WO2015125695A1 - 高分子電解質膜 - Google Patents

高分子電解質膜 Download PDF

Info

Publication number
WO2015125695A1
WO2015125695A1 PCT/JP2015/053906 JP2015053906W WO2015125695A1 WO 2015125695 A1 WO2015125695 A1 WO 2015125695A1 JP 2015053906 W JP2015053906 W JP 2015053906W WO 2015125695 A1 WO2015125695 A1 WO 2015125695A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
electrolyte membrane
group
polymer
block copolymer
Prior art date
Application number
PCT/JP2015/053906
Other languages
English (en)
French (fr)
Inventor
竹友 山下
謙太 俊成
小野 友裕
須郷 望
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2015125695A1 publication Critical patent/WO2015125695A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2353/02Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers of vinyl aromatic monomers and conjugated dienes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polymer electrolyte membrane useful for a polymer electrolyte fuel cell.
  • Fuel cells have attracted attention as highly efficient power generation systems. Fuel cells are classified into molten carbonate type, solid oxide type, phosphoric acid type, solid polymer type, etc., depending on the type of electrolyte. Of these, a polymer electrolyte membrane is sandwiched between electrodes (anode and cathode), a fuel made of a reducing agent (usually hydrogen or methanol) at the anode, and an oxidant (usually air) at the cathode.
  • Solid polymer fuel cells that generate electricity by supplying power are being considered for application to automotive power supplies, portable equipment power supplies, household cogeneration systems, and the like from the viewpoints of low temperature operability, small size, and light weight.
  • Perfluorocarbon sulfonic acid polymers are often used as the material for polymer electrolyte membranes used in polymer electrolyte fuel cells because of their chemical stability. Environmental load becomes a problem.
  • a polymer electrolyte membrane made of a material not containing fluorine has been demanded.
  • a polymer electrolyte membrane made of polyether ether ketone (PEEK) into which a sulfonic acid group is introduced is known (see Patent Document 1).
  • PEEK polyether ether ketone
  • a polymer electrolyte membrane comprising a block unit comprising a polymer block having an ion conductive group and a flexible polymer block, which comprises a structural unit derived from an aromatic vinyl compound (Patent Document 2). reference).
  • Patent Document 2 a polymer electrolyte membrane is flexible and difficult to break, and the polymer block having the ion conductive group forms an ion conductive channel by microphase separation from the flexible polymer block, and thus has excellent ion conductivity.
  • hot water of the polymer electrolyte membrane (for example, 90 ° C. or higher) Measures to improve durability (hot water resistance) against water, specifically, suppression of elution of polymer electrolyte membranes by hot water, and suppression of voltage drop during long-time operation associated with this are being studied .
  • a polymer electrolyte membrane comprising, as a main component, a block copolymer in which the flexible polymer block is a structural unit derived from a vinyl compound and the flexible polymer block is crosslinked with 1,2-polybutadiene or the like. It is known that the hot water resistance of water increases (see Patent Document 3).
  • an object of the present invention is to provide a polymer electrolyte membrane made of a non-fluorine material, flexible and resistant to cracking, excellent in hot water resistance, and having little increase in membrane resistance during operation when used in a solid polymer fuel cell. It is to provide.
  • the object is A polymer block (A) composed of a structural unit derived from an aromatic vinyl compound and having an ion conductive group (hereinafter simply referred to as “polymer block (A)”) and an unsaturated aliphatic hydrocarbon
  • a block copolymer (Z) comprising an amorphous polymer block (B) (hereinafter simply referred to as “polymer block (B)”) comprising a structural unit and having no ion conductive group,
  • Compound (X) hereinafter simply referred to as “compound (X)” having two or more aromatic rings in which one or more hydrogen atoms are substituted with hydroxyl groups, and a compound represented by the following general formula (1)
  • This is achieved by providing a polymer electrolyte membrane obtained by crosslinking a composition containing Y) (hereinafter simply referred to as “compound (Y)”) after molding.
  • R 1 represents a hydroxyl group, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a carboxyl group
  • R 2 and R 3 each independently represents a hydrogen atom, a hydroxyl group, or a carbon atom having 1 carbon atom.
  • a polymer electrolyte membrane which is made of a non-fluorine material, is flexible and hardly cracked, has excellent hot water resistance, and has little increase in membrane resistance during operation when used in a solid polymer fuel cell. .
  • the polymer electrolyte membrane of the present invention is molded from a composition containing a block copolymer (Z) comprising a polymer block (A) and a polymer block (B), a compound (X) and a compound (Y). Later, a crosslinking treatment is performed.
  • the polymer block (A) and the polymer block (B) form a microphase separation structure.
  • the phase containing the polymer block (A) forms an ion conductive channel, it exhibits good ion conductivity.
  • microphase separation means phase separation in a microscopic sense, and more specifically, means phase separation in which the formed domain size is less than or equal to the wavelength of visible light (3800 to 7800 mm). It shall be.
  • the polymer block (A) is selectively cross-linked, so that the decomposition of the polymer block (A) is suppressed without impairing the flexibility of the polymer electrolyte membrane, It is presumed that the hot water resistance is increased and that the increase in membrane resistance during operation is suppressed when the polymer electrolyte membrane is used in a polymer electrolyte fuel cell.
  • the film thickness of the polymer electrolyte membrane of the present invention is preferably in the range of 4 to 170 ⁇ m, more preferably in the range of 8 to 115 ⁇ m, still more preferably in the range of 10 to 70 ⁇ m, from the viewpoint of mechanical strength, handling properties, and the like. A range of ⁇ 50 ⁇ m is particularly preferred.
  • the film thickness is 4 ⁇ m or more, the mechanical strength and fuel blocking property of the polymer electrolyte membrane are good, and when the film thickness is 170 ⁇ m or less, the ion conductivity of the polymer electrolyte film is good.
  • the polymer electrolyte membrane of the present invention is molded from a composition containing a block copolymer (Z) comprising a polymer block (A) and a polymer block (B), a compound (X) and a compound (Y). It may be a multilayer film including at least one polymer electrolyte layer that is subsequently crosslinked.
  • Block copolymer (Z) The block copolymer (Z) is composed of a structural unit derived from an aromatic vinyl compound, and has a polymer block (A 0 ) (hereinafter simply referred to as “polymer block (A 0 )”) having no ion conductive group. And an ion conductive group introduced into the polymer block (A 0 ) of the block copolymer (Z 0 ) containing the polymer block (B).
  • the number average molecular weight (Mn) of the block copolymer (Z 0 ) is not particularly limited, but is usually preferably in the range of 10,000 to 300,000, more preferably in the range of 15,000 to 250,000, and 40,000 to The range of 200,000 is more preferred, and the range of 70,000 to 180,000 is particularly preferred.
  • Mn of the block copolymer (Z 0 ) is 10,000 or more, particularly 70,000 or more
  • the polymer electrolyte membrane of the present invention has high tensile elongation at break, and is 300,000 or less, particularly 180,000 or less.
  • the said composition which forms the polymer electrolyte membrane of this invention is excellent in a moldability, and becomes advantageous also on manufacture.
  • Mn means the standard polystyrene conversion value measured by the gel permeation chromatography (GPC) method.
  • the ion exchange capacity of the block copolymer (Z) is preferably in the range of 0.4 to 4.5 meq / g, more preferably in the range of 0.8 to 3.2 meq / g, and 1.3 to 3.0 meq / g. Is more preferable, and a range of 1.8 to 2.8 meq / g is particularly preferable.
  • the polymer electrolyte membrane of the present invention has good ion conductivity when the ion exchange capacity is 0.4 meq / g or more, and hardly swells when it is 4.5 meq / g or less.
  • the ion exchange capacity of the block copolymer (Z) can be calculated using an acid value titration method.
  • the block copolymer (Z) may have one or more polymer blocks (A) and polymer blocks (B), respectively.
  • their structures kind of structural unit, degree of polymerization, kind of ion conductive group, introduction ratio, etc.
  • those structures kind of a structural unit, a polymerization degree, etc.
  • the polymer block (A) and the polymer block (B) may be side chains, that is, the block copolymer (Z) used in the present invention includes a graft copolymer.
  • an AB type diblock copolymer (A and B are each a polymer block ( A) represents a polymer block (B), the same applies hereinafter), an ABA type triblock copolymer, a BAB type triblock copolymer, an ABAB type tetrablock.
  • total amount of polymer block (A 0 )) :( total amount of polymer block (B)) is in the range of 95: 5 to 5:95 by mass ratio. More preferably, it is in the range of 75:25 to 15:85, more preferably in the range of 65:35 to 20:80, and particularly preferably in the range of 50:50 to 25:75. preferable.
  • the mass ratio is in the range of 95: 5 to 5:95, particularly in the range of 50:50 to 25:75
  • the polymer electrolyte membrane of the present invention has ion conductivity, mechanical strength, and solid polymer fuel cell. It tends to be excellent in durability (start / stop durability) when wetting and drying are repeated with starting and stopping.
  • the polymer block (A) can be formed by introducing an ion conductive group into the polymer block (A 0 ).
  • the ion conductive group is usually introduced into the aromatic ring of the polymer block (A 0 ).
  • the polymer block (A 0 ) is composed of a structural unit derived from an aromatic vinyl compound, and the aromatic ring of the aromatic vinyl compound is a carbocyclic aromatic ring such as a benzene ring, a naphthalene ring, an anthracene ring, or a pyrene ring. Preferably, there is a benzene ring.
  • Examples of the aromatic vinyl compound that can form the polymer block (A 0 ) include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, 2,3-dimethylstyrene, 2, 4-dimethylstyrene, 2,5-dimethylstyrene, 3,5-dimethylstyrene, 2-methoxystyrene, 3-methoxystyrene, 4-methoxystyrene, vinylbiphenyl, vinylterphenyl, vinylnaphthalene, vinylanthracene, 4-phenoxy Examples include styrene.
  • the hydrogen atom bonded to the ⁇ -position carbon ( ⁇ -carbon) of the aromatic ring may be substituted with another substituent.
  • substituents include methyl groups, ethyl groups, n-propyl groups, isopropyl groups, n-butyl groups, isobutyl groups, sec-butyl groups, tert-butyl groups and other alkyl groups having 1 to 4 carbon atoms; chloromethyl Group, a halogenated alkyl group having 1 to 4 carbon atoms such as a 2-chloroethyl group and a 3-chloroethyl group; or a phenyl group.
  • Aromatic vinyl compounds in which the hydrogen atom bonded to the ⁇ -carbon is substituted with these substituents include ⁇ -methylstyrene, ⁇ -methyl-4-methylstyrene, ⁇ -methyl-2-methylstyrene, ⁇ -methyl Examples include -4-ethylstyrene and 1,1-diphenylethylene.
  • aromatic vinyl compounds that can form the polymer block (A 0 )
  • styrene, ⁇ -methylstyrene, 4-methylstyrene, 4-ethylstyrene, ⁇ -methyl-4-methylstyrene, ⁇ -methyl-2 -Methylstyrene, vinylbiphenyl and 1,1-diphenylethylene are preferred, styrene, ⁇ -methylstyrene, 4-methylstyrene and 1,1-diphenylethylene are more preferred, and styrene and ⁇ -methylstyrene are more preferred.
  • a polymer block (A 0 ) can be formed by polymerizing these aromatic vinyl compounds as monomers and using one kind alone or two or more kinds in combination. Random copolymerization is preferred as the copolymerization form when two or more aromatic vinyl compounds are used in combination.
  • the polymer block (A 0 ) may contain other structural units not derived from one or more aromatic vinyl compounds within a range not impairing the effects of the present invention.
  • the monomer capable of forming such other structural units include butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3.
  • a conjugated diene having 4 to 8 carbon atoms such as butadiene and 1,3-heptadiene; 2 or more carbon atoms such as ethylene, propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-heptene and 1-octene 8 Alkenes;
  • (Meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate;
  • Vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, and vinyl pivalate
  • a vinyl ether such as methyl vinyl ether or isobutyl vinyl ether;
  • the copolymerization form of these other monomers and the above-described aromatic vinyl compound is preferably random copolymerization.
  • These other structural units are preferably 5 mol% or less of the structural units forming the polymer block (A 0 ). That is, it is preferable that 95 mol% or more of the structural units forming the polymer block (A 0 ) is a structural unit derived from an aromatic vinyl compound.
  • the Mn per polymer block (A 0 ) is usually preferably in the range of 1,000 to 100,000, more preferably in the range of 2,000 to 70,000, and further in the range of 4,000 to 50,000.
  • the range of 6,000 to 30,000 is particularly preferable.
  • the polymer electrolyte membrane of the present invention has good ionic conductivity when the Mn is 1,000 or more, particularly 6,000 or more, and good hot water resistance when it is 100,000 or less, particularly 30,000 or less. And the said composition which forms the polymer electrolyte membrane of this invention is excellent in a moldability, and becomes advantageous also in manufacture.
  • the ion conductive group possessed by the polymer block (A 0 ) is preferably a proton conductive group, and —SO 3 M or PO 3 HM (wherein M represents a hydrogen atom, an ammonium ion or an alkali metal ion).
  • M represents a hydrogen atom, an ammonium ion or an alkali metal ion.
  • One or more selected from the sulfonic acid groups, phosphonic acid groups and salts thereof represented are more preferred, and sulfonic acid groups are more preferred.
  • the polymer block (B) is an amorphous polymer block composed of a structural unit derived from an unsaturated aliphatic hydrocarbon and having no ion conductive group.
  • the amorphous property of a polymer block (B) can be confirmed by measuring the dynamic viscoelasticity of a block copolymer (Z), and not having the change of the storage elastic modulus derived from a crystalline olefin polymer.
  • Examples of the unsaturated aliphatic hydrocarbon that can form the polymer block (B) include ethylene, propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-heptene, 1-octene and the like having 2 to 2 carbon atoms.
  • alkenes 7 to 10 carbon cycloalkanes such as vinyl cyclopentane, vinyl cyclohexane, vinyl cycloheptane and vinyl cyclooctane; 7 to 7 carbon atoms such as vinyl cyclopentene, vinyl cyclohexene, vinyl cycloheptene and vinyl cyclooctene 10 vinylcycloalkenes; butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 1,3-heptadiene, etc.
  • cycloalkanes such as vinyl cyclopentane, vinyl cyclohexane, vinyl cycloheptane and vinyl cyclooctane
  • 7 to 7 carbon atoms such as vinyl cyclopentene, vinyl cyclohexene, vinyl cycloheptene
  • Conjugated dienes having 4 to 8 carbon atoms are preferred, alkenes having 4 to 8 carbon atoms and conjugated dienes having 4 to 8 carbon atoms are more preferred, isobutene, butadiene and isoprene are more preferred, and butadiene and isoprene are particularly preferred.
  • unsaturated aliphatic hydrocarbons one type is polymerized alone or in combination of two or more types to form a polymer block (B). Random copolymerization is preferred as the copolymerization form when two or more unsaturated aliphatic hydrocarbons are used in combination.
  • the polymer block (B) is not derived from an unsaturated aliphatic hydrocarbon as long as the effect of the polymer block (B) that gives the block copolymer (Z) flexibility in the use temperature range is not impaired.
  • Other structural units may be included. Examples of monomers that can form such other structural units include aromatic vinyl compounds such as styrene and vinyl naphthalene; halogen-containing vinyl compounds such as vinyl chloride; vinyl acetate, vinyl propionate, vinyl butyrate, and vinyl pivalate.
  • Vinyl ester vinyl ethers such as methyl vinyl ether and isobutyl vinyl ether;
  • the copolymerization form of these other monomers with the unsaturated aliphatic hydrocarbon described above is preferably random copolymerization.
  • These other structural units are preferably 5 mol% or less of the structural units forming the polymer block (B). That is, it is preferable that 95 mol% or more of the structural units forming the polymer block (B) are structural units derived from unsaturated aliphatic hydrocarbons.
  • the unsaturated aliphatic hydrocarbon has a plurality of carbon-carbon double bonds
  • any of them may be used for polymerization.
  • a conjugated diene either 1,2-bond or 1,4-bond It may be.
  • carbon-carbon double bonds usually remain, but from the viewpoint of improving the heat deterioration resistance of the obtained polymer electrolyte membrane, It is preferable to perform a hydrogenation reaction (hereinafter referred to as “hydrogenation reaction”) after polymerizing the coalescence (Z 0 ), and to hydrogenate the carbon-carbon double bond (hereinafter referred to as “hydrogenation”).
  • the hydrogenation rate of such a carbon-carbon double bond (hereinafter referred to as “hydrogenation rate”) is preferably 30 mol% or more, more preferably 50 mol% or more, and even more preferably 95 mol% or more.
  • the polymer block (B) is a saturated hydrocarbon structure
  • introduction of an ion conductive group into the combined block (B) hardly occurs. Therefore, when the hydrogenation reaction of the carbon-carbon double bond remaining in the polymer block (B) after polymerizing the block copolymer (Z 0 ) is carried out before introducing the ion conductive group. desirable.
  • the hydrogenation rate of the carbon-carbon double bond can be calculated by 1 H-NMR measurement.
  • the Mn per polymer block (B) is usually preferably in the range of 5,000 to 250,000, more preferably in the range of 7,000 to 200,000, and 15,000 to 150,000. More preferably, it is in the range of 000, and particularly preferably in the range of 30,000 to 100,000.
  • Mn is 5,000 or more, particularly 30,000 or more
  • the polymer electrolyte membrane of the present invention is particularly excellent in mechanical strength and start / stop durability, and Mn is 250,000 or less, particularly 100,000 or less. If it exists, the said composition which forms the polymer electrolyte membrane of this invention is excellent in a moldability, and becomes advantageous also in manufacture.
  • the block copolymer (Z) is further composed of a structural unit derived from an aromatic vinyl compound and does not have an ion conductive group (hereinafter simply referred to as “polymer block (C)”). May be included).
  • polymer block (C) forms a microphase separation structure with the polymer block (A) and the polymer block (B).
  • the polymer block (C) is preferably composed of a structural unit derived from an aromatic vinyl compound represented by the following general formula (2) because of superiority in production.
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 5 represents an alkyl group having 3 to 8 carbon atoms
  • R 6 and R 7 each independently represents a hydrogen atom or a carbon number. Represents an alkyl group of 3 to 8.
  • the block copolymer (Z 0 ) has ion conductivity.
  • an ion conductive group can be selectively introduced into the polymer block (A 0 ).
  • Examples of the aromatic vinyl compound for forming the structural unit represented by the general formula (2) include 4-propylstyrene, 4-isopropylstyrene, 4-butylstyrene, 4-isobutylstyrene, 4-tert-butylstyrene, Examples include 4-octylstyrene, ⁇ -methyl-4-tert-butylstyrene, ⁇ -methyl-4-isopropylstyrene, and the like.
  • 4-tert-butylstyrene, 4-isopropylstyrene, ⁇ -methyl-4-tert-butyl Styrene and ⁇ -methyl-isopropylstyrene are more preferable, and 4-tert-butylstyrene is more preferable. These may be used alone or in combination of two or more. Random copolymerization is preferred as the copolymerization form when two or more types are used in combination to form the polymer block (C).
  • the polymer block (C) may contain other structural units not derived from one or more aromatic vinyl compounds within a range not impairing the effects of the present invention.
  • monomers that can form such other structural units include butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,4-hexadiene, 2,3-dimethyl-1,3-butadiene, 2 Conjugated diene having 4 to 8 carbon atoms such as ethyl-1,3-butadiene, 1,3-heptadiene; ethylene, propylene, 1-butene, isobutene, 1-pentene, 1-hexene, 1-heptene, 1-octene Alkenes having 2 to 8 carbon atoms such as: (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate; vinyl acetate, vinyl propionate, vinyl but
  • the copolymerization form of these other monomers and the above-described aromatic vinyl compound is preferably random copolymerization.
  • These other structural units are preferably 5 mol% or less of the structural units forming the polymer block (C). That is, it is preferable that 95 mol% or more of the structural units forming the polymer block (C) are structural units derived from an aromatic vinyl compound.
  • the Mn per polymer block (C) is usually preferably in the range of 1,000 to 50,000, more preferably in the range of 1,500 to 30,000, and 2,000 to 20,000. More preferably, it is in the range of 000. If the Mn is 1,000 or more, the polymer electrolyte membrane of the present invention tends to be excellent in mechanical strength. If the Mn is 50,000 or less, the composition for forming the polymer electrolyte membrane of the present invention is molded. Excellent in production and advantageous in production.
  • the block copolymer (Z) used in the present invention contains a polymer block (C)
  • ABC type triblock copolymer (A, B and C are each a polymer block)
  • A) represents a polymer block (B) and a polymer block (C)
  • ABCA type tetrablock copolymer an ABCA type tetrablock copolymer.
  • Polymer BABC type tetrablock copolymer, ABCBC type tetrablock copolymer, ABCBC type tetrablock copolymer, CABB AC type pentablock copolymer, CBABC type pentablock copolymer, ABCBC type pentablock copolymer, ACBAA- C-type pentablock copolymer, ABCBCAC type hexablock copolymer, CABC AC type hexablock copolymer, ACCABCBC type hexablock copolymer, ACCABCBC type heptablock copolymer, A- CBCBCBC type heptablock copolymer, CACBCBCAC type heptablock copolymer, ACACABCBC A-C type octablock copolymer, ACBCCBCCAC type octablock copolymer, ABCBCCABCBC type octablock A copolymer etc.
  • ABC type triblock copolymer ABCA type tetrablock copolymer, and ABC type tetrablock copolymer are used.
  • the content of the polymer block (C) in the block copolymer (Z 0 ) is from 5 to It is preferably in the range of 50% by mass, more preferably in the range of 7-40% by mass, and still more preferably in the range of 10-30% by mass.
  • the content is 5% by mass or more, the hot water resistance of the obtained polymer electrolyte membrane is increased, and when it is 50% by mass or less, the obtained polymer electrolyte membrane tends to be excellent in start / stop durability.
  • the block copolymer (Z) constituting the polymer electrolyte membrane of the present invention is a block copolymer comprising a polymer block (A 0 ) and a polymer block (B) by polymerizing each of the aforementioned monomers. After producing the coalescence (Z 0 ), it can be produced by a method of introducing an ion conductive group into the polymer block (A 0 ).
  • the production method of the block copolymer (Z 0 ) can be selected as appropriate, but a method of polymerizing each monomer described above by a polymerization method selected from a living radical polymerization method, a living anion polymerization method and a living cation polymerization method is preferable. .
  • a polymer block (A 0 ) composed of a structural unit derived from an aromatic vinyl compound and a polymer block (B) composed of a structural unit derived from a conjugated diene As a method for producing a block copolymer (Z 0 ) containing as a component, (1) An aromatic vinyl compound, a conjugated diene, and an aromatic vinyl compound are sequentially anionic polymerized using an anionic polymerization initiator in a cyclohexane solvent at a temperature of 20 to 100 ° C.
  • a method of obtaining a polymer (2) An anionic polymerization initiator is used in a cyclohexane solvent, and an aromatic vinyl compound and a conjugated diene are sequentially anionic polymerized at a temperature of 20 to 100 ° C., and then a coupling agent such as phenyl benzoate is added. To obtain an ABA type block copolymer; (3) An aromatic compound having a concentration of 5 to 50% by mass in a nonpolar solvent using an organolithium compound as an initiator and in the presence of a polar compound having a concentration of 0.1 to 10% by mass at a temperature of ⁇ 30 to 30 ° C.
  • a block copolymer (Z 0 ) comprising a polymer block (A 0 ) composed of a structural unit derived from an aromatic vinyl compound and a polymer block (B) composed of a structural unit derived from isobutene as components.
  • a polymer block (C) can be added as a component of a block copolymer by changing or adding the component made to react in the said anionic polymerization or cationic polymerization as needed.
  • a method for introducing a sulfonic acid group into the block copolymer (Z 0 ) will be described.
  • Introduction of a sulfonic acid group (sulfonation) can be performed by a known method.
  • an organic solvent solution or suspension of the block copolymer (Z 0 ) is prepared, and a sulfonating agent described later is added to the solution or suspension and mixed, or the block copolymer (Z 0 ) is mixed.
  • a method of directly adding a gaseous sulfonating agent can be mentioned.
  • sulfuric acid As the sulfonating agent, sulfuric acid; a mixture system of sulfuric acid and acid anhydride; chlorosulfonic acid; a mixture system of chlorosulfonic acid and trimethylsilyl chloride; sulfur trioxide; a mixture system of sulfur trioxide and triethyl phosphate; Examples thereof include aromatic organic sulfonic acids represented by 4,6-trimethylbenzenesulfonic acid. Among these, a mixture system of sulfuric acid and acid anhydride is preferable.
  • organic solvent to be used examples include halogenated hydrocarbons such as methylene chloride, linear aliphatic hydrocarbons such as hexane, cyclic aliphatic hydrocarbons such as cyclohexane, aromatic compounds having an electron withdrawing group such as nitrobenzene, etc. Can be illustrated.
  • a method for introducing a phosphonic acid group into the block copolymer (Z 0 ) will be described.
  • Introduction (phosphonation) of a phosphonic acid group can be performed by a known method.
  • the aromatic ring of the polymer block (A 0 ) is reacted with halomethyl ether in the presence of aluminum chloride to introduce a halomethyl group, and then reacted with phosphorus trichloride and aluminum chloride to be substituted with a phosphorus derivative, followed by hydrolysis.
  • the introduction rate (sulfonation rate, phosphonation rate, etc.) of the ion conductive group with respect to the structural unit derived from the aromatic vinyl compound of the polymer block (A) is 1 H-NMR. Can be used to calculate.
  • Compound (X) is a compound having in its molecule two or more aromatic rings in which one or more hydrogen atoms are substituted with a hydroxyl group, and is considered to act as a crosslinking agent. Since the compound (X) has two or more of the aromatic rings in the molecule, it is presumed that the compound (X) is selectively present in the phase containing the hydrophilic polymer block (A). Therefore, the hydrophilic polymer block (A) It is thought that hot water resistance is improved without impairing the flexibility of the polymer electrolyte membrane by selectively crosslinking.
  • the aromatic ring is preferably a hydrocarbon aromatic ring such as a benzene ring, a naphthalene ring or an anthracene ring, and more preferably a benzene ring.
  • the aromatic ring is a benzene ring
  • the benzene ring has one or more hydrogen atoms substituted with a hydroxyl group, but when the carbon on the benzene ring to which the hydroxyl group is bonded is the 1-position.
  • At least one of carbons at 2, 4, and 6 positions does not have a substituent, and among these, from the viewpoint of increasing the tensile breaking elongation and tensile breaking strength of the polymer electrolyte membrane, It is more preferable that the carbon has a methyl group.
  • Compounds (X) include bisphenol S, 4,4′-dihydroxybiphenyl-2,2′-disulfonic acid, 4,4′-dihydroxybiphenyl-3,3′-disulfonic acid, 2,2′-dihydroxybiphenyl- 4,4′-disulfonic acid, 5,5′-methylenebis (2-hydroxybenzoic acid), 4,4′-isopropylidenebis (2,6-dichlorophenol), 4,4′-isopropylidenebis (2, 6-dibromophenol), 4,4 '-(9-fluorenylidene) diphenol, bis (2-hydroxyphenyl) methane, 2,2'-biphenol, 4,4'-biphenol, bis (4-hydroxyphenyl) methane Bisphenol A, 4,4′-hexafluoroisopropylidenediphenol, 2,2-bis (4-hydroxy-3-methylphenyl) propyl Lopan, 1,1-bis (4-hydroxy-3-methylphenyl
  • Poly-4-vinylphenol is most preferred from the viewpoint that the voltage drop is reduced when the polymer electrolyte membrane is incorporated in a fuel cell and operated. From the viewpoint of increasing the tensile elongation at break and tensile strength at break, 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, 2,6-bis (2,4-dihydroxybenzyl) Most preferred is a compound selected from -4-methylphenol and 6,6'-bis (2-hydroxy-5-methylbenzyl) -4,4'-dimethyl-2,2'-methylenediphenol.
  • Compound (X) may be used singly or in combination of two or more, but it is preferable to use two or more in combination from the viewpoint of increasing tensile elongation at break and tensile strength at break.
  • the compound (X) is used in combination, it is not particularly limited, but it is preferable that at least one compound having three or more aromatic rings in which one or more hydrogen atoms are substituted with a hydroxyl group in the molecule is used, It is more preferable that two or more types are used.
  • compound (X) examples include poly-4-vinylphenol and 2,6-bis (2-hydroxy-5-methylbenzyl) -4-methylphenol, poly-4-vinylphenol and 2 , 6-Bis (2,4-dihydroxybenzyl) -4-methylphenol is preferred.
  • the amount of the compound (X) used is preferably in the range of 0.01 to 25 parts by weight, preferably 0.2 to 20 parts per 100 parts by weight of the block copolymer (Z), from the viewpoint of hot water resistance of the polymer electrolyte membrane.
  • the range of parts by mass is more preferred, the range of 0.3 to 15 parts by mass is more preferred, and the range of 1.0 to 12 parts by mass is particularly preferred.
  • the number of moles of the aromatic ring in which one or more hydrogen atoms of the compound (X) are substituted with a hydroxyl group is the ion of the block copolymer (Z).
  • the range of 0.1 to 70 mol parts is preferable with respect to 100 mol parts of the conductive group, the range of 0.5 to 60 mol parts is more preferable, the range of 0.8 to 50 mol parts is more preferable, and 3 to A range of 38 mole parts is particularly preferred.
  • the compound (Y) is a compound represented by the following general formula (1).
  • R 1 represents a hydroxyl group, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a carboxyl group
  • R 2 and R 3 each independently represents a hydrogen atom, a hydroxyl group, or a carbon atom having 1 carbon atom.
  • Compound (Y) is considered to have a function of enhancing the oxidation stability of the block copolymer (Z). Since the compound (Y) has the above structure, it is selectively present in the phase containing the hydrophilic polymer block (A), and the operation when the polymer electrolyte membrane is used for a polymer electrolyte fuel cell is performed. It is considered that an increase in membrane resistance can be suppressed by suppressing deterioration due to oxidation of the polymer block (A) therein.
  • the compound (Y) include o-cresol, m-cresol, p-cresol, 2,3-dimethylphenol, 2,4-dimethylphenol, 2,5-dimethylphenol, 3,4-dimethylphenol, 3,5-dimethylphenol, 2,4,6-trimethylphenol, 4-ethylphenol, 4-isopropylphenol, 4-tert-butylphenol, 6-tert-butyl-o-cresol, 2-tert-butyl-p- Cresol, 4-hydroxy-3-tert-butylanisole, 6-tert-butyl-2,4-xylenol, 4-tert-butyl-2,6-diisopropylphenol, 2,6-ditert-butyl-p-cresol 2,6-ditert-butyl-4-ethylphenol, 2,6-dit rt-butyl-4-methoxyphenol, 4-sec-butyl-2,6-ditert-butylphenol, 2,4,6-tri-tert-tert
  • the amount of compound (Y) used is a block copolymer (from the viewpoint of suppressing an increase in membrane resistance during operation when the polymer electrolyte membrane is used in a polymer electrolyte fuel cell and increasing ionic conductivity.
  • Z A range of 0.01 to 20 parts by mass is preferable with respect to 100 parts by mass, a range of 0.02 to 5 parts by mass is more preferable, a range of 0.03 to 3 parts by mass is further preferable, and 0.05 to A range of 1 part by mass is particularly preferred.
  • a polymer electrolyte membrane is prepared by preparing a fluid composition containing a block copolymer (Z), a compound (X), a compound (Y) and a solvent, which are polymer electrolytes, and applying the fluid composition to a substrate or the like. After coating, the solvent is removed to obtain a molded body comprising a composition containing the block copolymer (Z), the compound (X) and the compound (Y), and obtained by crosslinking the molded body. It is done.
  • Solvents that can be used in the fluid composition include halogenated hydrocarbons such as methylene chloride; aromatic hydrocarbons such as toluene, xylene, and benzene; linear aliphatic hydrocarbons such as hexane, heptane, and octane; cyclohexane And cycloaliphatic hydrocarbons such as ether; ethers such as tetrahydrofuran, alcohols such as methanol, ethanol, propanol, isopropanol, butanol and isobutanol.
  • halogenated hydrocarbons such as methylene chloride
  • aromatic hydrocarbons such as toluene, xylene, and benzene
  • linear aliphatic hydrocarbons such as hexane, heptane, and octane
  • cyclohexane And cycloaliphatic hydrocarbons such as ether
  • ethers such as t
  • Preferred mixed solvents include a mixed solvent of toluene and isobutanol, a mixed solvent of xylene and isobutanol, a mixed solvent of toluene and isopropanol, a mixed solvent of cyclohexane and isopropanol, a mixed solvent of cyclohexane and isobutanol, tetrahydrofuran solvent, tetrahydrofuran Mixed solvent of methanol and methanol, mixed solvent of toluene, isobutanol and octane, mixed solvent of toluene, isopropanol and octane, mixed solvent of toluene and isobutanol, mixed solvent of xylene and isobutanol, mixed solvent of xylene and isobutanobut
  • the fluid composition is prepared by dissolving or dispersing the block copolymer (Z), the compound (X) and the compound (Y) in a solvent.
  • various stabilizers such as softeners, sulfur stabilizers, phosphorus stabilizers, inorganic fillers, light stabilizers, antistatic agents, mold release agents, difficulty, within the range not impairing the effects of the present invention.
  • Various additives such as a flame retardant, a foaming agent, a pigment, a dye, a bleaching agent, and carbon fiber may be dissolved or dispersed together.
  • the content of the block copolymer (Z) in the component (solid content) other than the solvent in the fluid composition is 50 to 99.98% by mass from the viewpoint of ionic conductivity of the obtained polymer electrolyte membrane. It is preferably 70 to 98% by mass, more preferably 85 to 95% by mass.
  • Stabilizers that can be used in the flowable composition include pentaerythrityl tetrakis (3-lauryl thiopropionate), distearyl 3,3′-thiodipropionate, dilauryl 3,3′-thiodipropioate. And sulfur stabilizers such as dimyristyl 3,3′-thiodipropionate; tris (nonylphenyl) phosphite, tris (2,4-ditert-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, etc. And phosphorus stabilizers. These may be used alone or in combination of two or more.
  • inorganic filler examples include talc, calcium carbonate, silica, glass fiber, mica, kaolin, titanium oxide, montmorillonite, and alumina. These may be used alone or in combination of two or more.
  • the concentration of the block copolymer (Z) in the fluid composition can be appropriately selected depending on the molecular weight, composition, and ion exchange group capacity, but is preferably 5 to 20% by mass from the viewpoint of productivity. .
  • the fluid composition is usually coated on a smooth substrate made of polyester (PET, PEN, etc.), glass or the like using a coater, applicator or the like.
  • a smooth substrate made of polyester (PET, PEN, etc.), glass or the like using a coater, applicator or the like.
  • the fluid composition may be coated on a porous substrate (porous substrate) by a dip nip method, a method using a coater, an applicator, or the like.
  • the porous substrate is usually impregnated with at least a part of the fluid composition.
  • the porous substrate impregnated with at least a part of the fluid composition functions as a reinforcing material by constituting a part of the polymer electrolyte membrane after crosslinking.
  • a fibrous base material such as a woven fabric or a non-woven fabric, a film-like base material having fine through holes, or the like can be used.
  • the film-like substrate include a fuel cell pore filling membrane.
  • the porous substrate is preferably a fibrous base material, more preferably a non-woven fabric.
  • the fibers constituting the fibrous base material include aramid fibers, glass fibers, cellulose fibers, nylon fibers, vinylon fibers, polyester fibers, polyolefin fibers, and rayon fibers, and wholly aromatic polyesters from the viewpoint of strength. Fibers and aramid fibers are more preferable, and wholly aromatic liquid crystal polyester fibers are more preferable.
  • the fluid composition After the fluid composition is applied to a substrate or the like, it can be formed into a film by removing the solvent.
  • the temperature at which the solvent is removed can be arbitrarily selected as long as the block copolymer (Z) is not decomposed, and a plurality of temperatures may be arbitrarily combined.
  • the removal of the solvent can be performed under ventilation conditions, vacuum conditions, or the like, and these may be combined arbitrarily. Specifically, the solvent is removed by drying at 60 to 120 ° C. for 4 minutes or longer in a hot air dryer; the solvent is removed by drying at 120 to 140 ° C. for 2 to 4 minutes in a hot air dryer. Method: Pre-drying at 25 ° C. for 1 to 3 hours, followed by drying in a hot air dryer at 80 to 120 ° C.
  • the solvent is removed by drying in a hot air dryer at 60 to 120 ° C. over 4 minutes; at 25 ° C. for 1 to 3 hours, A method of pre-drying and then drying in a hot air dryer at about 80-120 ° C. for 5-10 minutes; after pre-drying at 25 ° C. for 1-3 hours, under an atmosphere of 25-40 ° C.
  • a method of drying for 1 to 12 hours under a reduced pressure condition of 1.3 kPa or less is preferably used.
  • the polymer electrolyte membrane is a multilayer film
  • the solvent is removed to form the first layer, and another polymer is further formed on the first layer.
  • a fluid composition containing an electrolyte is applied and the solvent is removed to form a second layer.
  • the third and subsequent layers may be formed.
  • the produced polymer electrolyte membranes may be bonded to form a multilayer film.
  • the polymer electrolyte membrane of the present invention can be formed by coating the fluid composition on a substrate and subjecting the membrane-like molded product obtained by removing the solvent to a crosslinking treatment.
  • a crosslinking treatment method heating, irradiation with active energy rays such as an electron beam, and the like can be suitably employed.
  • the crosslinking treatment by heating or active energy ray irradiation may be performed simultaneously with the removal of the solvent or after the removal of the solvent.
  • heating or active energy ray irradiation may be further performed.
  • the heating temperature is preferably 50 to 250 ° C, more preferably 60 to 200 ° C, further preferably 70 to 180 ° C, and particularly preferably 100 to 150 ° C.
  • the heating time is preferably 0.1 to 400 hours, more preferably 0.2 to 200 hours, further preferably 0.4 to 100 hours, and particularly preferably 0.5 to 30 hours. Heating can be performed in the air, in a nitrogen atmosphere, or the like, and is preferably performed in a nitrogen atmosphere.
  • the active energy irradiation for example, when crosslinking is performed with an electron beam, the acceleration voltage is preferably in the range of 50 to 250 kV, and the dose is preferably in the range of 100 to 800 kGy.
  • the gel fraction of the polymer electrolyte membrane can be measured by the method described in Examples below, and is preferably 1% or more, more preferably 20% or more, further preferably 50% or more, and particularly preferably 80% or more. If the gel fraction is 80% or more, the hot water resistance tends to be particularly good.
  • the crosslink density of the polymer electrolyte membrane can be calculated by the method described in Examples below, and is preferably in the range of 0.1 ⁇ 10 ⁇ 5 to 100 ⁇ 10 ⁇ 5 mol / ml, and 0.5 ⁇ 10 ⁇ 5 to 50
  • the range of ⁇ 10 ⁇ 5 mol / ml is more preferable, the range of 1 ⁇ 10 ⁇ 5 to 40 ⁇ 10 ⁇ 5 mol / ml is more preferable, and the range of 2 ⁇ 10 ⁇ 5 to 30 ⁇ 10 ⁇ 5 mol / ml is more preferable.
  • Particularly preferred is a range of 3 ⁇ 10 ⁇ 5 to 15 ⁇ 10 ⁇ 5 mol / ml.
  • the crosslinking density is 3 ⁇ 10 ⁇ 5 mol / ml or more, the hot water resistance tends to be good, and if it is 15 ⁇ 10 ⁇ 5 mol / ml or less, the tensile elongation at break after crosslinking tends to improve. Thus, the start / stop durability tends to be good.
  • the polymer electrolyte membrane When the polymer electrolyte membrane is formed on a smooth substrate made of polyester (PET, PEN, etc.), glass or the like, the polymer electrolyte membrane is usually peeled from the substrate. In the case where a polymer electrolyte membrane is formed on a porous substrate and the porous substrate is used as a part of the polymer electrolyte membrane, peeling is not necessary.
  • Mn was measured by the GPC method under the following conditions and calculated in terms of standard polystyrene.
  • Device manufactured by Tosoh Corporation, trade name: HLC-8220GPC Eluent: Tetrahydrofuran
  • the resulting molded body was heated at a rate of temperature increase of 3 ° C./min in the tension mode (frequency: 11 Hz). The temperature was raised from ⁇ 80 ° C. to 250 ° C., and the storage elastic modulus (E ′), loss elastic modulus (E ′′), and loss tangent (tan ⁇ ) were measured. Based on the fact that there was no change in storage modulus at 80 to 100 ° C. derived from the crystallized olefin polymer, the amorphous nature of the polymer block (B) was judged. As a result, regarding the block copolymer (Z-1) and the block copolymer (Z-2), the polymer block (B) was amorphous.
  • the resulting block copolymer had an Mn of 130,000, a 1,4-bond content of the polyisoprene block of 93.7%, a content of structural units derived from styrene of 35.6% by mass, 4-tert- The content rate of the structural unit derived from butylstyrene was 24.8 mass%.
  • a cyclohexane solution of the above block copolymer is prepared and placed in a pressure vessel that is purged with nitrogen. Using a Ni / Al Ziegler catalyst, a hydrogenation reaction is performed at 0.5 to 1 MPa at 70 ° C. under hydrogen pressure for 18 hours.
  • Block copolymerization [polystyrene-b-poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) -b-hydrogenated polyisoprene- b-poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter “block copolymerization”) (Referred to as the body (Z 0 -1) ”).
  • block copolymerization [polystyrene-b-poly (4-tert-butylstyrene) -b-polystyrene-b-poly (4-tert-butylstyrene) (hereinafter “block copolymerization”) (Referred to as the body (Z 0 -1) ”).
  • block copolymer (Z) was obtained (hereinafter referred to as “block copolymer (Z-1)”).
  • block copolymer (Z-1) the ratio of the sulfonic acid group to the structural unit derived from styrene (sulfonation rate) was 100 mol%, and the ion exchange capacity was 2.6 meq / g.
  • 4-tert-butylstyrene (14.3 ml), isoprene (198 ml), 4-tert-butylstyrene (14.3 ml) and styrene (49.5 ml) were sequentially added and polymerized to obtain polystyrene-b-poly (4-tert-butylstyrene)- b-Polyisoprene-b-poly (4-tert-butylstyrene) -b-polystyrene was obtained.
  • the resulting block copolymer had Mn of 75,300, the polyisoprene block had a 1,4-bond content of 94.0%, the content of structural units derived from styrene was 35.0% by mass, 4-tert- The content of the structural unit derived from butylstyrene was 11.0% by mass.
  • a cyclohexane solution of the above block copolymer is prepared and placed in a pressure vessel that is purged with nitrogen. Using a Ni / Al Ziegler catalyst, a hydrogenation reaction is performed at 0.5 to 1 MPa at 70 ° C. under hydrogen pressure for 18 hours.
  • Block copolymer (Z 0 ) [polystyrene-b-poly (4-tert-butylstyrene) -b-hydrogenated polyisoprene-b-poly (4-tert-butylstyrene) -b-polystyrene ( Hereinafter referred to as “block copolymer (Z 0 -2)”).
  • block copolymer (Z 0 -2) The hydrogenation rate of the hydrogenated polyisoprene block of the obtained block copolymer (Z 0 -2) was 99% or more.
  • Block copolymer (Z-2) a block copolymer (hereinafter “ Block copolymer (Z-2) ”).
  • the ratio of the sulfonic acid group to the structural unit derived from styrene (sulfonation rate) was 99 mol%, and the ion exchange capacity was 2.6 meq / g.
  • Example 1 (Production of polymer electrolyte membrane) A 10% by weight toluene / isobutanol / octane (mass ratio 3/3/4) solution of the block copolymer (Z-1) obtained in Production Example 1 was prepared, and then the compound (X) was poly-4.
  • Example 2 A molded body having a thickness of 20 ⁇ m was obtained in the same manner as in Example 1 except that vanillic acid was added so that the mass ratio of block copolymer (Z-1) / vanillic acid was 100/5. The obtained molded body was crosslinked by heat treatment for 1 hour under a nitrogen stream at 140 ° C. to produce a polymer electrolyte membrane of the present invention.
  • Example 3 (Production of polymer electrolyte membrane) Instead of vanillic acid, 2,6-ditert-butyl-p-cresol (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the compound (Y), and the block copolymer (Z-1) / 2,6-ditert A molded body having a thickness of 20 ⁇ m was obtained in the same manner as in Example 1 except that the addition was performed so that the mass ratio of -butyl-p-cresol was 100 / 0.01. The obtained molded body was crosslinked by heat treatment for 1 hour under a nitrogen stream at 140 ° C. to produce a polymer electrolyte membrane of the present invention.
  • Example 4 (Production of polymer electrolyte membrane) Instead of vanillic acid, 2,6-ditert-butyl-p-cresol (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the compound (Y), and the block copolymer (Z-1) / 2,6-ditert A molded body having a thickness of 20 ⁇ m was obtained in the same manner as in Example 1 except that the addition was performed so that the mass ratio of -butyl-p-cresol was 100 / 0.05. The obtained molded body was crosslinked by heat treatment for 1 hour under a nitrogen stream at 140 ° C. to produce a polymer electrolyte membrane of the present invention.
  • Example 5 (Production of polymer electrolyte membrane) Instead of vanillic acid, 2,6-ditert-butyl-p-cresol (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the compound (Y), and the block copolymer (Z-1) / 2,6-ditert A molded body having a thickness of 20 ⁇ m was obtained in the same manner as in Example 1 except that the addition was performed so that the mass ratio of -butyl-p-cresol was 100/1. The obtained molded body was crosslinked by heat treatment for 1 hour under a nitrogen stream at 140 ° C. to produce a polymer electrolyte membrane of the present invention.
  • Example 6 (Production of polymer electrolyte membrane) After preparing a 12% by mass toluene / isobutanol (mass ratio 77/23) solution of the block copolymer (Z-1) obtained in Production Example 1, poly-4-vinylphenol (as compound (X)) was prepared.
  • Example 7 (Production of polymer electrolyte membrane) Instead of vanillic acid, 3,5-ditert-butyl-4-hydroxybenzoic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) as a compound (Y) is used as a block copolymer (Z-1) / 3,5- A molded product having a thickness of 19 ⁇ m was obtained in the same manner as in Example 1 except that ditert-butyl-4-hydroxybenzoic acid was added so that the mass ratio was 100/5. The obtained molded body was crosslinked by heat treatment for 1 hour under a nitrogen stream at 140 ° C. to produce a polymer electrolyte membrane of the present invention.
  • the flowable composition was coated on a release-treated PET film (trade name: MRF75, manufactured by Mitsubishi Plastics Co., Ltd.) at a thickness of about 350 ⁇ m, and heated at 100 ° C. for 6 minutes with a hot air dryer. By drying, a molded body having a thickness of 19 ⁇ m was obtained. The obtained molded body was crosslinked by heating for 30 minutes under a nitrogen stream at 140 ° C., and a polymer electrolyte membrane of Reference Example 1 was produced.
  • a release-treated PET film trade name: MRF75, manufactured by Mitsubishi Plastics Co., Ltd.
  • Example 8 (Production of polymer electrolyte membrane) After preparing a 14% by mass toluene / isobutanol (mass ratio 77/23) solution of the block copolymer (Z-1) obtained in Production Example 1, 2,6-bis (2 -Hydroxy-5-methylbenzyl) -4-methylphenol (manufactured by Asahi Organic Materials Co., Ltd.) is converted into a block copolymer (Z-1) / 2,6-bis (2-hydroxy-5-methylbenzyl).
  • Example 9 (Production of polymer electrolyte membrane) A 14.5% by mass toluene / isobutanol (mass ratio 7/3) solution of the block copolymer (Z-2) obtained in Production Example 2 was prepared, and then 2,6-bis (compound) was obtained as compound (X). (2-Hydroxy-5-methylbenzyl) -4-methylphenol (Asahi Organic Materials Co., Ltd.) was converted into a block copolymer (Z-2) / 2,6-bis (2-hydroxy-5-methyl).
  • Benzyl) -4-methylphenol was added so that the mass ratio was 100 / 4.5
  • 2,6-ditert-butyl-p-cresol manufactured by Tokyo Chemical Industry Co., Ltd.
  • the block copolymer (Z-2) / 2,6-ditert-butyl-p-cresol was added so that the mass ratio was 100/1 to prepare a fluid composition.
  • the flowable composition was applied to a release-treated PET film (trade name: MRF75, manufactured by Mitsubishi Resin Co., Ltd.) with a thickness of about 250 ⁇ m, and dried at 100 ° C. for 30 minutes with a hot air dryer. As a result, a molded body having a thickness of 20 ⁇ m was obtained.
  • the obtained molded body was crosslinked by heat treatment under a nitrogen stream at 120 ° C. for 5 hours to produce a polymer electrolyte membrane of the present invention.
  • Example 10 (Production of polymer electrolyte membrane) A 10% by mass toluene / isobutanol / octane (mass ratio 3/3/4) solution of the block copolymer (Z-2) obtained in Production Example 2 was prepared, and then 2,6 as compound (X). -Bis (2-hydroxy-5-methylbenzyl) -4-methylphenol (produced by Asahi Organic Materials Co., Ltd.) was converted into a block copolymer (Z-2) / 2,6-bis (2-hydroxy-5).
  • the flowable composition was applied on a PET film (Mitsubishi Resin Co., Ltd., trade name: MRF75) having been subjected to a release treatment to a thickness of about 175 ⁇ m, and then a non-woven fabric (manufactured by Klarek Laurex Co., Ltd.) VECULUS (registered trademark), average fiber diameter of 7 ⁇ m, basis weight of 3 g / cm 2 , porosity of 76.2%, thickness of 9 ⁇ m) are laminated in parallel with the coated surface so as not to cause wrinkles from above, After filling the fluid composition, it was dried at 100 ° C. for 6 minutes in a hot air dryer.
  • the above flowable composition was further coated at a thickness of about 175 ⁇ m, and dried at 100 ° C. for 30 minutes with a hot air drier to obtain the block copolymer (Z-2) and the compound (X).
  • a polymer electrolyte composed of a molded body of the contained composition and a 20 ⁇ m thick joined body composed of a nonwoven fabric were obtained.
  • the obtained joined body was heat-treated at 120 ° C. under a nitrogen stream for 5 hours to crosslink the molded body, thereby producing a polymer electrolyte membrane of the present invention.
  • the flowable composition was applied to a release-treated PET film (trade name: MRF75, manufactured by Mitsubishi Resin Co., Ltd.) with a thickness of about 250 ⁇ m, and dried at 100 ° C. for 30 minutes with a hot air dryer. As a result, a molded body having a thickness of 20 ⁇ m was obtained. The obtained molded body was crosslinked by heat treatment under a nitrogen stream at 120 ° C. for 3 hours to prepare a polymer electrolyte membrane of Reference Example 2.
  • a release-treated PET film trade name: MRF75, manufactured by Mitsubishi Resin Co., Ltd.
  • the fluid composition was applied to a release-treated PET film (trade name: MRF75, manufactured by Mitsubishi Resin Co., Ltd.) with a thickness of about 450 ⁇ m, and dried at 100 ° C. for 30 minutes with a hot air dryer. As a result, a molded body having a thickness of 19 ⁇ m was obtained. The obtained molded body was crosslinked by heat treatment under a nitrogen stream at 120 ° C. for 3 hours to prepare a polymer electrolyte membrane of Reference Example 3.
  • a release-treated PET film trade name: MRF75, manufactured by Mitsubishi Resin Co., Ltd.
  • a cell was produced.
  • the produced evaluation cell was connected to a gas supply hose, drain hose, heater power supply, thermocouple, impedance analyzer (manufactured by NF Circuit Design Block), and power generation characteristic analyzer (manufactured by NF Circuit Design Block).
  • a fuel cell for evaluation was assembled by connecting a load current control terminal and a voltage detection terminal.
  • the tensile break strength and tensile break elongation of the obtained polymer electrolyte membrane were measured by the following methods.
  • a dumbbell-shaped test piece is cut out from the polymer electrolyte membrane, adjusted to humidity at 25 ° C. and a relative humidity of 40%, and set in a tensile tester (5566 type manufactured by Instron Japan Co., Ltd.).
  • % Tensile breaking strength and tensile breaking elongation were measured under the conditions of a tensile speed of 500 mm / min.
  • the polymer electrolyte membrane of the present invention is excellent in hot water resistance and suppresses an increase in membrane resistance during operation when used in a polymer electrolyte fuel cell.
  • the amount of the compound (Y) added is 0.02 to 5 parts by mass with respect to 100 parts by mass of the block copolymer (Z)
  • the increase in film resistance is particularly low.
  • the tensile breaking strength is particularly excellent.
  • the polymer electrolyte membrane of the present invention is made of a non-fluorine material, has a low environmental impact during production and disposal, is flexible, resistant to cracking, has excellent hot water resistance, and is in operation when used in a polymer electrolyte fuel cell. Therefore, it is suitably used as a polymer electrolyte membrane for a polymer electrolyte fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)

Abstract

 芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有する重合体ブロック(A)と、不飽和脂肪族炭化水素に由来する構造単位からなり、イオン伝導性基を有さない非晶性の重合体ブロック(B)とを含むブロック共重合体(Z)、1つ以上の水素原子が水酸基で置換された芳香環を分子中に2つ以上有する化合物(X)、一般式(1)で示される化合物(Y)を含有する組成物を、成形後に架橋処理してなる高分子電解質膜。 (式中、Rは水酸基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基またはカルボキシル基を表し、RおよびRはそれぞれ独立して水素原子、水酸基、炭素数1~4のアルキル基、炭素数1~4のアルケニル基、炭素数1~4のアルコキシ基またはカルボキシル基を表す。)

Description

高分子電解質膜
 本発明は、固体高分子型燃料電池に有用な高分子電解質膜に関する。
 近年、効率の高い発電システムとして燃料電池が注目されている。燃料電池は、電解質の種類によって、溶融炭酸塩型、固体酸化物型、リン酸型、固体高分子型等に分類される。これらのうち、高分子電解質膜を電極(アノードおよびカソード)で挟んだ構造からなり、アノードに還元剤からなる燃料(通常は水素またはメタノール)を、カソードに酸化剤(通常は空気)を、それぞれ供給して発電する固体高分子型燃料電池は、低温作動性、小型軽量化等の観点から、自動車用電源、ポータブル機器電源、家庭用コージェネレーションシステム等への適用が検討されている。
 固体高分子型燃料電池に用いる高分子電解質膜の材料としては、化学的な安定性からパーフルオロカーボンスルホン酸系高分子がしばしば用いられているが、フッ素を含有するため、生産時および廃棄時の環境負荷が課題となる。
 このような事情から近年、フッ素を含有しない材料(非フッ素系材料)からなる高分子電解質膜が求められている。例えば、スルホン酸基を導入したポリエーテルエーテルケトン(PEEK)からなる高分子電解質膜が知られている(特許文献1参照)。かかる高分子電解質膜は耐熱性に優れるものの、硬質で脆いことから、割れやすく実用性に乏しい。
 一方、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有する重合体ブロックおよびフレキシブルな重合体ブロックを含むブロック共重合体からなる高分子電解質膜が知られている(特許文献2参照)。かかる高分子電解質膜は柔軟で割れにくく、上記イオン伝導性基を有する重合体ブロックがフレキシブルな重合体ブロックとミクロ相分離してイオン伝導性チャンネルを形成するため、イオン伝導性に優れる。
 一方、水素を燃料とする固体高分子型燃料電池において、高出力化のために使用温度を上げることが要求されており、かかる要求に応えるため高分子電解質膜の熱水(たとえば90℃以上)に対する耐久性(耐熱水性)の向上、具体的には熱水による高分子電解質膜の溶出の抑制や、これに伴う高温下での長時間の運転における電圧低下を抑制する方策が検討されている。
 例えば、上記フレキシブルな重合体ブロックをビニル系化合物に由来する構造単位として、該フレキシブルな重合体ブロックを1,2-ポリブタジエンなどで架橋したブロック共重合体を主成分とすることで高分子電解質膜の耐熱水性が高まることが知られている(特許文献3参照)。
特開平6-93114号公報 国際公開第2006/070929号 国際公開第2012/043400号
 しかしながら、固体高分子型燃料電池のさらなる高出力化に向けて、なお耐熱水性を改善する余地がある。
 一方、固体高分子型燃料電池の運転に伴う高分子電解質膜の抵抗(膜抵抗)の増加(イオン伝導性の低下)の抑制も求められている。
 したがって、本発明の目的は、非フッ素系材料からなり、柔軟で割れにくく、耐熱水性に優れ、固体高分子型燃料電池に用いた場合に運転中の膜抵抗の増加が少ない高分子電解質膜を提供することにある。
 本発明によれば、上記目的は、
 芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有する重合体ブロック(A)(以下、単に「重合体ブロック(A)」と称する)と、不飽和脂肪族炭化水素に由来する構造単位からなり、イオン伝導性基を有さない非晶性の重合体ブロック(B)(以下、単に「重合体ブロック(B)」と称する)とを含むブロック共重合体(Z)、1つ以上の水素原子が水酸基で置換された芳香環を分子中に2つ以上有する化合物(X)(以下、単に「化合物(X)」と称する)および下記一般式(1)で示される化合物(Y)(以下、単に「化合物(Y)」と称する)を含有する組成物を、成形後に架橋処理してなる高分子電解質膜を提供することで達成される。
Figure JPOXMLDOC01-appb-C000002
(式中、Rは水酸基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基またはカルボキシル基を表し、RおよびRはそれぞれ独立して水素原子、水酸基、炭素数1~4のアルキル基、炭素数1~4のアルケニル基、炭素数1~4のアルコキシ基またはカルボキシル基を表す。)
 本発明によれば、非フッ素系材料からなり、柔軟で割れにくく、耐熱水性に優れ、固体高分子型燃料電池に用いた場合に運転中の膜抵抗の増加が少ない高分子電解質膜を提供できる。
[高分子電解質膜]
 本発明の高分子電解質膜は、重合体ブロック(A)と重合体ブロック(B)とを含むブロック共重合体(Z)、化合物(X)および化合物(Y)を含有する組成物を、成形後に架橋処理してなる。
 本発明の高分子電解質膜において、重合体ブロック(A)および重合体ブロック(B)は、ミクロ相分離構造を形成している。この結果、重合体ブロック(A)を含む相がイオン伝導性チャンネルを形成するので、良好なイオン伝導性を示す。
 なおここで、「ミクロ相分離」とは微視的な意味での相分離を意味し、より詳しくは、形成されるドメインサイズが可視光の波長(3800~7800Å)以下である相分離を意味するものとする。
 ブロック共重合体(Z)、化合物(X)および化合物(Y)を含有する組成物においても、重合体ブロック(A)および重合体ブロック(B)はミクロ相分離構造を形成しており、分子中に水酸基を有する化合物(X)および化合物(Y)は、該ブロック共重合体(Z)に含まれる重合体ブロック(A)が形成する相に選択的に存在すると推定される。このことによって本発明の高分子電解質膜は、重合体ブロック(A)が選択的に架橋することで、高分子電解質膜の柔軟性を損なうことなく重合体ブロック(A)の分解が抑制され、耐熱水性が高まるとともに、該高分子電解質膜を固体高分子型燃料電池に用いた場合における運転中の膜抵抗の上昇が抑制されると推定される。
 本発明の高分子電解質膜の膜厚は、機械的強度、ハンドリング性等の観点から、4~170μmの範囲が好ましく、8~115μmの範囲がより好ましく、10~70μmの範囲がさらに好ましく、12~50μmの範囲が特に好ましい。膜厚が4μm以上であれば、高分子電解質膜の機械的強度や燃料の遮断性が良好であり、膜厚が170μm以下であれば、高分子電解質膜のイオン伝導性が良好である。
 本発明の高分子電解質膜は、重合体ブロック(A)と重合体ブロック(B)とを含むブロック共重合体(Z)、化合物(X)および化合物(Y)を含有する組成物を、成形後に架橋処理してなる少なくとも1層の高分子電解質層を含む複層膜であってもよい。
(ブロック共重合体(Z))
 ブロック共重合体(Z)は、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有さない重合体ブロック(A)(以下、単に「重合体ブロック(A)」と称する)と重合体ブロック(B)とを含むブロック共重合体(Z)の、重合体ブロック(A)にイオン伝導性基を導入することで得られる。
 ブロック共重合体(Z)の数平均分子量(Mn)は特に制限されないが通常10,000~300,000の範囲が好ましく、15,000~250,000の範囲がより好ましく、40,000~200,000の範囲がさらに好ましく、70,000~180,000の範囲が特に好ましい。ブロック共重合体(Z)のMnが10,000以上、特に70,000以上であると、本発明の高分子電解質膜の引張破断伸び性能が高く、300,000以下、特に180,000以下であると、本発明の高分子電解質膜を形成する上記組成物は成形性に優れ、製造上も有利になる。なお、本明細書中においてMnは、ゲルパーミエーションクロマトグラフィー(GPC)法により測定された標準ポリスチレン換算値を意味する。
 ブロック共重合体(Z)のイオン交換容量は0.4~4.5meq/gの範囲が好ましく、0.8~3.2meq/gの範囲がより好ましく、1.3~3.0meq/gの範囲がさらに好ましく、1.8~2.8meq/gの範囲が特に好ましい。本発明の高分子電解質膜は、かかるイオン交換容量が0.4meq/g以上であることでイオン伝導性が良好であり、4.5meq/g以下であることで膨潤しにくい。ブロック共重合体(Z)のイオン交換容量は、酸価滴定法を用いて算出できる。
 また、ブロック共重合体(Z)は、重合体ブロック(A)および重合体ブロック(B)を、それぞれ1つ有していてもよいし、複数有していてもよい。重合体ブロック(A)を複数有する場合、それらの構造(構造単位の種類、重合度、イオン伝導性基の種類や導入割合等)は、互いに同じであってもよく、異なっていてもよい。また、重合体ブロック(B)を複数有する場合、それらの構造(構造単位の種類、重合度等)は、互いに同じであってもよく、異なっていてもよい。
 ブロック共重合体(Z)における重合体ブロック(A)および重合体ブロック(B)の結合配列に特に制限はない。なお、重合体ブロック(A)および重合体ブロック(B)は側鎖であってもよく、すなわち本発明で用いるブロック共重合体(Z)はグラフト共重合体を包含する。
 当該ブロック共重合体(Z)における、重合体ブロック(A)および重合体ブロック(B)の結合配列の例として、A-B型ジブロック共重合体(A、Bはそれぞれ、重合体ブロック(A)、重合体ブロック(B)を表す。以下同様)、A-B-A型トリブロック共重合体、B-A-B型トリブロック共重合体、A-B-A-B型テトラブロック共重合体、A-B-A-B-A型ペンタブロック共重合体、B-A-B-A-B型ペンタブロック共重合体、(A-B)D型星形共重合体(Dはカップリング剤残基、nは2以上の整数を表す。以下、同様)、(B-A)D型星形共重合体等が挙げられ、機械的強度、イオン伝導性の観点から、A-B-A型トリブロック共重合体、A-B-A-B-A型ペンタブロック共重合体、(A-B)D型星形共重合体が好ましく、A-B-A型トリブロック共重合体がより好ましい。本発明の高分子電解質膜においては、これらのブロック共重合体(Z)は、1種を単独で用いても、2種以上を併用してもよい。
 ブロック共重合体(Z)においては、(重合体ブロック(A)の合計量):(重合体ブロック(B)の合計量)は質量比で95:5~5:95の範囲であるのが好ましく、75:25~15:85の範囲であるのがより好ましく、65:35~20:80の範囲であるのがさらに好ましく、50:50~25:75の範囲であるのが特に好ましい。質量比が95:5~5:95の範囲、特に50:50~25:75の範囲であれば、本発明の高分子電解質膜はイオン伝導性、機械的強度および固体高分子型燃料電池の起動と停止に伴って湿潤と乾燥を繰り返した場合の耐久性(起動停止耐久性)に優れる傾向となる。
<重合体ブロック(A)>
 重合体ブロック(A)は、重合体ブロック(A)にイオン伝導性基を導入することで形成できる。イオン伝導性基は通常重合体ブロック(A)の芳香環に導入する。
 重合体ブロック(A)は芳香族ビニル化合物に由来する構造単位からなり、かかる芳香族ビニル化合物が有する芳香環は、ベンゼン環、ナフタレン環、アントラセン環、ピレン環等の炭素環式芳香環であるのが好ましく、ベンゼン環がより好ましい。
 前記重合体ブロック(A)を形成できる芳香族ビニル化合物としては、例えばスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-エチルスチレン、2,3-ジメチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,5-ジメチルスチレン、2-メトキシスチレン、3-メトキシスチレン、4-メトキシスチレン、ビニルビフェニル、ビニルターフェニル、ビニルナフタレン、ビニルアントラセン、4-フェノキシスチレン等が挙げられる。
 また、上記の芳香族ビニル化合物のビニル基上の水素原子のうち、芳香環のα-位の炭素(α-炭素)に結合した水素原子が他の置換基で置換されていてもよい。かかる置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等の炭素数1~4のアルキル基;クロロメチル基、2-クロロエチル基、3-クロロエチル基等の炭素数1~4のハロゲン化アルキル基;またはフェニル基等が挙げられる。α-炭素に結合した水素原子がこれらの置換基で置換された芳香族ビニル化合物としては、α-メチルスチレン、α-メチル-4-メチルスチレン、α-メチル-2-メチルスチレン、α-メチル-4-エチルスチレン、1,1-ジフェニルエチレン等が挙げられる。
 上記した重合体ブロック(A)を形成できる芳香族ビニル化合物のうち、スチレン、α-メチルスチレン、4-メチルスチレン、4-エチルスチレン、α-メチル-4-メチルスチレン、α-メチル-2-メチルスチレン、ビニルビフェニルおよび1,1-ジフェニルエチレンが好ましく、スチレン、α-メチルスチレン、4-メチルスチレンおよび1,1-ジフェニルエチレンがより好ましく、スチレンおよびα-メチルスチレンがさらに好ましい。
 これら芳香族ビニル化合物を単量体として、1種を単独で、または2種以上を併用して重合することで重合体ブロック(A)を形成できる。2種以上の芳香族ビニル化合物を併用する場合の共重合形態はランダム共重合が好ましい。
 本発明において重合体ブロック(A)は、本発明の効果を損なわない範囲内で1種または2種以上の芳香族ビニル化合物に由来しない他の構造単位を含んでいてもよい。かかる他の構造単位を形成できる単量体としては、例えばブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン等の炭素数4~8の共役ジエン;エチレン、プロピレン、1-ブテン、イソブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等の炭素数2~8のアルケン;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等のビニルエステル;メチルビニルエーテル、イソブチルビニルエーテル等のビニルエーテルが挙げられる。この場合、これら他の単量体と、前述した芳香族ビニル化合物との共重合形態はランダム共重合が好ましい。これら他の構造単位は、重合体ブロック(A)を形成している構造単位の5モル%以下であることが好ましい。すなわち、重合体ブロック(A)を形成している構造単位のうち、95モル%以上が芳香族ビニル化合物に由来する構造単位であることが好ましい。
 重合体ブロック(A)1つあたりのMnは通常1,000~100,000の範囲が好ましく、2,000~70,000の範囲がより好ましく、4,000~50,000の範囲がさらに好ましく、6,000~30,000の範囲が特に好ましい。本発明の高分子電解質膜は、かかるMnが1,000以上、特に6,000以上であればイオン伝導性が良好となり、100,000以下、特に30,000以下であれば耐熱水性が良好となり、且つ本発明の高分子電解質膜を形成する上記組成物は成形性に優れ、製造上も有利になる。
 重合体ブロック(A)の有するイオン伝導性基としては、プロトン伝導性基が好ましく、-SOMまたはPOHM(式中、Mは水素原子、アンモニウムイオンまたはアルカリ金属イオンを表す)で表されるスルホン酸基、ホスホン酸基およびそれらの塩から選ばれる1種以上がより好ましく、スルホン酸基がさらに好ましい。
<重合体ブロック(B)>
 重合体ブロック(B)は、不飽和脂肪族炭化水素に由来する構造単位からなり、イオン伝導性基を有さない非晶性の重合体ブロックである。なお、重合体ブロック(B)の非晶性は、ブロック共重合体(Z)の動的粘弾性を測定して、結晶性オレフィン重合体由来の貯蔵弾性率の変化がないことで確認できる。
 上記重合体ブロック(B)を形成できる不飽和脂肪族炭化水素としては、エチレン、プロピレン、1-ブテン、イソブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等の炭素数2~8のアルケン;ビニルシクロペンタン、ビニルシクロヘキサン、ビニルシクロヘプタン、ビニルシクロオクタン等の炭素数7~10のビニルシクロアルカン;ビニルシクロペンテン、ビニルシクロヘキセン、ビニルシクロヘプテン、ビニルシクロオクテン等の炭素数7~10のビニルシクロアルケン;ブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン等の炭素数4~8の共役ジエン;シクロペンタジエン、1,3-シクロヘキサジエン等の炭素数5~8の共役シクロアルカジエン;等が挙げられ、エチレン、プロピレン、1-ブテン、イソブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等の炭素数2~8のアルケン;ブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン等の炭素数4~8の共役ジエンが好ましく、炭素数4~8のアルケンおよび炭素数4~8の共役ジエンがより好ましく、イソブテン、ブタジエンおよびイソプレンがさらに好ましく、ブタジエンおよびイソプレンが特に好ましい。これら不飽和脂肪族炭化水素を単量体として、1種を単独で、または2種以上を併用して重合して重合体ブロック(B)を形成する。2種以上の不飽和脂肪族炭化水素を併用する場合の共重合形態はランダム共重合が好ましい。
 また、重合体ブロック(B)は、使用温度領域においてブロック共重合体(Z)に柔軟性を与えるという重合体ブロック(B)の効果を損なわない範囲で、不飽和脂肪族炭化水素に由来しない他の構造単位を含んでいてもよい。かかる他の構造単位を形成できる単量体としては、例えばスチレン、ビニルナフタレン等の芳香族ビニル化合物;塩化ビニル等のハロゲン含有ビニル化合物;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等のビニルエステル;メチルビニルエーテル、イソブチルビニルエーテル等のビニルエーテル等が挙げられる。この場合、これら他の単量体と、前述した不飽和脂肪族炭化水素との共重合形態はランダム共重合が好ましい。これら他の構造単位は、重合体ブロック(B)を形成している構造単位の5モル%以下であることが好ましい。すなわち、重合体ブロック(B)を形成している構造単位のうち、95モル%以上が不飽和脂肪族炭化水素に由来する構造単位であることが好ましい。
 上記不飽和脂肪族炭化水素が炭素-炭素二重結合を複数有する場合、そのいずれが重合に用いられてもよく、例えば共役ジエンの場合には1,2-結合または1,4-結合のいずれであってもよい。共役ジエンを重合して形成した重合体ブロック(B)には通常炭素-炭素二重結合が残存しているが、得られる高分子電解質膜の耐熱劣化性の向上等の観点から、ブロック共重合体(Z)を重合した後に水素添加反応(以下、「水添反応」と称する)を行い、かかる炭素-炭素二重結合を水素添加(以下、「水添」と称する)することが好ましい。かかる炭素-炭素二重結合の水素添加率(以下、「水添率」と称する)は30モル%以上が好ましく、50モル%以上がより好ましく、95モル%以上がさらに好ましい。
 また、ブロック共重合体(Z)を重合した後にイオン伝導性基を導入してブロック共重合体(Z)とする場合に、重合体ブロック(B)が飽和炭化水素構造であれば、重合体ブロック(B)へのイオン伝導性基の導入が起こりにくいため好ましい。したがって、ブロック共重合体(Z)を重合した後に重合体ブロック(B)に残存する炭素-炭素二重結合の水添反応を行う場合は、イオン伝導性基を導入する前に行うことが望ましい。
 なお、炭素-炭素二重結合の水添率は、H-NMR測定によって算出できる。
 重合体ブロック(B)1つあたりのMnは通常5,000~250,000の範囲であるのが好ましく、7,000~200,000の範囲であるのがより好ましく、15,000~150,000の範囲であるのがさらに好ましく、30,000~100,000の範囲であるのが特に好ましい。かかるMnが5,000以上、特に30,000以上であれば本発明の高分子電解質膜は、機械的強度および起動停止耐久性に特に優れ、Mnが250,000以下、特に100,000以下であれば本発明の高分子電解質膜を形成する上記組成物は成形性に優れ、製造上も有利になる。
<他の重合体ブロック(C)>
 ブロック共重合体(Z)は、さらに、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有さない重合体ブロック(C)(以下、単に「重合体ブロック(C)」と称する)を含んでいてもよい。本発明の高分子電解質膜において、重合体ブロック(C)は、重合体ブロック(A)および重合体ブロック(B)とミクロ相分離構造を形成する。
 重合体ブロック(C)は、製造上の優位性から、下記の一般式(2)で示される芳香族ビニル化合物に由来する構造単位からなることが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水素原子または炭素数1~4のアルキル基を表し、Rは炭素数3~8のアルキル基を表し、RおよびRはそれぞれ独立して水素原子または炭素数3~8のアルキル基を表す。)
 重合体ブロック(C)が、芳香環上に少なくとも1つの炭素数3~8のアルキル基を有する芳香族ビニル化合物に由来する構造単位であると、ブロック共重合体(Z)にイオン伝導性基を導入してブロック共重合体(Z)を製造する際に、重合体ブロック(A)に選択的にイオン伝導性基を導入することができる。
 上記一般式(2)で示される構造単位を形成するための芳香族ビニル化合物としては、4-プロピルスチレン、4-イソプロピルスチレン、4-ブチルスチレン、4-イソブチルスチレン、4-tert-ブチルスチレン、4-オクチルスチレン、α-メチル-4-tert-ブチルスチレン、α-メチル-4-イソプロピルスチレン等が挙げられ、4-tert-ブチルスチレン、4-イソプロピルスチレン、α-メチル-4-tert-ブチルスチレン、α-メチル-イソプロピルスチレンがより好ましく、4-tert-ブチルスチレンがさらに好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上を併用して重合体ブロック(C)を形成する場合の共重合形態はランダム共重合が好ましい。
 重合体ブロック(C)は、本発明の効果を損なわない範囲内で、1種または2種以上の芳香族ビニル化合物に由来しない他の構造単位を含んでいてもよい。かかる他の構造単位を形成できる単量体としては、例えばブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエン等の炭素数4~8の共役ジエン;エチレン、プロピレン、1-ブテン、イソブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン等の炭素数2~8のアルケン;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル等のビニルエステル;メチルビニルエーテル、イソブチルビニルエーテル等のビニルエーテル;が挙げられる。この場合、これら他の単量体と、前述した芳香族ビニル化合物との共重合形態はランダム共重合が好ましい。これら他の構造単位は、重合体ブロック(C)を形成している構造単位の5モル%以下であることが好ましい。すなわち、重合体ブロック(C)を形成している構造単位のうち、95モル%以上が芳香族ビニル化合物に由来する構造単位であることが好ましい。
 重合体ブロック(C)1つあたりのMnは通常1,000~50,000の範囲であるのが好ましく、1,500~30,000の範囲であるのがより好ましく、2,000~20,000の範囲であるのがさらに好ましい。かかるMnが1,000以上であれば、本発明の高分子電解質膜は機械的強度に優れる傾向となり、50,000以下であれば、本発明の高分子電解質膜を形成する上記組成物は成形性に優れ、製造上も有利になる。
 本発明で用いるブロック共重合体(Z)が重合体ブロック(C)を含む場合の配列の例として、A-B-C型トリブロック共重合体(A、B、Cはそれぞれ、重合体ブロック(A)、重合体ブロック(B)、重合体ブロック(C)を表す。以下同様)、A-B-C-A型テトラブロック共重合体、A-B-A-C型テトラブロック共重合体、B-A-B-C型テトラブロック共重合体、A-B-C-B型テトラブロック共重合体、A-C-B-C型テトラブロック共重合体、C-A-B-A-C型ペンタブロック共重合体、C-B-A-B-C型ペンタブロック共重合体、A-C-B-C-A型ペンタブロック共重合体、A-C-B-A-C型ペンタブロック共重合体、A-C-B-C-A-C型ヘキサブロック共重合体、C-A-B-C-A-C型ヘキサブロック共重合体、A-C-A-C-B-C型ヘキサブロック共重合体、A-C-A-C-B-C-A型ヘプタブロック共重合体、A-C-B-C-B-C-A型ヘプタブロック共重合体、C-A-C-B-C-A-C型ヘプタブロック共重合体、A-C-A-C-B-C-A-C型オクタブロック共重合体、A-C-B-C-B-C-A-C型オクタブロック共重合体、A-C-B-C-A-C-B-C型オクタブロック共重合体等が挙げられる。中でも、機械的強度、イオン伝導性の観点から、A-B-C型トリブロック共重合体、A-B-C-A型テトラブロック共重合体、A-B-A-C型テトラブロック共重合体、A-C-B-C型テトラブロック共重合体、C-A-B-A-C型ペンタブロック共重合体、C-B-A-B-C型ペンタブロック共重合体、A-C-B-C-A型ペンタブロック共重合体、A-C-B-A-C型ペンタブロック共重合体、A-C-B-C-A-C型ヘキサブロック共重合体、C-A-B-C-A-C型ヘキサブロック共重合体、A-C-A-C-B-C型ヘキサブロック共重合体、A-C-A-C-B-C-A型ヘプタブロック共重合体、A-C-B-C-B-C-A型ヘプタブロック共重合体、C-A-C-B-C-A-C型ヘプタブロック共重合体、A-C-A-C-B-C-A-C型オクタブロック共重合体、A-C-B-C-B-C-A-C型オクタブロック共重合体、A-C-B-C-A-C-B-C型オクタブロック共重合体が好ましく、A-C-B-C型テトラブロック共重合体、A-C-B-C-A型ペンタブロック共重合体、A-C-B-C-A-C型ヘキサブロック共重合体、A-C-A-C-B-C-A-C型オクタブロック共重合体がより好ましく、A-C-B-C-A型ペンタブロック共重合体、A-C-A-C-B-C-A-C型オクタブロック共重合体がさらに好ましい。本発明の高分子電解質膜においては、これらのブロック共重合体は、1種を単独で用いても、2種以上を併用してもよい。
 本発明の高分子電解質膜を構成するブロック共重合体(Z)が重合体ブロック(C)を含む場合、ブロック共重合体(Z)に占める重合体ブロック(C)の含有量は5~50質量%の範囲であるのが好ましく、7~40質量%の範囲であるのがより好ましく、10~30質量%の範囲であるのがさらに好ましい。かかる含有量が5質量%以上であると、得られる高分子電解質膜の耐熱水性が高くなり、50質量%以下であると、得られる高分子電解質膜は起動停止耐久性に優れる傾向となる。
<ブロック共重合体(Z)の製造>
 本発明の高分子電解質膜を構成するブロック共重合体(Z)は、前述した各単量体を重合して、重合体ブロック(A)と重合体ブロック(B)とを含むブロック共重合体(Z)を製造した後、重合体ブロック(A)にイオン伝導性基を導入する方法によって製造できる。
 ブロック共重合体(Z)の製造方法は適宜選択できるが、リビングラジカル重合法、リビングアニオン重合法およびリビングカチオン重合法から選ばれる重合法によって、前述した各単量体を重合する方法が好ましい。
 ブロック共重合体(Z)の製造方法の具体例として、芳香族ビニル化合物に由来する構造単位からなる重合体ブロック(A)と、共役ジエンに由来する構造単位からなる重合体ブロック(B)を成分とするブロック共重合体(Z)を製造する方法としては、
(1)シクロヘキサン溶媒中でアニオン重合開始剤を用いて、20~100℃の温度条件下で、芳香族ビニル化合物、共役ジエン、芳香族ビニル化合物を逐次アニオン重合させA-B-A型ブロック共重合体を得る方法;
(2)シクロヘキサン溶媒中でアニオン重合開始剤を用いて、20~100℃の温度条件下で芳香族ビニル化合物、共役ジエンを逐次アニオン重合させた後、安息香酸フェニル等のカップリング剤を添加してA-B-A型ブロック共重合体を得る方法;
(3)非極性溶媒中、有機リチウム化合物を開始剤として用い、0.1~10質量%濃度の極性化合物の存在下、-30~30℃の温度にて、5~50質量%濃度の芳香族ビニル化合物をアニオン重合させ、得られるリビングポリマーに共役ジエンをアニオン重合させた後、安息香酸フェニル等のカップリング剤を添加して、A-B-A型ブロック共重合体を得る方法;
等が挙げられる。
 また、芳香族ビニル化合物に由来する構造単位からなる重合体ブロック(A)と、イソブテンに由来する構造単位からなる重合体ブロック(B)を成分とするブロック共重合体(Z)を製造する方法としては、
(4)ハロゲン系/炭化水素系混合溶媒中、-78℃で、2官能性ハロゲン化開始剤を用いて、ルイス酸存在下でイソブテンをカチオン重合させた後、芳香族ビニル化合物をカチオン重合させて、A-B-A型ブロック共重合体を得る方法;
等が挙げられる。
 なお、必要に応じて、上記アニオン重合やカチオン重合において反応させる成分を変えたり、追加したりすることによって、ブロック共重合体の成分として、重合体ブロック(C)を加えることができる。
<ブロック共重合体(Z)の製造>
 ブロック共重合体(Z)にイオン伝導性基を導入して、ブロック共重合体(Z)を製造する方法について以下に述べる。
 まず、該ブロック共重合体(Z)にスルホン酸基を導入する方法について述べる。スルホン酸基の導入(スルホン化)は、公知の方法で行える。例えばブロック共重合体(Z)の有機溶媒溶液や懸濁液を調製し、かかる溶液や懸濁液に後述するスルホン化剤を添加し混合する方法や、ブロック共重合体(Z)に直接ガス状のスルホン化剤を添加する方法が挙げられる。
 スルホン化剤としては、硫酸;硫酸と酸無水物との混合物系;クロロスルホン酸;クロロスルホン酸と塩化トリメチルシリルとの混合物系;三酸化硫黄;三酸化硫黄とトリエチルホスフェートとの混合物系;2,4,6-トリメチルベンゼンスルホン酸に代表される芳香族有機スルホン酸等が例示される。中でも、硫酸と酸無水物との混合物系が好ましい。また、使用する有機溶媒としては、塩化メチレン等のハロゲン化炭化水素、ヘキサン等の直鎖脂肪族炭化水素、シクロヘキサン等の環状脂肪族炭化水素、ニトロベンゼン等の電子求引基を有する芳香族化合物等が例示できる。
 次に、ブロック共重合体(Z)にホスホン酸基を導入する方法について述べる。ホスホン酸基の導入(ホスホン化)は、公知の方法で行える。例えば重合体ブロック(A)の芳香環に塩化アルミニウム存在下でハロメチルエーテルを反応させてハロメチル基を導入し、次いで三塩化リンおよび塩化アルミニウムと反応させてリン誘導体に置換したのち、加水分解によってホスホン酸基に変換する方法;および前記芳香族ビニル化合物の芳香環に三塩化リンと無水塩化アルミニウムを反応させて導入したホスフィン酸基を硝酸により酸化してホスホン酸基に変換する方法が挙げられる。
 ブロック共重合体(Z)における、重合体ブロック(A)が有する芳香族ビニル化合物に由来する構造単位に対するイオン伝導性基の導入率(スルホン化率、ホスホン化率等)は、H-NMRを用いて算出することができる。
<化合物(X)>
 化合物(X)は、1つ以上の水素原子が水酸基で置換された芳香環を分子中に2つ以上有する化合物であり、架橋剤として作用すると考えられる。化合物(X)が該芳香環を分子中に2つ以上有するので、親水性の重合体ブロック(A)を含む相に選択的に存在すると推定され、そのため親水性の重合体ブロック(A)が選択的に架橋することで高分子電解質膜の柔軟性を損なうことなく、耐熱水性が向上すると考えられる。
 上記芳香環としては、ベンゼン環、ナフタレン環、アントラセン環等の炭化水素系芳香環が好ましく、ベンゼン環がより好ましい。
 また、芳香環がベンゼン環である場合には、該ベンゼン環は、1つ以上の水素原子が水酸基で置換されているが、水酸基の結合しているベンゼン環上の炭素を1位としたときに、2,4,6位の炭素のうち少なくとも1つは置換基を有していないことが好ましく、このうち、高分子電解質膜の引張破断伸びおよび引張破断強さを高める観点から、4位の炭素にメチル基を有していることがより好ましい。
 化合物(X)としては、ビスフェノールS、4,4’-ジヒドロキシビフェニル-2,2’-ジスルホン酸、4,4’-ジヒドロキシビフェニル-3,3’-ジスルホン酸、2,2’-ジヒドロキシビフェニル-4,4’-ジスルホン酸、5,5’-メチレンビス(2-ヒドロキシ安息香酸)、4,4’-イソプロピリデンビス(2,6-ジクロロフェノール)、4,4’-イソプロピリデンビス(2,6-ジブロモフェノール)、4,4’-(9-フルオレニリデン)ジフェノール、ビス(2-ヒドロキシフェニル)メタン、2,2’-ビフェノール、4,4’-ビフェノール、ビス(4-ヒドロキシフェニル)メタン、ビスフェノールA、4,4’-ヘキサフルオロイソプロピリデンジフェノール、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)エタン、2,2’-メチレンビス(6-tert-ブチル-4-メチルフェノール)、2,2’-メチレンビス(6-tert-ブチル-4-エチルフェノール)、2,2’-エチリデンビス(4,6-ジtert-ブチルフェノール)、3,3’-エチレンジオキシジフェノール、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ヘキセストロール、ジトラノール、1,1’-ビ-2-ナフトール、ノルジヒドログアイアレチン酸、ビス(3,4-ジヒドロキシ-6-メチルフェニル)フェニルメタン、9-(4-ヒドロキシベンジル)-10-(4-ヒドロキシフェニル)アントラセン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、2,6-ビス(4-ヒドロキシ-3,5-ジメチルベンジル)-4-メチルフェノール、1,1,1-トリス(4-ヒドロキシフェニル)エタン、トリス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-3-メチルフェニル)-4-ヒドロキシ-3-メトキシフェニルメタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、2,6-ビス(2,4-ジヒドロキシベンジル)-4-メチルフェノール、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、α,α,α’,α’-テトラキス(4-ヒドロキシフェニル)パラキシレン、2,2-ビス[4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル]プロパン、C-メチルカリックス[4]レゾルシナレン、カリックス[4]アレーン、6,6’-ビス(2-ヒドロキシ-5-メチルベンジル)-4,4’-ジメチル-2,2’-メチレンジフェノール、2,2-ビス[4-ヒドロキシ-3,5-ビス(2-ヒドロキシ-5-メチルベンジル)フェニル]プロパン、カリックス[6]アレーン、ポリ-2-ヒドロキシ-5-ビニルベンゼンスルホン酸、ポリ-2-ビニルフェノール、ポリ-3-ビニルフェノール、ポリ-4-ビニルフェノールなどのフェノール骨格を繰り返し単位とする重合体;が挙げられる。
 中でも、4,4’-イソプロピリデンビス(2,6-ジクロロフェノール)、4,4’-イソプロピリデンビス(2,6-ジブロモフェノール)、4,4’-(9-フルオレニリデン)ジフェノール、ビス(2-ヒドロキシフェニル)メタン、2,2’-ビフェノール、4,4’-ビフェノール、ビス(4-ヒドロキシフェニル)メタン、ビスフェノールA、4,4’-ヘキサフルオロイソプロピリデンジフェノール、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)エタン、2,2’-メチレンビス(6-tert-ブチル-4-メチルフェノール)、2,2’-メチレンビス(6-tert-ブチル-4-エチルフェノール)、2,2’-エチリデンビス(4,6-ジtert-ブチルフェノール)、3,3’-エチレンジオキシジフェノール、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、ビス(4-ヒドロキシ-3,5-ジメチルフェニル)メタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ヘキセストロール、ジトラノール、1,1’-ビ-2-ナフトール、ノルジヒドログアイアレチン酸、ビス(3,4-ジヒドロキシ-6-メチルフェニル)フェニルメタン、9-(4-ヒドロキシベンジル)-10-(4-ヒドロキシフェニル)アントラセン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、2,6-ビス(4-ヒドロキシ-3,5-ジメチルベンジル)-4-メチルフェノール、1,1,1-トリス(4-ヒドロキシフェニル)エタン、トリス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-3-メチルフェニル)-4-ヒドロキシ-3-メトキシフェニルメタン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、2,6-ビス(2,4-ジヒドロキシベンジル)-4-メチルフェノール、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、α,α,α’,α’-テトラキス(4-ヒドロキシフェニル)パラキシレン、2,2-ビス[4,4-ビス(4-ヒドロキシフェニル)シクロヘキシル]プロパン、C-メチルカリックス[4]レゾルシナレン、カリックス[4]アレーン、6,6’-ビス(2-ヒドロキシ-5-メチルベンジル)-4,4’-ジメチル-2,2’-メチレンジフェノール、2,2-ビス[4-ヒドロキシ-3,5-ビス((2-ヒドロキシ-5-メチルベンジル))フェニル]プロパン、カリックス[6]アレーン、ポリ-2-ビニルフェノール、ポリ-3-ビニルフェノール、ポリ-4-ビニルフェノールから選ばれる化合物が好ましく、2,2’-ビフェノール、4,4’-ビフェノール、ビスフェノールA、3,3’-エチレンジオキシジフェノール、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、2,6-ビス(2,4-ジヒドロキシベンジル)-4-メチルフェノール、6,6’-ビス(2-ヒドロキシ-5-メチルベンジル)-4,4’-ジメチル-2,2’-メチレンジフェノール、ポリ-2-ビニルフェノール、ポリ-3-ビニルフェノール、ポリ-4-ビニルフェノールから選ばれる化合物がより好ましく、2,2’-ビフェノール、4,4’-ビフェノール、3,3’-エチレンジオキシジフェノール、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス((4-ヒドロキシフェノキシ))ベンゼン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、2,6-ビス(2,4-ジヒドロキシベンジル)-4-メチルフェノール、6,6’-ビス(2-ヒドロキシ-5-メチルベンジル)-4,4’-ジメチル-2,2’-メチレンジフェノール、ポリ-2-ビニルフェノール、ポリ-3-ビニルフェノール、ポリ-4-ビニルフェノールから選ばれる化合物がさらに好ましく、耐熱水性の観点から、2,2’-ビフェノール、4,4’-ビフェノール、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、2,6-ビス(2,4-ジヒドロキシベンジル)-4-メチルフェノール、6,6’-ビス(2-ヒドロキシ-5-メチルベンジル)-4,4’-ジメチル-2,2’-メチレンジフェノール、ポリ-2-ビニルフェノール、ポリ-3-ビニルフェノール、ポリ-4-ビニルフェノールから選ばれる化合物が特に好ましい。高分子電解質膜を燃料電池に組み込んで運転した場合に電圧低下が少なくなるという観点からは、ポリ-4-ビニルフェノールが最も好ましい。また、引張破断伸びおよび引張破断強さを高める観点からは、2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール、2,6-ビス(2,4-ジヒドロキシベンジル)-4-メチルフェノール、6,6’-ビス(2-ヒドロキシ-5-メチルベンジル)-4,4’-ジメチル-2,2’-メチレンジフェノールから選ばれる化合物が最も好ましい。
 化合物(X)は1種を単独で用いても、2種以上を併用してもよいが、引張破断伸びと引張破断強さを高める観点から、2種以上を併用することが好ましい。化合物(X)を併用する場合、特に制限はされないが、1つ以上の水素原子が水酸基で置換された芳香環を分子中に3つ以上有する化合物が少なくとも1種用いられていることが好ましく、2種以上用いられていることがより好ましい。具体的な化合物(X)の併用としては、ポリ-4-ビニルフェノールと2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールの併用、ポリ-4-ビニルフェノールと2,6-ビス(2,4-ジヒドロキシベンジル)-4-メチルフェノールの併用が好ましい。
 化合物(X)の使用量は、高分子電解質膜の耐熱水性の観点から、ブロック共重合体(Z)100質量部に対して0.01~25質量部の範囲が好ましく、0.2~20質量部の範囲がより好ましく、0.3~15質量部の範囲がさらに好ましく、1.0~12質量部の範囲が特に好ましい。また、耐熱水性の観点および架橋密度を好ましい範囲にしやすい観点から、化合物(X)の1つ以上の水素原子が水酸基で置換された芳香環のモル数は、ブロック共重合体(Z)のイオン伝導性基100モル部に対して、0.1~70モル部の範囲が好ましく、0.5~60モル部の範囲がより好ましく、0.8~50モル部の範囲がさらに好ましく、3~38モル部の範囲が特に好ましい。
<化合物(Y)>
 化合物(Y)は、下記の一般式(1)で示される化合物である。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは水酸基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基またはカルボキシル基を表し、RおよびRはそれぞれ独立して水素原子、水酸基、炭素数1~4のアルキル基、炭素数1~4のアルケニル基、炭素数1~4のアルコキシ基またはカルボキシル基を表す。)
 化合物(Y)はブロック共重合体(Z)の酸化安定性を高める機能を有すると考えられる。化合物(Y)は上記構造であることで、親水性の重合体ブロック(A)を含む相に選択的に存在することとなり、高分子電解質膜を固体高分子型燃料電池に用いた場合の運転中の重合体ブロック(A)の酸化による劣化を抑制することで、膜抵抗の上昇を抑制できると考えられる。
 化合物(Y)の具体例としては、o-クレゾール、m-クレゾール、p-クレゾール、2,3-ジメチルフェノール、2,4-ジメチルフェノール、2,5-ジメチルフェノール、3,4-ジメチルフェノール、3,5-ジメチルフェノール、2,4,6-トリメチルフェノール、4-エチルフェノール、4-イソプロピルフェノール、4-tert-ブチルフェノール、6-tert-ブチル-o-クレゾール、2-tert-ブチル-p-クレゾール、4-ヒドロキシ-3-tert-ブチルアニソール、6-tert-ブチル-2,4-キシレノール、4-tert-ブチル-2,6-ジイソプロピルフェノール、2,6-ジtert-ブチル-p-クレゾール、2,6-ジtert-ブチル-4-エチルフェノール、2,6-ジtert-ブチル-4-メトキシフェノール、4-sec-ブチル-2,6-ジtert-ブチルフェノール、2,4,6-トリ-tert-ブチルフェノール、2,3-ジメチルヒドロキノン、2,6-ジメチルヒドロキノン、4-ブチルレソルシノール、2,5-ジメチルレソルシノール、3-ヒドロキシ安息香酸、3,5-ジヒドロキシ安息香酸、3,5-ジtert-ブチル-4-ヒドロキシ安息香酸、3,4-ジヒドロキシ安息香酸、4-ヒドロキシ-3,5-ジメチル安息香酸、4-ヒドロキシ-3-メチル安息香酸、没食子酸、グアヤコール、2-メトキシ-4-メチルフェノール、2-メトキシ-4-エチルフェノール、オイゲノール、バニリン酸、シリンガ酸等が挙げられる。 中でも、6-tert-ブチル-o-クレゾール、2-tert-ブチル-p-クレゾール、6-tert-ブチル-2,4-キシレノール、4-tert-ブチル-2,6-ジイソプロピルフェノール、2,6-ジtert-ブチル-p-クレゾール、2,6-ジtert-ブチル-4-エチルフェノール、4-sec-ブチル-2,6-ジtert-ブチルフェノール、2,4,6-トリ-tert-ブチルフェノール、4-ブチルレソルシノール、3,5-ジtert-ブチル-4-ヒドロキシ安息香酸、4-ヒドロキシ-3,5-ジメチル安息香酸、没食子酸、バニリン酸が好ましく、2,6-ジtert-ブチル-p-クレゾール、3,5-ジtert-ブチル-4-ヒドロキシ安息香酸、4-ヒドロキシ-3,5-ジメチル安息香酸、没食子酸、グアヤコール、オイゲノール、バニリン酸がより好ましく、2,6-ジtert-ブチル-p-クレゾール、バニリン酸がさらに好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。
 化合物(Y)の使用量は、高分子電解質膜を固体高分子型燃料電池に用いた場合に運転中の膜抵抗の上昇を抑制し、イオン伝導性を高くする観点から、ブロック共重合体(Z)100質量部に対して0.01~20質量部の範囲が好ましく、0.02~5質量部の範囲がより好ましく、0.03~3質量部の範囲がさらに好ましく、0.05~1質量部の範囲が特に好ましい。
<高分子電解質膜の製造方法>
 次に、本発明の高分子電解質膜の製造方法について説明する。通常、高分子電解質膜は高分子電解質であるブロック共重合体(Z)、化合物(X)、化合物(Y)および溶媒を含む流動性組成物を調製し、該流動性組成物を基板等に塗工した後、溶媒を除去することで、ブロック共重合体(Z)、化合物(X)および化合物(Y)を含有する組成物よりなる成形体を得、該成形体を架橋することで得られる。
 上記流動性組成物に用いることができる溶媒としては、塩化メチレン等のハロゲン化炭化水素;トルエン、キシレン、ベンゼン等の芳香族炭化水素;ヘキサン、ヘプタン、オクタン等の直鎖脂肪族炭化水素;シクロヘキサン等の環式脂肪族炭化水素;テトラヒドロフラン等のエーテル、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール等のアルコール;が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよいが、各ブロック共重合体(Z)が含む重合体ブロックの溶解性または分散性の観点から、混合溶媒を用いることが好ましい。好ましい組み合わせの混合溶媒としては、トルエンとイソブタノールの混合溶媒、キシレンとイソブタノールの混合溶媒、トルエンとイソプロパノールの混合溶媒、シクロヘキサンとイソプロパノールの混合溶媒、シクロヘキサンとイソブタノールの混合溶媒、テトラヒドロフラン溶媒、テトラヒドロフランとメタノールの混合溶媒、トルエンとイソブタノールとオクタンの混合溶媒、トルエンとイソプロパノールとオクタンの混合溶媒が挙げられ、トルエンとイソブタノールの混合溶媒、キシレンとイソブタノールの混合溶媒、トルエンとイソプロパノールの混合溶媒、トルエンとイソブタノールとオクタンの混合溶媒、トルエンとイソプロパノールとオクタンの混合溶媒がより好ましい。
 上記流動性組成物は、溶媒中に、ブロック共重合体(Z)、化合物(X)および化合物(Y)を溶解または分散させて調製する。必要に応じて、本発明の効果を損なわない範囲で、軟化剤、イオウ系安定剤、リン系安定剤等の各種安定剤、無機充填剤、光安定剤、帯電防止剤、離型剤、難燃剤、発泡剤、顔料、染料、漂白剤、カーボン繊維等の各種添加剤を併せて溶解または分散させてもよい。流動性組成物中の溶媒以外の成分(固形分)中のブロック共重合体(Z)の含有量は、得られる高分子電解質膜のイオン伝導性の観点から、50~99.98質量%であることが好ましく、70~98質量%であることがより好ましく、85~95質量%であることがさらに好ましい。
 上記流動性組成物に用いることができる軟化剤としては、パラフィン系、ナフテン系、アロマ系のプロセスオイル等の石油系軟化剤;流動パラフィン、植物油系軟化剤、可塑剤等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。
 上記流動性組成物に用いることができる安定剤としては、ペンタエリスリチルテトラキス(3-ラウリルチオプロピオネート)、ジステアリル3,3’-チオジプロピオネート、ジラウリル3,3’-チオジプロピオネート、ジミリスチル3,3’-チオジプロピオネート等のイオウ系安定剤;トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジtert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト等のリン系安定剤が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。
 上記流動性組成物に用いることができる無機充填剤としては、タルク、炭酸カルシウム、シリカ、ガラス繊維、マイカ、カオリン、酸化チタン、モンモリロナイト、アルミナが挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。
 流動性組成物中のブロック共重合体(Z)の濃度は、分子量、組成、イオン交換基容量によって適宜選択することができるが、生産性の観点から、5~20質量%であることが好ましい。
 上記流動性組成物は通常ポリエステル(PET、PEN等)、ガラス等からなる平滑な基板上に、コーターやアプリケーター等を用いて塗工する。
 また流動性組成物を多孔質の基板(多孔質基板)上にディップニップ法、コーターやアプリケーター等を用いる方法等で塗工してもよい。この場合、通常、多孔質基板に流動性組成物の少なくとも一部が含浸する。流動性組成物の少なくとも一部が含浸した多孔質基板は、架橋後に、高分子電解質膜の一部を構成することで補強材として機能する。多孔質基板としては、織布、不織布等の繊維状基材や、微細な貫通孔を有するフィルム状基材等を用いることができる。フィルム状基材としては燃料電池用細孔フィリング用膜等が挙げられる。強度の観点から多孔質基板は繊維状基材が好ましく、不織布がより好ましい。該繊維状基材を構成する繊維としては、アラミド繊維、ガラス繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリオレフィン繊維、レーヨン繊維が挙げられ、強度上の観点から全芳香族系のポリエステル繊維やアラミド繊維がより好ましく、全芳香族系の液晶ポリエステル繊維がさらに好ましい。
 上記流動性組成物を基板等に塗工した後、溶媒を除去することで膜状に成形できる。溶媒を除去する温度は、ブロック共重合体(Z)が分解しない範囲で任意に選択でき、複数の温度を任意に組み合わせてもよい。溶媒の除去は、通風条件下、真空条件下等で行うことができ、これらを任意に組み合わせてもよい。具体的には、熱風乾燥機中にて60~120℃で4分間以上乾燥させて溶媒を除去する方法;熱風乾燥機中にて120~140℃で2~4分間乾燥させて溶媒を除去する方法;25℃で1~3時間、予備乾燥させた後、熱風乾燥機中にて80~120℃で5~10分間かけて乾燥する方法;25℃で1~3時間、予備乾燥させた後、25~40℃の雰囲気下、減圧条件下で1~12時間乾燥させる方法等が挙げられる。
 良好な強靭性を有する高分子電解質膜を調製しやすい観点から、溶媒の除去は、熱風乾燥機中にて60~120℃で4分間以上かけて乾燥させる方法;25℃で1~3時間、予備乾燥させた後、熱風乾燥機中にて80~120℃程度で5~10分間かけて乾燥させる方法;25℃で1~3時間、予備乾燥させた後、25~40℃の雰囲気下、1.3kPa以下の減圧条件下で1~12時間乾燥させる方法等が好適に用いられる。
 高分子電解質膜を複層膜とする場合、例えば上記流動性組成物を基板に塗工した後、溶媒を除去して1層目を形成したのち、さらに該1層目上に別の高分子電解質を含む流動性組成物を塗工し、溶媒を除去することで2層目を形成する。同様に3層目以降を形成してもよい。また、それぞれ作製した高分子電解質膜を貼りあわせて複層膜としてもよい。
 上記流動性組成物を基板上に塗工し、溶媒を除去して得られる膜状の成形体を架橋処理することで、本発明の高分子電解質膜を形成できる。架橋処理方法としては、加熱や、電子線などの活性エネルギー線の照射などを好適に採用できる。また、上記加熱または活性エネルギー線照射による架橋処理は、溶媒の除去と同時に行っても、溶媒の除去後に行ってもよい。また、加熱または活性エネルギー線照射により架橋処理しながら溶媒の除去を行った後に、さらに加熱または活性エネルギー線照射を行ってもよい。
 加熱により架橋を行う場合、加熱温度としては50~250℃が好ましく、60~200℃がより好ましく、70~180℃がさらに好ましく、100~150℃が特に好ましい。また加熱時間としては0.1~400時間が好ましく、0.2~200時間がより好ましく、0.4~100時間がさらに好ましく、0.5~30時間が特に好ましい。加熱は大気下、窒素雰囲気下等で行うことができ、窒素雰囲気下で行うことが好ましい。
 活性エネルギー照射として、例えば電子線で架橋を行う場合、加速電圧は50~250kVの範囲、線量は100~800kGyの範囲とすることが好ましい。
 なお、得られた高分子電解質膜が架橋されていることは、後述の耐熱水性の向上、ゲル分率の上昇、架橋密度の上昇等により確認することができる。
 高分子電解質膜のゲル分率は後述の実施例に記載の方法で測定でき、1%以上が好ましく、20%以上がより好ましく、50%以上がさらに好ましく、80%以上が特に好ましい。ゲル分率が80%以上であれば、耐熱水性が特に良好となる傾向にある。
 高分子電解質膜の架橋密度は後述の実施例に記載の方法で算出でき、0.1×10-5~100×10-5mol/mlの範囲が好ましく、0.5×10-5~50×10-5mol/mlの範囲がより好ましく、1×10-5~40×10-5mol/mlの範囲がさらに好ましく、2×10-5~30×10-5mol/mlの範囲が特に好ましく、3×10-5~15×10-5mol/mlの範囲が最も好ましい。架橋密度が3×10-5mol/ml以上であれば、耐熱水性が良好となる傾向にあり、15×10-5mol/ml以下であれば、架橋後の引張破断伸び性能が向上する傾向となり、起動停止耐久性も良好となる傾向にある。
 ポリエステル(PET、PEN等)、ガラス等からなる平滑な基板上に高分子電解質膜を形成した場合は、通常、高分子電解質膜を基板から剥離する。なお、多孔質基板上に高分子電解質膜を形成し、該多孔質基板を高分子電解質膜の一部とする場合は剥離は不要である。
 以下、実施例および比較例を挙げて、本発明をさらに具体的に説明するが、本発明はこれらの実施例に制限されない。
(ブロック共重合体(Z)のイオン交換容量の測定)
 ガラス容器中にブロック共重合体(Z)を秤量(秤量値a(g))し、過剰量の塩化ナトリウム飽和水溶液((300~500)×a(ml))を添加して12時間攪拌した。フェノールフタレインを指示薬として、水中に発生した塩化水素を0.01規定のNaOH標準水溶液(力価f)にて滴定(滴定量b(ml))した。
 イオン交換容量は次式により求めた。
イオン交換容量(meq/g)=(0.01×b×f)/a
(ブロック共重合体(Z)のMnの測定)
 MnはGPC法により下記の条件で測定し、標準ポリスチレン換算で算出した。
  装置:東ソー(株)製、商品名:HLC-8220GPC
  溶離液:テトラヒドロフラン
  カラム:東ソー(株)製、商品名:TSK-GEL(TSKgel G3000HxL(76mml.D.×30cm)を1本、TSKgel Super Multipore HZ-M(46mml.D.×15cm)を2本の計3本を直列で接続)
  カラム温度:40℃
  検出器:RI
  送液量:0.35ml/分
H-NMRの測定条件)
 後述する製造例1~2で得られたブロック共重合体(Z)における各構造単位の含有率、並びに重合体ブロック(B)における1,4-結合率および水添率は下記の条件でH-NMRを測定した結果から算出した。
  溶媒:重クロロホルム
  測定温度:室温
  積算回数:32回
 また、上記製造例1~2で得られたブロック共重合体(Z)のスルホン化率は下記の条件でH-NMRを測定した結果から算出した。
  溶媒:重テトラヒドロフラン/重メタノール(質量比80/20)混合溶媒
  測定温度:50℃
  積算回数:32回
(貯蔵弾性率の測定)
 製造例1および2で得られたブロック共重合体(Z-1)およびブロック共重合体(Z-2)の9質量%のトルエン/イソブタノール/n-オクタン(質量比3/3/4)溶液をそれぞれ調製し、離型処理済みPETフィルム(東洋紡績(株)製、商品名:K1504)上に約300μmの厚さで塗工し、熱風乾燥機にて100℃で4分間乾燥させることで、厚さ20μmの成形体を得た。
 得られた成形体を、広域動的粘弾性測定装置(レオロジ社製「DVE-V4FTレオスペクトラー」)を使用して、引張りモード(周波数:11Hz)で、昇温速度を3℃/分、-80℃から250℃まで昇温して、貯蔵弾性率(E’)、損失弾性率(E’’)および損失正接(tanδ)を測定した。結晶化オレフィン重合体に由来する、80~100℃における貯蔵弾性率の変化がないことに基づき、重合体ブロック(B)の非晶性を判断した。この結果、ブロック共重合体(Z-1)およびブロック共重合体(Z-2)について、重合体ブロック(B)は非晶性であった。
[製造例1]
(ブロック共重合体(Z-1)の製造)
 乾燥後、窒素置換した容量2Lのオートクレーブに、脱水したシクロヘキサン737mlおよびsec-ブチルリチウム(0.70mol/Lシクロヘキサン溶液)2.06mlを添加した後、60℃にて撹拌しつつ、スチレン28.6ml、4-tert-ブチルスチレン14.4ml、スチレン28.6ml、4-tert-ブチルスチレン14.4ml、イソプレン114.9ml、4-tert-ブチルスチレン14.4ml、スチレン28.6mlおよび4-tert-ブチルスチレン14.4mlを順次添加して重合し、ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)を得た。得られたブロック共重合体のMnは130,000、ポリイソプレンブロックの1,4-結合量は93.7%、スチレンに由来する構造単位の含有率は35.6質量%、4-tert-ブチルスチレンに由来する構造単位の含有率は24.8質量%であった。
 上記ブロック共重合体のシクロヘキサン溶液を調製して、窒素置換した耐圧容器に入れ、Ni/Al系のチーグラー系触媒を用いて、水素圧下0.5~1MPa、70℃で18時間水添反応を行い、ポリスチレン重合体ブロック(重合体ブロック(A))、水添ポリイソプレン重合体ブロック(重合体ブロック(B))およびポリ(4-tert-ブチルスチレン)重合体ブロック(重合体ブロック(C))からなるブロック共重合体(Z)[ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-水添ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン-b-ポリ(4-tert-ブチルスチレン)(以下「ブロック共重合体(Z-1)」と称する)]を得た。
 得られたブロック共重合体(Z-1)の水添ポリイソプレンブロックの水添率は99%以上であった。
(ブロック共重合体(Z-1)の製造)
 乾燥後、窒素置換した容量1Lの三口フラスコに、塩化メチレン270mlおよび無水酢酸149mlを添加し、0℃にて撹拌しつつ濃硫酸を67ml滴下し、さらに0℃にて60分間攪拌してスルホン化剤を調製した。一方、72gのブロック共重合体(Z-1)を、攪拌機を備えた容量5Lのガラス製反応容器に入れ、系内を窒素置換した後、塩化メチレン1600mlを加えて常温にて4時間攪拌して溶解させた。この溶液に、先に調製したスルホン化剤486mlを5分かけて滴下した。常温にて48時間攪拌後、蒸留水100mlを加えて反応を停止し、攪拌しながらさらに蒸留水1Lを徐々に滴下して固形分を析出させた。この混合液から塩化メチレンを常圧留去にて除去した後、濾過して、回収した固形分をビーカーに移し、蒸留水を1L添加して攪拌下で洗浄を行った後、濾過により固形分を再び回収した。この洗浄およびろ過を、洗浄水のpHに変化がなくなるまで繰り返し、得られた固形分を1.3kPa、30℃にて24時間乾燥して、本発明の高分子電解質膜に用いるブロック共重合体(Z)を得た(以下「ブロック共重合体(Z-1)」と称する)。得られたブロック共重合体(Z-1)のスチレンに由来する構造単位に対するスルホン酸基の割合(スルホン化率)は100mol%、イオン交換容量は2.6meq/gであった。
[製造例2]
(ブロック共重合体(Z-2)の製造)
 乾燥後、窒素置換した容量2Lのオートクレーブに、脱水したシクロヘキサン960mlおよびsec-ブチルリチウム(1.22mol/Lシクロヘキサン溶液)3.35mlを添加した後、60℃にて撹拌しつつ、スチレン49.5ml、4-tert-ブチルスチレン14.3ml、イソプレン198ml、4-tert-ブチルスチレン14.3mlおよびスチレン49.5mlを順次添加して重合し、ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレンを得た。得られたブロック共重合体のMnは75,300、ポリイソプレンブロックの1,4-結合量は94.0%、スチレンに由来する構造単位の含有率は35.0質量%、4-tert-ブチルスチレンに由来する構造単位の含有率は11.0質量%であった。
 上記ブロック共重合体のシクロヘキサン溶液を調製して、窒素置換した耐圧容器に入れ、Ni/Al系のチーグラー系触媒を用いて、水素圧下0.5~1MPa、70℃で18時間水添反応を行い、ポリスチレン重合体ブロック(重合体ブロック(A))、水添ポリイソプレン重合体ブロック(重合体ブロック(B))およびポリ(4-tert-ブチルスチレン)重合体ブロック(重合体ブロック(C))からなるブロック共重合体(Z)[ポリスチレン-b-ポリ(4-tert-ブチルスチレン)-b-水添ポリイソプレン-b-ポリ(4-tert-ブチルスチレン)-b-ポリスチレン(以下「ブロック共重合体(Z-2)」と称する)]を得た。得られたブロック共重合体(Z-2)の水添ポリイソプレンブロックの水添率は99%以上であった。
(ブロック共重合体(Z-2)の製造)
 乾燥後、窒素置換した容量1Lの三口フラスコに、塩化メチレン162mlおよび無水酢酸81mlを添加し、0℃にて撹拌しつつ濃硫酸を36ml滴下し、さらに0℃にて60分間攪拌してスルホン化剤を調製した。一方、50gのブロック共重合体(Z-2)を、攪拌機を備えた容量3Lのガラス製反応容器に入れ、系内を窒素置換した後、塩化メチレン800mlを加えて常温にて4時間攪拌して溶解させた。この溶液に、先に調製したスルホン化剤279mlを5分かけて滴下した。常温にて48時間攪拌後、蒸留水100mlを加えて反応を停止し、攪拌しながらさらに蒸留水500mlを徐々に滴下して、固形分を析出させた。この混合液から塩化メチレンを常圧留去にて除去した後、濾過して、回収した固形分をビーカーに移し、蒸留水を1L添加して攪拌下で洗浄を行った後、濾過により固形分を再び回収した。この洗浄およびろ過を、洗浄水のpHに変化がなくなるまで繰り返し、得られた固形分を1.3kPa、30℃にて24時間乾燥して、ブロック共重合体(Z)を得た(以下「ブロック共重合体(Z-2)」と称する)。得られたブロック共重合体(Z-2)のスチレンに由来する構造単位に対するスルホン酸基の割合(スルホン化率)は99mol%、イオン交換容量は2.6meq/gであった。
[実施例1]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の10質量%のトルエン/イソブタノール/オクタン(質量比3/3/4)溶液を調製した後、化合物(X)としてポリ-4-ビニルフェノール(丸善石油化学(株)、製品名:マルカリンカーM、グレード:S-1、Mn:1100~1500)を、ブロック共重合体(Z-1)/ポリ-4-ビニルフェノールの質量比が100/9.4になるように添加し、化合物(Y)としてバニリン酸(東京化成工業(株)製)を、ブロック共重合体(Z-1)/バニリン酸の質量比が100/1になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF75)上に約425μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、厚さ20μmの成形体を得た。得られた成形体を140℃窒素気流下で1時間加熱処理をすることで架橋し、本発明の高分子電解質膜を作製した。
[実施例2]
 ブロック共重合体(Z-1)/バニリン酸の質量比が100/5になるようにバニリン酸を添加した以外は、実施例1と同様にして厚さ20μmの成形体を得た。得られた成形体を140℃窒素気流下で1時間加熱処理をすることで架橋し、本発明の高分子電解質膜を作製した。
[実施例3]
(高分子電解質膜の作製)
 バニリン酸の代わりに、化合物(Y)として2,6-ジtert-ブチル-p-クレゾール(東京化成工業(株)製)を、ブロック共重合体(Z-1)/2,6-ジtert-ブチル-p-クレゾールの質量比が100/0.01になるように添加した以外は、実施例1と同様にして厚さ20μmの成形体を得た。得られた成形体を140℃窒素気流下で1時間加熱処理をすることで架橋し、本発明の高分子電解質膜を作製した。
[実施例4]
(高分子電解質膜の作製)
 バニリン酸の代わりに、化合物(Y)として2,6-ジtert-ブチル-p-クレゾール(東京化成工業(株)製)を、ブロック共重合体(Z-1)/2,6-ジtert-ブチル-p-クレゾールの質量比が100/0.05になるように添加した以外は、実施例1と同様にして厚さ20μmの成形体を得た。得られた成形体を140℃窒素気流下で1時間加熱処理をすることで架橋し、本発明の高分子電解質膜を作製した。
[実施例5]
(高分子電解質膜の作製)
 バニリン酸の代わりに、化合物(Y)として2,6-ジtert-ブチル-p-クレゾール(東京化成工業(株)製)を、ブロック共重合体(Z-1)/2,6-ジtert-ブチル-p-クレゾールの質量比が100/1になるように添加した以外は、実施例1と同様にして厚さ20μmの成形体を得た。得られた成形体を140℃窒素気流下で1時間加熱処理をすることで架橋し、本発明の高分子電解質膜を作製した。
[実施例6]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の12質量%のトルエン/イソブタノール(質量比77/23)溶液を調製した後、化合物(X)としてポリ-4-ビニルフェノール(丸善石油化学(株)、製品名:マルカリンカーM、グレード:S-1)を、ブロック共重合体(Z-1)/ポリ-4-ビニルフェノールの質量比が100/9.4になるように添加し、化合物(Y)として没食子酸(東京化成工業(株)製)を、ブロック共重合体(Z)/没食子酸の質量比が100/5になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF75)上に約350μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、厚さ20μmの成形体を得た。得られた成形体を140℃窒素気流下で1時間加熱処理をすることで架橋し、本発明の高分子電解質膜を作製した。
[実施例7]
(高分子電解質膜の作製)
 バニリン酸の代わりに、化合物(Y)として3,5-ジtert-ブチル-4-ヒドロキシ安息香酸(東京化成工業(株)製)を、ブロック共重合体(Z-1)/3,5-ジtert-ブチル-4-ヒドロキシ安息香酸の質量比が100/5になるように添加した以外は、実施例1と同様にして厚さ19μmの成形体を得た。得られた成形体を140℃窒素気流下で1時間加熱処理をすることで架橋し、本発明の高分子電解質膜を作製した。
[参考例1]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の11質量%のトルエン/イソブタノール/オクタン(質量比3/3/4)溶液を調製した後、化合物(X)としてポリ-4-ビニルフェノール(丸善石油化学(株)、製品名:マルカリンカーM、グレード:S-1)を、ブロック共重合体(Z-1)/ポリ-4-ビニルフェノールの質量比が100/9.4になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF75)上に約350μmの厚さで塗工し、熱風乾燥機にて、100℃で6分間乾燥させることで、厚さ19μmの成形体を得た。得られた成形体を140℃窒素気流下で30分加熱処理をすることで架橋し、参考例1の高分子電解質膜を作製した。
[実施例8]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の14質量%のトルエン/イソブタノール(質量比77/23)溶液を調製した後、化合物(X)として2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール(旭有機材工業(株)製)を、ブロック共重合体(Z-1)/2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールの質量比が100/4.5になるように添加し、化合物(Y)としてバニリン酸(東京化成工業(株)製)を、ブロック共重合体(Z-1)/バニリン酸の質量比が100/1になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF75)上に約250μmの厚さで塗工し、熱風乾燥機にて100℃で30分間乾燥させることで、厚さ20μmの成形体を得た。得られた成形体を120℃窒素気流下で5時間加熱処理をすることで架橋し、本発明の高分子電解質膜を作製した。
[実施例9]
(高分子電解質膜の作製)
 製造例2で得られたブロック共重合体(Z-2)の14.5質量%のトルエン/イソブタノール(質量比7/3)溶液を調製した後、化合物(X)として2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール(旭有機材工業(株)製)を、ブロック共重合体(Z-2)/2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールの質量比が100/4.5になるように添加し、化合物(Y)として2,6-ジtert-ブチル-p-クレゾール(東京化成工業(株)製)を、ブロック共重合体(Z-2)/2,6-ジtert-ブチル-p-クレゾールの質量比が100/1になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF75)上に約250μmの厚さで塗工し、熱風乾燥機にて100℃で30分間乾燥させることで、厚さ20μmの成形体を得た。得られた成形体を120℃窒素気流下で5時間加熱処理をすることで架橋し、本発明の高分子電解質膜を作製した。
[実施例10]
(高分子電解質膜の作製)
 製造例2で得られたブロック共重合体(Z-2)の10質量%のトルエン/イソブタノール/オクタン(質量比3/3/4)溶液を調製した後、化合物(X)として2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール(旭有機材工業(株)製)を、ブロック共重合体(Z-2)/2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールの質量比が100/4.5になるように添加し、化合物(Y)として2,6-ジtert-ブチル-p-クレゾール(東京化成工業(株)製)を、ブロック共重合体(Z-2)/2,6-ジtert-ブチル-p-クレゾールの質量比が100/1になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF75)上に約175μmの厚さで塗工した後、不織布(クラレクラフレックス(株)製、ベクルス(登録商標)、平均繊維径7μm、坪量3g/cm、空孔率76.2%、厚さ9μm)を上から皺が入らないように塗工面と平行に重ねて、不織布に該流動性組成物を充填させた後、熱風乾燥機にて100℃で6分間乾燥させた。この上にさらに上記流動性組成物を約175μmの厚さで塗工し、熱風乾燥機にて100℃で30分間乾燥させることで、ブロック共重合体(Z-2)および化合物(X)を含有する組成物の成形体からなる高分子電解質と、不織布からなる厚さ20μmの接合体を得た。得られた接合体を120℃窒素気流下で5時間加熱処理して上記成形体を架橋し、本発明の高分子電解質膜を作製した。
[参考例2]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の14質量%のトルエン/イソブタノール(質量比77/23)溶液を調製した後、化合物(X)として2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール(旭有機材工業(株)製)を、ブロック共重合体(Z-1)/2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールの質量比が100/4.5になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF75)上に約250μmの厚さで塗工し、熱風乾燥機にて100℃で30分間乾燥させることで、厚さ20μmの成形体を得た。得られた成形体を120℃窒素気流下で3時間加熱処理をすることで架橋し、参考例2の高分子電解質膜を作製した。
[参考例3]
(高分子電解質膜の作製)
 製造例2で得られたブロック共重合体(Z-2)の10質量%のトルエン/イソブタノール/オクタン(質量比3/3/4)溶液を調製した後、化合物(X)として2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノール(旭有機材工業(株)製)を、ブロック共重合体(Z-2)/2,6-ビス(2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールの質量比が100/4.5になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF75)上に約450μmの厚さで塗工し、熱風乾燥機にて100℃で30分間乾燥させることで、厚さ19μmの成形体を得た。得られた成形体を120℃窒素気流下で3時間加熱処理をすることで架橋し、参考例3の高分子電解質膜を作製した。
[比較例1]
(高分子電解質膜の作製)
 製造例1で得られたブロック共重合体(Z-1)の12質量%のトルエン/イソブタノール(質量比77/23)溶液を調製した後、化合物(Y)としてバニリン酸(東京化成工業(株)製)を、ブロック共重合体(Z-1)/バニリン酸の質量比が100/1になるように添加し、流動性組成物を調製した。次いで、該流動性組成物を離型処理済みPETフィルム(三菱樹脂(株)製、商品名:MRF75)上に約350μmの厚さで塗工し、熱風乾燥機にて100℃で6分間乾燥させることで、厚さ20μmの成形体を得た。得られた成形体を140℃窒素気流下で1時間加熱処理をすることで、比較例1の高分子電解質膜を作製した。
(高分子電解質膜の性能試験およびその結果)
 下記の測定・評価方法によって高分子電解質膜の性能を評価した。結果を表1に示す。
(耐熱水性試験:不溶分残存率)
 各実施例、比較例および参考例で得られた高分子電解質膜から3cm×5cmの試験片を切り出し、1.3kPa、50℃にて12時間乾燥し、質量(質量mとする)を測定後、110mLのスクリュー管に入れ、蒸留水を60mL添加した後、SUS製の金属容器内に収納して密封し、110℃の恒温槽内にて96時間静置した。その後、試験片を取り出して、1.3kPa、50℃にて12時間乾燥し、質量(質量mとする)を測定した。
 次式により不溶分残存率(a)を求めた。
 不溶分残存率(a)(%)=m/m×100
 また、同じ高分子電解質膜から3cm×5cmの別の試験片を切り出し、これを用いて同様の試験を実施し、不溶分残存率(b)を求めた。
 このようにして得られた不溶分残存率(a)および不溶分残存率(b)を算術平均して不溶分残存率とした。不溶分残存率が高いほど、耐熱水性に優れると判断した。
(ゲル分率、架橋密度の測定)
 各実施例、比較例および参考例で得られた高分子電解質膜から3cm×5cmの試験片を切り出し、1.3kPa、50℃にて12時間乾燥し、質量(質量mとする)を測定した後、30mlのトルエン/イソブタノール(質量比70/30)溶媒に3時間浸漬させ、膜を取り出して溶媒を含んだ状態で膜の質量(質量mとする)を測定した。その後、1.3kPa、50℃にて12時間乾燥し、質量(質量mとする)を測定した。
 架橋密度(ν)は、Flory Rehnerの式より算出した。
  ν={ln(1-m/m)+m/m+0.4×(m/m}/[102×{(m/m1/3-(m/m)/2}]
 また、ゲル分率は下記式によって算出した。
  ゲル分率=m/m×100(%)
[高分子電解質膜の膜抵抗評価試験]
 得られた高分子電解質膜を固体高分子型燃料電池に用いた場合の運転中の膜抵抗の上昇を以下の方法で評価した。
 各実施例、比較例および参考例で得られた高分子電解質膜から9cm×9cmの試験片を切り出し、内側を5cm×5cmに切り抜いた厚さ12.5μmのPTFEフィルム2枚で挟み、さらに、Pt触媒担持カーボンおよびナフィオンD1021(デュポン社製(商品名))からなる触媒層と、カーボンペーパーとからなる電極2枚で挟んだ後、ホットプレスにより加熱処理(130℃、20kgf/cm、8分)を行って、膜-電極接合体(MEA)を作製した。次いで作製したMEAにガスケットを組み合わせたのち、2枚のガス供給流路の役割を兼ねた導電性のセパレータで挟み、さらにその外側を2枚の集電板および2枚の締付板で挟み評価セルを作製した。作製した評価セルにガス供給用ホース、ドレンホース、ヒータ電源、熱電対、インピーダンスアナライザー((株)エヌエフ回路設計ブロック製)、発電特性分析器((株)エヌエフ回路設計ブロック製)に接続された負荷電流制御用端子と電圧検出用端子を接続して評価用燃料電池を組み立てた。
 この評価用燃料電池の両方の電極にそれぞれ200cc/分で窒素を供給し、セル温度100℃、相対湿度47%、交流電圧0.05V、周波数10~100000Hzの条件で交流インピーダンス法により膜抵抗r1を測定した。次いで、一方の電極(アノード)に83cc/分で水素を、他方の電極(カソード)に273cc/分で酸素を供給し、セル温度100℃、相対湿度47%の条件で60時間運転した後、再び両方の電極にそれぞれ200cc/分で窒素を供給し、セル温度100℃、相対湿度47%、交流電圧0.05V、周波数10~100000Hzの条件で交流インピーダンス法により膜抵抗r2を測定し、膜抵抗の上昇値(r2-r1)を算出した。
 本発明の高分子電解質膜が柔軟で割れにくいことを確認する目的で、得られた高分子電解質膜の引張破断強度および引張破断伸度を、以下の方法で測定した。
 高分子電解質膜からダンベル状の試験片を切り出し、25℃、相対湿度40%の条件で調湿したのち、引張試験機(インストロンジャパン社製5566型)にセットし、25℃、相対湿度40%、引張速度500mm/分の条件において、引張破断強度および引張破断伸度を測定した。
Figure JPOXMLDOC01-appb-T000005
 表1に示すとおり、本発明の高分子電解質膜は耐熱水性に優れ、固体高分子型燃料電池に用いた場合の運転中の膜抵抗増大を抑制する。実施例1~5より分かるように、ブロック共重合体(Z)100質量部に対する化合物(Y)の添加量が0.02~5質量部の場合に膜抵抗上昇値は特に低く、0.03~1質量部の場合に引張破断強さが特に優れる。
 本発明の高分子電解質膜は、非フッ素系材料からなり、生産時および廃棄時の環境負荷が少ない上、柔軟で割れにくく耐熱水性に優れ、固体高分子型燃料電池に用いた場合の運転中の膜抵抗の上昇が少ないため、固体高分子型燃料電池用の高分子電解質膜として好適に用いられる。

Claims (8)

  1.  芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有する重合体ブロック(A)と、不飽和脂肪族炭化水素に由来する構造単位からなり、イオン伝導性基を有さない非晶性の重合体ブロック(B)とを含むブロック共重合体(Z)、1つ以上の水素原子が水酸基で置換された芳香環を分子中に2つ以上有する化合物(X)および下記一般式(1)で示される化合物(Y)を含有する組成物を、成形後に架橋処理してなる高分子電解質膜。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは水酸基、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基またはカルボキシル基を表し、RおよびRはそれぞれ独立して水素原子、水酸基、炭素数1~4のアルキル基、炭素数1~4のアルケニル基、炭素数1~4のアルコキシ基またはカルボキシル基を表す。)
  2.  前記不飽和脂肪族炭化水素が炭素数4~8の共役ジエンである、請求項1に記載の高分子電解質膜。
  3.  前記イオン伝導性基が-SOMまたはPOHM(式中、Mは水素原子、アンモニウムイオンまたはアルカリ金属イオンを表す)で表されるスルホン酸基、ホスホン酸基およびそれらの塩から選ばれる1種以上である、請求項1または2に記載の高分子電解質膜。
  4.  前記化合物(X)の使用量が前記ブロック共重合体(Z)100質量部に対して0.01~25質量部である、請求項1~3のいずれかに記載の高分子電解質膜。
  5.  前記化合物(Y)の使用量が前記ブロック共重合体(Z)100質量部に対して0.02~5質量部である、請求項1~4のいずれかに記載の高分子電解質膜。
  6.  前記化合物(Y)の使用量が前記ブロック共重合体(Z)100質量部に対して0.03~3質量部である、請求項5に記載の高分子電解質膜。
  7.  前記ブロック共重合体(Z)が、さらに、芳香族ビニル化合物に由来する構造単位からなり、イオン伝導性基を有さない重合体ブロック(C)を含む、請求項1~6のいずれかに記載の高分子電解質膜。
  8.  請求項1~7のいずれかに記載の高分子電解質膜を有する固体高分子型燃料電池。
PCT/JP2015/053906 2014-02-20 2015-02-13 高分子電解質膜 WO2015125695A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-031011 2014-02-20
JP2014031011 2014-02-20

Publications (1)

Publication Number Publication Date
WO2015125695A1 true WO2015125695A1 (ja) 2015-08-27

Family

ID=53878200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053906 WO2015125695A1 (ja) 2014-02-20 2015-02-13 高分子電解質膜

Country Status (2)

Country Link
TW (1) TW201534653A (ja)
WO (1) WO2015125695A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3691010A4 (en) * 2017-09-29 2021-06-23 Kolon Industries, Inc. POLYMERIC ELECTROLYTE MEMBRANE, ITS MANUFACTURING PROCESS AND MEMBRANE-ELECTRODES ASSEMBLY CONTAINING IT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210336A (ja) * 2000-01-28 2001-08-03 Kanegafuchi Chem Ind Co Ltd 燃料電池用膜及びそれを使用した燃料電池
JP2006507653A (ja) * 2002-11-07 2006-03-02 ガス、テクノロジー、インスティチュート プロトン交換メンブラン燃料電池用の高安定性メンブラン
JP2013206669A (ja) * 2012-03-28 2013-10-07 Kuraray Co Ltd 高分子電解質膜
WO2014030573A1 (ja) * 2012-08-23 2014-02-27 株式会社クラレ 高分子電解質膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210336A (ja) * 2000-01-28 2001-08-03 Kanegafuchi Chem Ind Co Ltd 燃料電池用膜及びそれを使用した燃料電池
JP2006507653A (ja) * 2002-11-07 2006-03-02 ガス、テクノロジー、インスティチュート プロトン交換メンブラン燃料電池用の高安定性メンブラン
JP2013206669A (ja) * 2012-03-28 2013-10-07 Kuraray Co Ltd 高分子電解質膜
WO2014030573A1 (ja) * 2012-08-23 2014-02-27 株式会社クラレ 高分子電解質膜

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3691010A4 (en) * 2017-09-29 2021-06-23 Kolon Industries, Inc. POLYMERIC ELECTROLYTE MEMBRANE, ITS MANUFACTURING PROCESS AND MEMBRANE-ELECTRODES ASSEMBLY CONTAINING IT
US11444305B2 (en) 2017-09-29 2022-09-13 Kolon Industries, Inc. Polymer electrolyte membrane, method for manufacturing same, and membrane electrode assembly comprising same

Also Published As

Publication number Publication date
TW201534653A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
JPWO2014030573A1 (ja) 高分子電解質膜
TWI451623B (zh) 高分子電解質膜、膜-電極接合體及固體高分子型燃料電池
JP5191139B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP5276442B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
WO2007086309A1 (ja) 固体高分子型燃料電池用電解質積層膜、膜-電極接合体及び燃料電池
WO2006070929A1 (ja) 固体高分子型燃料電池用高分子電解質膜、膜-電極接合体及び燃料電池
JP5629692B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP2010232121A (ja) 電解質複合膜、膜−電極接合体、および固体高分子型燃料電池
JP2013206669A (ja) 高分子電解質膜
JP5188025B2 (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP2007258003A (ja) 高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JPWO2013031634A1 (ja) ブロック共重合体、高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP2010135130A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
JP5706906B2 (ja) 高分子電解質膜、膜−電極接合体、及び固体高分子型燃料電池
JP2014032811A (ja) 高分子電解質膜
WO2015125695A1 (ja) 高分子電解質膜
WO2015125694A1 (ja) 高分子電解質膜
JP5629761B2 (ja) 高分子電解質、高分子電解質膜、膜−電極接合体、および固体高分子型燃料電池
WO2015125697A1 (ja) 高分子電解質膜
WO2015125696A1 (ja) 高分子電解質膜
JP5792018B2 (ja) 高分子電解質膜、膜−電極接合体及び固体高分子型燃料電池
JP2015156315A (ja) 高分子電解質膜の製造方法
JP2010067526A (ja) 固体高分子型燃料電池用高分子電解質膜、膜−電極接合体及び燃料電池
WO2011145588A1 (ja) 高分子電解質及びそれからなる高分子電解質膜
JP2016033174A (ja) スルホン化ポリマーの製造方法並びにこれからなる高分子電解質、高分子電解質膜、および固体高分子型燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP