WO2015125694A1 - 高分子電解質膜 - Google Patents

高分子電解質膜 Download PDF

Info

Publication number
WO2015125694A1
WO2015125694A1 PCT/JP2015/053905 JP2015053905W WO2015125694A1 WO 2015125694 A1 WO2015125694 A1 WO 2015125694A1 JP 2015053905 W JP2015053905 W JP 2015053905W WO 2015125694 A1 WO2015125694 A1 WO 2015125694A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
electrolyte membrane
polymer
block copolymer
block
Prior art date
Application number
PCT/JP2015/053905
Other languages
English (en)
French (fr)
Inventor
雅大 樫岡
謙太 俊成
小野 友裕
須郷 望
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2015125694A1 publication Critical patent/WO2015125694A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/1062Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the physical properties of the porous support, e.g. its porosity or thickness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/34Introducing sulfur atoms or sulfur-containing groups
    • C08F8/36Sulfonation; Sulfation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polymer electrolyte membrane useful for a polymer electrolyte fuel cell.
  • Fuel cells have attracted attention as highly efficient power generation systems. Fuel cells are classified into molten carbonate type, solid oxide type, phosphoric acid type, solid polymer type, etc., depending on the type of electrolyte. Of these, a polymer electrolyte membrane is sandwiched between electrodes (anode and cathode), a fuel made of a reducing agent (usually hydrogen or methanol) at the anode, and an oxidant (usually air) at the cathode.
  • Solid polymer fuel cells that generate electricity by supplying power are being considered for application to automotive power supplies, portable equipment power supplies, household cogeneration systems, and the like from the viewpoints of low temperature operability, small size, and light weight.
  • Perfluorocarbon sulfonic acid polymers are often used as the material for polymer electrolyte membranes used in polymer electrolyte fuel cells because of their chemical stability. Environmental load becomes a problem.
  • a polymer electrolyte membrane made of a material not containing fluorine has been demanded.
  • a polymer electrolyte membrane made of polyether ether ketone (PEEK) into which a sulfonic acid group is introduced is known (see Patent Document 1).
  • PEEK polyether ether ketone
  • a polymer electrolyte membrane comprising a block unit comprising a polymer block having an ion conductive group and a flexible polymer block, which comprises a structural unit derived from an aromatic vinyl compound (Patent Document 2). reference).
  • Patent Document 2 a polymer electrolyte membrane is flexible and difficult to break, and the polymer block having the ion conductive group forms an ion conductive channel by microphase separation from the flexible polymer block, and thus has excellent ion conductivity.
  • a polymer electrolyte membrane comprising, as a main component, a block copolymer in which the flexible polymer block is a structural unit derived from a vinyl compound and the flexible polymer block is crosslinked with 1,2-polybutadiene or the like. It is known that the hot water resistance of water increases (see Patent Document 3).
  • start / stop durability the dimensional stability of the polymer electrolyte membrane in hot water and the durability when wetting and drying are repeated with the start and stop of the polymer electrolyte fuel cell
  • an object of the present invention is to provide a polymer electrolyte membrane that is made of a non-fluorine material, is flexible and hardly cracked, and has excellent hot water resistance.
  • the object is A polymer electrolyte membrane containing a reinforcing material, wherein the polymer electrolyte membrane is composed of a structural unit derived from an aromatic vinyl compound and has an ion conductive group (A) (hereinafter simply referred to as “heavy”). And a non-crystalline polymer block (B) (hereinafter simply referred to as “polymer”) comprising structural units derived from unsaturated aliphatic hydrocarbons and having no ion conductive group.
  • a block copolymer (Z) hereinafter referred to simply as “block copolymer (Z)” and an aromatic ring in which one or more hydrogen atoms are substituted with a hydroxyl group.
  • a polymer electrolyte obtained by crosslinking a molded article of a composition containing compound (X) having two or more in the molecule (hereinafter simply referred to as “compound (X)”), and the reinforcing material is a porous material Achieved by providing a polymer electrolyte membrane It is.
  • the present invention it is possible to provide a polymer electrolyte membrane which is made of a non-fluorine material, is flexible and hardly cracked, and has excellent hot water resistance.
  • the polymer electrolyte membrane of the present invention is suitable for a solid polymer fuel cell because it has little dimensional change particularly in hot water and has excellent start-stop durability when applied to a solid polymer fuel cell. Used for.
  • the polymer electrolyte membrane of the present invention contains a polymer electrolyte and a reinforcing material described below.
  • the thickness of the polymer electrolyte membrane is preferably in the range of 4 to 170 ⁇ m, more preferably in the range of 8 to 115 ⁇ m, still more preferably in the range of 10 to 70 ⁇ m, and more preferably in the range of 12 to 50 ⁇ m from the viewpoint of mechanical strength, handling properties, and the like. Particularly preferred. When the thickness is 4 ⁇ m or more, the mechanical strength and fuel blocking property of the polymer electrolyte membrane are good, and when the thickness is 170 ⁇ m or less, the ion conductivity of the polymer electrolyte membrane is good.
  • the polymer electrolyte is obtained by crosslinking a molded product of a composition containing a block copolymer (Z) containing a polymer block (A) and a polymer block (B) and a compound (X).
  • the polymer block (A) is a polymer block composed of a structural unit derived from an aromatic vinyl compound and having an ion conductive group.
  • the polymer block (B) is an amorphous polymer block that is composed of a structural unit derived from an unsaturated aliphatic hydrocarbon and does not have an ion conductive group.
  • Compound (X) is a compound having in its molecule two or more aromatic rings in which one or more hydrogen atoms are substituted with a hydroxyl group.
  • the polymer block (A) and the polymer block (B) form a microphase separation structure.
  • microphase separation means phase separation in a microscopic sense, and more specifically, means phase separation in which the formed domain size is less than or equal to the wavelength of visible light (3800 to 7800 mm). It shall be.
  • Block copolymer (Z) The block copolymer (Z) is composed of a structural unit derived from an aromatic vinyl compound, and has a polymer block (A 0 ) (hereinafter simply referred to as “polymer block (A 0 )”) having no ion conductive group. And an ion conductive group introduced into the polymer block (A 0 ) of the block copolymer (Z 0 ) containing the polymer block (B).
  • the number average molecular weight (Mn) of the block copolymer (Z 0 ) is not particularly limited, but is usually preferably in the range of 10,000 to 300,000, more preferably in the range of 15,000 to 250,000, and 40,000. The range of ⁇ 200,000 is more preferred, and the range of 70,000 to 180,000 is particularly preferred.
  • Mn of the block copolymer (Z 0 ) is 10,000 or more, particularly 70,000 or more
  • the polymer electrolyte membrane of the present invention has high tensile elongation at break and is 300,000 or less, particularly 180,000 or less.
  • the said composition containing block copolymer (Z) and compound (X) is excellent in a moldability, and becomes advantageous also in manufacture.
  • Mn means the standard polystyrene conversion value measured by the gel permeation chromatography (GPC) method.
  • the ion exchange capacity of the block copolymer (Z) is preferably in the range of 0.4 to 4.5 meq / g, more preferably in the range of 1.0 to 3.8 meq / g, and 1.5 to 3.4 meq / g. Is more preferable, and a range of 1.8 to 3.0 meq / g is particularly preferable.
  • the polymer electrolyte membrane of the present invention has good ion conductivity when the ion exchange capacity is 0.4 meq / g or more, and hardly swells when it is 4.5 meq / g or less.
  • the ion exchange capacity of the block copolymer (Z) can be calculated using an acid value titration method.
  • the block copolymer (Z) may have one or more polymer blocks (A) and / or polymer blocks (B), respectively.
  • their structures kind of structural unit, degree of polymerization, kind of ion conductive group, introduction ratio, etc.
  • those structures kind of a structural unit, a polymerization degree, etc.
  • the polymer block (A) and the polymer block (B) may be side chains, that is, the block copolymer (Z) used in the present invention includes a graft copolymer.
  • an AB type diblock copolymer (A and B are each a polymer block ( A) represents a polymer block (B), the same applies hereinafter), an ABA type triblock copolymer, a BAB type triblock copolymer, an ABAB type tetrablock.
  • (total amount of polymer block (A 0 )) :( total amount of polymer block (B)) is a mass ratio. It is preferably in the range of 95: 5 to 5:95, more preferably in the range of 75:25 to 15:85, still more preferably in the range of 65:35 to 20:80, and 45:55 A range of ⁇ 25: 75 is particularly preferred.
  • the mass ratio is in the range of 95: 5 to 5:95, particularly in the range of 45:55 to 25:75, start / stop durability when the polymer electrolyte membrane of the present invention is used in a polymer electrolyte fuel cell. It tends to be excellent in properties.
  • the polymer block (A) can be formed by introducing an ion conductive group into the polymer block (A 0 ).
  • the ion conductive group is usually introduced into the aromatic ring of the polymer block (A 0 ).
  • the polymer block (A 0 ) is composed of a structural unit derived from an aromatic vinyl compound, and the aromatic ring of the aromatic vinyl compound is a carbocyclic aromatic ring such as a benzene ring, a naphthalene ring, an anthracene ring, or a pyrene ring. Preferably, there is a benzene ring.
  • Examples of the aromatic vinyl compound that can form the polymer block (A 0 ) include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, 2,3-dimethylstyrene, 2, 4-dimethylstyrene, 2,5-dimethylstyrene, 3,5-dimethylstyrene, 2-methoxystyrene, 3-methoxystyrene, 4-methoxystyrene, vinylbiphenyl, vinylterphenyl, vinylnaphthalene, vinylanthracene, 4-phenoxy Examples include styrene.
  • the hydrogen atom bonded to the ⁇ -position carbon ( ⁇ -carbon) of the aromatic ring may be substituted with another substituent.
  • substituents include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, isobutyl groups, sec-butyl groups, tert-butyl groups and other alkyl groups having 1 to 4 carbon atoms; chloromethyl Group, a halogenated alkyl group having 1 to 4 carbon atoms such as a 2-chloroethyl group and a 3-chloroethyl group; or a phenyl group.
  • Aromatic vinyl compounds in which the hydrogen atom bonded to the ⁇ -carbon is substituted with these substituents include ⁇ -methylstyrene, ⁇ -methyl-4-methylstyrene, ⁇ -methyl-2-methylstyrene, ⁇ -methyl Examples include -4-ethylstyrene and 1,1-diphenylethylene.
  • aromatic vinyl compounds that can form the polymer block (A 0 )
  • styrene, ⁇ -methylstyrene, 4-methylstyrene, 4-ethylstyrene, ⁇ -methyl-4-methylstyrene, ⁇ -methyl-2 -Methylstyrene, vinylbiphenyl and 1,1-diphenylethylene are preferred, styrene, ⁇ -methylstyrene, 4-methylstyrene and 1,1-diphenylethylene are more preferred, and styrene and ⁇ -methylstyrene are more preferred.
  • a polymer block (A 0 ) can be formed by polymerizing these aromatic vinyl compounds as monomers and using one kind alone or two or more kinds in combination. Random copolymerization is preferred as the copolymerization form when two or more aromatic vinyl compounds are used in combination.
  • the polymer block (A 0 ) may contain other structural units not derived from one or more aromatic vinyl compounds within a range not impairing the effects of the present invention.
  • the monomer capable of forming such other structural units include butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3.
  • a conjugated diene having 4 to 8 carbon atoms such as butadiene and 1,3-heptadiene; 2 carbon atoms such as ethylene, propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-heptene and 1-octene Alkenes of ⁇ 8;
  • (Meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate; vinyls such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pivalate Esters; vinyl ethers such as methyl vinyl ether and isobutyl vinyl ether;
  • the copolymerization form of these other monomers and the above-described aromatic vinyl compound is preferably random copolymerization.
  • These other structural units are preferably 5 mol% or less of the structural units forming the polymer block (A 0 ). That is, it is preferable that 95 mol% or more of the structural units forming the polymer block (A 0 ) is a structural unit derived from an aromatic vinyl compound.
  • the Mn per polymer block (A 0 ) is usually preferably in the range of 1,000 to 100,000, more preferably in the range of 2,000 to 70,000, and in the range of 4,000 to 50,000. More preferably, the range of 6,000 to 30,000 is particularly preferable.
  • the polymer electrolyte membrane of the present invention has good ionic conductivity when the Mn is 1,000 or more, particularly 6,000 or more, and good hot water resistance when it is 100,000 or less, particularly 30,000 or less. And the said composition containing block copolymer (Z) and compound (X) is excellent in a moldability, and becomes advantageous also in manufacture.
  • the ion conductive group possessed by the polymer block (A 0 ) is preferably a proton conductive group, and —SO 3 M or PO 3 HM (wherein M represents a hydrogen atom, an ammonium ion or an alkali metal ion).
  • M represents a hydrogen atom, an ammonium ion or an alkali metal ion.
  • One or more selected from the sulfonic acid groups, phosphonic acid groups and salts thereof represented are more preferred, and sulfonic acid groups are more preferred.
  • the polymer block (B) is an amorphous polymer block composed of a structural unit derived from an unsaturated aliphatic hydrocarbon and having no ion conductive group.
  • the amorphous property of a polymer block (B) can be confirmed by measuring the dynamic viscoelasticity of a block copolymer (Z), and not having the change of the storage elastic modulus derived from a crystalline olefin polymer.
  • Examples of the unsaturated aliphatic hydrocarbon that can form the polymer block (B) include ethylene, propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-heptene, 1-octene and the like having 2 to 2 carbon atoms.
  • alkenes 7 to 10 carbon cycloalkanes such as vinyl cyclopentane, vinyl cyclohexane, vinyl cycloheptane and vinyl cyclooctane; 7 to 7 carbon atoms such as vinyl cyclopentene, vinyl cyclohexene, vinyl cycloheptene and vinyl cyclooctene 10 vinylcycloalkenes; butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-heptadiene, etc.
  • cycloalkanes such as vinyl cyclopentane, vinyl cyclohexane, vinyl cycloheptane and vinyl cyclooctane
  • 7 to 7 carbon atoms such as vinyl cyclopentene, vinyl cyclohexene, vinyl cycloheptene
  • a conjugated diene having 4 to 8 carbon atoms preferably at least one selected from alkenes having 4 to 8 carbon atoms and conjugated dienes having 4 to 8 carbon atoms; and at least one selected from isobutene, butadiene and isoprene. More preferred is at least one selected from butadiene and isoprene.
  • unsaturated aliphatic hydrocarbons as a monomer, one type is polymerized alone or in combination of two or more types to form a polymer block (B). Random copolymerization is preferred as the copolymerization form when two or more unsaturated aliphatic hydrocarbons are used in combination.
  • the polymer block (B) is not derived from an unsaturated aliphatic hydrocarbon as long as the effect of the polymer block (B) that gives the block copolymer (Z) flexibility in the use temperature range is not impaired.
  • Other structural units may be included. Examples of monomers that can form such other structural units include aromatic vinyl compounds such as styrene and vinyl naphthalene; halogen-containing vinyl compounds such as vinyl chloride; vinyl acetate, vinyl propionate, vinyl butyrate, and vinyl pivalate. Vinyl esters; vinyl ethers such as methyl vinyl ether and isobutyl vinyl ether; and the like.
  • the copolymerization form of these other monomers with the unsaturated aliphatic hydrocarbon described above is preferably random copolymerization.
  • These other structural units are preferably 5 mol% or less of the structural units forming the polymer block (B). That is, it is preferable that 95 mol% or more of the structural units forming the polymer block (B) are structural units derived from unsaturated aliphatic hydrocarbons.
  • the unsaturated aliphatic hydrocarbon has a plurality of carbon-carbon double bonds
  • any of them may be used for polymerization.
  • a conjugated diene either 1,2-bond or 1,4-bond It may be.
  • carbon-carbon double bonds usually remain, but from the viewpoint of improving the heat resistance deterioration of the resulting polymer electrolyte membrane, the block copolymer After polymerizing the polymer (Z 0 ), a hydrogenation reaction (hereinafter referred to as “hydrogenation reaction”) is performed, and the carbon-carbon double bond is hydrogenated (hereinafter referred to as “hydrogenation”). preferable.
  • the hydrogenation rate of such a carbon-carbon double bond (hereinafter referred to as “hydrogenation rate”) is preferably 30 mol% or more, more preferably 50 mol% or more, and even more preferably 95 mol% or more.
  • the polymer block (B) is a saturated hydrocarbon structure
  • introduction of an ion conductive group into the combined block (B) hardly occurs. Therefore, when the hydrogenation reaction of the carbon-carbon double bond remaining in the polymer block (B) after polymerizing the block copolymer (Z 0 ) is carried out before introducing the ion conductive group. desirable.
  • the hydrogenation rate of the carbon-carbon double bond can be calculated by 1 H-NMR measurement.
  • the Mn per polymer block (B) is usually preferably in the range of 5,000 to 250,000, more preferably in the range of 15,000 to 200,000, and more preferably 50,000 to 150. Is more preferably in the range of 80,000 to 140,000.
  • the polymer electrolyte membrane of the present invention is excellent in mechanical strength and start / stop durability if the Mn is 5,000 or more, particularly 80,000 or more, and is blocked if the Mn is 250,000 or less, particularly 140,000 or less.
  • the composition containing the copolymer (Z) and the compound (X) is excellent in moldability and advantageous in production.
  • the block copolymer (Z) is composed of a structural unit derived from an aromatic vinyl compound and does not have an ion conductive group (hereinafter, simply referred to as “polymer block (C)”). May further be included.
  • the polymer block (C) forms a microphase separation structure with the polymer block (A) and the polymer block (B).
  • the polymer block (C) is preferably composed of a structural unit derived from an aromatic vinyl compound represented by the following general formula (1) because of superiority in production.
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 2 represents an alkyl group having 3 to 8 carbon atoms
  • R 3 and R 4 each independently represent a hydrogen atom or a carbon number
  • the block copolymer (Z 0 ) has ion conductivity.
  • an ion conductive group can be selectively introduced into the polymer block (A 0 ).
  • Examples of the aromatic vinyl compound for forming the structural unit represented by the general formula (1) include 4-propylstyrene, 4-isopropylstyrene, 4-butylstyrene, 4-isobutylstyrene, 4-tert-butylstyrene, Examples include 4-octylstyrene, ⁇ -methyl-4-tert-butylstyrene, ⁇ -methyl-4-isopropylstyrene, and the like.
  • 4-tert-butylstyrene, 4-isopropylstyrene, ⁇ -methyl-4-tert-butyl Styrene and ⁇ -methyl-isopropylstyrene are more preferable, and 4-tert-butylstyrene is more preferable. These may be used alone or in combination of two or more. Random copolymerization is preferred as the copolymerization form when two or more types are used in combination to form the polymer block (C).
  • the polymer block (C) may contain other structural units not derived from one or more aromatic vinyl compounds within a range not impairing the effects of the present invention.
  • monomers that can form such other structural units include butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,4-hexadiene, 2,3-dimethyl-1,3-butadiene, 2 Conjugated diene having 4 to 8 carbon atoms such as ethyl-1,3-butadiene, 1,3-heptadiene; ethylene, propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-heptene, 1-octene Alkenes having 2 to 8 carbon atoms such as: (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate; vinyl acetate, vinyl propionate, vinyl but
  • the copolymerization form of these other monomers and the above-described aromatic vinyl compound is preferably random copolymerization.
  • These other structural units are preferably 5 mol% or less of the structural units forming the polymer block (C). That is, it is preferable that 95 mol% or more of the structural units forming the polymer block (C) are structural units derived from an aromatic vinyl compound.
  • the Mn per polymer block (C) is usually preferably in the range of 1,000 to 50,000, more preferably in the range of 1,500 to 30,000, and 2,000 to 20,000. More preferably, it is in the range of 000. If the Mn is 1,000 or more, the start / stop durability tends to be good when the polymer electrolyte membrane is used in a polymer electrolyte fuel cell. If the Mn is 50,000 or less, the block copolymer ( The moldability of the composition containing Z) and compound (X) tends to be excellent.
  • the block copolymer (Z) used in the present invention contains a polymer block (C)
  • ABC type triblock copolymer (A, B and C are each a polymer block)
  • A) represents a polymer block (B) and a polymer block (C)
  • ABCA type tetrablock copolymer an ABCA type tetrablock copolymer.
  • Polymer BABC type tetrablock copolymer, ABCBC type tetrablock copolymer, ABCBC type tetrablock copolymer, CABB AC type pentablock copolymer, CBABC type pentablock copolymer, ABCBC type pentablock copolymer, ACBAA- C-type pentablock copolymer, ABCBCAC type hexablock copolymer, CABC AC type hexablock copolymer, ACCABCBC type hexablock copolymer, ACCABCBC type heptablock copolymer, A- CBCBCBC type heptablock copolymer, CACBCBCAC type heptablock copolymer, ACACABCBC A-C type octablock copolymer, ACBCCBCCAC type octablock copolymer, ABCBCCABCBC type octablock A copolymer etc.
  • ABC type triblock copolymer ABCA type tetrablock copolymer, and ABC type tetrablock copolymer are used.
  • the content of the polymer block (C) in the block copolymer (Z 0 ) is from 5 to It is preferably in the range of 50% by mass, more preferably in the range of 7-40% by mass, and still more preferably in the range of 10-30% by mass.
  • the content is 5% by mass or more, the obtained polymer electrolyte membrane tends to be excellent in hot water resistance, and when it is 50% by mass or less, the obtained polymer electrolyte membrane tends to be excellent in start / stop durability. .
  • Block copolymer constituting the polymer electrolyte (Z) is by polymerizing the respective monomers mentioned above, the polymer block (A 0) and polymer block (B) and the block copolymer containing (Z 0 ), And then by a method of introducing an ion conductive group into the polymer block (A 0 ).
  • the production method of the block copolymer (Z 0 ) can be selected as appropriate, but a method of polymerizing each monomer described above by a polymerization method selected from a living radical polymerization method, a living anion polymerization method and a living cation polymerization method is preferable. .
  • a polymer block (A 0 ) composed of a structural unit derived from an aromatic vinyl compound and a polymer block (B) composed of a structural unit derived from a conjugated diene
  • a method for producing a block copolymer (Z 0 ) comprising as a component, (1) an aromatic vinyl compound at a temperature of 20 to 100 ° C.
  • An anionic polymerization initiator in a cyclohexane solvent, A method of obtaining an ABA type block copolymer by sequentially anionic polymerization of a conjugated diene and an aromatic vinyl compound; (2) An anionic polymerization initiator is used in a cyclohexane solvent, and an aromatic vinyl compound and a conjugated diene are sequentially anionic polymerized at a temperature of 20 to 100 ° C., and then a coupling agent such as phenyl benzoate is added.
  • an ABA type block copolymer (3) An aromatic compound having a concentration of 5 to 50% by mass in a nonpolar solvent using an organolithium compound as an initiator and in the presence of a polar compound having a concentration of 0.1 to 10% by mass at a temperature of ⁇ 30 to 30 ° C.
  • a block copolymer (Z 0 ) comprising a polymer block (A 0 ) composed of a structural unit derived from an aromatic vinyl compound and a polymer block (B) composed of a structural unit derived from isobutene as components.
  • a polymer block (C) can be added as a component of a block copolymer by changing or adding the component made to react in the said anionic polymerization or cationic polymerization as needed.
  • a method for introducing a sulfonic acid group into the block copolymer (Z 0 ) will be described.
  • Introduction of a sulfonic acid group (sulfonation) can be performed by a known method.
  • the block copolymer (Z 0) the organic solvent solution or suspension is prepared and such solutions and a method of mixing by adding a sulfonating agent to be described later to the suspension, the block copolymer (Z 0) And a method of directly adding a gaseous sulfonating agent.
  • sulfuric acid As the sulfonating agent, sulfuric acid; a mixture system of sulfuric acid and acid anhydride; chlorosulfonic acid; a mixture system of chlorosulfonic acid and trimethylsilyl chloride; sulfur trioxide; a mixture system of sulfur trioxide and triethyl phosphate; Examples thereof include aromatic organic sulfonic acids represented by 4,6-trimethylbenzenesulfonic acid. Of these, a mixture system of sulfuric acid and acid anhydride is preferable.
  • organic solvent to be used examples include halogenated hydrocarbons such as methylene chloride, linear aliphatic hydrocarbons such as hexane, cyclic aliphatic hydrocarbons such as cyclohexane, aromatic compounds having an electron withdrawing group such as nitrobenzene, etc. Can be illustrated.
  • a method for introducing a phosphonic acid group into the block copolymer (Z 0 ) will be described.
  • Introduction (phosphonation) of a phosphonic acid group can be performed by a known method.
  • the aromatic ring of the polymer block (A 0 ) is reacted with halomethyl ether in the presence of aluminum chloride to introduce a halomethyl group, and then reacted with phosphorus trichloride and aluminum chloride to be substituted with a phosphorus derivative.
  • a method of converting to a phosphonic acid group by decomposition and a method of converting a phosphinic acid group introduced by reacting an aromatic ring of the aromatic vinyl compound with phosphorus trichloride and anhydrous aluminum chloride to a phosphonic acid group by oxidizing with nitric acid.
  • a method of converting to a phosphonic acid group by decomposition and a method of converting a phosphinic acid group introduced by reacting an aromatic ring of the aromatic vinyl compound with phosphorus trichloride and anhydrous aluminum chloride to a phosphonic acid group by oxidizing with nitric acid.
  • the introduction rate (sulfonation rate, phosphonation rate, etc.) of the ion conductive group with respect to the structural unit derived from the aromatic vinyl compound of the polymer block (A) is 1 H-NMR. Can be used to calculate.
  • Compound (X) is a compound having in its molecule two or more aromatic rings in which one or more hydrogen atoms are substituted with hydroxyl groups, and is considered to act as a crosslinking agent. It is presumed that the compound (X) has two or more aromatic rings in the molecule, so that the compound (X) is selectively present in the phase containing the hydrophilic polymer block (A). It is considered that the hot water resistance is improved without impairing the flexibility of the polymer electrolyte membrane by selectively crosslinking the functional polymer block (A).
  • the aromatic ring is preferably a hydrocarbon aromatic ring such as a benzene ring, a naphthalene ring or an anthracene ring, and more preferably a benzene ring.
  • the aromatic ring is a benzene ring
  • the benzene ring has one or more hydrogen atoms substituted with a hydroxyl group, but when the carbon on the benzene ring to which the hydroxyl group is bonded is the 1-position.
  • At least one of carbons at 2, 4, and 6 positions does not have a substituent, and among these, from the viewpoint of increasing the tensile breaking elongation and tensile breaking strength of the polymer electrolyte membrane, It is more preferable that the carbon has a methyl group.
  • the compound (X) include bisphenol S, 4,4′-dihydroxybiphenyl-2,2′-disulfonic acid, 4,4′-dihydroxybiphenyl-3,3′-disulfonic acid, 2,2′- Dihydroxybiphenyl-4,4′-disulfonic acid, 5,5′-methylenebis (2-hydroxybenzoic acid), 4,4′-isopropylidenebis (2,6-dichlorophenol), 4,4′-isopropylidenebis (2,6-dibromophenol), 4,4 '-(9-fluorenylidene) diphenol, bis (2-hydroxyphenyl) methane, 2,2'-biphenol, 4,4'-biphenol, bis (4-hydroxy Phenyl) methane, bisphenol A, 4,4′-hexafluoroisopropylidenediphenol, 2,2-bis (4-hydroxy-3-methylphenol) Nyl) propane, 1,1-bis (4-hydroxy-3-methylphenyl
  • poly-2-hydroxy-5-vinylbenzenesulfonic acid poly-2-vinylphenol
  • poly-3-vinylphenol poly and polymers having a repeating unit of a phenol skeleton such as re-4-vinylphenol.
  • Poly-4-vinylphenol, 2,6-bis (2) from the viewpoint of suppression of voltage drop when the polymer electrolyte membrane is operated in a polymer electrolyte fuel cell and start / stop durability of the polymer electrolyte membrane Particularly preferred are compounds selected from -hydroxy-5-methylbenzyl) -4-methylphenol and 2,6-bis (2,4-dihydroxybenzyl) -4-methylphenol, poly-4-vinylphenol, 2,6 -Bis (2-hydroxy-5-methylbenzyl) -4-methylphenol is most preferred.
  • Compound (X) may be used alone or in combination of two or more.
  • the compound (X) is used in combination, it is not particularly limited, but it is preferable that at least one compound having three or more aromatic rings in which one or more hydrogen atoms are substituted with a hydroxyl group is used. It is more preferable that two or more are used.
  • Specific combinations of compound (X) include poly-4-vinylphenol and 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, poly-4-vinylphenol and 2 , 6-Bis (2,4-dihydroxybenzyl) -4-methylphenol is preferred.
  • the polymer electrolyte is formed by crosslinking a molded article of a composition containing the block copolymer (Z) and the compound (X).
  • the content of the compound (X) is from the viewpoint of increasing the hot water resistance and ion conductivity of the polymer electrolyte membrane.
  • a range of 2 to 12 parts by mass is particularly preferable.
  • the number of moles of the aromatic ring in which one or more hydrogen atoms of the compound (X) are substituted with a hydroxyl group is The range of 0.1 to 70 mol parts is preferable with respect to 100 mol parts of the ion conductive group of the copolymer (Z), more preferably 0.5 to 60 mol parts, and 0.8 to 50 mol parts. Is more preferable, and the range of 3 to 38 mol parts is particularly preferable.
  • a fluid composition containing the block copolymer (Z), the compound (X) and a solvent from the viewpoint of forming a film-shaped molded body.
  • a film-like molded body can be formed by removing the solvent.
  • the solvent include halogenated hydrocarbons such as methylene chloride; aromatic hydrocarbons such as toluene, xylene, and benzene; linear aliphatic hydrocarbons such as hexane, heptane, and octane.
  • Cycloaliphatic hydrocarbons such as cyclohexane; ethers such as tetrahydrofuran, alcohols such as methanol, ethanol, propanol, isopropanol, butanol, and isobutanol. These may be used alone or in combination of two or more, but from the viewpoint of the solubility or dispersibility of the polymer block contained in each block copolymer (Z), a mixed solvent should be used. Is preferred.
  • Preferred mixed solvents include a mixed solvent of toluene and isobutanol, a mixed solvent of xylene and isobutanol, a mixed solvent of toluene and isopropanol, a mixed solvent of cyclohexane and isopropanol, a mixed solvent of cyclohexane and isobutanol, tetrahydrofuran solvent, tetrahydrofuran Mixed solvent of methanol and methanol, mixed solvent of toluene, isobutanol and octane, mixed solvent of toluene, isopropanol and octane, mixed solvent of toluene and isobutanol, mixed solvent of xylene and isobutanol, mixed solvent of toluene and isopropanol More preferred are a mixed solvent of toluene, isobutanol and octane, and a mixed solvent of
  • the fluid composition is prepared by dissolving or dispersing the block copolymer (Z) and the compound (X) in the solvent.
  • various stabilizers such as a softening agent, a phenol-based stabilizer, a sulfur-based stabilizer, a phosphorus-based stabilizer, an inorganic filler, a light stabilizer, an antistatic agent, as long as the effects of the present invention are not impaired.
  • Various additives such as a release agent, a flame retardant, a foaming agent, a pigment, a dye, a bleaching agent, and carbon fiber may be dissolved or dispersed together.
  • the content of the block copolymer (Z) in the component (solid content) other than the solvent in the fluid composition is 50% by mass or more from the viewpoint of ion conductivity of the obtained polymer electrolyte membrane.
  • the content is 70% by mass or more, and more preferably 85% by mass or more.
  • inorganic filler examples include talc, calcium carbonate, silica, glass fiber, mica, kaolin, titanium oxide, montmorillonite, and alumina. These may be used alone or in combination of two or more.
  • the concentration of the block copolymer (Z) in the fluid composition can be appropriately selected depending on the molecular weight, composition, and ion exchange group capacity, but is preferably 5 to 20% by mass from the viewpoint of productivity. .
  • the polymer electrolyte can be formed by crosslinking a molded body made of a composition containing the block copolymer (Z) and the compound (X).
  • the fluid composition is formed into a film and then cross-linked. Specifically, it will be described later in the method for producing a polymer electrolyte membrane.
  • the polymer electrolyte membrane of the present invention contains the polymer electrolyte and a reinforcing material that is a porous material.
  • the polymer electrolyte membrane of the present invention has improved tensile strength at break, and has little dimensional change particularly in hot water, so that it can be started and stopped when applied to a polymer electrolyte fuel cell. It also has excellent durability.
  • the porous material used for the reinforcing material is preferably in the form of a membrane, and the pores communicate with each other between the main surfaces of the membrane.
  • the main surface of the membrane-like reinforcing material is preferably parallel to the main surface of the polymer electrolyte membrane itself.
  • the thickness of the membrane-like reinforcing material is preferably in the range of 3 to 70 ⁇ m, more preferably 5 to 40 ⁇ m, further preferably 6 to 20 ⁇ m, and particularly preferably 7 to 17 ⁇ m. .
  • the polymer electrolyte membrane tends to be excellent in mechanical strength.
  • the porosity of the porous material is preferably 40 to 95%, more preferably 50 to 93%, further preferably 60 to 90%, particularly preferably 70 to 89%, and more preferably 80 to 93%. Most preferred is 88%.
  • the porosity is 40% or more, the ionic conductivity of the polymer electrolyte membrane tends to be excellent, and when it is 70% or more (particularly 80% or more), a solid polymer fuel cell having such a polymer electrolyte membrane is provided. Excellent initial power generation characteristics. If it is 95% or less, the polymer electrolyte membrane tends to be excellent in strength.
  • the voids of the porous material forming the reinforcing material are preferably impregnated with a composition forming a polymer electrolyte (a composition containing a block copolymer (Z) and a compound (X)), More preferably, the composition is impregnated into the voids of the porous material in the form of the fluid composition described above, and then the solvent is removed and further crosslinked.
  • a composition forming a polymer electrolyte a composition containing a block copolymer (Z) and a compound (X)
  • the filling rate of the polymer electrolyte in the voids of the porous material forming the reinforcing material is preferably 70% by volume or more, more preferably 85% by volume or more from the viewpoint of improving the power generation performance and the fuel blocking property. Preferably, it is 95 volume% or more.
  • the average pore diameter of the porous material forming the reinforcing material is usually 0.001 to 1000 ⁇ m, preferably 0.005 to 800 ⁇ m, and more preferably 0.01 to 500 ⁇ m. If it is 0.001 ⁇ m or more, the filling rate of the composition containing the polymer electrolyte in the voids of the porous material can be easily increased, and if it is 1000 ⁇ m or less, the strength of the polymer electrolyte membrane tends to increase.
  • polyolefins such as polyethylene, polypropylene and polyalkadiene; polyaromatic vinyls such as polystyrene; polyesters such as polyethylene terephthalate and polyarylate; polys such as polymethyl methacrylate Polyamide; Polyimide; Aromatic polyether ketone such as polyether ketone and polyether ether ketone; polyvinyl alcohol; cellulose; polysulfide; polyphosphazene; polyphenylene; polybenzimidazole; polyethersulfone; polyphenylene oxide; Polyquinoline; Polyquinoxaline; Polyurea; Polysulfone; Polysulfonate; Polybenzoxazole; Polybenzothia Polythiazole; Polyphenylquinoxaline; Polyquinoline; Polysiloxane; Polytriazine; Polypyridine; Polypyrimidine; Polyoxathiazole; Polytetrazapyren
  • the porous material forming the reinforcing material is preferably made of fibers from the viewpoints of flexibility and mechanical strength, and more preferably non-woven fabric from the viewpoint of productivity.
  • fibers such as aramid fiber, glass fiber, cellulose fiber, nylon fiber, vinylon fiber, polyester fiber, polyolefin fiber, and rayon fiber are preferable from the viewpoint of strength. From the viewpoints of mechanical durability and chemical durability, and productivity (easiness of forming porous materials, ease of forming joined bodies described later, etc.), material availability, etc. It is more preferably composed of liquid crystal polyester fibers and aramid fibers mainly composed of aromatic units, and further preferably composed of liquid crystal polyester fibers mainly composed of aromatic units from the viewpoint of low water absorption, acid resistance and chemical resistance.
  • fibers may be used alone or in combination of two or more.
  • a commercial item can be used suitably, for example, VECRUZ (trademark) made from KURARAYFLEX Co., Ltd. is mentioned.
  • the liquid crystal polyester mainly composed of aromatic units used as the fiber of the porous material forming the reinforcing material exhibits optical anisotropy (liquid crystallinity) in the melt phase, and is an aromatic diol, aromatic dicarboxylic acid or
  • the main component is a structural unit (aromatic unit) derived from an aromatic hydroxycarboxylic acid.
  • the liquid crystal polyester mainly composed of the aromatic unit preferably has, for example, a composition mainly composed of a combination of structural unit groups represented by the following formulas (A) to (G).
  • the “main component” refers to a component occupying more than 50 mass% of the liquid crystal polyester mainly composed of aromatic units.
  • 70% or more of the fibers forming the porous material are liquid crystal polyester fibers mainly composed of aromatic units, and 80% or more. More preferably, it is more preferably 90% or more.
  • the average fiber diameter of the fibers forming the porous material is preferably in the range of 0.5 to 20 ⁇ m, more preferably in the range of 1 to 10 ⁇ m, and even more preferably in the range of 2 to 5 ⁇ m.
  • the basis weight of the nonwoven fabric is preferably in the range of 0.2 to 30 g / m 2 , more preferably in the range of 0.5 to 15 g / m 2 , and 1 to 7 g / m 2 . A range is further preferred.
  • the method for producing the nonwoven fabric is not particularly limited, and examples thereof include known nonwoven fabric production methods such as a dry method, a wet method, a spunbond method, a flash spinning method, a melt blow method, and a melt electrostatic spinning method. Especially, what was manufactured by the melt blow method from a viewpoint which makes an average fiber diameter the preferable range is preferable.
  • the reinforcing material may include commonly used additives such as a colorant, an antioxidant, and an ultraviolet absorber as necessary.
  • the manufacturing method of the polymer electrolyte membrane of this invention uses the fluid composition containing the block copolymer (Z), the compound (X) and the solvent that form the polymer electrolyte, and a porous material that serves as a reinforcing material.
  • Joind body Forming a joined body (hereinafter simply referred to as “joined body”) of a film-like molded body and a reinforcing material comprising the composition containing the block copolymer (Z) and the compound (X), It can be obtained by crosslinking the shaped body.
  • a smooth substrate made of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), glass or the like is usually used.
  • Examples of a method for applying the fluid composition to a porous material that serves as a substrate or a reinforcing material include a method using a coater, an applicator, and the like.
  • a method of applying the fluid composition to a porous material that serves as a reinforcing material a method in which the fluid material is continuously run in the fluid composition, and the fluid composition is dip-niped or nipped. Can be mentioned.
  • the fluid composition can be impregnated into the voids of the porous material forming the reinforcing material at the same time.
  • a joined body may be formed by any one of the methods 1) to 3) above using a porous material impregnated with the polymer electrolyte in advance.
  • the same or different fluid composition may be further applied to one or both surfaces of the obtained joined body, and the solvent may be removed. .
  • a plurality of the joined bodies obtained may be bonded together.
  • the temperature at which the solvent is removed can be arbitrarily selected as long as the block copolymer (Z) is not decomposed, and a plurality of temperatures may be arbitrarily combined.
  • the removal of the solvent can be performed under a ventilation condition or a vacuum condition, and these may be combined arbitrarily. Specifically, the solvent is removed by drying at 60 to 120 ° C. for 4 minutes or longer in a hot air dryer; the solvent is removed by drying at 120 to 140 ° C. for 2 to 4 minutes in a hot air dryer. Method: Pre-drying at 25 ° C. for 1 to 3 hours, followed by drying in a hot air dryer at 80 to 120 ° C. for 5 to 10 minutes; After pre-drying at 25 ° C.
  • the solvent is removed by drying in a hot air dryer at 60 to 120 ° C. over 4 minutes; at 25 ° C. for 1 to 3 hours, A method of pre-drying and then drying in a hot air dryer at about 80-120 ° C. for 5-10 minutes; after pre-drying at 25 ° C. for 1-3 hours, under an atmosphere of 25-40 ° C.
  • a method of drying for 1 to 12 hours under a reduced pressure condition of 1.3 kPa or less is preferably used.
  • a polymer electrolyte is formed by crosslinking a molded product of the composition containing the block copolymer (Z) and the compound (X) constituting the joined body obtained as described above.
  • a polymer electrolyte membrane can be obtained.
  • heating, irradiation with active energy rays such as an electron beam, and the like can be suitably employed.
  • the crosslinking by heating or active energy ray irradiation may be performed simultaneously with the solvent removal or after the solvent removal. Further, after removing the solvent while crosslinking by heating or active energy ray irradiation, heating or active energy ray irradiation may be further performed.
  • the heating temperature is preferably 50 to 250 ° C., more preferably 60 to 200 ° C., still more preferably 70 to 180 ° C., and particularly preferably 100 to 150 ° C.
  • the heating time is preferably 0.1 to 400 hours, more preferably 0.2 to 200 hours, and further preferably 0.4 to 100 hours.
  • the heating can be performed in the air, a nitrogen atmosphere, or the like, and is preferably performed in a nitrogen atmosphere.
  • the active energy ray irradiation for example, when crosslinking is performed with an electron beam, the acceleration voltage is preferably in the range of 50 to 250 kV and the dose is preferably in the range of 100 to 800 kGy.
  • the gel fraction of the polymer electrolyte membrane can be measured by the method described in Examples below, is preferably 30% or more, more preferably 50% or more, further preferably 70% or more, and particularly preferably 80% or more. If the gel fraction is 80% or more, the hot water resistance tends to be good.
  • the polymer electrolyte membrane is usually peeled from the substrate. Note that when the joined body is manufactured without using the substrate by the above-described dip method, nip method, or the like, peeling is not necessary.
  • Mn was measured by gel permeation chromatography (GPC) under the following conditions and calculated in terms of standard polystyrene.
  • Device manufactured by Tosoh Corporation, trade name: HLC-8220GPC Eluent: Tetrahydrofuran
  • the obtained membrane-like polymer electrolyte was subjected to a temperature increase rate of 3 in a tensile mode (frequency: 11 Hz) using a wide-range dynamic viscoelasticity measuring device (“DVE-V4FT Rheospectr” manufactured by Rheology).
  • the storage elastic modulus (E ′), loss elastic modulus (E ′′) and loss tangent (tan ⁇ ) were measured by raising the temperature from ⁇ 80 ° C. to 250 ° C. Based on the fact that there was no change in storage modulus at 80 to 100 ° C. derived from the crystallized olefin polymer, the amorphous nature of the polymer block (B) was judged.
  • the resulting block copolymer had an Mn of 130,000, a 1,4-bond content of the polyisoprene block of 93.7%, a content of structural units derived from styrene of 35.6% by mass, 4-tert- The content rate of the structural unit derived from butylstyrene was 24.8 mass%.
  • a cyclohexane solution of the above block copolymer is prepared and placed in a pressure vessel that is purged with nitrogen. Using a Ni / Al Ziegler catalyst, a hydrogenation reaction is performed at 0.5 to 1 MPa at 70 ° C. under hydrogen pressure for 18 hours.
  • Block copolymer [polystyrene-b-poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-hydrogenated polyisoprene- b-poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter referred to as “block copolymer”) Z 0 -1) referred to as ”)] was obtained.
  • block copolymer Z 0 -1) referred to as ")
  • block copolymer (Z) was obtained (hereinafter referred to as “block copolymer (Z-1)”).
  • block copolymer (Z-1) the ratio of the sulfonic acid group to the structural unit derived from styrene (sulfonation rate) was 100 mol%, and the ion exchange capacity was 2.6 meq / g.
  • the resulting block copolymer had an Mn of 108,000, a 1,4-bond content of the polybutadiene block of 55.0%, a content of structural units derived from styrene of 39.9% by mass, and 4-tert-butyl.
  • the content rate of the structural unit derived from styrene was 29.5 mass%.
  • a cyclohexane solution of the above block copolymer is prepared and placed in a pressure vessel that is purged with nitrogen. Using a Ni / Al Ziegler catalyst, a hydrogenation reaction is performed at 0.5 to 1 MPa at 70 ° C. under hydrogen pressure for 18 hours.
  • Block copolymer (Z 0 ) [poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-polybutadiene-b-poly (4-tert- referred butylstyrene) -b- polystyrene -b- poly (4-tert-butylstyrene) (hereinafter "block copolymer (Z 0 -2)" and That)] was obtained.
  • the hydrogenation rate of the hydrogenated polybutadiene block of the obtained block copolymer (Z 0 -2) was 99% or more.
  • block copolymer (Z) was obtained (hereinafter referred to as “block copolymer (Z-2)”).
  • block copolymer (Z-2) the ratio of the sulfonic acid group to the structural unit derived from styrene (sulfonation rate) was 99 mol%, and the ion exchange capacity was 2.9 meq / g.
  • the resulting block copolymer has an Mn of 159,000, the polyisoprene block has a 1,4-bond content of 94.0%, the content of structural units derived from styrene is 35.0% by mass, 4-tert- The content of structural units derived from butylstyrene was 12.2% by mass.
  • a cyclohexane solution of the above block copolymer is prepared and placed in a pressure vessel that is purged with nitrogen. Using a Ni / Al Ziegler catalyst, a hydrogenation reaction is performed at 0.5 to 1 MPa at 70 ° C. under hydrogen pressure for 18 hours.
  • Block copolymer (Z 0 ) [polystyrene-b-poly (4-tert-butylstyrene) -b-hydrogenated polyisoprene-b-poly (4-tert-butylstyrene) -b-polystyrene ( (Hereinafter referred to as “block copolymer (Z 0 -3)”).
  • block copolymer (Z 0 -3) The hydrogenation rate of the hydrogenated polyisoprene block of the obtained block copolymer (Z 0 -3) was 99% or more.
  • block copolymer (Z) was obtained (hereinafter referred to as “block copolymer (Z-3)”).
  • block copolymer (Z-3) the ratio of the sulfonic acid group to the structural unit derived from styrene (sulfonation rate) was 99 mol%, and the ion exchange capacity was 2.6 meq / g.
  • the resulting block copolymer has an Mn of 78,000, a 1,4-bond content of the polybutadiene block determined from 1 H-NMR (400 MHz) of 58.5%, and a structural unit derived from 4-methylstyrene The content of was 30.0% by mass.
  • Block copolymer (Z 0 ) [poly (4) comprising a poly (4-methylstyrene) polymer block (polymer block (A 0 )) and a hydrogenated polybutadiene polymer block (polymer block (B)).
  • block copolymer (Z 0 -4) -Methylstyrene
  • block copolymer (Z 0 -4) The hydrogenation rate of the hydrogenated polybutadiene block of the obtained block copolymer (Z 0 -4) was 99% or more.
  • a sulfonating agent was prepared by mixing 23.4 ml of acetic anhydride and 10.5 ml of sulfuric acid at 0 ° C. in 35.1 ml of methylene chloride.
  • 50 g of the block copolymer (Z 0 -4) was placed in a glass reaction vessel equipped with a 3 L stirrer, and the operation of evacuating the system and introducing nitrogen was repeated three times. After adding 612 ml of methylene and stirring for 4 hours at room temperature to dissolve, 69.1 ml of the sulfonating agent was added dropwise over 5 minutes.
  • the ratio of the sulfonic acid group to the structural unit derived from 4-methylstyrene was 65.2 mol%, and the ion exchange capacity was 1.5 meq / g. It was.
  • Example 1 (Production of polymer electrolyte membrane) After preparing a 13% by mass toluene / isobutanol (mass ratio 77/23) solution of the block copolymer (Z-1) obtained in Production Example 1, poly-4-vinylphenol (as compound (X)) was prepared. Maruzen Petrochemical Co., Ltd., product name: Marcalinker M, grade: S-1, Mn: 1100-1500), block copolymer (Z-1) / poly-4-vinylphenol mass ratio is 100 / It added so that it might be set to 9.6, and the fluid composition was prepared.
  • the fluid composition was coated on a release-treated PET film (Mitsubishi Resin Co., Ltd., trade name: MRF) with a thickness of about 150 ⁇ m, and then a non-woven fabric (Kuralek Laurex Co., Ltd.). , Vecrus (registered trademark), average fiber diameter 7 ⁇ m, basis weight 3 g / cm 2 , porosity 76.2%, thickness 9 ⁇ m, hereinafter referred to as “nonwoven fabric (a)”)
  • the fluid composition was impregnated into the voids of the nonwoven fabric (a) in parallel with the coated surface, and then dried at 100 ° C. for 6 minutes with a hot air dryer.
  • the above fluid composition was further coated at a thickness of about 125 ⁇ m, and dried at 100 ° C. for 6 minutes in a hot air dryer to obtain the block copolymer (Z-1) and the compound (X).
  • a bonded body having a thickness of 20 ⁇ m was obtained between the molded body of the composition to be contained and the nonwoven fabric (a).
  • the obtained joined body was heat-treated under a nitrogen stream at 140 ° C. for 1.5 hours to crosslink the molded body, thereby producing a polymer electrolyte membrane of the present invention.
  • Example 2 (Production of polymer electrolyte membrane) After preparing a 13% by mass toluene / isobutanol (mass ratio 77/23) solution of the block copolymer (Z-1) obtained in Production Example 1, poly-4-vinylphenol (as compound (X)) was prepared. Maruzen Petrochemical Co., Ltd., product name: Marcalinker M, grade: S-1), so that the mass ratio of block copolymer (Z-1) / poly-4-vinylphenol is 100 / 9.6. To prepare a flowable composition.
  • the fluid composition was applied on a PET film (Mitsubishi Resin Co., Ltd., trade name: MRF) with a thickness of about 125 ⁇ m, and then the nonwoven fabric (a) was peeled from above.
  • the fluid composition was impregnated in the voids of the non-woven fabric (a) so as not to enter and parallel to the coated surface, and then dried at 100 ° C. for 6 minutes in a hot air dryer.
  • the flowable composition was applied to a thickness of about 75 ⁇ m on this, and dried at 100 ° C. for 6 minutes in a hot air dryer to obtain the block copolymer (Z-1) and the compound (X).
  • a joined body having a thickness of 16 ⁇ m was formed between the molded body of the composition to be contained and the nonwoven fabric (a).
  • the obtained joined body was heat-treated under a nitrogen stream at 140 ° C. for 1.5 hours to crosslink the molded body, thereby producing a polymer electrolyte membrane of the present invention.
  • Example 3 (Production of polymer electrolyte membrane) After preparing a 13% by mass toluene / isobutanol (mass ratio 77/23) solution of the block copolymer (Z-1) obtained in Production Example 1, poly-4-vinylphenol (as compound (X)) was prepared. Maruzen Petrochemical Co., Ltd., product name: Marcalinker M, grade: S-1), so that the mass ratio of block copolymer (Z-1) / poly-4-vinylphenol is 100 / 9.6. To prepare a flowable composition.
  • the flowable composition was applied on a PET film (Mitsubishi Resin Co., Ltd., trade name: MRF) with a thickness of about 200 ⁇ m, and then the nonwoven fabric (a) was wrinkled from above.
  • the fluid composition was impregnated in the voids of the non-woven fabric (a) so as to be parallel to the coated surface, and then dried at 100 ° C. for 6 minutes with a hot air dryer. Further, the above fluid composition was applied to a thickness of about 150 ⁇ m and dried in a hot air dryer at 100 ° C. for 6 minutes, whereby the block copolymer (Z-1) and the compound (X) were obtained.
  • a joined body having a thickness of 27 ⁇ m was formed between the molded body of the composition to be contained and the nonwoven fabric (a).
  • the obtained joined body was heat-treated under a nitrogen stream at 140 ° C. for 1.5 hours to crosslink the molded body, thereby producing a polymer electrolyte membrane of the present invention.
  • Example 4 (Production of polymer electrolyte membrane) After preparing a 13% by mass toluene / isobutanol (mass ratio 77/23) solution of the block copolymer (Z-1) obtained in Production Example 1, poly-4-vinylphenol (as compound (X)) was prepared. Maruzen Petrochemical Co., Ltd., product name: Marcalinker M, grade: S-1), so that the mass ratio of block copolymer (Z-1) / poly-4-vinylphenol is 100 / 9.6. To prepare a flowable composition.
  • the flowable composition was coated on a PET film (Mitsubishi Resin Co., Ltd., trade name: MRF) with a thickness of about 150 ⁇ m after being subjected to a release treatment, and then a non-woven fabric (manufactured by Kuraray Laflex Co., Ltd.) VECULUS (registered trademark), average fiber diameter of 7 ⁇ m, basis weight of 6 g / cm 2 , porosity of 68.9%, thickness of 14 ⁇ m, hereinafter referred to as “nonwoven fabric (b)”) is applied so as not to cause wrinkles.
  • the fluid composition was impregnated into the voids of the nonwoven fabric (b) in parallel with the work surface, and then dried at 100 ° C.
  • the above fluid composition was further coated at a thickness of about 125 ⁇ m, and dried at 100 ° C. for 6 minutes in a hot air dryer to obtain the block copolymer (Z-1) and the compound (X).
  • a joined body having a thickness of 20 ⁇ m was formed between the molded body of the composition to be contained and the nonwoven fabric (b). The obtained joined body was heat-treated under a nitrogen stream at 140 ° C. for 1.5 hours to crosslink the molded body, thereby producing a polymer electrolyte membrane of the present invention.
  • Example 5 (Production of polymer electrolyte membrane)
  • another nonwoven fabric manufactured by Clarek Laurex Co., Ltd., Vecrus (registered trademark), average fiber diameter 3 ⁇ m, basis weight 2.4 g / cm 2 , porosity 86.8%, thickness 13 ⁇ m
  • a polymer electrolyte membrane having a thickness of 20 ⁇ m was prepared in the same manner as in Example 1 except that “nonwoven fabric (c)” was used.
  • Example 6 (Production of polymer electrolyte membrane)
  • another non-woven fabric manufactured by Klarek Laurex Co., Ltd., Becruz (registered trademark) average fiber diameter 3 ⁇ m, basis weight 2.7 g / cm 2 , porosity 84.6%, thickness 13 ⁇ m
  • a polymer electrolyte membrane having a thickness of 20 ⁇ m was prepared in the same manner as in Example 1 except that “nonwoven fabric (d)”) was used.
  • Example 7 (Production of polymer electrolyte membrane) After preparing a 13% by mass toluene / isobutanol (mass ratio 77/23) solution of the block copolymer (Z-1) obtained in Production Example 1, poly-4-vinylphenol (as compound (X)) was prepared. Maruzen Petrochemical Co., Ltd., product name: Marcalinker M, grade: S-1), so that the mass ratio of block copolymer (Z-1) / poly-4-vinylphenol is 100 / 9.6. To prepare a flowable composition.
  • the flowable composition was coated on a PET film (Mitsubishi Resin Co., Ltd., trade name: MRF) with a thickness of about 200 ⁇ m, and then a polyester-based non-woven fabric (Hirose Paper Co., Ltd.).
  • the flowable composition was impregnated in the voids of the non-woven fabric (e) in parallel with each other, and then dried at 100 ° C. for 6 minutes in a hot air dryer.
  • the flowable composition was further applied in a thickness of about 250 ⁇ m, dried in a hot air dryer at 100 ° C. for 6 minutes, and the flowable composition was further applied in a thickness of about 250 ⁇ m.
  • Bonding of the molded body of the composition containing the block copolymer (Z-1) and the compound (X) and the nonwoven fabric (e) with a thickness of 45 ⁇ m by drying for 6 minutes at 100 ° C. with a hot air dryer Got the body.
  • the obtained joined body was heat-treated under a nitrogen stream at 140 ° C. for 1.5 hours to crosslink the molded body, thereby producing a polymer electrolyte membrane of the present invention.
  • Example 8 (Production of polymer electrolyte membrane) After preparing a 13% by mass toluene / isobutanol (mass ratio 7/3) solution of the block copolymer (Z-2) obtained in Production Example 2, poly-4-vinylphenol (as compound (X)) was prepared. Maruzen Petrochemical Co., Ltd., product name: Marcalinker M, grade: S-1), block copolymer (Z-2) / poly-4-vinylphenol mass ratio of 100 / 10.5 A polymer electrolyte membrane having a thickness of 20 ⁇ m was produced in the same manner as in Example 1 except that the above was added.
  • Example 9 (Production of polymer electrolyte membrane) After preparing a 10% by mass toluene / isobutanol / n-octane (mass ratio 3/3/4) solution of the block copolymer (Z-3) obtained in Production Example 3, -4-Vinylphenol (Maruzen Petrochemical Co., Ltd., product name: Marcalinker M, grade: S-1), block copolymer (Z-3) / poly-4-vinylphenol mass ratio of 100 / It added so that it might be set to 9.4, and the fluid composition was prepared.
  • the nonwoven fabric (a) is prevented from wrinkling from above.
  • the fluid composition was impregnated in the voids of the nonwoven fabric (a) in parallel with the coating surface, and then dried at 100 ° C. for 6 minutes in a hot air dryer. Further, the above fluid composition was applied to a thickness of about 200 ⁇ m, and dried with a hot air dryer at 100 ° C. for 6 minutes to obtain the block copolymer (Z-3) and the compound (X).
  • a joined body having a thickness of 27 ⁇ m was formed between the molded body of the composition to be contained and the nonwoven fabric (a).
  • the obtained joined body was heat-treated under a nitrogen stream at 140 ° C. for 6 hours to crosslink the molded body, thereby producing a polymer electrolyte membrane of the present invention.
  • Example 10 (Production of polymer electrolyte membrane) After preparing a 10% by mass toluene / isobutanol / n-octane (mass ratio 3/3/4) solution of the block copolymer (Z-3) obtained in Production Example 3, -4-Vinylphenol (Maruzen Petrochemical Co., Ltd., product name: Marcalinker M, grade: S-1), block copolymer (Z-3) / poly-4-vinylphenol mass ratio of 100 / It added so that it might be set to 9.4, and the fluid composition was prepared.
  • the nonwoven fabric (a) is prevented from entering wrinkles from above.
  • the fluid composition was impregnated in the voids of the nonwoven fabric (a) in parallel with the coating surface, and then dried at 100 ° C. for 6 minutes in a hot air dryer.
  • the above flowable composition was further coated on the obtained film at a thickness of about 175 ⁇ m, and dried at 100 ° C.
  • Example 11 (Production of polymer electrolyte membrane) A 10% by mass toluene / isobutanol / n-octane (mass ratio 3/3/4) solution of the block copolymer (Z-3) obtained in Production Example 3 was prepared, and then the compound (X) 2 , 6-Bis (2-hydroxy-5-methylbenzyl) -4-methylphenol (manufactured by Asahi Organic Materials Co., Ltd.) is used as a block copolymer (Z-3) / 2,6-bis (2-hydroxy- A flowable composition was prepared by adding 5-methylbenzyl) -4-methylphenol in a mass ratio of 100 / 4.5.
  • the nonwoven fabric (a) is prevented from entering wrinkles from above.
  • the fluid composition was impregnated in the voids of the nonwoven fabric (a) in parallel with the coating surface, and then dried at 100 ° C. for 6 minutes in a hot air dryer. Further, the above flowable composition was further coated to a thickness of about 175 ⁇ m, and dried at 100 ° C. for 30 minutes with a hot air dryer, whereby the block copolymer (Z-3) and the compound (X) were obtained.
  • a bonded body having a thickness of 20 ⁇ m was obtained between the molded body of the composition to be contained and the nonwoven fabric (a).
  • the obtained joined body was heat-treated under a nitrogen stream at 120 ° C. for 6 hours to crosslink the molded body, thereby producing a polymer electrolyte membrane of the present invention.
  • Example 12 (Production of polymer electrolyte membrane) A polymer electrolyte membrane having a thickness of 20 ⁇ m was produced in the same manner as in Example 11 except that the nonwoven fabric (c) was used instead of the nonwoven fabric (a).
  • Example 13 (Production of polymer electrolyte membrane) A polymer electrolyte membrane having a thickness of 20 ⁇ m was produced in the same manner as in Example 11 except that the nonwoven fabric (d) was used instead of the nonwoven fabric (a).
  • Example 14 (Production of polymer electrolyte membrane)
  • the compound (X) 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol (manufactured by Asahi Organic Materials Co., Ltd.) was used, and a block copolymer (Z-1) / 2 was used. , 6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol was added in a mass ratio of 100 / 4.5 in the same manner as in Example 1 except that the mass ratio was 100 / 4.5. An electrolyte membrane was produced.
  • Example 15 (Production of polymer electrolyte membrane) After preparing a 13% by mass toluene / isobutanol (mass ratio 77/23) solution of the block copolymer (Z-1) obtained in Production Example 1, poly-4-vinylphenol (as compound (X)) was prepared. Maruzen Petrochemical Co., Ltd., product name: Marcalinker M, grade: S-1), so that the mass ratio of block copolymer (Z-1) / poly-4-vinylphenol is 100 / 9.6. To prepare a flowable composition.
  • the flowable composition was coated on a PET film (Mitsubishi Resin Co., Ltd., trade name: MRF) with a thickness of about 150 ⁇ m after being subjected to a release treatment, and then a non-woven fabric (manufactured by Kuraray Laflex Co., Ltd.) Veculus (registered trademark), average fiber diameter of 3 ⁇ m, basis weight of 4.5 g / cm 2 , porosity of 64.3%, thickness of 9 ⁇ m, hereinafter referred to as “nonwoven fabric (f)”) so as not to be wrinkled from above
  • the fluid composition was impregnated in parallel with the coated surface in the voids of the nonwoven fabric (f) and then dried at 100 ° C.
  • the above fluid composition was further coated at a thickness of about 125 ⁇ m, and dried at 100 ° C. for 6 minutes in a hot air dryer to obtain the block copolymer (Z-1) and the compound (X).
  • a joined body having a thickness of 20 ⁇ m was formed between the molded body of the composition to be contained and the nonwoven fabric (f). The obtained joined body was heat-treated under a nitrogen stream at 140 ° C. for 1.5 hours to crosslink the molded body, thereby producing a polymer electrolyte membrane of the present invention.
  • Comparative Example 2 (Production of polymer electrolyte membrane) A polymer electrolyte membrane having a thickness of 20 ⁇ m was prepared in the same manner as in Comparative Example 1 except that the nonwoven fabric (b) was used instead of the nonwoven fabric (a).
  • the flowable composition was coated on a PET film (Mitsubishi Resin Co., Ltd., trade name: MRF) with a thickness of about 150 ⁇ m, and then the nonwoven fabric (b) was wrinkled from above.
  • the fluid composition was impregnated in the voids of the non-woven fabric (b) so as to be parallel to the coated surface, and then dried at 100 ° C. for 6 minutes in a hot air dryer. Further, the above flowable composition was further coated at a thickness of about 150 ⁇ m, and dried at 100 ° C. for 6 minutes in a hot air dryer, so that the block copolymer (Z-1) and 1,2-polybutadiene were dried.
  • a bonded body having a thickness of 20 ⁇ m was obtained from the molded article of the composition containing the non-woven fabric (b). Electron beam irradiation with an acceleration voltage of 150 kV, a beam current of 8.6 mA, and a dose of 300 kGy was performed on the obtained joined body using an electro curtain type electron beam irradiation apparatus (trade name: CB250 / 30/20 mA, manufactured by Iwasaki Electric Co., Ltd.). To form a polymer electrolyte membrane.
  • the above fluid composition was applied at a thickness of about 150 ⁇ m, and dried at 100 ° C. for 6 minutes in a hot air dryer to obtain a composition containing the block copolymer (Z-4).
  • a joined body having a thickness of 20 ⁇ m was formed between the formed body and the nonwoven fabric (b).
  • the obtained joined body was heat-treated at 130 ° C. under a pressure of 1 MPa for 5 minutes to crosslink the shaped body, thereby producing a polymer electrolyte membrane.
  • the fluid composition was applied to a release-treated PET film (trade name: MRF, manufactured by Mitsubishi Resin Co., Ltd.) with a thickness of about 300 ⁇ m, and dried at 100 ° C. for 6 minutes in a hot air dryer. As a result, a molded body having a thickness of 20 ⁇ m was obtained. The obtained molded body was crosslinked by heating for 1 hour in a nitrogen stream at 140 ° C. to produce a polymer electrolyte membrane composed of a membrane-like polymer electrolyte.
  • MRF release-treated PET film
  • Pt catalyst-supporting carbon and Nafion D1021 (DuPont (trade name) After sandwiching between two electrodes consisting of a catalyst layer consisting of)) and carbon paper, heat treatment (115 ° C., 1 MPa, 8 minutes) was performed by hot pressing to produce a membrane-electrode assembly (MEA). . Next, after the gasket is combined with the manufactured MEA, it is sandwiched between two conductive separators that also serve as gas supply channels, and the outside is sandwiched between two current collector plates and two clamping plates. A cell was produced.
  • a fuel cell for evaluation was assembled by connecting a current control terminal and a voltage detection terminal.
  • One electrode (anode) of this evaluation fuel cell was supplied with hydrogen at 70 cc / min, and the other electrode (cathode) was supplied with air at 240 cc / min and operated under the following conditions to measure the voltage drop rate.
  • the fabricated membrane-electrode assembly is sandwiched between two conductive separators that also serve as gas supply channels, and the outside is sandwiched between two current collector plates and two clamping plates.
  • a cell (electrode area: 25 cm 2 ) was produced.
  • load current control terminals and voltage detection terminals connected to the gas supply hose, drain hose, heater power supply, thermocouple, and power generation characteristic analyzer manufactured by NF circuit design block Co., Ltd.
  • the fuel cell for evaluation was assembled by connecting. While raising the single cell temperature to 80 ° C., 80 ° C.
  • ⁇ Operation 2> While maintaining the temperature of the single cell at 80 ° C., supplying current of 80 ° C. and 100% RH to the anode and air of 80 ° C. and 100% RH to the cathode, the current value is stepped from 0 A to 1.25 A. The voltage value at each current value was measured while the voltage value was increased to 0 A, and when the voltage value became 0.01 V or less, the current value was returned to 0 A.
  • the supply amount of hydrogen to the anode and the supply amount of air to the cathode are 46 ml / min and 168 ml / min at current values of 0 A, 1.25 A, and 2.5 A, respectively, and stoichiometric at 3.75 A and above.
  • the polymer electrolyte membrane of the present invention exhibits high hot water resistance. Since Comparative Examples 1 and 2 are not crosslinked, it can be seen that the hot water resistance is significantly lower than that of the polymer electrolyte membrane of the present invention. Since the polymer electrolyte membrane of Comparative Example 3 is a polymer electrolyte membrane crosslinked with a crosslinking agent other than compound (X), it can be seen that the hot water resistance is significantly lower than that of the polymer electrolyte membrane of the present invention.
  • the polymer electrolyte membrane of Comparative Example 4 is considered that the 4-methylstyrene site is thermally crosslinked, but has a lower ion exchange capacity than Example 1 because it does not use compound (X).
  • the hot water resistance is extremely low. From Examples 1 to 15, if the polymer electrolyte membrane has a cross-linked block copolymer (Z) and a reinforcing material that is a porous material, the dimensional change rate in the plane direction is small, and the hot water resistance is low. I understand that it is expensive.
  • the polymer electrolyte membrane of the present invention has little decrease in voltage when operated by being incorporated in a fuel cell, and the start / stop durability In the property test, it can be seen that the durability of 10,000 cycles or more can be secured. This can be presumed to be based on the excellent hot water resistance of the polymer electrolyte membrane of the present invention and a decrease in the expansion coefficient in the plane direction.
  • the polymer electrolyte membrane containing a reinforcing material having a porosity of 70% or more is the same as the polymer electrolyte membrane of Reference Example 1 containing no reinforcing material. Since the polymer electrolyte membrane containing a reinforcing material having a resistance value equal to or less than that, in particular, having a porosity of 80% or more shows a significantly lower resistance value than the polymer electrolyte membrane of Reference Example 1, It can be seen that the characteristics are excellent.
  • the fluid composition was coated on a release-treated PEN film (manufactured by Teijin DuPont Film, trade name: Q31M) and dried at 100 ° C. for 6 minutes in a hot air drier to obtain a thickness of 20 ⁇ m.
  • a molded body was obtained.
  • the obtained molded body was crosslinked by heat treatment for 1 hour under a nitrogen stream at 140 ° C. to produce a membrane-shaped polymer electrolyte.
  • the tensile breaking strength and the tensile breaking elongation were measured in the same manner as in Evaluation Example 1. The results are shown in Table 2.
  • the fluid composition is coated on a release-treated PET film (trade name: MRF, manufactured by Mitsubishi Resin Co., Ltd.), and dried at 100 ° C. for 6 minutes in a hot air dryer.
  • a 20 ⁇ m shaped body was obtained.
  • the obtained molded body was crosslinked by heat treatment for 1 hour under a nitrogen stream at 140 ° C. to produce a membrane-shaped polymer electrolyte.
  • the tensile breaking strength and the tensile breaking elongation were measured in the same manner as in Evaluation Example 1. The results are shown in Table 2.
  • the fluid composition was coated on a release-treated PEN film (manufactured by Teijin DuPont Film, trade name: Q31M) and dried at 100 ° C. for 6 minutes in a hot air drier to obtain a thickness of 20 ⁇ m.
  • a molded body was obtained.
  • the obtained molded body was crosslinked by heat treatment for 1 hour under a nitrogen stream at 140 ° C. to produce a membrane-shaped polymer electrolyte.
  • the tensile breaking strength and the tensile breaking elongation were measured in the same manner as in Evaluation Example 1. The results are shown in Table 2.
  • the polymer electrolyte contained in the polymer electrolyte membrane of the present invention is both flexible and difficult to break because it has excellent tensile rupture strength and tensile rupture elongation.
  • the polymer electrolyte membrane of the present invention containing such a polymer electrolyte and a reinforcing material has such flexibility, and at the same time, has a higher tensile rupture strength as shown in Table 1.
  • the present invention it is possible to provide a polymer electrolyte membrane which is made of a non-fluorine material, is flexible and hardly cracked, and has excellent hot water resistance.
  • the polymer electrolyte membrane of the present invention is suitable for a solid polymer fuel cell because it has little dimensional change particularly in hot water and has excellent start-stop durability when applied to a solid polymer fuel cell. Used for.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 補強材を含有する高分子電解質膜であって、前記高分子電解質膜が、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有する重合体ブロック(A)と、不飽和脂肪族炭化水素に由来する構造単位からなり、イオン伝導性基を有さない非晶性の重合体ブロック(B)とを含むブロック共重合体(Z)および1つ以上の水素原子が水酸基で置換された芳香環を分子中に2つ以上有する化合物(X)を含有する組成物の成形体を架橋した高分子電解質を含有し、前記補強材が多孔質材料である高分子電解質膜。

Description

高分子電解質膜
 本発明は、固体高分子型燃料電池に有用な高分子電解質膜に関する。
 近年、効率の高い発電システムとして燃料電池が注目されている。燃料電池は、電解質の種類によって、溶融炭酸塩型、固体酸化物型、リン酸型、固体高分子型等に分類される。これらのうち、高分子電解質膜を電極(アノードおよびカソード)で挟んだ構造からなり、アノードに還元剤からなる燃料(通常は水素またはメタノール)を、カソードに酸化剤(通常は空気)を、それぞれ供給して発電する固体高分子型燃料電池は、低温作動性、小型軽量化等の観点から、自動車用電源、ポータブル機器電源、家庭用コージェネレーションシステム等への適用が検討されている。
 固体高分子型燃料電池に用いる高分子電解質膜の材料としては、化学的な安定性からパーフルオロカーボンスルホン酸系高分子がしばしば用いられているが、フッ素を含有するため、生産時および廃棄時の環境負荷が課題となる。
 このような事情から近年、フッ素を含有しない材料(非フッ素系材料)からなる高分子電解質膜が求められている。例えば、スルホン酸基を導入したポリエーテルエーテルケトン(PEEK)からなる高分子電解質膜が知られている(特許文献1参照)。かかる高分子電解質膜は耐熱性に優れるものの、硬質で脆いことから、割れやすく実用性に乏しい。
 一方、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有する重合体ブロックおよびフレキシブルな重合体ブロックを含むブロック共重合体からなる高分子電解質膜が知られている(特許文献2参照)。かかる高分子電解質膜は柔軟で割れにくく、上記イオン伝導性基を有する重合体ブロックがフレキシブルな重合体ブロックとミクロ相分離してイオン伝導性チャンネルを形成するため、イオン伝導性に優れる。
 一方、水素を燃料とする固体高分子型燃料電池において、高出力化のために使用温度を上げることが要求されており、かかる要求に応えるため、高分子電解質膜の熱水(たとえば90℃以上)に対する耐久性(耐熱水性)の向上、具体的には熱水による高分子電解質膜の溶出の抑制や、これに伴う高温下での長時間の運転における電圧低下を抑制する方策が検討されている。
 例えば、上記フレキシブルな重合体ブロックをビニル系化合物に由来する構造単位として、該フレキシブルな重合体ブロックを1,2-ポリブタジエンなどで架橋したブロック共重合体を主成分とすることで高分子電解質膜の耐熱水性が高まることが知られている(特許文献3参照)。
特開平6-93114号公報 国際公開第2006/070929号 国際公開第2012/043400号
 しかしながら、固体高分子型燃料電池のさらなる高出力化に向けて、なお耐熱水性を改善する余地がある。
 また、高分子電解質膜の熱水中での寸法安定性や、固体高分子型燃料電池の起動と停止に伴って湿潤と乾燥を繰り返した場合の耐久性(以下、「起動停止耐久性」と称する)についても改善の余地がある。
 したがって、本発明の目的は、非フッ素系材料からなり、柔軟で割れにくく、耐熱水性に優れる高分子電解質膜を提供することにある。
 本発明によれば、上記目的は、
 補強材を含有する高分子電解質膜であって、前記高分子電解質膜が、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有する重合体ブロック(A)(以下、単に「重合体ブロック(A)」と称する)と、不飽和脂肪族炭化水素に由来する構造単位からなり、イオン伝導性基を有さない非晶性の重合体ブロック(B)(以下、単に「重合体ブロック(B)」と称する)とを含むブロック共重合体(Z)(以下、単に「ブロック共重合体(Z)」と称する)および1つ以上の水素原子が水酸基で置換された芳香環を分子中に2つ以上有する化合物(X)(以下、単に「化合物(X)」と称する)を含有する組成物の成形体を架橋した高分子電解質を含有し、前記補強材が多孔質材料である高分子電解質膜を提供することで達成される。
 本発明によれば、非フッ素系材料からなり、柔軟で割れにくく、耐熱水性に優れる高分子電解質膜を提供することができる。また本発明の高分子電解質膜は、特に熱水中での寸法変化が少なく、固体高分子型燃料電池に適用した際には起動停止耐久性にも優れるため、固体高分子型燃料電池に好適に用いられる。
[高分子電解質膜]
 本発明の高分子電解質膜は、以下に説明する高分子電解質と補強材とを含有する。
 高分子電解質膜の厚さは、機械的強度、ハンドリング性等の観点から、4~170μmの範囲が好ましく、8~115μmの範囲がより好ましく、10~70μmの範囲がさらに好ましく、12~50μmが特に好ましい。かかる厚さが4μm以上であれば、高分子電解質膜の機械的強度や燃料の遮断性が良好であり、170μm以下であれば、高分子電解質膜のイオン伝導性が良好である。
≪高分子電解質≫
 高分子電解質は、重合体ブロック(A)と重合体ブロック(B)とを含むブロック共重合体(Z)および化合物(X)を含有する組成物の成形体を架橋してなる。重合体ブロック(A)は、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有する重合体ブロックである。また重合体ブロック(B)は、不飽和脂肪族炭化水素に由来する構造単位からなり、イオン伝導性基を有さない非晶性の重合体ブロックである。化合物(X)は、1つ以上の水素原子が水酸基で置換された芳香環を分子中に2つ以上有する化合物である。
 高分子電解質において、重合体ブロック(A)および重合体ブロック(B)は、ミクロ相分離構造を形成している。この結果、重合体ブロック(A)を含む相がイオン伝導性チャンネルを形成するので、良好なイオン伝導性を示す。
 なおここで、「ミクロ相分離」とは微視的な意味での相分離を意味し、より詳しくは、形成されるドメインサイズが可視光の波長(3800~7800Å)以下である相分離を意味するものとする。
(ブロック共重合体(Z))
 ブロック共重合体(Z)は、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有さない重合体ブロック(A)(以下、単に「重合体ブロック(A)」と称する)と重合体ブロック(B)とを含むブロック共重合体(Z)の、重合体ブロック(A)にイオン伝導性基を導入することで得られる。
 ブロック共重合体(Z)の数平均分子量(Mn)は特に制限されないが、通常10,000~300,000の範囲が好ましく、15,000~250,000の範囲がより好ましく、40,000~200,000の範囲がさらに好ましく、70,000~180,000の範囲が特に好ましい。ブロック共重合体(Z)のMnが10,000以上、特に70,000以上であると、本発明の高分子電解質膜の引張破断伸び性能が高く、300,000以下、特に180,000以下であるとブロック共重合体(Z)および化合物(X)を含有する上記組成物は成形性に優れ、製造上も有利となる。なお、本明細書中においてMnは、ゲルパーミエーションクロマトグラフィー(GPC)法により測定された標準ポリスチレン換算値を意味する。
 ブロック共重合体(Z)のイオン交換容量は0.4~4.5meq/gの範囲が好ましく、1.0~3.8meq/gの範囲がより好ましく、1.5~3.4meq/gの範囲がさらに好ましく、1.8~3.0meq/gの範囲が特に好ましい。本発明の高分子電解質膜は、かかるイオン交換容量が0.4meq/g以上であることでイオン伝導性が良好であり、4.5meq/g以下であることで膨潤しにくい。ブロック共重合体(Z)のイオン交換容量は、酸価滴定法を用いて算出できる。
 また、ブロック共重合体(Z)は、重合体ブロック(A)および/または重合体ブロック(B)を、それぞれ、1つ有していてもよいし、複数有していてもよい。重合体ブロック(A)を複数有する場合、それらの構造(構造単位の種類、重合度、イオン伝導性基の種類や導入割合等)は、互いに同じであってもよく、異なっていてもよい。また、重合体ブロック(B)を複数有する場合、それらの構造(構造単位の種類、重合度等)は、互いに同じであってもよく、異なっていてもよい。
 ブロック共重合体(Z)における重合体ブロック(A)および重合体ブロック(B)の結合配列に特に制限はない。なお、重合体ブロック(A)および重合体ブロック(B)は側鎖であってもよく、すなわち本発明で用いるブロック共重合体(Z)はグラフト共重合体を包含する。
 当該ブロック共重合体(Z)における、重合体ブロック(A)および重合体ブロック(B)の結合配列の例として、A-B型ジブロック共重合体(A、Bはそれぞれ、重合体ブロック(A)、重合体ブロック(B)を表す。以下同様)、A-B-A型トリブロック共重合体、B-A-B型トリブロック共重合体、A-B-A-B型テトラブロック共重合体、A-B-A-B-A型ペンタブロック共重合体、B-A-B-A-B型ペンタブロック共重合体、(A-B)D型星形共重合体(Dはカップリング剤残基、nは2以上の整数を表す。以下、同様)、(B-A)D型星形共重合体等が挙げられ、機械的強度、イオン伝導性の観点から、A-B-A型トリブロック共重合体、A-B-A-B-A型ペンタブロック共重合体、(A-B)D型星形共重合体が好ましく、A-B-A型トリブロック共重合体がより好ましい。高分子電解質においては、これらのブロック共重合体は、1種を単独で用いても、2種以上を併用してもよい。
 ブロック共重合体(Z)においては、イオン伝導性と機械的強度の観点から、(重合体ブロック(A)の合計量):(重合体ブロック(B)の合計量)は質量比で95:5~5:95の範囲であるのが好ましく、75:25~15:85の範囲であるのがより好ましく、65:35~20:80の範囲であるのがさらに好ましく、45:55~25:75の範囲であるのが特に好ましい。上記質量比が95:5~5:95の範囲、特に45:55~25:75の範囲であれば、本発明の高分子電解質膜を固体高分子型燃料電池に用いた場合の起動停止耐久性に優れる傾向となる。
<重合体ブロック(A)>
 重合体ブロック(A)は、重合体ブロック(A)にイオン伝導性基を導入することで形成できる。イオン伝導性基は通常、重合体ブロック(A)の芳香環に導入する。
 重合体ブロック(A)は芳香族ビニル化合物に由来する構造単位からなり、かかる芳香族ビニル化合物が有する芳香環は、ベンゼン環、ナフタレン環、アントラセン環、ピレン環等の炭素環式芳香環であるのが好ましく、ベンゼン環がより好ましい。
 前記重合体ブロック(A)を形成できる芳香族ビニル化合物としては、例えばスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-エチルスチレン、2,3-ジメチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,5-ジメチルスチレン、2-メトキシスチレン、3-メトキシスチレン、4-メトキシスチレン、ビニルビフェニル、ビニルターフェニル、ビニルナフタレン、ビニルアントラセン、4-フェノキシスチレン等が挙げられる。
 また、上記の芳香族ビニル化合物のビニル基上の水素原子のうち、芳香環のα-位の炭素(α-炭素)に結合した水素原子が他の置換基で置換されていてもよい。かかる置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等の炭素数1~4のアルキル基;クロロメチル基、2-クロロエチル基、3-クロロエチル基等の炭素数1~4のハロゲン化アルキル基;またはフェニル基等が挙げられる。α-炭素に結合した水素原子がこれらの置換基で置換された芳香族ビニル化合物としては、α-メチルスチレン、α-メチル-4-メチルスチレン、α-メチル-2-メチルスチレン、α-メチル-4-エチルスチレン、1,1-ジフェニルエチレン等が挙げられる。
 上記した重合体ブロック(A)を形成できる芳香族ビニル化合物のうち、スチレン、α-メチルスチレン、4-メチルスチレン、4-エチルスチレン、α-メチル-4-メチルスチレン、α-メチル-2-メチルスチレン、ビニルビフェニルおよび1,1-ジフェニルエチレンが好ましく、スチレン、α-メチルスチレン、4-メチルスチレンおよび1,1-ジフェニルエチレンがより好ましく、スチレンおよびα-メチルスチレンがさらに好ましい。
 これら芳香族ビニル化合物を単量体として、1種を単独で、または2種以上を併用して重合することで重合体ブロック(A)を形成できる。2種以上の芳香族ビニル化合物を併用する場合の共重合形態はランダム共重合が好ましい。
 本発明において重合体ブロック(A)は、本発明の効果を損なわない範囲内で1種または2種以上の芳香族ビニル化合物に由来しない他の構造単位を含んでいてもよい。かかる他の構造単位を形成できる単量体としては、例えばブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン等の炭素数4~8の共役ジエン;エチレン、プロピレン、1-ブテン、イソブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、等の炭素数2~8のアルケン;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等のビニルエステル;メチルビニルエーテル、イソブチルビニルエーテル等のビニルエーテル;が挙げられる。この場合、これら他の単量体と、前述した芳香族ビニル化合物との共重合形態はランダム共重合が好ましい。これら他の構造単位は、重合体ブロック(A)を形成している構造単位の5モル%以下であることが好ましい。すなわち、重合体ブロック(A)を形成している構造単位のうち、95モル%以上が芳香族ビニル化合物に由来する構造単位であることが好ましい。
 重合体ブロック(A)1つあたりのMnは、通常1,000~100,000の範囲が好ましく、2,000~70,000の範囲がより好ましく、4,000~50,000の範囲がさらに好ましく、6,000~30,000の範囲が特に好ましい。本発明の高分子電解質膜は、かかるMnが1,000以上、特に6,000以上であればイオン伝導性が良好となり、100,000以下、特に30,000以下であれば耐熱水性が良好となり、且つブロック共重合体(Z)および化合物(X)を含有する上記組成物は成形性に優れ、製造上も有利となる。
 重合体ブロック(A)の有するイオン伝導性基としては、プロトン伝導性基が好ましく、-SOMまたはPOHM(式中、Mは水素原子、アンモニウムイオンまたはアルカリ金属イオンを表す)で表されるスルホン酸基、ホスホン酸基およびそれらの塩から選ばれる1種以上がより好ましく、スルホン酸基がさらに好ましい。
<重合体ブロック(B)>
 重合体ブロック(B)は、不飽和脂肪族炭化水素に由来する構造単位からなり、イオン伝導性基を有さない非晶性の重合体ブロックである。なお、重合体ブロック(B)の非晶性は、ブロック共重合体(Z)の動的粘弾性を測定して、結晶性オレフィン重合体由来の貯蔵弾性率の変化がないことで確認できる。
 上記重合体ブロック(B)を形成できる不飽和脂肪族炭化水素としては、エチレン、プロピレン、1-ブテン、イソブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等の炭素数2~8のアルケン;ビニルシクロペンタン、ビニルシクロヘキサン、ビニルシクロヘプタン、ビニルシクロオクタン等の炭素数7~10のビニルシクロアルカン;ビニルシクロペンテン、ビニルシクロヘキセン、ビニルシクロヘプテン、ビニルシクロオクテン等の炭素数7~10のビニルシクロアルケン;ブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン等の炭素数4~8の共役ジエン;シクロペンタジエン、1,3-シクロヘキサジエン等の炭素数5~8の共役シクロアルカジエン;等が挙げられ、エチレン、プロピレン、1-ブテン、イソブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等の炭素数2~8のアルケン;ブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン等の炭素数4~8の共役ジエン;が好ましく、炭素数4~8のアルケンおよび炭素数4~8の共役ジエンから選ばれる少なくとも1種がより好ましく、イソブテン、ブタジエンおよびイソプレンから選ばれる少なくとも1種がさらに好ましく、ブタジエンおよびイソプレンから選ばれる少なくとも1種が特に好ましい。これら不飽和脂肪族炭化水素を単量体として、1種を単独で、または2種以上を併用して重合して重合体ブロック(B)を形成する。2種以上の不飽和脂肪族炭化水素を併用する場合の共重合形態はランダム共重合が好ましい。
 また、重合体ブロック(B)は、使用温度領域においてブロック共重合体(Z)に柔軟性を与えるという重合体ブロック(B)の効果を損なわない範囲で、不飽和脂肪族炭化水素に由来しない他の構造単位を含んでいてもよい。かかる他の構造単位を形成できる単量体としては、例えばスチレン、ビニルナフタレン等の芳香族ビニル化合物;塩化ビニル等のハロゲン含有ビニル化合物;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等のビニルエステル;メチルビニルエーテル、イソブチルビニルエーテル等のビニルエーテル;等が挙げられる。この場合、これら他の単量体と、前述した不飽和脂肪族炭化水素との共重合形態はランダム共重合が好ましい。これら他の構造単位は、重合体ブロック(B)を形成している構造単位の5モル%以下であることが好ましい。すなわち、重合体ブロック(B)を形成している構造単位のうち、95モル%以上が不飽和脂肪族炭化水素に由来する構造単位であることが好ましい。
 上記不飽和脂肪族炭化水素が炭素-炭素二重結合を複数有する場合、そのいずれが重合に用いられてもよく、例えば共役ジエンの場合には1,2-結合または1,4-結合のいずれであってもよい。共役ジエンを重合して形成した重合体ブロック(B)には通常、炭素-炭素二重結合が残存しているが、得られる高分子電解質膜の耐熱劣化性の向上等の観点から、ブロック共重合体(Z)を重合した後に水素添加反応(以下、「水添反応」と称する)を行い、かかる炭素-炭素二重結合を水素添加(以下、「水添」と称する)することが好ましい。かかる炭素-炭素二重結合の水素添加率(以下、「水添率」と称する)は30モル%以上が好ましく、50モル%以上がより好ましく、95モル%以上がさらに好ましい。このようにして重合体ブロック(B)中の炭素-炭素二重結合を低減させることで、高分子電解質膜の耐熱劣化性を改善できる。
 また、ブロック共重合体(Z)を重合した後にイオン伝導性基を導入してブロック共重合体(Z)とする場合に、重合体ブロック(B)が飽和炭化水素構造であれば、重合体ブロック(B)へのイオン伝導性基の導入が起こりにくいため好ましい。したがって、ブロック共重合体(Z)を重合した後に重合体ブロック(B)に残存する炭素-炭素二重結合の水添反応を行う場合は、イオン伝導性基を導入する前に行うことが望ましい。
 なお、炭素-炭素二重結合の水添率は、H-NMR測定によって算出できる。
 重合体ブロック(B)1つあたりのMnは、通常5,000~250,000の範囲であるのが好ましく、15,000~200,000の範囲であるのがより好ましく、50,000~150,000の範囲であるのがさらに好ましく、80,000~140,000の範囲であるのが特に好ましい。本発明の高分子電解質膜は、かかるMnが5,000以上、特に80,000以上であれば機械的強度および起動停止耐久性に優れ、250,000以下、特に140,000以下であればブロック共重合体(Z)および化合物(X)を含有する上記組成物は成形性に優れ、製造上有利となる。
<他の重合体ブロック(C)>
 ブロック共重合体(Z)は、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有さない重合体ブロック(C)(以下、単に「重合体ブロック(C)」と称する)をさらに含んでいてもよい。高分子電解質膜において、重合体ブロック(C)は、重合体ブロック(A)および重合体ブロック(B)とミクロ相分離構造を形成する。
 重合体ブロック(C)は、製造上の優位性から、下記の一般式(1)で示される芳香族ビニル化合物に由来する構造単位からなることが好ましい。
Figure JPOXMLDOC01-appb-C000001
(式中、Rは水素原子または炭素数1~4のアルキル基を表し、Rは炭素数3~8のアルキル基を表し、RおよびRはそれぞれ独立して水素原子または炭素数3~8のアルキル基を表す。)
 重合体ブロック(C)が、芳香環上に少なくとも1つの炭素数3~8のアルキル基を有する芳香族ビニル化合物に由来する構造単位であると、ブロック共重合体(Z)にイオン伝導性基を導入してブロック共重合体(Z)を製造する際に、重合体ブロック(A)に選択的にイオン伝導性基を導入することができる。
 上記一般式(1)で示される構造単位を形成するための芳香族ビニル化合物としては、4-プロピルスチレン、4-イソプロピルスチレン、4-ブチルスチレン、4-イソブチルスチレン、4-tert-ブチルスチレン、4-オクチルスチレン、α-メチル-4-tert-ブチルスチレン、α-メチル-4-イソプロピルスチレン等が挙げられ、4-tert-ブチルスチレン、4-イソプロピルスチレン、α-メチル-4-tert-ブチルスチレン、α-メチル-イソプロピルスチレンがより好ましく、4-tert-ブチルスチレンがさらに好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上を併用して重合体ブロック(C)を形成する場合の共重合形態はランダム共重合が好ましい。
 重合体ブロック(C)は、本発明の効果を損なわない範囲内で、1種または2種以上の芳香族ビニル化合物に由来しない他の構造単位を含んでいてもよい。かかる他の構造単位を形成できる単量体としては、例えばブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン等の炭素数4~8の共役ジエン;エチレン、プロピレン、1-ブテン、イソブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等の炭素数2~8のアルケン;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等のビニルエステル;メチルビニルエーテル、イソブチルビニルエーテル等のビニルエーテル;が挙げられる。この場合、これら他の単量体と、前述した芳香族ビニル化合物との共重合形態はランダム共重合が好ましい。これら他の構造単位は、重合体ブロック(C)を形成している構造単位の5モル%以下であることが好ましい。すなわち、重合体ブロック(C)を形成している構造単位のうち、95モル%以上が芳香族ビニル化合物に由来する構造単位であることが好ましい。
 重合体ブロック(C)1つあたりのMnは通常1,000~50,000の範囲であるのが好ましく、1,500~30,000の範囲であるのがより好ましく、2,000~20,000の範囲であるのがさらに好ましい。かかるMnが1,000以上であれば、高分子電解質膜を固体高分子型燃料電池に用いた場合の起動停止耐久性が良好な傾向となり、50,000以下であれば、ブロック共重合体(Z)および化合物(X)を含有する上記組成物の成形性が優れる傾向となる。
 本発明で用いるブロック共重合体(Z)が重合体ブロック(C)を含む場合の配列の例として、A-B-C型トリブロック共重合体(A、B、Cはそれぞれ、重合体ブロック(A)、重合体ブロック(B)、重合体ブロック(C)を表す。以下同様)、A-B-C-A型テトラブロック共重合体、A-B-A-C型テトラブロック共重合体、B-A-B-C型テトラブロック共重合体、A-B-C-B型テトラブロック共重合体、A-C-B-C型テトラブロック共重合体、C-A-B-A-C型ペンタブロック共重合体、C-B-A-B-C型ペンタブロック共重合体、A-C-B-C-A型ペンタブロック共重合体、A-C-B-A-C型ペンタブロック共重合体、A-C-B-C-A-C型ヘキサブロック共重合体、C-A-B-C-A-C型ヘキサブロック共重合体、A-C-A-C-B-C型ヘキサブロック共重合体、A-C-A-C-B-C-A型ヘプタブロック共重合体、A-C-B-C-B-C-A型ヘプタブロック共重合体、C-A-C-B-C-A-C型ヘプタブロック共重合体、A-C-A-C-B-C-A-C型オクタブロック共重合体、A-C-B-C-B-C-A-C型オクタブロック共重合体、A-C-B-C-A-C-B-C型オクタブロック共重合体等が挙げられる。中でも、機械的強度、イオン伝導性の観点から、A-B-C型トリブロック共重合体、A-B-C-A型テトラブロック共重合体、A-B-A-C型テトラブロック共重合体、A-C-B-C型テトラブロック共重合体、C-A-B-A-C型ペンタブロック共重合体、C-B-A-B-C型ペンタブロック共重合体、A-C-B-C-A型ペンタブロック共重合体、A-C-B-A-C型ペンタブロック共重合体、A-C-B-C-A-C型ヘキサブロック共重合体、C-A-B-C-A-C型ヘキサブロック共重合体、A-C-A-C-B-C型ヘキサブロック共重合体、A-C-A-C-B-C-A型ヘプタブロック共重合体、A-C-B-C-B-C-A型ヘプタブロック共重合体、C-A-C-B-C-A-C型ヘプタブロック共重合体、A-C-A-C-B-C-A-C型オクタブロック共重合体、A-C-B-C-B-C-A-C型オクタブロック共重合体、A-C-B-C-A-C-B-C型オクタブロック共重合体が好ましく、A-C-B-C型テトラブロック共重合体、A-C-B-C-A型ペンタブロック共重合体、A-C-B-C-A-C型ヘキサブロック共重合体、A-C-A-C-B-C-A-C型オクタブロック共重合体がより好ましく、A-C-B-C-A型ペンタブロック共重合体、A-C-A-C-B-C-A-C型オクタブロック共重合体がさらに好ましい。高分子電解質においては、これらのブロック共重合体は、1種を単独で用いても、2種以上を併用してもよい。
 本発明の高分子電解質膜を構成するブロック共重合体(Z)が重合体ブロック(C)を含む場合、ブロック共重合体(Z)に占める重合体ブロック(C)の含有量は5~50質量%の範囲であるのが好ましく、7~40質量%の範囲であるのがより好ましく、10~30質量%の範囲であるのがさらに好ましい。かかる含有量が5質量%以上であると、得られる高分子電解質膜は耐熱水性に優れる傾向となり、50質量%以下であると、得られる高分子電解質膜は起動停止耐久性に優れる傾向となる。
<ブロック共重合体(Z)の製造>
 高分子電解質を構成するブロック共重合体(Z)は、前述した各単量体を重合して、重合体ブロック(A)と重合体ブロック(B)とを含むブロック共重合体(Z)を製造した後、重合体ブロック(A)にイオン伝導性基を導入する方法によって製造できる。
 ブロック共重合体(Z)の製造方法は適宜選択できるが、リビングラジカル重合法、リビングアニオン重合法およびリビングカチオン重合法から選ばれる重合法によって、前述した各単量体を重合する方法が好ましい。
 ブロック共重合体(Z)の製造方法の具体例として、芳香族ビニル化合物に由来する構造単位からなる重合体ブロック(A)と、共役ジエンに由来する構造単位からなる重合体ブロック(B)を成分とするブロック共重合体(Z)を製造する方法としては、(1)シクロヘキサン溶媒中でアニオン重合開始剤を用いて、20~100℃の温度条件下で、芳香族ビニル化合物、共役ジエン、芳香族ビニル化合物を逐次アニオン重合させA-B-A型ブロック共重合体を得る方法;
(2)シクロヘキサン溶媒中でアニオン重合開始剤を用いて、20~100℃の温度条件下で芳香族ビニル化合物、共役ジエンを逐次アニオン重合させた後、安息香酸フェニル等のカップリング剤を添加してA-B-A型ブロック共重合体を得る方法;
(3)非極性溶媒中、有機リチウム化合物を開始剤として用い、0.1~10質量%濃度の極性化合物の存在下、-30~30℃の温度にて、5~50質量%濃度の芳香族ビニル化合物をアニオン重合させ、得られるリビングポリマーに共役ジエンをアニオン重合させた後、安息香酸フェニル等のカップリング剤を添加して、A-B-A型ブロック共重合体を得る方法;
等が挙げられる。
 また、芳香族ビニル化合物に由来する構造単位からなる重合体ブロック(A)と、イソブテンに由来する構造単位からなる重合体ブロック(B)を成分とするブロック共重合体(Z)を製造する方法としては、
(4)ハロゲン系/炭化水素系混合溶媒中、-78℃で、2官能性ハロゲン化開始剤を用いて、ルイス酸存在下でイソブテンをカチオン重合させた後、芳香族ビニル化合物をカチオン重合させて、A-B-A型ブロック共重合体を得る方法;
等が挙げられる。
 なお、必要に応じて、上記アニオン重合やカチオン重合において反応させる成分を変えたり、追加したりすることによって、ブロック共重合体の成分として、重合体ブロック(C)を加えることができる。
<ブロック共重合体(Z)の製造>
 ブロック共重合体(Z)にイオン伝導性基を導入して、ブロック共重合体(Z)を製造する方法について以下に述べる。
 まず、該ブロック共重合体(Z)にスルホン酸基を導入する方法について述べる。スルホン酸基の導入(スルホン化)は、公知の方法で行える。例えば、ブロック共重合体(Z)の有機溶媒溶液や懸濁液を調製し、かかる溶液や懸濁液に後述するスルホン化剤を添加し混合する方法や、ブロック共重合体(Z)に直接ガス状のスルホン化剤を添加する方法が挙げられる。
 スルホン化剤としては、硫酸;硫酸と酸無水物との混合物系;クロロスルホン酸;クロロスルホン酸と塩化トリメチルシリルとの混合物系;三酸化硫黄;三酸化硫黄とトリエチルホスフェートとの混合物系;2,4,6-トリメチルベンゼンスルホン酸に代表される芳香族有機スルホン酸等が例示される。これらのうち、硫酸と酸無水物との混合物系が好ましい。また、使用する有機溶媒としては、塩化メチレン等のハロゲン化炭化水素、ヘキサン等の直鎖脂肪族炭化水素、シクロヘキサン等の環状脂肪族炭化水素、ニトロベンゼン等の電子求引基を有する芳香族化合物等が例示できる。
 次に、ブロック共重合体(Z)にホスホン酸基を導入する方法について述べる。ホスホン酸基の導入(ホスホン化)は、公知の方法で行える。例えば、重合体ブロック(A)の芳香環に塩化アルミニウム存在下でハロメチルエーテルを反応させてハロメチル基を導入し、次いで三塩化リンおよび塩化アルミニウムと反応させてリン誘導体に置換したのち、加水分解によってホスホン酸基に変換する方法;および前記芳香族ビニル化合物の芳香環に三塩化リンと無水塩化アルミニウムを反応させて導入したホスフィン酸基を硝酸により酸化してホスホン酸基に変換する方法が挙げられる。
 ブロック共重合体(Z)における、重合体ブロック(A)が有する芳香族ビニル化合物に由来する構造単位に対するイオン伝導性基の導入率(スルホン化率、ホスホン化率等)は、H-NMRを用いて算出することができる。
<化合物(X)>
 化合物(X)は、1つ以上の水素原子が水酸基で置換された芳香環を分子中に2つ以上有する化合物であり、架橋剤として作用すると考えている。化合物(X)が該芳香環を分子中に2つ以上有することで、化合物(X)が、親水性の重合体ブロック(A)を含む相に選択的に存在すると推定され、このため、親水性の重合体ブロック(A)が選択的に架橋することで高分子電解質膜の柔軟性を損なうことなく、耐熱水性が向上すると考えられる。
 上記芳香環としては、ベンゼン環、ナフタレン環、アントラセン環等の炭化水素系芳香環が好ましく、ベンゼン環がより好ましい。
 また、芳香環がベンゼン環である場合には、該ベンゼン環は、1つ以上の水素原子が水酸基で置換されているが、水酸基の結合しているベンゼン環上の炭素を1位としたときに、2,4,6位の炭素のうち少なくとも1つは置換基を有していないことが好ましく、このうち、高分子電解質膜の引張破断伸びおよび引張破断強さを高める観点から、4位の炭素にメチル基を有していることがより好ましい。
 化合物(X)の具体例としては、ビスフェノールS、4,4’-ジヒドロキシビフェニル-2,2’-ジスルホン酸、4,4’-ジヒドロキシビフェニル-3,3’-ジスルホン酸、2,2’-ジヒドロキシビフェニル-4,4’-ジスルホン酸、5,5’-メチレンビス(2-ヒドロキシ安息香酸)、4,4’-イソプロピリデンビス(2,6-ジクロロフェノール)、4,4’-イソプロピリデンビス(2,6-ジブロモフェノール)、4,4’-(9-フルオレニリデン)ジフェノール、ビス(2-ヒドロキシフェニル)メタン、2,2’-ビフェノール、4,4’-ビフェノール、ビス(4-ヒドロキシフェニル)メタン、ビスフェノールA、4,4’-ヘキサフルオロイソプロピリデンジフェノール、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)エタン、2,2’-メチレンビス(6-tert-ブチル-4-メチルフェノール)、2,2’-メチレンビス(6-tert-ブチル-4-エチルフェノール)、2,2’-エチリデンビス(4,6-ジtert-ブチルフェノール)、3,3’-エチレンジオキシジフェノール、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ヘキセストロール、ジトラノール、1,1’-ビ-2-ナフトール、ノルジヒドログアイアレチン酸、ビス(3,4-ジヒドロキシ-6-メチルフェニル)フェニルメタン、9-(4-ヒドロキシベンジル)-10-(4-ヒドロキシフェニル)アントラセンなどの芳香環を分子中に2つ有する化合物;1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、2,6-ビス(4-ヒドロキシ-3,5-ジメチルベンジル)-4-メチルフェノール、1,1,1-トリス(4-ヒドロキシフェニル)エタン、トリス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-3-メチルフェニル)-4-ヒドロキシ-3-メトキシフェニルメタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、2,6-ビス(2,4-ジヒドロキシベンジル)-4-メチルフェノールなどの芳香環を分子中に3つ有する化合物;1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、α,α,α’,α’-テトラキス(4-ヒドロキシフェニル)パラキシレン、2,2-ビス[4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル]プロパン、C-メチルカリックス[4]レゾルシナレン、カリックス[4]アレーン、6,6’-ビス(2-ヒドロキシ-5-メチルベンジル)-4,4’-ジメチル-2,2’-メチレンジフェノールなどの芳香環を分子中に4つ有する化合物;2,2-ビス[4-ヒドロキシ-3,5-ビス(2-ヒドロキシ-5-メチルベンジル)フェニル]プロパン、カリックス[6]アレーン、などの芳香環を分子中に6つ有する化合物;ポリ-2-ヒドロキシ-5-ビニルベンゼンスルホン酸、ポリ-2-ビニルフェノール、ポリ-3-ビニルフェノール、ポリ-4-ビニルフェノールなどのフェノール骨格を繰り返し単位とする重合体;が挙げられる。
 これらのうち、4,4’-イソプロピリデンビス(2,6-ジクロロフェノール)、4,4’-イソプロピリデンビス(2,6-ジブロモフェノール)、4,4’-(9-フルオレニリデン)ジフェノール、ビス(2-ヒドロキシフェニル)メタン、2,2’ -ビフェノール、4,4’-ビフェノール、ビス(4-ヒドロキシフェニル)メタン、ビスフェノールA、4,4’-ヘキサフルオロイソプロピリデンジフェノール、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)エタン、2,2’-メチレンビス(6-tert-ブチル-4-メチルフェノール)、2,2’-メチレンビス(6-tert-ブチル-4-エチルフェノール)、2,2’-エチリデンビス(4,6-ジtert-ブチルフェノール)、3,3’-エチレンジオキシジフェノール、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ヘキセストロール、ジトラノール、1,1’-ビ-2-ナフトール、ノルジヒドログアイアレチン酸、ビス(3,4-ジヒドロキシ-6-メチルフェニル)フェニルメタン、9-(4-ヒドロキシベンジル)-10-(4-ヒドロキシフェニル)アントラセン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、2,6-ビス(4-ヒドロキシ-3,5-ジメチルベンジル)-4-メチルフェノール、1,1,1-トリス(4-ヒドロキシフェニル)エタン、トリス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-3-メチルフェニル)-4-ヒドロキシ-3-メトキシフェニルメタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、2,6-ビス(2,4-ジヒドロキシベンジル)-4-メチルフェノール、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、α,α,α’,α’-テトラキス(4-ヒドロキシフェニル)パラキシレン、2,2-ビス[4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル]プロパン、C-メチルカリックス[4]レゾルシナレン、カリックス[4]アレーン、6,6’-ビス(2-ヒドロキシ-5-メチルベンジル)-4,4’-ジメチル-2,2’-メチレンジフェノール、2,2-ビス[4-ヒドロキシ-3,5-ビス((2-ヒドロキシ-5-メチルベンジル))フェニル]プロパン、カリックス[6]アレーン、ポリ-2-ビニルフェノール、ポリ-3-ビニルフェノール、ポリ-4-ビニルフェノールから選ばれる化合物が好ましく、2,2’-ビフェノール、4,4’-ビフェノール、ビスフェノールA、3,3’-エチレンジオキシジフェノール、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、2,6-ビス(2,4-ジヒドロキシベンジル)-4-メチルフェノール、6,6’-ビス(2-ヒドロキシ-5-メチルベンジル)-4,4’-ジメチル-2,2’-メチレンジフェノール、ポリ-2-ビニルフェノール、ポリ-3-ビニルフェノール、ポリ-4-ビニルフェノールから選ばれる化合物がより好ましく、2,2’-ビフェノール、4,4’-ビフェノール、3,3’-エチレンジオキシジフェノール、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス((4-ヒドロキシフェノキシ))ベンゼン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、2,6-ビス(2,4-ジヒドロキシベンジル)-4-メチルフェノール、6,6’-ビス(2-ヒドロキシ-5-メチルベンジル)-4,4’-ジメチル-2,2’-メチレンジフェノール、ポリ-2-ビニルフェノール、ポリ-3-ビニルフェノール、ポリ-4-ビニルフェノールから選ばれる化合物がさらに好ましく、耐熱水性の観点から、2,2’-ビフェノール、4,4’-ビフェノール、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、2,6-ビス(2,4-ジヒドロキシベンジル)-4-メチルフェノール、6,6’-ビス(2-ヒドロキシ-5-メチルベンジル)-4,4’-ジメチル-2,2’-メチレンジフェノール、ポリ-2-ビニルフェノール、ポリ-3-ビニルフェノール、ポリ-4-ビニルフェノールから選ばれる化合物が特に好ましい。高分子電解質膜を固体高分子型燃料電池に用いて運転した場合の電圧低下の抑制および高分子電解質膜の起動停止耐久性の観点から、ポリ-4-ビニルフェノール、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、2,6-ビス(2,4-ジヒドロキシベンジル)-4-メチルフェノールから選ばれる化合物が特に好ましく、ポリ-4-ビニルフェノール、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールが最も好ましい。
 化合物(X)は1種を単独で用いても、2種以上を併用してもよい。化合物(X)を併用する場合、特に制限はされないが、1つ以上の水素原子が水酸基で置換された芳香環を分子中に3つ以上有する化合物が、少なくとも1種用いられていることが好ましく、2種以上用いられていることがより好ましい。具体的な化合物(X)の併用としては、ポリ-4-ビニルフェノールと2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールの併用、ポリ-4-ビニルフェノールと2,6-ビス(2,4-ジヒドロキシベンジル)-4-メチルフェノールの併用が好ましい。
 高分子電解質は、ブロック共重合体(Z)および化合物(X)を含有する組成物の成形体を架橋してなる。
 高分子電解質を形成するブロック共重合体(Z)および化合物(X)を含有する組成物において、化合物(X)の含有量は、高分子電解質膜の耐熱水性およびイオン伝導性を高くする観点から、ブロック共重合体(Z)100質量部に対して0.1~25質量部の範囲が好ましく、1~20質量部の範囲がより好ましく、1.5~15質量部の範囲がさらに好ましく、2~12質量部の範囲が特に好ましい。また、耐熱水性およびイオン伝導性を高くする観点、並びにゲル分率を好ましい範囲にしやすい観点から、化合物(X)の1つ以上の水素原子が水酸基で置換された芳香環のモル数は、ブロック共重合体(Z)のイオン伝導性基100モル部に対して、0.1~70モル部の範囲が好ましく、0.5~60モル部の範囲がより好ましく、0.8~50モル部の範囲がさらに好ましく、3~38モル部の範囲が特に好ましい。
 当該組成物の成形体の形成には、膜状の成形体とする観点から、ブロック共重合体(Z)、化合物(X)および溶媒を含有する流動性組成物を用いることが好ましい。該流動性組成物を基板または後述する補強材に塗工した後、溶媒を除去することで膜状の成形体を形成できる。
 上記流動性組成物に用いることができる溶媒としては、例えば、塩化メチレン等のハロゲン化炭化水素;トルエン、キシレン、ベンゼン等の芳香族炭化水素;ヘキサン、ヘプタン、オクタン等の直鎖脂肪族炭化水素;シクロヘキサン等の環式脂肪族炭化水素;テトラヒドロフラン等のエーテル、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール等のアルコール;が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよいが、各ブロック共重合体(Z)が含む重合体ブロックの溶解性または分散性の観点から、混合溶媒を用いることが好ましい。好ましい組み合わせの混合溶媒としては、トルエンとイソブタノールの混合溶媒、キシレンとイソブタノールの混合溶媒、トルエンとイソプロパノールの混合溶媒、シクロヘキサンとイソプロパノールの混合溶媒、シクロヘキサンとイソブタノールの混合溶媒、テトラヒドロフラン溶媒、テトラヒドロフランとメタノールの混合溶媒、トルエンとイソブタノールとオクタンの混合溶媒、トルエンとイソプロパノールとオクタンの混合溶媒が挙げられ、トルエンとイソブタノールの混合溶媒、キシレンとイソブタノールの混合溶媒、トルエンとイソプロパノールの混合溶媒、トルエンとイソブタノールとオクタンの混合溶媒、トルエンとイソプロパノールとオクタンの混合溶媒がより好ましい。
 上記流動性組成物は、上記溶媒中に、ブロック共重合体(Z)および化合物(X)を溶解または分散させて調製する。必要に応じて、本発明の効果を損なわない範囲で、軟化剤、フェノール系安定剤、イオウ系安定剤、リン系安定剤等の各種安定剤、無機充填剤、光安定剤、帯電防止剤、離型剤、難燃剤、発泡剤、顔料、染料、漂白剤、カーボン繊維等の各種添加剤を併せて溶解または分散させてもよい。流動性組成物中の溶媒以外の成分(固形分)中のブロック共重合体(Z)の含有量は、得られる高分子電解質膜のイオン伝導性の観点から、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、85質量%以上であることがさらに好ましい。
 上記流動性組成物に用いることができる軟化剤としては、パラフィン系、ナフテン系、アロマ系のプロセスオイル等の石油系軟化剤;流動パラフィン、植物油系軟化剤、可塑剤等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。
 上記流動性組成物に用いることができる安定剤としては、2,6-ジtert-ブチル-p-クレゾール、6-tert-ブチル-o-クレゾール、2-tert-ブチル-p-クレゾール、6-tert-ブチル-2,4-キシレノール、4-tert-ブチル-2,6-ジイソプロピルフェノール、2,6-ジtert-ブチル-4-エチルフェノール、4-sec-ブチル-2,6-ジtert-ブチルフェノール、2,4,6-トリ-tert-ブチルフェノール、4-ブチルレソルシノール、3,5-ジtert-ブチル-4-ヒドロキシ安息香酸、4-ヒドロキシ-3,5-ジメチル安息香酸、没食子酸、バニリン酸、4,4',4''-トリヒドロキシトリフェニルメタン、4,4',4''-トリヒドロキシフェニルエタン、ペンタエリスリチル-テトラキス[3-(3,5-ジtert-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,3,5-トリメチル-2,4,6-トリス(3,5-ジtert-ブチル-4-ヒドロキシベンジル)ベンゼン、オクタデシル-3-(3,5-ジtert-ブチル-4-ヒドロキシフェニル)プロピオネート、トリエチレングリコール-ビス[3-(3-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジtert-ブチルアニリノ)-1,3,5-トリアジン、2,2-チオ-ジエチレンビス[3-(3,5-ジtert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,5-ジtert-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、トリス-(3,5-ジtert-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、3,9-ビス[2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン等のフェノール系安定剤;ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)、ジステアリル3,3’-チオジプロピオネート、ジラウリル3,3’-チオジプロピオネート、ジミリスチル3,3’-チオジプロピオネート等のイオウ系安定剤;トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジtert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト等のリン系安定剤が挙げられ、フェノール系安定剤が好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。
 上記流動性組成物に用いることができる無機充填剤としては、タルク、炭酸カルシウム、シリカ、ガラス繊維、マイカ、カオリン、酸化チタン、モンモリロナイト、アルミナが挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。
 流動性組成物中のブロック共重合体(Z)の濃度は、分子量、組成、イオン交換基容量によって適宜選択することができるが、生産性の観点から、5~20質量%であることが好ましい。
 高分子電解質は、前記ブロック共重合体(Z)および化合物(X)を含有する組成物からなる成形体を架橋することで形成できる。好ましくは、前記流動性組成物を膜状に成形した後、これを架橋する。具体的には高分子電解質膜の製造方法において後述する。
≪補強材≫
 本発明の高分子電解質膜は、上記高分子電解質と、多孔質材料である補強材とを含有する。該補強材を有することにより、本発明の高分子電解質膜は引張破断強さが向上するとともに、特に熱水中での寸法変化が少なく、固体高分子型燃料電池に適用した際には起動停止耐久性にも優れるものとなる。
 補強材に用いられる多孔質材料は、膜状であって、孔が膜の主面間で連通していることが好ましい。
 該膜状の補強材の主面は、高分子電解質膜自体の主面と平行であることが好ましい。
 該膜状の補強材の厚さは3~70μmの範囲にあることが好ましく、5~40μmであることがより好ましく、6~20μmであることがさらに好ましく、7~17μmであることが特に好ましい。厚さが3μm以上であると高分子電解質膜は機械強度に優れる傾向となる。また厚さ70μm以下であることで、高分子電解質膜の膜抵抗が低くなる傾向にある。
 多孔質材料の空孔率は40~95%が好ましく、50~93%であることがより好ましく、60~90%であることがさらに好ましく、70~89%であることが特に好ましく、80~88%であることが最も好ましい。空孔率が40%以上であると高分子電解質膜としてのイオン伝導性に優れる傾向となり、70%以上(特に80%以上)であるとかかる高分子電解質膜を備える固体高分子型燃料電池は初期発電特性に優れることとなる。また、95%以下であると高分子電解質膜の強度に優れる傾向となる。
 補強材を形成する多孔質材料の空隙内には、高分子電解質を形成する組成物(ブロック共重合体(Z)及び化合物(X)を含有する組成物)が含浸されていることが好ましく、該組成物は前記した流動性組成物の形態で多孔質材料の空隙内に含浸された後に溶媒が除去され、さらに架橋されていることがより好ましい。
 補強材を形成する多孔質材料の空隙内の高分子電解質の充填率は、発電性能および燃料の遮断性を高める観点から70体積%以上であることが好ましく、85体積%以上であることがより好ましく、95体積%以上であることがさらに好ましい。
 補強材を形成する多孔質材料の平均孔径は通常0.001~1000μmであり、0.005~800μmが好ましく、0.01~500μmがより好ましい。0.001μm以上であれば、多孔質材料の空隙内の高分子電解質を含有する組成物の充填率を高めやすく、1000μm以下であれば高分子電解質膜の強度が高くなる傾向がある。
 補強材を形成する多孔質材料の材質に制限はなく、ポリエチレン、ポリプロピレン、ポリアルカジエンなどのポリオレフィン;ポリスチレン等のポリ芳香族ビニル;ポリエチレンテレフタレート、ポリアリレートなどのポリエステル;ポリメタクリル酸メチルなどのポリ(メタ)アクリレート;ポリアミド;ポリイミド;ポリエーテルケトン、ポリエーテルエーテルケトンなどの芳香族ポリエーテルケトン;ポリビニルアルコール;セルロース;ポリスルフィド;ポリホスファゼン;ポリフェニレン;ポリベンゾイミダゾール;ポリエーテルスルホン;ポリフェニレンオキシド;ポリカーボネート;ポリウレタン;ポリキノリン;ポリキノキサリン;ポリ尿素;ポリスルホン;ポリスルホネート;ポリベンゾオキサゾール;ポリベンゾチアゾール;ポリチアゾール;ポリフェニルキノキサリン;ポリキノリン;ポリシロキサン;ポリトリアジン;ポリピリジン;ポリピリミジン;ポリオキサチアゾール;ポリテトラザピレン;ポリオキサゾール;ポリビニルピリジン;ポリビニルイミダゾール;ポリピロリドン;ポリテトラフルオロエチレン;ポリビニリデンフロリド;などの樹脂;ガラスなどの無機材料;が挙げられる。
 補強材を形成する多孔質材料は、柔軟性、機械強度などの観点から、繊維からなることが好ましく、生産性の観点から不織布であることがより好ましい。上記繊維としては、強度の観点からアラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリオレフィン繊維、レーヨン繊維等の繊維が好ましい。機械的な耐久性および化学的な耐久性を十分に発揮でき、かつ生産性(多孔質材料形成の容易性、後述する接合体形成の容易性、等)、材料の入手性等の観点から、芳香族単位を主体とする液晶ポリエステル繊維、アラミド繊維からなることがより好ましく、低吸水率、耐酸性、耐薬品性の観点から芳香族単位を主体とする液晶ポリエステル繊維からなることがさらに好ましい。これら繊維は、1種を単独で用いても、2種以上を併用してもよい。またかかる繊維からなる不織布としては、市販品を好適に用いることができ、例えばクラレクラフレックス(株)製のベクルス(登録商標)が挙げられる。
 上記補強材を形成する多孔質材料の繊維として用いられる、芳香族単位を主体とする液晶ポリエステルは、溶融相において光学的異方性(液晶性)を示し、芳香族ジオール、芳香族ジカルボン酸または芳香族ヒドロキシカルボン酸に由来する構造単位(芳香族単位)を主成分とするものである。当該芳香族単位を主体とする液晶ポリエステルは、例えば下記式(A)~(G)に示される構造単位群の組み合わせを主成分とする構成が好ましく、パラヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸が主成分となる構成(下記式(E)に示される構造単位群の組み合わせが主成分となる構成)、またはパラヒドロキシ安息香酸と6-ヒドロキシ-2-ナフトエ酸とテレフタル酸とビフェノールが主成分となる構成(下記式(G)に示される構造単位群の組み合わせが主成分となる構成)がより好ましい。ここで「主成分」とは、芳香族単位を主体とする液晶ポリエステルの50質量%超を占める成分をいう。
Figure JPOXMLDOC01-appb-C000002
 (上記式中、l,m,n,p,q,r,sおよびtは各構造単位の数であり、それぞれ独立に、1以上の数を示す。)
 多孔質材料を形成する繊維は、高分子電解質膜の機械強度および化学的耐久性を高める観点から、70%以上が芳香族単位を主体とする液晶ポリエステル繊維からなることが好ましく、80%以上がより好ましく、90%以上であることがさらに好ましい。
 多孔質材料を形成する繊維の平均繊維径は、0.5~20μmの範囲が好ましく、1~10μmの範囲がより好ましく、2~5μmの範囲がさらに好ましい。
 多孔質材料が不織布である場合には、不織布の坪量は0.2~30g/mの範囲が好ましく、0.5~15g/mの範囲がより好ましく、1~7g/mの範囲がさらに好ましい。
 上記不織布の製造方法は特に制限されず、乾式法、湿式法、スパンボンド法、フラッシュ紡糸法、メルトブロー法、溶融静電紡糸法等の公知の不織布の製造方法が挙げられる。中でも、平均繊維径を好ましい範囲とする観点からメルトブロー法で製造されたものが好ましい。
 なお、補強材は、必要に応じて着色剤、酸化防止剤、紫外線吸収剤等の通常使用されている添加剤等を含んでもよい。
[高分子電解質膜の製造方法]
 次に、本発明の高分子電解質膜の製造方法について説明する。通常、本発明の高分子電解質膜は、高分子電解質を形成するブロック共重合体(Z)、化合物(X)および溶媒を含む前記流動性組成物と、補強材となる多孔質材料とを用いて、ブロック共重合体(Z)および化合物(X)を含有する組成物からなる膜状の成形体と補強材との接合体(以下、単に「接合体」と称する)を形成し、次いで該成形体を架橋することで得られる。
 上記接合体を形成する具体的な方法としては、
 1)平滑な基板上に補強材となる多孔質材料を配置し、該多孔質材料に前記流動性組成物を塗工した後、溶媒を除去する方法;
 2)平滑な基板上に前記流動性組成物を塗工し、該流動性組成物の表面に補強材となる多孔質材料を積層した後、溶媒を除去する方法;
 3)平滑な基板上に前記流動性組成物を塗工した後、該成形体上に補強材となる多孔質材料を積層し、溶媒を除去した後、この上にさらに流動性組成物を塗工し、溶媒を除去する方法;
等が挙げられる。
 上記流動性組成物を塗工する基板としては、通常、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ガラス等からなる平滑な基板を用いる。
 上記流動性組成物を基板または補強材となる多孔質材料に塗工する方法としては、コーターやアプリケーター等を用いる方法が挙げられる。
 また、上記流動性組成物を補強材となる多孔質材料に塗工する方法としては、流動性組成物中に多孔質材料を連続走行させて、上記流動性組成物をディップ、ニップする方法も挙げられる。
 上記した接合体の形成時に、補強材を形成する多孔質材料の空隙内への前記流動性組成物の含浸も同時に行うことができる。また、予め当該高分子電解質を含浸させた多孔質材料を用いて、上記1)~3)のいずれかの方法で接合体を形成してもよい。
 また、上記1)~3)のいずれの方法においても、得られた接合体の一方または両方の面にさらに同じまたは異なる流動性組成物を塗工し、溶媒を除去する操作を繰り返してもよい。また、得られた接合体を複数貼りあわせてもよい。
 溶媒を除去する温度は、ブロック共重合体(Z)が分解しない範囲で任意に選択でき、複数の温度を任意に組み合わせてもよい。溶媒の除去は、通風条件下または真空条件下等で行うことができ、これらを任意に組み合わせてもよい。具体的には、熱風乾燥機中にて60~120℃で4分間以上乾燥させて溶媒を除去する方法;熱風乾燥機中にて120~140℃で2~4分間乾燥させて溶媒を除去する方法;25℃で1~3時間、予備乾燥させた後、熱風乾燥機中にて80~120℃で5~10分間かけて乾燥する方法;25℃で1~3時間、予備乾燥させた後、25~40℃の雰囲気下、減圧条件下で1~12時間乾燥させる方法等が挙げられる。
 良好な強靭性を有する高分子電解質膜を調製しやすい観点から、溶媒の除去は、熱風乾燥機中にて60~120℃で4分間以上かけて乾燥させる方法;25℃で1~3時間、予備乾燥させた後、熱風乾燥機中にて80~120℃程度で5~10分間かけて乾燥させる方法;25℃で1~3時間、予備乾燥させた後、25~40℃の雰囲気下、1.3kPa以下の減圧条件下で1~12時間乾燥させる方法等が好適に用いられる。
 上記のようにして得られた接合体を構成する、ブロック共重合体(Z)および化合物(X)を含有する組成物の成形体を架橋することで、高分子電解質を形成し、本発明の高分子電解質膜を得ることができる。架橋方法としては、加熱や、電子線などの活性エネルギー線照射などを好適に採用できる。また、上記加熱または活性エネルギー線照射による架橋は、溶媒除去と同時に行っても、溶媒除去後に行ってもよい。また、加熱または活性エネルギー線照射により架橋しながら溶媒除去を行った後に、さらに加熱または活性エネルギー線照射を行ってもよい。
 加熱により架橋を行う場合、加熱温度は50~250℃が好ましく、60~200℃がより好ましく、70~180℃がさらに好ましく、100~150℃が特に好ましい。また、加熱時間は0.1~400時間が好ましく、0.2~200時間がより好ましく、0.4~100時間がさらに好ましい。当該加熱は大気下、窒素雰囲気下等で行うことができ、窒素雰囲気下で行うことが好ましい。
 活性エネルギー線照射として、例えば電子線で架橋を行う場合、加速電圧は50~250kVの範囲、線量は100~800kGyの範囲とすることが好ましい。
 なお、ブロック共重合体(Z)が架橋されていることは、後述の耐熱水性の向上、ゲル分率の上昇等により確認することができる。
 高分子電解質膜のゲル分率は後述の実施例に記載の方法で測定でき、30%以上が好ましく、50%以上がより好ましく、70%以上がさらに好ましく、80%以上が特に好ましい。ゲル分率が80%以上であれば、耐熱水性が良好となる傾向にある。
 前記接合体の形成において基板を用いた場合は、通常、高分子電解質膜を該基板から剥離する。なお、上記したディップ、ニップ法等で基板を用いずに接合体を作製した場合は剥離は不要である。
 以下、実施例、比較例および参考例を挙げて、本発明をさらに具体的に説明するが、本発明はこれらの実施例に制限されない。
(ブロック共重合体(Z)のイオン交換容量の測定)
 ガラス容器中にブロック共重合体(Z)を秤量(秤量値a(g))し、過剰量の塩化ナトリウム飽和水溶液((300~500)×a(ml))を添加して12時間攪拌した。フェノールフタレインを指示薬として、水中に発生した塩化水素を0.01規定のNaOH標準水溶液(力価f)にて滴定(滴定量b(ml))した。
 イオン交換容量は次式により求めた。
イオン交換容量(meq/g)=(0.01×b×f)/a
(ブロック共重合体(Z)のMnの測定)
 Mnはゲルパーミエーションクロマトグラフィー(GPC)法により下記の条件で測定し、標準ポリスチレン換算で算出した。
  装置:東ソー(株)製、商品名:HLC-8220GPC
  溶離液:テトラヒドロフラン
  カラム:東ソー(株)製、商品名:TSK-GEL(TSKgel G3000HxL(76mml.D.×30cm)を1本、TSKgel Super Multipore HZ-M(46mml.D.×15cm)を2本の計3本を直列で接続)
  カラム温度:40℃
  検出器:RI
  送液量:0.35ml/分
1H-NMRの測定条件)
 後述する製造例1~4で得られたブロック共重合体(Z)における各構造単位の含有率、並びに重合体ブロック(B)における1,4-結合率および水添率は下記の条件でH-NMRを測定した結果から算出した。
  溶媒:重クロロホルム
  測定温度:室温
  積算回数:32回
 また、上記製造例1~4で得られたブロック共重合体(Z)のスルホン化率は下記の条件でH-NMRを測定した結果から算出した。
  溶媒:重テトラヒドロフラン/重メタノール(質量比80/20)混合溶媒
  測定温度:50℃
  積算回数:32回
(貯蔵弾性率の測定)
 製造例1で得られたブロック共重合体(Z-1)の、13質量%のトルエン/イソブタノール(質量比77/23)溶液を調製し、離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF)上に約300μmの厚さで塗工した後、熱風乾燥機にて100℃で6分間乾燥させて膜状の高分子電解質を得た。得られた膜状の高分子電解質を、広域動的粘弾性測定装置(レオロジ社製「DVE-V4FTレオスペクトラー」)を使用して、引張りモード(周波数:11Hz)で、昇温速度を3℃/分、-80℃から250℃まで昇温して、貯蔵弾性率(E’)、損失弾性率(E’’)および損失正接(tanδ)を測定した。結晶化オレフィン重合体に由来する、80~100℃における貯蔵弾性率の変化がないことに基づき、重合体ブロック(B)の非晶性を判断した。
 同様に、ブロック共重合体(Z-1)の13質量%のトルエン/イソブタノール(質量比77/23)溶液に代えて、ブロック共重合体(Z-2)の13質量%のトルエン/イソブタノール(質量比7/3)溶液、ブロック共重合体(Z-3)の10質量%のトルエン/イソブタノール/n-オクタン(質量比3/3/4)溶液、ブロック共重合体(Z-4)の13質量%のトルエン/イソブタノール(質量比70/30)溶液をそれぞれ用いて、同様に重合体ブロック(B)の非晶性を判断した。
 この結果、上記すべてのブロック共重合体(Z)について、重合体ブロック(B)は非晶性であった。
(補強材中の高分子電解質の充填率の測定)
 実施例および比較例1~4で得られた高分子電解質膜を、集束イオンビーム(日本電子製JEM-9320FIB)を用いて、加速電圧30KVの条件にて切断した。ついで切断面を、超高分解能分析走査電子顕微鏡(日立ハイテク製SU-70)を用いて、加速電圧3KV、ワーキングディスタンス(WD)15mm、倍率3500倍の条件にて撮影した。
 この結果、いずれも空隙部が観察されなかったことから充填率は100%であるとした。
[製造例1]
(ブロック共重合体(Z-1)の製造)
 乾燥後、窒素置換した内容積2Lのオートクレーブに、脱水したシクロヘキサン737mlおよびsec-ブチルリチウム(0.70mol/Lシクロヘキサン溶液)2.06mlを添加した後、60℃にて撹拌しつつ、スチレン28.6ml、4-tert-ブチルスチレン14.4ml、スチレン28.6ml、4-tert-ブチルスチレン14.4ml、イソプレン114.9ml、4-tert-ブチルスチレン14.4ml、スチレン28.6mlおよび4-tert-ブチルスチレン14.4mlを順次添加して重合し、ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)を得た。得られたブロック共重合体のMnは130,000、ポリイソプレンブロックの1,4-結合量は93.7%、スチレンに由来する構造単位の含有率は35.6質量%、4-tert-ブチルスチレンに由来する構造単位の含有率は24.8質量%であった。
 上記ブロック共重合体のシクロヘキサン溶液を調製して、窒素置換した耐圧容器に入れ、Ni/Al系のチーグラー系触媒を用いて、水素圧下0.5~1MPa、70℃で18時間水添反応を行い、ポリスチレン重合体ブロック(重合体ブロック(A0))、水添ポリイソプレン重合体ブロック(重合体ブロック(B))およびポリ(4-tert-ブチルスチレン)重合体ブロック(重合体ブロック(C))からなるブロック共重合体(Z0)[ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-水添ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)(以下「ブロック共重合体(Z-1)」と称する)]を得た。
 得られたブロック共重合体(Z-1)の水添ポリイソプレンブロックの水添率は99%以上であった。
(ブロック共重合体(Z-1)の製造)
 乾燥後、窒素置換した内容積1Lの三口フラスコに、塩化メチレン270mlおよび無水酢酸149mlを添加し、0℃にて撹拌しつつ濃硫酸を67ml滴下し、さらに0℃にて60分間攪拌してスルホン化剤を調製した。一方、72gのブロック共重合体(Z-1)を、攪拌機を備えた内容積5Lのガラス製反応容器に入れ、系内を窒素置換した後、塩化メチレン1600mlを加えて常温にて4時間攪拌して溶解させた。この溶液に、先に調製したスルホン化剤486mlを、5分かけて滴下した。常温にて48時間攪拌後、蒸留水100mlを加えて反応を停止し、攪拌しながらさらに蒸留水1000mlを徐々に滴下して、固形分を析出させた。この混合液から塩化メチレンを常圧留去にて除去した後、濾過して、回収した固形分をビーカーに移し、蒸留水を1L添加して、攪拌下で洗浄を行った後、濾過により固形分を再び回収した。この洗浄およびろ過を、洗浄水のpHに変化がなくなるまで繰り返し、得られた固形分を1.3kPa、30℃にて24時間乾燥して、本発明の高分子電解質膜に用いるブロック共重合体(Z)を得た(以下「ブロック共重合体(Z-1)」と称する)。得られたブロック共重合体(Z-1)のスチレンに由来する構造単位に対するスルホン酸基の割合(スルホン化率)は100mol%、イオン交換容量は2.6meq/gであった。
[製造例2]
(ブロック共重合体(Z-2)の製造)
 乾燥後、窒素置換した内容積2000mlのオートクレーブに、脱水したシクロヘキサン757mlおよびsec-ブチルリチウム(1.12mol/Lシクロヘキサン溶液)3.33ml、テトラヒドロフラン27mlを添加した後、60℃にて撹拌しつつ、4-tert-ブチルスチレン28.3ml、スチレン81.7ml、4-tert-ブチルスチレン28.3ml、ブタジエン171ml、4-tert-ブチルスチレン28.3ml、スチレン81.7mlおよび4-tert-ブチルスチレン28.3mlを順次添加して重合し、ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリブタジエン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)を得た。得られたブロック共重合体のMnは108,000、ポリブタジエンブロックの1,4-結合量は55.0%、スチレンに由来する構造単位の含有率は39.9質量%、4-tert-ブチルスチレンに由来する構造単位の含有率は29.5質量%であった。
 上記ブロック共重合体のシクロヘキサン溶液を調製して、窒素置換した耐圧容器に入れ、Ni/Al系のチーグラー系触媒を用いて、水素圧下0.5~1MPa、70℃で18時間水添反応を行い、ポリスチレン重合体ブロック(重合体ブロック(A))、水添ポリブタジエン重合体ブロック(重合体ブロック(B))およびポリ(4-tert-ブチルスチレン)重合体ブロック(重合体ブロック(C))からなるブロック共重合体(Z)[ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリブタジエン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)(以下「ブロック共重合体(Z-2)」と称する)]を得た。得られたブロック共重合体(Z-2)の水添ポリブタジエンブロックの水添率は99%以上であった。
(ブロック共重合体(Z-2)の製造)
 乾燥後、窒素置換した内容積1Lの三口フラスコに、塩化メチレン114mlおよび無水酢酸57.4mlを添加し、0℃にて撹拌しつつ濃硫酸を33.4ml滴下し、さらに0℃にて60分間攪拌してスルホン化剤を調製した。一方、40gのブロック共重合体(Z-2)を、攪拌機を備えた内容積3Lのガラス製反応容器に入れ、系内を窒素置換した後、塩化メチレン522mlを加えて常温にて4時間攪拌して溶解させた。この溶液に、先に調製したスルホン化剤204mlを、5分かけて滴下した。常温にて48時間攪拌後、蒸留水100mlを加えて反応を停止し、攪拌しながらさらに蒸留水600mlを徐々に滴下して、固形分を析出させた。この混合液から塩化メチレンを常圧留去にて除去した後、濾過して、回収した固形分をビーカーに移し、蒸留水を1L添加して、攪拌下で洗浄を行った後、濾過により固形分を再び回収した。この洗浄およびろ過を、洗浄水のpHに変化がなくなるまで繰り返し、得られた固形分を1.3kPa、30℃にて24時間乾燥して、本発明の高分子電解質膜に用いるブロック共重合体(Z)を得た(以下「ブロック共重合体(Z-2)」と称する)。得られたブロック共重合体(Z-2)のスチレンに由来する構造単位に対するスルホン酸基の割合(スルホン化率)は99mol%、イオン交換容量は2.9meq/gであった。
[製造例3]
(ブロック共重合体(Z-3)の製造)
 乾燥後、窒素置換した内容積1.4Lのオートクレーブに、脱水したシクロヘキサン615mlおよびsec-ブチルリチウム(1.20mol/Lシクロヘキサン溶液)1.28mlを添加した後、60℃にて撹拌しつつ、スチレン28.0ml、4-tert-ブチルスチレン8.1ml、イソプレン112ml、4-tert-ブチルスチレン8.1mlおよびスチレン28.0mlを順次添加して重合し、ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレンを得た。得られたブロック共重合体のMnは159,000、ポリイソプレンブロックの1,4-結合量は94.0%、スチレンに由来する構造単位の含有率は35.0質量%、4-tert-ブチルスチレンに由来する構造単位の含有率は12.2質量%であった。
 上記ブロック共重合体のシクロヘキサン溶液を調製して、窒素置換した耐圧容器に入れ、Ni/Al系のチーグラー系触媒を用いて、水素圧下0.5~1MPa、70℃で18時間水添反応を行い、ポリスチレン重合体ブロック(重合体ブロック(A0))、水添ポリイソプレン重合体ブロック(重合体ブロック(B))およびポリ(4-tert-ブチルスチレン)重合体ブロック(重合体ブロック(C))からなるブロック共重合体(Z0)[ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-水添ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン(以下「ブロック共重合体(Z-3)」と称する)]を得た。得られたブロック共重合体(Z-3)の水添ポリイソプレンブロックの水添率は99%以上であった。
(ブロック共重合体(Z-3)の製造)
 乾燥後、窒素置換した内容積1Lの三口フラスコに、塩化メチレン162mlおよび無水酢酸81mlを添加し、0℃にて撹拌しつつ濃硫酸を36ml滴下し、さらに0℃にて60分間攪拌してスルホン化剤を調製した。一方、50gのブロック共重合体(Z-3)を、攪拌機を備えた内容積3Lのガラス製反応容器に入れ、系内を窒素置換した後、塩化メチレン800mlを加えて常温にて4時間攪拌して溶解させた。この溶液に、先に調製したスルホン化剤279mlを、5分かけて滴下した。常温にて48時間攪拌後、蒸留水100mlを加えて反応を停止し、攪拌しながらさらに蒸留水500mlを徐々に滴下して、固形分を析出させた。この混合液から塩化メチレンを常圧留去にて除去した後、濾過して、回収した固形分をビーカーに移し、蒸留水を1L添加して、攪拌下で洗浄を行った後、濾過により固形分を再び回収した。この洗浄およびろ過を、洗浄水のpHに変化がなくなるまで繰り返し、得られた固形分を1.3kPa、30℃にて24時間乾燥して、本発明の高分子電解質膜に用いるブロック共重合体(Z)を得た(以下「ブロック共重合体(Z-3)」と称する)。得られたブロック共重合体(Z-3)のスチレンに由来する構造単位に対するスルホン酸基の割合(スルホン化率)は99mol%、イオン交換容量は2.6meq/gであった。
[製造例4]
(ブロック共重合体(Z-4)の製造)
 乾燥後、窒素置換した内容積1.4Lのオートクレーブに、脱水したシクロヘキサン710ml、テトラヒドロフラン1.95mlおよびsec-ブチルリチウム(0.7mol/Lシクロヘキサン溶液)1.99mlを添加した後、40℃にて撹拌しつつ、4-メチルスチレン21.6ml、ブタジエン140mlおよび4-メチルスチレン21.6mlを順次添加して重合し、ポリ(4-メチルスチレン)-b-ポリブタジエン-b-ポリ(4-メチルスチレン)を得た。得られたブロック共重合体のMnは78,000であり、H-NMR(400MHz)から求めたポリブタジエンブロックの1,4-結合量は58.5%、4-メチルスチレンに由来する構造単位の含有量は30.0質量%であった。
 上記ブロック共重合体のシクロヘキサン溶液を調製して、窒素置換した耐圧容器に入れ、Ni/Al系のチーグラー系触媒を用いて、水素圧0.5~1MPa、70℃で18時間水添反応を行い、ポリ(4-メチルスチレン)重合体ブロック(重合体ブロック(A))および水添ポリブタジエン重合体ブロック(重合体ブロック(B))からなるブロック共重合体(Z)[ポリ(4-メチルスチレン)-b-水添ポリブタジエン-b-ポリ(4-メチルスチレン)(以下「ブロック共重合体(Z-4)」と称する)]を得た。得られたブロック共重合体(Z-4)の水添ポリブタジエンブロックの水添率は99%以上であった。
(ブロック共重合体(Z-4)の製造)
 塩化メチレン35.1ml中、0℃にて無水酢酸23.4mlと硫酸10.5mlを混合してスルホン化剤を調製した。一方、50gのブロック共重合体(Z-4)を、3L攪拌機付きのガラス製反応容器に入れ、系内を真空とし窒素導入する操作を3回繰り返した後、窒素を導入した状態で塩化メチレン612mlを加え、常温にて4時間攪拌して溶解させた後、前記スルホン化剤69.1mlを5分間かけて滴下した。常温にて7時間攪拌後、攪拌下で蒸留水500mlを滴下して、反応を停止するとともに固形分を析出させた。塩化メチレンを常圧留去にて除去した後、濾過し、回収した固形分をビーカーに移し、蒸留水を1L添加して攪拌下で洗浄を行った後、濾過により固形分を再び回収した。かかる洗浄および濾過を洗浄水のpHに変化がなくなるまで繰り返した後、回収した固形分を1.3kPa、30℃にて24時間乾燥して、ブロック共重合体(Z)(以下「ブロック共重合体(Z-4)」と称する)を得た。得られたブロック共重合体(Z-4)の4-メチルスチレンに由来する構造単位に対するスルホン酸基の割合(スルホン化率)は65.2mol%、イオン交換容量は1.5meq/gであった。
[実施例1]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の13質量%のトルエン/イソブタノール(質量比77/23)溶液を調製した後、化合物(X)としてポリ-4-ビニルフェノール(丸善石油化学(株)、製品名:マルカリンカーM、グレード:S-1、Mn:1100~1500)を、ブロック共重合体(Z-1)/ポリ-4-ビニルフェノールの質量比が100/9.6になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を、離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF)上に約150μmの厚さで塗工した後、不織布(クラレクラフレックス(株)製、ベクルス(登録商標)、平均繊維径7μm、坪量3g/cm、空孔率76.2%、厚さ9μm、以下「不織布(a)」と称する)を上から皺が入らないように塗工面と平行に重ねて該流動性組成物を不織布(a)の空隙内に含浸させた後、熱風乾燥機にて100℃で6分間乾燥させた。この上にさらに上記流動性組成物を約125μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、ブロック共重合体(Z-1)および化合物(X)を含有する組成物の成形体と、不織布(a)との厚さ20μmの接合体を得た。得られた接合体を、140℃窒素気流下で1.5時間加熱処理して上記成形体を架橋し、本発明の高分子電解質膜を作製した。
[実施例2]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の13質量%のトルエン/イソブタノール(質量比77/23)溶液を調製した後、化合物(X)としてポリ-4-ビニルフェノール(丸善石油化学(株)、製品名:マルカリンカーM、グレード:S-1)を、ブロック共重合体(Z-1)/ポリ-4-ビニルフェノールの質量比が100/9.6になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を、離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF)上に約125μmの厚さで塗工した後、不織布(a)を上から皺が入らないように塗工面と平行に重ねて該流動性組成物を不織布(a)の空隙内に含浸させた後、熱風乾燥機にて100℃で6分間乾燥させた。この上にさらに上記流動性組成物を約75μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、ブロック共重合体(Z-1)および化合物(X)を含有する組成物の成形体と、不織布(a)との厚さ16μmの接合体を得た。得られた接合体を、140℃窒素気流下で1.5時間加熱処理して上記成形体を架橋し、本発明の高分子電解質膜を作製した。
[実施例3]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の13質量%のトルエン/イソブタノール(質量比77/23)溶液を調製した後、化合物(X)としてポリ-4-ビニルフェノール(丸善石油化学(株)、製品名:マルカリンカーM、グレード:S-1)を、ブロック共重合体(Z-1)/ポリ-4-ビニルフェノールの質量比が100/9.6になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF)上に約200μmの厚さで塗工した後、不織布(a)を上から皺が入らないように塗工面と平行に重ねて該流動性組成物を不織布(a)の空隙内に含浸させた後、熱風乾燥機にて100℃で6分間乾燥させた。この上にさらに上記流動性組成物を約150μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、ブロック共重合体(Z-1)および化合物(X)を含有する組成物の成形体と、不織布(a)との厚さ27μmの接合体を得た。得られた接合体を140℃窒素気流下で1.5時間加熱処理して上記成形体を架橋し、本発明の高分子電解質膜を作製した。
[実施例4]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の13質量%のトルエン/イソブタノール(質量比77/23)溶液を調製した後、化合物(X)としてポリ-4-ビニルフェノール(丸善石油化学(株)、製品名:マルカリンカーM、グレード:S-1)を、ブロック共重合体(Z-1)/ポリ-4-ビニルフェノールの質量比が100/9.6になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF)上に約150μmの厚さで塗工した後、不織布(クラレクラフレックス(株)製、ベクルス(登録商標)、平均繊維径7μm、坪量6g/cm、空孔率68.9%、厚さ14μm、以下「不織布(b)」と称する)を上から皺が入らないように塗工面と平行に重ねて該流動性組成物を不織布(b)の空隙内に含浸させた後、熱風乾燥機にて100℃で6分間乾燥させた。この上にさらに上記流動性組成物を約125μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、ブロック共重合体(Z-1)および化合物(X)を含有する組成物の成形体と、不織布(b)との厚さ20μmの接合体を得た。得られた接合体を140℃窒素気流下で1.5時間加熱処理して上記成形体を架橋し、本発明の高分子電解質膜を作製した。
[実施例5]
(高分子電解質膜の作製)
 不織布(a)の代わりに別の不織布(クラレクラフレックス(株)製、ベクルス(登録商標)、平均繊維径3μm、坪量2.4g/cm、空孔率86.8%、厚さ13μm、以下「不織布(c)」と称する)を用いた以外は、実施例1と同様にして厚さ20μmの高分子電解質膜を作製した。
[実施例6]
(高分子電解質膜の作製)
 不織布(a)の代わりに別の不織布(クラレクラフレックス(株)製、ベクルス(登録商標)平均繊維径3μm、坪量2.7g/cm、空孔率84.6%、厚さ13μm、以下「不織布(d)」と称する)を用いた以外は、実施例1と同様にして厚さ20μmの高分子電解質膜を作製した。
[実施例7]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の13質量%のトルエン/イソブタノール(質量比77/23)溶液を調製した後、化合物(X)としてポリ-4-ビニルフェノール(丸善石油化学(株)、製品名:マルカリンカーM、グレード:S-1)を、ブロック共重合体(Z-1)/ポリ-4-ビニルフェノールの質量比が100/9.6になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF)上に約200μmの厚さで塗工した後、ポリエステル系不織布(廣瀬製紙(株)製、製品名:05TH-8、坪量7.6g/cm、空孔率85.5%、厚さ38μm、以下「不織布(e)」と称する)を上から皺が入らないように塗工面と平行に重ねて該流動性組成物を不織布(e)の空隙内に含浸させた後、熱風乾燥機にて100℃で6分間乾燥させた。この上にさらに上記流動性組成物を約250μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させ、さらに上記流動性組成物を約250μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、ブロック共重合体(Z-1)および化合物(X)を含有する組成物の成形体と、不織布(e)との厚さ45μmの接合体を得た。得られた接合体を140℃窒素気流下で1.5時間加熱処理して上記成形体を架橋し、本発明の高分子電解質膜を作製した。
[実施例8]
(高分子電解質膜の作製)
 製造例2で得られたブロック共重合体(Z-2)の13質量%のトルエン/イソブタノール(質量比7/3)溶液を調製した後、化合物(X)としてポリ-4-ビニルフェノール(丸善石油化学(株)、製品名:マルカリンカーM、グレード:S-1)を、ブロック共重合体(Z-2)/ポリ-4-ビニルフェノールの質量比が100/10.5になるように添加した以外は、実施例1と同様にして厚さ20μmの高分子電解質膜を作製した。
[実施例9]
(高分子電解質膜の作製)
 製造例3で得られたブロック共重合体(Z-3)の10質量%のトルエン/イソブタノール/n-オクタン(質量比3/3/4)溶液を調製した後、化合物(X)としてポリ-4-ビニルフェノール(丸善石油化学(株)、製品名:マルカリンカーM、グレード:S-1)を、ブロック共重合体(Z-3)/ポリ-4-ビニルフェノールの質量比が100/9.4になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPENフィルム(帝人デュポンフィルム製、商品名:Q31M)上に約200μmの厚さで塗工した後、不織布(a)を上から皺が入らないように塗工面と平行に重ねて該流動性組成物を不織布(a)の空隙内に含浸させた後、熱風乾燥機にて100℃で6分間乾燥させた。この上にさらに上記流動性組成物を約200μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、ブロック共重合体(Z-3)および化合物(X)を含有する組成物の成形体と、不織布(a)との厚さ27μmの接合体を得た。得られた接合体を140℃窒素気流下で6時間加熱処理して上記成形体を架橋し、本発明の高分子電解質膜を作製した。
[実施例10]
(高分子電解質膜の作製)
 製造例3で得られたブロック共重合体(Z-3)の10質量%のトルエン/イソブタノール/n-オクタン(質量比3/3/4)溶液を調製した後、化合物(X)としてポリ-4-ビニルフェノール(丸善石油化学(株)、製品名:マルカリンカーM、グレード:S-1)を、ブロック共重合体(Z-3)/ポリ-4-ビニルフェノールの質量比が100/9.4になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPENフィルム(帝人デュポンフィルム製、商品名:Q31M)上に約150μmの厚さで塗工した後、不織布(a)を上から皺が入らないように塗工面と平行に重ねて該流動性組成物を不織布(a)の空隙内に含浸させた後、熱風乾燥機にて100℃で6分間乾燥させた。得られた膜上にさらに上記流動性組成物を約175μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、ブロック共重合体(Z-1)および化合物(X)を含有する組成物の成形体と、不織布(a)との厚さ20μmの接合体を得た。得られた接合体を140℃窒素気流下で6時間加熱処理して上記成形体を架橋し、本発明の高分子電解質膜を作製した。
[実施例11]
(高分子電解質膜の作製)
 製造例3で得られたブロック共重合体(Z-3)の10質量%のトルエン/イソブタノール/n-オクタン(質量比3/3/4)溶液を調製した後、化合物(X)として2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール(旭有機材工業(株)製)をブロック共重合体(Z-3)/2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールの質量比が100/4.5になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPENフィルム(帝人デュポンフィルム製、商品名:Q31M)上に約150μmの厚さで塗工した後、不織布(a)を上から皺が入らないように塗工面と平行に重ねて該流動性組成物を不織布(a)の空隙内に含浸させた後、熱風乾燥機にて100℃で6分間乾燥させた。この上にさらに上記流動性組成物を約175μmの厚さで塗工し、熱風乾燥機にて100℃で30分間乾燥させることで、ブロック共重合体(Z-3)および化合物(X)を含有する組成物の成形体と、不織布(a)との厚さ20μmの接合体を得た。得られた接合体を、120℃窒素気流下で6時間加熱処理して上記成形体を架橋し、本発明の高分子電解質膜を作製した。
[実施例12]
(高分子電解質膜の作製)
 不織布(a)の代わりに不織布(c)を用いた以外は、実施例11と同様にして厚さ20μmの高分子電解質膜を作製した。
[実施例13]
(高分子電解質膜の作製)
 不織布(a)の代わりに不織布(d)を用いた以外は、実施例11と同様にして厚さ20μmの高分子電解質膜を作製した。
[実施例14]
(高分子電解質膜の作製)
 化合物(X)として、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール(旭有機材工業(株)製)を用い、ブロック共重合体(Z-1)/2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールの質量比が100/4.5になるように添加した以外は、実施例1と同様にして厚さ20μmの高分子電解質膜を作製した。
[実施例15]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の13質量%のトルエン/イソブタノール(質量比77/23)溶液を調製した後、化合物(X)としてポリ-4-ビニルフェノール(丸善石油化学(株)、製品名:マルカリンカーM、グレード:S-1)を、ブロック共重合体(Z-1)/ポリ-4-ビニルフェノールの質量比が100/9.6になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF)上に約150μmの厚さで塗工した後、不織布(クラレクラフレックス(株)製、ベクルス(登録商標)、平均繊維径3μm、坪量4.5g/cm2、空孔率64.3%、厚さ9μm、以下「不織布(f)」と称する)を上から皺が入らないように塗工面と平行に重ねて該流動性組成物を不織布(f)の空隙内に含浸させた後、熱風乾燥機にて100℃で6分間乾燥させた。この上にさらに上記流動性組成物を約125μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、ブロック共重合体(Z-1)および化合物(X)を含有する組成物の成形体と、不織布(f)との厚さ20μmの接合体を得た。得られた接合体を140℃窒素気流下で1.5時間加熱処理して上記成形体を架橋し、本発明の高分子電解質膜を作製した。
[比較例1]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の13質量%のトルエン/イソブタノール(質量比77/23)溶液を調製した。次いで、該溶液を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF)上に約150μmの厚さで塗工した後、不織布(a)を上から皺が入らないように塗工面と平行に重ねて該溶液を不織布(a)の空隙内に含浸させた後、熱風乾燥機にて100℃で6分間乾燥させた。この上にさらに上記溶液を約150μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、厚さ20μmの高分子電解質膜を作製した。
[比較例2]
(高分子電解質膜の作製)
 不織布(a)の代わりに、不織布(b)を用いた以外は、比較例1と同様にして厚さ20μmの高分子電解質膜を作製した。
[比較例3]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の13質量%のトルエン/イソブタノール(質量比77/23)溶液を調製した後、架橋剤として1,2-ポリブタジエン(日本曹達(株)製、商品名:PB-1000、数平均分子量1,000、重合度19)を、ブロック共重合体(Z-1)/1,2-ポリブタジエンの質量比が100/5.0になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF)上に約150μmの厚さで塗工した後、不織布(b)を上から皺が入らないように塗工面と平行に重ねて該流動性組成物を不織布(b)の空隙内に含浸させた後、熱風乾燥機にて100℃で6分間乾燥させた。この上にさらに上記流動性組成物を約150μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、ブロック共重合体(Z-1)および1,2-ポリブタジエンを含有する組成物の成形体と、不織布(b)との厚さ20μmの接合体を得た。得られた接合体にエレクトロカーテン型電子線照射装置(岩崎電気(株)製、商品名:CB250/30/20mA)を用いて、加速電圧150kV、ビーム電流8.6mA、線量300kGyの電子線照射を施して上記成形体を架橋し、高分子電解質膜を作製した。
[比較例4]
(高分子電解質膜の作製)
 製造例4で得られたブロック共重合体(Z-4)の13質量%のトルエン/イソブタノール(質量比70/30)溶液を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF)上に約150μmの厚さで塗工した後、不織布(b)を上から皺が入らないように塗工面と平行に重ねて該流動性組成物を不織布(b)の空隙内に含浸させた後、熱風乾燥機にて100℃で6分間乾燥させた。この上にさらに上記流動性組成物を約150μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、ブロック共重合体(Z-4)を含有する組成物の成形体と、不織布(b)との厚さ20μmの接合体を得た。得られた接合体を130℃、1MPaの圧力下で5分間熱処理して上記成形体を架橋し、高分子電解質膜を作製した。
[参考例1]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の11.5質量%のトルエン/イソブタノール(質量比77/23)溶液を調製した後、化合物(X)としてポリ-4-ビニルフェノール(丸善石油化学(株)、製品名:マルカリンカーM、グレード:S-1)を、ブロック共重合体(Z-1)/ポリ-4-ビニルフェノールの質量比が100/9.6になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF)上に約300μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、厚さ20μmの成形体を得た。得られた成形体を140℃窒素気流下で1時間加熱処理をすることで架橋し、膜状の高分子電解質からなる高分子電解質膜を作製した。
(高分子電解質膜の性能試験およびその結果)
 下記の測定・評価方法によって高分子電解質膜の性能を評価した。結果を表1に示す。
(耐熱水性試験)
 実施例、比較例および参考例で得られた高分子電解質膜から3cm×5cmの試験片を切り出し、1.3kPa、50℃にて12時間乾燥し、質量(質量mとする)を測定後、110mLのスクリュー管に入れ、蒸留水を60mL添加した後、SUS製の金属容器内に収納して密封し、110℃の恒温槽内にて96時間静置した。次いで、スクリュー管内の試験片の表面状態を目視で確認した(目視試験)後、1.3kPa、50℃にて12時間乾燥し、質量(質量mとする)を測定した。
 次式により不溶分残存率(1a)を求めた。
 不溶分残存率(1a)(%)=m/m×100
 また、同じ高分子電解質膜から得た別の試験片を用いて同様の試験を実施し、不溶分残存率(1b)を求めた。
 このようにして得られた不溶分残存率(1a)および不溶分残存率(1b)を算術平均して不溶分残存率とした。不溶分残存率が高いほど、耐熱水性に優れると判断した。
(ゲル分率の測定)
 実施例、比較例および参考例で得られた高分子電解質膜から4cm×8cmの試験片を切り出し、精密天秤にて秤量した。この際の質量をM1とする。ソックスレー抽出器を用いて、テトラヒドロフラン100mlで、円筒ろ紙にセットした試験片を8時間還流処理した。その後、該試験片を取り出し、11kPa、40℃の条件でテトラヒドロフランを留去後、さらに1.3kPa、80℃にて12時間乾燥させた。乾燥後の固形分残渣のみの質量を精密天秤にて秤量した。この際の質量をMとし、下記式によってゲル分率を算出した。
  ゲル分率=((M-M)/M)×100(%)
(機械的強度(引張破断強さ)の測定)
 実施例、比較例および参考例で得られた高分子電解質膜からダンベル状の試験片を切り出し、25℃、相対湿度40%の条件で調湿したのち、引張試験機(インストロンジャパン社製、型式:5566型)にセットし、25℃、相対湿度40%、引張速度500mm/分の条件において、引張破断強さを測定した。
(80℃熱水中の寸法変化率測定)
 実施例、比較例および参考例で得られた高分子電解質膜を23℃、相対湿度50%下に12時間静置した後、1cm×4cmの試験片を切り出し、80℃の熱水中に4時間浸漬した後、熱水から取り出した試験片の長辺方向の長さb(cm)を計測し、次式により寸法変化率を求めた。
 寸法変化率(%)=[(b-4)/4]×100
[固体高分子型燃料電池の電圧低下速度]
 実施例、比較例および参考例で得られた高分子電解質膜の耐熱水性が固体高分子型燃料電池の性能へ及ぼす影響評価を目的として、該高分子電解質膜を組み込んだ評価用燃料電池にて、高温下での電圧低下速度を測定した。
 まず、高分子電解質膜を9cm×9cmに切り出し、内側を5cm×5cmに切り抜いた厚さ12.5μmのPTFEフィルム2枚で挟み、さらに、Pt触媒担持カーボンおよびナフィオンD1021(デュポン社製(商品名))からなる触媒層と、カーボンペーパーとからなる電極2枚で挟んだ後、ホットプレスにより加熱処理(115℃、1MPa、8分)を行って、膜-電極接合体(MEA)を作製した。次いで作製したMEAにガスケットを組み合わせたのち、2枚のガス供給流路の役割を兼ねた導電性のセパレータで挟み、さらにその外側を2枚の集電板および2枚の締付板で挟み評価セルを作製した。作製した評価セルにガス供給用ホース、ドレンホース(カソード側には排水回収用瓶を付属)、ヒータ電源、熱電対、発電特性分析器((株)エヌエフ回路設計ブロック製)に接続された負荷電流制御用端子と電圧検出用端子を接続して評価用燃料電池を組み立てた。この評価用燃料電池の一方の電極(アノード)に70cc/分で水素を、他方の電極(カソード)に240cc/分で空気を供給し、下記の条件で運転して、電圧低下速度を測定した。
 セル温度:80℃
 相対湿度:100%
 電流密度:0.3A/cm2
(燃料電池の電圧低下速度1)
 上記評価用燃料電池を1200時間まで運転し、該評価用燃料電池に接続された電圧検出用端子により電圧値を測定することで運転時間に伴う電圧値の低下を追跡し、開始時における電圧値に対して10%低下するまでの時間を測定した。
(燃料電池の電圧低下速度2)
 運転中の上記評価用燃料電池に接続された電圧検出用端子により、500時間運転後の電圧値V(V)、1200時間運転後の電圧値V(V)を測定し、電圧低下速度を次式より算出した。
 電圧低下速度(μV/時間)={(V-V)/(1200-500)}×10
(起動停止耐久性試験)
 実施例、比較例および参考例で得られた高分子電解質膜を9cm×9cmに切り出し、内側を5cm×5cmに切り抜いた厚さ25μmのPETフィルムで両側を挟み、Pt触媒担持カーボンおよびナフィオンD1021(デュポン社製(商品名))からなる触媒層とカーボンペーパーとからなる電極2枚でそれぞれ膜と触媒面とが向かい合うように挟み、その外側を2枚のステンレス板で挟み、ホットプレス(115℃、2MPa、8分)により膜-電極接合体を作製した。ついで作製した膜-電極接合体を、2枚のガス供給流路の役割を兼ねた導電性のセパレータで挟み、さらにその外側を2枚の集電板および2枚の締付板で挟み、単セル(電極面積は25cm)を作製した。
 次いで、作製した単セルにガス供給用ホース、ドレンホース、ヒータ電源、熱電対、発電特性分析器((株)エヌエフ回路設計ブロック製)に接続された負荷電流制御用端子と電圧検出用端子を接続して評価用燃料電池を組み立てた。
 単セル温度を80℃に昇温しながら、燃料供給配管からアノードとカソードに80℃、150%RHの窒素(バブラー温度90℃)を200cc/分で流通させた。次いで単セルの温度を80℃に保持したまま、アノードへ150%RHの水素を200ml/分、カソードへ150%RHの窒素を200ml/分の速度で供給した。供給開始から1時間後、リニアスイープボルタンメトリーを実施した。電圧値を0.5mV/秒の速度で0.08Vから0.50Vまで変化させた時の、各電圧値における電流値を測定し、0.4Vの時の電流値から、水素リーク量(L0)を評価した。
 その後、単セルの温度を80℃に保持したまま、アノードへ150%RHの窒素を2000ml/分、カソードへ150%RHの窒素を2000ml/分の速度で2分間、アノードへドライ窒素(水分率0.37ppm)を2000ml/分、カソードへドライ窒素を2000ml/分の速度で2分間供給する操作を繰り返し行った。本操作を250回繰り返し行い、次いで単セルの温度を80℃に保持したまま、アノードへ150%RHの水素を200ml/分、カソードへ150%RHの窒素を200ml/分の速度で1時間供給した後、リニアスイープボルタンメトリーを実施し、1回目の水素リーク量(L1)を評価した。さらに上記単セルの温度を80℃に保持したまま、アノードへ150%RHの窒素を2000ml/分、カソードへ150%RHの窒素を2000ml/分の速度で2分間、アノードへドライ窒素を2000ml/分、カソードへドライ窒素を2000ml/分の速度で2分間供給する操作を250回繰り返し行い、次いで単セルの温度を80℃に保持したまま、アノードへ150%RHの水素を200ml/分、カソードへ150%RHの窒素を200ml/分の速度で1時間供給した後、リニアスイープボルタンメトリーを実施し、水素リーク量の評価を行う工程を繰り返し行い、n回目の水素リーク量(Ln)がL0の10倍以上になった段階を終点とした。このnに250をかけた値を「サイクル数」として表1に示す。
(初期発電特性試験)
 上記起動停止耐久性試験と同様にして組み立てた評価用燃料電池を用いて、以下の操作にしたがって、初期発電特性試験を行った。
 <操作1>
 アノードおよびカソードにそれぞれ80℃、100%RHの窒素を500ml/分で30分間供給しながら、単セルを80℃に加熱した。次いで、アノードに80℃、100%RHの水素を100ml/分、カソードに80℃、100%RHの空気を100ml/分の速度で30分間供給した。
 <操作2>
 単セルの温度を80℃に保持したまま、アノードに80℃、100%RHの水素を、カソードに80℃、100%RHの空気を供給しつつ、電流値を0Aから1.25Aずつ段階的に上げながら各電流値における電圧値を測定し、電圧値が0.01V以下になった時点で、電流値を0Aに戻した。なお、アノードへの水素の供給量およびカソードへの空気の供給量は、電流値0A、1.25A、2.5Aにおいてはそれぞれ46ml/分、168ml/分とし、3.75A以上においてはそれぞれストイキ1.5、ストイキ2.0とした。また、各電流値において各1分間電流値を保持した。
 かかる操作を4回繰り返して、高分子電解質膜を湿潤状態とした。
 <操作3>
 固体高分子型燃料電池用単セルを放冷しつつ、無加湿の窒素を1000ml/分の速度でアノードおよびカソードの燃料供給配管から単セルへ12時間供給することで高分子電解質膜を乾燥状態にした。
 <操作4>
 水素および空気の湿度を30%RHに変更した以外は、操作1と同様の操作を実施した。
 <操作5>
 水素および空気の湿度を30%RHに変更し、繰返し回数を3回に変更した以外は、操作2と同様の操作を実施し、繰返し回数3回目における、電流が12.5A(電流密度0.5A/cm)、及び25.0A(電流密度1.0A/cm)のときに得られる抵抗値を測定した。
Figure JPOXMLDOC01-appb-T000003
 
 表1に示すとおり、本発明の高分子電解質膜は、高い耐熱水性を発現する。比較例1、2は架橋されていないため、本発明の高分子電解質膜よりも耐熱水性が著しく低いことがわかる。比較例3の高分子電解質膜は、化合物(X)以外の架橋剤で架橋された高分子電解質膜であるため、本発明の高分子電解質膜よりも耐熱水性が著しく低いことがわかる。
 比較例4の高分子電解質膜は、4-メチルスチレン部位が熱架橋していると考えているが、化合物(X)を使用していないため、実施例1と比較してイオン交換容量が低いにもかかわらず、耐熱水性が著しく低いことがわかる。
 実施例1~15より、ブロック共重合体(Z)が架橋されており、かつ多孔質材料である補強材を有する高分子電解質膜であれば、平面方向の寸法変化率が小さく、耐熱水性が高いことがわかる。
 実施例1、4、5、6、10、11、14および比較例1~4より、本発明の高分子電解質膜は、燃料電池に組み込んで運転した場合に電圧の低下が少なく、起動停止耐久性試験においても10000サイクル以上の耐久性を確保できていることがわかる。これは、本発明の高分子電解質膜の優れた耐熱水性と平面方向への膨張率の低下に基づくものと推定できる。
 実施例1、4、5、6、15および参考例1より、空孔率70%以上である補強材を含有する高分子電解質膜は、補強材を含有しない参考例1の高分子電解質膜と同等以下の抵抗値を示し、特に空孔率80%以上である補強材を含有する高分子電解質膜は、参考例1の高分子電解質膜よりも顕著に低い抵抗値を示すことから、初期発電特性に優れることが分かる。
(高分子電解質の柔軟性の評価)
 本発明の高分子電解質膜が柔軟で割れにくいことを確認する目的で以下の評価を行った。
[評価例1]
 参考例1で得られた高分子電解質膜(膜状の高分子電解質)から、ダンベル状の試験片を切り出し、25℃、相対湿度40%の条件で調湿したのち、引張試験機(インストロンジャパン社製5566型)にセットし、25℃、相対湿度40%、引張速度500mm/分の条件において、引張破断強度、引張破断伸度を測定した。結果を表2に示す。
[評価例2]
(膜状の高分子電解質の作製)
 製造例3で得られたブロック共重合体(Z-3)の10質量%のトルエン/イソブタノール/n-オクタン(質量比3/3/4)溶液を調製した後、化合物(X)としてポリ-4-ビニルフェノール(丸善石油化学(株)、製品名:マルカリンカーM、グレード:S-1)を、ブロック共重合体(Z-3)/ポリ-4-ビニルフェノールの質量比が100/9.4になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPENフィルム(帝人デュポンフィルム製、商品名:Q31M)上に塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、厚さ20μmの成形体を得た。得られた成形体を140℃窒素気流下で1時間加熱処理をすることで架橋し、膜状の高分子電解質を作製した。
 得られた高分子電解質を用いて、評価例1と同様に引張破断強度、引張破断伸度を測定した。結果を表2に示す。
[評価例3]
(膜状の高分子電解質の作製)
 製造例1で得られたブロック共重合体(Z-1)の11.5質量%のトルエン/イソブタノール(質量比77/23)溶液を調製した後、化合物(X)として2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール(旭有機材工業(株)製)をブロック共重合体(Z-1)/2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールの質量比が100/4.5になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF)上に塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、厚さ20μmの成形体を得た。得られた成形体を140℃窒素気流下で1時間加熱処理をすることで架橋し、膜状の高分子電解質を作製した。
 得られた高分子電解質を用いて、評価例1と同様に引張破断強度、引張破断伸度を測定した。結果を表2に示す。
[評価例4]
(膜状の高分子電解質の作製)
 製造例3で得られたブロック共重合体(Z-3)の10質量%のトルエン/イソブタノール/n-オクタン(質量比3/3/4)溶液を調製した後、化合物(X)として2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール(旭有機材工業(株)製)をブロック共重合体(Z-3)/2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールの質量比が100/4.5になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPENフィルム(帝人デュポンフィルム製、商品名:Q31M)上に塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、厚さ20μmの成形体を得た。得られた成形体を140℃窒素気流下で1時間加熱処理をすることで架橋し、膜状の高分子電解質を作製した。
 得られた高分子電解質を用いて、評価例1と同様に引張破断強度、引張破断伸度を測定した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 表2に示すように、本発明の高分子電解質膜が含有する高分子電解質は、いずれも引張破断強度、引張破断伸度に優れることから柔軟で割れにくい。かかる高分子電解質と補強材を含有する本発明の高分子電解質膜は、かかる柔軟性を有すると同時に、表1で示すように引張破断強度をさらに高めたものである。
 本発明によれば、非フッ素系材料からなり、柔軟で割れにくく、耐熱水性に優れる高分子電解質膜を提供することができる。また本発明の高分子電解質膜は、特に熱水中での寸法変化が少なく、固体高分子型燃料電池に適用した際には起動停止耐久性にも優れるため、固体高分子型燃料電池に好適に用いられる。

Claims (9)

  1.  補強材を含有する高分子電解質膜であって、
    前記高分子電解質膜が、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有する重合体ブロック(A)と、不飽和脂肪族炭化水素に由来する構造単位からなり、イオン伝導性基を有さない非晶性の重合体ブロック(B)とを含むブロック共重合体(Z)および1つ以上の水素原子が水酸基で置換された芳香環を分子中に2つ以上有する化合物(X)を含有する組成物の成形体を架橋した高分子電解質を含有し、
    前記補強材が多孔質材料である
    高分子電解質膜。
  2.  前記多孔質材料が不織布である、請求項1に記載の高分子電解質膜。
  3.  前記不飽和脂肪族炭化水素が炭素数4~8のアルケンおよび炭素数4~8の共役ジエンから選ばれる少なくとも1種である、請求項1又は2に記載の高分子電解質膜。
  4.  前記重合体ブロック(B)が前記共役ジエンを重合して形成した重合体ブロックの炭素-炭素二重結合を水素添加して得られ、水素添加率が30モル%以上である、請求項3に記載の高分子電解質膜。
  5.  前記ブロック共重合体(Z)がさらに、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有さない重合体ブロック(C)を含む、請求項1~4のいずれかに記載の高分子電解質膜。
  6.  前記組成物中の化合物(X)の含有量が前記ブロック共重合体(Z)100質量部に対して0.1~25質量部である、請求項1~5のいずれかに記載の高分子電解質膜。
  7.  前記化合物(X)が、前記芳香環を分子中に2つ有する化合物、前記芳香環を分子中に3つ有する化合物、前記芳香環を分子中に6つ有する化合物、及びフェノール骨格を繰り返し単位とする重合体から選ばれる少なくとも1種である、請求項1~6のいずれかに記載の高分子電解質膜。
  8.  前記多孔質材料の空孔率が70~95%である、請求項1~6のいずれかに記載の高分子電解質膜。
  9.  請求項1~8のいずれかに記載の高分子電解質膜を有する固体高分子型燃料電池。
PCT/JP2015/053905 2014-02-20 2015-02-13 高分子電解質膜 WO2015125694A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-031003 2014-02-20
JP2014031003 2014-02-20

Publications (1)

Publication Number Publication Date
WO2015125694A1 true WO2015125694A1 (ja) 2015-08-27

Family

ID=53878199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053905 WO2015125694A1 (ja) 2014-02-20 2015-02-13 高分子電解質膜

Country Status (2)

Country Link
TW (1) TW201537818A (ja)
WO (1) WO2015125694A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021017474A (ja) * 2019-07-18 2021-02-15 株式会社豊田中央研究所 多孔膜及び複合膜
WO2022019065A1 (ja) * 2020-07-20 2022-01-27 株式会社クラレ 酸性ガス分離デバイス、空気清浄機、エアーコンディショナ、及び酸性ガス濃縮装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210336A (ja) * 2000-01-28 2001-08-03 Kanegafuchi Chem Ind Co Ltd 燃料電池用膜及びそれを使用した燃料電池
JP2006507653A (ja) * 2002-11-07 2006-03-02 ガス、テクノロジー、インスティチュート プロトン交換メンブラン燃料電池用の高安定性メンブラン
JP2013206669A (ja) * 2012-03-28 2013-10-07 Kuraray Co Ltd 高分子電解質膜
WO2014030573A1 (ja) * 2012-08-23 2014-02-27 株式会社クラレ 高分子電解質膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210336A (ja) * 2000-01-28 2001-08-03 Kanegafuchi Chem Ind Co Ltd 燃料電池用膜及びそれを使用した燃料電池
JP2006507653A (ja) * 2002-11-07 2006-03-02 ガス、テクノロジー、インスティチュート プロトン交換メンブラン燃料電池用の高安定性メンブラン
JP2013206669A (ja) * 2012-03-28 2013-10-07 Kuraray Co Ltd 高分子電解質膜
WO2014030573A1 (ja) * 2012-08-23 2014-02-27 株式会社クラレ 高分子電解質膜

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021017474A (ja) * 2019-07-18 2021-02-15 株式会社豊田中央研究所 多孔膜及び複合膜
JP7400235B2 (ja) 2019-07-18 2023-12-19 株式会社豊田中央研究所 多孔膜及び複合膜
WO2022019065A1 (ja) * 2020-07-20 2022-01-27 株式会社クラレ 酸性ガス分離デバイス、空気清浄機、エアーコンディショナ、及び酸性ガス濃縮装置
EP4173700A4 (en) * 2020-07-20 2023-12-27 Kuraray Co., Ltd. ACID GAS SEPARATION DEVICE, AIR PURIFIER, AIR CONDITIONER AND ACID GAS CONCENTRATION DEVICE

Also Published As

Publication number Publication date
TW201537818A (zh) 2015-10-01

Similar Documents

Publication Publication Date Title
JP5276442B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JPWO2014030573A1 (ja) 高分子電解質膜
JP5191139B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
WO2007086309A1 (ja) 固体高分子型燃料電池用電解質積層膜、膜-電極接合体及び燃料電池
JP5629692B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
WO2007094185A1 (ja) 高分子電解質膜、膜-電極接合体及び固体高分子型燃料電池
JP2010232121A (ja) 電解質複合膜、膜−電極接合体、および固体高分子型燃料電池
JP2013206669A (ja) 高分子電解質膜
JP5188025B2 (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JPWO2013031634A1 (ja) ブロック共重合体、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP5555636B2 (ja) 有機―無機複合電解質、電解質膜、膜―電極接合体及び燃料電池
WO2015125694A1 (ja) 高分子電解質膜
JP5706906B2 (ja) 高分子電解質膜、膜−電極接合体、及び固体高分子型燃料電池
JP2010135130A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP2014032811A (ja) 高分子電解質膜
JP5629761B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体、および固体高分子型燃料電池
JPWO2010067743A1 (ja) 電解質積層膜、膜−電極接合体及び燃料電池
WO2015125695A1 (ja) 高分子電解質膜
WO2015125697A1 (ja) 高分子電解質膜
JP5792018B2 (ja) 高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP2015156315A (ja) 高分子電解質膜の製造方法
WO2015125696A1 (ja) 高分子電解質膜
JP2011216244A (ja) 高分子電解質、高分子電解質膜、膜―電極接合体、および燃料電池
WO2011145588A1 (ja) 高分子電解質及びそれからなる高分子電解質膜
JP2010067526A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP