WO2015122500A1 - 繊維強化プラスチック及びその製造方法 - Google Patents

繊維強化プラスチック及びその製造方法 Download PDF

Info

Publication number
WO2015122500A1
WO2015122500A1 PCT/JP2015/054011 JP2015054011W WO2015122500A1 WO 2015122500 A1 WO2015122500 A1 WO 2015122500A1 JP 2015054011 W JP2015054011 W JP 2015054011W WO 2015122500 A1 WO2015122500 A1 WO 2015122500A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
reinforced plastic
fiber reinforced
resin
prepreg
Prior art date
Application number
PCT/JP2015/054011
Other languages
English (en)
French (fr)
Inventor
正雄 冨岡
石川 健
貴幸 小林
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to US15/117,132 priority Critical patent/US20170190123A1/en
Priority to CN201580008071.9A priority patent/CN105992682B/zh
Priority to JP2015511744A priority patent/JP5975171B2/ja
Priority to KR1020167021292A priority patent/KR101867201B1/ko
Priority to EP15749554.0A priority patent/EP3120984B1/en
Publication of WO2015122500A1 publication Critical patent/WO2015122500A1/ja
Priority to US15/856,938 priority patent/US10773473B2/en
Priority to US16/122,270 priority patent/US11034103B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/10Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/28Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/88Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced
    • B29C70/887Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts characterised primarily by possessing specific properties, e.g. electrically conductive or locally reinforced locally reinforced, e.g. by fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2256/00Wires or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • B29C2043/467Rollers plurality of rollers arranged in a specific manner in relation to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/48Endless belts
    • B29C2043/483Endless belts cooperating with a second endless belt, i.e. double band presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0036Slitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • B29K2105/0881Prepregs unidirectional
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/10Cords, strands or rovings, e.g. oriented cords, strands or rovings
    • B29K2105/101Oriented
    • B29K2105/105Oriented uni directionally
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates to a fiber reinforced plastic and a method for producing the same.
  • the fiber reinforced plastic is formed, for example, by stacking and integrating a plurality of prepreg base materials in which a reinforced fiber is impregnated with a thermoplastic resin.
  • the prepreg base material examples include, for example, a sheet in which continuous reinforcing fibers having a long fiber length are aligned in one direction and impregnated with a thermoplastic resin.
  • a fiber reinforced plastic formed with a prepreg base material using such continuous long reinforcing fibers a structural material having excellent mechanical properties can be produced.
  • the fiber reinforced plastic is a continuous reinforcing fiber, the fluidity at the time of shaping is low, and it is difficult to form into a complicated shape such as a three-dimensional shape. Therefore, when using this fiber reinforced plastic, the structural material to manufacture is mainly limited to the thing close
  • a plurality of prepreg pieces cut out from a narrow tape-like prepreg base material at a certain length are dispersed on a flat surface and integrated by press molding.
  • a method of forming a sheet-like fiber reinforced plastic is disclosed (Patent Document 1).
  • the fiber axis directions of the reinforcing fibers are completely random directions. It is extremely difficult to uniformly disperse the prepreg pieces so as to face the surface. Therefore, even in the same sheet, the fiber reinforced plastic has different mechanical properties such as strength depending on the location and orientation.
  • the structural material is required to have little variation in mechanical properties such as strength and to have isotropic mechanical properties or to have controlled anisotropy.
  • fiber reinforced plastics are required to have good heat resistance.
  • the heat resistance of fiber reinforced plastics is greatly affected by the heat resistance of the matrix resin used in the fiber reinforced plastics.
  • the mechanical properties of a single resin tend to decrease at a temperature equal to or higher than the glass transition temperature of the resin.
  • mechanical properties tend to decrease at temperatures higher than the glass transition temperature of the matrix resin.
  • a resin-rich portion is locally generated. Due to the influence of this resin-rich portion, the fiber reinforced plastic obtained by this method has a problem of poor heat resistance.
  • the fiber reinforced plastic obtained by this method has a problem that when a stress is generated in a direction along the cut shape, the cut portion becomes a starting point of breakage and mechanical properties are lowered.
  • the resin since only the resin is present in the cut portion, there is a problem that heat resistance is inferior at a temperature equal to or higher than the glass transition temperature of the matrix resin as in the method disclosed in Patent Document 1. .
  • the direction of the fiber axis of the reinforcing fiber is different in plan view (for example, 0 ° with respect to the length direction). , 45 °, 90 °, and ⁇ 45 °) must be manufactured separately and laminated.
  • each prepreg base material is rotated at a predetermined rotation angle (0 °, 45 °, 90 °, ⁇ It is necessary to laminate while rotating at 45 °. Therefore, also in this case, the laminating operation is complicated, difficult to control, and the cost increases.
  • Patent Document 7 discloses a method for producing fiber reinforced plastic by dispersing reinforcing fibers by papermaking.
  • the fiber reinforced plastic obtained by this method since the reinforcing fibers are dispersed almost uniformly, the mechanical properties are excellent in isotropy, there is little variation, and the heat resistance is also good.
  • the fiber reinforced plastic obtained by this method since the reinforcing fibers are entangled three-dimensionally, the fluidity at the time of molding is extremely inferior. In addition, the manufacturing process is very complicated and the cost is remarkably inferior.
  • the present invention is a fiber reinforced plastic that can control the isotropy and anisotropy of mechanical properties, is excellent in mechanical properties, has little variation, is excellent in heat resistance, and has good fluidity during shaping.
  • the purpose is to provide. It is another object of the present invention to provide a method for producing fiber reinforced plastic, which can produce the reinforced fiber plastics easily and at low cost.
  • a method for producing a fiber-reinforced plastic comprising the following steps (i) to (iii): (I) A step of obtaining a material (A) including a prepreg base material in which a reinforcing fiber aligned in one direction is impregnated with a matrix resin and a cut is formed so as to intersect the fiber axis.
  • An angle ⁇ formed by the direction of the fiber axis of the reinforcing fiber of the prepreg base material with respect to the orthogonal direction is applied using a pressurizing device that presses the material (A) in a direction orthogonal to the traveling direction.
  • step (ii) is the following step (ii-1).
  • step (ii-1) The material (A) is moved in one direction while being heated to the temperature T by a pressurizing device including at least a pair of press rolls in which the axial direction of the roll is the orthogonal direction. Pressing.
  • step (ii-1) The method for producing a fiber-reinforced plastic according to (2), wherein a heating roll is used as the press roll in the step (ii-1).
  • the fiber reinforced plastic has an elliptical dissociation coefficient ec of 1 ⁇ 10 ⁇ 5 to 9 ⁇ 10 ⁇ 5 in the orientation profile of the carbon fiber on the plane orthogonal to the thickness direction.
  • the fiber-reinforced plastic of the present invention can control the isotropy and anisotropy of mechanical properties, has excellent mechanical properties, has little variation, has excellent heat resistance, and has good fluidity during shaping. It is. According to the method for producing a fiber reinforced plastic of the present invention, it is possible to control isotropy and anisotropy of mechanical properties, excellent mechanical properties, little variation, excellent heat resistance, and at the time of shaping. Can be easily produced at low cost.
  • the angle ⁇ formed by the direction of the fiber axis of the reinforcing fiber of the prepreg base material with respect to the traveling direction of the material (A) is the pressure applied while the material (A) is traveling in step (ii). It is an angle formed by the direction perpendicular to the running direction of the material (A) and the direction of the fiber axis of the reinforcing fiber of the prepreg base material in the material (A).
  • the angle ⁇ is positive in the counterclockwise direction when the material (A) is viewed from above and negative in the clockwise direction.
  • the angle ⁇ And the direction of the fiber axis of the reinforcing fiber of the prepreg base material in the material (A) coincides with the angle formed by the material (A).
  • the method for producing a fiber-reinforced plastic of the present invention is a method having the following steps (i) to (iii).
  • An angle ⁇ formed by the direction of the fiber axis of the reinforcing fiber of the prepreg base material with respect to the orthogonal direction is applied using a pressurizing device that presses the material (A) in a direction orthogonal to the traveling direction.
  • a material (A) containing a prepreg base material is obtained.
  • the material (A) may be a single layer material composed of only one prepreg base material, or may be a prepreg laminate in which two or more prepreg base materials are laminated.
  • the prepreg base material used in step (i) is obtained by impregnating a matrix resin into reinforcing fibers aligned in one direction.
  • the reinforcing fiber is not particularly limited, and for example, a reinforcing fiber having an inorganic fiber, an organic fiber, a metal fiber, or a hybrid structure in which these are combined can be used.
  • the inorganic fiber include carbon fiber, graphite fiber, silicon carbide fiber, alumina fiber, tungsten carbide fiber, boron fiber, and glass fiber.
  • the organic fibers include aramid fibers, high density polyethylene fibers, other general nylon fibers, and polyester fibers.
  • metal fibers include fibers such as stainless steel and iron, and carbon fibers coated with metal may be used. Of these, carbon fibers are preferred in view of mechanical properties such as the strength of the structural material that is the final molded product.
  • the carbon fiber is not particularly limited, and examples thereof include polyacrylonitrile (PAN) -based carbon fiber and PICH-based carbon fiber.
  • a preferred carbon fiber is a carbon fiber having a strand tensile strength measured in accordance with JIS R7601 (1986) of 1.0 GPa or more and 9.0 GPa or less and a strand tensile elastic modulus of 150 GPa or more and 1000 GPa or less. More preferred carbon fibers are carbon fibers having a strand tensile strength of 1.5 GPa or more and 9.0 GPa or less measured according to JIS R7601 (1986) and a strand tensile modulus of 200 GPa or more and 1000 GPa or less.
  • the average fiber diameter of the reinforcing fibers is preferably 1 to 50 ⁇ m, more preferably 5 to 20 ⁇ m.
  • the matrix resin may be a thermoplastic resin or a thermosetting resin.
  • a matrix resin may be used individually by 1 type, and may use 2 or more types together.
  • a thermoplastic resin is preferable.
  • Thermoplastic resins generally have higher toughness values than thermosetting resins, so using a prepreg base material impregnated with a thermoplastic resin as a matrix resin provides a structural material with excellent strength, particularly impact resistance. It becomes easy to be done. Further, since the shape of the thermoplastic resin is determined by cooling and solidification without causing a chemical reaction, when the prepreg base material is used, molding can be performed in a short time, and the productivity is excellent.
  • thermoplastic resin is not particularly limited, and polyamide resin (nylon 6 (melting point: 220 ° C.), nylon 66 (melting point: 260 ° C.), nylon 12 (melting point: 175 ° C.), nylon MXD6 (melting point: 237 ° C.), etc.
  • Polyolefin resin low density polyethylene (melting point: 95 to 130 ° C.), high density polyethylene (melting point: 120 to 140 ° C.), polypropylene (melting point: 168 ° C.), etc.), modified polyolefin resin (modified polypropylene resin (melting point: 160) ⁇ 165 ° C), etc.), polyester resins (polyethylene terephthalate, polybutylene terephthalate, etc.), polycarbonate resins (glass transition temperature: 145 ° C), polyamideimide resins, polyphenylene oxide resins, polysulfone resins, polyethersulfone resins, polyetheretherketone resin Polyetherimide resin, polystyrene resin, ABS resin, polyphenylene sulfide resin, liquid crystal polyester resin, a copolymer of acrylonitrile and styrene, a copolymer of nylon 6 and nylon 66 and the like.
  • modified polyolefin resin low density poly
  • thermoplastic resin is selected from the group consisting of polyolefin resin, modified polypropylene resin, polyamide resin, and polycarbonate resin in terms of the balance between adhesion to reinforcing fiber, impregnation into reinforcing fiber, and raw material cost of thermoplastic resin. It is preferable to include at least one selected.
  • thermosetting resin is not particularly limited, and examples thereof include an epoxy resin, a phenol resin, an unsaturated polyester resin, a urethane resin, a urea resin, a melamine resin, and an imide resin.
  • a thermosetting resin may be used individually by 1 type, and may use 2 or more types together.
  • an epoxy resin, a phenol resin, an unsaturated polyester resin, and an imide resin are preferable from the viewpoint of developing the mechanical properties of the fiber reinforced plastic after the thermosetting resin is cured. From the viewpoint of ease of production, an epoxy resin and an unsaturated polyester resin are more preferable.
  • the prepreg base material used in step (i) has a cut formed so as to intersect the fiber axis.
  • this prepreg base material it is in the state where the reinforced fiber with a long fiber length aligned in one direction was divided by cutting.
  • the longer the reinforcing fiber the more structural material excellent in mechanical properties can be obtained.
  • the fluidity is lowered particularly during stamping molding, so that it becomes difficult to obtain a structural material having a complicated three-dimensional shape.
  • the reinforcing fiber is cut and shortened by making a cut in the prepreg base material, the reinforcing fiber and the matrix resin easily flow even during stamping molding.
  • the shape of the cut formed in the prepreg base material is not particularly limited, and may be, for example, linear, curved, or polygonal.
  • the angle of the cut formed in the prepreg substrate with respect to the fiber axis of the reinforcing fiber is not particularly limited.
  • the length L of the reinforcing fiber cut by the cutting in the prepreg base material is preferably 1 to 100 mm, more preferably 3 to 70 mm, further preferably 5 to 50 mm, particularly preferably 10 to 50 mm, and most preferably 10 to 35 mm. preferable. If the length L of the reinforcing fiber is not less than the lower limit, a fiber-reinforced plastic having sufficient mechanical properties can be easily obtained. If the length L of the reinforcing fiber is less than or equal to the upper limit value, the reinforcing fiber and the matrix resin easily flow during molding. Therefore, the obtained fiber-reinforced plastic is applied to a structural material having a complicated three-dimensional shape such as a rib. Easy to shape.
  • the fiber volume content (Vf) in the prepreg base material is preferably 5 to 70% by volume, more preferably 10 to 60% by volume, and still more preferably 15 to 50% by volume.
  • Vf is equal to or greater than the lower limit, a structural material having sufficient mechanical properties is easily obtained. If Vf is not more than the upper limit value, good fluidity can be easily obtained at the time of shaping.
  • the Vf value of a prepreg base material means the ratio of the volume of the reinforced fiber to the total volume of other components such as reinforcing fibers, matrix resin, and additives (excluding voids) in the prepreg base material. Since the Vf value measured based on JIS K7075 is a value that varies depending on the amount of voids present in the prepreg substrate, a fiber volume content that does not depend on the amount of voids is employed in the present invention.
  • the thickness of the prepreg base material is preferably 50 to 500 ⁇ m. If the thickness of a prepreg base material is more than a lower limit, handling of a prepreg base material will become easy. In addition, when two or more prepreg base materials are laminated to obtain a material (A) having a desired thickness, it is possible to suppress an increase in the number of prepreg base materials, and thus productivity is increased. If the thickness of the prepreg base material is not more than the upper limit value, voids (holes) inside the prepreg base material generated during the production of the prepreg base material can be suppressed, and a fiber-reinforced plastic having sufficient mechanical properties can be easily obtained. . In this invention, the influence which the thickness of a prepreg base material has on the intensity
  • the manufacturing method of a prepreg base material is not specifically limited, A well-known method is employable.
  • the prepreg substrate a commercially available prepreg substrate may be used.
  • the method for forming the cut into the prepreg base material include a method using a laser marker, a cutting plotter, a die cutting, and the like.
  • the method using a laser marker is preferable in that it can be processed at a high speed even when cutting a complicated shape such as a curved line or a zigzag line.
  • the method using a cutting plotter is preferable in that processing is easy even with a large prepreg base material of 2 m or more.
  • the method using a punching die is preferable because it can be processed at high speed.
  • the material (A) is a prepreg laminate
  • fluidity improves in process (ii)
  • the isotropy and anisotropy of a mechanical physical property are controlled, and it becomes easy to obtain the fiber reinforced plastic with few variations in a mechanical physical property.
  • resin used for the said resin layer For example, the same thing as the matrix resin used for a prepreg base material is mentioned.
  • the matrix resin used for the resin layer is preferably the same resin as the matrix resin used for the prepreg substrate.
  • the resin used for the resin layer may be a resin different from the matrix resin used for the prepreg base material.
  • the aspect of laminating the prepreg base material in the step (i) is a step for 66% or more of the prepreg base material with respect to the number of prepreg base materials in the prepreg laminate to be formed.
  • Any mode that satisfies the condition of the angle ⁇ in (ii) may be used. That is, the direction of the fiber axis of the reinforcing fiber of the prepreg substrate is biased to a specific range so that the condition of the angle ⁇ is satisfied in the step (ii) for each prepreg substrate of 66% or more with respect to the number of laminated layers. Stacking may be performed.
  • the direction of the fiber axis of the reinforcing fiber of the prepreg base material is not particularly limited.
  • the angle ⁇ condition is satisfied for all prepreg substrates. Specifically, for example, an embodiment in which two or more prepreg substrates are aligned and laminated so that the fiber axes of the reinforcing fibers of each prepreg substrate are in the same direction.
  • the traveling direction of each material (A) and each prepreg so as to satisfy the condition of the angle ⁇ for each prepreg base material in step (ii). It is easy to control the angular relationship with the direction of the fiber axis of the reinforcing fiber of the base material.
  • the deviation of the fiber axis direction of the reinforcing fiber between the substrates is 40 ° or less, and preferably 10 ° or less.
  • the material (A) is such that the smaller the deviation in the fiber axis direction of the reinforcing fiber between the prepreg substrates that satisfy the angle ⁇ condition, the angle ⁇ condition is satisfied for each prepreg substrate. It becomes easy to control the angular relationship between the traveling direction of the prepreg and the direction of the fiber axis of the reinforcing fiber of each prepreg substrate.
  • the number of laminated prepreg base materials in the prepreg laminate is preferably 2 to 16, and more preferably 4 to 12. If the number of laminated prepreg base materials is equal to or greater than the lower limit, a fiber-reinforced plastic having sufficient mechanical properties can be easily obtained. If the number of laminated prepreg base materials is equal to or less than the upper limit, the laminating work becomes easy and the productivity is excellent.
  • the thickness of the material (A) is preferably 0.25 to 6.0 mm, more preferably 0.4 to 6.0 mm, and still more preferably 0.6 to 4.0 mm. If the thickness of the material (A) is at least the lower limit value, a fiber-reinforced plastic having sufficient mechanical properties can be easily obtained. If the thickness of the material (A) is less than or equal to the upper limit, the direction of the fiber axis of the reinforcing fiber in the material (A) can be more easily randomized by pressurization in the step (ii) described later, It is easy to obtain a fiber-reinforced plastic with controlled anisotropy and little variation in mechanical properties.
  • Step (ii) the material (A) is applied to the material (A) by using a pressurizing device that can press the material (A) in the thickness direction so that the pressurization is substantially uniform over the direction orthogonal to the traveling direction of the material (A). While traveling in one direction, when the melting point is higher than the melting point of the matrix resin, or when it does not have a melting point, the pressure is applied in a state heated to a temperature T higher than the glass transition temperature.
  • step (ii) the angle formed by the direction of the fiber axis of the reinforcing fiber of the prepreg base material in the material (A) with respect to the direction orthogonal to the traveling direction of the material (A) during pressurization by the pressurizer.
  • is set to ⁇ 20 ° to 20 °.
  • the angle of the prepreg substrate is 66% or more of the number of laminated layers even when the fiber axis direction of the reinforcing fiber is deviated between the prepreg substrates. The condition of ⁇ is satisfied.
  • the reinforcing fiber cut by the incision flows together with the matrix resin by pressurizing the material (A) with the pressure device as described above, and the fibers of the reinforcing fiber
  • the direction of the axis changes in various directions.
  • the fiber axis direction of the reinforcing fibers aligned in the same direction in the material (A) is randomized, the isotropic property and anisotropy of the mechanical properties are controlled, and the fiber reinforced plastic has little variation in the mechanical properties. Can be obtained.
  • the angle ⁇ is preferably -5 ° to 5 °. If the angle ⁇ is within the above range, the direction of the fiber axis of the reinforcing fiber in the material (A) is more easily randomized by pressurization with a press roll, and the isotropic and anisotropy of mechanical properties are controlled, and It is easy to obtain a fiber reinforced plastic with little variation in mechanical properties.
  • the temperature T is equal to or higher than the melting point of the matrix resin impregnated in the prepreg base material, or equal to or higher than the glass transition temperature of the matrix resin when the matrix resin does not have a melting point.
  • the temperature T is based on the highest temperature among the melting points or glass transition temperatures of the matrix resins.
  • the temperature T varies depending on the type of the matrix resin, but is preferably 150 to 450 ° C., and more preferably 200 to 400 ° C., as long as the matrix resin melts.
  • the temperature T is within the above range, it is easy to flow the reinforcing fibers and the matrix resin, the isotropy and anisotropy of the mechanical properties are controlled, and the fiber reinforced plastic with little variation in the mechanical properties is easily obtained.
  • the material (A) may be preheated before the material (A) is heated to the temperature T.
  • the preheating temperature is preferably 150 to 400 ° C, more preferably 200 to 380 ° C.
  • the matrix resin of the material (A) may be melted or not melted.
  • the method for preheating the material (A) is not particularly limited, and examples thereof include a method using an IR heater, a circulating hot air oven, and the like.
  • the linear pressure when pressing the material (A) is preferably 3 to 100 N / m, more preferably 5 to 50 N / m. If the linear pressure is within the above range, it is easy to obtain a fiber reinforced plastic in which the isotropy and anisotropy of the mechanical properties are controlled and the mechanical properties are less varied.
  • the time for pressurizing the material (A) is preferably 0.1 to 30 minutes, more preferably 0.5 to 10 minutes.
  • the pressurizing time can be adjusted by the traveling speed of the material (A), the number of press rolls used in the case of using a pressurizing apparatus equipped with a press roll as will be described later.
  • the traveling speed of the material (A) in the step (ii) is preferably 0.1 to 25 m / min, more preferably 0.2 to 20 m / min, and further preferably 0.5 to 15 m / min.
  • the traveling speed of the material (A) is equal to or higher than the lower limit value, the productivity is increased.
  • the travel speed of the material (A) is equal to or less than the upper limit value, it is easy to obtain a fiber reinforced plastic in which the isotropy and anisotropy of the mechanical properties are controlled and the mechanical properties are less varied.
  • the temperature T is set while the material (A) is traveling in one direction by a pressurizing device including at least a pair of press rolls in which the axial direction of the roll is orthogonal to the traveling direction of the material (A).
  • Step (ii-1) in which the pressure is applied in a heated state is preferred.
  • step (ii-1) the axial direction of the pair of press rolls 10 coincides with the direction orthogonal to the traveling direction of the material (A).
  • the pair of press rolls 10 pressurize the material (A) 100 while being heated to the temperature T while traveling in one direction.
  • the angle ⁇ formed by the fiber axis direction Y of the reinforcing fiber 110 of the prepreg base material in the material (A) 100 with respect to the direction X orthogonal to the traveling direction of the material (A) is ⁇ 20 ° to 20 °.
  • the material (A) 100 is pressurized.
  • the axial directions of the upper and lower press rolls are the same.
  • a method of heating the material (A) to the temperature T in the step (ii-1) a method of applying pressure while heating the material (A) using a heating roll as a press roll is preferable. If the state where the material (A) is heated to the temperature T can be secured only by heating before pressing the material (A) and pressurizing with the press roll, use a press roll having no heating function. Also good. In addition, in the case where the material (A) can be heated to the temperature T with only a heating roll used as a press roll, preheating may not be performed.
  • a pair of press rolls may be used in only one stage or in two or more stages.
  • the angle ⁇ is set to ⁇ 20 ° to 20 ° with respect to any press roll.
  • step (ii-1) the material (A) is heated while being passed between at least a pair of belts and passed between at least a pair of press rolls, and the material (A) It is preferable to use a double belt type heating and pressurizing machine that pressurizes. In this case, it is preferable that a release paper or a release film is disposed between the material (A) and the belt, or a release treatment is performed on the belt surface in advance.
  • the material of the belt is not particularly limited, and metal is preferable in terms of heat resistance and durability.
  • the step (ii-1) is not limited to an embodiment performed using the double belt type heating and pressurizing machine. For example, it is good also as an aspect which presses this material (A) with a pair of press roll, running a strip
  • Step (ii) is not limited to an embodiment using a pressurizing device including at least a pair of press rolls.
  • a pressurizing device including at least a pair of press rolls.
  • the pressurization apparatus which presses with a plane and a press roll
  • the pressurization apparatus by the press panel pressed with a plane and a plane
  • a pressurization apparatus provided with a some spherical press.
  • Step (iii) In the step (iii), the material (A) pressed by the pressurizing device in the step (ii) is cooled to obtain a fiber reinforced plastic.
  • the matrix resin is a thermoplastic resin
  • the temperature of the material (A) is lowered to below the melting point of the thermoplastic resin or the glass transition temperature and solidified to obtain a fiber reinforced plastic.
  • the fiber reinforced plastic obtained has a sheet shape in which the prepreg base materials are bonded together. Therefore, even when a prepreg laminate is used, the obtained fiber reinforced plastic is easy to handle.
  • the method for cooling the material (A) is not particularly limited, and examples thereof include a method using a hot water roll. You may employ
  • the cooling time is preferably 0.5 to 30 minutes.
  • the heating and pressurizing machine 1 includes a pair of belts 12 that travel in one direction with the belt-shaped material (A) 100 sandwiched from above and below, a pair of IR heaters 14 that preheat the material (A) 100, and a preheated material.
  • a pair of press rolls 10 that sandwich and press 100 from above and below, and three stages, and a pair of hot water rolls 16 that sandwich and cool the material (A) 100 pressed by the press roll 10 from above and below.
  • a winding roll 18 for winding the fiber reinforced plastic 120 which is solidified by cooling and integrated with each prepreg base material.
  • the pair of press rolls 10 pressurizes the material (A) 100 while rotating in a direction to send the material (A) 100 passing between the pair of press rolls 10 to the downstream side.
  • the pair of hot water rolls cool the material (A) 100 while rotating in a direction to send the material (A) 100 passing between them to the downstream side.
  • the pair of belts 12 are respectively wound around and mounted on a drive roll 20 provided on the upstream side of the IR heater 14 and a driven roll 22 provided on the downstream side of the hot water roll 16, and are rotated by the drive roll 20. Moved.
  • the material (A) 100 travels when the pair of belts 12 rotates while holding the material (A) 100 therebetween.
  • the angle formed by the fiber axis direction of the reinforcing fiber in the material (A) 100 with respect to the roll axis direction is ⁇ 20 ° to 20 °.
  • the strip-shaped material (A) 100 is continuously supplied to the heating and pressurizing machine 1.
  • the belt-shaped material (A) 100 in which the fiber axis direction of the reinforcing fiber is ⁇ 20 ° to 20 ° with respect to the direction perpendicular to the running direction is continuously heated in the length direction.
  • the angle ⁇ is ⁇ 20 ° to 20 °.
  • the material (A) 100 is preheated by the IR heater 14 while traveling so as to pass between the pair of press rolls 10 while being sandwiched by the pair of belts 12, and the material ( A) Pressurization with 100 heated to temperature T.
  • the material (A) 100 the matrix resin and the reinforcing fiber flow, and the direction of the fiber axis of the reinforcing fiber is randomized.
  • the material (A) 100 can be pressurized by the press roll 10 while being heated to the temperature T only by preheating by the IR heater 14, the material (A) 100 is not heated by the press roll 10 without being heated. Only may be performed.
  • step (iii) the material (A) 100 pressed by the press roll 10 is caused to travel so as to pass between the pair of hot water rolls 16 while being sandwiched between the pair of belts 12.
  • the belt-shaped fiber reinforced plastic 120 is obtained by cooling with the roll 16.
  • the obtained fiber reinforced plastic 120 is peeled off from the pair of belts 12 on the downstream side of the driven roll 22 and then wound around the winding roll 18 via the guide roll 24.
  • a double belt type heating and pressing machine such as the heating and pressing machine 1 is advantageous in that a series of steps from heating and pressing to cooling of the material (A) can be easily performed.
  • the reinforcing fiber flows by controlling the angle ⁇ in a specific range in step (ii) and pressurizing the material (A) with a specific pressurizing device.
  • the direction of the fiber axis is randomized.
  • the mechanical properties are excellent, and isotropic and anisotropic properties Can be produced, fiber reinforced plastics with little variation and excellent heat resistance can be produced. Therefore, in the case of continuously producing a belt-like fiber reinforced plastic, it is not necessary to produce prepreg base materials having different fiber axis directions of the reinforcing fibers, and the production is simple and advantageous in terms of cost.
  • the fiber reinforced plastic obtained by the production method of the present invention has high fluidity at the time of shaping because the reinforcing fibers are cut by the cut formed in the prepreg base material, and has a complicated shape such as a three-dimensional shape. It can use suitably for manufacture of the structural material of.
  • the manufacturing method of this invention is not limited to the method using the above-mentioned heating pressurizer 1.
  • FIG. it is good also as a method of supplying a sheet material (A) to a double belt type heating-pressing machine and manufacturing a fiber reinforced plastic of a sheet. Further, a method in which the material (A) is not preheated in the step (ii-1) may be used. Moreover, it is good also as a method of using the double belt type heating pressurization machine provided with two or more pairs of belts.
  • the fiber reinforced plastic using carbon fiber as the reinforcing fiber obtained by the production method of the present invention has better mechanical properties, less variation, and more heat resistance. It is preferable in that it is good and the fluidity at the time of shaping is also better.
  • the carbon fiber reinforced plastic of the present invention is a fiber reinforced plastic containing carbon fibers and a matrix resin, the fiber length of the carbon fibers is 1 to 100 mm, and the degree of orientation pf of the carbon fibers in the direction perpendicular to the thickness direction Is 0.001 to 0.8, and the elliptical divergence coefficient ec of the orientation profile of the carbon fiber on the plane orthogonal to the thickness direction is 1 ⁇ 10 ⁇ 5 to 9 ⁇ 10 ⁇ 5 .
  • the carbon fiber reinforced plastic of the present invention can be obtained by using the carbon fiber as the reinforced fiber by using the above-described method for producing the fiber reinforced plastic of the present invention.
  • the fiber length of the carbon fiber is 1 to 100 mm, preferably 3 to 70 mm, more preferably 5 to 50 mm, still more preferably 10 to 50 mm, and particularly preferably 10 to 35 mm. If the fiber length of the carbon fiber is equal to or greater than the lower limit, necessary mechanical properties are easily obtained. If the fiber length of the carbon fiber is not more than the above upper limit value, the fluidity required at the time of shaping is easily obtained.
  • Orientation degree pf The orientation state of the carbon fibers in the direction perpendicular to the thickness direction in the carbon fiber reinforced plastic of the present invention is represented by the degree of orientation pf.
  • a pf of “0” means that the carbon fibers are oriented in an ideal state in a direction orthogonal to the thickness direction of the carbon fiber reinforced plastic. It shows that the larger the value of pf is, the higher the degree of disturbance of the carbon fiber is toward the outer direction of the surface orthogonal to the thickness direction.
  • Pf in the carbon fiber reinforced plastic of the present invention is 0.001 to 0.8. Although it depends on the fiber length of the carbon fiber, the greater the value of pf, the less the fluidity at the time of shaping due to the entanglement between the carbon fibers and the friction between the carbon fibers. In other words, the more the carbon fibers are distorted in the outward direction of the surface perpendicular to the thickness direction, the more entanglement between the carbon fibers and the friction between the carbon fibers occur, and the fluidity at the time of shaping is difficult to obtain. When the fiber length of the carbon fiber is 1 mm to 100 mm, if the pf is 0.8 or less, sufficient fluidity can be obtained during shaping, and sufficient mechanical properties can be obtained.
  • the lower limit of pf is not particularly limited in terms of the physical properties of the carbon fiber reinforced plastic. However, it is difficult to set pf to 0, and 0.001 or more is a realistic value.
  • the upper limit of pf is preferably 0.5, more preferably 0.3, and further preferably 0.15.
  • a measurement sample 210 having a width of 2 mm is cut out from a carbon fiber reinforced plastic 200 having a thickness of 2 mm, and measurement is performed as follows.
  • the width direction of the measurement sample 210 is the x direction
  • the thickness direction is the y direction
  • the length direction is the z direction.
  • the measurement sample 210 is irradiated with X-rays in the x direction to obtain a one-dimensional orientation profile derived from diffraction on the 002 plane of graphite.
  • a one-dimensional orientation profile derived from diffraction on the 002 plane of graphite is obtained by a method of obtaining a profile in the circumferential direction at the 002 diffraction portion using analysis software after capturing an image using a two-dimensional detector.
  • a one-dimensional orientation profile derived from diffraction on the 002 plane of graphite can also be obtained by fixing the detector at 002 diffraction and rotating the sample 360 °.
  • an actually measured integral value Sx in the x direction is calculated from the obtained one-dimensional orientation profile by the following equation (1).
  • I ( ⁇ ) is the intensity at the azimuth angle ⁇ with reference to the z direction on the yz plane in the one-dimensional orientation profile.
  • Sx takes the maximum value when the carbon fibers are fully oriented in the x direction. Since the carbon fiber has an inclination from the x direction, the value of Sx becomes small.
  • Factors that decrease Sx include a component in the thickness direction in the inclination of the carbon fiber with respect to the x direction and a component in a plane perpendicular to the thickness direction. That is, both the component in the yz plane and the component in the xz plane in the inclination of the carbon fiber with respect to the x direction cause Sx to be reduced.
  • the following operation is performed to remove the influence of the component in the xz plane on the inclination of the carbon fiber. .
  • the measurement sample 210 is irradiated with X-rays in the y direction to obtain a one-dimensional orientation profile derived from diffraction on the 002 plane of graphite.
  • I ( ⁇ ) is normalized by the following equation (2), and the fiber ratio G ( ⁇ ) at the azimuth angle ⁇ is calculated.
  • I ( ⁇ ) is the intensity at the azimuth angle ⁇ with respect to the z direction on the xz plane in the one-dimensional orientation profile.
  • F in the x direction is calculated by the following equation (3).
  • Va is the fiber volume content (Vf) of the carbon fiber in the measurement sample 210.
  • Vb is the fiber volume content (Vf) of the carbon fiber in the standard sample for correction described later.
  • a ( ⁇ ) is an intensity correction coefficient.
  • the intensity correction coefficient A ( ⁇ ) is obtained as follows.
  • a standard sample for correction a UD material having a thickness of 2 mm in which carbon fibers are aligned in one direction so as to be completely oriented in the z direction is prepared, and this is used as a 0 ° material.
  • the carbon fiber and matrix resin used for the standard sample are the same type as the measurement sample 210.
  • Va which is the fiber volume content (Vf) of the carbon fiber in the measurement sample 210
  • Vb which is the fiber volume content (Vf) of the carbon fiber in the correction standard sample are the same or different. May be.
  • a 15 ° material is produced in the same manner as the 0 ° material, except that the carbon fibers are aligned in one direction so that the azimuth angle ⁇ is completely oriented in the direction of 15 °.
  • a ° material, a 75 ° material, and a 90 ° material are prepared.
  • a standard measurement sample having a width of 2 mm is cut out from each standard sample in the same manner as the measurement sample 210.
  • X-rays are incident on the standard measurement sample in the x direction to obtain a one-dimensional orientation profile derived from diffraction on the 002 plane of graphite.
  • the strength is a substantially constant value.
  • the integral value S ( ⁇ ) of the strength I ( ⁇ , ⁇ ) of the material at the azimuth angle ⁇ is calculated by the following equation (4).
  • I ( ⁇ , ⁇ ) is the intensity at the azimuth angle ⁇ for the standard measurement sample with the azimuth angle ⁇ .
  • the integral value correction coefficient B (Sx) is calculated using the standard sample.
  • a standard measurement sample is cut out from each standard sample in the same manner as the calculation of the intensity correction coefficient A ( ⁇ ).
  • the actual measurement integrated value Sx ( ⁇ ) is calculated by the above-described method for calculating the actual measurement integrated value in the x direction. ⁇ is 0 °, 15 °, 30 °, 45 °, 60 °, 75 °, and 90 °.
  • the predicted integrated value F ( ⁇ ) in the x direction is obtained by the above-described method for calculating the predicted integrated value in the x direction.
  • the horizontal axis represents Sx ( ⁇ )
  • the vertical axis represents Sx ( ⁇ ) / F ( ⁇ )
  • there is a high correlation and a linear approximation is defined as an integral correction coefficient B (Sx).
  • the predicted integrated value F in the x direction is multiplied by the integral correction coefficient B (Sx) to obtain the predicted integrated intensity F ′ for correction in the x direction.
  • Elliptic deviation coefficient ec The dispersibility of the two-dimensional orientation of the carbon fiber in the plane orthogonal to the thickness direction in the carbon fiber reinforced plastic in the present invention can be expressed as an elliptical divergence coefficient ec of the orientation profile of the carbon fiber on the plane. ec is a deviation coefficient from the approximate ellipse of the orientation profile.
  • the ec of the carbon fiber reinforced plastic of the present invention is 1 ⁇ 10 ⁇ 5 to 9 ⁇ 10 ⁇ 5 .
  • the larger ec means that the variation in mechanical properties is larger. If ec is 9 ⁇ 10 ⁇ 5 or less, variations in mechanical properties can be suppressed.
  • the ec of the carbon fiber reinforced plastic of the present invention is preferably 8.5 ⁇ 10 ⁇ 5 or less, and more preferably 8 ⁇ 10 ⁇ 5 or less.
  • the preferable lower limit of ec is not particularly limited in terms of mechanical properties of the carbon fiber reinforced plastic.
  • a preferable lower limit value of ec according to the fiber length of carbon fiber is as follows.
  • ec is preferably 1 ⁇ 10 ⁇ 5 or more.
  • ec is preferably 1.5 ⁇ 10 ⁇ 5 or more.
  • ec is preferably 2 ⁇ 10 ⁇ 5 or more.
  • ec is preferably 3 ⁇ 10 ⁇ 5 or more.
  • ec is preferably 4 ⁇ 10 ⁇ 5 or more.
  • a is an ellipse major axis.
  • b is the minor axis of the ellipse.
  • is the rotation angle.
  • A, b, and ⁇ when Ia ( ⁇ ) is closest to I ( ⁇ ) may be numerically calculated so that the degree of deviation R from the ellipse represented by the following equation (7) is minimized.
  • the minimum value of the divergence degree R at that time is defined as ec.
  • the three-dimensional dispersion of the carbon fiber in the carbon fiber reinforced plastic of the present invention is represented by the dispersion parameter dp of the carbon fiber in the cross section in the thickness direction of the carbon fiber reinforced plastic.
  • the dp of “100” means that the carbon fibers are dispersed in the matrix resin in an ideal state. It means that the smaller the value of dp, the higher the proportion of carbon fibers that are locally aggregated, and the higher the proportion of resin-rich portions.
  • the dp of the carbon fiber reinforced plastic of the present invention is preferably 80-100.
  • the dp of the carbon fiber reinforced plastic of the present invention is preferably 84 or more, and more preferably 88 or more.
  • the upper limit of dp of the carbon fiber reinforced plastic of the present invention is 100 in theory. A practical upper limit value of dp is 98 from the viewpoint of manufacturing.
  • the fluidity at the time of shaping of the carbon fiber reinforced plastic is caused by the flow of the resin or the sliding of the resin layer at the time of shaping.
  • the wider the path through which the resin in the carbon fiber reinforced plastic can flow the higher the fluidity at the time of shaping. That is, the smaller the dp, the higher the fluidity during shaping.
  • the carbon fiber reinforced plastic of the present invention by controlling pf within the above-described range, high fluidity is exhibited even if the value of dp is high.
  • the dp can be measured by processing a cross-sectional photograph in the thickness direction of a sample piece cut out from the carbon fiber reinforced plastic using image editing software. Specifically, for example, a sample piece is cut out from a carbon fiber reinforced plastic, and a cross-sectional photograph of the sample piece is taken. For example, an optical microscope can be used for taking a cross-sectional photograph. From the viewpoint that the accuracy of evaluation by dp becomes higher, the dot pitch in the resolution at the time of photographing is preferably 1/10 or less of the diameter of the carbon fiber, more preferably 1/20 or less.
  • the cut photograph is processed as follows using image editing software.
  • a portion corresponding to a rectangular range of 2 mm in the thickness direction and 1.5 mm in the direction orthogonal to the thickness direction in the cross section of the sample piece is set as a processing target image.
  • the image editing software binarizes the carbon fiber portion, the resin portion, and the void portion in the processing target image. For example, in the processing target image in which the carbon fiber portion is white, the resin portion is gray, and the void portion is black, the binarization is performed with the carbon fiber portion being black and the resin portion and the void portion being green.
  • the length La of one side is obtained by the following equation (8).
  • the carbon fibers are completely theoretically dispersed as shown in FIG. 4 in the carbon fiber portion of the processing target image after binarization.
  • the radius of the carbon fiber is increased by the length Le represented by the following formula (9), and binarization is performed by image editing software so that the radius of the carbon fiber becomes La.
  • the later carbon fiber portion is expanded.
  • Le is a distance that is half the distance at which the distance between the outer wall surfaces of adjacent carbon fibers is the farthest in a state where the carbon fibers are ideally dispersed. If the above-described expansion processing is performed when the carbon fibers are actually ideally dispersed in the binarized carbon fiber portion, the carbon fiber portion occupies the entire area of the processing target image.
  • dp is calculated by the following equation (10).
  • S1 is the area of the carbon fiber portion after the expansion processing in the processing target image.
  • S2 is the entire area of the processing target image.
  • the carbon fiber and the matrix resin constituting the carbon fiber reinforced plastic of the present invention are as described in the above-described method for producing the fiber reinforced plastic.
  • the fiber volume content (Vf) of the carbon fiber in the carbon fiber reinforced plastic is preferably 5 to 70% by volume, more preferably 10 to 60% by volume, and further preferably 15 to 50% by volume. If the Vf of the carbon fiber is not more than the above upper limit value, it is difficult for the interface strength to decrease due to the toughness decrease, and the fluidity at the time of molding hardly decreases. If the Vf of the carbon fiber is equal to or more than the lower limit value, the mechanical properties required as a fiber reinforced plastic are easily obtained.
  • the Vf value of the fiber reinforced plastic means the ratio of the reinforced fiber to the total volume of the reinforced fiber, the matrix resin, and other components such as additives excluding voids (gas) in the fiber reinforced plastic. Since the Vf value measured based on JIS K7075 varies depending on the amount of voids present in the fiber reinforced plastic, the present invention employs a fiber volume content that does not depend on the amount of voids present.
  • the carbon fiber reinforced plastic of the present invention may contain other reinforcing fibers and additives other than carbon fiber as long as the object of the present invention is not impaired.
  • other reinforcing fibers include glass fibers, organic fibers, and metal fibers.
  • the additive include non-fibrous fillers, flame retardants, pigments, mold release agents, plasticizers, and surfactants.
  • the thickness of the carbon fiber reinforced plastic of the present invention is preferably 0.1 to 10.0 mm, and more preferably 0.25 to 6.0 mm.
  • the thickness is equal to or less than the upper limit, the matrix resin hardly protrudes during pressurization in the step (ii), and thickness control is easy. If the thickness is equal to or greater than the lower limit, shear stress is likely to be applied during pressurization in the step (ii), and it becomes easy to randomize the carbon fibers and control the isotropic and anisotropy of the mechanical properties. .
  • the test was implemented at room temperature (23 degreeC) and 80 degreeC.
  • the standard deviation was calculated from the measured value of the bending strength, and the standard deviation was divided by the average value, thereby calculating the coefficient of variation (CV value, unit:%) which is a variation index.
  • the bending strength ratio ⁇ A / ⁇ B was calculated.
  • (sigma) A is the bending strength measured at room temperature about the bending test piece which made the longitudinal direction MD direction at the time of fiber reinforced plastic manufacture.
  • ⁇ B is a bending strength measured at room temperature for a bending test piece in which the longitudinal direction is the TD direction at the time of manufacturing the fiber-reinforced plastic.
  • the bending strength ratio ⁇ C / ⁇ D was calculated.
  • (sigma) C is an average value of the bending strength measured at 80 degreeC about the bending test piece which made the longitudinal direction MD direction at the time of fiber reinforced plastic manufacture, and the bending test piece made into TD direction.
  • ⁇ D is an average value of bending strength measured at room temperature for a bending test piece whose longitudinal direction is the MD direction at the time of manufacturing the fiber-reinforced plastic and a bending test piece having the TD direction.
  • the bending strength ratio ⁇ A / ⁇ B the case where the isotropic property was clearly bad and the bending strength ratio ⁇ A / ⁇ B was 5 or more or 0.2 or less was evaluated as “x”.
  • a plate-like product having a length of 78 mm and a width of 78 mm was cut out from the obtained fiber-reinforced plastic.
  • the plate-like product is stacked to a thickness of about 4 mm, heated for 10 minutes at 230 ° C using a mini test press (product name: MP-2FH, manufactured by Toyo Seiki), and then pressed for 60 seconds under conditions of 145 ° C and 5 MPa. did.
  • the initial thickness h A (mm) before press molding and the final thickness h B (mm) after press molding were measured, and the fluidity was evaluated by the ratio h A / h B obtained by dividing the initial thickness by the final thickness.
  • x indicates that the ratio h A / h B is less than 1.1.
  • a plate-like thing may increase thickness at the time of a heating by the residual stress of the reinforced fiber in a plate-like thing called a spring back. The case where the original thickness was not restored by press molding after springback at 230 ° C. for 10 minutes was also evaluated as “x”.
  • a portion corresponding to a range of 2 mm in the thickness direction and 0.5 mm in the direction perpendicular to the thickness direction in the cross section of the sample piece was used as the processing target image.
  • dp was calculated according to the dp measurement method described above. The calculation of dp was performed at five points in the cross section of each sample piece, and the average value was obtained.
  • Carbon fiber Mitsubishi Rayon Pyrofil TR 50S, carbon fiber diameter 7 ⁇ m was aligned in one direction and in a planar shape to obtain a fiber sheet having a basis weight of 72 g / m 2 .
  • the fiber sheet was sandwiched from both sides by a film having a basis weight of 36 g / m 2 made of acid-modified polypropylene resin (Modick P958V, MFR50 manufactured by Mitsubishi Chemical).
  • a prepreg base material-1 having a fiber volume content (Vf) of 33% by volume and a thickness of 120 ⁇ m.
  • Example 1 From the prepreg base material-1 obtained in Production Example 1, a rectangular prepreg base material of 220 mm (in the direction of 0 ° with respect to the fiber axis) ⁇ 900 mm (in the direction of 90 ° with respect to the fiber axis) was cut out. Using a cutting plotter (Lezac L-2500 cutting plotter), the prepreg base material was cut so that the absolute value of the angle ⁇ formed with the fiber axis of the reinforcing fiber was 45 ° and the fiber length L of the reinforcing fiber was 25 mm. A cut having a depth for cutting the reinforcing fiber was made to obtain a prepreg base material with a cut.
  • a cutting plotter Lezac L-2500 cutting plotter
  • the pressurizing device includes a two-stage press roll in which the axial direction of the roll coincides with the direction orthogonal to the traveling direction of the material (A), and the upper and lower belts are driven at 1.0 m / min.
  • a double belt heating and pressing machine was used.
  • the prepreg laminate was put into the double belt heating and pressurizing machine so that the angle ⁇ formed by the fiber axis direction of the reinforcing fiber in each prepreg base material-1 with respect to the orthogonal direction was 0 °.
  • the prepreg laminate is heated by a two-stage press roll under conditions of a roll temperature of 270 ° C. and a linear pressure of 10.7 N / m, and the thermoplastic resin is melted and pressurized. .
  • the fiber reinforced plastic was obtained by allowing the thermoplastic resin to solidify by passing through a 1.5 m cooling section equipped with a one-stage hot water roll having a roll temperature of 30 ° C. and a linear pressure of 2.5 N / m.
  • the running speed of the prepreg laminate is the same as the belt driving speed.
  • Table 1 The mechanical properties of the fiber reinforced plastic were good and there were few variations. Further, the bending strength ratio ⁇ C / ⁇ D was 0.5 or more, and the heat resistance of the fiber reinforced plastic was good. The ratio h A / h B was 1.5, and the fluidity of the fiber reinforced plastic was good.
  • Example 2 A fiber-reinforced plastic was obtained in the same manner as in Example 1, except that 16 prepreg base materials with cuts were laminated so that the fiber axes of the reinforcing fibers were in the same direction to obtain a prepreg laminate having a thickness of 1.9 mm. .
  • the results of evaluating the mechanical properties of the fiber reinforced plastic are shown in Table 1. The mechanical properties of the fiber reinforced plastic were good and there were few variations. Further, the bending strength ratio ⁇ C / ⁇ D was 0.5 or more, and the heat resistance of the fiber reinforced plastic was good.
  • Example 3 A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the absolute value of the angle ⁇ formed by the fiber axis direction of the reinforcing fiber and the cutting direction was 30 °.
  • the results of evaluating the mechanical properties of the fiber reinforced plastic are shown in Table 1. The mechanical properties of the fiber reinforced plastic were good and there were few variations. Further, the bending strength ratio ⁇ C / ⁇ D was 0.5 or more, and the heat resistance of the fiber reinforced plastic was good.
  • Example 4 A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the absolute value of the angle ⁇ formed by the fiber axis direction of the reinforcing fiber and the cutting direction was 60 °. The results of evaluating the mechanical properties of the fiber reinforced plastic are shown in Table 1. The mechanical properties of the fiber reinforced plastic were good and there were few variations. Further, the bending strength ratio ⁇ C / ⁇ D was 0.5 or more, and the heat resistance of the fiber reinforced plastic was good.
  • Example 5 The absolute value of the angle ⁇ formed by the fiber axis direction of the reinforcing fiber and the cutting direction is 60 °, and four prepreg base materials with cuts are laminated so that the fiber axis of the reinforcing fiber is in the same direction.
  • a fiber reinforced plastic was obtained in the same manner as in Example 1 except that a 0.5 mm prepreg laminate was used. The results of evaluating the mechanical properties of the fiber reinforced plastic are shown in Table 1. The mechanical properties of the fiber reinforced plastic were good and there were few variations.
  • Example 6 The absolute value of the angle ⁇ formed by the fiber axis direction of the reinforcing fiber and the cutting direction is 60 °, and 16 prepreg base materials with cuts are laminated so that the fiber axis of the reinforcing fiber is in the same direction.
  • a fiber reinforced plastic was obtained in the same manner as in Example 1 except that a 1.9 mm prepreg laminate was used. The results of evaluating the mechanical properties of the fiber reinforced plastic are shown in Table 1. The mechanical properties of the fiber reinforced plastic were good and there were few variations. Further, the bending strength ratio ⁇ C / ⁇ D was 0.5 or more, and the heat resistance of the fiber reinforced plastic was good.
  • Example 7 A fiber-reinforced plastic was obtained in the same manner as in Example 1, except that the absolute value of the angle ⁇ formed by the fiber axis direction of the reinforcing fiber and the cutting direction was 90 °.
  • the results of evaluating the mechanical properties of the fiber reinforced plastic are shown in Table 1. The mechanical properties of the fiber reinforced plastic were good and there were few variations. Further, the bending strength ratio ⁇ C / ⁇ D was 0.5 or more, and the heat resistance of the fiber reinforced plastic was good.
  • Example 8 A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the fiber length L of the reinforced fiber was 12.5 mm. The results of evaluating the mechanical properties of the fiber reinforced plastic are shown in Table 1. The mechanical properties of the fiber reinforced plastic were good and there were few variations. Further, the bending strength ratio ⁇ C / ⁇ D was 0.5 or more, and the heat resistance of the fiber reinforced plastic was good.
  • Example 9 A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the running speed of the prepreg laminate was 0.5 m / min. The fact that the traveling speed of the prepreg laminate is halved compared to Example 1 means that the pressure heating time is substantially doubled.
  • the results of evaluating the mechanical properties of the fiber reinforced plastic are shown in Table 2. The mechanical properties of the fiber reinforced plastic were good and there were few variations. Further, the bending strength ratio ⁇ C / ⁇ D was 0.5 or more, and the heat resistance of the fiber reinforced plastic was good. In addition, the bending strength ratio ⁇ A / ⁇ B was 0.83, and the mechanical properties of the fiber reinforced plastic became anisotropic.
  • Example 10 A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the running speed of the prepreg laminate was 2.0 m / min. The fact that the traveling speed of the prepreg laminate is doubled compared to Example 1 means that the pressure heating time is substantially halved.
  • the results of evaluating the mechanical properties of the fiber reinforced plastic are shown in Table 2. The mechanical properties of the fiber reinforced plastic were good and there were few variations. Further, the bending strength ratio ⁇ C / ⁇ D was 0.5 or more, and the heat resistance of the fiber reinforced plastic was good. In addition, the bending strength ratio ⁇ A / ⁇ B was 0.37, and the mechanical properties of the fiber reinforced plastic were specifically strong in one direction.
  • Example 11 Except for cutting out a rectangular prepreg base material of 220 mm (in the direction of 30 ° with respect to the fiber axis) ⁇ 900 mm (in the direction of ⁇ 75 ° with respect to the fiber axis) from the prepreg base material-1, the same procedure as in Example 1 was performed. A notched prepreg substrate was obtained. Eight prepreg base materials with cuts were laminated so that the fiber axes of the reinforcing fibers were in the same direction to obtain a prepreg laminate having a thickness of 1.0 mm. A fiber reinforced plastic was obtained in the same manner as in Example 1 except that the prepreg laminate was put into a double belt type heating and pressing machine so that the angle ⁇ was 15 °.
  • the results of evaluating the mechanical properties of the fiber reinforced plastic are shown in Table 2.
  • the mechanical properties of the fiber reinforced plastic were good and there were few variations. Further, the bending strength ratio ⁇ C / ⁇ D was 0.5 or more, and the heat resistance of the fiber reinforced plastic was good.
  • Example 12 A fiber reinforced plastic was obtained in the same manner as in Example 1 except that four prepreg base materials with cuts were laminated so that the fiber axes of the reinforcing fibers were in the same direction to obtain a prepreg laminate having a thickness of 0.5 mm. .
  • the ratio h A / h B of the fiber reinforced plastic was 1.5, and the fluidity of the fiber reinforced plastic was good.
  • 298 mm square plate pieces were cut out from the obtained fiber reinforced plastic, and four pieces of the plate pieces were laminated.
  • the laminate was placed in a stamping die having a 300 mm square and a depth of 15 mm, heated to 200 ° C., and then subjected to a multi-stage press (compression molding machine manufactured by Shindo Metal Industry, product name: SFA-50HH0).
  • the plate was heated and pressed at a pressure of 0.1 MPa for 2 minutes with a 200 ° C. surface. Thereafter, the laminate was cooled to room temperature under the same pressure to obtain a plate-like fiber reinforced plastic having a thickness of 2 mm.
  • Pf, ec and dp were measured for the obtained fiber reinforced plastic having a thickness of 2 mm.
  • Table 3 shows the results of evaluating the mechanical properties of the fiber reinforced plastic having a thickness of 2 mm.
  • the mechanical properties of the fiber reinforced plastic were good and there were few variations. Further, the bending strength ratio ⁇ C / ⁇ D was 0.5 or more, and the heat resistance of the fiber reinforced plastic was good. The ratio h A / h B was 1.5, and the fluidity of the fiber reinforced plastic was good.
  • Example 13 A fiber-reinforced plastic plate having a thickness of 2 mm was obtained in the same manner as in Example 12 except that the prepreg substrate-2 was used instead of the prepreg substrate-1.
  • Table 3 shows the results of evaluating the mechanical properties of the fiber reinforced plastic having a thickness of 2 mm. The mechanical properties of the fiber reinforced plastic were good and there were few variations. Further, the bending strength ratio ⁇ C / ⁇ D was 0.5 or more, and the heat resistance of the fiber reinforced plastic was good. The ratio h A / h B was 2.2, and the fluidity of the fiber reinforced plastic was good.
  • Example 1 A fiber reinforced plastic was obtained in the same manner as in Example 1, except that the prepreg base material cut out from the prepreg base material-1 was not cut. The results of evaluating the mechanical properties of the fiber reinforced plastic are shown in Table 2. The fiber reinforced plastic clearly lacks the isotropy of mechanical properties, is uncontrollable, and has low fluidity.
  • the stamping die on which the chopped strand prepreg is laminated is heated to 200 ° C., it is 0.1 MPa by a multi-stage press machine (compression molding machine manufactured by Shinfuji Metal Industry Co., Ltd., product name: SFA-50HH0) with a surface of 200 ° C. Heated and pressurized for 2 minutes at pressure. Thereafter, the laminate was cooled to room temperature under the same pressure, and a plate-like fiber reinforced plastic having a thickness of 2 mm was obtained. Pf, ec and dp were measured for the obtained fiber reinforced plastic having a thickness of 2 mm. The results of evaluating the mechanical properties of the fiber reinforced plastic are shown in Table 3. The fiber reinforced plastic had large variations in mechanical properties and lacked heat resistance.
  • a prepreg base material of 300 mm square is cut out from the prepreg base material-1, and using a cutting plotter (product name: L-2500, made by Rezac Co., Ltd.), linear incisions are made at regular intervals, and the prepreg base material with the incision is provided.
  • the fiber length of the carbon fiber is 25.0 mm
  • the cutting length is 20.0 mm
  • each notched prepreg base material is 0 ° / 45 ° / 90 ° / ⁇ 45 ° / ⁇ 45 ° / 90 ° / 45 ° / 0 ° from above.
  • the layers were laminated so as to be / 0 ° / 45 ° / 90 ° / ⁇ 45 ° / ⁇ 45 ° / 90 ° / 45 ° / 0 °.
  • the laminated prepreg base materials with cuts are spot welded with an ultrasonic welder (product name: 2000LPt, manufactured by Nippon Emerson Co., Ltd.), and a quasi-isotropic ([0/45/90 / -45] s2) prepreg A laminate was produced.
  • the prepreg laminate was placed in a 300 mm square and 15 mm deep stamping die, heated to 200 ° C., and then placed in a multi-stage press (compression molding machine manufactured by Shindo Metal Industries, product name: SFA-50HH0). The plate was heated and pressurized at a pressure of 0.1 MPa for 2 minutes with a 200 ° C. surface.
  • the laminate was cooled to room temperature under the same pressure, and a plate-like fiber reinforced plastic having a thickness of 2 mm was obtained.
  • Pf, ec and dp were measured for the obtained fiber reinforced plastic having a thickness of 2 mm.
  • the results of evaluating the mechanical properties of the fiber reinforced plastic are shown in Table 3.
  • the fiber reinforced plastic was inferior in heat resistance.
  • the obtained dispersion was poured into a 100 cm square mesh frame, and after the polyethylene oxide aqueous solution was filtered, moisture was completely removed in a dryer at 120 ° C. to obtain a fiber volume content of 20 vol% (fiber mass content of 33 mass). %) And a basis weight of 1.11 kg / m 2 was obtained.
  • the obtained prepreg base material was cut into 30 cm square, and two sheets were stacked to obtain a prepreg laminate.
  • the prepreg laminate was placed in a stamping die of 300 mm square and 15 mm depth, heated to 200 ° C., and then placed in a multistage press (compression molding machine manufactured by Shindo Metal Industries, product name: SFA-50HH0).
  • the plate was heated and pressurized at a pressure of 0.1 MPa for 2 minutes with a 200 ° C. surface. Thereafter, the prepreg laminate was cooled to room temperature under the same pressure to obtain a plate-like fiber reinforced plastic having a thickness of 2 mm. Pf, ec and dp were measured for the obtained fiber reinforced plastic having a thickness of 2 mm. The results of evaluating the mechanical properties of the fiber reinforced plastic are shown in Table 3. The fiber reinforced plastic was inferior in fluidity.
  • the obtained prepreg base material was cut into 30 cm square, and two sheets were stacked to obtain a prepreg laminate.
  • a plate-like fiber reinforced plastic having a thickness of 2 mm was obtained in the same manner as in Comparative Example 7.
  • the results of evaluating the mechanical properties of the fiber reinforced plastic are shown in Table 3.
  • the fiber reinforced plastic was inferior in fluidity.
  • the fiber reinforced plastic obtained by the production method of the present invention is excellent in formability to complicated three-dimensional shapes such as ribs and bosses, and can be molded in a short time.
  • the fiber reinforced plastic has excellent mechanical properties that can be applied to the structural material after shaping, has little variation, and can control isotropy and anisotropy. Therefore, the fiber reinforced plastic is suitably used for aircraft members, automobile members, wind turbine members for wind power generation, sports equipment, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Reinforced Plastic Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

 異方性をコントロールすることができ、機械特性に優れ、バラつきが少なく、かつ耐熱性にも優れ、また賦形時の流動性が良好な繊維強化プラスチックを得ることを目的とする。一方向に引き揃えた強化繊維110に熱可塑性樹脂が含浸された切込み入りのプリプレグ基材を含む材料(A)100を得る工程と、材料(A)100の走行方向に対する直交方向Xに略均一に加圧する加圧装置を用い、前記直交方向X対して前記プリプレグ基材の強化繊維110の繊維軸の方向Yがなす角度θを-20°~20°として、材料(A)100を一方向に走行させつつ所定の温度Tに加熱した状態で加圧する工程と、加圧装置で加圧された材料(A)100を冷却して繊維強化プラスチックを得る工程と、を有する繊維強化プラスチックの製造方法。

Description

繊維強化プラスチック及びその製造方法
 本発明は、繊維強化プラスチック及びその製造方法に関する。
 本願は、2014年2月14日に、日本に出願された特願2014-026641号に基づき優先権を主張し、その内容をここに援用する。
 航空機部材、自動車部材、風力発電用風車部材、スポーツ用具等の様々な分野において、シート状の繊維強化プラスチックをスタンピング成形により賦形した構造材が広く用いられている。該繊維強化プラスチックは、例えば、強化繊維に熱可塑性樹脂を含浸したプリプレグ基材が複数枚積層されて一体化されることで形成される。
 プリプレグ基材としては、例えば、連続した繊維長の長い強化繊維を一方向に引き揃えたものに、熱可塑性樹脂を含浸してシート状にしたものが挙げられる。このような連続した長い強化繊維を用いたプリプレグ基材で形成した繊維強化プラスチックでは、優れた機械物性を有する構造材を製造できる。しかし、該繊維強化プラスチックでは、連続した強化繊維であるがゆえに賦形時の流動性が低く、3次元形状等の複雑な形状に賦形することが難しい。そのため、該繊維強化プラスチックを用いる場合、製造する構造材は主として平面形状に近いものに限られる。
 賦形時の流動性を高くする方法としては、例えば、幅の狭いテープ状のプリプレグ基材から一定の長さで切り出した複数のプリプレグ片を平面上に分散させ、それらをプレス成形で一体化させてシート状の繊維強化プラスチックとする方法が開示されている(特許文献1)。
 しかし、該方法では、空気によってプリプレグ片を飛翔させたり、液状流体内でプリプレグ片を拡散させた後に堆積させることで該プリプレグ片を分散させるため、強化繊維の繊維軸方向が完全にランダムな方向に向くようにプリプレグ片を均一に分散させることは極めて難しい。そのため、同一シート内においても場所や向きによって強度等の機械物性が異なる繊維強化プラスチックとなる。構造材には、強度等の機械物性のバラつきが少なく、かつ、機械物性が等方性であるか、もしくはその異方性がコントロールされていることが求められることが多い。しかし、該方法では、機械物性の等方性が良好であるか、もしくは異方性がコントロールされて、さらに機械物性のバラつきが少ない繊維強化プラスチックを得ることは困難である。
 加えて、繊維強化プラスチックには良好な耐熱性も求められる。一般的に繊維強化プラスチックの耐熱性は、繊維強化プラスチックに用いられるマトリックス樹脂の耐熱性の影響を大きく受ける。通常、樹脂単体の機械物性は、その樹脂のガラス転移温度以上の温度においては、低下する傾向にある。繊維強化プラスチックにおいても同様に、マトリックス樹脂のガラス転移温度以上の温度においては、機械物性が低下する傾向にある。この機械物性の低下を最小限に抑えるためには、繊維強化プラスチックにおいて強化繊維をマトリックス樹脂中に均一に分散させる必要がある。しかし、前記方法では、堆積されたプリプレグ片を加熱して一体化させる工程において、堆積したプリプレグ片の隙間に、溶融したマトリックス樹脂のみが流れ込む。そのため、得られた繊維強化プラスチックにおいては、局所的に樹脂リッチな部分が生じる。この樹脂リッチ部分の影響で、該方法で得られた繊維強化プラスチックは、耐熱性が劣る問題がある。
 一方向に引き揃えた強化繊維に熱可塑性樹脂を含浸させ、さらに繊維軸に交差するように切込みを形成したプリプレグ基材を複数枚積層し、それらを一体化させて繊維強化プラスチックとする方法も開示されている(特許文献2~6)。該方法で得られる繊維強化プラスチックは、プリプレグ基材に切込みが形成されて強化繊維が分断されていることから、賦形時に良好な流動性が得られる。また、強化繊維の繊維軸の方向が特定の方向に偏らないように、例えば繊維軸の方向が平面視で45°ずつずれるように複数枚のプリプレグ基材を積層することで、機械物性の等方性が良好でかつバラつきの少ない繊維強化プラスチックを得ることができる。また繊維軸の方向を任意の方向に揃えて積層することで、異方性をコントロールすることもできる。
 しかし、該方法で得られた繊維強化プラスチックは、切込み形状に沿った方向に応力が生じた場合に、この切込み部分が破壊の起点となり機械物性が低下する問題がある。また、この切込み部分には実質的に樹脂のみが存在するため、マトリックス樹脂のガラス転移温度以上の温度においては、上記特許文献1に開示されている方法と同様に、耐熱性が劣る問題がある。
 また該方法では、機械物性の等方性が良好な帯状の繊維強化プラスチックを連続的に製造する場合、平面視で強化繊維の繊維軸の方向が異なる方向(例えば長さ方向に対して0°、45°、90°、-45°)にされた帯状のプリプレグ基材を別々に製造してそれらを積層する必要がある。そのため、製造工程が煩雑で制御も難しくなり、コストが高くなる。また、枚葉の繊維強化プラスチックを製造する場合も、平面視で強化繊維の繊維軸の方向が偏らないように各プリプレグ基材を随時所定の回転角度(0°、45°、90°、-45°等)で回転させながら積層する必要がある。そのため、この場合も積層作業が煩雑で制御も難しく、コストが高くなる。
 特許文献7には、強化繊維を抄紙により分散させて繊維強化プラスチックを製造する方法が開示されている。該方法で得られた繊維強化プラスチックでは、強化繊維がほぼ均一に分散しているため、機械物性は等方性に優れ、かつバラつきが少なく、また耐熱性も良好である。
 しかし、該方法で得られた繊維強化プラスチックにおいては、強化繊維が3次元的に絡まり合っているため、賦型時の流動性は極めて劣る。また製造工程も極めて煩雑であり、コスト的に著しく劣る。加えて、該方法で強化繊維の含有率が高い繊維強化プラスチックを製造しようとした場合は、より強化繊維が密な状態で抄紙する必要がある。しかし、こうした高密度に抄紙された強化繊維にマトリックス樹脂を含浸させようとすると、3次元的に絡まった強化繊維のうち、特に厚み方向(含浸方向)に配向している強化繊維が含浸時のプレス力の応力を担うため、樹脂に圧力が伝達されず、極めて含浸が困難になる。また、強化繊維の繊維長が長い場合も、3次元的な絡まりが強固となるため、同様に含浸が困難となる。
特開平07-164439号公報 特開昭63-247012号公報 特開昭63-267523号公報 特開2008-207544号公報 特開2008-207545号公報 特開2009-286817号公報 国際公開第2010/013645号
 本発明は、機械物性の等方性や異方性をコントロールすることができ、機械特性に優れ、バラつきが少なく、かつ耐熱性にも優れ、また賦形時の流動性が良好な繊維強化プラスチックを提供することを目的とする。また該強化繊維プレスチックを簡便に低コストで製造できる、繊維強化プラスチックの製造方法の提供を目的とする。
 本発明者等は上記課題を解決すべく鋭意検討した結果、下記(1)~(15)により本発明を解決できることを見出し、本発明を解決するに至った。
 (1) 下記工程(i)~(iii)を有する、繊維強化プラスチックの製造方法。
 (i)一方向に引き揃えた強化繊維にマトリックス樹脂が含浸され、かつ繊維軸に交差するように切込みが形成されたプリプレグ基材を含む材料(A)を得る工程。
 (ii)前記材料(A)の走行方向に対する直交方向に略均一に加圧する加圧装置を用い、前記直交方向に対して前記プリプレグ基材の前記強化繊維の繊維軸の方向がなす角度θを-20°~20°として、前記材料(A)を一方向に走行させつつ、前記マトリックス樹脂の融点以上、又は融点を有しないときはガラス転移温度以上の温度Tに加熱した状態で加圧する工程。
 (iii)前記加圧装置で加圧された前記材料(A)を冷却して繊維強化プラスチックを得る工程。
 (2) 前記工程(ii)が、下記工程(ii-1)である、上記(1)に記載の繊維強化プラスチックの製造方法。
 (ii-1)ロールの軸線方向が前記直交方向となる、少なくとも一対のプレスロールを備える加圧装置により、前記材料(A)を一方向に走行させつつ、前記温度Tに加熱した状態で加圧する工程。
 (3) 前記工程(ii-1)の前記プレスロールとして加熱ロールを用いる、上記(2)に記載の繊維強化プラスチックの製造方法。
 (4) 前記角度θを-5°~5°とする、上記(1)~(3)のいずれか一つに記載の繊維強化プラスチックの製造方法。
 (5) 前記プリプレグ積層体の厚みが0.25~6.0mmである、上記(1)~(4)のいずれか一つに記載の繊維強化プラスチックの製造方法。
 (6) 前記マトリックス樹脂が熱可塑性樹脂である、上記(1)~(5)のいずれか一つに記載の繊維強化プラスチックの製造方法。
 (7) 前記マトリックス樹脂が、ポリオレフィン樹脂、変性ポリプロピレン樹脂、ポリアミド樹脂及びポリカーボネート樹脂からなる群から選ばれる少なくとも1種を含む、上記(1)~(5)のいずれか一つに記載の繊維強化プラスチックの製造方法。
 (8) 前記プリプレグ基材の切込みにより切断された強化繊維の長さLが1~100mmである、上記(1)~(7)のいずれか一つに記載の繊維強化プラスチックの製造方法。
 (9) 前記工程(ii-1)において、前記材料(A)を少なくとも一対のベルトで挟持して少なくとも一対のプレスロール間を通過するように走行させながら加熱し、前記少なくとも一対のプレスロールで前記材料(A)を加圧するダブルベルト式加熱加圧機を用いる、上記(2)~(8)のいずれか一つに記載の繊維強化プラスチックの製造方法。
 (10) 炭素繊維とマトリックス樹脂とを含む繊維強化プラスチックであって、炭素繊維の繊維長が1~100mmであり、厚み方向と直交する方向への炭素繊維の配向度pfが0.001~0.8であり、厚み方向と直交する面の炭素繊維の配向プロファイルの楕円乖離係数ecが1×10-5~9×10-5である、繊維強化プラスチック。
 (11) 厚み方向の断面において、炭素繊維の分散パラメーターdpが100~80である上記(10)に記載の繊維強化プラスチック。
 (12) 前記マトリックス樹脂が熱可塑性樹脂からなる、上記(10)又は(11)に記載の繊維強化プラスチック。
 (13) 前記炭素繊維の繊維体積含有率が5~70体積%である上記(10)~(12)のいずれか一つに記載の繊維強化プラスチック。
 (14) 前記炭素繊維の繊維長が10~50mmである上記(10)~(13)のいずれか一つに記載の繊維強化プラスチック。
 (15) 前記炭素繊維強化プラスチックの厚みが0.25~6.0mmである上記(10)~(14)のいずれか一つに記載の繊維強化プラスチック。
 本発明の繊維強化プラスチックは、機械物性の等方性や異方性をコントロールすることができ、機械特性に優れ、バラつきが少なく、かつ耐熱性にも優れ、また賦形時の流動性も良好である。
 本発明の繊維強化プラスチックの製造方法によれば、機械特性の等方性や異方性をコントロールすることができ、機械特性に優れ、バラつきが少なく、かつ耐熱性にも優れ、また賦形時の流動性が良好な繊維強化プラスチックを簡便に低コストで製造できる。
材料(A)を一対のプレスロールで加圧する様子を示した斜視図である。 ダブルベルト式加熱加圧機の一例を示した模式図である。 配向度pfの測定方法の一工程を示した模式図である。 分散パラメーターdpの算出における画像処理ソフトによる処理を説明した模式図である。
 本明細書においては、材料(A)の走行方向に対してプリプレグ基材の強化繊維の繊維軸の方向がなす角度θとは、工程(ii)で当該材料(A)を走行させつつ加圧する際の材料(A)の走行方向に対する直交方向と、当該材料(A)におけるプリプレグ基材の強化繊維の繊維軸の方向がなす角度である。角度θは、材料(A)を上方から見たときの反時計回りを正、時計回りを負とする。
 工程(ii)の加圧装置として、ロールの軸線方向が材料(A)の走行方向に対する直交方向と一致する、少なくとも一対のプレスロールを備える加圧装置を用いる場合、角度θは、該プレスロールの軸線方向と、材料(A)におけるプリプレグ基材の強化繊維の繊維軸の方向とがなす角度に一致する。
<繊維強化プラスチックの製造方法>
 本発明の繊維強化プラスチックの製造方法は、下記工程(i)~(iii)を有する方法である。
 (i)一方向に引き揃えた強化繊維にマトリックス樹脂が含浸され、かつ繊維軸に交差するように切込みが形成されたプリプレグ基材を含む材料(A)を得る工程。
 (ii)前記材料(A)の走行方向に対する直交方向に略均一に加圧する加圧装置を用い、前記直交方向に対して前記プリプレグ基材の前記強化繊維の繊維軸の方向がなす角度θを-20°~20°として、前記材料(A)を一方向に走行させつつ、前記マトリックス樹脂の融点以上、又は融点を有しないときはガラス転移温度以上の温度Tに加熱した状態で加圧する工程。
 (iii)前記加圧装置で加圧された前記材料(A)を冷却して繊維強化プラスチックを得る工程。
[工程(i)]
 工程(i)では、プリプレグ基材を含む材料(A)を得る。材料(A)は、1枚のプリプレグ基材のみからなる単層の材料であってもよく、2枚以上のプリプレグ基材を積層したプリプレグ積層体であってもよい。
 (プリプレグ基材)
 工程(i)で用いるプリプレグ基材は、一方向に引き揃えた強化繊維にマトリックス樹脂が含浸されたものである。
 強化繊維としては、特に限定されず、例えば、無機繊維、有機繊維、金属繊維、又はこれらを組み合わせたハイブリッド構成の強化繊維が使用できる。
 無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維等が挙げられる。有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、その他一般のナイロン繊維、ポリエステル繊維等が挙げられる。金属繊維としては、ステンレス、鉄等の繊維が挙げられ、また金属を被覆した炭素繊維でもよい。これらの中では、最終成形物である構造材の強度等の機械物性を考慮すると、炭素繊維が好ましい。
 炭素繊維としては、特に限定されず、ポリアクリロニトリル(PAN)系炭素繊維、PICH系炭素繊維等が挙げられる。
 好ましい炭素繊維は、JIS R7601(1986)に準じて測定したストランド引張強度が1.0GPa以上9.0GPa以下で、かつストランド引張弾性率が150GPa以上1000GPa以下の炭素繊維である。
 より好ましい炭素繊維は、JIS R7601(1986)に準じて測定したストランド引張強度が1.5GPa以上9.0GPa以下で、かつストランド引張弾性率が200GPa以上1000GPa以下の炭素繊維である。
 強化繊維の平均繊維直径は、1~50μmが好ましく、5~20μmがより好ましい。
 マトリックス樹脂としては、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよい。マトリックス樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
 マトリックス樹脂としては、熱可塑性樹脂が好ましい。熱可塑性樹脂は一般的に熱硬化性樹脂よりも靱性値が高いため、マトリックス樹脂として熱可塑性樹脂が含浸されたプリプレグ基材を用いることで、強度、特に耐衝撃性に優れた構造材が得られやすくなる。また、熱可塑性樹脂は化学反応を伴うことなく冷却固化により形状が定まるため、該プリプレグ基材を用いる場合は短時間成形が可能となり、生産性に優れる。
 熱可塑性樹脂としては、特に限定されず、ポリアミド樹脂(ナイロン6(融点:220℃)、ナイロン66(融点:260℃)、ナイロン12(融点:175℃)、ナイロンMXD6(融点:237℃)等)、ポリオレフィン樹脂(低密度ポリエチレン(融点:95~130℃)、高密度ポリエチレン(融点:120~140℃)、ポリプロピレン(融点:168℃)等)、変性ポリオレフィン樹脂(変性ポリプロピレン樹脂(融点:160~165℃)等)、ポリエステル樹脂(ポリエチレンテレフタレート、ポリブチレンテレフタレート等)、ポリカーボネート樹脂(ガラス転移温度:145℃)、ポリアミドイミド樹脂、ポリフェニレンオキシド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリスチレン樹脂、ABS樹脂、ポリフェニレンサルファイド樹脂、液晶ポリエステル樹脂、アクリロニトリルとスチレンの共重合体、ナイロン6とナイロン66の共重合体等が挙げられる。
 変性ポリオレフィン樹脂としては、例えば、マレイン酸等の酸によりポリオレフィン樹脂を変性した樹脂等が挙げられる。
 熱可塑性樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
 熱可塑性樹脂としては、強化繊維との接着性、強化繊維への含浸性及び熱可塑性樹脂の原料コストの各々のバランスの点から、ポリオレフィン樹脂、変性ポリプロピレン樹脂、ポリアミド樹脂及びポリカーボネート樹脂からなる群から選ばれる少なくとも1種を含むことが好ましい。
 熱硬化性樹脂としては、特に限定されず、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ウレタン系樹脂、尿素性樹脂、メラミン樹脂、イミド系樹脂等が挙げられる。
 熱硬化性樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
 熱硬化性樹脂としては、熱硬化性樹脂を硬化させた後の繊維強化プラスチックの機械特性の発現性の観点から、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、イミド系樹脂が好ましく、プリプレグ基材の製造の容易さの観点から、エポキシ樹脂、不飽和ポリエステル樹脂がより好ましい。
 プリプレグ基材には、目的の構造材の要求特性に応じて、難燃剤、耐候性改良剤、酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤、滑剤、着色剤、相溶化剤、導電性フィラー等の添加剤を配合してもよい。
 また、工程(i)で用いるプリプレグ基材には、繊維軸に交差するように切込みが形成されている。これにより、該プリプレグ基材では、一方向に引き揃えられた繊維長の長い強化繊維が切込みによって分断された状態になっている。
 一般に強化繊維が長いほど機械物性に優れた構造材が得られるが、特にスタンピング成形時において、流動性が低下するために複雑な3次元形状の構造材が得られにくくなる。本発明では、プリプレグ基材に切込みを入れることで、強化繊維が切断されて短くなっているため、スタンピング成形時でも強化繊維とマトリックス樹脂が流動しやすい。そのため、リブやボス等の複雑な3次元形状の構造材を得ることも容易である。
 また、一般にランダム材と呼ばれる、プリプレグ基材から切り出したプリプレグ片を分散させて一体化させることでシート状の繊維強化プラスチックを形成すると、機械物性にバラつきが生じるため、部品設計が困難である。これに対して、本発明では、切込み入りのプリプレグ基材を用いて繊維強化プラスチックを得るため、ランダム材を用いる場合に比べて機械物性が良好で、そのバラつきも小さくできる。
 プリプレグ基材に形成する切込みの形状は、特に限定されず、例えば、直線状でもよく、曲線状でもよく、折れ線状でもよい。
 プリプレグ基材に形成する切込みの強化繊維の繊維軸に対する角度も、特に限定されない。
 プリプレグ基材における、切込みによって切断された強化繊維の長さLは、1~100mmが好ましく、3~70mmがより好ましく、5~50mmがさらに好ましく、10~50mmが特に好ましく、10~35mmが最も好ましい。前記強化繊維の長さLが下限値以上であれば、充分な機械物性を有する繊維強化プラスチックが得られやすい。前記強化繊維の長さLが上限値以下であれば、成形時に強化繊維とマトリックス樹脂が流動しやすくなるため、得られた繊維強化プラスチックをリブ等の複雑な3次元形状を有する構造材に賦形することが容易になる。
 プリプレグ基材における繊維体積含有率(Vf)は、5~70体積%が好ましく、10~60体積%がより好ましく、15~50体積%がさらに好ましい。Vfが下限値以上であれば、充分な機械物性を有する構造材が得られやすい。Vfが上限値以下であれば、賦形時に良好な流動性が得られやすい。
 なお、プリプレグ基材のVf値は、プリプレグ基材における強化繊維、マトリックス樹脂、及びボイド(気体)を除く添加剤等のその他の成分の合計体積に対する強化繊維の体積の割合を意味する。JIS K7075に基づいて測定されたVf値はプリプレグ基材中のボイドの存在量により変動する値であるため、本発明においてはボイドの存在量に依存しない繊維体積含有率を採用する。
 プリプレグ基材の厚みは、50~500μmが好ましい。プリプレグ基材の厚みが下限値以上であれば、プリプレグ基材の取り扱いが容易になる。また2枚以上のプリプレグ基材を積層して所望の厚みの材料(A)を得る場合に、プリプレグ基材の積層枚数が多くなりすぎることを抑制できるため、生産性が高まる。プリプレグ基材の厚みが上限値以下であれば、プリプレグ基材製造時に発生するプリプレグ基材内部のボイド(空孔)を抑制することができ、充分な機械物性を有する繊維強化プラスチックが得られやすい。
 本発明では、プリプレグ基材の厚みが最終的に得られる構造材の強度に与える影響は小さい。
 プリプレグ基材の製造方法は、特に限定されず、公知の方法を採用できる。プリプレグ基材としては、市販のプリプレグ基材を用いてもよい。
 プリプレグ基材への切込みの形成方法としては、例えば、レーザーマーカー、カッティングプロッタ、抜型等を用いる方法が挙げられる。レーザーマーカーを用いる方法は、曲線状やジグザグ線状等の複雑な形状の切込みでも高速で加工できる点で好ましい。カッティングプロッタを用いる方法は、2m以上の大判のプリプレグ基材でも加工が容易な点で好ましい。抜型を用いる方法は、高速で加工できる点で好ましい。
 材料(A)をプリプレグ積層体とする場合、該プリプレグ積層体においては、積層するプリプレグ基材の間に樹脂シートを積層して樹脂層を形成することが好ましい。これにより、工程(ii)において流動性が向上し、機械物性の等方性や異方性がコントロールされ、かつ機械物性のバラつきが少ない繊維強化プラスチックが得られやすくなる。
 前記樹脂層に用いる樹脂としては、特に限定されず、例えば、プリプレグ基材に用いるマトリックス樹脂と同じものが挙げられる。前記樹脂層に用いるマトリックス樹脂は、プリプレグ基材に用いるマトリックス樹脂と同一の樹脂であることが好ましい。なお、前記樹脂層に用いる樹脂は、プリプレグ基材に用いるマトリックス樹脂と異なる樹脂であってもよい。
 (積層の態様)
 材料(A)をプリプレグ積層体とする場合、工程(i)においてプリプレグ基材を積層する態様は、形成するプリプレグ積層体におけるプリプレグ基材の積層枚数に対して66%以上のプリプレグ基材について工程(ii)で角度θの条件が満たされる態様であればよい。つまり、積層枚数に対して66%以上の各プリプレグ基材について工程(ii)で角度θの条件が満たされるように、プリプレグ基材の強化繊維の繊維軸の方向を特定の範囲に偏らせて積層を行えばよい。プリプレグ積層体が、積層枚数に対して34%未満の割合で前記角度θの条件を満たさないプリプレグ基材を含む場合、該プリプレグ基材の強化繊維の繊維軸の向きは特に限定されない。プリプレグ積層体においては、全てのプリプレグ基材について角度θの条件が満たされるようにすることが好ましい。
 具体的には、例えば、2枚以上のプリプレグ基材を、各プリプレグ基材の強化繊維の繊維軸が同一方向となるように揃えて積層する態様が挙げられる。該態様は各プリプレグ基材の強化繊維の繊維軸の方向が揃っているため、工程(ii)において各プリプレグ基材について角度θの条件を満たすように、材料(A)の走行方向と各プリプレグ基材の強化繊維の繊維軸の方向との角度関係を制御することが容易である。
 また、プリプレグ積層体の各々のプリプレグ基材について工程(ii)の角度θの条件が満たされる範囲内であれば、積層した各プリプレグ基材間で強化繊維の繊維軸の方向がずれている態様としてもよい。つまり、プリプレグ基材を積層する際には、必ずしも各プリプレグ基材の強化繊維の繊維軸の方向が完全に揃うように各プリプレグ基材の角度を厳密に制御することは要しない。
 また、積層した各プリプレグ基材間において強化繊維の繊維軸の方向にずれがある場合でも、形成されるプリプレグ積層体における積層枚数に対して66%以上の、前記角度θの条件を満たす各プリプレグ基材間の強化繊維の繊維軸の方向のずれは、40°以下であり、10°以下が好ましい。前記角度θの条件を満たす各プリプレグ基材間の強化繊維の繊維軸の方向のずれが小さいほど、工程(ii)において、各プリプレグ基材について角度θの条件を満たすように、材料(A)の走行方向と各プリプレグ基材の強化繊維の繊維軸の方向との角度関係を制御することが容易になる。
 プリプレグ積層体におけるプリプレグ基材の積層数は、2~16が好ましく、4~12がより好ましい。プリプレグ基材の積層数が下限値以上であれば、充分な機械物性を有する繊維強化プラスチックが得られやすい。プリプレグ基材の積層数が上限値以下であれば、積層作業が容易になり、生産性に優れる。
 材料(A)の厚みは、0.25~6.0mmが好ましく、0.4~6.0mmがより好ましく、0.6~4.0mmがさらに好ましい。材料(A)の厚みが下限値以上であれば、充分な機械物性を有する繊維強化プラスチックが得られやすい。材料(A)の厚みが上限値以下であれば、後述の工程(ii)での加圧によって材料(A)における強化繊維の繊維軸の方向がよりランダム化しやすく、機械物性の等方性や異方性がコントロールされ、かつ機械物性のバラつきが少ない繊維強化プラスチックが得られやすい。
[工程(ii)]
 工程(ii)では、材料(A)の走行方向に対する直交方向にわたって加圧が略均一となるように、材料(A)を厚み方向に加圧できる加圧装置を用いて、材料(A)を一方向に走行させつつ、マトリックス樹脂の融点以上、又は融点を有しないときはガラス転移温度以上の温度Tに加熱した状態で加圧する。
 工程(ii)では、前記加圧装置による加圧の際に、材料(A)の走行方向に対する直交方向に対して、材料(A)におけるプリプレグ基材の強化繊維の繊維軸の方向がなす角度θが-20°~20°となるようにする。材料(A)としてプリプレグ積層体を用いるときは、各プリプレグ基材間で強化繊維の繊維軸の方向がずれている場合も、積層枚数に対して66%以上のプリプレグ基材についてそれぞれ前記の角度θの条件が満たされるようにする。
 温度Tに加熱してマトリックス樹脂を溶融させた状態で材料(A)を前記のように加圧装置で加圧することで、マトリックス樹脂とともに切込みによって切断された強化繊維が流動し、強化繊維の繊維軸の方向が様々な方向に変化する。これにより、材料(A)において同一方向に揃えられていた強化繊維の繊維軸の方向がランダム化し、機械物性の等方性や異方性がコントロールされ、かつ機械物性のバラつきが少ない繊維強化プラスチックを得ることができる。
 角度θは、-5°~5°が好ましい。前記角度θが前記範囲内であれば、プレスロールによる加圧によって材料(A)における強化繊維の繊維軸の方向がよりランダム化しやすく、機械物性の等方性や異方性がコントロールされ、かつ機械物性のバラつきが少ない繊維強化プラスチックが得られやすい。
 温度Tは、プリプレグ基材に含浸したマトリックス樹脂の融点以上か、又は該マトリックス樹脂が融点を有しないときは該マトリックス樹脂のガラス転移温度以上の温度である。材料(A)が2種以上のマトリックス樹脂を含む場合、温度Tは、それらマトリックス樹脂の融点又はガラス転移温度のうち、最も高い温度を基準とするものとする。
 温度Tは、マトリックス樹脂の種類によっても異なるが、マトリックス樹脂が溶融する範囲で、150~450℃が好ましく、200~400℃がより好ましい。温度Tが前記範囲であれば、強化繊維とマトリックス樹脂を流動させやすく、機械物性の等方性や異方性がコントロールされ、かつ機械物性のバラつきが少ない繊維強化プラスチックが得られやすい。
 工程(ii)では、材料(A)を温度Tに加熱する前に、材料(A)を予熱してもよい。予熱を行う場合、予熱温度は、150~400℃が好ましく、200~380℃がより好ましい。予熱の段階においては、材料(A)のマトリックス樹脂は溶融していてもよく、溶融していなくてもよい。
 材料(A)を予熱する方法としては、特に限定されず、例えば、IRヒータ、循環式熱風オーブン等を用いる方法が挙げられる。
 材料(A)を加圧する際の線圧は、3~100N/mが好ましく、5~50N/mがより好ましい。線圧が前記範囲内であれば、機械物性の等方性や異方性がコントロールされ、かつ機械物性のバラつきが少ない繊維強化プラスチックが得られやすい。
 材料(A)を加圧する時間は、0.1~30分間が好ましく、0.5~10分間がより好ましい。加圧時間は、材料(A)の走行速度、後述のようにプレスロールを備える加圧装置を用いる場合は用いるプレスロールの組数等により調節できる。
 工程(ii)における材料(A)の走行速度は、0.1~25m/分が好ましく、0.2~20m/分がより好ましく、0.5~15m/分がさらに好ましい。材料(A)の走行速度が下限値以上であれば、生産性が高くなる。材料(A)の走行速度が上限値以下であれば、機械物性の等方性や異方性がコントロールされ、かつ機械物性のバラつきが少ない繊維強化プラスチックが得られやすい。
 工程(ii)における材料(A)の加圧時の線圧、加圧時間、温度Tをコントロールすれば、得られる繊維強化プラスチックの機械物性を等方性に優れたものにするだけでなく、機械物性の異方性を所望の通りにコントロールすることができる。
 工程(ii)としては、ロールの軸線方向が材料(A)の走行方向に対する直交方向となる、少なくとも一対のプレスロールを備える加圧装置により、材料(A)を一方向に走行させつつ温度Tに加熱した状態で加圧する工程(ii-1)が好ましい。
 工程(ii-1)では、図1に示すように、一対のプレスロール10の軸線方向は、材料(A)の走行方向に対する直交方向と一致している。一対のプレスロール10により、材料(A)100を一方向に走行させつつ、温度Tに加熱した状態で加圧する。このとき、材料(A)の走行方向に対する直交方向Xに対して材料(A)100におけるプリプレグ基材の強化繊維110の繊維軸の方向Yがなす角度θが-20°~20°となるようにして、材料(A)100の加圧を行う。
 一対のプレスロールにおいては、上下のプレスロールの軸線方向は一致している。
 工程(ii-1)において材料(A)を温度Tに加熱する方法としては、プレスロールとして加熱ロールを用いて、材料(A)を加熱しつつ加圧する方法が好ましい。
 材料(A)を加圧する前に加熱するのみで、プレスロールで加圧するときに材料(A)が温度Tに加熱された状態が確保できる場合は、加熱機能を有さないプレスロールを用いてもよい。また、プレスロールとして用いる加熱ロールのみで材料(A)を温度Tに加熱できる場合は、予熱を行わなくてもよい。
 工程(ii-1)では、一対のプレスロールを1段のみ用いてもよく、2段以上用いてもよい。工程(ii-1)において上下で対になったプレスロールを2段以上設ける場合は、いずれのプレスロールに対しても、前記角度θが-20°~20°となるようにする。
 工程(ii-1)では、材料(A)を少なくとも一対のベルトで挟持して少なくとも一対のプレスロール間を通過するように走行させながら加熱し、前記少なくとも一対のプレスロールで前記材料(A)を加圧するダブルベルト式加熱加圧機を用いることが好ましい。この場合、材料(A)とベルトの間に離型紙もしくは離型フィルムを配置するか、又はベルト表面に予め離型処理を施しておくことが好ましい。ベルトの材質としては、特に限定されず、耐熱性及び耐久性の点では、金属製が好ましい。
 なお、工程(ii-1)は、前記ダブルベルト式加熱加圧機を用いて行う態様には限定されない。例えば、一対のベルトで挟持することなく帯状の材料(A)を走行させながら、該材料(A)を一対のプレスロールで加圧する態様としてもよい。
 工程(ii)は、少なくとも一対のプレスロールを備える加圧装置を用いる態様には限定されない。例えば、平面とプレスロールでプレスする加圧装置や、平面と平面でプレスするプレス盤による加圧装置、複数の球状プレスを備える加圧装置で加圧する態様としてもよい。
[工程(iii)]
 工程(iii)では、工程(ii)において加圧装置で加圧された材料(A)を冷却し、繊維強化プラスチックを得る。マトリックス樹脂が熱可塑性樹脂である場合は、材料(A)の温度を熱可塑性樹脂の融点又はガラス転移温度未満まで降下させて固化させて、繊維強化プラスチックを得る。
 材料(A)としてプリプレグ積層体を用いる場合、得られる繊維強化プラスチックは、各プリプレグ基材同士が接着されて一体化したシート状になっている。そのため、プリプレグ積層体を用いる場合でも、得られる繊維強化プラスチックは取扱いが容易である。
 材料(A)を冷却する方法は、特に限定されず、例えば、温水ロールを用いる方法等が挙げられる。材料(A)を放冷することで冷却する方法を採用してもよい。
 冷却時間は、0.5~30分間が好ましい。
[実施態様の一例]
 以下、工程(ii-1)及び工程(iii)を実施する態様の一例として、図2に例示したダブルベルト式加熱加圧機1(以下、単に加熱加圧機1という。)を用いる例について説明する。なお、工程(ii)及び工程(iii)を実施する態様は加熱加圧機1を用いる態様には限定されない。
 加熱加圧機1は、帯状の材料(A)100を上下から挟持した状態で一方向に走行させる一対のベルト12と、材料(A)100を予熱する一対のIRヒータ14と、予熱された材料(A)100を上下から挟み込んで加圧する一対のプレスロール10を3段と、プレスロール10で加圧された材料(A)100を上下から挟み込んで冷却する一対の温水ロール16を3段と、冷却固化されて各プリプレグ基材が一体化した繊維強化プラスチック120を巻き取る巻取りロール18と、を有している。
 一対のプレスロール10は、その間を通過する材料(A)100を下流側に送り出す向きに回動しつつ、材料(A)100を加圧する。一対の温水ロールは、その間を通過する材料(A)100を下流側に送り出す向きに回動しつつ、材料(A)100を冷却する。
 一対のベルト12はそれぞれ、IRヒータ14よりも上流側に備えられた駆動ロール20と、温水ロール16よりも下流側に備えられた従動ロール22に掛け回されて装着され、駆動ロール20によって回動される。一対のベルト12が材料(A)100を挟持した状態で回動することで、材料(A)100が走行するようになっている。
 この加熱加圧機1を用いる態様では、工程(ii-1)として、ロールの軸線方向に対して材料(A)100における強化繊維の繊維軸の方向がなす角度が-20°~20°となるように、帯状の材料(A)100を加熱加圧機1に連続的に供給する。具体的には、強化繊維の繊維軸の方向が、走行方向の直交方向に対して-20°~20°となっている帯状の材料(A)100を、長さ方向に連続的に加熱加圧機1に供給する。加熱加圧機1では、一対のプレスロール10の軸線方向は、供給される材料(A)100の走行方向に対する直交方向と一致しているため、角度θが-20°~20°となる。
 加熱加圧機1内では、材料(A)100を一対のベルト12で挟持した状態で一対のプレスロール10間を通過するように走行させながら、IRヒータ14により予熱し、プレスロール10により材料(A)100を温度Tに加熱した状態で加圧する。これにより、材料(A)100においてマトリックス樹脂と強化繊維が流動し、強化繊維の繊維軸の方向がランダム化する。
 この例では、プレスロール10として加熱ロールを用いて、材料(A)100を温度Tに加熱すると同時に加圧することが好ましい。なお、IRヒータ14による予熱だけで、材料(A)100が温度Tに加熱された状態でプレスロール10により加圧できる場合は、プレスロール10では材料(A)100が加熱されずに加圧のみが行われるようにしてもよい。
 次に、工程(iii)として、プレスロール10によって加圧された材料(A)100を、一対のベルト12に挟持された状態のまま一対の温水ロール16間を通過するように走行させ、温水ロール16によって冷却させることで帯状の繊維強化プラスチック120を得る。
 得られた繊維強化プラスチック120は、従動ロール22の下流側において、一対のベルト12から剥離された後にガイドロール24を介して巻取りロール18に巻き取られる。
 加熱加圧機1のようなダブルベルト式加熱加圧機は、材料(A)の加熱、加圧から、冷却までの一連の工程が簡便に行える点で有利である。
[作用効果]
 以上説明した本発明の製造方法にあっては、工程(ii)において前記角度θを特定の範囲に制御して、特定の加圧装置によって材料(A)を加圧することで、強化繊維が流動してその繊維軸の方向がランダム化する。これにより、強度等の機械物性に優れ、またその等方性や異方性がコントロールされ、バラつきが少なく、かつ耐熱性にも優れた繊維強化プラスチックが得られる。そのため、本発明の製造方法で得られた繊維強化プラスチックを賦形することで、機械物性に優れ、またその等方性や異方性がコントロールされ、バラつきが少なく、かつ耐熱性にも優れた構造材を製造できる。
 このように、本発明の方法では、プリプレグ基材の強化繊維の繊維軸の方向が特定の範囲に偏った材料(A)を用いて、機械物性に優れ、またその等方性や異方性がコントロールされ、バラつきが少なく、かつ耐熱性にも優れた繊維強化プラスチックを製造できる。そのため、帯状の繊維強化プラスチックを連続的に製造する場合に、強化繊維の繊維軸の方向が異なるプリプレグ基材をそれぞれ製造する必要がなく、製造が簡便でコスト面でも有利である。また、枚葉の繊維強化プラスチックを製造する場合でも、強化繊維の繊維軸の方向が偏らないように各プリプレグ基材を随時所定の回転角度で回転させながら積層する必要がない。そのため、プリプレグ積層体を用いる場合でもその積層作業が簡便で制御も容易であり、コスト面でも有利である。
 また、本発明の製造方法で得られる繊維強化プラスチックは、プリプレグ基材に形成された切込みによって強化繊維が切断されているため、賦形時の流動性が高く、3次元形状等の複雑な形状の構造材の製造に好適に使用できる。
 なお、本発明の製造方法は、前記した加熱加圧機1を用いる方法には限定されない。例えば、ダブルベルト式加熱加圧機に枚葉の材料(A)を供給して枚葉の繊維強化プラスチックを製造する方法としてもよい。
 また、工程(ii-1)において材料(A)の予熱を行わない方法としてもよい。また、二対以上のベルトを備えたダブルベルト式加熱加圧機を使用する方法としてもよい。また、帯状の繊維強化プラスチックを連続的に製造する場合等は、ベルトによって挟持せずに帯状の材料(A)をそのまま走行させながら工程(ii-1)及び工程(iii)を行う方法としてもよい。また、予熱専用の装置、加圧専用の装置、冷却専用の装置をそれぞれ使用する方法としてもよい。
<繊維強化プラスチック>
 本発明の製造方法で得られる、強化繊維として炭素繊維を用いた繊維強化プラスチック(以下、炭素繊維強化プラスチックともいう。)は、機械特性がより良好で、かつバラつきがより少なく、耐熱性がより良好で、また賦形時の流動性もより良好である点で好ましい。
 本発明の炭素繊維強化プラスチックは、炭素繊維とマトリックス樹脂とを含む繊維強化プラスチックであって、炭素繊維の繊維長が1~100mmであり、厚み方向と直交する方向への炭素繊維の配向度pfが0.001~0.8であり、厚み方向と直交する面の炭素繊維の配向プロファイルの楕円乖離係数ecが1×10-5~9×10-5である。本発明の炭素繊維強化プラスチックは、上述した本発明の繊維強化プラスチックの製造方法を用いて、強化繊維として炭素繊維を用いることで得られる。
[繊維長]
 炭素繊維の繊維長は、1~100mmであり、3~70mmが好ましく、5~50mmがより好ましく、10~50mmがさらに好ましく、10~35mmが特に好ましい。炭素繊維の繊維長が前記下限値以上であれば、必要な機械特性が得られやすい。炭素繊維の繊維長が前記上限値以下であれば、賦形時に必要な流動性が得られやすい。
[繊維長の測定方法]
 炭素繊維強化プラスチック中の樹脂を焼き飛ばして、炭素繊維のみを取り出し、該炭素繊維の繊維長をノギス等で測定する。測定は無作為に選択した100本の炭素繊維について行い、繊維長はそれらの質量平均として算出する。
[配向度pf]
 本発明の炭素繊維強化プラスチック中における厚み方向と直交する方向への炭素繊維の配向状態は、配向度pfにより表される。pfが「0」とは、炭素繊維強化プラスチックの厚み方向と直交する方向に炭素繊維が理想的な状態で配向していることを意味する。pfの値が大きくなるほど、厚み方向と直交する面の外方向へ向かって炭素繊維が乱れている度合いが高いことを示している。
 本発明の炭素繊維強化プラスチックにおけるpfは、0.001~0.8である。炭素繊維の繊維長にもよるが、pfの値が大きいほど、炭素繊維同士の絡まり合いや炭素繊維同士の摩擦により、賦形時の流動性が得られにくい。すなわち、炭素繊維が厚み方向と直交する面の外方向に向かって乱れているほど、炭素繊維同士の絡まり合いや炭素繊維同士の摩擦が起こりやすく、賦形時の流動性が得られにくい。炭素繊維の繊維長が1mm~100mmの場合、pfが0.8以下であれば、賦形時に充分な流動性が得られ、充分な機械物性も得られる。pfの下限値は、炭素繊維強化プラスチックの物性上は特に制約はない。しかし、pfを0にすることは困難であり、0.001以上が現実的な値である。pfの上限値は、0.5が好ましく、0.3がより好ましく、0.15がさらに好ましい。
[pfの測定方法]
 図3に示すように、厚み2mmの炭素繊維強化プラスチック200から幅2mmの測定試料210を切り出して、次のように測定を実施する。
 測定試料210における幅方向をx方向、厚み方向をy方向、長さ方向をz方向とする。
(x方向の実測積分値)
 測定試料210に対してx方向にX線を照射し、黒鉛の002面の回折に由来する1次元配向プロファイルを得る。黒鉛の002面の回折に由来する1次元配向プロファイルは、2次元検出器を用いて像を取り込んだ後、解析ソフトを用いて002回折部分において周方向にプロファイルを得る方法で得られる。また、1次元検出器であれば、002回折のところで検出器を固定して、試料を360°回転させることでも、黒鉛の002面の回折に由来する1次元配向プロファイルが得られる。
 次いで、得られた1次元配向プロファイルから、下式(1)によりx方向の実測積分値Sxを算出する。
Figure JPOXMLDOC01-appb-M000001
 ただし、式(1)中、I(δ)は、1次元配向プロファイルにおける、yz平面でのz方向を基準とした方位角δのときの強度である。
 炭素繊維がx方向に完全配向しているときにSxは最大の値をとる。炭素繊維がx方向から傾きを持つことでSxの値は小さくなる。Sxが小さくなる要因としては、炭素繊維のx方向に対する傾きにおける厚み方向の成分と、厚み方向に直交する平面内の成分がある。すなわち、炭素繊維のx方向に対する傾きにおけるyz平面内の成分と、xz平面内の成分の両方が、Sxが小さくなる要因となる。pfでは、厚み方向と直交する面の外方向へ向かって炭素繊維が乱れている度合いを評価するため、炭素繊維の傾きにおけるxz平面内の成分の影響を除去するために、次の操作を行う。
(x方向の予測積分値)
 測定試料210に対してy方向にX線を照射し、黒鉛の002面の回折に由来する1次元配向プロファイルを得る。次いで、下式(2)によりI(ψ)を規格化して方位角ψにおける繊維割合G(ψ)を算出する。
Figure JPOXMLDOC01-appb-M000002
 ただし、式(2)中、I(ψ)は、前記1次元配向プロファイルにおける、xz平面でのz方向を基準とした方位角ψのときの強度である。
 次いで、下式(3)により、x方向の予測積分値Fを算出する。
Figure JPOXMLDOC01-appb-M000003
 ただし、Vaは、測定試料210中の炭素繊維の繊維体積含有率(Vf)である。Vbは、後述する補正用の標準試料中の炭素繊維の繊維体積含有率(Vf)である。A(ψ)は、強度補正係数である。
 強度補正係数A(ψ)は次のように求める。
 補正用の標準試料として、z方向に完全に配向するように炭素繊維を一方向に引き揃えた厚み2mmのUD材を作製し、これを0゜材とする。標準試料に用いる炭素繊維及びマトリックス樹脂は、測定試料210と同一種とする。測定試料210中の炭素繊維の繊維体積含有率(Vf)であるVaと、補正用の標準試料中の炭素繊維の繊維体積含有率(Vf)であるVbとは、同じであっても異なっていてもよい。
 次いで、さらなる標準試料として、方位角ψが15°の方向に完全に配向するように炭素繊維を一方向に引き揃える以外は、0°材と同様にして15°材を作製する。同様に、方位角ψが30°、45°、60°、75°、90°のそれぞれの方向に完全に配向するように炭素繊維を一方向に引き揃えた30°材、45°材、60°材、75°材、90°材を作製する。
 次いで、各標準試料から測定試料210と同様に幅2mmの標準測定試料を切り出す。標準測定試料に対してx方向にX線を入射して、黒鉛の002面の回折に由来する1次元配向プロファイルを得る。90°材由来の標準測定試料の1次元配向プロファイルにおいては、強度はほぼ一定な値となる。各標準測定試料の1次元配向プロファイルから、下式(4)により方位角ψの材料の強度I(ψ、δ)の積分値S(ψ)を算出する。
Figure JPOXMLDOC01-appb-M000004
 ただし、I(ψ,δ)は、方位角ψの標準測定試料についての方位角δにおける強度である。
 積分値S(ψ)においては、S(ψ)=S(π-ψ)の関係にある。横軸にψ、縦軸にS(ψ)をとってプロットし、ψが0°~180°の範囲で正規分布近似したものを方位角ψにおける強度補正係数A(ψ)とする。
(x方向の補正の予測積分強度)
 x方向の予測積分値Fと実測積分値Sxは必ずしも一致しない。そこで、標準試料を用いて積分値補正係数B(Sx)を算出する。
 強度補正係数A(ψ)の算出と同様にして各標準試料から標準測定試料を切り出す。各標準測定試料について、前記したx方向の実測積分値の算出方法により実測積分値Sx(α)を算出する。なお、αは0°、15°、30°、45°、60°、75°、90°である。また各標準測定試料について、前記したx方向の予測積分値の算出方法により、x方向の予測積分値F(α)を求める。横軸にSx(α)、縦軸にSx(α)/F(α)をとってプロットすると高い相関があり、線形近似したものを積分補正係数B(Sx)とする。
 x方向の予測積分値Fに前記積分補正係数B(Sx)を乗じて、x方向の補正の予測積分強度F’とする。
(pfの算出)
 下式(5)により、pfを算出する。
Figure JPOXMLDOC01-appb-M000005
[楕円乖離係数ec]
 本発明における炭素繊維強化プラスチック中の厚み方向と直交する面における炭素繊維の2次元的な配向の分散性を、当該面の炭素繊維の配向プロファイルの楕円乖離係数ecとして表すことができる。ecは、前記配向プロファイルのその近似楕円からの乖離係数である。
 本発明の炭素繊維強化プラスチックのecは、1×10-5~9×10-5である。強化繊維がランダムに配向した炭素繊維強化プラスチックにおいて、ecが大きいほど、機械物性のバラつきが大きいことを意味する。
 ecが9×10-5以下であれば、機械物性のバラつきを抑制することができる。本発明の炭素繊維強化プラスチックのecは、8.5×10-5以下が好ましく、8×10-5以下がより好ましい。
 ecの好ましい下限値は、炭素繊維強化プラスチックの機械物性上は特に制約はない。しかし、例えば、炭素繊維の繊維長が長くなるにつれて、ecの値が小さい炭素繊維強化プラスチックの製造の難易度は上がる。炭素繊維の繊維長を長くすれば機械特性を向上するが、それに伴いecの値が増加する傾向にあり、機械物性のバラつきが増加する。機械特性とそのバラつきのバランスを考慮すると、製造上の観点から現実的な、炭素繊維の繊維長に応じたecの好ましい下限値は以下のようになる。炭素繊維の繊維長が1~3mmの場合、ecは1×10-5以上が好ましい。炭素繊維の繊維長が3mm超10mm以下の場合、ecは1.5×10-5以上が好ましい。炭素繊維の繊維長が10mm超35mm以下の場合、ecは2×10-5以上が好ましい。炭素繊維の繊維長が35mm超70mm以下の場合、ecは3×10-5以上が好ましい。炭素繊維の繊維長が70mm超100mm以下の場合、ecは4×10-5以上が好ましい。
[ecの測定方法]
 pfの測定においてx方向の予測積分値を求める際に測定した、方位角ψにおける強度I(ψ)のプロファイルを、下式(6)で表される楕円Ia(ψ)で近似する。
Figure JPOXMLDOC01-appb-M000006
 ただし、式(6)中、aは楕円の長径である。bは楕円の短径である。βは回転角である。
 Ia(ψ)がI(ψ)に最も近くなるときのa、b、βは、下式(7)で表される楕円からの乖離度Rが最少になるように数値計算すればよい。そして、そのときの乖離度Rの最少値をecとする。
Figure JPOXMLDOC01-appb-M000007
[分散パラメーターdp]
 本発明の炭素繊維強化プラスチック中における炭素繊維の3次元的分散は、炭素繊維強化プラスチックの厚み方向の断面における、炭素繊維の分散パラメーターdpにより表される。dpが「100」とは、炭素繊維が理想的な状態でマトリックス樹脂中に分散していることを意味する。dpの値が小さいほど、炭素繊維が局所的に凝集している割合が高く、樹脂リッチ部分の割合が高いことを意味する。
 本発明の炭素繊維強化プラスチックのdpは、80~100であることが好ましい。
 dpの値が小さく炭素繊維の分散性が悪いほど耐熱性が悪くなる。dpが80以上であれば、良好な耐熱性が得られやすい。本発明の炭素繊維強化プラスチックのdpは、84以上が好ましく、88以上がより好ましい。本発明の炭素繊維強化プラスチックのdpの上限値は理論値には100である。製造上の観点から現実的な好ましいdpの上限値は98である。
 炭素繊維強化プラスチックの賦形時の流動性は、賦形時における樹脂の流れもしくは樹脂層の滑りにより生じる。そのため、炭素繊維強化プラスチック中の樹脂が流動可能が経路が広いほど、賦形の際により高い流動性が得られる。すなわち、dpが小さいほど、賦形時の流動性は高い。しかし、本発明の炭素繊維強化プラスチックにおいては、pfを前記した範囲に制御することにより、dpの値が高くても高い流動性を発現する。
[dpの測定方法]
 dpは、炭素繊維強化プラスチックから切り出した試料片の厚み方向の断面写真を、画像編集ソフトを用いて処理することにより測定できる。
 具体的には、例えば、炭素繊維強化プラスチックから試料片を切り出し、該試料片の断面写真を撮影する。断面写真の撮影には、例えば、光学顕微鏡を使用できる。dpによる評価の精度がより高くなる点から、撮影時の解像度におけるドットピッチは、炭素繊維の直径の10分の1以下が好ましく、20分の1以下がより好ましい。
 次いで、画像編集ソフトを用いて切断写真を以下のように処理する。
 切断写真において、試料片の断面における厚み方向に2mm、厚み方向に対する直交方向に1.5mmの矩形の範囲に相当する部分を処理対象画像とする。画像編集ソフトにより、処理対象画像において、炭素繊維部分と、樹脂部分及びボイド部分とで2値化する。例えば、炭素繊維部分が白、樹脂部分が灰色、ボイド部分が黒となっている処理対象画像において、炭素繊維部分を黒、樹脂部分とボイド部分を緑として2値化する。
 炭素繊維の半径がr(μm)、繊維体積含有率がVf(体積%)の炭素繊維強化プラスチックの切断面において、図4に示すように炭素繊維Cが完全理論分散したときの単位正六角形Hの一辺の長さLaは、下式(8)で求められる。
Figure JPOXMLDOC01-appb-M000008
 2値化後の処理対象画像の炭素繊維部分において、図4に示すように炭素繊維が完全理論分散していると仮定する。そして、図4に示すように、炭素繊維の半径を下式(9)で表される長さLe分だけ長くし、該炭素繊維の半径がLaとなるように、画像編集ソフトにより2値化後における炭素繊維部分を膨張させる。なお、Leは、炭素繊維が理想分散した状態における、隣り合う炭素繊維の外壁面間の距離が最も遠くなるところの距離の半分の距離である。2値化後における炭素繊維部分において実際に炭素繊維が理想分散していたときに前記した膨張処理をすれば、炭素繊維部分が処理対象画像の全面積を占めることになる。
 前記の画像編集ソフトによる膨張処理後、下式(10)によりdpを算出する。
Figure JPOXMLDOC01-appb-M000009
 ただし、式(10)中、S1は、処理対象画像中の前記膨張処理後の炭素繊維部分の面積である。S2は、処理対象画像の全体面積である。
 本発明の炭素繊維強化プラスチックを構成する炭素繊維やマトリックス樹脂は、上述の繊維強化プラスチックの製造方法の中で説明した通りである。
 炭素繊維強化プラスチック中の炭素繊維の繊維体積含有率(Vf)は、5~70体積%が好ましく、10~60体積%がより好ましく、15~50体積%がさらに好ましい。炭素繊維のVfが前記上限値以下であれば、靭性低下による界面強度の低下が生じにくく、また賦型時の流動性も低下しにくい。炭素繊維のVfが前記下限値以上であれば、繊維強化プラスチックとして必要とされる機械特性が得られやすい。
 なお、繊維強化プラスチックのVf値は、繊維強化プラスチックにおける強化繊維、マトリックス樹脂、及びボイド(気体)を除く添加剤等のその他の成分の合計体積に対する強化繊維の割合を意味する。JIS K7075に基づいて測定されたVf値は繊維強化プラスチック中のボイドの存在量により変動する値であるため、本発明においてはボイドの存在量に依存しない繊維体積含有率を採用する。
 本発明の炭素繊維強化プラスチックは、本発明の目的を損なわない範囲で、炭素繊維以外の他の強化繊維、添加剤を含んでいてもよい。
 他の強化繊維としては、例えば、ガラス繊維、有機繊維、金属繊維等が挙げられる。
 添加剤としては、例えば、非繊維状フィラー、難燃剤、顔料、離型剤、可塑剤、界面活性剤等が挙げられる。
 本発明の炭素繊維強化プラスチックの厚みは、0.1~10.0mmが好ましく、0.25~6.0mmがより好ましい。厚みが前記上限値以下であれば、前記工程(ii)における加圧時にマトリックス樹脂がはみ出しにくく、厚み制御が容易である。厚みが前記下限値以上であれば、前記工程(ii)における加圧時にせん断応力が掛かりやすく、炭素繊維をランダム化させて機械特性の等方性や異方性をコントロールすることが容易になる。
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。
[機械物性評価]
 得られた繊維強化プラスチックより、湿式カッターにて長さ100mm、幅25mmの曲げ試験片を切り出し、JIS K7074に規定する試験方法に従って3点曲げ試験を行った。このとき、曲げ試験片の長手方向が、繊維強化プラスチック製造時のMD方向(ロールの軸線方向に対して90°の方向)と一致するもの、及びTD方向(ロールの軸線方向)と一致するもののそれぞれを作製して試験を行った。試験機としてはインストロン万能試験機4465型を用いた。また、試験は室温(23℃)及び80℃で実施した。測定した試験片の数はそれぞれn=6とし、それらの平均値を算出して曲げ強度とした。さらに、曲げ強度の測定値より標準偏差を算出し、その標準偏差を平均値で除することにより、バラつきの指標である変動係数(CV値、単位:%)を算出した。
 曲げ強度比σ/σを算出した。ただし、σは、長手方向を繊維強化プラスチック製造時のMD方向とした曲げ試験片について室温で測定した曲げ強度である。σは、長手方向を繊維強化プラスチック製造時のTD方向とした曲げ試験片について室温で測定した曲げ強度である。
 曲げ強度比σ/σを算出した。ただし、σは、長手方向を繊維強化プラスチック製造時のMD方向とした曲げ試験片と、TD方向にした曲げ試験片について80℃で測定した曲げ強度の平均値である。σは、長手方向を繊維強化プラスチック製造時のMD方向とした曲げ試験片と、TD方向にした曲げ試験片について室温で測定した曲げ強度の平均値である。
 曲げ強度比σ/σの評価においては、明らかに等方性が悪く、曲げ強度比σ/σが5以上もしくは0.2以下であるものは「×」とした。
[流動性評価]
 得られた繊維強化プラスチックより、縦78mm、横78mmの板状物を切り出した。その板状物を約4mm厚になる枚数重ねて、ミニテストプレス(東洋精機製、製品名:MP-2FH)を用いて230℃で10分間加熱後、145℃、5MPaの条件で60秒間プレスした。プレス成形前の初期厚みh(mm)とプレス成形後の最終厚みh(mm)とを測定し、初期厚みを最終厚みで除した比h/hにより流動性を評価した。
 流動性の評価においては、比h/hが1.1未満であるものを「×」とした。なお、スプリングバックと呼ばれる、板状物中の強化繊維の残留応力により加熱時に板状物が厚みを増すことがある。230℃、10分間加熱でスプリングバックした後にプレス成形しても元の厚みまで戻らなかった場合も「×」と評価した。
[pf、ecの評価]
 上述したpfの測定方法及びecの測定方法に従い、pfとecをそれぞれ測定した。X線回折測定は、繊維試料台を備えたX線回折装置(リガク社製、TTR-III)を用い、台上に測定試料を載せ、ターゲットをCuとして行った。具体的には、測定試料の上方からX線を照射しながら、該測定試料をその厚さ方向を軸に回転させて、回折角2θ=24.5°に配置した検出器で回折X線を取り込んだ。標準試料としては、Vfが35体積%のものを用いた。
[dpの評価]
 炭素繊維強化プラスチックから3cm角の試料片を切り出し、kulzer社製テクノビット4000に埋包した。テクノビット4000が硬化した後、試料片の断面が露出するように研磨して鏡面処理した。
 次いで、試料片の断面写真を以下の条件で撮影した。
(撮影条件)
 装置:オリンパス社製 工業用光学顕微鏡 BX51M
 レンズ倍率:500倍
 撮影ドットピッチ:0.17μm
 得られた断面写真において、試料片の断面における厚さ方向に2mm、厚さ方向に対する直交方向に0.5mmの範囲に相当する部分を処理対象画像とした。画像編集ソフトとしてソフトフェアWin-Roofを用いて、上述したdpの測定方法に従ってdpを算出した。dpの算出は、各試料片の断面における5箇所について行い、その平均値を求めた。
[製造例1:プリプレグ基材-1の製造]
 炭素繊維(三菱レイヨン製パイロフィルTR 50S、炭素繊維直径7μm)を一方向に、かつ平面状に引き揃えて目付が72g/mである繊維シートとした。酸変性ポリプロピレン樹脂(三菱化学製モディックP958V、MFR50)からなる目付が36g/mのフィルムによって、該繊維シートを両面から挟んだ。これらをカレンダロールに複数回通して加熱と加圧を行い、樹脂を繊維シートに含浸させ、繊維体積含有率(Vf)が33体積%、厚み120μmのプリプレグ基材-1を作製した。
[製造例2:プリプレグ基材-2の製造]
 炭素繊維(三菱レイヨン製パイロフィルTR 50S)を一方向に、かつ平面状に引き揃えて目付が37g/mである繊維シートとした。酸変性ポリプロピレン樹脂(三菱化学製モディックP958V)からなる目付が45g/mのフィルムによって、該繊維シートを両面から挟んだ。これらをカレンダロールに複数回通して加熱と加圧を行い、樹脂を繊維シートに含浸させ、繊維体積含有率(Vf)が17体積%、厚み120μmのプリプレグ基材-2を作製した。
[製造例3:プリプレグ基材-3の製造]
 炭素繊維(三菱レイヨン製パイロフィルTR 50S)を一方向に、かつ平面状に引き揃えて目付が105g/mである繊維シートとした。酸変性ポリプロピレン樹脂(三菱化学製モディックP958V)からなる目付が27g/mのフィルムによって、該繊維シートを両面から挟んだ。これらをカレンダロールに複数回通して加熱と加圧を行い、樹脂を繊維シートに含浸させ、繊維体積含有率(Vf)が49体積%、厚み120μmのプリプレグ基材-3を作製した。
[実施例1]
 製造例1で得たプリプレグ基材-1から、220mm(繊維軸に対して0゜方向)×900mm(繊維軸に対して90゜方向)の矩形のプリプレグ基材を切り出した。カッティングプロッタ(レザック製L-2500カッティングプロッタ)を用いて、強化繊維の繊維軸となす角度φの絶対値が45゜、強化繊維の繊維長Lが25mmになるように、切り出したプリプレグ基材に強化繊維を切断する深さの切込みを入れ、切込入りプリプレグ基材を得た。該切込入りプリプレグ基材を強化繊維の繊維軸が同一方向となるように8枚積層してプリプレグ積層体を得た。該プリプレグ積層体の厚みは1.0mmであった。
 加圧装置として、ロールの軸方向が材料(A)の走行方向に対する直交方向に一致する2段式のプレスロールを備え、上下のベルトが1.0m/分で駆動する図2で例示したようなダブルベルト式加熱加圧機を用いた。に、前記プリプレグ積層体を、前記ダブルベルト式加熱加圧機に、前記直交方向に対して各プリプレグ基材-1における強化繊維の繊維軸の方向がなす角度θが0°となるように投入した。該ダブルベルト式加熱加圧機では、ロール温度270℃、線圧10.7N/mの条件の2段式のプレスロールにより、プリプレグ積層体を加熱して熱可塑性樹脂を溶融させ状態で加圧した。その後、ロール温度30℃、線圧2.5N/mの条件の1段式の温水ロールを備えた1.5mの冷却区間を通過させ、熱可塑性樹脂を固化させて繊維強化プラスチックを得た。なお、プリプレグ積層体の走行速度は、ベルトの駆動速度と同じである。
 該繊維強化プラスチックの機械物性を評価した結果を表1に示す。該繊維強化プラスチックの機械物性は良好であり、またバラつきも少なかった。また、曲げ強度比σ/σは0.5以上であり、該繊維強化プラスチックの耐熱性は良好であった。また比h/hは1.5であり、該繊維強化プラスチックの流動性は良好であった。
[実施例2]
 切込入りプリプレグ基材を強化繊維の繊維軸が同一方向となるように16枚積層し、厚み1.9mmのプリプレグ積層体とした以外は、実施例1と同様にして繊維強化プラスチックを得た。
 該繊維強化プラスチックの機械物性を評価した結果を表1に示す。該繊維強化プラスチックの機械物性は良好であり、またバラつきも少なかった。また、曲げ強度比σ/σは0.5以上であり、該繊維強化プラスチックの耐熱性は良好であった。
[実施例3]
 強化繊維の繊維軸の方向と切込みの方向とがなす角度φの絶対値を30゜とした以外は、実施例1と同様の方法で繊維強化プラスチックを得た。
 該繊維強化プラスチックの機械物性を評価した結果を表1に示す。該繊維強化プラスチックの機械物性は良好であり、またバラつきも少なかった。また、曲げ強度比σ/σは0.5以上であり、該繊維強化プラスチックの耐熱性は良好であった。
[実施例4]
 強化繊維の繊維軸の方向と切込みの方向とがなす角度φの絶対値を60゜とした以外は、実施例1と同様の方法で繊維強化プラスチックを得た。
 該繊維強化プラスチックの機械物性を評価した結果を表1に示す。該繊維強化プラスチックの機械物性は良好であり、またバラつきも少なかった。また、曲げ強度比σ/σは0.5以上であり、該繊維強化プラスチックの耐熱性は良好であった。
[実施例5]
 強化繊維の繊維軸の方向と切込みの方向とがなす角度φの絶対値を60゜とし、さらに切込入りプリプレグ基材を強化繊維の繊維軸が同一方向となるように4枚積層し、厚み0.5mmのプリプレグ積層体とした以外は、実施例1と同様にして繊維強化プラスチックを得た。
 該繊維強化プラスチックの機械物性を評価した結果を表1に示す。該繊維強化プラスチックの機械物性は良好であり、またバラつきも少なかった。
[実施例6]
 強化繊維の繊維軸の方向と切込みの方向とがなす角度φの絶対値を60゜とし、さらに切込入りプリプレグ基材を強化繊維の繊維軸が同一方向となるように16枚積層し、厚み1.9mmのプリプレグ積層体とした以外は、実施例1と同様にして繊維強化プラスチックを得た。
 該繊維強化プラスチックの機械物性を評価した結果を表1に示す。該繊維強化プラスチックの機械物性は良好であり、またバラつきも少なかった。また、曲げ強度比σ/σは0.5以上であり、該繊維強化プラスチックの耐熱性は良好であった。
[実施例7]
 強化繊維の繊維軸の方向と切込みの方向とがなす角度φの絶対値を90゜とした以外は、実施例1と同様の方法で繊維強化プラスチックを得た。
 該繊維強化プラスチックの機械物性を評価した結果を表1に示す。該繊維強化プラスチックの機械物性は良好であり、またバラつきも少なかった。また、曲げ強度比σ/σは0.5以上であり、該繊維強化プラスチックの耐熱性は良好であった。
[実施例8]
 強化繊維の繊維長Lを12.5mmとした以外は、実施例1と同様の方法で繊維強化プラスチックを得た。
 該繊維強化プラスチックの機械物性を評価した結果を表1に示す。該繊維強化プラスチックの機械物性は良好であり、またバラつきも少なかった。また、曲げ強度比σ/σは0.5以上であり、該繊維強化プラスチックの耐熱性は良好であった。
[実施例9]
 プリプレグ積層体の走行速度を0.5m/分とした以外は、実施例1と同様の方法で繊維強化プラスチックを得た。実施例1と比較してプリプレグ積層体の走行速度を半分していることは、実質的に、加圧加熱時間を倍にしていることを意味している。
 該繊維強化プラスチックの機械物性を評価した結果を表2に示す。該繊維強化プラスチックの機械物性は良好であり、またバラつきも少なかった。また、曲げ強度比σ/σは0.5以上であり、該繊維強化プラスチックの耐熱性は良好であった。加えて、曲げ強度比σ/σは0.83となり、該繊維強化プラスチックの機械物性は異方性的になった。
[実施例10]
 プリプレグ積層体の走行速度を2.0m/分とした以外は、実施例1と同様の方法で繊維強化プラスチックを得た。実施例1と比較してプリプレグ積層体の走行速度を倍していることは、実質的に、加圧加熱時間を半分にしていることを意味している。
 該繊維強化プラスチックの機械物性を評価した結果を表2に示す。該繊維強化プラスチックの機械物性は良好であり、またバラつきも少なかった。また、曲げ強度比σ/σは0.5以上であり、該繊維強化プラスチックの耐熱性は良好であった。加えて、曲げ強度比σ/σは0.37となり、該繊維強化プラスチックの機械物性が一方向に特異的に強い材料であった。
[実施例11]
 プリプレグ基材-1から、220mm(繊維軸に対して30゜方向)×900mm(繊維軸に対して-75゜方向)の矩形のプリプレグ基材を切り出した以外は、実施例1と同様にして切込入りプリプレグ基材を得た。該切込入りプリプレグ基材を強化繊維の繊維軸が同一方向となるように8枚積層して厚み1.0mmのプリプレグ積層体を得た。
 該プリプレグ積層体を、角度θが15°となるようにダブルベルト式加熱加圧機に投入した以外は、実施例1と同様にして繊維強化プラスチックを得た。
 該繊維強化プラスチックの機械物性を評価した結果を表2に示す。該繊維強化プラスチックの機械物性は良好であり、またバラつきも少なかった。また、曲げ強度比σ/σは0.5以上であり、該繊維強化プラスチックの耐熱性は良好であった。
[実施例12]
 切込入りプリプレグ基材を強化繊維の繊維軸が同一方向となるように4枚積層し、厚み0.5mmのプリプレグ積層体とした以外は、実施例1と同様にして繊維強化プラスチックを得た。該繊維強化プラスチックの比h/hは1.5であり、該繊維強化プラスチックの流動性は良好であった。
 次いで、得られた繊維強化プラスチックから298mm角の板片を切り出し、該板片を4枚積層した。その積層体を、300mm角で深さ15mmの印籠金型内に配置して、200℃まで加熱した後、多段プレス機(神藤金属工業所製圧縮成形機、製品名:SFA-50HH0)にて200℃の盤面により0.1MPaの圧力で2分間加熱加圧した。その後、同一の圧力で前記積層体を室温まで冷却し、板状の厚さ2mmの繊維強化プラスチックを得た。得られた厚さ2mmの繊維強化プラスチックについて、pf、ec及びdpを測定した。
 厚さ2mmの繊維強化プラスチックの機械物性を評価した結果を表3に示す。該繊維強化プラスチックの機械物性は良好であり、またバラつきも少なかった。また、曲げ強度比σ/σは0.5以上であり、該繊維強化プラスチックの耐熱性は良好であった。また比h/hは1.5であり、該繊維強化プラスチックの流動性は良好であった。
[実施例13]
 プリプレグ基材-1の代わりにプリプレグ基材-2を用いた以外は、実施例12と同様にして、厚さ2mmの繊維強化プラスチック板を得た。
 厚さ2mmの繊維強化プラスチックの機械物性を評価した結果を表3に示す。該繊維強化プラスチックの機械物性は良好であり、またバラつきも少なかった。また、曲げ強度比σ/σは0.5以上であり、該繊維強化プラスチックの耐熱性は良好であった。また比h/hは2.2であり、該繊維強化プラスチックの流動性は良好であった。
[比較例1]
 プリプレグ基材-1から切り出したプリプレグ基材に切込みを入れなかった以外は、実施例1と同様の方法で繊維強化プラスチックを得た。
 該繊維強化プラスチックの機械物性を評価した結果を表2に示す。該繊維強化プラスチックは、明らかに機械物性の等方性に欠け、コントロールできていないものであり、また流動性も低かった。
[比較例2]
 プリプレグ基材-1から、220mm(繊維軸に対して30゜方向)×900mm(繊維軸に対して-60゜方向)の矩形のプリプレグ基材を切り出した以外は、実施例1と同様にして切込入りプリプレグ基材を得た。該切込入りプリプレグ基材を強化繊維の繊維軸が同一方向となるように8枚積層して厚み1.0mmのプリプレグ積層体を得た。
 該プリプレグ積層体を、角度θが30°となるようにダブルベルト式加熱加圧機に投入した以外は、実施例1と同様にして繊維強化プラスチックを得た。
 該繊維強化プラスチックの機械物性を評価した結果を表2に示す。該繊維強化プラスチックは、明らかに機械物性の等方性に欠け、コントロールできていないものであり、また流動性も低かった。
[比較例3]
 プリプレグ基材-1から、220mm(繊維軸に対して45゜方向)×900mm(繊維軸に対して-45゜方向)の矩形のプリプレグ基材を切り出した以外は、実施例1と同様にして切込入りプリプレグ基材を得た。該切込入りプリプレグ基材を強化繊維の繊維軸が同一方向となるように8枚積層して厚み1.0mmのプリプレグ積層体を得た。
 該プリプレグ積層体を、角度θが45°となるようにダブルベルト式加熱加圧機に投入した以外は、実施例1と同様にして繊維強化プラスチックを得た。
 該繊維強化プラスチックの機械物性を評価した結果を表2に示す。該繊維強化プラスチックは、明らかに機械物性の等方性に欠け、コントロールできていないものであり、また流動性も低かった。
[比較例4]
 プリプレグ基材-1から、220mm(繊維軸に対して90゜方向)×900mm(繊維軸に対して0゜方向)の矩形のプリプレグ基材を切り出した以外は、実施例1と同様にして切込入りプリプレグ基材を得た。該切込入りプリプレグ基材を強化繊維の繊維軸が同一方向となるように8枚積層して厚み1.0mmのプリプレグ積層体を得た。
 該プリプレグ積層体を、角度θが60°となるようにダブルベルト式加熱加圧機に投入した以外は、実施例1と同様にして繊維強化プラスチックを得た。
 該繊維強化プラスチックの機械物性を評価した結果を表2に示す。該繊維強化プラスチックは、明らかに機械物性の等方性に欠け、コントロールできていないものであり、また流動性も低かった。
[比較例5]
 製造例3で得られたプリプレグ基材-3を、幅15.0mmの帯状にスリットした後、ギロチン方式の裁断機を用いて、長さ25.0mmに連続的に裁断し、繊維長が25.0mmのチョップドストランドプリプレグを得た。得られたチョップドストランドプリプレグを244g計量し、300mm角で深さ15mmの印籠金型内に、高さ30cmのところから一枚一枚自由落下させて、繊維配向がランダムになるように積層させた。
 チョップドストランドプリプレグが積層された印籠金型を、200℃まで加熱した後、多段プレス機(神藤金属工業所製圧縮成形機、製品名:SFA-50HH0)にて200℃の盤面により0.1MPaの圧力で2分間加熱加圧した。その後、同一の圧力で積層体を室温まで冷却し、板状の厚さ2mmの繊維強化プラスチックを得た。得られた厚さ2mmの繊維強化プラスチックについて、pf、ec及びdpを測定した。
 繊維強化プラスチックの機械物性を評価した結果を表3に示す。該繊維強化プラスチックは、機械物性のバラつきが大きく、また耐熱性に欠けていた。
[比較例6]
 プリプレグ基材-1から、300mm角のプリプレグ基材を切り出し、カッティングプロッタ(レザック社製、製品名:L-2500)を用いて、一定間隔で直線状の切込みを入れて切込入りプリプレグ基材を得た。切込み加工は、プリプレグ基材における周縁から5mmの部分よりも内側の部分に、炭素繊維の繊維長が25.0mm、切込みの長さが20.0mm、強化繊維の繊維軸と切込みとのなす角度φが30°となるように施した。16枚の切込入りプリプレグ基材を、各切込入りプリプレグ基材の繊維方向が、上から0°/45°/90°/-45°/-45°/90°/45°/0°/0°/45°/90°/-45°/-45°/90°/45°/0°となるように積層した。積層した切込入りプリプレグ基材同士を、超音波溶着機(日本エマソン社製、製品名:2000LPt)でスポット溶接して、疑似等方([0/45/90/-45]s2)のプリプレグ積層体を作製した。
 前記プリプレグ積層体を、300mm角で深さ15mmの印籠金型内に配置して、200℃まで加熱した後、多段プレス機(神藤金属工業所製圧縮成形機、製品名:SFA-50HH0)にて200℃の盤面により0.1MPaの圧力で2分間加熱加圧した。その後、同一の圧力で積層体を室温まで冷却し、板状の厚さ2mmの繊維強化プラスチックを得た。得られた厚さ2mmの繊維強化プラスチックについて、pf、ec及びdpを測定した。
 繊維強化プラスチックの機械物性を評価した結果を表3に示す。該繊維強化プラスチックは、耐熱性に劣っていた。
[比較例7]
 ロータリーカッターを用いて、炭素繊維(三菱レイヨン製パイロフィルTR 50S)を6mmにカットして、チョップド炭素繊維を得た。同様に、酸変性ポリプロピレン樹脂(三菱化学製モディックP958V、MFR50)からなる繊維を3mmにカットして、チョップドポリプロピレン繊維を得た。質量濃度0.12%のポリエチレンオキシド水溶液110kgに対し、チョップドポリプロピレン繊維0.74kgを投入し、撹拌機を用いて充分に撹拌した。続いて、チョップド炭素繊維を0.37kg投入して、10秒間撹拌して、分散液を得た。得られた分散液を100cm角のメッシュ枠に流し込み、ポリエチレンオキシド水溶液をろ過した後、120℃の乾燥機内にて水分を完全に除いて、繊維体積含有率20体積%(繊維質量含有率33質量%)で目付が1.11kg/mのプリプレグ基材を得た。得られたプリプレグ基材を30cm角に切り出し、2枚重ねてプリプレグ積層体を得た。該プリプレグ積層体を、300mm角で深さ15mmの印籠金型内に配置して、200℃まで加熱した後、多段プレス機(神藤金属工業所製圧縮成形機、製品名:SFA-50HH0)にて200℃の盤面により0.1MPaの圧力で2分間加熱加圧した。その後、同一の圧力でプリプレグ積層体を室温まで冷却し、板状の厚さ2mmの繊維強化プラスチックを得た。得られた厚さ2mmの繊維強化プラスチックについて、pf、ec及びdpを測定した。
 繊維強化プラスチックの機械物性を評価した結果を表3に示す。該繊維強化プラスチックは、流動性に劣っていた。
[比較例8]
 比較例7と同様にしてチョップド炭素繊維及びチョップドポリプロピレン繊維を得た。質量濃度0.12%のポリエチレンオキシド水溶液115kgに対し、チョップドポリプロピレン繊維0.63kgを投入し、撹拌機を用いて十分に撹拌した。続いて、チョップド炭素繊維を0.54kg投入して、10秒間撹拌して、分散液を得た。得られた分散液を100cm角のメッシュ枠に流し込み、ポリエチレンオキシド水溶液をろ過した後、120℃の乾燥機内にて水分を完全に除いて、繊維体積含有率30体積%(繊維質量含有率46質量%)で目付が1.17kg/mのプリプレグ基材を得た。得られたプリプレグ基材を30cm角に切り出し、2枚重ねてプリプレグ積層体を得た。該プリプレグ積層体を用いて、比較例7と同様にして、板状の厚さ2mmの繊維強化プラスチックを得た。
 繊維強化プラスチックの機械物性を評価した結果を表3に示す。該繊維強化プラスチックは、流動性に劣っていた。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 本発明の製造方法で得られる繊維強化プラスチックは、リブ、ボス等の複雑な3次元形状への賦形性に優れ、短時間で成形可能である。また、該繊維強化プラスチックは、賦形後の部品が構造材に適用可能な優れた機械物性を有し、またそのバラつきが少なく、等方性や異方性もコントロールできる。そのため、該繊維強化プラスチックは、航空機部材、自動車部材、風力発電用風車部材、スポーツ用具等に好適に用いられる。
 1 ダブルベルト式加熱加圧機
 10 プレスロール
 12 ベルト
 14 IRヒータ
 16 温水ロール
 18 巻取りロール
 20 駆動ロール
 22 従動ロール
 24 ガイドロール
 100 材料(A)
 110 強化繊維
 120 繊維強化プラスチック
 X 材料(A)の走行方向に対する直交方向
 Y 強化繊維の繊維軸の方向

Claims (14)

  1.  下記工程(i)~(iii)を有する、繊維強化プラスチックの製造方法。
     (i)一方向に引き揃えた強化繊維にマトリックス樹脂が含浸され、かつ繊維軸に交差するように切込みが形成されたプリプレグ基材を含む材料(A)を得る工程。
     (ii)前記材料(A)の走行方向に対する直交方向に略均一に加圧する加圧装置を用い、前記直交方向に対して前記プリプレグ基材の前記強化繊維の繊維軸の方向がなす角度θを-20°~20°として、前記材料(A)を一方向に走行させつつ、前記マトリックス樹脂の融点以上、又は融点を有しないときはガラス転移温度以上の温度Tに加熱した状態で加圧する工程。
     (iii)前記加圧装置で加圧された前記材料(A)を冷却して繊維強化プラスチックを得る工程。
  2.  前記工程(ii)が、下記工程(ii-1)である、請求項1に記載の繊維強化プラスチックの製造方法。
     (ii-1)ロールの軸線方向が前記直交方向となる、少なくとも一対のプレスロールを備える加圧装置により、前記材料(A)を一方向に走行させつつ、前記温度Tに加熱した状態で加圧する工程。
  3.  前記工程(ii-1)の前記プレスロールとして加熱ロールを用いる、請求項2に記載の繊維強化プラスチックの製造方法。
  4.  前記角度θを-5°~5°とする、請求項1~3のいずれか一項に記載の繊維強化プラスチックの製造方法。
  5.  前記材料(A)の厚みが0.25~6.0mmである、請求項1~4のいずれか一項に記載の繊維強化プラスチックの製造方法。
  6.  前記マトリックス樹脂が熱可塑性樹脂である、請求項1~5のいずれか一項に記載の繊維強化プラスチックの製造方法。
  7.  前記マトリックス樹脂が、ポリオレフィン樹脂、変性ポリプロピレン樹脂、ポリアミド樹脂及びポリカーボネート樹脂からなる群から選ばれる少なくとも1種を含む、請求項1~5のいずれか一項に記載の繊維強化プラスチックの製造方法。
  8.  前記プリプレグ基材の切込みにより切断された強化繊維の長さLが1~100mmである、請求項1~7のいずれか一項に記載の繊維強化プラスチックの製造方法。
  9.  前記工程(ii-1)において、前記材料(A)を少なくとも一対のベルトで挟持して少なくとも一対のプレスロール間を通過するように走行させながら加熱し、前記少なくとも一対のプレスロールで前記材料(A)を加圧するダブルベルト式加熱加圧機を用いる、請求項2~8のいずれか一項に記載の繊維強化プラスチックの製造方法。
  10.  炭素繊維とマトリックス樹脂とを含む繊維強化プラスチックであって、炭素繊維の繊維長が1~100mmであり、厚み方向と直交する方向への炭素繊維の配向度pfが0.001~0.8であり、厚み方向と直交する面の炭素繊維の配向プロファイルの楕円乖離係数ecが1×10-5~9×10-5である、繊維強化プラスチック。
  11.  厚さ方向の断面において、炭素繊維の分散パラメーターdpが100~80である、請求項10に記載の繊維強化プラスチック。
  12.  前記マトリックス樹脂が熱可塑性樹脂からなる、請求項10又は11に記載の繊維強化プラスチック。
  13.  前記炭素繊維の繊維体積含有率が5~70体積%である、請求項10~12のいずれか一項に記載の繊維強化プラスチック。
  14.  前記炭素繊維の繊維長が10~50mmである、請求項10~13のいずれか一項に記載の繊維強化プラスチック。
PCT/JP2015/054011 2014-02-14 2015-02-13 繊維強化プラスチック及びその製造方法 WO2015122500A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/117,132 US20170190123A1 (en) 2014-02-14 2015-02-13 Fiber-reinforced plastic and production method therefor
CN201580008071.9A CN105992682B (zh) 2014-02-14 2015-02-13 纤维增强塑料及其制造方法
JP2015511744A JP5975171B2 (ja) 2014-02-14 2015-02-13 繊維強化プラスチック及びその製造方法
KR1020167021292A KR101867201B1 (ko) 2014-02-14 2015-02-13 섬유 강화 플라스틱 및 그의 제조 방법
EP15749554.0A EP3120984B1 (en) 2014-02-14 2015-02-13 Fiber-reinforced plastic and production method therefor
US15/856,938 US10773473B2 (en) 2014-02-14 2017-12-28 Fiber-reinforced plastic and production method therefor
US16/122,270 US11034103B2 (en) 2014-02-14 2018-09-05 Fiber-reinforced plastic and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014026641 2014-02-14
JP2014-026641 2014-02-14

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US15/117,132 A-371-Of-International US20170190123A1 (en) 2014-02-14 2015-02-13 Fiber-reinforced plastic and production method therefor
US15/856,938 Division US10773473B2 (en) 2014-02-14 2017-12-28 Fiber-reinforced plastic and production method therefor
US16/122,270 Continuation US11034103B2 (en) 2014-02-14 2018-09-05 Fiber-reinforced plastic and production method therefor

Publications (1)

Publication Number Publication Date
WO2015122500A1 true WO2015122500A1 (ja) 2015-08-20

Family

ID=53800240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054011 WO2015122500A1 (ja) 2014-02-14 2015-02-13 繊維強化プラスチック及びその製造方法

Country Status (6)

Country Link
US (3) US20170190123A1 (ja)
EP (1) EP3120984B1 (ja)
JP (1) JP5975171B2 (ja)
KR (1) KR101867201B1 (ja)
CN (1) CN105992682B (ja)
WO (1) WO2015122500A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123268A (ja) * 2017-02-03 2018-08-09 三菱ケミカル株式会社 繊維強化プラスチック
JP2018154064A (ja) * 2017-03-21 2018-10-04 三菱ケミカル株式会社 複合材料の成形方法および成型品
WO2019017057A1 (ja) * 2017-07-18 2019-01-24 東レ株式会社 一方向に配向したテープ状プリプレグ、およびその成形品

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867201B1 (ko) 2014-02-14 2018-06-12 미쯔비시 케미컬 주식회사 섬유 강화 플라스틱 및 그의 제조 방법
CN109642036B (zh) * 2016-09-29 2021-08-20 东丽株式会社 纤维增强热塑性树脂基材及使用其的成型品
EP3578332B1 (en) * 2017-02-02 2024-02-21 Toray Industries, Inc. Method for producing fiber-reinforced plastic
DE102017213827A1 (de) * 2017-08-08 2019-02-14 Aktiebolaget Skf Lagerträger oder Gehäuseteil und Verfahren zur Herstellung eines Lagerträgers oder eines Gehäuseteils
CN107364216A (zh) * 2017-09-11 2017-11-21 江苏安卡新材料科技有限公司 一种多向高性能纤维预浸料连续层压装置及其应用
JP6960372B2 (ja) * 2018-05-08 2021-11-05 株式会社日立製作所 Frpの最適化システム、frpの最適化装置、frpの信頼性評価方法
WO2020194013A1 (ja) * 2019-03-26 2020-10-01 日産自動車株式会社 成形用基材
KR102078617B1 (ko) * 2019-09-27 2020-02-19 코오롱플라스틱 주식회사 기능화를 부여하는 열가소성 복합재의 제조방법과 및 이로부터 제조된 열가소성 복합재
TW202116522A (zh) * 2019-10-18 2021-05-01 日商Dic股份有限公司 成形品的製造方法
KR102331848B1 (ko) * 2020-12-07 2021-12-01 코오롱플라스틱 주식회사 열가소성 복합재 로드의 제조장치, 이의 제조방법, 및 이로부터 제조된 열가소성 복합재 로드
CN115570708B (zh) * 2022-09-30 2023-07-18 江苏亨博复合材料有限公司 一种低面密度热塑预浸料生产设备及其生产工艺
CN117644672A (zh) * 2024-01-30 2024-03-05 东华大学 一种双向同性连续压延纤维板及其生产装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247012A (ja) * 1987-04-02 1988-10-13 Mitsui Toatsu Chem Inc 繊維強化熱可塑性プラスチツクの製造法
JPH054246A (ja) * 1990-09-27 1993-01-14 Sekisui Chem Co Ltd 繊維複合シートの製造方法
JP2008207545A (ja) * 2007-02-02 2008-09-11 Toray Ind Inc 切込プリプレグ基材、複合切込プリプレグ基材、積層基材、繊維強化プラスチック、および切込プリプレグ基材の製造方法
JP2013202890A (ja) * 2012-03-28 2013-10-07 Mitsubishi Rayon Co Ltd 成形材料とその製造方法
JP2014019780A (ja) * 2012-07-18 2014-02-03 Toray Ind Inc 繊維強化樹脂成形体および繊維強化樹脂シート

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128198A (en) * 1986-11-07 1992-07-07 Basf Aktiengesellschaft Production of improved preimpregnated material comprising a particulate thermoplastic polymer suitable for use in the formation of a substantially void-free fiber-reinforced composite article
US4990207A (en) * 1987-04-02 1991-02-05 Mitsui Toatsu Chemicals, Inc. Process for preparing fiber-reinforced thermoplastic molded articles
JPH085080B2 (ja) 1987-04-27 1996-01-24 三井東圧化学株式会社 繊維強化熱可塑性プラスチツクの製造法
JP2885038B2 (ja) 1993-12-13 1999-04-19 東洋紡績株式会社 繊維強化熱可塑性樹脂シ−ト及びその製造方法
TW363012B (en) * 1995-05-01 1999-07-01 Mitsui Chemicals Inc Manufacturing method for laminated plates
JP4789940B2 (ja) * 2005-08-18 2011-10-12 帝人テクノプロダクツ株式会社 等方性の繊維強化熱可塑性樹脂シートとその製造方法並びに成形板
WO2007135418A1 (en) * 2006-05-22 2007-11-29 Advanced Composites Group Limited Moulding materials
JP5311444B2 (ja) * 2006-12-27 2013-10-09 独立行政法人 宇宙航空研究開発機構 樹脂プリプレグの製造方法、樹脂プリプレグ用繊維シート、樹脂プリプレグ及びその複合材料
JP5223354B2 (ja) 2007-02-02 2013-06-26 東レ株式会社 切込プリプレグ基材、積層基材、繊維強化プラスチック、および切込プリプレグ基材の製造方法
EP2127840B1 (en) * 2007-02-02 2019-04-10 Toray Industries, Inc. Prepreg base material,laminated base material, process for producing prepreg base material, and process for producing fiberreinforced plastic
JP2008273176A (ja) * 2007-04-03 2008-11-13 Toray Ind Inc 繊維強化プラスチックの製造方法
JP5167953B2 (ja) 2008-05-27 2013-03-21 東レ株式会社 積層基材、繊維強化プラスチック、およびそれらの製造方法
CN102056971B (zh) 2008-07-31 2013-09-04 东丽株式会社 预浸料坯、预成型体、成型品及预浸料坯的制造方法
JP5768354B2 (ja) * 2010-10-18 2015-08-26 三菱レイヨン株式会社 不連続繊維を有するプリプレグの製造方法
ES2719499T3 (es) * 2012-12-26 2019-07-10 Toray Industries Producto moldeado que tiene estructura hueca y proceso para producir el mismo
KR101867201B1 (ko) 2014-02-14 2018-06-12 미쯔비시 케미컬 주식회사 섬유 강화 플라스틱 및 그의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63247012A (ja) * 1987-04-02 1988-10-13 Mitsui Toatsu Chem Inc 繊維強化熱可塑性プラスチツクの製造法
JPH054246A (ja) * 1990-09-27 1993-01-14 Sekisui Chem Co Ltd 繊維複合シートの製造方法
JP2008207545A (ja) * 2007-02-02 2008-09-11 Toray Ind Inc 切込プリプレグ基材、複合切込プリプレグ基材、積層基材、繊維強化プラスチック、および切込プリプレグ基材の製造方法
JP2013202890A (ja) * 2012-03-28 2013-10-07 Mitsubishi Rayon Co Ltd 成形材料とその製造方法
JP2014019780A (ja) * 2012-07-18 2014-02-03 Toray Ind Inc 繊維強化樹脂成形体および繊維強化樹脂シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3120984A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123268A (ja) * 2017-02-03 2018-08-09 三菱ケミカル株式会社 繊維強化プラスチック
JP7066973B2 (ja) 2017-02-03 2022-05-16 三菱ケミカル株式会社 繊維強化プラスチック
JP2018154064A (ja) * 2017-03-21 2018-10-04 三菱ケミカル株式会社 複合材料の成形方法および成型品
WO2019017057A1 (ja) * 2017-07-18 2019-01-24 東レ株式会社 一方向に配向したテープ状プリプレグ、およびその成形品
JPWO2019017057A1 (ja) * 2017-07-18 2020-05-28 東レ株式会社 一方向に配向したテープ状プリプレグ、およびその成形品
JP7234632B2 (ja) 2017-07-18 2023-03-08 東レ株式会社 一方向に配向したテープ状プリプレグ、およびその成形品

Also Published As

Publication number Publication date
US20190001591A1 (en) 2019-01-03
KR20160105877A (ko) 2016-09-07
EP3120984A4 (en) 2017-03-29
EP3120984A1 (en) 2017-01-25
KR101867201B1 (ko) 2018-06-12
US20170190123A1 (en) 2017-07-06
CN105992682A (zh) 2016-10-05
CN105992682B (zh) 2018-04-17
EP3120984B1 (en) 2023-03-22
JP5975171B2 (ja) 2016-08-23
US10773473B2 (en) 2020-09-15
JPWO2015122500A1 (ja) 2017-03-30
US11034103B2 (en) 2021-06-15
US20180117861A1 (en) 2018-05-03

Similar Documents

Publication Publication Date Title
JP5975171B2 (ja) 繊維強化プラスチック及びその製造方法
JP6477720B2 (ja) 繊維強化プラスチック及びその製造方法
US10604633B2 (en) Thermoplastic prepreg and laminate
JP5696812B2 (ja) 積層基材およびその製造方法
CN110072693B (zh) 复合结构体及其制造方法
JP2019081389A (ja) 一方向繊維強化テープを作製するための方法
JP2009286817A (ja) 積層基材、繊維強化プラスチック、およびそれらの製造方法
JP2015166130A (ja) 繊維強化プラスチックの製造方法
JP7066973B2 (ja) 繊維強化プラスチック
CN107002365B (zh) 碳纤维毡、坯料、片材料和成型品
JP6435696B2 (ja) 積層基材の製造方法
JP2016108348A (ja) 積層基材およびその製造方法
JP2018123267A (ja) 繊維強化プラスチック
WO2022050213A1 (ja) 熱可塑性プリプレグ、繊維強化プラスチック、及びそれらの製造方法
US20240059031A1 (en) Prepreg laminate, composite structure, and method for manufacturing composite structure
JP2016087907A (ja) 繊維強化プラスチックの製造方法
JP2016172346A (ja) 繊維強化プラスチックの製造方法及び積層シート

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015511744

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749554

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015749554

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015749554

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167021292

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15117132

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE