WO2015122117A1 - 光学系およびそれを用いた撮像装置 - Google Patents

光学系およびそれを用いた撮像装置 Download PDF

Info

Publication number
WO2015122117A1
WO2015122117A1 PCT/JP2015/000199 JP2015000199W WO2015122117A1 WO 2015122117 A1 WO2015122117 A1 WO 2015122117A1 JP 2015000199 W JP2015000199 W JP 2015000199W WO 2015122117 A1 WO2015122117 A1 WO 2015122117A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
aperture stop
peripheral
optical system
area image
Prior art date
Application number
PCT/JP2015/000199
Other languages
English (en)
French (fr)
Inventor
貴真 安藤
拓巳 井場
耕一朗 松岡
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015122117A1 publication Critical patent/WO2015122117A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/10Bifocal lenses; Multifocal lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • G08B13/189Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
    • G08B13/194Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
    • G08B13/196Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
    • G08B13/19617Surveillance camera constructional details
    • G08B13/19626Surveillance camera constructional details optical details, e.g. lenses, mirrors or multiple lenses
    • G08B13/19628Surveillance camera constructional details optical details, e.g. lenses, mirrors or multiple lenses of wide angled cameras and camera groups, e.g. omni-directional cameras, fish eye, single units having multiple cameras achieving a wide angle view

Definitions

  • the present invention relates to an optical system capable of forming a wide area image of a wide subject area and a narrow area image of a narrow subject area, and an imaging apparatus using the same.
  • the imaging apparatus moves the lens to shorten the focal length and shoot a wide subject area, and the longest focal length and shoot a narrow subject area large. Some of them have a function that enables photographing.
  • the lens position at the time of shooting differs between the WIDE image and the TELE image, they cannot be obtained simultaneously.
  • a wide-area image displaying a wide subject area and a narrow-area image displaying an enlarged narrow subject area are simultaneously photographed.
  • the following three configurations are conceivable as an imaging apparatus capable of simultaneously capturing such a wide area image and a narrow area image.
  • FIG. 11 is a cross-sectional view illustrating a configuration of a first imaging device capable of simultaneously capturing a wide area image and a narrow area image.
  • a wide-area image is created when light from a wide subject region passes through the lens 101 and reaches the image sensor 102. Then, by a processing unit (not shown), a part of the wide area image is cut out and digitally processed to create a narrow area image. Therefore, the wide area image and the narrow area image can be simultaneously displayed on the display unit.
  • FIG. 12 is a cross-sectional view showing a configuration of a second imaging device capable of simultaneously capturing a wide area image and a narrow area image.
  • the lens 111 is formed by integrating a wide-angle lens 111a and a narrow-angle lens 111b. Light from a wide subject area passes through the wide-angle lens 111a and reaches the first area 112a of the imaging sensor 112, and light from a narrow subject area passes through the narrow-angle lens 111b and The second area 112b is reached. A wide area image is created by the first area 112a, and a narrow area image is created by the second area 112b. Therefore, the wide area image and the narrow area image can be simultaneously displayed on the display unit.
  • FIG. 13 is a cross-sectional view showing a configuration of a third imaging device capable of simultaneously capturing a wide area image and a narrow area image.
  • a wide-angle lens 121 and a narrow-angle lens 122 are formed separately. Light from a wide subject area passes through the wide-angle lens 121 and reaches the first area 123a of the imaging sensor 123, and light from a narrow subject area passes through the narrow-angle lens 122 and the imaging sensor 123. To the second region 123b. A wide area image is created by the first area 123a, and a narrow area image is created by the second area 123b. Therefore, the wide area image and the narrow area image can be simultaneously displayed on the display unit.
  • the imaging apparatus having the above configuration has the following problems. Since the first imaging device cuts out and enlarges a part of the wide area image to create the narrow area image, it is necessary to sufficiently increase the resolution of the wide area image in order to prevent the narrow area image from being blurred. is there. For this reason, it is necessary to use a high-resolution sensor as the imaging sensor 102, and the cost increases.
  • the lens for wide angle of view and the lens for narrow angle of view are formed integrally, so that the rotational symmetry of the lens is lost. For this reason, the conventional method of creating a rotationally symmetric lens cannot be used, and the processing error of the lens becomes large. In addition, the difficulty of assembly and mounting work increases, and the manufacturing cost increases.
  • the number of lenses is twice as much, and the number of parts increases, so the cost of the lenses increases.
  • the optical system of the present invention includes an imaging lens having a rotationally symmetric lens and a plurality of aperture stops.
  • the plurality of aperture stops include a central aperture stop having an opening at a position corresponding to the central region of the imaging lens, and a peripheral opening having an opening at a position corresponding to the peripheral region of the imaging lens.
  • the imaging lens has a focal length and an image magnification that are different between the central region and the peripheral region.
  • the light passing through the central aperture stop forms a wide-area image with a relatively low image magnification
  • the light passing through the peripheral aperture stop forms a narrow-area image with a relatively high image magnification.
  • the central aperture stop can be arranged on the image side with respect to the peripheral aperture stop. With this configuration, a wide-area image can be detected with high resolution while avoiding interference of light passing through the peripheral aperture stop with light passing through the central aperture stop.
  • the light passing through the central aperture stop forms a narrow area image having a relatively high image magnification
  • the light passing through the peripheral aperture stop forms a wide area image having a relatively low image magnification.
  • the central aperture stop may be arranged closer to the object side than the peripheral aperture stop.
  • the wide area image and the narrow area image can be formed on the same plane. Further, the wide area image and the narrow area image can be formed at different positions. Thus, by disposing the image sensor at the imaging position, each of the wide-area image and the narrow-area image can be created by one image sensor.
  • the central aperture stop may be coaxial with the optical axis of the imaging lens, and the peripheral aperture stop may not be coaxial with the optical axis of the imaging lens.
  • the imaging lens is formed so that an image magnification of the narrow area image is two times or more of an image magnification of the wide area image.
  • the imaging lens may be configured to form an image other than the wide area image and the narrow area image.
  • an image pickup apparatus of the present invention covers the optical system, a light shielding hood that covers the optical system, and has openings at positions corresponding to the central aperture stop and the peripheral aperture stop, respectively.
  • One image pickup device is provided.
  • the image pickup device can be configured such that the center is arranged at a position shifted from the optical axis of the image pickup lens.
  • an optical system capable of simultaneously forming a wide-area image and a narrow-area image while suppressing an increase in cost, and An imaging apparatus using the can be provided.
  • FIG. 6 shows an image detected by the imaging sensor in the first embodiment
  • FIG. 6 shows an image detected by the imaging sensor in the first embodiment
  • FIG. 10 shows an image detected by the image sensor in the second embodiment.
  • FIG. 10 shows another image detected by the image sensor in the second embodiment.
  • Sectional drawing which shows the structure of a 1st imaging device
  • Sectional drawing which shows the structure of a 2nd imaging device
  • Sectional drawing which shows the structure of a 3rd imaging device
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the imaging apparatus 1 according to Embodiment 1 of the present invention.
  • the imaging device 1 is configured with an imaging lens 5 arranged inside a hood 2 and a lens barrel 3.
  • the imaging lens 5 is configured by arranging a first lens 6, a second lens 7, and a third lens 8 in order from the object side, and is held by the lens barrel 4.
  • FIG. 2 is a view of the imaging lens 5 taken out.
  • Each of the first lens 6 to the third lens 8 has a rotationally symmetric shape with respect to the optical axis 9.
  • the shape is different. That is, the focal area is different and the image magnification is different between the central area 10 and the peripheral area 11 of the imaging lens 5.
  • a central opening 12 is formed at a position corresponding to the central area 10 of the imaging lens 5, and the periphery is located below the central opening 12 and at a position corresponding to the peripheral area 11 of the imaging lens 5.
  • An opening 13 is formed.
  • the central aperture stop 14 is provided at a position corresponding to the central region 10 of the imaging lens 5 between the second lens 7 and the third lens 8.
  • a central optical path 16 that is an optical path of light incident from the central aperture 12 is defined by the central aperture stop 14 and the central region 10 of the imaging lens 5.
  • the peripheral aperture stop 15 is provided at a position corresponding to the peripheral region 11 of the imaging lens 5 on the object side of the first lens 6.
  • the peripheral aperture stop 15 and the peripheral region 11 of the imaging lens 5 define a peripheral optical path 17 that is an optical path of light incident from the peripheral aperture 13.
  • the light shielding plate 18 is disposed on the image side of the third lens 8 and prevents light passing through the central optical path 16 and light passing through the peripheral optical path 17 from being mixed.
  • the light shielding plate 18 may be disposed at a place other than the image side of the third lens 8.
  • the imaging sensor 19 is disposed on the image side of the third lens 8 and converts light into electricity.
  • the signal converted into electricity is processed by a processing device (not shown) and displayed on the display device as an image.
  • the imaging sensor 19 is a boundary between the central imaging region 20 positioned on the central optical path 16, the peripheral imaging region 21 positioned on the peripheral optical path 17, and the central imaging region 20 and the peripheral imaging region 21, and light does not reach. And a boundary region 22.
  • FIG. 3 is a cross-sectional view of the imaging apparatus 1 conceptually showing the central optical path 16 and the peripheral optical path 17.
  • the imaging lens 5 is not shown for ease of viewing.
  • the central optical path 16 has a wide angle of view and passes through the central region 10 of the imaging lens 5 and reaches the imaging sensor 19.
  • the peripheral optical path 17 has a narrow angle of view and passes through the peripheral region 11 of the imaging lens 5 and reaches the imaging sensor 19. As can be seen from FIG. 3, on the object side, the angle of view is adjusted so that the peripheral optical path 17 exists in the central optical path 16.
  • the central aperture stop 14 is disposed on the image side with respect to the peripheral aperture stop 15. This is to detect the image with high resolution while avoiding the interference of the light of the peripheral optical path 17 with the light of the central optical path 16 having a large angle of view.
  • FIG. 4 is a diagram showing an image detected by the image sensor 19.
  • the image of FIG. 4 shows the position that has reached the image sensor 19 in an inverted manner.
  • the upper side is an image (narrow area image) of light that has passed through the peripheral optical path 17 detected in the peripheral imaging region 21, and the lower side is the center.
  • It is an image (wide area image) by light that has passed through the central optical path 16 detected in the imaging region 20.
  • An area indicated by a broken line in the wide area image is an area indicated by the narrow area image.
  • the wide-area image and the narrow-area image can be viewed simultaneously.
  • each image is formed on the image sensor 19, there is no need for special signal processing, so there is no need to provide a high-resolution sensor or special signal processing element.
  • a rotationally symmetric lens is used, a lens processing step similar to the conventional one can be used, and no increase in cost occurs.
  • the imaging lens 5 only needs to have a shape that forms an image on the imaging sensor 19 in the central region and the peripheral region, and the shape of the central region of the conventional lens and the shape of the peripheral region of another conventional lens are different.
  • the imaging lens 5 may be formed in combination.
  • Table 1 is a table showing a specific design example of the imaging device 1 in the present embodiment.
  • Table 2 is a table showing the shapes and positions of the first lens 6 to the third lens 8, the central aperture stop 14, and the peripheral aperture stop 15.
  • R1 indicates the object-side surface of the first lens 6 to the third lens 8
  • R2 indicates the image-side surface of the first lens 6 to the third lens 8.
  • FIG. 5 is a diagram showing a central optical path image circle 23 and a peripheral optical path image circle 24 in the imaging sensor 19.
  • the central optical path image circle 23 is an area irradiated with light from the central optical path 16 having an angle of view of 25 ° when the optical axis 9 of the imaging lens 5 is positioned at the position of the point A of the imaging sensor 19.
  • the peripheral optical path image circle 24 is an area irradiated with light from the peripheral optical path 17 having an angle of view of 18 ° when the optical axis 9 of the imaging lens 5 is positioned at the position of the point A of the imaging sensor 19.
  • the light of the central optical path 16 reaches the central imaging area 20 of the imaging sensor 19, and the light of the peripheral optical path 17 reaches the peripheral imaging area 21.
  • the light in the central optical path 16 in the area where the central optical path image circle 23 and the peripheral imaging area 21 overlap is removed in the middle of the optical path by the light shielding plate 18, and only the light in the peripheral optical path 17 reaches the peripheral imaging area 21.
  • FIG. 6 is a diagram showing an MTF (Modulation Transfer Function) at 45 lp / mm in the central region 10 of the imaging lens 5 shown in Tables 1 and 2.
  • MTF Modulation Transfer Function
  • FIG. 7 is a diagram illustrating the MTF at 45 lp / mm in the peripheral region 11 of the imaging lens 5 shown in Tables 1 and 2.
  • the MTF exceeds 70% and is almost constant regardless of the angle. That is, it can be seen that a sufficient effect can be obtained even in a configuration in which light is propagated by providing two optical paths of the central optical path 16 and the peripheral optical path 17 in different regions of the imaging lens 5.
  • the center of the optical axis 9 is positioned at the end (point A) of the image sensor 19, but the optical axis 9 is positioned inside the image sensor 19 according to the desired image to be captured. Alternatively, it may be located outside.
  • FIG. 8 is a cross-sectional view of the imaging apparatus 1b conceptually showing the central optical path 16b and the peripheral optical path 17b in the second embodiment of the present invention.
  • the imaging device 1b differs from the imaging device 1 in Embodiment 1 in that the angle of view of the central optical path 16b is narrower than the angle of view of the peripheral optical path 17b. That is, the imaging lens 5b differs from the imaging lens 5 in the first embodiment in the shapes of the central region 10 and the peripheral region 11.
  • a central aperture stop (not shown) is arranged closer to the object side than the peripheral aperture stop.
  • Other configurations are the same as those of the imaging apparatus 1 of the first embodiment.
  • the same components as those of the imaging device 1 are denoted by the same reference numerals as those of the imaging device 1, and description thereof is omitted.
  • FIG. 9 is a diagram illustrating an image detected by the imaging sensor 19 of the imaging apparatus 1b.
  • the upper side is an image (wide area image) of light that has passed through the peripheral optical path 17b with a wide angle of view taken in the peripheral imaging area of the imaging sensor 19, and the lower side is a central optical path with a narrow angle of view taken in the central imaging area of the imaging sensor 19. It is the image (narrow area image) of the light which passed 16b.
  • FIG. 8 shows a configuration in which a narrow area image and a wide area image are taken in the vertical direction
  • the present embodiment is not limited to this configuration.
  • this configuration it is possible to magnify and display a subject area of interest and to capture a large subject area in the vicinity.
  • Embodiments 1 and 2 have been described using the imaging device as an example.
  • this imaging device can be used for a wide range of shooting, such as an in-vehicle camera or a security camera, and a purpose of enlarging a specific part.
  • an imaging apparatus that uses a narrow area image in order to confirm the focus more precisely can be provided.
  • it can be used as a magnifying glass that enlarges a part of the image sensor 19 while removing the image sensor 19 so that the periphery can be confirmed.
  • the imaging lens is formed on the imaging sensor 19 so as to form an image so that the image magnification of the narrow area image is twice or more of the image magnification of the wide area image. It is preferable. That is, it is preferable that the narrow area image is an image obtained by enlarging a part of the wide area image twice or more. This is because the difference due to the magnification between the narrow area image and the wide area image becomes clear.
  • a triplet lens is used as the imaging lens.
  • the number is not limited to three and any number of one or more may be used.
  • the imaging lens may be formed to form another image such as an image with an image magnification between the wide area image and the narrow area image.
  • the present invention has an advantage that a narrow area image and a wide area image can be simultaneously captured with a simple configuration, and can be used as an imaging apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Cameras In General (AREA)
  • Diaphragms For Cameras (AREA)
  • Blocking Light For Cameras (AREA)

Abstract

 回転対称レンズを有する撮像レンズ(5)と、複数の開口絞りとを備える。複数の開口絞りは、撮像レンズの中心領域(10)に対応する位置に開口を有する中心開口絞り(14)と、撮像レンズの周辺領域(11)に対応する位置に開口を有する周辺開口絞り(15)とを有し、撮像レンズは、中心領域と周辺領域とで焦点距離が異なり、像倍率が異なる。

Description

光学系およびそれを用いた撮像装置
 本発明は、広い被写体領域の広域像と狭い被写体領域の狭域像を結像可能な光学系およびそれを用いた撮像装置に関する。
 撮像装置に対して、広い被写体領域を撮影したいという要望と、狭い被写体領域を大きく撮影したいという要望がある。この要望に応えるために、撮像装置は、レンズを移動させて、焦点距離を最も短くして広い被写体領域を撮影したWIDE画像と、焦点距離を最も長くして狭い被写体領域を大きく撮影したTELE画像とを撮影可能とする機能を有するものがある。
 WIDE画像とTELE画像では、撮影する際のレンズ位置が異なるため、これらを同時に得ることはできない。しかし、防犯カメラのように、広い被写体領域を表示する広域画像と、狭い被写体領域を拡大して表示する狭域画像を同時に撮影したい場合が考えられる。このような広域画像と狭域画像を同時に撮影可能な撮像装置としては、以下の3つの構成が考えられる。
 図11は、広域画像と狭域画像とを同時に撮影可能な第1の撮像装置の構成を示す断面図である。広い被写体領域からの光がレンズ101を通過して撮像センサ102に到達することにより広域画像が作成される。そして、図示しない処理部により、広域画像の一部を切り出し、デジタル処理をして狭域画像が作成される。したがって、広域画像と狭域画像を表示部に同時に表示することができる。
 図12は、広域画像と狭域画像とを同時に撮影可能な第2の撮像装置の構成を示す断面図である。レンズ111は、広画角用レンズ111aと狭画角用レンズ111bが一体として形成されている。広い被写体領域からの光が広画角用レンズ111aを通過して撮像センサ112の第1領域112aに到達し、狭い被写体領域からの光が狭画角用レンズ111bを通過して撮像センサ112の第2領域112bに到達する。第1領域112aにより広域画像が作成され、第2領域112bにより狭域画像が作成される。したがって、広域画像と狭域画像を表示部に同時に表示することができる。
 図13は、広域画像と狭域画像とを同時に撮影可能な第3の撮像装置の構成を示す断面図である。広画角用レンズ121と狭画角用レンズ122が別々に形成されている。広い被写体領域からの光が広画角用レンズ121を通過し、撮像センサ123の第1領域123aに到達し、狭い被写体領域からの光が狭画角用レンズ122を通過して、撮像センサ123の第2領域123bに到達する。第1領域123aにより広域画像が作成され、第2領域123bにより狭域画像が作成される。したがって、広域画像と狭域画像を表示部に同時に表示することができる。
 しかしながら、上記構成の撮像装置には、以下の問題点がある。第1の撮像装置は、広域画像の一部を切り出し拡大して狭域画像を作成するため、狭域画像にボケが発生しないようにするためには、広域画像の解像度を十分高くする必要がある。このため、撮像センサ102として高解像度のセンサを用いる必要があり、コストが増加する。
 第2の撮像装置において、広画角用レンズと狭画角用レンズを一体に形成しているため、レンズの回転対称性が失われている。このため、回転対称レンズを作成する従来の方法を用いることができず、レンズの加工誤差が大きくなる。また、組み立て実装作業の難易度が上がり、製造コストが増加する。
 第3の撮像装置では、レンズの数が2倍必要となり、部品点数が増加するため、レンズのコストが増加する。
 本発明の光学系は、回転対称レンズを有する撮像レンズと、複数の開口絞りとを備える。上記課題を解決するために、前記複数の開口絞りは、前記撮像レンズの中心領域に対応する位置に開口を有する中心開口絞りと、前記撮像レンズの周辺領域に対応する位置に開口を有する周辺開口絞りとを有し、前記撮像レンズは、前記中心領域と前記周辺領域とで焦点距離が異なり、像倍率が異なることを特徴とする。
 また、前記中心開口絞りを通過する光により相対的に像倍率が低い広域像を形成し、前記周辺開口絞りを通過する光により相対的に像倍率が高い狭域像を形成するように構成してもよい。この場合、前記中心開口絞りは、前記周辺開口絞りよりも像側に配置された構成にすることができる。この構成により、中心開口絞りを通過する光に周辺開口絞りを通過する光が干渉することを避けつつ、広域像を高解像度で検出することができる。
 また、前記中心開口絞りを通過する光により相対的に像倍率が高い狭域像を形成し、前記周辺開口絞りを通過する光により相対的に像倍率が低い広域像を形成するように構成してもよい。この場合、前記中心開口絞りは、前記周辺開口絞りよりも物体側に配置された構成にすることができる。この構成により、周辺開口絞りを通過する光に中心開口絞りを通過する光が干渉することを避けつつ、広域像を高解像度で検出することができる。
 また、前記広域像と前記狭域像を同一平面上に結像するように構成することができる。また、前記広域像と前記狭域像を異なる位置に結像するように構成することができる。これらにより、結像位置に撮像センサを配置することにより、広域像と狭域像のそれぞれの画像を1つの撮像センサで作成することができる。
 また、前記中心開口絞りは、前記撮像レンズの光軸と同軸であり、前記周辺開口絞りは、前記撮像レンズの光軸と同軸でない構成にすることができる。
 また、前記撮像レンズは、前記狭域像の像倍率が前記広域像の像倍率の2倍以上であるように形成されることが好ましい。
 また、前記撮像レンズは、さらに前記広域像と前記狭域像以外の像を結像するように形成された構成にすることができる。
 また、前記中心開口絞りを通過する光の光路と、前記周辺開口絞りを通過する光の光路との間に配置された遮光部材を有する構成にすることができる。
 また、本発明の撮像装置は、上記課題を解決するために、上記光学系と、前記光学系を覆い、前記中心開口絞りと前記周辺開口絞りにそれぞれ対応する位置に開口を有する遮光フードと、一つの撮像素子とを備えたことを特徴とする。
 また、前記撮像素子は、中心が前記撮像レンズの光軸からずれた位置に配置されている構成にすることができる。
 本発明によれば、レンズの中心領域と周辺領域とで形状の異なる回転対称なレンズを用いることにより、コストの増加を抑え、広域像と狭域像とを同時に結像可能な光学系およびそれを用いた撮像装置を提供することができる。
本発明の実施の形態1における撮像装置の構成を模式的に示す断面図 実施の形態1における撮像レンズの中心領域と周辺領域を示す断面図 実施の形態1における中心光路と周辺光路とを概念的に示す撮像装置の断面図 実施の形態1における撮像センサで検出された画像を示す図 実施の形態1における撮像センサにおける中心光路イメージサークルと周辺光路イメージサークルを示す図 実施の形態1における撮像レンズの中心領域における45lp/mmでのMTFを示す図 実施の形態1における撮像レンズの周辺領域における45lp/mmでのMTFを示す図 本発明の実施の形態2における中心光路と周辺光路とを概念的に示す撮像装置の断面図 実施の形態2における撮像センサで検出された画像を示す図 実施の形態2における撮像センサで検出された別の画像を示す図 第1の撮像装置の構成を示す断面図 第2の撮像装置の構成を示す断面図 第3の撮像装置の構成を示す断面図
 (実施の形態1)
 図1は、本発明の実施の形態1における撮像装置1の構成を模式的に示す断面図である。撮像装置1は、フード2と鏡筒3とに囲まれた内部に撮像レンズ5が配置されて構成されている。撮像レンズ5は、物体側から順に第1レンズ6、第2レンズ7、第3レンズ8が配置されて構成され、レンズバレル4に保持されている。図2は、撮像レンズ5を取り出した図である。第1レンズ6~第3レンズ8は、それぞれ光軸9に対して回転対称な形状であり、光軸9を含む撮像レンズ5の中心領域10と、中心領域10の外側である周辺領域11では形状が異なっている。すなわち、撮像レンズ5の中心領域10と周辺領域11とでは、焦点距離が異なっており像倍率が異なる。
 図1に示すフード2には、撮像レンズ5の中心領域10に対応する位置に中心開口12が形成され、中心開口12の下側であって撮像レンズ5の周辺領域11に対応する位置に周辺開口13が形成されている。中心開口絞り14は、第2レンズ7と第3レンズ8の間における撮像レンズ5の中心領域10に対応した位置に設けられている。中心開口絞り14と撮像レンズ5の中心領域10により中心開口12から入射した光の光路である中心光路16が規定される。周辺開口絞り15は、第1レンズ6の物体側における撮像レンズ5の周辺領域11に対応した位置に設けられている。周辺開口絞り15と撮像レンズ5の周辺領域11により周辺開口13から入射した光の光路である周辺光路17が規定される。
 遮光板18は、第3レンズ8の像側に配置され、中心光路16を通過する光と周辺光路17を通過する光が混在することを防止するものである。なお、遮光板18は、第3レンズ8の像側以外の場所に配置されていてもよい。撮像センサ19は、第3レンズ8の像側に配置され、光を電気に変換する。そして、電気に変換された信号は、図示しない処理装置により処理され、画像として表示装置に表示される。撮像センサ19は、中心光路16上に位置する中心撮像領域20と、周辺光路17上に位置する周辺撮像領域21と、中心撮像領域20と周辺撮像領域21との境界であって光が届かない境界領域22とを有する。
 図3は、中心光路16と周辺光路17とを概念的に示す撮像装置1の断面図である。見易さを考慮して撮像レンズ5の図示を省略している。中心光路16は、画角が広く、撮像レンズ5の中心領域10を通過して撮像センサ19に到達する。周辺光路17は画角が狭く、撮像レンズ5の周辺領域11を通過して撮像センサ19に到達する。図3からわかるように、物体側において、中心光路16内に周辺光路17が存在するように、画角が調整されている。
 なお、図1で示したように、中心開口絞り14は、周辺開口絞り15よりも像側に配置されている。これは、画角の大きい中心光路16の光に周辺光路17の光が干渉することを避けつつ、像を高解像度で検出するためである。
 図4は、撮像センサ19で検出された画像を示す図である。図4の画像は、撮像センサ19に到達した位置を反転して示しており、上側が周辺撮像領域21で検出した周辺光路17を通過した光による画像(狭域画像)であり、下側が中心撮像領域20で検出した中心光路16を通過した光による画像(広域画像)である。広域画像の破線で示す領域が狭域画像で示す領域である。
 このように、広域画像と狭域画像を同時に表示することにより、注目部分の拡大画像とその周辺の画像を同時に見ることができる。また、撮像センサ19にそれぞれの像が結ばれるので、特別な信号処理の必要がないため、高解像度のセンサや特別な信号処理素子を設ける必要はない。また、回転対称レンズを用いるため、従来と同様のレンズ加工工程を用いることができ、コストの増加も生じない。
 なお、撮像レンズ5は、中心領域と周辺領域でそれぞれ撮像センサ19上に像を結像する形状であればよく、従来のレンズの中心領域の形状と別の従来のレンズの周辺領域の形状を組み合わせて撮像レンズ5を形成してもよい。
 (実施例)
 表1は、本実施の形態における撮像装置1の具体的な設計例を示す表である。
Figure JPOXMLDOC01-appb-T000001
 表2は、第1レンズ6~第3レンズ8、中心開口絞り14、周辺開口絞り15の形状および位置を示す表である。R1は第1レンズ6~第3レンズ8の物体側の面を示し、R2は第1レンズ6~第3レンズ8の像側の面を示す。
Figure JPOXMLDOC01-appb-T000002
 図5は、撮像センサ19における中心光路イメージサークル23と、周辺光路イメージサークル24とを示す図である。中心光路イメージサークル23は、撮像センサ19の点Aの位置に撮像レンズ5の光軸9が位置するようにした場合の画角25°の中心光路16の光が照射される領域である。周辺光路イメージサークル24は、撮像センサ19の点Aの位置に撮像レンズ5の光軸9が位置するようにした場合の画角18°の周辺光路17の光が照射される領域である。撮像センサ19の中心撮像領域20には中心光路16の光が到達し、周辺撮像領域21には周辺光路17の光が到達する。なお、中心光路イメージサークル23と周辺撮像領域21とが重なる領域の中心光路16の光は遮光板18により光路の途中で取り除かれて、周辺撮像領域21には周辺光路17の光のみが到達する。
 図6は、表1、2に示した撮像レンズ5の中心領域10における45lp/mmでのMTF(Modulation Transfer Function)を示す図である。タンジェンシャル(TAN)方向およびサジタル(SAG)方向のどちらにおいても、MTFが70%を超え、角度によらずほぼ一定である。図7は、表1、2に示した撮像レンズ5の周辺領域11における45lp/mmでのMTFを示す図である。タンジェンシャル方向およびサジタル方向のどちらにおいても、MTFが70%を超え、角度によらずほぼ一定である。すなわち、撮像レンズ5の異なる領域に、中心光路16と周辺光路17の2つの光路を設けて光を伝搬させる構成であっても、十分な効果が得られることがわかる。
 以上、実施例を示したが、本実施の形態はこの実施例に限定されるものではない。例えば、本実施例では、光軸9の中心を撮像センサ19の端部(点A)に位置させたが、撮像する所望の画像に応じて、光軸9を撮像センサ19内側に位置するようにしても、外側に位置するようにしてもよい。
 (実施の形態2)
 図8は、本発明の実施の形態2における中心光路16bと周辺光路17bとを概念的に示す撮像装置1bの断面図である。撮像装置1bにおいて、実施の形態1における撮像装置1と異なるのは、中心光路16bの画角が周辺光路17bの画角より狭いことである。すなわち、撮像レンズ5bは、実施の形態1における撮像レンズ5に対して中心領域10、周辺領域11の形状が異なる。これに伴って、周辺光路の光に中心光路の光が干渉することを避けるため、図示しない中心開口絞りが、周辺開口絞りよりも物体側に配置される。これら以外の構成は、実施の形態1の撮像装置1と同様である。撮像装置1bにおいて、撮像装置1と同様の構成要素については、撮像装置1と同一の符号を付して説明を省略する。
 図9は、撮像装置1bの撮像センサ19で検出された画像を示す図である。上側が撮像センサ19の周辺撮像領域で撮影した画角の広い周辺光路17bを通過した光の画像(広域画像)であり、下側が撮像センサ19の中心撮像領域で撮影した画角の狭い中心光路16bを通過した光の画像(狭域画像)である。このように構成することにより、注目する被写体領域を拡大表示し、周辺の広い被写体領域を表示することができる。
 図8では、狭域画像と広域画像を上下方向で撮影する構成を示したが、本実施の形態はこの構成に限定されない。例えば、周辺開口を中心開口の周囲全方向に設けることにより、図10に示すように、中心に狭域画像、狭域画像の周囲に広域画像を表示することができる。この構成により、注目する被写体領域を拡大表示するとともに、周辺の広い被写体領域を撮影することができる。
 実施の形態1、2では、撮像装置を例に挙げて説明した。この撮像装置としては、車載用カメラや防犯カメラなど、広い範囲の撮影と特定部分を拡大して撮影する用途に利用できる。また、広域画像を撮影する際に、ピント合わせをより厳密に確認するために狭域画像を用いる撮像装置とすることもできる。また、撮像センサ19を取り除いて、周辺を確認可能としつつ、一部を拡大する拡大鏡としても利用できる。
 なお、実施の形態1、2において、撮像レンズは、撮像センサ19上に、狭域像の像倍率が広域像の像倍率の2倍以上となるように像を結像するように形成されることが好ましい。すなわち、狭域画像は、広域画像の一部を2倍以上拡大した画像となるようにすることが好ましい。これにより、狭域画像と広域画像の倍率による差が明確となるからである。
 なお、実施の形態1、2では、撮像レンズとして3枚組みのレンズを用いたが、3枚に限定する必要はなく、1枚以上何枚あってもよい。
 また、撮像レンズは、広域像と狭域像以外に、例えば広域画像と狭域画像の間の像倍率の像など別の像を結像するように形成されてもよい。
 本発明は、簡易な構成で狭域画像と広域画像を同時に撮影可能であるという利点を有し、撮像装置として利用可能である。
 1、1b 撮像装置
 2 フード
 3 鏡筒
 4 レンズバレル
 5、5b 撮像レンズ
 6 第1レンズ
 7 第2レンズ
 8 第3レンズ
 9 光軸
 10 中心領域
 11 周辺領域
 12 中心開口
 13 周辺開口
 14 中心開口絞り
 15 周辺開口絞り
 16、16b 中心光路
 17、17b 周辺光路
 18 遮光板
 19 撮像センサ
 20 中心撮像領域
 21 周辺撮像領域
 22 境界領域
 23 中心光路イメージサークル
 24 周辺光路イメージサークル

Claims (13)

  1.  回転対称レンズを有する撮像レンズと、複数の開口絞りとを備えた光学系において、
     前記複数の開口絞りは、
     前記撮像レンズの中心領域に対応する位置に開口を有する中心開口絞りと、
     前記撮像レンズの周辺領域に対応する位置に開口を有する周辺開口絞りとを備え、
     前記撮像レンズは、前記中心領域と前記周辺領域とで焦点距離が異なり、像倍率が異なることを特徴とする光学系。
  2.  前記中心開口絞りを通過する光により相対的に像倍率が低い広域像を結像し、
     前記周辺開口絞りを通過する光により相対的に像倍率が高い狭域像を結像するように構成された請求項1記載の光学系。
  3.  前記中心開口絞りを通過する光により相対的に像倍率が高い狭域像を結像し、
     前記周辺開口絞りを通過する光により相対的に像倍率が低い広域像を結像するように構成された請求項1記載の光学系。
  4.  前記広域像と前記狭域像を同一平面上に結像する請求項2または3に記載の光学系。
  5.  前記広域像と前記狭域像を異なる位置に結像する請求項4記載の光学系。
  6.  前記中心開口絞りは、前記撮像レンズの光軸と同軸であり、
     前記周辺開口絞りは、前記撮像レンズの光軸と同軸でない請求項1~5のいずれか一項に記載の光学系。
  7.  前記中心開口絞りは、前記周辺開口絞りよりも像側に配置された請求項2記載の光学系。
  8.  前記中心開口絞りは、前記周辺開口絞りよりも物体側に配置された請求項3記載の光学系。
  9.  前記撮像レンズは、前記狭域像の像倍率が前記広域像の像倍率の2倍以上であるように形成された請求項2~8のいずれか一項に記載の光学系。
  10.  前記撮像レンズは、さらに前記広域像と前記狭域像以外の像を結像するように形成された請求項2~9のいずれか一項に記載の光学系。
  11.  前記中心開口絞りを通過する光の光路と、前記周辺開口絞りを通過する光の光路との間に配置された遮光部材を有する請求項1~10のいずれか一項に記載の光学系。
  12.  請求項1~11のいずれか一項の光学系と、
     前記光学系を覆い、前記中心開口絞りと前記周辺開口絞りにそれぞれ対応する位置に開口を有する遮光フードと、
     一つの撮像素子とを備えたことを特徴とする撮像装置。
  13.  前記撮像素子は、中心が前記撮像レンズの光軸からずれた位置に配置されている請求項12記載の撮像装置。
PCT/JP2015/000199 2014-02-14 2015-01-19 光学系およびそれを用いた撮像装置 WO2015122117A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014026727A JP2015152780A (ja) 2014-02-14 2014-02-14 光学系およびそれを用いた撮像装置
JP2014-026727 2014-11-28

Publications (1)

Publication Number Publication Date
WO2015122117A1 true WO2015122117A1 (ja) 2015-08-20

Family

ID=53799871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000199 WO2015122117A1 (ja) 2014-02-14 2015-01-19 光学系およびそれを用いた撮像装置

Country Status (2)

Country Link
JP (1) JP2015152780A (ja)
WO (1) WO2015122117A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029843A1 (ja) * 2015-08-19 2017-02-23 富士フイルム株式会社 撮像装置
WO2017029846A1 (ja) * 2015-08-19 2017-02-23 富士フイルム株式会社 レンズ装置
WO2017061258A1 (ja) * 2015-10-08 2017-04-13 富士フイルム株式会社 撮像装置
WO2017061263A1 (ja) * 2015-10-08 2017-04-13 富士フイルム株式会社 レンズ装置、撮像ユニット及び撮像装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123840A1 (ja) 2017-12-19 2019-06-27 パナソニックIpマネジメント株式会社 撮像装置、撮像システム、および表示システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027202A (en) * 1989-08-26 1991-06-25 Messerschmitt-Bolkow-Blohm Gmbh Picture transmission system of optical wave guide guided missiles
JPH03194502A (ja) * 1989-12-22 1991-08-26 Masaki Fujimaki 多重焦点光学系
JP2003510666A (ja) * 1999-09-30 2003-03-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ トラッキングカメラ
JP2004272053A (ja) * 2003-03-11 2004-09-30 Konica Minolta Holdings Inc 撮像装置及び携帯端末
JP2006235605A (ja) * 2005-01-27 2006-09-07 Toyota Motor Corp ズーム機構
JP2010072032A (ja) * 2008-09-16 2010-04-02 Hitachi Maxell Ltd 撮像レンズ及びカメラモジュール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027202A (en) * 1989-08-26 1991-06-25 Messerschmitt-Bolkow-Blohm Gmbh Picture transmission system of optical wave guide guided missiles
JPH03194502A (ja) * 1989-12-22 1991-08-26 Masaki Fujimaki 多重焦点光学系
JP2003510666A (ja) * 1999-09-30 2003-03-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ トラッキングカメラ
JP2004272053A (ja) * 2003-03-11 2004-09-30 Konica Minolta Holdings Inc 撮像装置及び携帯端末
JP2006235605A (ja) * 2005-01-27 2006-09-07 Toyota Motor Corp ズーム機構
JP2010072032A (ja) * 2008-09-16 2010-04-02 Hitachi Maxell Ltd 撮像レンズ及びカメラモジュール

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017029843A1 (ja) * 2015-08-19 2017-02-23 富士フイルム株式会社 撮像装置
WO2017029846A1 (ja) * 2015-08-19 2017-02-23 富士フイルム株式会社 レンズ装置
JPWO2017029846A1 (ja) * 2015-08-19 2017-12-28 富士フイルム株式会社 レンズ装置
US10270982B2 (en) 2015-08-19 2019-04-23 Fujifilm Corporation Imaging apparatus
US10393993B2 (en) 2015-08-19 2019-08-27 Fujifilm Corporation Lens device
WO2017061258A1 (ja) * 2015-10-08 2017-04-13 富士フイルム株式会社 撮像装置
WO2017061263A1 (ja) * 2015-10-08 2017-04-13 富士フイルム株式会社 レンズ装置、撮像ユニット及び撮像装置

Also Published As

Publication number Publication date
JP2015152780A (ja) 2015-08-24

Similar Documents

Publication Publication Date Title
JP5431293B2 (ja) ドーム型カメラ
US9383550B2 (en) Auto-focus in low-profile folded optics multi-camera system
CN106255913B (zh) 包括具有不同直径的透镜元件的图像拾取设备
WO2015122117A1 (ja) 光学系およびそれを用いた撮像装置
US20150145950A1 (en) Multi field-of-view multi sensor electro-optical fusion-zoom camera
JP5373228B2 (ja) 撮像装置および内視鏡
CN106814440A (zh) 转换器器件和图像捕获装置
JP2016057586A (ja) カメラ装置およびカメラ装置の制御方法
US20140362232A1 (en) Objective lens with hyper-hemispheric field of view
JP6818587B2 (ja) 撮像装置
US20140340472A1 (en) Panoramic bifocal objective lens
KR101889275B1 (ko) 단안식 입체 카메라
JP6442065B2 (ja) フォーカス装置,撮像システムおよびフォーカス駆動信号出力方法
JP2010072032A (ja) 撮像レンズ及びカメラモジュール
JP5830666B2 (ja) ドーム型カメラ
WO2020039759A1 (ja) 撮像装置、及び撮像システム
US10466438B2 (en) Lens barrel and image-capturing apparatus
JP2011182041A (ja) 撮像装置
KR102561935B1 (ko) 카메라 모듈
JP2015106773A (ja) アレイ光学系を有する撮像装置
JP5944736B2 (ja) 周面立体観察装置
JP5581177B2 (ja) 撮像位置調整装置および撮像装置
Sheil et al. Portraiture lens concept in a mobile phone camera
JP6218138B2 (ja) 撮影装置
JP2017068090A (ja) 結像光学系及びそれを備える画像読取装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15748553

Country of ref document: EP

Kind code of ref document: A1