WO2017061263A1 - レンズ装置、撮像ユニット及び撮像装置 - Google Patents

レンズ装置、撮像ユニット及び撮像装置 Download PDF

Info

Publication number
WO2017061263A1
WO2017061263A1 PCT/JP2016/077619 JP2016077619W WO2017061263A1 WO 2017061263 A1 WO2017061263 A1 WO 2017061263A1 JP 2016077619 W JP2016077619 W JP 2016077619W WO 2017061263 A1 WO2017061263 A1 WO 2017061263A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
lens
optical
annular
lens device
Prior art date
Application number
PCT/JP2016/077619
Other languages
English (en)
French (fr)
Inventor
小野 修司
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2017061263A1 publication Critical patent/WO2017061263A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/02Still-picture cameras
    • G03B19/04Roll-film cameras
    • G03B19/07Roll-film cameras having more than one objective

Definitions

  • the present invention relates to a lens device, an image pickup unit, and an image pickup device, and in particular, a lens device having a first optical system and a second optical system having different image pickup characteristics, and two different image pickup characteristics using the lens device.
  • the present invention relates to an image pickup unit and an image pickup apparatus that simultaneously pick up images.
  • Patent Documents 1 and 2 propose an imaging apparatus in which a lens apparatus is configured by concentrically combining two optical systems having different focal lengths to simultaneously capture wide-angle and telephoto images.
  • the central optical system can be solved by narrowing the light beam from the outer periphery toward the inner periphery, but the outer annular optical system has a problem that it cannot be solved even if the light beam is narrowed by the same method.
  • the annular optical system has a so-called blurring ring shape, and this ring-shaped blurring is not preferable depending on the subject.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a lens device, an imaging unit, and an imaging device that are lightweight, compact, and have a deep focal depth.
  • the means for solving the problem are as follows.
  • the first optical system is configured by a part of an annular optical system that has imaging characteristics different from those of the first optical system and can be arranged concentrically with the first optical system. And a second optical system having the same optical axis.
  • the lens device includes two optical systems.
  • the two optical systems are constituted by a first optical system and a second optical system.
  • the first optical system and the second optical system have different imaging characteristics. Different imaging characteristics means that the lens functions differently. For example, this is the case when the focal length and the focusing distance are different.
  • the second optical system includes a part of an annular optical system that can be arranged concentrically with the first optical system. “Can be arranged concentrically” means that it can be arranged on the same optical axis.
  • the second optical system is configured by a part of an annular optical system that can be arranged coaxially with the first optical system.
  • the part of the annular optical system means a part of the circumferential direction around the optical axis of the annular optical system.
  • the second optical system is configured as a part of the annular optical system cut out along the optical axis in the circumferential direction.
  • the entire configuration can be made light and compact.
  • the depth of focus can be increased as compared with the annular optical system.
  • the same optical axis referred to here includes a case where the optical axes substantially coincide with each other, and includes, for example, a manufacturing tolerance range that does not significantly deteriorate the performance of the optical system.
  • the second optical system has a shape obtained by cutting the annular optical system into a fan shape in a cross section orthogonal to the optical axis.
  • a 2nd optical system can be manufactured easily. That is, since the annular optical system is simply cut out in a fan shape at a desired central angle, it can be easily manufactured.
  • orthogonal as used herein includes substantially orthogonal, and includes, for example, a manufacturing tolerance range that does not significantly deteriorate the performance of the optical system.
  • the second optical system has a shape in which the annular optical system is cut out in a fan shape and the outer peripheral portion and the inner peripheral portion are cut out parallel to each other in a cross section orthogonal to the optical axis. Thereby, it becomes easy to hold the individual optical elements constituting the second optical system.
  • the second optical system has a shape obtained by cutting out a region sandwiched by two straight lines parallel to each other across the optical axis from the annular optical system in a cross section orthogonal to the optical axis. Lens device.
  • the second optical system has a shape obtained by cutting out a region sandwiched by two straight lines parallel to each other across the optical axis from the annular optical system in a cross section orthogonal to the optical axis. Thereby, it becomes easy to hold the individual optical elements constituting the second optical system.
  • the second optical system has two first straight lines parallel to each other across the optical axis from the annular optical system and two parallel to each other perpendicular to the first straight line in a cross section orthogonal to the optical axis.
  • the lens device according to (1) which has a shape obtained by cutting out a region surrounded by the second straight line.
  • the second optical system in the cross section orthogonal to the optical axis, has two first straight lines parallel to each other across the optical axis from the annular optical system, and orthogonal to the first straight line and parallel to each other. And a shape cut out from a region surrounded by two second straight lines.
  • the shape of each optical element which comprises a 2nd optical system becomes a shape which has a rectangular cross section, and the holding
  • the maximum width of the opening of the second optical system is equal to or smaller than the inner diameter of the annular optical system.
  • an opening part means the part through which light passes in an optical system. Accordingly, when there is nothing that blocks light in a cross section orthogonal to the optical axis, the entire cross section becomes an opening. In the cross section orthogonal to the optical axis, when the maximum width of the optical system is larger than the inner diameter of the annular optical system, the light is blocked by a light shielding member or the like so as to be equal to or smaller than the inner diameter of the annular optical system. Thereby, the depth of focus can be increased as compared with the annular optical system.
  • the second optical system is constituted by a part of the annular reflection optical system.
  • the second optical system is constituted by a part of the annular refractive optical system.
  • the refractive optical system is an optical system that does not include a mirror in the optical element, and is an optical system that realizes desired imaging characteristics only by refraction of a lens.
  • the first optical system and the second optical system are configured by optical systems having different focal lengths. Thereby, a wide-angle image and a telephoto image can be taken simultaneously.
  • the first optical system and the second optical system are configured by optical systems having different in-focus distances.
  • an image focused on a subject at a short distance and an image focused on a subject at a long distance can be simultaneously captured.
  • the first optical system and the second optical system are configured by optical systems having different transmission wavelength characteristics.
  • the first optical system is configured with an optical system suitable for imaging with visible light
  • the second optical system is configured with an optical system suitable for imaging with infrared light.
  • the lens device according to any one of (1) to (11), further including a first optical system driving unit that moves the first optical system along the optical axis.
  • the first optical system driving unit that moves the first optical system along the optical axis is provided. Thereby, the focus of the first optical system can be adjusted.
  • the lens device according to any one of (1) to (12), further including a second optical system driving unit that moves the second optical system along the optical axis.
  • the second optical system driving unit that moves the second optical system along the optical axis is provided. Thereby, the focus of the second optical system can be adjusted.
  • An image pickup unit comprising: an image sensor regularly arranged in a two-dimensional array.
  • two images having different imaging characteristics can be simultaneously captured using a lens device including the first optical system and the second optical system and an image sensor having so-called directivity.
  • the image signal of the first image obtained via the imaging unit of (14) and the first optical system and the image signal of the second image obtained via the second optical system are acquired from the image sensor. And an image signal acquisition unit.
  • two images having different imaging characteristics can be simultaneously captured using a lens device including the first optical system and the second optical system and an image sensor having so-called directivity.
  • a lens device that is lightweight and compact and has a deep focal depth
  • an imaging unit and an imaging device that include the lens device.
  • FIG. 10 The perspective view which shows schematic structure of an imaging unit Front view showing schematic configuration of imaging unit 3-3 sectional view of FIG.
  • the figure which shows the light ray locus of a 1st optical system A perspective view explaining the configuration of the second optical system Sectional drawing which shows the ray locus of a 2nd optical system Front view of first optical system driving unit and second optical system driving unit 8-8 sectional view of FIG. 9-9 sectional view of FIG. 10-10 cross-sectional view of FIG.
  • Conceptual diagram of image sensor light reception Sectional drawing which shows schematic structure of the pixel which comprises an image sensor.
  • the figure which shows the incident angle sensitivity characteristic of the 1st pixel of an image sensor, and a 2nd pixel Front view showing a first modification of the lens device Front view showing a second modification of the lens apparatus The figure which shows the relationship between the shape of the lens and the shape of the luminous flux In an annular lens, the diameter of the opening is reduced stepwise.
  • FIG. 1 shows another example of light-shielding of the opening part of a 2nd optical system
  • FIG. 1 shows another example of light-shielding of the opening part of a 2nd optical system
  • Sectional drawing which shows schematic structure of the lens apparatus by which the 2nd optical system was comprised by the refractive optical system.
  • Sectional drawing which shows schematic structure of the lens apparatus with which the 1st optical system and the 2nd optical system were comprised by the optical system from which a focusing distance mutually differs
  • Block diagram showing system configuration of imaging apparatus
  • FIG. 1 is a perspective view illustrating a schematic configuration of the imaging unit.
  • FIG. 2 is a front view showing a schematic configuration of the imaging unit.
  • 3 is a cross-sectional view taken along the line 3-3 in FIG.
  • the imaging unit 1 includes a lens device 10 and an image sensor 100.
  • the imaging unit 1 receives the light that has passed through the lens device 10 by the image sensor 100, converts it into an electrical signal, and outputs it.
  • the lens apparatus 10 includes a first optical system 20 and a second optical system 30 having the same optical axis L.
  • the first optical system 20 and the second optical system 30 are configured by optical systems having different imaging characteristics.
  • the first optical system 20 and the second optical system 30 are configured by optical systems having different focal lengths
  • the second optical system 30 is an optical having a longer focal length than the first optical system 20. Consists of a system. Details of the lens device 10 will be described later.
  • the image sensor 100 includes a so-called directivity sensor.
  • the directivity sensor is configured by regularly two-dimensionally arranging pixels having directivity with respect to the incident angle of light.
  • the image sensor 100 according to the present embodiment regularly arranges pixels that selectively receive light that has passed through the first optical system 20 and pixels that selectively receive light that has passed through the second optical system 30. Configured.
  • the image sensor 100 is By acquiring an electric signal of one pixel, an image signal of an image obtained through the first optical system 20 can be acquired.
  • the image signal of the image obtained through the second optical system 30 can be acquired by acquiring the electrical signal of the second pixel. Details of the image sensor 100 will be described later.
  • the lens device 10 includes a first optical system 20 and a second optical system 30 having the same optical axis L.
  • the first optical system 20 and the second optical system 30 are configured by optical systems having different focal lengths.
  • the first optical system 20 is configured by a wide-angle lens having a short focal length
  • the second optical system 30 is configured by a telephoto lens having a long focal length.
  • the lens device 10 mainly includes a first optical system 20, a second optical system 30, a common lens 40, a first optical system driving unit 60 (see FIG. 7-8), a second optical system driving unit 80, and the like. (See FIGS. 7 and 9-10).
  • FIG. 4 is a diagram showing a ray trajectory of the first optical system.
  • the first optical system 20 is a wide-angle lens with a short focal length. As shown in FIG. 3, the first optical system 20 includes three lenses in eight groups, and in order from the object side, the first optical system first lens group 20A, the first optical system second lens group 20B, and the first optical system.
  • the optical system third lens group 20 ⁇ / b> C is disposed along the optical axis L. Each element has a circular shape.
  • the first lens group 20A of the first optical system is composed of four lenses.
  • the first optical system first lens group 20A includes, in order from the object side, a first optical system first lens 20a, a first optical system second lens 20b, a first optical system third lens 20c, and a first optical system fourth lens.
  • a lens 20d is arranged along the optical axis L.
  • the first optical system second lens group 20B is composed of a single lens.
  • the first optical system second lens group 20B is configured by a first optical system fifth lens 20e disposed on the optical axis L.
  • the first optical system third lens group 20C is constituted by three lenses.
  • the first optical system sixth lens 20f, the first optical system seventh lens 20g, and the first optical system eighth lens 20h are arranged along the optical axis L in order from the object side. Arranged and configured.
  • the light incident on the first optical system 20 passes through the first optical system first lens group 20A, the first optical system second lens group 20B, and the first optical system third lens group 20C and enters the common lens 40. .
  • the second optical system 30 is configured by a part of an annular optical system.
  • This annular optical system is configured to be concentrically arranged with the first optical system 20. That is, the second optical system 30 is configured as a part of an annular optical system that can be arranged concentrically with the first optical system 20 along the optical axis L.
  • FIG. 5 is a perspective view illustrating the configuration of the second optical system.
  • annular optical system X indicated by a two-dot broken line is an optical system arranged concentrically with the first optical system 20.
  • the second optical system 30 is configured as an optical system obtained by cutting a part of the annular optical system X in the circumferential direction along the optical axis. Therefore, the optical axis is the same as the optical axis of the first optical system 20.
  • the annular optical system X is divided into eight equal parts, and one of them is used as the second optical system 30.
  • the shape of the cross section orthogonal to the optical axis L is a sector having a central angle of 45 ° (see FIG. 2), and the shape of each optical element constituting the second optical system 30 is also a sector.
  • FIG. 6 is a cross-sectional view showing the ray trajectory of the second optical system.
  • the second optical system 30 is a telephoto lens having a long focal length.
  • the second optical system 30 includes a so-called reflection optical system, and includes a second optical system first lens 30a, a second optical system second lens 30b, a second optical system third lens 30c, a main mirror 30d, A secondary mirror 30e.
  • the second optical system first lens 30a, the second optical system second lens 30b, and the second optical system third lens 30c are constituted by a part of an annular lens, and the second optical system first lens 30a, The second optical system second lens 30b and the second optical system third lens 30c are arranged along the optical axis L in this order.
  • the primary mirror 30d is provided on the image side surface of the second optical system third lens 30c.
  • the primary mirror 30d is formed by coating a metal or dielectric film on the entire surface of the second optical system third lens 30c on the image surface side, and covering the entire surface of the second optical system third lens 30c on the image surface side. Provided.
  • the secondary mirror 30e is provided on the image side surface of the second optical system second lens 30b.
  • the secondary mirror 30e is formed by coating a metal or dielectric film on the inner peripheral portion of the image plane side surface of the second optical system second lens 30b, so that the image plane side surface of the second optical system second lens 30b is coated. Provided in the inner periphery.
  • the light incident on the second optical system 30 passes through the second optical system first lens 30a, the second optical system second lens 30b, and the second optical system third lens 30c, and enters the main mirror 30d.
  • the light incident on the primary mirror 30d is reflected by the primary mirror 30d, passes through the second optical system third lens 30c, and enters the secondary mirror 30e.
  • the light incident on the secondary mirror 30e is reflected by the secondary mirror 30e and enters the common lens 40.
  • the common lens 40 is a lens shared by the first optical system 20 and the second optical system 30 and is disposed at a fixed position on the optical axis L.
  • the common lens 40 is a lens that adjusts the incident angle of light to the image sensor 100. The light that has passed through the first optical system 20 and the second optical system 30 enters the image sensor 100 via the common lens 40.
  • the lens barrel 12 is provided with a common lens holding frame 42 for holding the common lens 40 at a fixed position on the optical axis L (see FIG. 8).
  • the first optical system driving unit 60 moves the entire first optical system 20 back and forth along the optical axis L.
  • FIG. 7 is a front view of the first optical system driving unit and the second optical system driving unit.
  • 8 is a cross-sectional view taken along the line 8-8 in FIG.
  • the first optical system driving unit 60 is configured to guide the first optical system 20 along the optical axis L, and to guide the first optical system 20 to the light.
  • a first optical system drive mechanism 64 that moves back and forth along the axis L is provided.
  • the first optical system guide mechanism 62 includes a first optical system guide shaft 66 and a first optical system guide sleeve 68.
  • the first optical system guide shaft 66 is constituted by a round bar. Both ends of the first optical system guide shaft 66 are supported by the first optical system guide shaft support portion 14 provided in the lens barrel 12 of the lens device 10 and are arranged in parallel with the optical axis L.
  • the first optical system guide sleeve 68 is constituted by a cylindrical body into which the first optical system guide shaft 66 can be inserted.
  • the first optical system guide sleeve 68 is mounted on the first optical system guide shaft 66 and is slidably supported.
  • the lenses 20a to 20d constituting the first optical system first lens group 20A are held by the first optical system first lens frame 70A.
  • the lens 20e constituting the first optical system second lens group 20B is held by the first optical system second lens frame 70B.
  • the lenses 20f to 20h constituting the first optical system third lens group 20C are held by the first optical system third lens frame 70C.
  • the first optical system first lens frame 70A, the first optical system second lens frame 70B, and the first optical system third lens frame 70C are respectively first through first optical system guide sleeve connecting arms 68A, 68B, 68C. It is connected to the optical system guide sleeve 68.
  • the first optical system drive mechanism 64 includes a first optical system drive screw rod 72, a first optical system drive motor 74, and a first optical system drive nut 76.
  • the first optical system drive screw rod 72 is rotatably supported by the first optical system screw rod bearing portion 15 provided on the lens barrel 12 at both ends, and is arranged in parallel with the optical axis L.
  • the first optical system drive motor 74 is provided in the lens barrel 12.
  • the first optical system drive motor 74 is connected to the first optical system drive screw rod 72.
  • the first optical system drive screw rod 72 is driven to rotate by the first optical system drive motor 74.
  • the first optical system drive nut 76 is screwed to the first optical system drive screw rod 72.
  • the first optical system first lens frame 70A, the first optical system second lens frame 70B, and the first optical system third lens frame 70C are respectively first through first optical system drive nut coupling arms 76A, 76B, and 76C. It is connected to the optical system drive nut 76.
  • the first optical system driving unit 60 is configured as described above. According to the first optical system drive unit 60 of this configuration, when the first optical system drive motor 74 is driven, the first optical system drive nut 76 moves back and forth along the optical axis L. As a result, the entire first optical system 20 moves back and forth along the optical axis L.
  • the second optical system driving unit 80 moves the entire second optical system 30 back and forth along the optical axis L.
  • FIG. 9 is a cross-sectional view taken along the line 9-9 in FIG. 7, and FIG. 10 is a cross-sectional view taken along the line 10-10 in FIG.
  • the second optical system driving unit 80 includes a second optical system guide mechanism 82 that guides the second optical system 30 along the optical axis L, and a second optical system. And a second optical system drive mechanism 84 that moves the lens 30 back and forth along the optical axis L.
  • the second optical system guide mechanism 82 includes a second optical system guide shaft 86 and a second optical system guide sleeve 88.
  • the second optical system guide shaft 86 is constituted by a round bar.
  • the both ends of the second optical system guide shaft 86 are supported by the second optical system guide shaft support portion 16 provided in the lens barrel 12 of the lens device 10 and are arranged in parallel with the optical axis L.
  • the second optical system guide sleeve 88 is constituted by a cylindrical body into which the second optical system guide shaft 86 can be inserted.
  • the second optical system guide sleeve 88 is attached to the second optical system guide shaft 86 and is slidably supported.
  • the second optical system first lens 30a and the second optical system second lens 30b are held by the second optical system first lens frame 90A. Further, the second optical system third lens 30c is held by the second optical system second lens frame 90B.
  • the second optical system first lens frame 90A and the second optical system second lens frame 90B are coupled to the second optical system guide sleeve 88 via second optical system guide sleeve coupling arms 88A and 88B, respectively.
  • the second optical system drive mechanism 84 includes a second optical system drive screw rod 92, a second optical system drive motor 94, and a second optical system drive nut 96.
  • the second optical system drive screw rod 92 is rotatably supported by the second optical system screw rod bearing portion 17 provided at the lens barrel 12 at both ends, and is arranged in parallel with the optical axis L.
  • the second optical system drive motor 94 is provided in the lens barrel 12.
  • the second optical system drive motor 94 is connected to the second optical system drive screw rod 92.
  • the second optical system drive screw rod 92 is driven to rotate by the second optical system drive motor 94.
  • the second optical system drive nut 96 is screwed to the second optical system drive screw rod 92.
  • the second optical system first lens frame 90A and the second optical system second lens frame 90B are connected to the second optical system drive nut 96 via second optical system drive nut connection arms 96A and 96B, respectively.
  • the second optical system driving unit 80 is configured as described above. According to the second optical system drive unit 80 of this configuration, when the second optical system drive motor 94 is driven, the second optical system drive nut 96 moves back and forth along the optical axis L. As a result, the entire second optical system 30 moves back and forth along the optical axis L.
  • FIG. 11 is a conceptual diagram of light reception of the image sensor.
  • the image sensor 100 includes a so-called directivity sensor.
  • the directivity sensor is an image sensor in which each pixel has directivity with respect to the incident angle of light.
  • the image sensor 100 two-dimensionally includes pixels that selectively receive light that has passed through the first optical system 20 and pixels that selectively receive light that has passed through the second optical system 30. It is configured by arranging.
  • a pixel that selectively receives light that has passed through the first optical system 20 is a first pixel 110A
  • a pixel that selectively receives light that has passed through the second optical system 30 is a second pixel 110B.
  • 110A and second pixels 110B are alternately arranged.
  • FIG. 12 is a cross-sectional view showing a schematic configuration of pixels constituting the image sensor.
  • Each pixel of the image sensor 100 includes a photoelectric conversion element 112, a microlens 114, and a light shielding mask 116.
  • the photoelectric conversion element 112 receives light and accumulates charges proportional to the intensity of the received light.
  • the photoelectric conversion element 112 is configured by, for example, a photodiode.
  • the micro lens 114 is disposed in front of the photoelectric conversion element 112.
  • the microlens 114 forms the pupil images of the first optical system 20 and the second optical system 30 on the photoelectric conversion element 112.
  • the light shielding mask 116 is disposed between the microlens 114 and the photoelectric conversion element 112.
  • the light shielding mask 116 shields part of the light that has passed through the microlens 114.
  • the light shielding mask 116 of the first pixel 110 ⁇ / b> A has a circular opening at the center, and shields light that has passed through the second optical system 30.
  • the light shielding mask 116 of the second pixel 110B has an annular opening, and shields light that has passed through the first optical system 20.
  • each pixel is configured with different sensitivities depending on the incident angle of light. That is, the first pixel 110A receives light incident through the first optical system 20 with high sensitivity, and the second pixel 110B receives light incident through the second optical system 30 with high sensitivity. It is said.
  • FIG. 13 is a diagram showing incident angle sensitivity characteristics of the first pixel and the second pixel of the image sensor.
  • the horizontal axis indicates the incident angle of light incident on the photoelectric conversion element through the microlens
  • the vertical axis indicates the sensitivity of the photoelectric conversion element. With respect to the incident angle, light incident perpendicularly to the center of the photoelectric conversion element is 0 °.
  • reference numeral S1 is a graph of the incident angle sensitivity characteristic of the first pixel 110A
  • reference numeral S2 is a graph of the incident angle sensitivity characteristic of the second pixel 110B.
  • the first pixel 110A receives light with a shallow incident angle, that is, light passing through the center of the lens device 10 with high sensitivity, and the second pixel 110B has light with a deep incident angle, The light passing through the periphery of the lens device 10 is received with high sensitivity.
  • the first optical system 20 is disposed at the center
  • the second optical system 30 is disposed at the periphery. Accordingly, the first pixel 110A receives light passing through the first optical system 20 with high sensitivity, and the second pixel 110B receives light passing through the second optical system 30 with high sensitivity.
  • interference occurs in the first pixel 110A and the second pixel 110B.
  • Interference means that light from the first optical system 20 and the second optical system 30 is mixed and received. In this case, a part of the light from the second optical system 30 is received by the first pixel 110A, and a part of the light from the first optical system 20 is received by the second pixel 110B.
  • the openings of the first optical system 20 and the second optical system 30 are limited so that light having an incident angle in the region where the interference occurs does not enter the first pixel 110A and the second pixel 110B.
  • the first optical system 20 and the second optical system 30 limit the opening so that the boundary between them spreads. Thereby, the occurrence of interference can be prevented.
  • the image sensor 100 reads out the electric charge accumulated in each pixel and outputs it as an electric signal.
  • the image signal of the image obtained through the first optical system 20 can be obtained, and the electrical signal of the charge accumulated in the second pixel 110B is obtained.
  • an image signal of an image obtained through the second optical system 30 can be acquired.
  • a color filter is arrange
  • color filters composed of three colors of red (R: Red), green (G: Green), and blue (B: Blue) are arranged in a Bayer array. Thereby, a color image can be acquired.
  • the image sensor 100 includes, for example, a CCD (Charge Coupled Device), a CMOS (Complementary Metal Oxide Semiconductor). Can be configured.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • the opening shape of the light shielding mask 116 of the second pixel 110 ⁇ / b> B is annular, but may be an opening shape corresponding to the opening shape of the second optical system 30.
  • the imaging unit 1 includes a lens device 10 including two optical systems, and an image sensor 100 in which each pixel has incident angle directivity.
  • the lens apparatus 10 includes a wide-angle first optical system 20 and a telephoto second optical system 30.
  • the first optical system 20 and the second optical system 30 are independently focused.
  • the image sensor 100 includes a first pixel 110A that selectively receives light that has passed through the first optical system 20, and a second pixel 110B that selectively receives light that has passed through the second optical system 30.
  • the optical image of the subject formed on the light receiving surface of the image sensor 100 via the first optical system 20 is picked up by the first pixel 110A. Therefore, an image signal of an image captured by the first optical system 20 can be acquired by acquiring an electrical signal from the first pixel 110A.
  • the optical image of the subject formed on the light receiving surface of the image sensor 100 via the second optical system 30 is captured by the second pixel 110B. Therefore, an image signal of an image captured by the second optical system 30 can be acquired by acquiring an electrical signal from the second pixel 110B.
  • the lens device 10 including the two optical systems of the wide angle and the telephoto and the image sensor 100 in which each pixel has the incident angle directivity are used.
  • the lens device 10 including the two optical systems of the wide angle and the telephoto and the image sensor 100 in which each pixel has the incident angle directivity are used.
  • the second optical system 30 is configured by a part of the annular optical system, the entire configuration of the lens device 10 constituting the imaging unit 1 can be made light and compact.
  • individual optical elements can be miniaturized, significant weight reduction and cost reduction are possible. That is, when an annular optical system having a large diameter is used as it is, it is necessary to increase the thickness of the optical element in order to ensure surface accuracy.
  • the thickness of the optical element can be increased. Can be thin. Thereby, weight reduction becomes possible. Further, since the amount of material to be used is small, the manufacturing cost can be reduced. Further, since the individual optical elements are lighter, less energy is required for driving them, and the drive unit can be downsized.
  • the depth of focus can be increased. Thereby, an image with high sharpness can be acquired in a wide range.
  • the second optical system constituting the lens device is constituted by a part of an annular optical system that can be arranged concentrically with the first optical system.
  • the annular optical system X that can be arranged concentrically with the first optical system 20 is divided into eight equal parts, and the second optical system 30 is configured using one of them.
  • the configuration aspect of the second optical system is not limited to this.
  • a lens apparatus in which the configuration of the second optical system is changed will be described.
  • FIG. 14 is a front view showing a first modification of the lens device.
  • a second optical system 30 is configured by an optical system obtained by dividing an annular optical system X that can be arranged concentrically with the first optical system 20 into four equal parts. That is, the annular optical system X is divided into four equal parts, and one of them is arranged on the same optical axis as that of the first optical system 20 to constitute the lens device 10.
  • the number of divisions is not particularly limited.
  • the second optical system can be easily manufactured and the cost can be reduced by dividing the annular optical system into a plurality of equal parts to configure the second optical system.
  • I can plan. That is, when the second optical system is configured by equally dividing the annular optical system into a plurality of parts, each optical element constituting the second optical system only cuts the annular optical element linearly. The device can be easily manufactured. Further, by dividing equally, a plurality of optical elements can be taken out from one annular optical element, and the original optical element can be used without waste.
  • FIG. 15 is a front view showing a second modification of the lens device.
  • the lens apparatus 10 of this example forms a second optical system 30 by an optical system obtained by cutting out an annular optical system X that can be arranged concentrically with the first optical system 20 in a fan shape.
  • the second optical system 30 is cut out so that the width W is the same as the inner diameter r of the annular optical system X.
  • This width W is the width of the portion where the width of the second optical system 30 is maximized.
  • the second optical system 30 is cut out in a fan shape, the length of the outer peripheral ridge corresponds to the maximum width W. Therefore, in this example, the second optical system 30 is cut out so that the length of the outer peripheral ridge is the same as the inner diameter r of the annular optical system X.
  • the second optical system 30 is cut out so that the maximum width W is the same as the inner diameter r of the annular optical system X, so that the second optical system is configured by the annular optical system. Can deepen the depth of focus. This point will be described.
  • FIG. 16 is a diagram showing the relationship between the shape of the lens and the shape of the luminous flux.
  • FIG. 4A shows the luminous flux of a circular lens
  • FIG. 4B shows the luminous flux of an annular lens.
  • the light beam near the focal point has two conical cones facing each other. It becomes a shape.
  • the light beam near the focal point has a shape in which two hollow cones face each other. Become.
  • the size of the point image obtained through the lens is the size of the cross section of the cone.
  • the size of the cross section of the cone is approximately proportional to the size of the lens aperture and the amount of deviation from the focal point.
  • FIG. 17 is a diagram in which the diameter of the opening is gradually reduced in an annular lens. That is, the outer diameters of the annular lenses L2a to L2c are reduced stepwise.
  • the opening of the lens L2a shown in FIG. 9A is the largest, and the opening of the lens L2b shown in FIG.
  • the lens device 10 of this example is configured such that the maximum width W of the second optical system 30 is the same as the inner diameter r of the annular optical system X.
  • an optical system having a deep focal depth that cannot be realized by an annular optical system can be configured.
  • the maximum width of the second optical system is set to the same length as the inner diameter of the annular optical system.
  • the maximum width of the second optical system is set to be equal to or smaller than the inner diameter of the annular optical system. It is possible to construct an optical system with a deep depth of focus that cannot be realized by the system.
  • the amount of light decreases as the aperture becomes smaller. Also, the resolution is lowered due to the diffraction effect. Therefore, it is preferable to determine the size of the aperture of the second optical system in consideration of the light amount and the resolution reduction due to the diffraction effect. Of these, the reduction in the amount of light can be eliminated by a combination with the sensitivity of the image sensor used. Therefore, it is preferable to determine the size of the aperture of the second optical system within a range in which the resolution is not reduced by the diffraction effect. In general, when the aperture value is less than F32, the resolution is significantly reduced due to the diffraction effect.
  • the aperture size of the second optical system is within a range that does not fall below F32 in terms of the aperture value. Therefore, it is preferable that the second optical system has an opening whose maximum width is equal to or smaller than the inner diameter of the annular optical system and whose aperture value does not fall below F32.
  • FIG. 18 is a front view showing a third modification of the lens device.
  • the second optical system 30 cuts out the annular optical system X in a fan shape in a cross section orthogonal to the optical axis L, and further cut out the outer peripheral portion and the inner peripheral portion of the fan in parallel with each other.
  • the shape of the second optical system 30 is a trapezoid in a cross section orthogonal to the optical axis L.
  • the second optical system 30 having such a configuration can simplify the mechanism for holding each optical element because the outer peripheral portion and the inner peripheral portion of each optical element are configured to be planar.
  • the structure of the second optical system driving unit can be simplified.
  • the second optical system 30 can be made deeper by configuring the maximum width W to be equal to or smaller than the inner diameter r of the annular optical system X.
  • FIG. 19 is a front view showing a fourth modification of the lens device.
  • the second optical system 30 is a region sandwiched by two straight lines m1 and m2 parallel to each other across the optical axis L from the annular optical system X in a cross section orthogonal to the optical axis L. The shape is cut out.
  • the second optical system 30 can be configured to have a deep depth of focus by being configured such that the maximum width is equal to or smaller than the inner diameter of the annular optical system.
  • FIG. 20 is a front view showing a fifth modification of the lens device.
  • the second optical system 30 has two first straight lines m1 and m2 that are parallel to each other across the optical axis L from the annular optical system X in a cross section orthogonal to the optical axis L.
  • the region surrounded by the two second straight lines n1 and n2 orthogonal to the first straight lines m1 and m2 and parallel to each other is cut out.
  • the shape of the second optical system 30 is a rectangular shape in a cross section orthogonal to the optical axis L.
  • the second optical system 30 having such a configuration can simplify the mechanism for holding each optical element since each optical element has a rectangular shape.
  • the structure of the second optical system driving unit can be simplified.
  • the second optical system 30 can be configured to have a deep depth of focus by being configured such that the maximum width is equal to or smaller than the inner diameter of the annular optical system.
  • FIG. 21 is a front view showing a sixth modification of the lens device.
  • the lens device 10 of the present example has a structure in which the second optical system 30 cuts out a part of the annular optical system X into an elliptical shape.
  • the second optical system 30 can be made deeper by configuring the second optical system 30 so that its maximum width W, that is, the elliptical major axis is equal to or smaller than the inner diameter r of the annular optical system X.
  • a part of the annular optical system X is cut into an elliptical shape, but it may be cut into a circular shape. Moreover, it can also be set as the structure cut out in polygonal shape.
  • the shape of the second optical system 30 cut out that is, the shape of the opening of the second optical system 30 is determined in consideration of the aberration of the original annular optical system. That is, since the aberration, refractive power, and the like of the lens differ in the sagittal direction and the meridional direction, it is more preferable that the lens is cut out so as to obtain point image characteristics in a uniform direction.
  • the second optical system can increase the depth of focus by setting the maximum width to be equal to or smaller than the inner diameter of the annular optical system.
  • Such an effect can be obtained by regulating the opening of the second optical system. That is, the same effect can be obtained by restricting the opening of the second optical system so that the maximum width is equal to or smaller than the inner diameter of the annular optical system. Therefore, for example, even when the maximum width of the second optical system is larger than the inner diameter of the annular optical system, the same effect can be obtained by restricting the opening.
  • an opening part means the part through which light passes in an optical system. Accordingly, when there is nothing that blocks light in a cross section orthogonal to the optical axis, the entire cross section becomes an opening.
  • FIG. 22 is a front view showing an example of a lens apparatus in which the opening of the second optical system is regulated.
  • an annular optical system X that can be arranged concentrically with the first optical system 20 is divided into four equal parts, and one of them is arranged on the same optical axis as the first optical system 20.
  • the second optical system 30 is configured.
  • the second optical system 30 has a width W1 that is larger than the inner diameter r of the annular optical system X.
  • the opening 32 of the second optical system 30 is regulated.
  • the opening 32 is regulated so that the maximum width W2 of the opening 32 is equal to or smaller than the inner diameter r of the annular optical system X.
  • a part of the optical elements that constitute the second optical system 30 is coated with a light-shielding film 34 and masked, thereby opening the second optical system 30.
  • the part 32 is regulated.
  • the opening 32 of the second optical system 30 is masked on both sides in the circumferential direction by the light-shielding film 34, so that the maximum width W2 of the opening 32 of the second optical system 30 is increased.
  • the inner diameter r of the annular optical system X is the same.
  • the length of the outer flange is the maximum width, so that the length of the flange is the same as the inner diameter r of the annular optical system X.
  • the depth of focus can be increased by restricting the opening 32 of the second optical system.
  • a part of the optical element is coated with a light shielding film to restrict the opening, but the method for restricting the opening is not limited to this.
  • a light blocking member such as a diaphragm may be installed on the optical path to restrict the opening.
  • the example shown in FIG. 22 is a case where the length of the flange on the outer periphery of the second optical system formed in a fan shape is longer than the inner diameter of the annular optical system, but the second optical system formed in a fan shape.
  • the difference between the outer diameter and the inner diameter of the optical system is large and the length of the diagonal line is larger than the inner diameter of the annular optical system, the opening of the second optical system is shielded in the radial direction, and the maximum width of the optical It should be less than the inner diameter of the system.
  • the interference with the first optical system 20 can be effectively suppressed when the image sensor configured by the directivity sensor is used by spreading light from the inner side in the radial direction, that is, by shielding light from the inner side in the radial direction.
  • FIG. 23 is a diagram showing an example of shielding the opening when the difference between the outer diameter and the inner diameter of the second optical system is larger than the inner diameter of the annular optical system.
  • the difference between the outer diameter and the inner diameter of the second optical system 30 is large, and the diagonal length W1 is larger than the inner diameter r of the annular optical system X.
  • a part of the optical elements constituting the second optical system 30 is coated with a light shielding film 34 to shield the light so that the maximum width W2 of the opening 32 becomes the inner diameter r of the annular optical system X.
  • the opening 32 of the second optical system 30 is shielded from light so that the light shielding region expands from the inside in the radial direction to the outside so that the boundary with the first optical system 20 is widened. .
  • the circumferential direction and the radial direction are The opening 32 is shielded from light so that the opening 32 is equal to or smaller than the inner diameter of the annular optical system.
  • FIG. 24 is a diagram illustrating another example of light shielding of the opening of the second optical system.
  • the opening 32 of the second optical system 30 is shielded from both the circumferential direction and the radial direction so that the maximum width W2 of the opening 32 is equal to or smaller than the inner diameter r of the annular optical system X. I have to.
  • the opening 32 is regulated by coating the optical element constituting the second optical system 30 with the light-shielding film 34 so that the shape of the opening 32 is rectangular.
  • FIG. 25 is a diagram showing another example of light shielding of the opening of the second optical system.
  • an optical element constituting the second optical system 30 is coated with a light shielding film 34 so that the opening 32 of the second optical system 30 is circular, and the opening 32 is regulated. Yes.
  • the shape of the opening 32 is not particularly limited, and various forms can be adopted.
  • the second optical system is configured by a reflective optical system, but the second optical system can also be configured by a refractive optical system.
  • the refractive optical system is an optical system that does not include a mirror as a constituent element, and is an optical system that realizes desired imaging characteristics only by refraction of a lens.
  • FIG. 26 is a cross-sectional view showing a schematic configuration of a lens apparatus in which the second optical system is constituted by a refractive optical system.
  • the lens apparatus 10 includes a first optical system 120 and a second optical system 130.
  • the first optical system 120 and the second optical system 130 have the same optical axis L, and both are constituted by refractive optical systems.
  • the first optical system 120 is composed of four groups of seven wide-angle lenses, and in order from the object side, the first optical system first lens group 120A, the first optical system second lens group 120B, the first The optical system third lens group 120C and the first optical system fourth lens group 120D are arranged along the optical axis L.
  • the first optical system first lens group 120A includes two lenses.
  • the first optical system first lens group 120A includes a first optical system first lens 120a and a first optical system second lens 120b arranged along the optical axis L in order from the object side.
  • the first optical system second lens group 120B is composed of one lens.
  • the first optical system second lens group 120B is configured by a first optical system third lens 120c disposed on the optical axis L.
  • the first optical system third lens group 120C is composed of two lenses.
  • the first optical system third lens group 120C includes a first optical system fourth lens 120d and a first optical system fifth lens 120e arranged along the optical axis L in order from the object side.
  • the first optical system fourth lens group 120D is composed of two lenses.
  • the first optical system fourth lens group 120D includes a first optical system sixth lens 120f and a first optical system seventh lens 120g arranged along the optical axis L in order from the object side.
  • Each lens constituting the first optical system 120 is a circular lens.
  • the light incident on the first optical system 120 includes the first optical system first lens group 120A, the first optical system second lens group 120B, the first optical system third lens group 120C, and the first optical system fourth lens group 120D. Then, the light enters the image sensor 100.
  • the second optical system 130 is composed of two groups of five telephoto lenses, and the second optical system first lens group 130A and the second optical system second lens group 130B are arranged in order from the object side. Arranged along the axis L.
  • the second optical system first lens group 130A includes three lenses.
  • a second optical system first lens 130a, a second optical system second lens 130b, and a second optical system third lens 130c are arranged along the optical axis L in order from the object side. Configured.
  • the second optical system second lens group 130B includes two lenses.
  • the second optical system second lens group 130B includes a second optical system fourth lens 130d and a second optical system fifth lens 130e arranged along the optical axis L in order from the object side.
  • the second optical system 130 is configured by a part of an annular refractive optical system.
  • the annular optical system is constituted by one divided into eight equal parts. Therefore, each lens constituting the second optical system 130 has a fan shape.
  • the light incident on the second optical system 130 enters the image sensor 100 through the second optical system first lens group 130A and the second optical system second lens group 130B.
  • the second optical system can also be configured by a refractive optical system.
  • the lens configuration shown in FIG. 26 is an example, and a lens configuration according to the purpose is adopted.
  • the first optical system is configured by a wide-angle lens and the second optical system is configured by a telephoto lens, but the reverse configuration may be employed. That is, the first optical system can be configured by a telephoto lens having a long focal length, and the second optical system can be configured by a wide-angle lens having a short focal length.
  • FIG. 27 is a cross-sectional view showing a schematic configuration of a lens apparatus in which the first optical system is configured by a telephoto lens and the second optical system is configured by a wide-angle lens.
  • the lens device 10 includes a first optical system 220, a second optical system 230, and a common lens 240.
  • the first optical system 220 and the second optical system 230 have the same optical axis L, and both are constituted by refractive optical systems.
  • the first optical system 220 includes a telephoto lens having a first angle of view ⁇ .
  • the first optical system 220 includes a first optical system first lens 220a and a first optical system second lens 220b arranged along the optical axis L from the image plane side.
  • Each lens constituting the first optical system 220 is constituted by a circular lens.
  • the second optical system 230 is composed of a wide-angle lens having a second angle of view ⁇ .
  • the second optical system 230 includes a second optical system first lens 230 a disposed on the optical axis L.
  • the second optical system first lens 230b is constituted by a part of an annular lens.
  • an annular lens is constituted by one divided into eight equal parts. Therefore, the outer shape has a fan shape.
  • the common lens 240 is a lens shared by the first optical system 220 and the second optical system 230 and is disposed at a fixed position on the optical axis L.
  • the common lens 240 adjusts the incident angle of light to the image sensor 100.
  • the light that has passed through the first optical system 220 and the second optical system 230 enters the image sensor 100 through the common lens 240.
  • the first optical system can be constituted by a telephoto lens
  • the second optical system can be constituted by a wide-angle lens
  • the first optical system and the second optical system are configured by optical systems having different focal lengths, but the first optical system and the second optical system have different imaging characteristics. Just do it.
  • FIG. 28 is a cross-sectional view showing a schematic configuration of a lens apparatus in which the first optical system and the second optical system are configured by optical systems having different in-focus distances.
  • the lens device 10 includes a first optical system 320 and a second optical system 330 having different in-focus distances.
  • the first optical system 320 is configured by an optical system that focuses on a subject at a short distance
  • the second optical system 330 is configured by an optical system that focuses on a subject at a long distance.
  • the optical element constituting the first optical system 320 has a circular shape.
  • the optical element constituting the second optical system 330 is constituted by a part of the optical system that can be arranged concentrically with the first optical system 320.
  • the lens apparatus 10 can be configured by the first optical system 320 and the second optical system 330 which are optical systems having different focusing distances.
  • the first optical system and the second optical system can be configured by optical systems having different transmission wavelength characteristics.
  • the first optical system is composed of an optical system having transmission wavelength characteristics suitable for photographing with visible light
  • the second optical system is composed of an optical system having transmission wavelength characteristics suitable for photographing with infrared light.
  • the above lens device is an example of the present invention.
  • the lens configuration of each optical system is appropriately changed according to the function required for the optical system.
  • the lens device can include an optical element such as a filter as necessary.
  • an optical element such as a filter as necessary.
  • an infrared cut filter, a cover glass that protects the image sensor, or the like can be arranged.
  • the first optical system is the same as a general lens manufacturing method. Therefore, here, a method for manufacturing the second optical system will be described.
  • the second optical system is constituted by one divided into n equal parts of the annular optical system
  • the second optical system is manufactured as follows.
  • a circular optical element is manufactured for each optical element constituting the second optical system.
  • a hole is made in the center of the circular optical element and processed into an annular shape.
  • the optical element processed into an annular shape is cut and divided into n equal parts. The obtained optical element is assembled to complete the second optical system.
  • the second optical system is configured by one of the annular optical systems divided into n equal parts, a plurality of optical elements can be obtained from one circular optical element, and the manufacturing cost per unit can be reduced. .
  • Imaging device An imaging apparatus including the imaging unit will be described.
  • FIG. 29 is a block diagram illustrating a system configuration of the imaging apparatus.
  • the imaging apparatus 400 mainly includes an imaging unit 1, a lens drive control unit 401, an image sensor drive control unit 402, an analog signal processing unit 403, a digital signal processing unit 404, a display unit 405, and an internal memory 406.
  • the imaging unit 1 includes a lens device 10 and an image sensor 100. Here, it is assumed that the imaging unit 1 having the configuration shown in FIG. 1 is used.
  • the lens drive control unit 401 controls the driving of the lens device 10 based on a command from the system control unit 408.
  • the lens drive control unit 401 includes a first optical system drive control unit that controls the drive of the first optical system 20 and a second optical system drive control unit that controls the drive of the second optical system 30.
  • the first optical system drive control unit controls the first optical system drive unit 60 based on a command from the system control unit 408 and moves the first optical system 20 back and forth along the optical axis L.
  • the second optical system drive control unit controls the second optical system drive unit 80 based on a command from the system control unit 408 and moves the second optical system 30 back and forth along the optical axis L.
  • the image sensor drive control unit 402 controls the drive of the image sensor 100 based on a command from the system control unit 408. In other words, the reading of the image signal from the image sensor 100 is controlled.
  • the analog signal processing unit 403 takes in an analog image signal for each pixel output from the image sensor 100, performs predetermined signal processing, converts it into a digital signal, and outputs it.
  • the digital signal processing unit 404 is an example of an image signal acquisition unit.
  • the digital signal processing unit 404 takes in an image signal for each pixel converted into a digital signal, performs predetermined signal processing, and generates image data.
  • the digital signal processing unit 404 generates first image data based on the image signal of the first pixel 110A of the image sensor 100, and generates second image data based on the image signal of the second pixel 110B.
  • the first image data is image data of a wide-angle image captured through the first optical system 20
  • the second image data is image data of a telephoto image captured through the second optical system 30.
  • the display unit 405 is composed of, for example, a liquid crystal monitor, and displays a captured image or a captured image (a so-called live view image).
  • the display unit 405 functions as a GUI (GUI: “Graphical” User ”Interface) as necessary.
  • the internal memory 406 is composed of, for example, a RAM (RAM: “Random Access Memory”) and functions as a work memory.
  • RAM Random Access Memory
  • the media interface 407 reads / writes data from / to the external memory 410 such as a memory card based on a command from the system control unit 408.
  • the system control unit 408 controls the overall operation of the imaging apparatus.
  • the system control unit 408 is constituted by, for example, a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Member), and a RAM, and executes a predetermined control program to include the digital signal processing unit 404.
  • the entire 400 is controlled. Programs and various data necessary for control are stored in the ROM.
  • the operation unit 409 includes various operation buttons such as a power button and a shutter button, and a drive circuit thereof. Operation information of the operation unit 409 is input to the system control unit 408. The system control unit 408 controls each unit based on operation information from the operation unit 409.
  • focusing is performed manually.
  • the photographer individually moves the first optical system 20 and the second optical system 30 via the operation unit 409 to focus on a desired subject.
  • Imaging for recording an image is performed after photometry.
  • the metering instruction is performed by half-pressing the shutter button.
  • the system control unit 408 obtains an EV value (exposure value) based on an image signal obtained from the image sensor 100 and determines an exposure. The exposure is determined for each optical system.
  • an image is recorded to record the image.
  • An instruction to capture an image is recorded by fully pressing the shutter button.
  • the system control unit 408 exposes the image sensor 100 at the exposure obtained by photometry, and captures a recording image.
  • the image signal for each pixel obtained by imaging is output from the image sensor 100 to the analog signal processing unit 403.
  • the analog signal processing unit 403 takes in an image signal for each pixel output from the image sensor 100, performs predetermined signal processing, converts it into a digital signal, and outputs the digital signal.
  • the image signal for each pixel output from the analog signal processing unit 403 is taken into the internal memory 406 and then sent to the digital signal processing unit 404.
  • the digital signal processing unit 404 performs predetermined signal processing on the obtained image signal to generate first image data and second image data. That is, the first image data is generated based on the image signal of the first pixel 110A of the image sensor 100, and the second image data is generated based on the image signal of the second pixel 110B.
  • the generated first image data and second image data are recorded in the external memory 410 via the media interface 407.
  • the imaging apparatus 400 of the present embodiment it is possible to capture two images of wide angle and telephoto by a single imaging.
  • the imaging device can be configured as a single camera, but can also be incorporated into other devices. For example, it can be incorporated into a smartphone, a tablet computer, or a notebook computer.
  • the use as an imaging device is not particularly limited, and it can also be used for uses such as surveillance cameras and in-vehicle cameras in addition to normal camera uses.
  • the imaging apparatus reads the image signal of the first pixel and the image signal of the second pixel individually. It can also be configured.
  • SYMBOLS 1 DESCRIPTION OF SYMBOLS 1 ... Imaging unit, 10 ... Lens apparatus, 12 ... Lens barrel, 14 ... 1st optical system guide shaft support part, 15 ... 1st optical system screw rod bearing part, 16 ... 2nd optical system guide shaft support part, 17 ... 2nd optical system screw rod bearing part, 20 ... 1st optical system, 20A ... 1st optical system 1st lens group, 20B ... 1st optical system 2nd lens group, 20C ... 1st optical system 3rd lens group, 20a ... 1st optical system 1st lens, 20b ... 1st optical system 2nd lens, 20c ... 1st optical system 3rd lens, 20d ... 1st optical system 4th lens, 20e ...
  • 1st optical system 5th lens 20f 1st optical system 6th lens, 20g 1st optical system 7th lens, 20h 1st optical system 8th lens, 30 2nd optical system, 30a 2nd optical system 1st lens, 30b 2nd Optical system second lens, 30c, second optical system, third lens, 30d, primary mirror, 30 , Secondary mirror, 32, opening, 34, light shielding film, 40, common lens, 42, common lens holding frame, 60, first optical system drive unit, 62, first optical system guide mechanism, 64, first optical system. Drive mechanism, 66 ... first optical system guide shaft, 68 ... first optical system guide sleeve, 68A ... first optical system guide sleeve connecting arm, 68B ...
  • first optical system second lens group, 12 0C first optical system third lens group
  • 120D first optical system fourth lens group
  • 120a first optical system first lens
  • 120b first optical system second lens
  • 120d first optical system fourth Lens
  • 120e ... first optical system fifth lens
  • 120f ... first optical system sixth lens
  • 120g ... first optical system seventh lens
  • 130d ... second optical system fourth lens 130e ... second optical system fifth lens
  • 220 ... first optical system, 220a ... first optical system first lens, 220b ...
  • first optical system second lens 230 ... second optical system, 230a ... second optical System first lens, 230b, second optical system, first lens 240 ... common lens 320 ... first optical system 330 ... second optical system 400 ... imaging device 401 ... lens drive control unit 402 ... image sensor drive control unit 403 ... analog signal processing unit 404 ... Digital signal processing unit, 405 ... display unit, 406 ... internal memory, 407 ... media interface, 408 ... system control unit, 409 ... operation unit, 410 ... external memory, L ... optical axis, L1 ... lens, L2 ... lens, L2a ... Lens, L2b ... Lens, X ... Ring optical system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)
  • Lens Barrels (AREA)
  • Cameras In General (AREA)

Abstract

軽量かつコンパクトで焦点深度の深いレンズ装置、撮像ユニット及び撮像装置を提供する。レンズ装置10を構成する第1光学系20及び第2光学系30は、同じ光軸Lを有し、かつ、互いに異なる撮像特性を有する。第2光学系30は、第1光学系20と同軸上に配置可能な環状の光学系Xの一部により構成される。

Description

レンズ装置、撮像ユニット及び撮像装置
 本発明は、レンズ装置、撮像ユニット及び撮像装置に係り、特に互いに撮像特性の異なる第1光学系及び第2光学系を備えたレンズ装置、及び、そのレンズ装置を使用して撮像特性の異なる2枚の画像を同時に撮像する撮像ユニット及び撮像装置に関する。
 互いに撮像特性の異なる複数の光学系を組み合わせたレンズ装置を使用して、互いに撮像特性の異なる複数の画像を同時に撮像する撮像装置が知られている。たとえば、特許文献1及び2には、互いに焦点距離の異なる2つの光学系を同心状に組み合わせてレンズ装置を構成し、広角及び望遠の画像を同時に撮像する撮像装置が提案されている。
特開2015-119456号公報 特開2014-176056号公報
 しかしながら、複数の光学系を同心状に組み合わせてレンズ装置を構成すると、使用するレンズの直径が大きくなり、レンズ装置が大型化するという欠点がある。また、使用するレンズの直径が大きくなると、その面精度を確保するために、使用するレンズの厚さが厚くなり、重量が増すという欠点がある。更に、使用するレンズの厚さが厚くなると、レンズを動かす際に大きな力が必要になるという欠点もある。また、使用する素材の量が増え、コスト高になるという欠点もある。
 また、使用するレンズの直径が大きくなると、焦点深度が浅くなるという欠点もある。この場合、中央の光学系は、光束を外周から内周に向けて絞ることにより解消できるが、外周の環状の光学系は、同様の方法で光束を絞っても解消できないという問題がある。
 更に、環状の光学系は、いわゆる暈けがリング形状になり、被写体によっては、このリング状の暈けが好ましくないという欠点もある。
 本発明は、このような事情に鑑みてなされたもので、軽量かつコンパクトで焦点深度の深いレンズ装置、撮像ユニット及び撮像装置を提供することを目的とする。
 課題を解決するための手段は、次のとおりである。
 (1)第1光学系と、第1光学系と異なる撮像特性を有し、かつ、第1光学系と同心状に配置可能な環状の光学系の一部により構成され、第1光学系と同じ光軸を有する第2光学系と、を備えたレンズ装置。
 本態様によれば、レンズ装置が2つの光学系を備える。2つの光学系は、第1光学系及び第2光学系により構成される。第1光学系及び第2光学系は、互いに異なる撮像特性を有する。撮像特性が異なるとは、レンズとしての作用が異なるこという。たとえば、焦点距離や合焦距離が異なる場合などである。第2光学系は、第1光学系と同心状に配置可能な環状の光学系の一部により構成される。同心状に配置可能とは、同じ光軸上に配置できることをいう。第2光学系は、このように第1光学系と同軸上に配置できる環状の光学系の一部により構成される。ここで、環状の光学系の一部とは、環状の光学系の光軸を中心とした周方向の一部を意味する。すなわち、第2光学系は、環状の光学系の周方向の一部を光軸に沿って切り出したものとして構成される。このような構成のレンズ装置は、第2光学系が環状の光学系の一部により構成されるため、全体の構成を軽量かつコンパクトにできる。また、第2光学系を環状の光学系の一部により構成することにより、環状の光学系に比して焦点深度を深くできる。なお、ここで言う同じ光軸とは、光軸が略一致している場合も含み、たとえば光学系の性能を著しく落とさない製造上の公差範囲も含む。
 (2)第2光学系は、光軸と直交する断面において、環状の光学系を扇状に切り出した形状を有する、上記(1)のレンズ装置。
 本態様によれば、第2光学系が、光軸と直交する断面において、環状の光学系を扇状に切り出した形状を有する。これにより、第2光学系を容易に製造できる。すなわち、環状の光学系を所望の中心角により扇状に切り出すだけなので、容易に製造できる。なお、ここで言う直交とは、略直交を含み、たとえば光学系の性能を著しく落とさない製造上の公差範囲も含む。
 (3)第2光学系は、光軸と直交する断面において、環状の光学系を扇状に切り出し、更に、外周部及び内周部を互いに平行に切り出した形状を有する、上記(2)のレンズ装置。なお、ここで言う平行とは、略平行を含み、たとえば光学系の性能を著しく落とさない製造上の公差範囲も含む。
 本態様によれば、第2光学系が、光軸と直交する断面において、環状の光学系を扇状に切り出し、更に、外周部及び内周部を互いに平行に切り出した形状を有する。これにより、第2光学系を構成する個々の光学素子の保持が容易になる。
 (4)第2光学系は、光軸と直交する断面において、環状の光学系から光軸を挟んで互いに平行な2本の直線により挟まれる領域を切り出した形状を有する、上記(1)のレンズ装置。
 本態様によれば、第2光学系が、光軸と直交する断面において、環状の光学系から光軸を挟んで互いに平行な2本の直線により挟まれる領域を切り出した形状を有する。これにより、第2光学系を構成する個々の光学素子の保持が容易になる。
 (5)第2光学系は、光軸と直交する断面において、環状の光学系から光軸を挟んで互いに平行な2本の第1直線、及び、第1直線と直交し互いに平行な2本の第2直線により囲われる領域を切り出した形状を有する、上記(1)のレンズ装置。
 本態様によれば、第2光学系が、光軸と直交する断面において、環状の光学系から光軸を挟んで互いに平行な2本の第1直線、及び、第1直線と直交し互いに平行な2本の第2直線により囲われる領域を切り出した形状を有する。これにより、第2光学系を構成する個々の光学素子の形状が、矩形断面を有する形状となり、その保持が容易になる。
 (6)第2光学系は、開口部の最大幅が前記環状の光学系の内径以下である、上記(1)から(5)のいずれかのレンズ装置。
 本態様によれば、第2光学系の開口部の最大幅が、環状の光学系の内径以下とされる。これにより、環状の光学系に比して、焦点深度を深くできる。なお、開口部とは、光学系において光が通る部分をいう。したがって、光軸と直交する断面において、光を遮るものがない場合は、その断面の全体が開口部となる。光軸と直交する断面において、光学系の最大幅が環状の光学系の内径よりも大きい場合は、遮光部材等により光を遮り、環状の光学系の内径以下にする。これにより、環状の光学系に比して焦点深度を深くできる。
 (7)第2光学系が、環状の反射光学系の一部により構成される、上記(1)から(6)のいずれかのレンズ装置。
 本態様によれば、第2光学系が、環状の反射光学系の一部により構成される。これにより、第2光学系を望遠レンズにより構成する場合に軽量かつコンパクトな構成にできる。
 (8)第2光学系が、環状の屈折光学系の一部により構成される、上記(1)から(6)のいずれかのレンズ装置。
 本態様によれば、第2光学系が、環状の屈折光学系の一部により構成される。屈折光学系とは、光学素子に鏡を含まない光学系であり、レンズの屈折のみにより所望の撮像特性を実現する光学系である。
 (9)第1光学系及び第2光学系は、互いに焦点距離が異なる、上記(1)から(8)のいずれかのレンズ装置。
 本態様によれば、第1光学系及び第2光学系が、互いに焦点距離が異なる光学系により構成される。これにより、広角画像と望遠画像を同時に撮像できる。
 (10)第1光学系及び第2光学系は、互いに合焦距離が異なる、上記(1)から(8)のいずれかのレンズ装置。
 本態様によれば、第1光学系及び第2光学系が、互いに合焦距離が異なる光学系により構成される。これにより、たとえば、近距離の被写体に合焦する画像及び遠距離の被写体に合焦する画像を同時に撮像できる。
 (11)第1光学系及び第2光学系は、互いに透過波長特性が異なる、上記(1)から(8)のいずれかのレンズ装置。
 本態様によれば、第1光学系及び第2光学系が、互いに透過波長特性が異なる光学系により構成される。たとえば、第1光学系を可視光での撮像に適した光学系により構成し、第2光学系を赤外光での撮像に適した光学系により構成する。これにより、1つのレンズ装置により可視光画像及び赤外光画像の両方を撮像できる。
 (12)第1光学系を光軸に沿って移動させる第1光学系駆動部を更に備えた、上記(1)から(11)のいずれかのレンズ装置。
 本態様によれば、第1光学系を光軸に沿って移動させる第1光学系駆動部が備えられる。これにより、第1光学系の焦点調節ができる。
 (13)第2光学系を光軸に沿って移動させる第2光学系駆動部を更に備えた、上記(1)から(12)のいずれかのレンズ装置。
 本態様によれば、第2光学系を光軸に沿って移動させる第2光学系駆動部が備えられる。これにより、第2光学系の焦点調節ができる。
 (14)上記(1)から(13)のいずれかのレンズ装置と、第1光学系を通過した光を選択的に受光する画素及び第2光学系を通過した光を選択的に受光する画素が規則的に二次元配列されたイメージセンサと、を備えた撮像ユニット。
 本態様によれば、第1光学系及び第2光学系を備えたレンズ装置と、いわゆる指向性を有するイメージセンサと、を利用して、撮像特性の異なる2枚の画像を同時に撮像できる。
 (15)上記(14)の撮像ユニットと、第1光学系を介して得られる第1画像の画像信号、及び、第2光学系を介して得られる第2画像の画像信号をイメージセンサから取得する画像信号取得部と、を備えた撮像装置。
 本態様によれば、第1光学系及び第2光学系を備えたレンズ装置と、いわゆる指向性を有するイメージセンサと、を利用して、撮像特性の異なる2枚の画像を同時に撮像できる。
 本発明によれば、軽量かつコンパクトで焦点深度の深いレンズ装置、及び、そのレンズ装置を備えた撮像ユニット及び撮像装置を提供できる。
撮像ユニットの概略構成を示す斜視図 撮像ユニットの概略構成を示す正面図 図2の3-3断面図 第1光学系の光線軌跡を示す図 第2光学系の構成を説明する斜視図 第2光学系の光線軌跡を示す断面図 第1光学系駆動部及び第2光学系駆動部の正面図 図7の8-8断面図 図7の9-9断面図 図7の10-10断面図 イメージセンサの受光の概念図 イメージセンサを構成する画素の概略構成を示す断面図 イメージセンサの第1画素及び第2画素の入射角感度特性を示す図 レンズ装置の第1の変形例を示す正面図 レンズ装置の第2の変形例を示す正面図 レンズの形状と、その光束の形状との関係を示す図 円環状のレンズにおいて、開口部の径を段階的に小さくした図 レンズ装置の第3の変形例を示す正面図 レンズ装置の第4の変形例を示す正面図 レンズ装置の第5の変形例を示す正面図 レンズ装置の第6の変形例を示す正面図 第2光学系の開口部を規制したレンズ装置の一例を示す正面図 第2光学系の外径及び内径の差が環状の光学系の内径よりも大きい場合の開口部の遮光例を示す図 第2光学系の開口部の遮光の他の一例を示す図 第2光学系の開口部の遮光の他の一例を示す図 第2光学系が屈折光学系により構成されたレンズ装置の概略構成を示す断面図 第1光学系が望遠レンズにより構成され、第2光学系が広角レンズにより構成されたレンズ装置の概略構成を示す断面図 互いに合焦距離の異なる光学系により第1光学系及び第2光学系が構成されたレンズ装置の概略構成を示す断面図 撮像装置のシステム構成を示すブロック図
 以下、添付図面に従って本発明の好ましい実施の形態について詳説する。
 《撮像ユニットの構成》
 図1は、撮像ユニットの概略構成を示す斜視図である。また、図2は、撮像ユニットの概略構成を示す正面図である。また、図3は、図2の3-3断面図である。
 撮像ユニット1は、レンズ装置10及びイメージセンサ100を備えて構成される。撮像ユニット1は、レンズ装置10を通った光をイメージセンサ100により受け、電気信号に変換して出力する。
 レンズ装置10は、互いに同じ光軸Lを有する第1光学系20及び第2光学系30を備える。第1光学系20及び第2光学系30は、互いに撮像特性の異なる光学系により構成される。特に、本実施の形態では、第1光学系20及び第2光学系30が、互いに焦点距離の異なる光学系により構成され、第2光学系30が第1光学系20よりも焦点距離の長い光学系により構成される。レンズ装置10の詳細については、後に詳述する。
 イメージセンサ100は、いわゆる指向性センサにより構成される。指向性センサは、光の入射角に関して指向性を有する画素を規則的に二次元配列して構成される。本実施の形態のイメージセンサ100は、第1光学系20を通過した光を選択的に受光する画素、及び、第2光学系30を通過した光を選択的に受光する画素を規則的に配列して構成される。第1光学系20を通過した光を選択的に受光する画素を第1画素とし、第2光学系を通過した光を選択的に受光する画素を第2画素とすると、イメージセンサ100は、第1画素の電気信号を取得することにより、第1光学系20を介して得られる画像の画像信号を取得できる。また、第2画素の電気信号を取得することにより、第2光学系30を介して得られる画像の画像信号を取得できる。イメージセンサ100の詳細については、後に詳述する。
 《レンズ装置》
 レンズ装置10は、互いに同じ光軸Lを有する第1光学系20及び第2光学系30を備える。第1光学系20及び第2光学系30は、互いに焦点距離の異なる光学系により構成される。特に、本実施の形態では、第1光学系20が、焦点距離の短い広角レンズにより構成され、第2光学系30が、焦点距離の長い望遠レンズにより構成される。
 レンズ装置10は、主として、第1光学系20と、第2光学系30と、共通レンズ40と、第1光学系駆動部60と(図7-8参照)、第2光学系駆動部80と(図7、9-10参照)、を備えて構成される。
 〈第1光学系〉
 図4は、第1光学系の光線軌跡を示す図である。
 第1光学系20は、焦点距離の短い広角レンズである。図3に示すように、第1光学系20は、3群8枚のレンズにより構成され、物体側から順に第1光学系第1レンズ群20A、第1光学系第2レンズ群20B、第1光学系第3レンズ群20Cが、光軸Lに沿って配置される。各エレメントの形状は円形である。
 第1光学系第1レンズ群20Aは、4枚のレンズにより構成される。第1光学系第1レンズ群20Aは、物体側から順に第1光学系第1レンズ20a、第1光学系第2レンズ20b、第1光学系第3レンズ20c、及び、第1光学系第4レンズ20dが光軸Lに沿って配置されて構成される。
 第1光学系第2レンズ群20Bは、1枚のレンズにより構成される。第1光学系第2レンズ群20Bは、光軸L上に配置された第1光学系第5レンズ20eにより構成される。
 第1光学系第3レンズ群20Cは、3枚のレンズにより構成される。第1光学系第3レンズ群20Cは、物体側から順に第1光学系第6レンズ20f、第1光学系第7レンズ20g、及び、第1光学系第8レンズ20hが光軸Lに沿って配置されて構成される。
 第1光学系20に入射した光は、第1光学系第1レンズ群20A、第1光学系第2レンズ群20B、第1光学系第3レンズ群20Cを通過して共通レンズ40に入射する。
 〈第2光学系〉
 第2光学系30は、環状の光学系の一部により構成される。この環状の光学系は、第1光学系20と同心状に配置可能に構成される。すなわち、第2光学系30は、第1光学系20と同心状に配置可能な環状の光学系の一部を光軸Lに沿って切り出したものとして構成される。
 図5は、第2光学系の構成を説明する斜視図である。
 同図において、二点破線により示す環状の光学系Xは、第1光学系20と同心状に配置される光学系である。第2光学系30は、この環状の光学系Xの周方向の一部を光軸に沿って切り出した光学系として構成される。したがって、その光軸は、第1光学系20の光軸と同じである。
 本実施の形態のレンズ装置10では、環状の光学系Xを8等分割し、その1つを第2光学系30として使用している。この場合、その光軸Lと直交する断面の形状は、中心角が45°の扇形となり、(図2参照)、第2光学系30を構成する各光学素子の形状も扇形となる。
 図6は、第2光学系の光線軌跡を示す断面図である。
 第2光学系30は、焦点距離の長い望遠レンズである。第2光学系30は、いわゆる反射光学系により構成され、第2光学系第1レンズ30aと、第2光学系第2レンズ30bと、第2光学系第3レンズ30cと、主鏡30dと、副鏡30eと、を備える。
 第2光学系第1レンズ30a、第2光学系第2レンズ30b及び第2光学系第3レンズ30cは、環状のレンズの一部により構成され、物体側から第2光学系第1レンズ30a、第2光学系第2レンズ30b及び第2光学系第3レンズ30cの順で光軸Lに沿って配置される。
 主鏡30dは、第2光学系第3レンズ30cの像面側の面に備えられる。主鏡30dは、第2光学系第3レンズ30cの像面側の面の全面に金属又は誘電体の膜をコーティングして、第2光学系第3レンズ30cの像面側の面の全面に備えられる。
 副鏡30eは、第2光学系第2レンズ30bの像面側の面に備えられる。副鏡30eは、第2光学系第2レンズ30bの像面側の面の内周部分に金属又は誘電体の膜をコーティングして、第2光学系第2レンズ30bの像面側の面の内周部分に備えられる。
 第2光学系30に入射した光は、第2光学系第1レンズ30a、第2光学系第2レンズ30b、第2光学系第3レンズ30cを通過して、主鏡30dに入射する。主鏡30dに入射した光は、主鏡30dにより反射し、第2光学系第3レンズ30cを通って副鏡30eに入射する。副鏡30eに入射した光は、副鏡30eにより反射して、共通レンズ40に入射する。
 〈共通レンズ〉
 共通レンズ40は、第1光学系20及び第2光学系30により共用されるレンズであり、光軸L上の一定位置に配置される。共通レンズ40は、イメージセンサ100への光の入射角度を調整するレンズである。第1光学系20及び第2光学系30を通過した光は、それぞれ共通レンズ40を介してイメージセンサ100に入射する。
 鏡筒12には、この共通レンズ40を光軸L上の一定位置において保持する共通レンズ保持枠42が備えられる(図8参照)。
 〈第1光学系駆動部〉
 第1光学系駆動部60は、第1光学系20の全体を光軸Lに沿って前後移動させる。
 図7は、第1光学系駆動部及び第2光学系駆動部の正面図である。図8は、図7の8-8断面図である。
 図7及び図8に示すように、第1光学系駆動部60は、第1光学系20を光軸Lに沿ってガイドする第1光学系ガイド機構62、及び、第1光学系20を光軸Lに沿って前後移動させる第1光学系駆動機構64を備える。
 第1光学系ガイド機構62は、第1光学系ガイドシャフト66及び第1光学系ガイドスリーブ68を備える。
 第1光学系ガイドシャフト66は、丸棒により構成される。第1光学系ガイドシャフト66は、その両端をレンズ装置10の鏡筒12に備えられた第1光学系ガイドシャフト支持部14に支持されて、光軸Lと平行に配置される。
 第1光学系ガイドスリーブ68は、第1光学系ガイドシャフト66を挿入可能な筒体により構成される。第1光学系ガイドスリーブ68は、第1光学系ガイドシャフト66に装着されて、スライド自在に支持される。
 第1光学系20は、第1光学系第1レンズ群20Aを構成する各レンズ20a~20dが、第1光学系第1レンズ枠70Aに保持される。また、第1光学系第2レンズ群20Bを構成するレンズ20eが、第1光学系第2レンズ枠70Bに保持される。また、第1光学系第3レンズ群20Cを構成する各レンズ20f~20hが、第1光学系第3レンズ枠70Cに保持される。第1光学系第1レンズ枠70A、第1光学系第2レンズ枠70B及び第1光学系第3レンズ枠70Cは、それぞれ第1光学系ガイドスリーブ連結アーム68A、68B、68Cを介して第1光学系ガイドスリーブ68に連結される。
 第1光学系駆動機構64は、第1光学系駆動ネジ棒72、第1光学系駆動モータ74、及び、第1光学系駆動ナット76を備える。
 第1光学系駆動ネジ棒72は、その両端を鏡筒12に備えられた第1光学系ネジ棒軸受部15に回転自在に支持されて、光軸Lと平行に配置される。
 第1光学系駆動モータ74は、鏡筒12に備えられる。第1光学系駆動モータ74は、第1光学系駆動ネジ棒72に連結される。第1光学系駆動ネジ棒72は、この第1光学系駆動モータ74に駆動されて回転する。
 第1光学系駆動ナット76は、第1光学系駆動ネジ棒72にネジ結合される。第1光学系第1レンズ枠70A、第1光学系第2レンズ枠70B及び第1光学系第3レンズ枠70Cは、それぞれ第1光学系駆動ナット連結アーム76A、76B、76Cを介して第1光学系駆動ナット76に連結される。
 第1光学系駆動部60は、以上のように構成される。本構成の第1光学系駆動部60によれば、第1光学系駆動モータ74を駆動すると、第1光学系駆動ナット76が光軸Lに沿って前後移動する。この結果、第1光学系20の全体が光軸Lに沿って前後移動する。
 〈第2光学系駆動部〉
 第2光学系駆動部80は、第2光学系30の全体を光軸Lに沿って前後移動させる。
 図9は、図7の9-9断面図であり、図10は、図7の10-10断面図である。
 図7、図9及び図10に示すように、第2光学系駆動部80は、第2光学系30を光軸Lに沿ってガイドする第2光学系ガイド機構82、及び、第2光学系30を光軸Lに沿って前後移動させる第2光学系駆動機構84を備える。
 第2光学系ガイド機構82は、第2光学系ガイドシャフト86及び第2光学系ガイドスリーブ88を備える。
 第2光学系ガイドシャフト86は、丸棒により構成される。第2光学系ガイドシャフト86は、その両端をレンズ装置10の鏡筒12に備えられた第2光学系ガイドシャフト支持部16に支持されて、光軸Lと平行に配置される。
 第2光学系ガイドスリーブ88は、第2光学系ガイドシャフト86を挿入可能な筒体により構成される。第2光学系ガイドスリーブ88は、第2光学系ガイドシャフト86に装着されて、スライド自在に支持される。
 第2光学系30は、第2光学系第1レンズ30a及び第2光学系第2レンズ30bが、第2光学系第1レンズ枠90Aに保持される。また、第2光学系第3レンズ30cが、第2光学系第2レンズ枠90Bに保持される。第2光学系第1レンズ枠90A及び第2光学系第2レンズ枠90Bは、それぞれ第2光学系ガイドスリーブ連結アーム88A、88Bを介して第2光学系ガイドスリーブ88に連結される。
 第2光学系駆動機構84は、第2光学系駆動ネジ棒92、第2光学系駆動モータ94、及び、第2光学系駆動ナット96を備える。
 第2光学系駆動ネジ棒92は、その両端を鏡筒12に備えられた第2光学系ネジ棒軸受部17に回転自在に支持されて、光軸Lと平行に配置される。
 第2光学系駆動モータ94は、鏡筒12に備えられる。第2光学系駆動モータ94は、第2光学系駆動ネジ棒92に連結される。第2光学系駆動ネジ棒92は、この第2光学系駆動モータ94に駆動されて回転する。
 第2光学系駆動ナット96は、第2光学系駆動ネジ棒92にネジ結合される。第2光学系第1レンズ枠90A及び第2光学系第2レンズ枠90Bは、それぞれ第2光学系駆動ナット連結アーム96A、96Bを介して第2光学系駆動ナット96に連結される。
 第2光学系駆動部80は、以上のように構成される。本構成の第2光学系駆動部80によれば、第2光学系駆動モータ94を駆動すると、第2光学系駆動ナット96が光軸Lに沿って前後移動する。この結果、第2光学系30の全体が、光軸Lに沿って前後移動する。
 《イメージセンサ》
 図11は、イメージセンサの受光の概念図である。
 イメージセンサ100は、いわゆる指向性センサにより構成される。指向性センサとは、各画素が、光の入射角に関して指向性を有するイメージセンサである。
 本実施の形態のイメージセンサ100は、第1光学系20を通過した光を選択的に受光する画素、及び、第2光学系30を通過した光を選択的に受光する画素を二次元的に配列して構成される。第1光学系20を通過した光を選択的に受光する画素を第1画素110Aとし、第2光学系30を通過した光を選択的に受光する画素を第2画素110Bとすると、第1画素110A及び第2画素110Bは、交互に配置される。
 図12は、イメージセンサを構成する画素の概略構成を示す断面図である。
 イメージセンサ100の各画素は、光電変換素子112と、マイクロレンズ114と、遮光マスク116と、を備える。
 光電変換素子112は、光を受け、受けた光の強さに比例した電荷を蓄積する。光電変換素子112は、たとえば、フォトダイオードにより構成される。
 マイクロレンズ114は、光電変換素子112の前方に配置される。マイクロレンズ114は、第1光学系20及び第2光学系30の瞳像を光電変換素子112に結像させる。
 遮光マスク116は、マイクロレンズ114と光電変換素子112との間に配置される。遮光マスク116は、マイクロレンズ114を通過した光の一部を遮光する。第1画素110Aの遮光マスク116は、中央に円形の開口を有し、第2光学系30を通過した光を遮光する。また、第2画素110Bの遮光マスク116は、円環状の開口を有し、第1光学系20を通過した光を遮光する。
 以上のように構成されるイメージセンサ100は、各画素が光の入射角に応じて異なる感度をもって構成される。すなわち、第1画素110Aは、第1光学系20を介して入射する光を高感度に受光し、第2画素110Bは、第2光学系30を介して入射する光を高感度に受光する構成とされる。
 図13は、イメージセンサの第1画素及び第2画素の入射角感度特性を示す図である。
 図13において、横軸は、マイクロレンズを通して光電変換素子に入射する光の入射角を示しており、縦軸は光電変換素子の感度を示している。入射角は、光電変換素子の中心に垂直に入射する光を0°としている。
 図13において、符号S1が第1画素110Aの入射角感度特性のグラフであり、符号S2が第2画素110Bの入射角感度特性のグラフである。
 図13に示すように、第1画素110Aは、入射角の浅い光、すなわち、レンズ装置10の中央部を通る光を高感度に受光し、第2画素110Bは、入射角の深い光、すなわち、レンズ装置10の周辺を通る光を高感度に受光する。本実施の形態のレンズ装置10は、中央に第1光学系20が配置され、周辺に第2光学系30が配置される。したがって、第1画素110Aは、第1光学系20を通る光を高感度に受光し、第2画素110Bは、第2光学系30を通る光を高感度に受光する。
 なお、図13に示すように、2つのグラフS1及びS2に重なり合う領域Zがある場合、第1画素110A及び第2画素110Bには混信が生じる。混信とは、第1光学系20及び第2光学系30の光が混じって受光されることをいう。この場合、第1画素110Aでは、第2光学系30からの光が一部混ざって受光され、第2画素110Bでは、第1光学系20からの光が一部混ざって受光される。
 混信が生じる場合は、混信が生じる領域の入射角の光が第1画素110A及び第2画素110Bに入射しないように、第1光学系20及び第2光学系30の開口部を制限する。この場合、第1光学系20及び第2光学系30は、互いの境界が広がるように開口を制限する。これにより、混信の発生を防止できる。
 イメージセンサ100は、各画素に蓄積された電荷を読み出して、電気信号として出力する。第1画素110Aに蓄積された電荷の電気信号を取得することにより、第1光学系20を介して得られる画像の画像信号を取得でき、第2画素110Bに蓄積された電荷の電気信号を取得することにより、第2光学系30を介して得られる画像の画像信号を取得できる。
 なお、カラー画像を取得する場合には、各画素に所定のフィルタ配列によりカラーフィルタが配置される。たとえば、赤(R:Red)、緑(G:Green)、青(B:Blue)の3色からなるカラーフィルタがベイヤー配列により配置される。これにより、カラー画像を取得できる。
 イメージセンサ100は、たとえば、CCD(Charge Coupled Devices:電荷結合素子)、CMOS(Complementary Metal Oxide Semiconductor:相補性金属酸化膜半導体)
により構成できる。
 なお、上記の例では、第2画素110Bの遮光マスク116の開口形状を円環状としているが、第2光学系30の開口形状に対応した開口形状としてもよい。
 《撮像ユニットの作用》
 本実施の形態の撮像ユニット1は、2つの光学系を備えたレンズ装置10と、各画素が入射角指向性を有するイメージセンサ100と、を備える。
 〈レンズ装置の作用〉
 レンズ装置10は、広角の第1光学系20、及び、望遠の第2光学系30を備える。第1光学系20及び第2光学系30は、それぞれ独立して焦点調節される。
 -第1光学系の焦点調節- 第1光学系20を焦点調節する場合は、第1光学系20の全体を光軸Lに沿って移動させる。第1光学系20は、第1光学系駆動モータ74を駆動することにより、全体が光軸Lに沿って前後移動する。これにより、第1光学系20が焦点調整される。
 -第2光学系の焦点調節- 第2光学系30を焦点調節する場合は、第2光学系30の全体を光軸Lに沿って移動させる。第2光学系30は、第2光学系駆動モータ94を駆動することにより、全体が光軸Lに沿って前後移動する。これにより、第2光学系30が焦点調整される。
 〈イメージセンサの作用〉
 イメージセンサ100は、第1光学系20を通過した光を選択的に受光する第1画素110A、及び、第2光学系30を通過した光を選択的に受光する第2画素110Bを有する。
 第1光学系20を介してイメージセンサ100の受光面上に結像された被写体の光学像は、第1画素110Aにより撮像される。したがって、第1画素110Aからの電気信号を取得することにより、第1光学系20によって撮像される画像の画像信号を取得できる。
 一方、第2光学系30を介してイメージセンサ100の受光面上に結像された被写体の光学像は、第2画素110Bにより撮像される。したがって、第2画素110Bからの電気信号を取得することにより、第2光学系30によって撮像される画像の画像信号を取得できる。
 このように、本実施の形態の撮像ユニット1によれば、広角及び望遠の2つの光学系を備えたレンズ装置10と、各画素が入射角指向性を有するイメージセンサ100と、を使用することにより、広角及び望遠の2つの画像を同時に撮像できる。
 また、撮像ユニット1を構成するレンズ装置10は、第2光学系30が、環状の光学系の一部により構成されるため、全体の構成を軽量かつコンパクトにできる。特に、個々の光学素子を小型化できることにより、大幅な軽量化及び低コスト化が可能になる。すなわち、直径の大きな環状の光学系をそのまま使用した場合、その面精度を確保するために、光学素子の厚さを厚くする必要があるが、小型の光学素子を使用できることにより、光学素子の厚さを薄くできる。これにより、軽量化が可能になる。また、使用する素材量も少なくて済むので、製造コストも低減できる。また、個々の光学素子が軽量になることにより、その駆動に使用するエネルギも少なく済み、駆動部の小型化も可能になる。
 また、第2光学系30を環状の光学系の一部により構成することにより、焦点深度を深くできる。これにより、広範囲において鮮鋭度の高い画像を取得できる。
 《レンズ装置の変形例》
 レンズ装置を構成する第2光学系は、第1光学系と同心状に配置可能な環状の光学系の一部により構成される。上記実施の形態では、第1光学系20と同心状に配置可能な円環状の光学系Xを8等分割し、その1つを用いて第2光学系30を構成している。第2光学系の構成態様は、これに限定されるものではない。以下、第2光学系の構成態様を変えたレンズ装置について説明する。
 〈レンズ装置の第1の変形例〉
 図14は、レンズ装置の第1の変形例を示す正面図である。
 本例のレンズ装置10は、第1光学系20と同心状に配置可能な円環状の光学系Xを4等分割した光学系により第2光学系30を構成している。すなわち、円環状の光学系Xを4等分割し、その1つを第1光学系20と同じ光軸上に配置することにより、レンズ装置10を構成している。
 このように、円環状の光学系Xを分割して、第2光学系30を構成する場合、その分割数は特に限定されるものではない。
 なお、本例のレンズ装置のように、環状の光学系を複数に等分割して、第2光学系を構成することにより、第2光学系の製造を容易にでき、かつ、低コスト化が図れる。すなわち、環状の光学系を複数に等分割して、第2光学系を構成する場合、第2光学系を構成する各光学素子は、環状の光学素子を直線的にカットするだけなので、各光学素子の製造を容易にできる。また、等分割することにより、1つの環状の光学素子から複数の光学素子を取り出すことができ、元となる光学素子を無駄なく利用できる。
 〈レンズ装置の第2の変形例〉
 図15は、レンズ装置の第2の変形例を示す正面図である。
 本例のレンズ装置10は、第1光学系20と同心状に配置可能な円環状の光学系Xを扇状に切り出した光学系により第2光学系30を構成している。
 光軸と直交する断面の形状が扇状である点において上記実施の形態のレンズ装置と同じである。しかし、本例のレンズ装置10では、第2光学系30の幅Wが、環状の光学系Xの内径rと同じになるように切り出している。この幅Wは、第2光学系30の幅が最大になる部分の幅である。第2光学系30を扇状に切り出す場合、外周の絃の長さが、最大幅Wに相当する。したがって、この例では、外周の絃の長さが、円環状の光学系Xの内径rと同じになるように、第2光学系30を切り出している。
 このように、最大幅Wが、環状の光学系Xの内径rと同じになるように第2光学系30を切り出すことにより、環状の光学系により第2光学系を構成する場合に比して、焦点深度を深くできる。この点について説明する。
 図16は、レンズの形状と、その光束の形状との関係を示す図である。同図(A)は、円形のレンズの光束を示しており、同図(B)は、円環状のレンズの光束を示している。
 一般的な円形のレンズL1、すなわち、円形の開口を有するレンズL1の場合、図16(A)に示すように、焦点近傍の光束は、中身の詰まった円錐を2つ向かい合わせにしたような形状となる。
 一方、円環状のレンズL2、すなわち、円環状の開口を有するレンズL2では、図16(B)に示すように、焦点近傍の光束は、中空の円錐を2つ向かい合わせにしたような形状となる。
 レンズを通して得られる点像の暈けの大きさは、円錐の断面の大きさとなる。この円錐の断面の大きさは、レンズの開口の大きさと、焦点からのズレ量とに概ね比例する。
 一般的な円形のレンズの場合、開口部の径を小さくすると、光束が絞り込まれ、光束を細長い円錐形状とすることができる。したがって、焦点位置からのズレ量が同じであっても、暈けの大きさを抑制できる。すなわち、焦点深度を深くする効果が得られる。
 図17は、円環状のレンズにおいて、開口部の径を段階的に小さくした図である。すなわち、円環状のレンズL2a~L2cの外径を段階的に小さくした図である。同図(A)に示すレンズL2aの開口部が最も大きく、同図(C)に示すレンズL2bの開口部が最も小さい。
 図17に示すように、円環状のレンズL2a~L2cの場合、開口部の径は、円環の内径よりも小さくすることができない。したがって、円環状のレンズの場合、円環の内径以下には、光束を細めることができない。
 本例のレンズ装置10は、図15に示すように、第2光学系30の最大幅Wが、環状の光学系Xの内径rと同じ長さで構成される。これにより、環状の光学系では実現し得ない深い焦点深度の光学系を構成できる。
 本例では、第2光学系の最大幅を環状の光学系の内径と同じ長さにしているが、第2光学系の最大幅を環状の光学系の内径以下とすることにより、環状の光学系では実現し得ない深い焦点深度の光学系を構成できる。
 一般に光学系は、開口が小さくなるに従って、光量が低下する。また、回折効果により解像度も低下する。したがって、第2光学系の開口のサイズについては、光量及び回折効果による解像度低下を考慮して決定することが好ましい。このうち光量の低下に関しては、使用するイメージセンサの感度との組み合わせにより解消することが可能である。したがって、回折効果による解像度低下を起こさない範囲において第2光学系の開口のサイズを決定することが好ましい。一般に、絞り値がF32以下になると、回折効果による解像度低下が顕著に現れるので、第2光学系の開口のサイズは、絞り値でF32を下回らない範囲内とすることが好ましい。したがって、第2光学系は、最大幅が、環状の光学系の内径以下であり、かつ、絞り値でF32を下回らない開口とすることが好ましい。
 なお、一般に絞り値Fは、光学系の開口幅(レンズの口径)をD、焦点距離をfとすると、F=f/Dにより求められる。
 〈レンズ装置の第3の変形例〉
 図18は、レンズ装置の第3の変形例を示す正面図である。
 本例のレンズ装置10は、第2光学系30が、光軸Lと直交する断面において、環状の光学系Xを扇状に切り出し、更に、扇の外周部及び内周部を互いに平行に切り出した形状を有する。この場合、図18に示すように、第2光学系30の形状は、光軸Lと直交する断面において、台形となる。
 このような構成の第2光学系30は、各光学素子の外周部及び内周部が平面状に構成されるため、各光学素子を保持するための機構を簡素化できる。また、第2光学系駆動部の構造も簡素化できる。
 本例の場合も、第2光学系30は、その最大幅Wが環状の光学系Xの内径r以下となるように構成することにより、焦点深度を深くできる。
 〈レンズ装置の第4の変形例〉
 図19は、レンズ装置の第4の変形例を示す正面図である。
 本例のレンズ装置10は、第2光学系30が、光軸Lと直交する断面において、環状の光学系Xから光軸Lを挟んで互いに平行な2本の直線m1、m2により挟まれる領域を切り出した形状を有する。
 本例の場合も、第2光学系30は、その最大幅が環状の光学系の内径以下となるように構成することにより、焦点深度を深くできる。
 〈レンズ装置の第5の変形例〉
 図20は、レンズ装置の第5の変形例を示す正面図である。
 本例のレンズ装置10は、第2光学系30が、光軸Lと直交する断面において、環状の光学系Xから光軸Lを挟んで互いに平行な2本の第1直線m1、m2、及び、第1直線m1、m2と直交し互いに平行な2本の第2直線n1、n2により囲われる領域を切り出した形状を有する。この場合、図20に示すように、第2光学系30の形状は、光軸Lと直交する断面において、矩形状となる。
 このような構成の第2光学系30は、各光学素子が矩形状となるため、各光学素子を保持するための機構を簡素化できる。また、第2光学系駆動部の構造も簡素化できる。
 本例の場合も、第2光学系30は、その最大幅が環状の光学系の内径以下となるように構成することにより、焦点深度を深くできる。
 〈レンズ装置の第6の変形例〉
 図21は、レンズ装置の第6の変形例を示す正面図である。
 本例のレンズ装置10は、第2光学系30が、環状の光学系Xの一部を楕円形状に切り出した構造を有する。
 本例の場合も、第2光学系30は、その最大幅W、すなわち、楕円形の長径が環状の光学系Xの内径r以下となるように構成することにより、焦点深度を深くできる。
 なお、本例では、環状の光学系Xの一部を楕円形状に切り出す構成としているが、円形状に切り出す構成とすることもできる。また、多角形状に切り出す構成とすることもできる。
 第2光学系30を切り出す形状、すなわち、第2光学系30の開口の形状については、元となる環状の光学系の収差等を考慮して決定することがより好ましい。すなわち、レンズの収差や屈折力等は、サジタル方向及びメリディオナル方向において異なるので、均等な方向の点像特性が得られるように切り出すことがより好ましい。
 〈レンズ装置の第7の変形例〉
 上記のように、第2光学系は、その最大幅を環状の光学系の内径以下とすることにより、焦点深度を深くできる。このような効果は、第2光学系の開口部を規制することにより得られる。すなわち、最大幅が環状の光学系の内径以下となるように、第2光学系の開口部を規制することでも、同様の効果が得られる。したがって、たとえば、第2光学系の最大幅が、環状の光学系の内径よりも大きい場合であっても、その開口部を規制することにより、同様の効果が得られる。
 なお、開口部とは、光学系において光が通る部分をいう。したがって、光軸と直交する断面において、光を遮るものがない場合は、その断面の全体が開口部となる。
 図22は、第2光学系の開口部を規制したレンズ装置の一例を示す正面図である。
 本例のレンズ装置10は、第1光学系20と同心状に配置可能な円環状の光学系Xを4等分割し、その1つを第1光学系20と同じ光軸上に配置することにより、第2光学系30を構成している。そして、本例のレンズ装置10では、第2光学系30が、円環状の光学系Xの内径rよりも大きな幅W1を有している。
 このように第2光学系30が円環状の光学系Xの内径rよりも大きな幅を有する場合は、第2光学系30の開口部32を規制する。すなわち、開口部32の最大幅W2が、円環状の光学系Xの内径r以下となるように、開口部32を規制する。
 図22に示すように、本実施の形態のレンズ装置10では、第2光学系30を構成する光学素子の一部に遮光膜34をコーティングしてマスクすることにより、第2光学系30の開口部32を規制している。そして、本実施の形態のレンズ装置10では、第2光学系30の開口部32を周方向の両側を遮光膜34によりマスクすることにより、第2光学系30の開口部32の最大幅W2を環状の光学系Xの内径rと同じにしている。本構成の第2光学系30の場合は、外周の絃の長さが最大幅となるので、この絃の長さが環状の光学系Xの内径rと同じになるようにしている。
 このように、第2光学系自体のサイズが円環状の光学系の内径よりも大きい場合は、第2光学系の開口部32を規制することにより、焦点深度を深くできる。
 なお、本例では、光学素子の一部に遮光膜をコーティングして開口部を規制する構成としているが、開口部を規制する方法は、これに限定されるものではない。絞り等の遮光部材を光路上に設置して、開口部を規制する構成とすることもできる。
 また、図22に示す例は、扇状に形成された第2光学系の外周の絃の長さが、環状の光学系の内径よりも長い場合であるが、扇状に形成された第2光学系の外径及び内径の差が大きく、その対角線の長さが環状の光学系の内径よりも大きくなる場合は、第2光学系の開口部を径方向において遮光して、最大幅が環状の光学系の内径以下となるようにする。この場合、第1光学系20との境界が広がるように、すなわち、径方向の内側から遮光することにより、指向性センサにより構成されるイメージセンサを使用した場合に混信を効果的に抑制できる。
 図23は、第2光学系の外径及び内径の差が環状の光学系の内径よりも大きい場合の開口部の遮光例を示す図である。
 同図に示すレンズ装置10では、第2光学系30の外径及び内径の差が大きく、その対角線の長さW1が、環状の光学系Xの内径rよりも大きい。このため、第2光学系30を構成する光学素子の一部に遮光膜34をコーティングして、開口部32の最大幅W2が環状の光学系Xの内径rとなるように遮光している。特に、本例では、第1光学系20との境界が広がるように、径方向の内側から外側に向かって遮光領域が拡大するように、第2光学系30の開口部32を遮光している。これにより、指向性センサにより構成されるイメージセンサを使用した場合に混信を効果的に抑制できる。
 なお、第2光学系30の外周の絃の長さが環状の光学系の内径より大きく、かつ、対角線の長さも環状の光学系の内径より大きい場合は、周方向及び径方向の少なくとも一方から開口部32を遮光して、開口部32が環状の光学系の内径以下とする。
 図24は、第2光学系の開口部の遮光の他の一例を示す図である。
 同図に示す例では、第2光学系30の開口部32を周方向及び径方向の双方から遮光して、開口部32の最大幅W2が、環状の光学系Xの内径r以下となるようにしている。特に、本例では、開口部32の形状が矩形状となるように、第2光学系30を構成する光学素子を遮光膜34によりコーティングして、開口部32を規制している。
 図25は、第2光学系の開口部の遮光の他の一例を示す図である。
 同図に示す例では、第2光学系30の開口部32が円形状となるように、第2光学系30を構成する光学素子を遮光膜34によりコーティングして、開口部32を規制している。このように、開口部32の形状は、特に限定されるものではなく、種々の形態を採用できる。
 〈レンズ装置の第8の変形例〉
 上記実施の形態のレンズ装置では、第2光学系を反射光学系により構成しているが、第2光学系は屈折光学系により構成することもできる。
 ここで、屈折光学系とは、構成要素に鏡を含まない光学系であり、レンズの屈折のみで所望の撮像特性を実現する光学系である。
 図26は、第2光学系が屈折光学系により構成されたレンズ装置の概略構成を示す断面図である。
 同図に示すように、レンズ装置10は、第1光学系120及び第2光学系130を備える。第1光学系120及び第2光学系130は、同じ光軸Lを有し、かつ、共に屈折光学系により構成される。
 -第1光学系- 第1光学系120は、4群7枚の広角レンズにより構成され、物体側から順に第1光学系第1レンズ群120A、第1光学系第2レンズ群120B、第1光学系第3レンズ群120C、第1光学系第4レンズ群120Dが、光軸Lに沿って配置される。
 第1光学系第1レンズ群120Aは、2枚のレンズにより構成される。第1光学系第1レンズ群120Aは、物体側から順に第1光学系第1レンズ120a、第1光学系第2レンズ120bが光軸Lに沿って配置されて構成される。
 第1光学系第2レンズ群120Bは、1枚のレンズにより構成される。第1光学系第2レンズ群120Bは、光軸L上に配置された第1光学系第3レンズ120cにより構成される。
 第1光学系第3レンズ群120Cは、2枚のレンズにより構成される。第1光学系第3レンズ群120Cは、物体側から順に第1光学系第4レンズ120d、第1光学系第5レンズ120eが光軸Lに沿って配置されて構成される。
 第1光学系第4レンズ群120Dは、2枚のレンズにより構成される。第1光学系第4レンズ群120Dは、物体側から順に第1光学系第6レンズ120f、第1光学系第7レンズ120gが光軸Lに沿って配置されて構成される。
 第1光学系120を構成する各レンズは、円形のレンズにより構成される。
 第1光学系120に入射した光は、第1光学系第1レンズ群120A、第1光学系第2レンズ群120B、第1光学系第3レンズ群120C、第1光学系第4レンズ群120Dを通って、イメージセンサ100に入射する。
 -第2光学系- 第2光学系130が、2群5枚の望遠レンズにより構成され、物体側から順に第2光学系第1レンズ群130A、第2光学系第2レンズ群130Bが、光軸Lに沿って配置される。
 第2光学系第1レンズ群130Aは、3枚のレンズにより構成される。第2光学系第1レンズ群130Aは、物体側から順に第2光学系第1レンズ130a、第2光学系第2レンズ130b、第2光学系第3レンズ130cが光軸Lに沿って配置されて構成される。
 第2光学系第2レンズ群130Bは、2枚のレンズにより構成される。第2光学系第2レンズ群130Bは、物体側から順に第2光学系第4レンズ130d、第2光学系第5レンズ130eが光軸Lに沿って配置されて構成される。
 第2光学系130は、環状の屈折光学系の一部により構成される。本例のレンズ装置10では、円環状の光学系を8等分割した1つにより構成される。したがって、第2光学系130を構成する各レンズは、扇形状を有する。
 第2光学系130に入射した光は、第2光学系第1レンズ群130A、第2光学系第2レンズ群130Bを通って、イメージセンサ100に入射する。
 このように、第2光学系は、屈折光学系により構成することもできる。なお、図26に示すレンズ構成は、一例であり、目的に応じたレンズ構成が採用される。
 〈レンズ装置の第9の変形例〉
 上記実施の形態のレンズ装置では、第1光学系を広角レンズにより構成し、第2光学系を望遠レンズにより構成しているが、その逆の構成とすることもできる。すなわち、第1光学系を焦点距離の長い望遠レンズにより構成し、第2光学系を焦点距離の短い広角レンズにより構成することもできる。
 図27は、第1光学系が望遠レンズにより構成され、第2光学系が広角レンズにより構成されたレンズ装置の概略構成を示す断面図である。
 このレンズ装置10は、第1光学系220、第2光学系230、及び、共通レンズ240を備える。第1光学系220及び第2光学系230は、同じ光軸Lを有し、かつ、共に屈折光学系により構成される。
 第1光学系220は、第1の画角αを有する望遠レンズにより構成される。第1光学系220は、光軸Lに沿って像面側から第1光学系第1レンズ220a、第1光学系第2レンズ220bが配置されて構成される。第1光学系220を構成する各レンズは、円形状のレンズにより構成される。
 第2光学系230は、第2の画角βを有する広角レンズにより構成される。第2光学系230は、光軸L上に配置された第2光学系第1レンズ230aを有する。第2光学系第1レンズ230bは、環状のレンズの一部により構成される。本例のレンズ装置10では、円環状のレンズを8等分割した1つにより構成される。したがって、その外形は扇形状を有する。
 共通レンズ240は、第1光学系220及び第2光学系230により共用されるレンズであり、光軸L上の一定位置に配置される。共通レンズ240は、イメージセンサ100への光の入射角度を調整する。
 第1光学系220及び第2光学系230を通過した光は、それぞれ共通レンズ240を介してイメージセンサ100に入射する。
 このように、レンズ装置は、第1光学系を望遠レンズ、第2光学系を広角レンズにより構成することもできる。
 〈レンズ装置の第10の変形例〉
 上記実施の形態のレンズ装置は、互いに焦点距離の異なる光学系によって第1光学系及び第2光学系を構成しているが、第1光学系及び第2光学系は、異なる撮像特性を備えていればよい。
 図28は、互いに合焦距離の異なる光学系で第1光学系及び第2光学系が構成されたレンズ装置の概略構成を示す断面図である。
 このレンズ装置10は、互いに合焦距離の異なる第1光学系320及び第2光学系330を備える。
 第1光学系320は、近距離の被写体に合焦する光学系により構成され、第2光学系330は、遠距離の被写体に合焦する光学系により構成される。
 第1光学系320を構成する光学素子は円形状を有する。第2光学系330を構成する光学素子は、第1光学系320と同心状に配置可能な光学系の一部により構成される。
 このように、レンズ装置10は、合焦距離の異なる光学系である、第1光学系320及び第2光学系330により構成できる。この他、たとえば、互いに透過波長特性の異なる光学系によって第1光学系及び第2光学系を構成することもできる。たとえば、第1光学系は可視光による撮影に適した透過波長特性を有する光学系により構成し、第2光学系は赤外光による撮影に適した透過波長特性を有する光学系により構成する。これにより、第1光学系により可視光画像、第2光学系により赤外線画像を撮像できる。
 〈レンズ装置のその他の変形例〉
 上記のレンズ装置は、本発明の一例である。特に、各光学系のレンズ構成については、その光学系に要求される機能に応じて、適宜変更されるものである。
 また、レンズ装置には、必要に応じて、フィルタ等の光学素子を含めることができる。たとえば、赤外線カットフィルタや、イメージセンサを保護するカバーガラスなどを配置することもできる。
 《レンズ装置の製造方法》
 第1光学系についは、一般的なレンズの製造方法と同じである。したがって、ここでは、第2光学系の製造方法について説明する。
 円環状の光学系をn等分割した1つにより第2光学系を構成する場合、第2光学系は、次のように製造する。
 まず、第2光学系を構成する各光学素子について、円形の光学素子を製造する。次に、その円形の光学素子の中央に穴を開け、円環状に加工する。次に、円環状に加工された光学素子をカットして、n等分割する。得られた光学素子を組み立てて、第2光学系を完成させる。
 このように、円環状の光学系をn等分割した1つにより第2光学系を構成する場合、1つの円形の光学素子から複数の光学素子を取得でき、1台あたりの製造コストを低減できる。
 《撮像装置》
 次に、上記撮像ユニットを備えた撮像装置について説明する。
 〈撮像装置の構成〉
 図29は、撮像装置のシステム構成を示すブロック図である。
 撮像装置400は、主として、撮像ユニット1と、レンズ駆動制御部401と、イメージセンサ駆動制御部402と、アナログ信号処理部403と、デジタル信号処理部404と、表示部405と、内部メモリ406と、メディアインターフェース407と、システム制御部408と、操作部409と、を備えて構成される。
 撮像ユニット1は、レンズ装置10及びイメージセンサ100を備えて構成される。ここでは、図1に示す構成の撮像ユニット1が使用されるものとする。
 レンズ駆動制御部401は、システム制御部408からの指令に基づき、レンズ装置10の駆動を制御する。レンズ駆動制御部401は、第1光学系20の駆動を制御する第1光学系駆動制御部、及び、第2光学系30の駆動を制御する第2光学系駆動制御部を備える。第1光学系駆動制御部は、システム制御部408からの指令に基づいて、第1光学系駆動部60を制御し、第1光学系20を光軸Lに沿って前後移動させる。第2光学系駆動制御部は、システム制御部408からの指令に基づいて、第2光学系駆動部80を制御し、第2光学系30を光軸Lに沿って前後移動させる。
 イメージセンサ駆動制御部402は、システム制御部408からの指令に基づき、イメージセンサ100の駆動を制御する。すなわち、イメージセンサ100からの画像信号の読み出しを制御する。
 アナログ信号処理部403は、イメージセンサ100から出力される画素ごとのアナログの画像信号を取り込み、所定の信号処理を施した後、デジタル信号に変換して出力する。
 デジタル信号処理部404は、画像信号取得部の一例である。デジタル信号処理部404は、デジタル信号に変換された画素ごとの画像信号を取り込み、所定の信号処理を施して、画像データを生成する。この際、デジタル信号処理部404は、イメージセンサ100の第1画素110Aの画像信号に基づいて、第1画像データを生成し、第2画素110Bの画像信号に基づいて、第2画像データを生成する。第1画像データは、第1光学系20を介して撮像される広角画像の画像データであり、第2画像データは、第2光学系30を介して撮像される望遠画像の画像データである。
 表示部405は、たとえば、液晶モニタにより構成され、撮像済みの画像や撮像中の画像(いわゆるライブビュー画像)を表示する。また、表示部405は、必要に応じてGUI(GUI: Graphical User Interface)として機能する。
 内部メモリ406は、たとえば、RAM(RAM: Random Access Memory)により構成され、ワークメモリとして機能する。
 メディアインターフェース407は、システム制御部408から指令に基づいて、メモリーカード等の外部メモリ410に対して、データの読み書きを行う。
 システム制御部408は、撮像装置全体の動作を統括制御する。システム制御部408は、たとえば、CPU(Central Processing Unit)、ROM(Read Only Member)、RAMを備えたマイクロコンピュータにより構成され、所定の制御プログラムを実行して、デジタル信号処理部404を含む撮像装置400の全体を制御する。制御に必要なプログラム及び各種データは、ROMに格納される。
 操作部409は、電源ボタンやシャッターボタン等の各種操作ボタン、及び、その駆動回路を備えて構成される。操作部409の操作情報は、システム制御部408に入力される。システム制御部408は、操作部409からの操作情報に基づいて、各部を制御する。
 〈撮像装置の作用〉
 本実施の形態の撮像装置400において、焦点合わせは手動により行われる。撮影者は、操作部409を介して、第1光学系20及び第2光学系30を個別に移動させ、所望の被写体に焦点を合わせる。
 画像を記録するための撮像は、測光後に行われる。測光の指示は、シャッターボタンの半押しにより行われる。測光が指示されると、システム制御部408は、イメージセンサ100から得られる画像信号に基づいて、EV値(exposure value)を求め、露出を決定する。露出は、光学系ごとに決定する。
 測光後、画像を記録するための撮像が実施される。画像を記録するための撮像の指示は、シャッターボタンの全押しにより行われる。
 記録用の撮像が指示されると、システム制御部408は、測光により求めた露出においてイメージセンサ100を露光させ、記録用の画像を撮像する。
 撮像により得られた画素ごとの画像信号は、イメージセンサ100からアナログ信号処理部403に出力される。アナログ信号処理部403は、イメージセンサ100から出力された画素ごとの画像信号を取り込み、所定の信号処理を施した後、デジタル信号に変換して出力する。
 アナログ信号処理部403から出力された画素ごとの画像信号は、内部メモリ406に取り込まれ、その後、デジタル信号処理部404に送られる。デジタル信号処理部404は、得られた画像信号に所定の信号処理を施して、第1画像データ及び第2画像データを生成する。すなわち、イメージセンサ100の第1画素110Aの画像信号に基づいて第1画像データを生成し、第2画素110Bの画像信号に基づいて第2画像データを生成する。生成された第1画像データ及び第2画像データは、メディアインターフェース407を介して外部メモリ410に記録される。
 このように、本実施の形態の撮像装置400によれば、一回の撮像により広角及び望遠の2つの画像を撮像できる。
 《撮像装置の変形例》
 撮像装置は、単体のカメラとして構成することもできるが、他の機器に組み込むこともできる。たとえば、スマートフォンやタブレット型コンピュータ、ノート型コンピュータに組み込むこともできる。
 また、撮像装置としての用途も特に限定されず、通常のカメラ用途の他、監視カメラや車載カメラなどの用途に用いることもできる。
 また、第1画素の画像信号及び第2画素の画像信号を個別に読み出せる構成のイメージセンサを使用した場合、撮像装置は、第1画素の画像信号及び第2画素の画像信号を個別に読み出す構成とすることもできる。
 1…撮像ユニット、10…レンズ装置、12…鏡筒、14…第1光学系ガイドシャフト支持部、15…第1光学系ネジ棒軸受部、16…第2光学系ガイドシャフト支持部、17…第2光学系ネジ棒軸受部、20…第1光学系、20A…第1光学系第1レンズ群、20B…第1光学系第2レンズ群、20C…第1光学系第3レンズ群、20a…第1光学系第1レンズ、20b…第1光学系第2レンズ、20c…第1光学系第3レンズ、20d…第1光学系第4レンズ、20e…第1光学系第5レンズ、20f…第1光学系第6レンズ、20g…第1光学系第7レンズ、20h…第1光学系第8レンズ、30…第2光学系、30a…第2光学系第1レンズ、30b…第2光学系第2レンズ、30c…第2光学系第3レンズ、30d…主鏡、30e…副鏡、32…開口部、34…遮光膜、40…共通レンズ、42…共通レンズ保持枠、60…第1光学系駆動部、62…第1光学系ガイド機構、64…第1光学系駆動機構、66…第1光学系ガイドシャフト、68…第1光学系ガイドスリーブ、68A…第1光学系ガイドスリーブ連結アーム、68B…第1光学系ガイドスリーブ連結アーム、68C…第1光学系ガイドスリーブ連結アーム、70A…第1光学系第1レンズ枠、70B…第1光学系第2レンズ枠、70C…第1光学系第3レンズ枠、72…第1光学系駆動ネジ棒、74…第1光学系駆動モータ、76…第1光学系駆動ナット、76A…第1光学系駆動ナット連結アーム、76B…第1光学系駆動ナット連結アーム、76C…第1光学系駆動ナット連結アーム、80…第2光学系駆動部、82…第2光学系ガイド機構、84…第2光学系駆動機構、86…第2光学系ガイドシャフト、88…第2光学系ガイドスリーブ、88A…第2光学系ガイドスリーブ連結アーム、88B…第2光学系ガイドスリーブ連結アーム、90A…第2光学系第1レンズ枠、90B…第2光学系第2レンズ枠、92…第2光学系駆動ネジ棒、94…第2光学系駆動モータ、96…第2光学系駆動ナット、96A…第2光学系駆動ナット連結アーム、96B…第2光学系駆動ナット連結アーム、100…イメージセンサ、110A…第1画素、110B…第2画素、112…光電変換素子、114…マイクロレンズ、116…遮光マスク、120…第1光学系、120A…第1光学系第1レンズ群、120B…第1光学系第2レンズ群、120C…第1光学系第3レンズ群、120D…第1光学系第4レンズ群、120a…第1光学系第1レンズ、120b…第1光学系第2レンズ、120d…第1光学系第4レンズ、120e…第1光学系第5レンズ、120f…第1光学系第6レンズ、120g…第1光学系第7レンズ、130…第2光学系、130A…第2光学系第1レンズ群、130B…第2光学系第2レンズ群、130a…第2光学系第1レンズ、130b…第2光学系第2レンズ、130c…第2光学系第3レンズ、130d…第2光学系第4レンズ、130e…第2光学系第5レンズ、220…第1光学系、220a…第1光学系第1レンズ、220b…第1光学系第2レンズ、230…第2光学系、230a…第2光学系第1レンズ、230b…第2光学系第1レンズ、240…共通レンズ、320…第1光学系、330…第2光学系、400…撮像装置、401…レンズ駆動制御部、402…イメージセンサ駆動制御部、403…アナログ信号処理部、404…デジタル信号処理部、405…表示部、406…内部メモリ、407…メディアインターフェース、408…システム制御部、409…操作部、410…外部メモリ、L…光軸、L1…レンズ、L2…レンズ、L2a…レンズ、L2b…レンズ、X…環状の光学系

Claims (15)

  1.  第1光学系と、
     前記第1光学系と異なる撮像特性を有し、かつ、前記第1光学系と同心状に配置可能な環状の光学系の一部により構成され、前記第1光学系と同じ光軸を有する第2光学系と、
     を備えたレンズ装置。
  2.  前記第2光学系は、前記光軸と直交する断面において、前記環状の光学系を扇状に切り出した形状を有する、
     請求項1に記載のレンズ装置。
  3.  前記第2光学系は、前記光軸と直交する断面において、前記環状の光学系を扇状に切り出し、更に、外周部及び内周部を互いに平行に切り出した形状を有する、
     請求項2に記載のレンズ装置。
  4.  前記第2光学系は、前記光軸と直交する断面において、前記環状の光学系から前記光軸を挟んで互いに平行な2本の直線により挟まれる領域を切り出した形状を有する、
     請求項1に記載のレンズ装置。
  5.  前記第2光学系は、前記光軸と直交する断面において、前記環状の光学系から前記光軸を挟んで互いに平行な2本の第1直線、及び、前記第1直線と直交し互いに平行な2本の第2直線により囲われる領域を切り出した形状を有する、
     請求項1に記載のレンズ装置。
  6.  前記第2光学系は、開口部の最大幅が前記環状の光学系の内径以下である、
     請求項1から5のいずれか1項に記載のレンズ装置。
  7.  前記第2光学系が、環状の反射光学系の一部により構成される、
     請求項1から6のいずれか1項に記載のレンズ装置。
  8.  前記第2光学系が、環状の屈折光学系の一部により構成される、
     請求項1から7のいずれか1項に記載のレンズ装置。
  9.  前記第1光学系及び前記第2光学系は、互いに焦点距離が異なる、
     請求項1から8のいずれか1項に記載のレンズ装置。
  10.  前記第1光学系及び前記第2光学系は、互いに合焦距離が異なる、
     請求項1から9のいずれか1項に記載のレンズ装置。
  11.  前記第1光学系及び前記第2光学系は、互いに透過波長特性が異なる、
     請求項1から9のいずれか1項に記載のレンズ装置。
  12.  前記第1光学系を光軸に沿って移動させる第1光学系駆動部を更に備えた、
     請求項1から11のいずれか1項に記載のレンズ装置。
  13.  前記第2光学系を光軸に沿って移動させる第2光学系駆動部を更に備えた、
     請求項1から12のいずれか1項に記載のレンズ装置。
  14.  請求項1から13のいずれか1項に記載のレンズ装置と、
     前記第1光学系を通過した光を選択的に受光する画素及び前記第2光学系を通過した光を選択的に受光する画素が規則的に二次元配列されたイメージセンサと、
     を備えた撮像ユニット。
  15.  請求項14の撮像ユニットと、
     前記第1光学系を介して得られる第1画像の画像信号、及び、前記第2光学系を介して得られる第2画像の画像信号を前記イメージセンサから取得する画像信号取得部と、
     を備えた撮像装置。
PCT/JP2016/077619 2015-10-08 2016-09-20 レンズ装置、撮像ユニット及び撮像装置 WO2017061263A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-199850 2015-10-08
JP2015199850A JP2018198344A (ja) 2015-10-08 2015-10-08 レンズ装置、撮像ユニット及び撮像装置

Publications (1)

Publication Number Publication Date
WO2017061263A1 true WO2017061263A1 (ja) 2017-04-13

Family

ID=58487576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077619 WO2017061263A1 (ja) 2015-10-08 2016-09-20 レンズ装置、撮像ユニット及び撮像装置

Country Status (2)

Country Link
JP (1) JP2018198344A (ja)
WO (1) WO2017061263A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064977A1 (ja) * 2017-09-28 2019-04-04 富士フイルム株式会社 光学系、投影装置及び撮像装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6854542B1 (ja) * 2019-11-28 2021-04-07 佐藤 拙 光学素子、光学系及び光学装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114913A (ja) * 1997-06-23 1999-01-22 Kazuo Kosho 第1面に凹球面反射鏡を使用した望遠鏡。
JP2006267391A (ja) * 2005-03-23 2006-10-05 Mitsubishi Electric Corp 撮像装置
JP2014106327A (ja) * 2012-11-27 2014-06-09 Olympus Corp 光学素子、光学系、立体撮像装置、及び内視鏡
JP2015119456A (ja) * 2013-12-20 2015-06-25 富士フイルム株式会社 撮像モジュール及び撮像装置
WO2015122117A1 (ja) * 2014-02-14 2015-08-20 パナソニックIpマネジメント株式会社 光学系およびそれを用いた撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1114913A (ja) * 1997-06-23 1999-01-22 Kazuo Kosho 第1面に凹球面反射鏡を使用した望遠鏡。
JP2006267391A (ja) * 2005-03-23 2006-10-05 Mitsubishi Electric Corp 撮像装置
JP2014106327A (ja) * 2012-11-27 2014-06-09 Olympus Corp 光学素子、光学系、立体撮像装置、及び内視鏡
JP2015119456A (ja) * 2013-12-20 2015-06-25 富士フイルム株式会社 撮像モジュール及び撮像装置
WO2015122117A1 (ja) * 2014-02-14 2015-08-20 パナソニックIpマネジメント株式会社 光学系およびそれを用いた撮像装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019064977A1 (ja) * 2017-09-28 2019-04-04 富士フイルム株式会社 光学系、投影装置及び撮像装置
CN111095072A (zh) * 2017-09-28 2020-05-01 富士胶片株式会社 光学系统、投影装置及摄像装置
JPWO2019064977A1 (ja) * 2017-09-28 2020-12-17 富士フイルム株式会社 光学系、投影装置及び撮像装置
US11269249B2 (en) 2017-09-28 2022-03-08 Fujifilm Corporation Optical system, projection apparatus, and imaging apparatus

Also Published As

Publication number Publication date
JP2018198344A (ja) 2018-12-13

Similar Documents

Publication Publication Date Title
JP5842146B2 (ja) 固体撮像装置、撮像装置、及び分光素子
US9703077B2 (en) Optical image capturing system
JP4967873B2 (ja) 撮像装置
US20170034456A1 (en) Sensor assembly with selective infrared filter array
CN108139559B (zh) 透镜装置
US9344624B2 (en) Parallax image generation method, image generation apparatus, program, and storage medium
CN110636277B (zh) 检测设备、检测方法和摄像设备
US20170235104A1 (en) Optical image capturing system
KR20140136727A (ko) 전자 센서와, 그의 제어 방법
US10209440B2 (en) Imaging sensor with Bragg filter and method of manufacturing the same
US11930256B2 (en) Imaging device, imaging optical system, and imaging method
WO2017061263A1 (ja) レンズ装置、撮像ユニット及び撮像装置
JP4532968B2 (ja) 焦点検出装置
JP7292848B2 (ja) 光学装置及びそれを備える撮像システム
US20210208476A1 (en) Imaging lens and imaging apparatus
JP6545829B2 (ja) 撮像装置、及び、画像データ生成方法
JP2020508469A (ja) 広角コンピュータ撮像分光法および装置
JP2014137483A5 (ja)
US11221459B2 (en) Imaging optical system and imaging apparatus
JP2005250089A (ja) 撮像レンズおよびレンズの製造方法
CN108605083B (zh) 摄像装置及图像数据生成方法
CN107924107B (zh) 摄像装置
JP2002243908A (ja) 赤外線用光学素子および赤外線カメラ
WO2015119007A1 (ja) 広角アレイ光学系
WO2017061258A1 (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853417

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP