。 其显示基板的制备方法一般包括: 在承载基板上形成柔性基底, 然后再形成 构成显示结构的各膜层等, 最后通过激光照射法将柔性基底与硬质的承载基 板剥离。 发明内容
本发明的至少一个实施例提供一种柔性显示基板母板及柔性显示基板的 制造方法, 以在柔性基底和承载基板分离时, 避免对位于柔性基底上的显示 元件造成损坏, 并避免分离不均的现象。
一方面, 本发明至少一个实施例提供一种柔性显示基板母板, 其包括: 承载基板; 设置在所述承载基板上的加热用图案层, 所述加热用图案层包括 间隔排列的多个区域块; 以及设置在所述加热用图案层上的柔性基底, 和设 置在所述柔性基底上的显示元件。
另一方面, 本发明至少一个实施例提供一种柔性显示基板的制造方法, 其包括: 在承载基板上形成加热用图案层, 所述加热用图案层包括间隔排列 的多个区域块; 在形成有所述加热用图案层的基板上形成柔性基底, 并在所 述柔性基底上形成显示元件; 以及利用所述加热用图案层对所述柔性基底进 行加热, 并进行切割, 将与所述区域块对应的所述柔性基底与所述承载基板 和所述加热用图案层剥离, 形成柔性显示基板。
附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为本发明实施例提供的一种制造柔性显示基板的流程示意图; 图 2为本发明实施例提供的一种在承载基板上形成加热用图案层的区域 块的示意图一;
图 3为本发明实施例提供的一种在承载基板上形成加热用图案层的区域 块的示意图二;
图 4为本发明实施例提供的一种加热用图案层的区域块与待形成的柔性 显示基板的对应关系的示意图一;
图 5为本发明实施例提供的一种加热用图案层的区域块与待形成的柔性 显示基板的对应关系的示意图二;
图 6为本发明实施例提供的一种柔性无源 OLED的显示面板的结构示意 图;
图 7为本发明实施例提供的一种柔性有源 OLED的显示面板的结构示意 图;
图 8a为本发明实施例提供的一种柔性 LCD的阵列基板的结构示意图一; 图 8b 为本发明实施例提供的一种柔性 LCD 的阵列基板的结构示意图 二;
图 9为本发明实施例提供的一种柔性 LCD的彩膜基板的结构示意图; 图 10为本发明实施例提供的一种柔性显示基板母板的结构示意图。 附图标记:
01-柔性显示基板母板; 10-承载基板; 20-区域块; 21-凸出部分; 30-柔 性基底; 40-显示元件; 401-阳极; 402-阴极; 403-有机材料功能层; 404-薄 膜晶体管; 405-像素电极; 406-公共电极; 4071-红色光阻; 4072-绿色光阻; 4073-蓝色光阻; 408-黑矩阵; 50-像素隔离层; 60-柔性封装层。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图, 对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本申请的发明人注意到, 当激光束用于剥离处理时, 尽管会对激光束的 强度和聚焦深度进行控制, 但是由于柔性基底和在柔性基底上形成的显示元 件的各图案层都非常薄, 激光束的光还是不可避免地损坏显示元件。 此外, 由于激光束的光束面积有限, 在剥离时, 需通过移动激光束来将所述柔性基 底和硬质的承载基板逐渐剥离, 这可能导致柔性基底和所述承载基板剥离不 均的现象。
本发明至少一个实施例提供了一种柔性显示基板的制造方法, 如图 1所 示, 该方法包括如下步骤。
S01、 在承载基板上形成加热用图案层, 所述加热用图案层包括间隔排 列的多个区域块。
S02、 在形成有所述加热用图案层的基板上形成柔性基底, 并在所述柔 性基底上形成显示元件。
在一个实施例中, 所述柔性基底的面积大于所述加热用图案层的面积。 这里, 当加热用图案层釆用间隔排列的多个区域块时, 由于每个区域块相对 位于所述加热用图案层上方的整个柔性基底的面积较小, 因此通过每个区域 块可以均匀地将热量施加在其上方的柔性基底, 从而在与每个区域块对应的 柔性基底和承载基板分离时, 分离效果及工艺参数更为稳定。 此外, 藉由区 域块的图案化设计,也可以控制柔性基底的分离区与非分离区,使产品设计或 工艺过程更容易掌握。
另外, 由于所述柔性基底的面积大于所述加热用图案层的面积, 即: 在 与区域块对应的柔性基底与承载基板和区域块完全剥离后, 不与区域块对应 的柔性基底仍然位于承载基板上, 这样, 即便与区域块对应的柔性基底与承 载基板处于剥离的状态, 考虑到后续工艺的方便, 还可以将剥离后的柔性基 板嵌在承载基板上的未被剥离的柔性基底之间, 这样剥离后的柔性基板也不 会掉落。 此处, 所述加热用图案层和所述柔性基底位于所述承载基板的同一 侧。
S03、 利用所述加热用图案层对所述柔性基底进行加热, 并进行切割, 将与所述区域块对应的所述柔性基底与所述承载基板和所述加热用图案层剥 离, 形成柔性显示基板。
这里, 可以先对所述柔性基底进行加热, 然后再进行切割, 也可以先进 行切割, 然后再对切割后的柔性基底进行加热。
需要说明的是, 第一, 由于利用所述加热用图案层对所述柔性基底进行 加热后, 仅使与区域块对应的柔性基底和承载基板实现分离, 与任意两个区 域块之间的区域对应的柔性基底还与承载基板接触, 因此, 只有在进行切割 后, 才能使与所述区域块对应的承载基板和柔性基板完全剥离, 从而形成柔 性显示基板。
例如, 一个所述区域块可以对应至少一个待形成的柔性显示基板。 基于 此, 若一个区域块对应多个柔性显示基板, 则在切割时, 可以先沿该区域块 的边缘区域范围内进行切割, 然后沿相邻柔性显示基板的区域范围内进行切 割, 从而最终形成一个个完整的柔性显示基板。
此外, 本发明实施例中, 将切割前, 利用加热用图案层对所述柔性基底 进行加热后, 与所述区域块对应的所述柔性基底和承载基板的相互之间的关 系称为分离; 将切割后, 与所述区域块对应的所述承载基板和所述柔性基板 的相互之间的关系称为剥离。
第二, 本领域技术人员应该知道, 在将所述区域块对应的柔性基底和承 载基板完全剥离后, 需形成的是完整的柔性显示基板, 因此, 在切割时需在 与所述承载基板分离的所述柔性基底的不设置有任何器件的外围区域进行切 割, 这样才能保证切割后的是一个个完整的柔性显示基板。
在此基础上, 在一个实施例中, 可以将切割区域设定为包括对应柔性显 示基板之外且与所述柔性显示基板对应的所述区域块之内的区域。
例如, 任一个区域块的面积需略大于对应的待形成的至少一个柔性显示 基板的面积, 这样才能保证与所述区域块对应的待形成的柔性显示基板的柔 性基底与所述承载基板完全分离, 并且能预留出一定的切割区域, 而保证切 割的完整性。
这里,任何器件包括显示元件, 当在柔性基底上还形成外围驱动电路时, 任何器件也包括外围驱动电路。
第三, 本发明实施例中不对所述区域块的个数进行限定, 可以根据需要 形成的柔性显示基板的个数而定。
第四, 本发明实施例所指的显示元件是指, 根据所述柔性显示基板的类 型, 对应所述柔性显示基板的一个最小的显示单元来说, 实现相应显示功能 的必不可少的、 且由各层图案组成的结构; 所述柔性显示基板包括若干个显 示元件。
例如, 当所述柔性显示基板为柔性液晶显示器(Liquid Crystal Display , 简称 LCD )的阵列基板时, 则对于该阵列基板的一个最小显示单元来说, 该 显示元件至少包括薄膜晶体管、 像素电极, 当然还可以包括公共电极等; 当 所述柔性显示基板为柔性 LCD 的彩膜基板时, 则对于该彩膜基板的一个最 小显示单元来说, 该显示元件包括红色或绿色或蓝色光阻以及黑矩阵等; 当 所述柔性显示基板为有机电致发光二极管( Organic Light-Emitting Diode, 简 称 OLED ) 的阵列基板时, 则对于该阵列基板的一个最小显示单元来说, 该 显示元件至少包括阴极、 阳极和有机材料功能层。
当然除此之外, 显示元件还可以包括一些必要的图案层例如保护层等或 为改善显示效果或克服某些缺陷增加的一些图案层。
本发明实施例提供了一种柔性显示基板的制造方法, 该方法包括: 在承 载基板上形成加热用图案层,所述加热用图案层包括间隔排列的多个区域块; 在形成有所述加热用图案层的基板上形成柔性基底, 并在所述柔性基底上形 成显示元件; 利用所述加热用图案层对所述柔性基底进行加热,并进行切割, 将与所述区域块对应的所述柔性基底与所述承载基板和所述加热用图案层剥 离, 形成柔性显示基板。 在一个实施例中, 所述柔性基底的面积大于所述加 热用图案层的面积。
通过控制加热用图案层施加在所述柔性基底的热量, 可以使到达柔性基 底的热能仅渗透到柔性基底与所述加热用图案层接触的底部的一定厚度, 从 而在使与所述加热用图案层的区域块对应的所述柔性基底的底部由于受热材 料分解而与所述承载基板分离的基础上, 避免对柔性基底上方的显示元件造 成损坏, 并且可以节省能耗。
此外, 当对加热用图案层加热时, 所述加热用图案层的每个区域块可以 均勾的将热量施加在与之对应的柔性基底, 从而使与每个区域块对应的所述 柔性基板和所述承载基板实现均匀的分离。 在此基础上, 由于所述加热用图 案层的每个区域块都是相互独立的, 因此, 可以通过向任一个区域块进行加 热, 来分区块的依次使与区域块对应的承载基板和柔性基底分离, 从而避免 大面积分离时的分离不均。
在一个实施例中, 针对上述的描述, 示例的, 所述柔性显示基板的制造 方法, 可以包括如下步骤:
S101、 如图 2和图 3所示, 在承载基板 10上形成加热用图案层, 所述 加热用图案层包括间隔排列的多个区域块 20。
例如,所述区域块 20的材料例如可以为金属单质、合金、金属氧化物等。 S102、 如图 4和图 5所示, 在形成有所述加热用图案层的基板上形成柔 性基底 30, 并在所述柔性基底 30上形成显示元件(图中未标识出) 。 在一 个实施例中, 所述加热用图案层和所述柔性基底 30位于所述承载基板 10的 同一侧;在一个实施例中,所述柔性基底 30的面积大于所述加热用图案层的 面积。
所述柔性基底 30可以是塑料膜,其材料例如可以包括聚酰亚胺、聚碳酸 酯、 聚丙烯酸酯、 聚醚酰亚胺中的至少一种或几种的组合。 其形成方式可以 是直接在形成有所述加热用图案层的基板上贴附由上述材料制成的膜, 或在 形成有所述加热用图案层的基板上涂覆上述材料, 从而形成所述柔性基底 30。 此外, 柔性基底 30可以是单层膜或多层膜结构。
S103、 利用所述加热用图案层对所述柔性基底 30进行加热, 并进行切 割,将与所述区域块 20对应的所述柔性基底 30和所述承载基板 10剥离,形 成柔性显示基板。
本步骤例如可以是:通过向所述区域块 20施加电压来产生焦耳热,所产 生的焦耳热被施加于所述区域块 20对应的柔性基底 30, 从而将与所述区域 块 20对应的所述柔性基底 30和所述承载基板 10分离,并在切割后形成柔性 显示基板。
这里, 例如通过向所述区域块 20施加 10 150V的脉冲电压, 电能转换 成热能被施加于所述区域块 20对应的柔性基底 30, 在作用于所述柔性基底 30的热能的作用下, 所述柔性基底 30的粘附力降低, 从而在所述区域块 20 对应的范围内, 使柔性基底 30与承载基板 10的分离。 底 30的热渗透深度进行控制, 即: 电能转换成热能后, 该热能优选仅渗透到 柔性基底 30与所述区域块 20接触底部, 这样可以最小化地避免施加到所述 柔性基底 30的热能对所述显示元件产生破坏。
在本步骤中,利用所述加热用图案层对所述柔性基底 30进行加热,可以 通过以下几种方式实现: 利用所述加热用图案层的每个所述区域块 20, 依次 对与每个所述区域块 20对应的所述柔性基底 30进行加热; 或者, 利用所述 加热用图案层的所有所述区域块 20, 同时对与所有所述区域块 20对应的所 述柔性基底 30进行加热;或者,可以先将加热用图案层分为几个大的图案块, 每个大的图案块包括上述的几个区域块 20,然后依次对与每个图案块对应的 所述柔性基底 30进行加热。
以上只是提供了几种较优的加热方式, 当然, 其他加热的方式同样适用 于本发明实施例, 在此不对加热的方式^限定。
在一个实施例中, 如图 2至 5所示, 所述加热用图案层还包括与每个所 述区域块 20连接的两个凸出部分 21,所述两个凸出部分 21用于给所述区域 块 20提供电压。
当然, 本发明实施例中, 对于任一个所述金属区域块 20, 也并不限于连 接两个凸出部分 21, 也可以连接两个以上的凸出部分 21, 在此不做限定。
这里,在一个实施例中,可以使柔性基底 30略小于承载基板 10的面积, 即, 使所述承载基板 10的边缘露出, 这样在制作所述两个凸出部分 21时, 可以使该两个凸出部分 21延伸到承载基板 10的边缘, 即暴露于所述柔性基 底 30之外, 这样, 通过外部电源直接接触上述两个凸出部分 21, 便可以向 所述区域块 20施加例如脉冲电压。
基于上述描述, 在一个实施例中, 参考图 2和图 3所示, 任一个所述区 域块 20的形状均为矩形。 由于目前大部分成型的显示基板都为矩形状的, 因 此, 将区域块 20的形状设为矩形, 可以方便后续切割的对准,避免破坏柔性 显示的完整性。
在一个实施例中,参考图 4所示,任一个所述区域块 20对应一个预定尺 寸的柔性显示基板。所述柔性显示基板包括与所述区域块 20对应的所述柔性 基底 30和形成在所述柔性基底上的所述显示元件。在图 4中,一个封闭的虚 线框对应一个预定尺寸的柔性显示基板。
在一个实施例中,参考图 5所示,任一个所述区域块 20对应两个预定尺 寸的柔性显示基板。所述柔性显示基板包括与所述区域块 20对应的部分所述 柔性基底 30和形成在所述柔性基底上的所述显示元件。在图 5中,一个封闭 的虚线框对应两个预定尺寸的柔性显示基板。 板, 具体可以根据实际情况进行设定。
基于上述描述,在所述柔性基底 30上形成显示元件,例如可以包括如下 几种情况。
第一种, 如图 6所示, 当制造的柔性显示基板为柔性无源 OLED的显示 面板时, 在所述柔性基底 30上形成阳极 401、 阴极 402、 位于所述阳极 401 和所述阴极 402之间的有机材料功能层 403, 当然在此基础上, 还形成柔性 封装层 60。 对于所述有机材料功能层 403, 其可以至少包括电子传输层、 发 光层和空穴传输层。 为了能够提高所述电子和所述空穴注入发光层的效率, 在一个实施例中, 所述有机材料功能层 403还可以包括设置在所述阴极 402 与所述电子传输层之间的电子注入层, 以及在所述阳极 401与所述空穴传输 层之间的空穴注入层。
在图 6中,任一个阳极 401、 与之对应的一个阴极 402、 以及位于所述阳 极 401和所述阴极 402之间的有机材料功能层 403构成一个显示元件 40。此 夕卜, 参考图 6 所示, 任意相邻的两个显示元件之间可以设置像素隔离层 50 来隔离所述显示元件 40。
第二种, 如图 7所示, 当制造的柔性显示基板为柔性有源 OLED的显示 面板时, 在所述柔性基底 30上形成薄膜晶体管 404、 阳极 401、 阴极 402、 位于所述阳极 401和所述阴极 402之间的有机材料功能层 403, 当然在此基 础上, 还形成柔性封装层 60。 所述薄膜晶体管 404包括栅极、 栅绝缘层、 有 源层、 源极和漏极, 所述漏极和所述阳极 401电连接。
在图 7中, 任一个薄膜晶体管 404, 与所述薄膜晶体管 404的漏极电连 接的阳极 401,与该阳极 401对应的一个阴极 402,以及位于阳极 401和所述 阴极 402之间的有机材料功能层 403构成一个显示元件 40。 当然, 任意相邻 的两个显示元件 40之间也可以设置像素隔离层 50来隔离所述显示元件 40。
这里, 所述薄膜晶体管是一种具有开关特性的半导体单元, 例如可以是 非晶硅型薄膜晶体管、或低温多晶硅型薄膜晶体管、或氧化物型薄膜晶体管、 或有机物型薄膜晶体管等, 在此不做限定。 在此基础上, 所述薄膜晶体管可 以是顶栅型, 也可以是底栅型。
需要说明的是, 第一, 对于第一种和第二种情况, 不对所述阳极 401和 阴极 402的形成顺序进行限定, 可以是先形成阳极 401, 之后形成有机材料 功能层 403, 然后再形成阴极 402; 也可以是先形成阴极 402, 之后形成有机 材料功能层 403, 然后再形成阳极 401。 第二, 对于第一种和第二种情况, 由 于 OLED中材料的特殊性, 利用所述加热用图案层对所述柔性基底进行加热 并进行切割, 在显示元件 40、 必要的图案层、 以及封装层均形成后进行。 第 三, 当所述有机材料功能层 403发出的光为白光的情况下, OLED的显示面 板还可以包括彩膜结构, 具体根据实行情况进行设定, 在此不再赘述。
第三种情况, 如图 8a所示, 当制造的所述柔性显示基板为柔性 LCD的 阵列基板时, 在所述柔性基底上形成薄膜晶体管 404, 以及与所述薄膜晶体 管 404的漏极电连接的像素电极 405。 当然, 如图 8b所示, 也可以形成公共 电极 406。
在图 8a和图 8b中, 任一个薄膜晶体管 404, 与所述薄膜晶体管 404的 漏极电连接的像素电极 405构成一个显示元件 40。 当在所述阵列基板上还形 成所述公共电极 406时, 任一个薄膜晶体管 404, 与所述薄膜晶体管 404的 漏极电连接的像素电极 405, 以及与所述像素电极 405对应的公共电极 406 构成一个显示元件 40。
第四种情况, 如图 9所示, 当制造的所述柔性显示基板为柔性 LCD的 彩膜基板时, 在所述柔性基底 30上形成色层和黑矩阵 408; 当然, 也可以形 成公共电极 406 (图 9中未标识出)。 对于所述色层, 其包括红色光阻 4071、 绿色光阻 4072和蓝色光阻 4073, 也可以包括白色光阻。 在图 9中, 任一种颜色的光阻和其周围的所述黑矩阵 408构成一个显示 元件 40。
需要说明的是, 针对第三种和第四种情况, 在形成所述显示元件后, 可 以先将所述阵列基板和彩膜基板进行加热、 切割后, 再将所述阵列基板和所 述彩膜基板进行对盒, 也可以在形成所述显示元件后, 直接进行对盒, 然后 再将对盒后的液晶显示面板进行加热、 切割, 剥离。
此外,还可以在所述柔性基底 30上形成电泳显示单元,具体根据实际情 况进行设定, 在此不再赘述。
在上述基础上,考虑到柔性基底 30的表面粗糙度往往大于承载基板例如 玻璃衬底基板的表面粗糙度, 因此在弯折的情况下, 很容易因为柔性基底 30 表面的凹凸不平和应力作用而导致设置在所述柔性基底 30 上的膜层的破裂 或脱落。 因此, 在一个实施例中, 可以先在所述柔性基底 30上形成具有较强 附着力的膜层, 然后在该膜层上形成显示元件 40, 这样既可以解决粗糙度的 问题, 也可以避免设置在柔性基底上的膜层的破裂或脱落。
此外, 本领域技术人员应该明白, 本发明实施例中所有附图是所述柔性 显示基板制备过程的简略的示意图, 只为清楚描述本方案中与本发明点相关 的结构, 而其他的与本发明点无关的结构在附图中并未体现或只体现部分。
本发明至少一个实施例提供了一种柔性显示基板母板 01,如图 10所示, 其包括承载基板 10; 设置在所述承载基板 10上的加热用图案层, 所述加热 用图案层包括间隔排列的多个区域块 20;设置在所述加热用图案层上的柔性 基底 30, 和设置在所述柔性基底 30上的显示元件 40。 在一个实施例中, 所 述柔性基底 30的面积大于所述加热用图案层的面积。
需要说明的是, 第一, 根据本发明实施例提供的所述柔性显示基板母板 01,只有在利用所述加热用图案层对所述柔性基底 30进行加热,并进行切割 后, 才能将与所述加热用图案层的区域块 20对应的所述柔性基底 30和所述 承载基板 10完全剥离,从而形成一个个柔性显示基板。即所述柔性显示基板 包括与所述区域块 20对应的部分或全部柔性基底 30和位于所述柔性基底 30 上方的显示元件 40。
在此基础上, 由于形成所述柔性显示基板需要的仅是将所述柔性基底 30 和所述承载基板 10完全剥离, 因此, 对于所述柔性显示基板母板 01, 可以 将位于所述区域块 20上方的特定区域的柔性基底 30和位于所述柔性基底 30 上方的显示元件称为待形成的柔性显示基板。 这里, 在不同实施例中, 一个 所述区域块 20可以对应至少一个待形成的柔性显示基板。
第二,图 10中仅示意性的绘示出该柔性显示基板母板 01的结构示意图, 仅是为了说明该柔性显示基板母板 01包括多个待形成的柔性显示基板,而每 个待形成的柔性显示基板包括与区域块 20对应的柔性基底 30, 以及位于该 基底上的所有显示元件 40;在图 10中仅简单的用一个显示元件 40代表了所 有的显示元件 40。
第三,本发明实施例所指的显示元件 40是指,根据所述柔性显示基板的 类型, 对应所述柔性显示基板的一个最小的显示单元来说, 实现相应显示功 能的必不可少的、 且由各层图案组成的结构; 所述柔性显示基板包括若干个 显示元件 40。
例如, 参考图 8a所示, 当所述柔性显示基板为 LCD的阵列基板时, 则 对于该阵列基板的一个最小显示单元来说,该显示元件 40至少包括薄膜晶体 管 404、 像素电极 405, 当然还可以包括公共电极 406等, 如图 8b所示; 当 所述柔性显示基板为 LCD 的彩膜基板时, 则对于该彩膜基板的一个最小显
4073以及黑矩阵 408等,如图 9所示; 当所述柔性显示基板为 OLED的阵列 基板时,则对于该阵列基板的一个最小显示单元来说,该显示元件 40至少包 括阳极 401、 阴极 402和有机材料功能层 403, 如图 6和图 7所示。 当然除此 之外, 还可以包括一些必要的图案层例如保护层等或为改善显示效果或某些 缺陷增加的一些图案层。
本发明至少一个实施例提供了一种柔性显示基板母板 01,其包括承载基 板 10; 设置在所述承载基板 10上的加热用图案层, 所述加热用图案层包括 间隔排列的多个区域块 20;设置在所述加热用图案层上的柔性基底 30,和设 置在所述柔性基底 30上的显示元件 40。 在一个实施例中, 所述柔性基底 30 的面积大于所述加热用图案层的面积。
根据本发明实施例提供的所述柔性显示基板母板 01, 可以通过控制加热 用图案层施加在所述柔性基底 30的热量, 使到达柔性基底 30的热能仅渗透 到柔性基底 30与所述加热用图案层接触的底部的一定厚度,从而在使与所述 加热用图案层的区域块 20对应的所述柔性基底 30的底部由于受热材料分解 而与所述承载基板 10分离的基础上,避免对柔性基底 30上方的显示元件 40 造成损坏, 并且可以节省能耗。
此外, 当对加热用图案层加热时, 所述加热用图案层的每个区域块 20 可以均勾的将热量施加在与之对应的柔性基底 30, 从而使与每个区域块 20 对应的所述柔性基板 30和所述承载基板 10实现均匀的分离。 在此基础上, 由于所述加热用图案层的每个区域块 20都是相互独立的, 因此,可以通过向 任一个区域块 20进行加热,来进行分离, 即可以先分区块小面积的使与区域 块 20对应的承载基板 10和柔性基底 30分离,然后通过切割形成一个个柔性 显示基板, 从而避免大面积分离时的分离不均。
在一个实施例中, 如图 2至 5所示, 所述加热用图案层还可以包括与每 个所述区域块 20连接的两个凸出部分 21,所述两个凸出部分 21用于给所述 区域块提供电压。
当然, 本发明实施例中, 对于任一个所述区域块 20, 也并不限于连接两 个凸出部分 21, 也可以连接两个以上的凸出部分 21, 在此不做限定。
这里,在一个实施例中,可以使柔性基底 30略小于承载基板 10的面积, 即, 使所述承载基板 10的边缘露出, 这样在制作所述两个凸出部分 21时, 可以使该两个凸出部分 21延伸到承载基板 10的边缘, 即暴露于所述柔性基 底 30之外, 这样, 通过外部电源直接接触上述两个凸出部分 21, 便可以向 所述区域块 20施加电压。
在一个实施例中, 所述加热用图案层的材料包括金属单质、 合金、 金属 氧化物中的至少一种或几种的组合。
基于上述描述, 在一个实施例中, 参考图 2和图 3所示, 任一个所述区 域块 20的形状均为矩形。 由于目前大部分成型的显示基板都为矩形状的, 因 此, 将区域块 20的形状设为矩形, 可以方便后续切割的对准,避免破坏柔性 显示的完整性。
在一个实施例中,参考图 4所示,任一个所述区域块 20对应一个待形成 的预定尺寸的柔性显示基板,所述柔性显示基板包括与所述区域块 20对应的 所述柔性基底 30和设置在所述柔性基底上的所述显示元件 40。 在图 4中, 一个封闭的虚线框对应一个待形成的预定尺寸的柔性显示基板。 在一个实施例中,如图 5所示,任一个所述区域块 20对应两个待形成的 预定尺寸的柔性显示基板,所述柔性显示基板包括与所述区域块 20对应的部 分所述柔性基底 30和设置在所述柔性基底上的所述显示元件 40。在图 5中, 一个封闭的虚线框对应两个待形成的预定尺寸的柔性显示基板。 板, 具体可以根据实际情况进行设定。
基于上述描述, 对于待形成的柔性显示基板, 例如可以包括如下几种情 况。
第一种, 参考图 6所示, 当待形成的柔性显示基板为柔性无源 OLED的 显示面板时, 其包括设置在所述柔性基底 30上的阳极 401、 阴极 402、 位于 所述阳极 401和所述阴极 402之间的有机材料功能层 403, 当然在此基础上, 还设置有柔性封装层 60。 对于所述有机材料功能层 403, 其可以至少包括电 子传输层、 发光层和空穴传输层。 为了能够提高所述电子和所述空穴注入发 光层的效率, 在一个实施例中, 所述有机材料功能层 403还可以包括设置在 所述阴极 402与所述电子传输层之间的电子注入层, 以及在所述阳极 401与 所述空穴传输层之间的空穴注入层。
在图 6中,任一个阳极 401、 与之对应的一个阴极 402、 以及位于所述阳 极 401和所述阴极 402之间的有机材料功能层 403构成一个显示元件 40。此 夕卜, 参考图 6 所示, 任意相邻的两个显示元件之间可以设置像素隔离层 50 来隔离所述显示元件 40。
第二种, 参考图 7所示, 当待形成的柔性显示基板为柔性有源 OLED的 显示面板时,其包括设置在所述柔性基底 30上的薄膜晶体管 404、 阳极 401、 阴极 402、位于所述阳极 401和所述阴极 402之间的有机材料功能层 403, 当 然在此基础上, 还设置有柔性封装层 60。 所述薄膜晶体管 404包括栅极、 栅 绝缘层、 有源层、 源极和漏极, 所述漏极和所述阳极 401电连接。
在图 7中, 任一个薄膜晶体管 404, 与所述薄膜晶体管 404的漏极电连 接的阳极 401, 与该阳极 401对应的一个阴极, 以及位于阳极 401和所述阴 极 402之间的有机材料功能层 403构成一个显示元件 40。 当然, 任意相邻的 两个显示元件 40之间也可以设置像素隔离层 60来隔离所述显示元件 40。
这里, 所述薄膜晶体管是一种具有开关特性的半导体单元, 例如可以是 非晶硅型薄膜晶体管、或低温多晶硅型薄膜晶体管、或氧化物型薄膜晶体管、 或有机物型薄膜晶体管等, 在此不做限定。 在此基础上, 所述薄膜晶体管可 以是顶栅型, 也可以是底栅型。
需要说明的是, 第一, 对于第一种和第二种情况, 不对所述阳极 401和 阴极 402的设置顺序进行限定, 可以是先形成阳极 401, 之后形成有机材料 功能层 403, 然后再形成阴极 402; 也可以是先形成阴极 402, 之后形成有机 材料功能层 403, 然后再形成阳极 401。 第二, 对于第一种和第二种情况, 由 于 OLED中材料的特殊性, 利用所述加热用图案层对所述柔性基底进行加热 并进行切割, 在显示元件 40、 必要的图案层、 以及封装层均形成后进行, 因 此, OLED显示面板包括上述膜层。 第三, 当所述有机材料功能层 403发出 的光为白光的情况下, OLED显示面板还可以包括彩膜结构, 具体根据实行 情况进行设定, 在此不再赘述。
第三种情况,参考图 8a所示,当待形成的所述柔性显示基板为柔性 LCD 的阵列基板时, 其包括设置在所述柔性基底上的薄膜晶体管 404, 以及与所 述薄膜晶体管 404的漏极电连接的像素电极 405。 当然, 参考图 8b所示, 也 可以包括公共电极 406。
在图 8a和图 8b中, 任一个薄膜晶体管 404, 与所述薄膜晶体管 404的 漏极电连接的像素电极 405构成一个显示元件 40。 当所述阵列基板还包括所 述公共电极 406时, 任一个薄膜晶体管 404, 与所述薄膜晶体管 404的漏极 电连接的像素电极 405, 以及与所述像素电极 405对应的公共电极 406构成 一个显示元件 40。
第四种情况, 参考图 9所示, 当待形成的所述柔性显示基板为柔性 LCD 的彩膜基板时,其包括设置在所述柔性基底 30上的色层和黑矩阵 408;当然, 也可以包括公共电极 406。 对于所述色层, 其包括红色光阻 4071、 绿色光阻 4072和蓝色光阻 4073, 也可以包括白色光阻。
在图 9中, 任一种颜色的光阻和周围的所述黑矩阵 408构成一个显示元 件 40。
需要说明的是, 针对第三种和第四种情况, 在形成所述显示元件后, 可 以先将所述阵列基板和彩膜基板进行加热、 切割后, 再将所述阵列基板和所 述彩膜基板进行对盒, 也可以在形成所述显示元件后, 直接进行对盒, 然后 再将对盒后的液晶显示面板进行加热、 切割, 剥离。 也就是说, 待形成的柔 性显示基板也可以是 LCD阵列基板和彩膜基板对盒后的液晶显示面板。
在上述基础上,考虑到柔性基底 30的表面粗糙度往往大于承载基板例如 玻璃衬底基板的表面粗糙度, 因此在弯折的情况下, 很容易因为柔性基底 30 表面的凹凸不平和应力作用而导致设置在所述柔性基底 30 上的膜层的破裂 或脱落。 因此, 在一个实施例中, 可以紧挨所述柔性基底 30设置具有较强附 着力的膜层, 即: 将显示元件 40设置在该膜层上, 这样既可以解决粗糙度的 问题, 也可以避免设置在柔性基底上的膜层的破裂或脱落。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。
本申请要求于 2014年 2月 28日递交的中国专利申请第 201410073857.6 号的优先权, 在此全文引用上述中国专利申请公开的内容以作为本申请的一 部分。

Claims

权利要求书
1、 一种柔性显示基板母板, 包括:
承载基板;
设置在所述承载基板上的加热用图案层, 所述加热用图案层包括间隔排 列的多个区域块; 以及
设置在所述加热用图案层上的柔性基底, 和设置在所述柔性基底上的显 示元件。
2、根据权利要求 1所述的母板, 其中, 所述柔性基底的面积大于所述加 热用图案层的面积。
3、根据权利要求 1或 2所述的母板, 其中, 所述加热用图案层还包括与 每个所述区域块连接的至少两个凸出部分, 所述凸出部分用于给所述区域块 提供电压。
4、 根据权利要求 1-3任一所述的母板, 其中, 所述加热用图案层的材料 包括金属单质、 合金、 金属氧化物中的至少一种或几种的组合。
5、 根据权利要求 1-4任一所述的母板, 其中, 任一个所述区域块对应一 个待形成的预定尺寸的柔性显示基板; 所述柔性显示基板包括与所述区域块 对应的所述柔性基底和设置在所述柔性基底上的所述显示元件。
6、 根据权利要求 1-4任一所述的母板, 其中, 任一个所述区域块对应两 个或两个以上待形成的预定尺寸的柔性显示基板; 所述柔性显示基板包括与 所述区域块对应的部分所述柔性基底和设置在所述柔性基底上的所述显示元 件。
7、 一种柔性显示基板的制造方法, 包括:
在承载基板上形成加热用图案层, 所述加热用图案层包括间隔排列的多 个区域块;
在形成有所述加热用图案层的基板上形成柔性基底, 并在所述柔性基底 上形成显示元件; 以及
利用所述加热用图案层对所述柔性基底进行加热, 并进行切割, 将与所 述区域块对应的所述柔性基底与所述承载基板和所述加热用图案层剥离, 形 成柔性显示基板。
8、根据权利要求 7所述的方法, 其中, 所述柔性基底的面积大于所述加 热用图案层的面积。
9、根据权利要求 7或 8所述的方法, 其中, 所述利用所述加热用图案层 对所述柔性基底进行加热, 包括:
利用所述加热用图案层的每个所述区域块, 依次对与每个所述区域块对 应的所述柔性基底进行加热; 或者,
利用所述加热用图案层的所有所述区域块, 同时对与所有所述区域块对 应的所述柔性基底进行加热; 或者,
先将加热用图案层分为若干个大的图案块, 每个大的图案块包括若干个 所述区域块, 然后依次对与每个图案块对应的所述柔性基底进行加热。
10、 根据权利要求 7-9任一所述的方法, 其中, 所述利用所述加热用图 案层对所述柔性基底进行加热, 包括:
通过向所述区域块施加电压来产生焦耳热, 所产生的焦耳热被施加于所 述区域块对应的柔性基底。
11、 根据权利要求 7-10任一所述的方法, 其中, 所述加热用图案层还包 括与每个所述区域块连接的至少两个凸出部分, 所述凸出部分用于给所述区 域块提供电压。
12、 根据权利要求 7-11任一所述的方法, 其中, 任一个所述区域块对应 一个预定尺寸的柔性显示基板; 所述柔性显示基板包括与所述区域块对应的 所述柔性基底和形成在所述柔性基底上的所述显示元件。
13、 根据权利要求 7-11任一所述的方法, 其中, 任一个所述区域块对应 两个或两个以上预定尺寸的柔性显示基板; 所述柔性显示基板包括与所述区 域块对应的部分所述柔性基底和形成在所述柔性基底上的所述显示元件。
14、根据权利要求 7至 13任一项所述的方法, 其中, 切割区域包括对应 所述柔性显示基板之外、与所述柔性显示基板对应的所述区域块之内的区域。
PCT/CN2014/084087 2014-02-28 2014-08-11 柔性显示基板母板及柔性显示基板的制造方法 WO2015127762A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/437,180 US9577202B2 (en) 2014-02-28 2014-08-11 Flexible display substrate mother board and method of manufacturing flexible display substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410073857.6A CN103855171B (zh) 2014-02-28 2014-02-28 一种柔性显示基板母板及柔性显示基板的制造方法
CN201410073857.6 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015127762A1 true WO2015127762A1 (zh) 2015-09-03

Family

ID=50862616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084087 WO2015127762A1 (zh) 2014-02-28 2014-08-11 柔性显示基板母板及柔性显示基板的制造方法

Country Status (3)

Country Link
US (1) US9577202B2 (zh)
CN (1) CN103855171B (zh)
WO (1) WO2015127762A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681694A (zh) * 2013-12-06 2014-03-26 京东方科技集团股份有限公司 一种柔性显示基板及柔性显示器
CN103855171B (zh) 2014-02-28 2017-01-18 京东方科技集团股份有限公司 一种柔性显示基板母板及柔性显示基板的制造方法
CN104022062B (zh) * 2014-06-12 2016-08-17 京东方科技集团股份有限公司 一种柔性显示面板的制备方法
CN104485344B (zh) * 2014-12-08 2017-12-05 信利(惠州)智能显示有限公司 一种柔性显示器制备方法
CN104465479B (zh) * 2014-12-19 2017-03-01 京东方科技集团股份有限公司 柔性显示基板母板及柔性显示基板的制备方法
US9610893B2 (en) 2015-03-18 2017-04-04 Car1St Technologies, Llc Methods and systems for providing alerts to a driver of a vehicle via condition detection and wireless communications
US10328855B2 (en) 2015-03-18 2019-06-25 Uber Technologies, Inc. Methods and systems for providing alerts to a connected vehicle driver and/or a passenger via condition detection and wireless communications
JP2017134329A (ja) * 2016-01-29 2017-08-03 株式会社 オルタステクノロジー 液晶表示装置及びその製造方法
CN105845845B (zh) * 2016-04-14 2018-07-06 鄂尔多斯市源盛光电有限责任公司 一种粘接型阻隔膜的图形化方法、显示面板、显示装置
KR20180032742A (ko) * 2016-09-22 2018-04-02 삼성디스플레이 주식회사 플렉시블 디스플레이 패널 및 플렉시블 디스플레이 패널 벤딩 방법
CN106505152B (zh) * 2016-10-31 2019-07-12 武汉华星光电技术有限公司 柔性oled面板制作方法及柔性oled面板
CN106356380B (zh) * 2016-11-11 2019-05-31 深圳市华星光电技术有限公司 柔性tft基板及其制作方法
US10163994B2 (en) * 2017-03-30 2018-12-25 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. OLED panel manufacturing method and OLED panel
CN107146856A (zh) * 2017-05-11 2017-09-08 京东方科技集团股份有限公司 柔性显示母板及其制备方法、切割方法
CN108987612A (zh) * 2017-06-01 2018-12-11 京东方科技集团股份有限公司 掩膜版及其制造方法,柔性衬底剥离系统及柔性衬底剥离方法
CN107516666B (zh) * 2017-08-18 2020-01-10 武汉华星光电技术有限公司 一种柔性oled显示器件剥离方法及柔性oled显示器件
CN108682299B (zh) * 2018-07-24 2021-04-20 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
KR102536265B1 (ko) 2018-12-21 2023-05-25 삼성전자주식회사 폴더블 전자 장치
CN111653690B (zh) * 2020-06-18 2024-04-19 京东方科技集团股份有限公司 柔性显示基板及其制备方法、柔性显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120100647A1 (en) * 2010-10-22 2012-04-26 Samsung Mobile Display Co., Ltd. Method of manufacturing flexible display device
CN102683379A (zh) * 2011-03-10 2012-09-19 三星移动显示器株式会社 柔性显示装置及其制造方法
CN103681486A (zh) * 2013-12-06 2014-03-26 京东方科技集团股份有限公司 一种柔性显示基板的制造方法
CN103682177A (zh) * 2013-12-16 2014-03-26 深圳市华星光电技术有限公司 柔性oled面板的制作方法
CN103855171A (zh) * 2014-02-28 2014-06-11 京东方科技集团股份有限公司 一种柔性显示基板母板及柔性显示基板的制造方法
CN203812880U (zh) * 2014-02-28 2014-09-03 京东方科技集团股份有限公司 一种柔性显示基板母板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6911624B2 (en) * 2002-08-23 2005-06-28 Micron Technology, Inc. Component installation, removal, and replacement apparatus and method
CN101510020B (zh) * 2009-03-24 2010-09-15 天马微电子股份有限公司 Ito加热器及液晶显示器的加热方法
KR102021030B1 (ko) * 2013-06-07 2019-09-16 삼성디스플레이 주식회사 플렉서블 디스플레이 장치 및 그 제어방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120100647A1 (en) * 2010-10-22 2012-04-26 Samsung Mobile Display Co., Ltd. Method of manufacturing flexible display device
CN102683379A (zh) * 2011-03-10 2012-09-19 三星移动显示器株式会社 柔性显示装置及其制造方法
CN103681486A (zh) * 2013-12-06 2014-03-26 京东方科技集团股份有限公司 一种柔性显示基板的制造方法
CN103682177A (zh) * 2013-12-16 2014-03-26 深圳市华星光电技术有限公司 柔性oled面板的制作方法
CN103855171A (zh) * 2014-02-28 2014-06-11 京东方科技集团股份有限公司 一种柔性显示基板母板及柔性显示基板的制造方法
CN203812880U (zh) * 2014-02-28 2014-09-03 京东方科技集团股份有限公司 一种柔性显示基板母板

Also Published As

Publication number Publication date
US20160049601A1 (en) 2016-02-18
US9577202B2 (en) 2017-02-21
CN103855171B (zh) 2017-01-18
CN103855171A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
WO2015127762A1 (zh) 柔性显示基板母板及柔性显示基板的制造方法
EP2922089B1 (en) Manufacturing method for and substrate structure of flexible display
CN103811682B (zh) 切割柔性显示装置的方法及使用其制造柔性显示装置的方法
WO2018113006A1 (zh) 柔性oled显示面板的制作方法
WO2019037166A1 (zh) 柔性显示面板的制作方法及柔性显示面板
KR102023937B1 (ko) 박막트랜지스터 어레이 기판 및 그의 제조방법
US20210083187A1 (en) Circuit substrate
US20140353638A1 (en) Display device and method of manufacturing the same
JP2010224426A (ja) 表示装置
CN203812880U (zh) 一种柔性显示基板母板
KR20150043605A (ko) 유기 발광 표시 장치 및 유기 발광 표시 패널의 절단 방법
JP2008108482A (ja) 有機el表示装置
KR20190071795A (ko) Oled 기판 및 그 제조 방법
JP6591625B2 (ja) 樹脂フィルムの剥離方法、フレキシブル基板を有する電子デバイスの製造方法および有機el表示装置の製造方法ならびに樹脂フィルムの剥離装置
WO2019218635A1 (zh) 显示面板及其制作方法
JP2019020509A (ja) 表示装置および表示装置の製造方法
KR100496578B1 (ko) 일렉트로 루미네센스 표시 장치의 제조 방법
KR102087193B1 (ko) 유기 발광 표시 장치의 제조 방법 및 터치 패널의 제조 방법
WO2015188493A1 (zh) 柔性显示面板的制备方法
WO2021035537A1 (zh) 有机发光二极管显示基板及其制作方法和显示装置
US11018328B2 (en) Method and apparatus for manufacturing display substrate
CN110581143B (zh) 阵列基板及其制作方法以及显示面板
US20160358952A1 (en) Thin Film Transistor, Method for Fabricating the Same, and Array Substrate
JP2008268713A (ja) 表示装置およびその製造方法
KR102067422B1 (ko) 플렉서블 표시장치의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14437180

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/02/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14884234

Country of ref document: EP

Kind code of ref document: A1