WO2015125792A1 - 電気モータの回転量検出装置 - Google Patents

電気モータの回転量検出装置 Download PDF

Info

Publication number
WO2015125792A1
WO2015125792A1 PCT/JP2015/054344 JP2015054344W WO2015125792A1 WO 2015125792 A1 WO2015125792 A1 WO 2015125792A1 JP 2015054344 W JP2015054344 W JP 2015054344W WO 2015125792 A1 WO2015125792 A1 WO 2015125792A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
rotation
magnetic flux
flux density
magnet
Prior art date
Application number
PCT/JP2015/054344
Other languages
English (en)
French (fr)
Inventor
高橋 秀明
裕一郎 小菅
加藤 裕之
Original Assignee
曙ブレーキ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 曙ブレーキ工業株式会社 filed Critical 曙ブレーキ工業株式会社
Publication of WO2015125792A1 publication Critical patent/WO2015125792A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors of the kind having motors rotating step by step
    • H02P8/34Monitoring operation

Definitions

  • the present invention relates to a rotation amount detection device for an electric motor, and more particularly to a technique for detecting rotation of a motor using magnetism.
  • a rotation speed detection mechanism including a disk and a detector is attached to the rotation shaft of a DC drive motor.
  • Two magnets are mounted on the disc, and the Hall element that constitutes the detector detects the magnetism and outputs a pulse signal. By counting the pulse signals output from the Hall elements, the number of rotations of the DC drive motor can be grasped.
  • a torque called cogging torque is applied to a stepping motor and other various electric motors. That is, even when the exciting coil is in a non-excited state, torque is generated due to the magnetic attractive force acting between the rotor core of the motor and the permanent magnet of the stator.
  • the position in the rotational direction of the rotor in the non-excited state includes a position where the force balance is stable and an unstable position. These positions are determined according to the number of poles of the rotor and the stator.
  • an electric parking brake device for a vehicle when driven by an electric motor, the electric motor is moved by the same number of revolutions each time in order to move the movable mechanism between two types of positions, a braked state and a released state. Must be driven alternately in the forward direction and the reverse direction.
  • an extra pulse is included in the pulse signal indicating the rotation amount, a slight error between the count value of the number of pulses and the actual rotation amount accumulates, and the motor's grasp can be grasped.
  • the number of rotations is not accurate. For this reason, there is a possibility of affecting the proper operation of the electric parking brake device.
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to generate an extra pulse signal even when the rotor is stopped after moving in the reverse direction at the end of excitation of the electric motor.
  • An object of the present invention is to provide an electric motor rotation amount detection device capable of preventing this.
  • an electric motor rotation amount detection device is characterized by the following (1) to (7).
  • a magnetic detection device that detects a magnetic flux density of the magnetism emitted from the magnet rotating as the output shaft rotates, and outputs a pulse signal corresponding to the detected magnetic flux density;
  • the relationship between the rotation angle of the electric motor and the magnetic flux density detected by the magnetic detection device is the first when the pulse signal is switched from the first level to the second level according to the magnetic flux density from the magnet that rotates forward.
  • the magnet is caused by cogging torque. It is larger than the amount of change in magnetic flux density that accompanies rotation.
  • the electric motor rotation amount detection device Longer than the length along, The electric motor rotation amount detection device according to (3) above. (5) The magnet is magnetized so as to satisfy the relationship. The electric motor rotation amount detection device according to (2) above. (6) The magnet has a perfect circular shape or an elliptical shape when viewed in a direction along the axial center direction of the output shaft, and a vertex portion of each pole positioned in a direction in which the N pole and the S pole are arranged, Magnetized stronger than other parts, The electric motor rotation amount detection device according to (5) above.
  • a magnetic detection device that detects a magnetic flux density of the magnetism emitted from the magnet rotating as the output shaft rotates, and outputs a pulse signal corresponding to the detected magnetic flux density;
  • the relationship between the rotation angle of the electric motor and the magnetic flux density detected by the magnetic detection device is the electric motor when the pulse signal is switched from the first level to the second level according to the magnetic flux density from the magnet rotating in the forward direction.
  • Electric motor rotation amount detection device A difference ⁇ h between the first rotation angle of the electric motor and the second rotation angle of the electric motor when the pulse signal switches from the second level to the first level according to the magnetic flux density from the reversely rotating magnet Is larger than the rotation angle ⁇ c at which the electric motor rotates by cogging torque.
  • the difference between the first magnetic flux density and the second magnetic flux density is the magnetic flux density associated with the rotation of the magnet by the cogging torque.
  • the electric motor rotation amount detection device having the configuration (2) the relationship between the rotation angle of the electric motor and the magnetic flux density detected by the magnetic detection device can be realized by a single magnet. That is, there is no need to improve other parts or add new members.
  • the hysteresis range can be changed with a simple configuration.
  • the performance of the electric motor rotation amount detection device can be improved while suppressing an increase in cost.
  • the relationship between the rotation angle of the electric motor and the magnetic flux density detected by the magnetic detection device can be obtained only by changing the shape of the magnet. Can be realized.
  • the electric motor rotation amount detection device having the configurations of (5) and (6) above the existing magnet is magnetized to satisfy the above relationship without changing the shape of the existing magnet. It is possible to improve the performance of the rotation detection device for the electric motor while using the magnet.
  • the difference ⁇ h between the first rotation angle and the second rotation angle is larger than the rotation angle ⁇ c at which the electric motor rotates by cogging torque. It is possible to prevent an extra pulse from occurring. For this reason, the number of rotations of the motor can be grasped more accurately.
  • the electric motor rotation amount detection device of the present invention it is possible to prevent an extra pulse signal from being generated even when the rotor is stopped after moving in the reverse direction at the end of excitation of the electric motor. Is possible. Therefore, it is possible to correctly grasp the number of rotations of the electric motor.
  • FIG. 1A is a schematic cross-sectional view showing a configuration of a typical electric actuator.
  • FIG. 1B is an enlarged view of a part of the electric actuator.
  • FIG. 2A is a side view showing a part of FIG. 1B.
  • FIG. 2B is a front view showing a specific example of the shape of the rotation detecting permanent magnet.
  • FIG. 3 is a waveform diagram showing the relationship between the output signal, cogging torque, motor rotation angle, and magnetic flux density in the electric motor rotation amount detection device of the present embodiment.
  • FIG. 4 is a front view showing a specific example of the shape of the rotation detecting permanent magnet.
  • FIG. 5A is a schematic diagram illustrating an example of a magnetization pattern of a permanent magnet for rotation detection.
  • FIG. 5A is a schematic diagram illustrating an example of a magnetization pattern of a permanent magnet for rotation detection.
  • FIG. 5B is a schematic diagram illustrating an example of a magnetization pattern of a permanent magnet for rotation detection.
  • FIG. 6 is a waveform diagram showing the relationship between the output signal, cogging torque, motor rotation angle, and magnetic flux density in a general electric motor rotation amount detection device.
  • FIG. 7A is a state transition diagram showing a relationship between a rotation angle and a state change in an electric motor having a two-pole six-slot configuration.
  • FIG. 7B is a state transition diagram showing a relationship between a rotation angle and a state change in an electric motor having a two-pole six-slot configuration.
  • FIG. 8 is a state transition diagram showing the relationship between the change in the rotation angle of the electric motor and the output signal.
  • FIG. 9 is a state transition diagram showing the relationship between the change in the rotation angle of the electric motor and the output signal.
  • FIG. 1A is a schematic cross-sectional view showing a configuration of a typical electric actuator 10, and FIG. 1B is an enlarged view of a part of the electric actuator 10.
  • 2A is a side view showing a part of FIG. 1B, and
  • FIG. 2B is a front view showing a specific example of the shape of the permanent magnet for rotation detection.
  • the electric actuator 10 can be used for driving an electric parking brake device of an automobile, for example.
  • the electric actuator 10 includes an electric motor 11, a speed reducer 12, a coil spring 13, and an actuator output shaft 15.
  • a gear 16a is mounted on a motor output shaft 11a that rotates by driving of the electric motor 11, and the gear 16a is connected to the speed reducer 12 via an intermediate gear 16b.
  • a rotation detecting permanent magnet 21 is fixed to the motor output shaft 11a as shown in FIGS. 1B, 2A, and 2B.
  • the rotation detecting permanent magnet 21 rotates together with the motor output shaft 11a.
  • a Hall IC device 22 is fixed at a position facing the rotation detection permanent magnet 21.
  • the Hall IC device 22 is supported by the support member 17 on the housing of the electric motor 11.
  • the Hall IC device 22 since the Hall IC device 22 is disposed in the vicinity of the rotation detection permanent magnet 21, the magnetism of the rotation detection permanent magnet 21 can be detected. Further, when the N pole 21n and the S pole 21s facing the Hall IC device 22 are switched with the rotation of the rotation detecting permanent magnet 21, the output signal SG1 (see FIG. 3) output from the Hall IC device 22 is binary. Changes. Therefore, the number of rotations of the electric motor 11 can be grasped by counting the edges of the pulses of the output signal SG1.
  • the rotation detecting permanent magnet 21 is composed of an N pole 21n and an S pole 21s arranged adjacent to each other.
  • the rotation detecting permanent magnet 21 has a cross section close to an elliptical shape when viewed in the direction along the axial direction of the motor output shaft 11a, and has a length along the direction in which the N pole 21n and the S pole 21s are arranged. , Longer than the length along the direction orthogonal to the direction of arrangement.
  • the central part Pc of the N pole 21n and the S pole 21s protrudes outward, and the boundary part Pb located at the boundary between the N pole 21n and the S pole 21s is relatively sized. It is getting smaller.
  • the shape of the rotation detection permanent magnet 21 is designed in consideration of the distribution of magnetic flux density of the magnetism emitted from the rotation detection permanent magnet 21.
  • ⁇ Description of cogging torque> a torque called cogging torque acts. That is, even if the exciting coil of the electric motor is in a non-excited state, the torque is caused by the magnetic attractive force acting between the core of the rotor (rotor) of the motor and the permanent magnet of the stator (stator). appear.
  • the position in the rotational direction of the rotor in the non-excited state includes a position where the force balance is stable and an unstable position. These positions are determined according to the number of poles of the rotor and the stator.
  • FIG. 7A and FIG. 7B show the relationship between the actual rotation angle and the state change in an electric motor having a two-pole six-slot configuration.
  • FIGS. The relationship between the change in the rotation angle of the electric motor and the output signal SG1 output from the Hall IC device 22 is shown in FIGS.
  • FIG. 8 when the electric motor 11 is driven, the motor output shaft 11a rotates, and the rotation detecting permanent magnet 21 rotates accordingly.
  • the output signal SG1 of the Hall IC device 22 is on (ON) level. From the OFF level to the OFF level, or from the OFF level to the ON level. Specifically, as shown in FIG.
  • the output signal SG1 is turned off from the on (ON) level when the boundary located at the boundary between the north and south poles of the permanent magnet 21 for rotation detection crosses the Hall IC device 22. Switches to the (OFF) level or from the off level to the on level.
  • the boundary portion of the rotation detection permanent magnet 21 crosses the Hall IC device 22, and the N pole of the rotation detection permanent magnet 21 moves away from the Hall IC device 22, and the rotation detection permanent magnet 21.
  • the output signal SG1 of the Hall IC device 22 is switched from the on level to the off level, while the S pole of the rotation detecting permanent magnet 21 moves away from the Hall IC device 22 and detects the rotation.
  • the output signal SG1 of the Hall IC device 22 is switched from the off level to the on level.
  • the switching of the output signal SG1 can be designed by reversing the relationship between the on level and the off level by the design of the Hall IC device 22. That is, when the boundary portion of the rotation detection permanent magnet 21 crosses the Hall IC device 22, the N pole of the rotation detection permanent magnet 21 is away from the Hall IC device 22, and the S pole of the rotation detection permanent magnet 21 is the hole.
  • the output signal SG ⁇ b> 1 of the Hall IC device 22 is switched from the off level to the on level, while the south pole of the rotation detection permanent magnet 21 moves away from the Hall IC device 22 and the N of the rotation detection permanent magnet 21.
  • the output signal SG1 of the Hall IC device 22 may be switched from the on level to the off level.
  • FIG. 3 shows the relationship among the output signal, cogging torque, motor rotation angle, and magnetic flux density in the electric motor rotation amount detection device of the present embodiment.
  • FIG. 6 shows the relationship between the output signal, cogging torque, motor rotation angle, and magnetic flux density in a general electric motor rotation amount detection device in order to facilitate comparison between the present invention and the conventional example.
  • the cogging torque Tc changes periodically according to the rotation angle ⁇ of the electric motor 11.
  • the rotor 11r stops at a position other than the stable point Ps where the cogging torque Tc is the lowest, the rotor 11r further naturally rotates forward or backward toward any adjacent stable point Ps.
  • the angles +15 degrees, +45 degrees, and +75 degrees shown in FIGS. 7A and 7B are positions corresponding to the stable point Ps.
  • the position corresponding to the stable point Ps is determined according to the number of poles of the rotor and the stator.
  • the magnetic flux density Bs detected by the Hall IC device 22 depends on the rotation angle ⁇ as shown in the lower part of FIG. fluctuate.
  • the magnetic flux density Bs ′ detected by the Hall IC device has a sinusoidal waveform as shown in the lower part of FIG. In the case of the detection device, it differs from the case of a general electric motor rotation amount detection device in the following points.
  • the relationship between the rotation angle ⁇ of the electric motor 11 and the magnetic flux density Bs detected by the Hall IC device 22 is the rotation detection that rotates in the forward direction as shown in FIG.
  • the difference Ab from the second magnetic flux density Bs2 when the signal is switched from the off level to the on level (hereinafter referred to as a hysteresis range Ab) is the magnetic flux accompanying rotation of the rotation detecting permanent magnet 21 by cogging torque. It is larger than the amount of change in density.
  • the relationship between the rotation angle ⁇ of the electric motor 11 and the magnetic flux density Bs detected by the Hall IC device 22 depends on the magnetic flux density Bs from the rotation detecting permanent magnet 21 rotating in the forward direction, as shown in FIG.
  • the pulse signal changes from the off level to the on level in accordance with the first rotation angle ⁇ 1 of the electric motor 11 when the pulse signal switches from the on level to the off level and the magnetic flux density Bs from the rotation detecting permanent magnet 21 that rotates in the reverse direction.
  • the difference ⁇ h (hereinafter referred to as hysteresis rotation angle ⁇ h) with respect to the second rotation angle ⁇ 2 of the electric motor 11 when switching to is larger than the rotation angle ⁇ c at which the rotation detecting permanent magnet 21 rotates by cogging torque. It is.
  • the hysteresis rotation angle ⁇ h is a rotation angle range in which the change in the magnetic flux density Bs detected by the Hall IC device 22 is suppressed within the hysteresis range (hysteresis range Ab).
  • ⁇ c is an angle from a peak to a valley in the waveform of the cogging torque.
  • the output signal SG1 is next.
  • the Hall IC device 22 In order to rise from the off level to the on level, it is necessary for the Hall IC device 22 to detect a change in magnetic flux density exceeding the hysteresis range Ab shown in the lower part of FIG.
  • the change in the magnetic flux density exceeding the hysteresis range Ab is detected in the Hall IC device. 22 needs to be detected.
  • the output signal SG1 (CW) when the electric motor 11 rotates in the forward direction and the output signal SG1 (CCW) when the electric motor 11 rotates in the reverse direction are turned off from the on level.
  • a difference corresponding to the hysteresis rotation angle ⁇ h occurs at the rising position and the falling position where the level or off level is switched to the on level.
  • the hysteresis rotation angle ⁇ h is very small as shown in FIG.
  • the excitation ends at the rotational position of the point P01, and the rotor 11r rotates in the reverse direction by the rotation angle ⁇ c and moves to the adjacent stable point Ps1.
  • the output signal SG1 (CW) falls immediately before the end of excitation, and the output signal SG1 (CCW) rises because the magnetic flux density Bs detected by the Hall IC device 22 varies greatly due to the subsequent reverse rotation. . That is, when the rotor 11r is rotated in the reverse direction by the cogging torque, the output signal SG1 (CW) falls continuously and the output signal SG1 (CCW) rises continuously. This causes an error when counting pulse edges.
  • the magnetic flux density Bs is within the hysteresis rotation angle ⁇ h due to the influence of the shape of the rotation detection permanent magnet 21.
  • the change is very small. Specifically, the amount of change in the magnetic flux density Bs due to the rotation detecting permanent magnet 21 rotating by the cogging torque is smaller than the hysteresis range Ab in which the output of the Hall IC device 22 becomes hysteresis.
  • the hysteresis rotation angle ⁇ h is larger than the rotation angle ⁇ c at which reverse rotation occurs due to the influence of the cogging torque ( ⁇ c ⁇ h).
  • the amount of change in the magnetic flux density Bs accompanying rotation of the rotation detection permanent magnet 21 by the cogging torque is smaller than the hysteresis range Ab.
  • the shape of the rotation detection permanent magnet 21 is as shown in FIG. 2B.
  • the relationship between the rotation angle ⁇ of the electric motor 11 and the magnetic flux density Bs detected by the Hall IC device 22 shown in the lower part of FIG. 3 can be realized by the rotation detection permanent magnet 21 alone. That is, the present invention can be realized only by changing the shape of the permanent magnet 21 for rotation detection, and it is not necessary to improve other parts or add a new member. Therefore, the performance of the electric motor rotation amount detection device can be improved while suppressing an increase in cost.
  • the electric motor rotation amount detection device is an extremely simple approach compared to an approach in which the influence of cogging torque is eliminated by software in order to more accurately grasp the number of rotations of the motor. It can be applied to.
  • Such an electric motor rotation amount detection device of this embodiment is highly versatile and useful.
  • the second embodiment is a modification of the above-described first embodiment.
  • the rotation detecting permanent magnet having the shape shown in FIG. 21 was used.
  • the shape and magnetization pattern of the rotation detecting permanent magnet 21B are changed. Except for the rotation detecting permanent magnet 21B, the second embodiment is the same as the first embodiment, and a description thereof will be omitted.
  • FIG. 4 shows the shape of the rotation detecting permanent magnet 21B used in the second embodiment.
  • FIG. 4 is a front view showing a specific example of the shape of the rotation detecting permanent magnet.
  • the rotation detecting permanent magnet 21B has a cross section close to a perfect circle when viewed in a direction along the axial direction of the motor output shaft 11a.
  • the rotation detecting permanent magnet 21B is composed of a semicircular region in which the N pole 21n is formed and a semicircular region in which the S pole 21s is formed.
  • the rotation detecting permanent magnet 21B may have a cross section close to an elliptical shape when viewed in a direction along the axial direction of the motor output shaft 11a.
  • the rotation detecting permanent magnet 21B is composed of a region in which the cross section forming the N pole 21n is divided by half an ellipse and a region in which the cross section forming the S pole 21s is divided by half.
  • the N pole 21n and the S pole 21s are formed on the rotation detecting permanent magnet 21B of the present embodiment, the following magnetization pattern is used.
  • the top of each pole located in the direction in which the N and S poles are arranged is more strongly magnetized than the other parts.
  • the central portion Pc of the N pole 21n and the central portion Pc of the S pole 21s are locally magnetized so as to be stronger than other regions. As a result, the portion close to the boundary portion Pb is weaker than the central portion Pc.
  • FIG. 5A and 5B show examples of the magnetic flux density distribution related to the magnetization pattern of the rotation detection permanent magnet.
  • FIG. 5A shows a magnetization pattern used in this embodiment
  • FIG. 5B shows a general magnetization pattern. That is, in the case of a general magnetized pattern, as shown in FIG. 5B, the magnetic poles are magnetized so as to be evenly magnetized, whereas in the rotation detecting permanent magnet 21B of the present embodiment, The magnetic flux density at a position near the part Pc is high, and the magnetic flux density at a position near the boundary part Pb is low.
  • the change in the magnetic flux density Bs accompanying the rotation detection permanent magnet 21 ⁇ / b> B rotating by the cogging torque rather than the hysteresis range Ab is small, in other words, the hysteresis rotation angle ⁇ h is made larger than the rotation angle ⁇ c ( ⁇ c ⁇ h), an extra pulse can be prevented from occurring in the output signal SG1. For this reason, the number of rotations of the motor can be grasped more accurately.
  • the shape and the magnetization pattern of the rotation detection permanent magnet 21B are shown in FIGS. 4 and 5A.
  • the relationship between the rotation angle ⁇ of the electric motor 11 and the magnetic flux density Bs detected by the Hall IC device 22 shown in the lower part of FIG. 3 can be realized by the rotation detection permanent magnet 21B alone. That is, the present invention can be realized only by changing the design of the rotation detection permanent magnet 21B, and it is not necessary to improve other parts or add a new member.
  • the present invention can be implemented by applying magnetization that satisfies the relationship between the rotation angle ⁇ of 11 and the magnetic flux density Bs detected by the Hall IC device 22 to the existing permanent magnet for rotation detection. For this reason, the performance of the rotation amount detection device for the electric motor can be improved while utilizing the existing permanent magnet for rotation detection.
  • the hysteresis range can be changed with a simple configuration by the shape and magnetization pattern of the rotation detection permanent magnet 21B. Therefore, the performance of the electric motor rotation amount detection device can be improved while suppressing an increase in cost.
  • the rotation detection permanent magnets 21 and 21B radiate the magnetism satisfying the relationship between the rotation angle ⁇ of the magnetic field and the magnetic flux density Bs detected by the Hall IC device 22, but the present invention provides the magnetism satisfying the above relationship. It is not restricted to the form which the permanent magnets 21 and 21B for rotation detection radiate
  • the present invention may be any configuration as long as the Hall IC device 22 can detect the magnetic flux density Bs satisfying the above relationship according to the rotation angle ⁇ of the electric motor 11.
  • a shielding member that shields the magnetism or attenuates the strength may be attached to the permanent magnet for rotation detection to locally weaken the magnetism of the permanent magnet for rotation detection.
  • a shielding member it is necessary to prepare a shielding member, but a desired effect that the number of rotations of the motor can be grasped more accurately can be obtained.
  • the Hall IC device 22 is also provided. The magnetic flux density Bs satisfying the above relationship can be detected according to the rotation angle ⁇ of the electric motor 11. Even in this configuration, it is possible to obtain a desired effect that the number of rotations of the motor can be grasped more accurately.
  • the relationship between the rotation angle ( ⁇ ) of the electric motor and the magnetic flux density detected by the magnetic detection device is such that the pulse signal is at a first level (on level) according to the magnetic flux density from the magnet that rotates forward (CW).
  • the pulse signal is changed from the second level to the first level according to the first magnetic flux density (BS1) when switching from the second level (off level) to the second level (off level) and the magnetic flux density from the magnet rotating in the reverse direction (CCW).
  • the difference (Ab) from the second magnetic flux density (BS2) when switching to is greater than the amount of change in magnetic flux density caused by the rotation of the magnet by cogging torque.
  • the magnet emits magnetism that satisfies the relationship.
  • the magnet has a shape that satisfies the relationship.
  • the magnet has an elliptical shape when viewed in a direction along the axial direction of the output shaft, and the length along the direction in which the N and S poles are arranged is perpendicular to the arrangement direction. Longer than the length along, The apparatus for detecting a rotation amount of an electric motor according to the above [3].
  • the magnet is magnetized so as to satisfy the relationship.
  • the apparatus for detecting a rotation amount of an electric motor according to the above [2].
  • the magnet has a perfect circle shape or an ellipse shape when viewed in a direction along the axial direction of the output shaft, and the apex portion (center) of each pole located in the direction in which the N pole and the S pole are aligned.
  • Part Pc) is more strongly magnetized than the other part (boundary part Pb),
  • Magnets (rotation detection permanent magnets 21 and 21B) in which the N pole (21n) and the S pole (21s) are arranged so as to sandwich the output shaft (motor output shaft 11a) of the electric motor (11);
  • a magnetic detection device (Hall IC device 22) that detects a magnetic flux density (Bs) of magnetism radiated from the magnet rotating with the rotation of the output shaft and outputs a pulse signal (SG1) corresponding to the detected magnetic flux density. )When, With The relationship of the magnetic flux density detected by the magnetic detection device with respect to the rotation angle ( ⁇ ) of the electric motor is that the pulse signal is changed from the first level (on level) according to the magnetic flux density from the magnet rotating forward (CW).
  • the pulse signal is changed from the second level according to the first rotation angle ( ⁇ 1) of the electric motor when switching to the second level (off level) and the magnetic flux density from the magnet rotating in the reverse direction (CCW).
  • the difference (hysteresis rotation angle ⁇ h) from the second rotation angle ( ⁇ 2) of the electric motor when switching to the first level is larger than the rotation angle ( ⁇ c) at which the electric motor rotates by cogging torque.
  • the electric motor rotation amount detection device of the present invention it is possible to prevent an extra pulse signal from being generated even when the rotor is stopped after moving in the reverse direction at the end of excitation of the electric motor. Is possible.
  • the present invention that exhibits this effect is useful in the field related to a technique for detecting the rotation of a motor using magnetism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 電気モータ(11)の回転角(θ)とホールICデバイス(22)が検出する磁束密度(Bs)との関係は、順回転(CW)する回転検出用永久磁石(21、21B)からの磁束密度に応じてパルス信号がオンレベルからオフレベルに切り替わるときの第1の磁束密度(BS1)と、逆回転CCWする回転検出用永久磁石からの磁束密度に応じてパルス信号がオフレベルからオンレベルに切り替わるときの第2の磁束密度(BS2)との差(Ab)が、コギングトルクによって回転検出用永久磁石が回転することに伴う磁束密度の変化量よりも大きい。

Description

電気モータの回転量検出装置
 本発明は、電気モータの回転量検出装置に関し、特に磁気を利用してモータの回転を検出するための技術に関する。
 ステッピングモータなどの電気モータの駆動力を利用して駆動する機器がある。このような機器のなかには、電気モータの駆動量を検知するため、磁気を利用して電気モータの出力軸の回転量を検出するものがある。
 特許文献1の位置制御装置においては、直流駆動モータの回転軸に円板と検出器とで構成される回転数検出機構が取りつけられている。円板には2つの磁石が装着してあり、検出器を構成するホール素子が、磁気を検出してパルス信号を出力する。ホール素子が出力するパルス信号をカウントすることにより、直流駆動モータの回転した回数を把握することができる。
日本国特開平5-100745号公報
 ところで、例えばステッピングモータやその他の様々な電気モータには、コギングトルク(cogging torque)と呼ばれるトルクが作用する。すなわち、励磁コイルが非励磁状態であっても、モータの回転子のコアと、固定子の永久磁石との間に働く磁気吸引力に起因して、トルクが発生する。そして、非励磁状態における回転子の回転方向の位置については、力のバランスが安定した位置と、不安定な位置とがある。これらの位置については、回転子及び固定子の極数に応じて定まる。
 このため、電気モータを励磁して回転駆動した後、励磁を終了して電気モータの駆動を停止したとき、回転子の停止位置が不安定な位置であると円周方向にトルクが発生し、その停止位置から正転方向又は逆転方向に更に少し回転して安定な位置で停止する。したがって、励磁を終了したときの回転子の停止位置と、実際の回転子の停止位置とは必ずしも一致しない。
 特許文献1のように、電気モータの出力軸と共に回転する永久磁石と、その近傍に配置されたホール素子とを用いて回転量に応じたパルス信号を出力する場合には、電気モータの回転子の回転位置がある位置を横切る時に、ホール素子が磁気を検出してパルス信号が発生する。したがって、ホール素子が発生したパルス信号のパルス数からモータの回転回数を把握できる。
 ところが、電気モータの励磁を終了した時に、固定子が不安定な位置にあって、この位置から逆方向に少し回転してから安定な位置に停止した場合には、逆方向に回転する際に回転子の回転位置がある位置を横切り、ホール素子が磁気を検出して余分なパルス信号を発生する場合がある。このため、ホール素子が発生したパルス信号のパルス数からモータの回転回数を把握する場合には、余分に発生したパルスの分だけ、実際の回転回数との間に誤差が生じる。
 また、装置を小型化しようとする場合には、例えば特許文献1の場合、円板を小型化する必要があるため、2つの永久磁石を互いに隣接した位置に配置せざるを得ない。このような環境においては、電気モータの励磁を終了したときに回転子が逆方向に回転すると、余分なパルス信号がホール素子から出力される可能性がより高くなる。
 例えば、車両用の電動パーキングブレーキ装置を電気モータで駆動する場合、ブレーキをかけた状態と解除した状態との2種類の位置の間で可動機構を動かすために、毎回、同じ回転数だけ電気モータを正転方向及び逆転方向に交互に駆動する必要がある。このような用途において、回転量を表すパルス信号に余分なパルスが含まれていると、パルス数のカウント値と実際の回転量との間に生じる僅かな誤差が累積し、把握されるモータの回転回数が正確なものではなくなる。このため、電動パーキングブレーキ装置の適正な動作に影響を与える可能性がある。
 また、例えば、永久磁石の磁気を検出するホール素子の数を増やして、複数のホール素子を互いにずれた位置に配置すれば、余分に発生するパルスの影響を排除することも可能であるが、部品数が増え構造が複雑になるのでコストの増大に繋がる。
 本発明は、上述した事情に鑑みてなされたものであり、その目的は、電気モータの励磁終了時に回転子が逆方向に動いてから停止した場合であっても、余分なパルス信号が発生することを防止することが可能な電気モータの回転量検出装置を提供することにある。
 前述した目的を達成するために、本発明に係る電気モータの回転量検出装置は、下記(1)~(7)を特徴としている。
(1) 電気モータの出力軸を挟むようにN極及びS極が配置された磁石と、
 前記出力軸の回転に伴って回転する前記磁石から放射される磁気の磁束密度を検出し、検出した磁束密度に応じたパルス信号を出力する磁気検出デバイスと、
 を備え、
 前記電気モータの回転角と前記磁気検出デバイスが検出する磁束密度との関係は、順回転する前記磁石からの磁束密度に応じて前記パルス信号が第1レベルから第2レベルに切り替わるときの第1の磁束密度と、逆回転する前記磁石からの磁束密度に応じて前記パルス信号が前記第2レベルから前記第1レベルに切り替わるときの第2の磁束密度との差が、コギングトルクによって前記磁石が回転することに伴う磁束密度の変化量よりも大きいものである、
 電気モータの回転量検出装置。
(2) 前記磁石が、前記関係を満たす磁気を放射する、
 上記(1)に記載の電気モータの回転量検出装置。
(3) 前記磁石は、前記関係を満たす形状である、
 上記(2)に記載の電気モータの回転量検出装置。
(4) 前記磁石は、前記出力軸の軸心方向に沿う方向に視たときに楕円形状であって、N極及びS極が並ぶ方向に沿う長さが、該並ぶ方向に直交する方向に沿う長さよりも長い、
 上記(3)に記載の電気モータの回転量検出装置。
(5) 前記磁石には、前記関係を満たすように着磁が施されている、
 上記(2)に記載の電気モータの回転量検出装置。
(6) 前記磁石は、前記出力軸の軸心方向に沿う方向に視たときに真円形状または楕円形状であって、N極及びS極が並ぶ方向に位置する各極の頂点部が、他の部分よりも強い着磁が施されている、
 上記(5)に記載の電気モータの回転量検出装置。
(7) 電気モータの出力軸を挟むようにN極及びS極が配置された磁石と、
 前記出力軸の回転に伴って回転する前記磁石から放射される磁気の磁束密度を検出し、検出した磁束密度に応じたパルス信号を出力する磁気検出デバイスと、
 を備え、
 前記電気モータの回転角に対する前記磁気検出デバイスが検出する磁束密度の関係は、順回転する前記磁石からの磁束密度に応じて前記パルス信号が第1レベルから第2レベルに切り替わるときの前記電気モータの第1の回転角と、逆回転する前記磁石からの磁束密度に応じて前記パルス信号が前記第2レベルから前記第1レベルに切り替わるときの前記電気モータの第2の回転角との差θhが、コギングトルクによって前記電気モータが回転する回転角θcよりも大きいものである、
 電気モータの回転量検出装置。
 上記(1)の構成の電気モータの回転量検出装置によれば、第1の磁束密度と第2の磁束密度の差(ヒステリシスの範囲)がコギングトルクによって磁石が回転することに伴う磁束密度の変化量よりも大きいことにより、余分なパルスが生じることを防止することができる。このため、モータの回転回数をより正確に把握することができる。
 上記(2)の構成の電気モータの回転量検出装置によれば、上述した電気モータの回転角と磁気検出デバイスが検出する磁束密度との関係を、磁石単体で実現することができる。つまり、他の部品を改良することも、新たな部材を追加する必要もない。また、簡易な構成によってヒステリシス範囲を変化させることができる。このため、電気モータの回転量検出装置の性能をコストの増大を抑えつつ向上させることができる。
 上記(3)及び(4)の構成の電気モータの回転量検出装置によれば、磁石の形状を変更するだけで、上述した電気モータの回転角と磁気検出デバイスが検出する磁束密度との関係を実現することができる。
 上記(5)及び(6)の構成の電気モータの回転量検出装置によれば、既存の磁石の形状を変更することなく、上記の関係を満たす着磁を既存の磁石に施すことにより、既存の磁石をも利用しつつ、電気モータの回転量検出装置の性能を向上させることができる。
 上記(7)の構成の電気モータの回転量検出装置によれば、第1の回転角と第2の回転角との差θhがコギングトルクによって電気モータが回転する回転角θcよりも大きいことにより、余分なパルスが生じることを防止することができる。このため、モータの回転回数をより正確に把握することができる。
 本発明の電気モータの回転量検出装置によれば、電気モータの励磁終了時に回転子が逆方向に動いてから停止した場合であっても、余分なパルス信号が発生するのを防止することが可能である。したがって、電気モータの回転回数を正しく把握することが可能になる。
 以上、本発明について簡潔に説明した。更に、以下に説明される発明を実施するための形態(以下、「実施形態」という。)を添付の図面を参照して通読することにより、本発明の詳細は更に明確化されるであろう。
図1Aは代表的な電動アクチュエータの構成を示す、概略的な断面図である。 図1Bは、この電動アクチュエータの一部分を拡大した拡大図である。 図2Aは図1Bの一部分を表す側面図である。 図2Bは回転検出用永久磁石の形状の具体例を示す正面図である。 図3は、本実施形態の電気モータの回転量検出装置における出力信号、コギングトルク、モータ回転角と磁束密度との関係を表す波形図である。 図4は、回転検出用永久磁石の形状の具体例を示す正面図である。 図5Aは、回転検出用永久磁石の着磁パターンの例を示す模式図である。 図5Bは、回転検出用永久磁石の着磁パターンの例を示す模式図である。 図6は、一般的な電気モータの回転量検出装置における出力信号、コギングトルク、モータ回転角と磁束密度との関係を表す波形図である。 図7Aは、2極6スロット構成の電気モータにおける回転角と状態変化との関係を表す状態遷移図である。 図7Bは、2極6スロット構成の電気モータにおける回転角と状態変化との関係を表す状態遷移図である。 図8は、電気モータの回転角の変化と出力信号との関係を示す状態遷移図である。 図9は、電気モータの回転角の変化と出力信号との関係を示す状態遷移図である。
 本発明の電気モータの回転量検出装置に関する具体的な実施形態について、各図を参照しながら以下に説明する。
<第1実施形態>
 本実施形態では、図1及び図2に示した電動アクチュエータ10に本発明を適用する場合について説明する。
 <機構部の構成の説明>
 図1Aは代表的な電動アクチュエータ10の構成を示す概略的な断面図、図1Bは、電動アクチュエータ10の一部分を拡大した拡大図である。また、図2Aは図1Bの一部分を表す側面図、図2Bは回転検出用永久磁石の形状の具体例を示す正面図である。この電動アクチュエータ10は、例えば自動車の電動パーキングブレーキ装置を駆動するために利用することができる。
 図1Aに示すように、電動アクチュエータ10には電気モータ11、減速機12、コイルばね13、及びアクチュエータ出力軸15が備わっている。また、図1Bに示すように、電気モータ11の駆動により回転するモータ出力軸11aにはギヤ16aが装着され、このギヤ16aが中間ギア16bを介して減速機12と連結されている。
 したがって、電気モータ11の駆動によりモータ出力軸11aが回転すると、この駆動力がギヤ16a及び中間ギヤ16bを介して減速機12に伝達され、図1Bに示すねじ機構14が駆動する。このねじ機構14の駆動により、アクチュエータ出力軸15が軸方向に沿って図1における左右方向に移動する。そのため、電気モータ11を駆動する際の回転回数に基づき、アクチュエータ出力軸15の軸方向に沿う移動量を把握することができる。
 電気モータ11の回転回数を検出するために、図1B、図2A、図2Bに示すように、モータ出力軸11aには回転検出用永久磁石21が固定されている。この回転検出用永久磁石21は、モータ出力軸11aと共に回動する。また、回転検出用永久磁石21と対向する位置には、ホールICデバイス22が固定されている。ホールICデバイス22は支持部材17で電気モータ11の筺体に支持されている。
 また、図2A、図2Bに示すように、ホールICデバイス22は回転検出用永久磁石21に近接した状態で配置されているので、回転検出用永久磁石21の磁気を検出することができる。また、回転検出用永久磁石21の回転に伴ってホールICデバイス22と対向するN極21n、S極21sが切り替わる時に、ホールICデバイス22から出力される出力信号SG1(図3参照)が二値的に変化する。したがって、出力信号SG1のパルスのエッジをカウントすることにより、電気モータ11の回転回数を把握することができる。
 <回転検出用永久磁石21の形状の説明>
 回転検出用永久磁石21は、図2Bに示すように、互いに隣接する状態で配置されたN極21n、S極21sで構成されている。回転検出用永久磁石21は、モータ出力軸11aの軸心方向に沿う方向に視たときに楕円形状に近い断面を有しており、N極21n及びS極21sが並ぶ方向に沿う長さが、該並ぶ方向に直交する方向に沿う長さよりも長い。このため、回転検出用永久磁石21は、N極21n、S極21sの中央部Pcは外側に突出しており、N極21n、S極21sの境目に位置する境界部Pbは相対的に寸法が小さくなっている。このような回転検出用永久磁石21の形状は、回転検出用永久磁石21が放射する磁気の磁束密度の分布を考慮して設計されている。回転検出用永久磁石21を上述の形状にすることにより、ホールICデバイス22は、図3の下段に示す、電気モータ11の回転角θとホールICデバイス22が検出する磁束密度Bsとの関係を満たす磁束密度Bsを検出することができる。電気モータ11の回転角θとホールICデバイス22が検出する磁束密度Bsとの関係については後で詳細に説明する。
 <コギングトルクの説明>
 様々な電気モータにおいては、コギングトルク(cogging torque)と呼ばれるトルクが作用する。すなわち、電気モータの励磁コイルが非励磁状態であっても、モータの回転子(ロータ)のコアと、固定子(ステータ)の永久磁石との間に働く磁気吸引力に起因して、トルクが発生する。そして、非励磁状態における回転子の回転方向の位置については、力のバランスが安定した位置と、不安定な位置とがある。これらの位置については、回転子及び固定子の極数に応じて定まる。
 このため、電気モータを励磁して回転駆動した後、励磁を終了して電気モータの駆動を停止したとき、回転子の停止位置が不安定な位置であると円周方向にトルクが発生し、その停止位置から正転方向又は逆転方向に更に少し回転して安定な位置で停止する。したがって、励磁を終了したときの回転子の停止位置と、実際の回転子の停止位置とは必ずしも一致しない。
 <実際のコギングトルクとモータ回転角との関係>
 2極6スロット構成の電気モータにおける実際の回転角と状態変化との関係を図7A、図7Bに示す。
 例えば、電気モータ11を励磁して順方向(時計回り:CW)に駆動し、ロータ11rの回転角が0度、+15度、+30度と増大する際に、ロータ11rが丁度+30度の位置で励磁を終了して停止した場合、+30度の位置では不安定な状態であるため円周方向にトルクが発生する。このため、ロータ11rは、円周方向のトルクに従い、安定した位置である+45度、又は+15度の位置に非励磁のまま自然に移動する。+45度の位置に移動する場合は駆動方向に対して順方向であるのに対し、+15度の位置に移動する場合は駆動方向と逆方向(反時計回り:CCW)に戻ることになる。同様に、丁度+60度の位置で励磁を終了して停止した場合、+60度の位置では不安定な状態であるため円周方向にトルクが発生する。このため、ロータ11rは、円周方向のトルクに従い、安定した位置である+75度、又は+45度の位置に非励磁のまま自然に移動する。+75度の位置に移動する場合は駆動方向に対して順方向であるのに対し、+45度の位置に移動する場合は駆動方向と逆方向(反時計回り:CCW)に戻ることになる。
 <電気モータの回転角の変化と出力信号との関係>
 電気モータの回転角の変化と、ホールICデバイス22から出力される出力信号SG1との関係を図8及び図9に示す。図8に示すように、電気モータ11を駆動するとモータ出力軸11aが回転し、それに伴って回転検出用永久磁石21が回転する。そして、回転検出用永久磁石21に近接した位置に配置されているホールICデバイス22に回転検出用永久磁石21が及ぼす磁気が変化するため、ホールICデバイス22の出力信号SG1がオン(ON)レベルからオフ(OFF)レベルに、又はオフレベルからオンレベルに二値的に変化する。具体的には、図8のように、回転検出用永久磁石21のN極、S極の境目に位置する境界部がホールICデバイス22を横切る時に、出力信号SG1がオン(ON)レベルからオフ(OFF)レベルに、又はオフレベルからオンレベルに切り替わる。
 尚、本実施形態では、回転検出用永久磁石21の境界部がホールICデバイス22を横切る場合であって、回転検出用永久磁石21のN極がホールICデバイス22から遠ざかり回転検出用永久磁石21のS極がホールICデバイス22に近づくとき、ホールICデバイス22の出力信号SG1がオンレベルからオフレベルに切り替わり、他方、回転検出用永久磁石21のS極がホールICデバイス22から遠ざかり回転検出用永久磁石21のN極がホールICデバイス22に近づくとき、ホールICデバイス22の出力信号SG1がオフレベルからオンレベルに切り替わる。この出力信号SG1の切り替わりは、ホールICデバイス22の設計により、オンレベルとオフレベルの関係を逆に設計することもできる。すなわち、回転検出用永久磁石21の境界部がホールICデバイス22を横切る場合であって、回転検出用永久磁石21のN極がホールICデバイス22から遠ざかり回転検出用永久磁石21のS極がホールICデバイス22に近づくとき、ホールICデバイス22の出力信号SG1がオフレベルからオンレベルに切り替わり、他方、回転検出用永久磁石21のS極がホールICデバイス22から遠ざかり回転検出用永久磁石21のN極がホールICデバイス22に近づくとき、ホールICデバイス22の出力信号SG1がオンレベルからオフレベルに切り替わるようにしてもよい。
 ところで、図9に示すようにN極、S極の境界部がホールICデバイス22を横切って出力信号SG1が切り替わった直後に励磁が停止し、コギングトルクの影響により回転検出用永久磁石21が逆方向に回転した場合には、N極、S極の境界部がホールICデバイス22を再度、横切る可能性がある。従来は、図9に示すように、N極、S極の境界部がホールICデバイス22を再度、横切ったときに、出力信号SG1に余分なレベルの切り替わりが発生し、電気モータ11が回転していないにもかかわらず余分なパルスが現れてしまい、回転回数を正しく把握できないことがあった。一方、本実施形態では、回転検出用永久磁石21の形状に特別な工夫が施されている。このため、以下に説明するように、コギングトルクの影響により回転検出用永久磁石21が逆方向に回転した場合であっても、余分なパルスが現れないようにすることができる。
 <実施形態の電気モータの回転量検出装置の動作>
 本実施形態の電気モータの回転量検出装置における出力信号、コギングトルク、モータ回転角と磁束密度との関係を図3に示す。また、本発明と従来例との対比を容易にするために、一般的な電気モータの回転量検出装置における出力信号、コギングトルク、モータ回転角と磁束密度との関係を図6に示す。
 図3の中段に示すように、コギングトルクTcは電気モータ11の回転角θに応じて周期的に変化する。そして、コギングトルクTcが最低になる安定点Ps以外の位置でロータ11rが停止した場合には、隣接するいずれかの安定点Psに向かって順方向又は逆方向に更に自然に回転する。例えば、図7A、図7Bに示した各角度+15度、+45度、+75度が安定点Psに相当する位置である。安定点Psに相当する位置は、回転子及び固定子の極数に応じて定まる。
 一方、回転検出用永久磁石21は、電気モータ11及び回転検出用永久磁石21が回転したときには、ホールICデバイス22が検出する磁束密度Bsが図3の下段に示すように回転角θに応じて変動する。一般的な電気モータの回転量検出装置の場合は、図6の下段に示すようにホールICデバイスが検出する磁束密度Bs’が正弦波状の波形になるが、本実施形態の電気モータの回転量検出装置の場合は、次の点で一般的な電気モータの回転量検出装置の場合と異なる。
 本実施形態の電気モータの回転量検出装置において、電気モータ11の回転角θとホールICデバイス22が検出する磁束密度Bsとの関係は、図3に示すように、順方向に回転する回転検出用永久磁石21からの磁束密度Bsに応じてパルス信号がオンレベルからオフレベルに切り替わるときの第1の磁束密度Bs1と、逆回転する回転検出用永久磁石21からの磁束密度Bsに応じてパルス信号がオフレベルからオンレベルに切り替わるときの第2の磁束密度Bs2との差Ab(以下、ヒステリシスの範囲Abと称する。)が、コギングトルクによって回転検出用永久磁石21が回転することに伴う磁束密度の変化量よりも大きいものである。
 この関係は、次のように言い換えることができる。すなわち、電気モータ11の回転角θとホールICデバイス22が検出する磁束密度Bsとの関係は、図3に示すように、順方向に回転する回転検出用永久磁石21からの磁束密度Bsに応じてパルス信号がオンレベルからオフレベルに切り替わるときの電気モータ11の第1の回転角θ1と、逆回転する回転検出用永久磁石21からの磁束密度Bsに応じてパルス信号がオフレベルからオンレベルに切り替わるときの電気モータ11の第2の回転角θ2との差θh(以下、ヒステリシス回転角θhと称する。)が、コギングトルクによって回転検出用永久磁石21が回転する回転角θcよりも大きいものである。ヒステリシス回転角θhは、ホールICデバイス22が検出する磁束密度Bsの変化が、ヒステリシスの範囲(ヒステリシスの範囲Ab)内に抑制される回転角の範囲である。また、θcは、コギングトルクの波形における山から谷までの角度である。
 電気モータ11の回転角θとホールICデバイス22が検出する磁束密度Bsとの関係が上述したものである場合、出力信号SG1のオンレベルからオフレベルへの立ち下がりの後、次に出力信号SG1がオフレベルからオンレベルへ立ち上がるためには、図3の下段に示したヒステリシスの範囲Abを越える磁束密度の変化をホールICデバイス22が検出することが必要になる。同様に、出力信号SG1のオフレベルからオンレベルへの立ち上がりの後、次に出力信号SG1がオンレベルからオフレベルへ立ち下がる場合にも、ヒステリシスの範囲Abを越える磁束密度の変化をホールICデバイス22が検出することが必要になる。
 したがって、図3の上段に示すように、電気モータ11が順方向に回転する時の出力信号SG1(CW)と、逆方向に回転する時の出力信号SG1(CCW)とでは、オンレベルからオフレベル又はオフレベルからオンレベルに切り替わる立ち上がりの位置及び立ち下がりの位置にヒステリシス回転角θh分の違いが生じる。
 ところで、一般的な電気モータの回転量検出装置の場合、図6に示すように上記のヒステリシス回転角θhが非常に小さいものである。このため、電気モータ11を励磁して順方向に駆動し、点P01の回転位置で励磁を終了し、ロータ11rが逆方向に回転角θc回転して隣接する安定点Ps1まで移動する過程において、励磁を終了する直前に出力信号SG1(CW)が立ち下がり、その後の逆方向への回転によりホールICデバイス22が検出する磁束密度Bsが大きく変動するため出力信号SG1(CCW)の立ち上がりが発生する。つまり、コギングトルクによってロータ11rが逆方向へ回転したことにより、出力信号SG1(CW)の立ち下がりと出力信号SG1(CCW)の立ち上がりとが連続的に発生してしまう。これにより、パルスエッジのカウントの際に誤差が生じる。
 一方、本実施形態の電気モータの回転量検出装置の場合、図3の下段に示すように、回転検出用永久磁石21の形状の影響により、ヒステリシス回転角θhの範囲内では、磁束密度Bsの変化が非常に小さくなっている。具体的には、ホールICデバイス22の出力がヒステリシスとなるヒステリシスの範囲Abよりも、コギングトルクによって回転検出用永久磁石21が回転することに伴う磁束密度Bsの変化量が小さくなっている。言い換えれば、コギングトルクの影響により逆方向の回転が発生する回転角θcよりも、ヒステリシス回転角θhが大きくなっている(θc<θh)。したがって、電気モータ11の励磁終了後にロータ11rが逆方向に回転した場合であっても、逆方向への回転の影響は出力信号SG1には現れない。つまり、余分なパルスが出力信号SG1に生じるのを防止することができる。
 以上、本実施形態の電気モータの回転量検出装置によれば、ヒステリシスの範囲Abよりもコギングトルクによって回転検出用永久磁石21が回転することに伴う磁束密度Bsの変化量が小さい、言い換えれば、回転角θcよりもヒステリシス回転角θhを大きくする(θc<θh)ことにより、余分なパルスが出力信号SG1に生じることを防止することができる。このため、モータの回転回数をより正確に把握することができる。
 また、本実施形態の電気モータの回転量検出装置では、回転検出用永久磁石21の形状を図2Bに示すものとした。これにより、図3の下段に示す、電気モータ11の回転角θとホールICデバイス22が検出する磁束密度Bsとの関係を、回転検出用永久磁石21単体で実現することができる。つまり、回転検出用永久磁石21の形状を設計変更するのみで本発明を実現することができ、他の部品を改良することも、新たな部材を追加する必要もない。このため、電気モータの回転量検出装置の性能をコストの増大を抑えつつ向上させることができる。本実施形態の電気モータの回転量検出装置は、モータの回転回数をより正確に把握するためにソフトウェアによってコギングトルクの影響を排除するアプローチと比して極めて簡便なアプローチであり、様々な電気モータへ適用することができるものである。このような本実施形態の電気モータの回転量検出装置は、汎用性が高く有用なものである。
<第2実施形態>
 第2実施形態は、前述の第1実施形態の変形例である。第1実施形態では、図3の下段に示す、電気モータ11の回転角θとホールICデバイス22が検出する磁束密度Bsとの関係を実現するにあたって、図2Bに示す形状の回転検出用永久磁石21を用いた。第2実施形態では、回転検出用永久磁石21Bの形状及び着磁パターンが変更されている。回転検出用永久磁石21B以外については第1実施形態と同様であるため、第2実施形態での説明を省略する。
 第2実施形態で使用する回転検出用永久磁石21Bの形状を図4に示す。図4は、回転検出用永久磁石の形状の具体例を示す正面図である。図4に示すように、回転検出用永久磁石21Bは、モータ出力軸11aの軸心方向に沿う方向に視たときに真円形状に近い断面を有している。また、回転検出用永久磁石21BはN極21nを形成する断面が半円形の領域と、S極21sを形成する半円形の領域とで構成されている。尚、回転検出用永久磁石21Bは、モータ出力軸11aの軸心方向に沿う方向に視たときに楕円形状に近い断面を有していてもよい。この場合、回転検出用永久磁石21BはN極21nを形成する断面が楕円を半割りした領域と、S極21sを形成する断面が楕円を半割りした領域とで構成される。
 また、本実施形態の回転検出用永久磁石21BにN極21n及びS極21sを形成する際には、次の着磁パターンになるようにする。すなわち、N極及びS極が並ぶ方向に位置する各極の頂点部に、他の部分よりも強い着磁を施す。具体的には、N極21nの中央部Pc及びS極21sの中央部Pcが局所的に、それ以外の領域よりも強い磁性となるように着磁する。この結果、境界部Pbに近い箇所は、中央部Pcよりも弱い磁性となる。
 回転検出用永久磁石の着磁パターンに関する磁束密度分布の例を図5A、Bに示す。図5Aは本実施形態で利用する着磁パターンを表し、図5Bは一般的な着磁パターンを表している。すなわち、一般的な着磁パターンの場合は図5Bに示すように磁極の全体にわたって均等な磁性となるように着磁されるのに対し、本実施形態の回転検出用永久磁石21Bにおいては、中央部Pcに近い位置の磁束密度が高く、境界部Pbに近い位置の磁束密度が低くなっている。
 一般的な真円形状の回転検出用永久磁石21Bを利用する場合であっても、図5Aに示すような着磁パターンを適用することにより、図3の下段に示した、電気モータ11の回転角θとホールICデバイス22が検出する磁束密度Bsとの関係を満たす回転検出用永久磁石21Bを実現することができる。
 以上、本実施形態の電気モータの回転量検出装置によれば、第1実施形態と同様、ヒステリシスの範囲Abよりもコギングトルクによって回転検出用永久磁石21Bが回転することに伴う磁束密度Bsの変化量が小さい、言い換えれば回転角θcよりもヒステリシス回転角θhを大きくする(θc<θh)ことにより、余分なパルスが出力信号SG1に生じることを防止することができる。このため、モータの回転回数をより正確に把握することができる。
 また、本実施形態の電気モータの回転量検出装置では、回転検出用永久磁石21Bの形状及び及び着磁パターンを図4及び図5Aに示すものとした。これにより、図3の下段に示す、電気モータ11の回転角θとホールICデバイス22が検出する磁束密度Bsとの関係を、回転検出用永久磁石21B単体で実現することができる。つまり、回転検出用永久磁石21Bを設計変更するのみで本発明を実現することができ、他の部品を改良することも、新たな部材を追加する必要もない。また、本実施形態のように回転検出用永久磁石21Bの着磁パターンを変更する形態であれば、既存の回転検出用永久磁石の形状を変更することなく、図3に下段に示す、電気モータ11の回転角θとホールICデバイス22が検出する磁束密度Bsとの関係を満たす着磁を既存の回転検出用永久磁石に施すことにより、本発明を実施することができる。このため、既存の回転検出用永久磁石をも利用しつつ、電気モータの回転量検出装置の性能を向上させることができる。このように、本実施形態の電気モータの回転量検出装置では、回転検出用永久磁石21Bの形状及び及び着磁パターンにより、簡易な構成によってヒステリシス範囲を変化させることができる。このため、電気モータの回転量検出装置の性能をコストの増大を抑えつつ向上させることができる。
 尚、上述した第1実施形態及び第2実施形態では、回転検出用永久磁石21、21Bの形状及び着磁パターンの一方、または両方を適宜設計して、図3に下段に示す、電気モータ11の回転角θとホールICデバイス22が検出する磁束密度Bsとの関係を満たす磁気を回転検出用永久磁石21、21Bが放射する形態について説明したが、本発明は、上記の関係を満たす磁気を回転検出用永久磁石21、21Bが放射する形態に限られるものではない。本発明は、ホールICデバイス22が電気モータ11の回転角θに応じて上記の関係を満たす磁束密度Bsを検出することができる構成であればよい。例えば、磁気を遮蔽または強度を減衰させる遮蔽部材を回転検出用永久磁石に張り付けて、回転検出用永久磁石の磁性を局所的に弱めるようにしてもよい。この構成の場合、遮蔽部材を用意する必要があるが、モータの回転回数をより正確に把握することができるという所望の効果を得ることができる。また、例えば、ホールICデバイス22と回転検出用永久磁石21、21Bのギャップ(距離)を調整することや、ホールICデバイス22自体をヒステリシス特性の大きい物に設計することによっても、ホールICデバイス22が電気モータ11の回転角θに応じて上記の関係を満たす磁束密度Bsを検出することができる。この構成の場合であっても、モータの回転回数をより正確に把握することができるという所望の効果を得ることができる。
 ここで、上述した本発明に係る電気モータの回転量検出装置の実施形態の特徴をそれぞれ以下[1]~[7]に簡潔に纏めて列記する。
[1] 電気モータ(11)の出力軸(モータ出力軸11a)を挟むようにN極(21n)及びS極(21s)が配置された磁石(回転検出用永久磁石21,21B)と、
 前記出力軸の回転に伴って回転する前記磁石から放射される磁気の磁束密度(Bs)を検出し、検出した磁束密度に応じたパルス信号(SG1)を出力する磁気検出デバイス(ホールICデバイス22)と、
 を備え、
 前記電気モータの回転角(θ)と前記磁気検出デバイスが検出する磁束密度との関係は、順回転(CW)する前記磁石からの磁束密度に応じて前記パルス信号が第1レベル(オンレベル)から第2レベル(オフレベル)に切り替わるときの第1の磁束密度(BS1)と、逆回転(CCW)する前記磁石からの磁束密度に応じて前記パルス信号が前記第2レベルから前記第1レベルに切り替わるときの第2の磁束密度(BS2)との差(Ab)が、コギングトルクによって前記磁石が回転することに伴う磁束密度の変化量よりも大きいものである、
 ことを特徴とする電気モータの回転量検出装置。
[2] 前記磁石が、前記関係を満たす磁気を放射する、
 ことを特徴とする上記[1]に記載の電気モータの回転量検出装置。
[3] 前記磁石は、前記関係を満たす形状である、
 ことを特徴とする上記[2]に記載の電気モータの回転量検出装置。
[4] 前記磁石は、前記出力軸の軸心方向に沿う方向に視たときに楕円形状であって、N極及びS極が並ぶ方向に沿う長さが、該並ぶ方向に直交する方向に沿う長さよりも長い、
 ことを特徴とする上記[3]に記載の電気モータの回転量検出装置。
[5] 前記磁石には、前記関係を満たすように着磁が施されている、
 ことを特徴とする上記[2]に記載の電気モータの回転量検出装置。
[6] 前記磁石は、前記出力軸の軸心方向に沿う方向に視たときに真円形状または楕円形状であって、N極及びS極が並ぶ方向に位置する各極の頂点部(中央部Pc)が、他の部分(境界部Pb)よりも強い着磁が施されている、
 ことを特徴とする上記[5]に記載の電気モータの回転量検出装置。
[7] 電気モータ(11)の出力軸(モータ出力軸11a)を挟むようにN極(21n)及びS極(21s)が配置された磁石(回転検出用永久磁石21,21B)と、
 前記出力軸の回転に伴って回転する前記磁石から放射される磁気の磁束密度(Bs)を検出し、検出した磁束密度に応じたパルス信号(SG1)を出力する磁気検出デバイス(ホールICデバイス22)と、
 を備え、
 前記電気モータの回転角(θ)に対する前記磁気検出デバイスが検出する磁束密度の関係は、順回転(CW)する前記磁石からの磁束密度に応じて前記パルス信号が第1レベル(オンレベル)から第2レベル(オフレベル)に切り替わるときの前記電気モータの第1の回転角(θ1)と、逆回転(CCW)する前記磁石からの磁束密度に応じて前記パルス信号が前記第2レベルから前記第1レベルに切り替わるときの前記電気モータの第2の回転角(θ2)との差(ヒステリシス回転角θh)が、コギングトルクによって前記電気モータが回転する回転角(θc)よりも大きいものである、
 ことを特徴とする電気モータの回転量検出装置。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2014年2月18日出願の日本特許出願(特願2014-028792)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の電気モータの回転量検出装置によれば、電気モータの励磁終了時に回転子が逆方向に動いてから停止した場合であっても、余分なパルス信号が発生するのを防止することが可能である。この効果を奏する本発明は、磁気を利用してモータの回転を検出するための技術に関する分野において有用である。
10 電動アクチュエータ
 11 電気モータ
 11a モータ出力軸
 11r ロータ
 11s ステータ
 12 減速機
 13 コイルばね
 14 ねじ機構
 15 アクチュエータ出力軸
 16a ギヤ
 16b 中間ギヤ
 17 支持部材
 21,21B 回転検出用永久磁石
 21n N極
 21s S極
 22 ホールICデバイス
 Bs 磁束密度
 Pc 中央部
 Pb 境界部
 SG1 出力信号
 Tc コギングトルク

Claims (6)

  1.  電気モータの出力軸を挟むようにN極及びS極が配置された磁石と、
     前記出力軸の回転に伴って回転する前記磁石から放射される磁気の磁束密度を検出し、検出した磁束密度に応じたパルス信号を出力する磁気検出デバイスと、
     を備え、
     前記電気モータの回転角と前記磁気検出デバイスが検出する磁束密度との関係は、順回転する前記磁石からの磁束密度に応じて前記パルス信号が第1レベルから第2レベルに切り替わるときの第1の磁束密度と、逆回転する前記磁石からの磁束密度に応じて前記パルス信号が前記第2レベルから前記第1レベルに切り替わるときの第2の磁束密度との差が、コギングトルクによって前記磁石が回転することに伴う磁束密度の変化量よりも大きいものである、
     電気モータの回転量検出装置。
  2.  前記磁石が、前記関係を満たす磁気を放射する、
     請求項1に記載の電気モータの回転量検出装置。
  3.  前記磁石は、前記関係を満たす形状である、
     請求項2に記載の電気モータの回転量検出装置。
  4.  前記磁石は、前記出力軸の軸心方向に沿う方向に視たときに楕円形状であって、N極及びS極が並ぶ方向に沿う長さが、該並ぶ方向に直交する方向に沿う長さよりも長い、
     請求項3に記載の電気モータの回転量検出装置。
  5.  前記磁石には、前記関係を満たすように着磁が施されている、
     請求項2に記載の電気モータの回転量検出装置。
  6.  前記磁石は、前記出力軸の軸心方向に沿う方向に視たときに真円形状または楕円形状であって、N極及びS極が並ぶ方向に位置する各極の頂点部が、他の部分よりも強い着磁が施されている、
     請求項5に記載の電気モータの回転量検出装置。
PCT/JP2015/054344 2014-02-18 2015-02-17 電気モータの回転量検出装置 WO2015125792A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014028792A JP2015152531A (ja) 2014-02-18 2014-02-18 電気モータの回転量検出装置
JP2014-028792 2014-02-18

Publications (1)

Publication Number Publication Date
WO2015125792A1 true WO2015125792A1 (ja) 2015-08-27

Family

ID=53878293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054344 WO2015125792A1 (ja) 2014-02-18 2015-02-17 電気モータの回転量検出装置

Country Status (2)

Country Link
JP (1) JP2015152531A (ja)
WO (1) WO2015125792A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108880381A (zh) * 2018-07-24 2018-11-23 南京师范大学 一种带载情况下永磁同步电机齿槽转矩分离方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05100745A (ja) * 1991-10-09 1993-04-23 Fujitsu Ten Ltd 位置制御装置
JPH08336297A (ja) * 1995-06-07 1996-12-17 Nippondenso Co Ltd ステッピングモータ
JP2004023800A (ja) * 2002-06-12 2004-01-22 Mitsuba Corp ブラシレスモータ
JP2004271495A (ja) * 2003-01-14 2004-09-30 Nippon Soken Inc 回転角センサ及びこの回転角センサを具備した回転角検出装置
JP2008111737A (ja) * 2006-10-31 2008-05-15 Furukawa Electric Co Ltd:The 回転センサ
JP2010181330A (ja) * 2009-02-06 2010-08-19 Toyota Motor Corp エンコーダおよび車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05100745A (ja) * 1991-10-09 1993-04-23 Fujitsu Ten Ltd 位置制御装置
JPH08336297A (ja) * 1995-06-07 1996-12-17 Nippondenso Co Ltd ステッピングモータ
JP2004023800A (ja) * 2002-06-12 2004-01-22 Mitsuba Corp ブラシレスモータ
JP2004271495A (ja) * 2003-01-14 2004-09-30 Nippon Soken Inc 回転角センサ及びこの回転角センサを具備した回転角検出装置
JP2008111737A (ja) * 2006-10-31 2008-05-15 Furukawa Electric Co Ltd:The 回転センサ
JP2010181330A (ja) * 2009-02-06 2010-08-19 Toyota Motor Corp エンコーダおよび車両

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108880381A (zh) * 2018-07-24 2018-11-23 南京师范大学 一种带载情况下永磁同步电机齿槽转矩分离方法

Also Published As

Publication number Publication date
JP2015152531A (ja) 2015-08-24

Similar Documents

Publication Publication Date Title
US10563760B2 (en) Rotary actuator, rotation driving device, and shift-by-wire system using same
US20140062254A1 (en) Permanent Magnet Rotating Electrical Machine
JP6140537B2 (ja) モータ
JP6020184B2 (ja) モータ
JP6016273B2 (ja) ロータリーアクチュエータ及びそれを用いた操作感触付与型入力装置
JP5602815B2 (ja) 永久磁石を位置決めするための突起を有する回転子及びそのような回転子を備える電動機
WO2017195263A1 (ja) 永久磁石型モータ
JP5513739B2 (ja) 電動機
JP5811566B2 (ja) 回転子および永久磁石電動機
WO2015125792A1 (ja) 電気モータの回転量検出装置
JP2013038936A (ja) ステップモータ
US11322996B2 (en) Motor
JP5739172B2 (ja) モータおよび航空機の舵面駆動アクチュエータ
JP2011182569A (ja) インナーロータ型モータ
KR101891002B1 (ko) 모터
JP6208985B2 (ja) モータ
JP5891428B2 (ja) アクチュエータ装置
JP7401371B2 (ja) ステッピングモータ
JP2018074811A (ja) モータ装置
JP2009219194A (ja) 回転電機
JP6054839B2 (ja) ランデル型ロータ及びランデル型モータ
JP6414094B2 (ja) ガルバノスキャナ
JP4723329B2 (ja) ステップモーター
JP2019009924A (ja) 磁石位置可変モータ、磁石位置可変ロータ、モータ特性変更方法、およびモータ製造方法
JP2019009899A (ja) 駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15751722

Country of ref document: EP

Kind code of ref document: A1