WO2015122071A1 - 粒子分取装置、粒子分取方法、プログラム及び粒子分取システム - Google Patents

粒子分取装置、粒子分取方法、プログラム及び粒子分取システム Download PDF

Info

Publication number
WO2015122071A1
WO2015122071A1 PCT/JP2014/080588 JP2014080588W WO2015122071A1 WO 2015122071 A1 WO2015122071 A1 WO 2015122071A1 JP 2014080588 W JP2014080588 W JP 2014080588W WO 2015122071 A1 WO2015122071 A1 WO 2015122071A1
Authority
WO
WIPO (PCT)
Prior art keywords
image information
droplet
captured
image
particle sorting
Prior art date
Application number
PCT/JP2014/080588
Other languages
English (en)
French (fr)
Inventor
史高 大塚
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP20161256.1A priority Critical patent/EP3690424B1/en
Priority to JP2015562696A priority patent/JP6465036B2/ja
Priority to CN201480075065.0A priority patent/CN105980831B/zh
Priority to US15/116,830 priority patent/US10309892B2/en
Priority to EP14882507.8A priority patent/EP3106857B1/en
Publication of WO2015122071A1 publication Critical patent/WO2015122071A1/ja
Priority to US16/396,431 priority patent/US11119030B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1425Optical investigation techniques, e.g. flow cytometry using an analyser being characterised by its control arrangement
    • G01N15/1427Optical investigation techniques, e.g. flow cytometry using an analyser being characterised by its control arrangement with the synchronisation of components, a time gate for operation of components, or suppression of particle coincidences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1456Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
    • G01N15/1459Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals the analysis being performed on a sample stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1484Optical investigation techniques, e.g. flow cytometry microstructural devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/149Optical investigation techniques, e.g. flow cytometry specially adapted for sorting particles, e.g. by their size or optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0007Investigating dispersion of gas
    • G01N2015/0011Investigating dispersion of gas in liquids, e.g. bubbles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1026Recognising analyser failures, e.g. bubbles; Quality control for particle analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1028Sorting particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • G01N2015/1406Control of droplet point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • G01N2015/1413Hydrodynamic focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • G01N2015/1418Eliminating clogging of debris
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • G01N2035/1018Detecting inhomogeneities, e.g. foam, bubbles, clots
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics

Definitions

  • This technology relates to a particle sorting device, a particle sorting method, a program thereof, and a particle sorting system. More specifically, the present invention relates to a technique for detecting the presence or absence of bubbles or foreign matters in a droplet based on the image of the droplet.
  • flow cytometry when analyzing biologically relevant particles such as cells, microorganisms and liposomes, flow cytometry (flow cytometer) is used (for example, see Non-Patent Document 1).
  • Flow cytometry is performed by irradiating particles that flow in a line in a flow path with laser light (excitation light) of a specific wavelength, and detecting fluorescence and scattered light emitted from each particle. This is a method of analyzing the particles one by one.
  • the type, size, and structure of each particle can be determined by converting light detected by a photodetector into an electrical signal, digitizing it, and performing statistical analysis.
  • Some flow cytometers have a function to sort and collect only microparticles with specific characteristics based on the analysis results, and the “cell sorter” is a microparticle sorting device specifically for sorting cells. is called.
  • the “cell sorter” is a microparticle sorting device specifically for sorting cells. is called.
  • a fluid discharged from the flow path is made into droplets by applying vibration to a flow cell or a microchip by a vibration element or the like (see Patent Documents 1 and 2).
  • Patent Document 3 discloses a technique regarding a cell sorter equipped with a bubble detector. According to this technique, the bubble detector can be connected to the flow path, and the air bubbles present in the flow path can be detected.
  • the main object of the present disclosure is to provide a particle sorting device, a particle sorting method, a program, and a particle sorting system that can easily detect bubbles, foreign matters, and the like in a droplet.
  • the present disclosure relates to preset reference image information including reference droplet image information related to brightness of an image of a droplet imaged after ejection from the orifice, and a droplet containing particles imaged after ejection from the orifice.
  • a particle sorting apparatus including a determination unit that determines whether or not captured image information including captured droplet image information related to the brightness of the image of the image has changed.
  • the reference image information includes the reference droplet image information, and reference background image information related to luminance of a background image other than a droplet having a luminance peak value higher than that of the reference droplet image information, and the captured image
  • the information may include the imaging droplet image information and imaging background image information related to luminance other than the droplets having a luminance peak value higher than that of the imaging droplet image information.
  • the determination unit may determine whether or not the luminance peak value of the captured droplet image information is higher than the luminance peak value of the reference droplet image information. In addition, the determination unit may determine the number of pixels having a luminance within a predetermined range from a luminance peak value related to the droplet image in the reference droplet image information, rather than the reference droplet image information.
  • the determination unit may determine the number of pixels having a luminance within a predetermined range from a peak value of luminance related to an image other than the droplet in the reference image information than the reference droplet image information. It may be determined whether or not there are fewer.
  • the particle sorting device is disposed to face the charging unit that applies charge to at least a part of the droplets ejected from the orifice, and to sandwich the fluid stream formed by the droplets, A deflection plate that changes a traveling direction of the droplet, and a first image that acquires the image of the droplet at a position where the fluid discharged from the orifice is formed into a droplet, and generates the reference image information and the captured image information.
  • an imaging unit At this time, a storage unit for storing the reference image information may be further provided.
  • the reference image information may be image information including an image of a droplet that does not contain particles.
  • a second imaging unit that acquires an image of the droplet that has passed between the deflecting plates is further provided, and the determination unit is configured so that the second image information of the droplet acquired by the second imaging unit is stored in advance. It is determined whether or not it is set stable image information, and when the second image information is the stable image information, an image captured by the first imaging unit of the droplet for the second image information Information may be determined as the reference image information. Furthermore, a notification unit that notifies the user of warning information when the captured image information has changed with respect to the reference image information may be provided. Moreover, when the said captured image information is changing with respect to the said reference image information, you may further provide the control part which stops automatically the collection of the droplet containing particle
  • the determination unit discharges the orifice from the orifice with respect to preset reference image information including reference droplet image information related to the luminance of the droplet image picked up after discharge from the orifice. It is determined whether or not the captured image information including the captured droplet image information relating to the brightness of the image of the droplet containing the particles captured later has changed.
  • a program according to the present disclosure includes particles imaged after ejection from an orifice with respect to preset reference image information including reference droplet image information relating to brightness of an image of a droplet imaged after ejection from the orifice.
  • the particle sorting apparatus is caused to execute a function of determining whether or not the captured image information including the captured droplet image information related to the brightness of the image of the droplet to be changed has changed.
  • the particle sorting system is imaged after ejection from the orifice with respect to preset reference image information including reference droplet image information related to the brightness of the image of the droplet imaged after ejection from the orifice.
  • a determination unit is provided for determining whether or not the captured image information including the captured droplet image information related to the brightness of the image of the droplet containing particles has changed.
  • a and B are diagrams illustrating examples of images captured by the first imaging unit 8. It is a figure which shows the example of the histogram about the reference
  • FIG. It is a figure which shows typically the structural example of the particle sorting system 102 which concerns on 2nd Embodiment of this indication. It is a flowchart figure which shows the outline
  • a to D are diagrams illustrating examples of images captured by the second imaging unit 9.
  • First Embodiment Example of a sorting apparatus that detects bubbles, foreign matters, etc. based on reference image information stored in advance
  • Second Embodiment Example of Sorting Device Using Image Information of Particle-Free Droplets Containing No Particles as Reference Image Information
  • Third Embodiment Example of sorting apparatus for determining reference image information from side stream image information
  • Fourth embodiment an example of a system in which sorting of particles and detection of bubbles, foreign matters, etc. in droplets are performed by different devices
  • FIG. 1 is a diagram illustrating a schematic configuration of a particle sorting apparatus 1 according to the first embodiment of the present disclosure.
  • the particle sorting apparatus 1 detects bubbles, foreign matters, and the like in a droplet containing particles based on information of a captured image.
  • a vibration element 3 As shown in FIG. A vibration element 3, a charging unit 4, deflecting plates 5a and 5b, a determination unit 7, a storage unit 10 and the like are provided.
  • the particles analyzed and sorted by the particle sorting apparatus 1 of the present embodiment include biologically related fine particles such as cells, microorganisms and ribosomes, or synthetic particles such as latex particles, gel particles and industrial particles. included.
  • Biologically relevant microparticles include chromosomes, ribosomes, mitochondria, organelles (cell organelles) and the like that constitute various cells.
  • the cells include plant cells, animal cells, blood cells, and the like.
  • microorganisms include bacteria such as Escherichia coli, viruses such as tobacco mosaic virus, and fungi such as yeast.
  • the biologically relevant microparticles can include biologically relevant polymers such as nucleic acids, proteins, and complexes thereof.
  • examples of the industrial particles include those formed of an organic polymer material, an inorganic material, a metal material, or the like.
  • organic polymer material polystyrene, styrene / divinylbenzene, polymethyl methacrylate, or the like can be used.
  • glass, silica, a magnetic material, etc. can be used as an inorganic material.
  • metal material for example, gold colloid and aluminum can be used.
  • the shape of these particles is generally spherical, but may be non-spherical, and the size and mass are not particularly limited.
  • the microchip 2 includes a sample inlet 22 into which a liquid (sample liquid) containing particles to be sorted is introduced, a sheath inlet 23 into which a sheath liquid is introduced, a suction outlet 24 for eliminating clogging and bubbles, and the like. Is formed.
  • the sample liquid is introduced into the sample inlet 22, merged with the sheath liquid introduced into the sheath inlet 23, and sent to the sample flow path, and the orifice 21 provided at the end of the sample flow path. It is discharged from.
  • a suction channel communicating with the suction outlet 24 is connected to the sample channel.
  • This suction channel is used to eliminate clogging and air bubbles by creating a negative pressure in the sample channel and temporarily reversing the flow when clogging or air bubbles occur in the sample channel.
  • a negative pressure source such as a vacuum pump is connected to 24.
  • the microchip 2 can be formed of glass or various plastics (PP, PC, COP, PDMS, etc.).
  • the material of the microchip 1 is desirably a material that is transparent to measurement light emitted from a light detection unit described later, has less autofluorescence, and has less optical error due to small wavelength dispersion.
  • the microchip 2 can be formed by wet etching or dry etching of a glass substrate, or by nanoimprinting, injection molding, or machining of a plastic substrate.
  • the microchip 2 can be formed, for example, by sealing a substrate formed with a sample flow path or the like with a substrate of the same material or a different material.
  • the vibrating element 3 generates a fluid stream (droplet flow) S by converting the fluid discharged from the orifice 21 into droplets by applying minute vibrations to the liquid flowing through the flow path.
  • a piezoelectric element or the like can be used.
  • the vibration element 3 only needs to be provided at a position where vibration can be imparted to the liquid flowing through the flow path.
  • the vibration element 3 can You may attach to the piping which introduce
  • the charging unit 4 imparts positive or negative charges to the droplets ejected from the orifice 21.
  • the charging electrode 41 is disposed in contact with the sheath liquid and / or sample liquid flowing through the flow path, and applies charge to the sheath liquid and / or sample liquid.
  • the charging electrode inlet of the microchip 2 is used. Inserted into.
  • the charging electrode 41 is disposed so as to contact the sample liquid, but the present disclosure is not limited thereto, and may be disposed so as to contact the sheath liquid. You may arrange
  • the deflecting plates 5a and 5b change the traveling direction of each droplet in the fluid stream S by an electric force acting between the electric charges applied to the droplets and guide them to predetermined recovery containers 6a to 6c.
  • These are arranged opposite to each other across the fluid stream S.
  • commonly used electrodes can be used for the deflection plates 5a and 5b.
  • a different positive or negative voltage is applied to each of the deflecting plates 5a and 5b, and when a charged droplet passes through the electric field formed thereby, an electric force (Coulomb force) is generated, and each liquid Drops are attracted in the direction of one of the deflecting plates 5a and 5b.
  • the direction of the droplet flow (side stream) attracted by the electric field can be controlled by changing the sign of the charge to the droplet and the amount of charge. It becomes possible to sort the particles simultaneously.
  • the collection containers 6a to 6c collect droplets that have passed between the deflection plates 5a and 5b, and general-purpose plastic tubes, glass tubes, and the like can be used for experiments. These collection containers 6a to 6c are preferably arranged so as to be replaceable in the apparatus. Moreover, a drainage channel for collected droplets may be connected to the collection containers 6a to 6c that receive non-target particles.
  • the number and kind of the collection containers arranged in the particle sorting apparatus 1 are not particularly limited. When three or more recovery containers are arranged, each droplet is guided to one of the recovery containers depending on the presence / absence of the electric acting force between the deflecting plates 5a and 5b and the size thereof. What should I do?
  • the determination unit 7 determines whether the captured image information 81 has changed with respect to the reference image information 80.
  • the reference image information 80 is image information including reference droplet image information 801 of a droplet in which bubbles, foreign matter, and the like imaged after ejection from the orifice are not mixed.
  • the captured image information 81 is image information including captured droplet image information 811 relating to the brightness of the image of a droplet containing particles.
  • the determination unit 7 When it is determined by the determination unit 7 that the captured image information 81 has changed with respect to the reference image information 80, it is understood that bubbles, foreign matters, and the like are mixed in the droplet containing the particles. . Therefore, when air bubbles or foreign matters are mixed, the sorting can be interrupted, and the stability and reliability of the apparatus can be maintained.
  • the first imaging unit (camera) 8 acquires a droplet image at a position (break-off point) where the fluid discharged from the orifice is formed into droplets, and generates reference image information 80 and captured image information 81. .
  • the imaging of a droplet can use various image pick-up elements, such as a photoelectric conversion element other than imaging devices, such as CCD and a CMOS camera.
  • the 1st imaging part 8 may be provided with the moving mechanism for changing the position.
  • the particle sorting apparatus 1 of the present embodiment may be provided with a light source (not shown) that illuminates the imaging region in combination with the first imaging unit 8. By causing the strobe of the first imaging unit 8 to emit light for a certain period of time at each droplet formation cycle, it is possible to acquire a droplet image at a specific timing when the droplet is formed.
  • the storage unit 10 is a device for storing various types of data, and includes, for example, a magnetic storage device such as a hard disk drive (HDD), a semiconductor storage device, an optical storage device, or a magneto-optical storage device. Is done.
  • the storage unit 10 stores the image information obtained by the first imaging unit 8 via the input / output interface.
  • the storage unit 10 can store reference image information 80 in advance, as will be described later.
  • Control unit 11 The control unit 11 controls the particle sorting apparatus 1 so that the sorting of the droplets containing particles is automatically stopped when the captured image information 81 is changed with respect to the reference image information 80. Can do. The user can arbitrarily set whether or not to execute this function by the control unit 11.
  • the notification unit 12 notifies the user of warning information when the captured image information 81 has changed with respect to the reference image information 80.
  • the warning information is not particularly limited as long as the user can grasp that bubbles, foreign matters, and the like are mixed in the droplet.
  • a display such as blinking of a lamp installed in the particle sorting apparatus 1 is possible. It may be information or output information such as a warning sound.
  • the particle sorting apparatus 1 of the present embodiment for example, light (measurement light) is irradiated to a predetermined portion of the sample flow path, and light (measurement target light) generated from the particles flowing through the sample flow path is detected.
  • a light detection unit (not shown) is provided.
  • the light detection unit can be configured in the same manner as in conventional flow cytometry. Specifically, a laser light source, an irradiation system consisting of a condenser lens, dichroic mirror, bandpass filter, etc. that collects and irradiates laser light onto the particle, and measurement target light generated from the particle by laser light irradiation And a detection system for detecting.
  • the detection system includes, for example, a PMT (Photo Multiplier Tube), an area imaging device such as a CCD or a CMOS device.
  • the irradiation system and the detection system may be configured by the same optical path or may be configured by separate optical paths.
  • the measurement target light detected by the detection system of the light detection unit is light generated from the particles by irradiation of the measurement light.
  • various kinds of light such as forward scattered light, side scattered light, Rayleigh scattering, and Mie scattering are used. It can be scattered light, fluorescence, or the like.
  • FIG. 2 is a flowchart showing an outline of a method for detecting bubbles, foreign matters and the like by the particle sorting apparatus 1 according to the present embodiment.
  • the reference image information 80 is read from the storage unit 10 (step S11).
  • FIG. 3 is a diagram illustrating an example of an image captured by the first imaging unit 8, where A is an image related to the reference image information 80, and B is an image related to captured image information 81 to be described later.
  • the reference image information 80 is preset image information including reference droplet image information 801 relating to the brightness of the image of the droplet imaged after ejection from the orifice 21, and is free from bubbles, foreign matter, and the like. Image information including droplets.
  • Reference numeral 802 denotes reference background image information relating to a background image other than the droplet. Since the droplet formation frequency is 10 to 30 kHz and the first imaging unit 8 is about 30 fps, the image shown in FIG. 3 is an image in which several hundred to several thousand images are superimposed. .
  • the sample is set in the particle sorting apparatus 1, and the droplet sorting is started (steps S12 and S13 in FIG. 2).
  • the first image pickup unit 8 picks up the liquid droplets, and the picked-up image information 81 of the image as shown in FIG. 3B is obtained (step S14).
  • FIG. 4 is a diagram illustrating an example of a histogram for the reference image information 80 and the captured image information 81.
  • This histogram is information obtained from an image picked up by the first image pickup unit 8 as shown in FIG. 3, and is information in which the horizontal axis represents luminance and the vertical axis represents the number of pixels of each luminance.
  • the reference image information 80 includes a peak value that maximizes the number of pixels on the high luminance (luminance indicated by symbol B in FIG. 4) side and the number of pixels on the low luminance (luminance indicated by symbol D in FIG. 4) side.
  • the low-luminance image information having the peak value Iref is reference droplet image information 801.
  • the image information having a peak on the high luminance side is reference background image information 802 relating to the luminance of the background image other than the droplet.
  • the luminance value at the boundary between the codes D and B can be arbitrarily set as appropriate.
  • the peak luminance value that maximizes the number of pixels on the high luminance side and the number of pixels on the low luminance side are maximized.
  • the image information on the low luminance side having the peak luminance value I is the captured droplet image information 811.
  • image information having a peak luminance value on the high luminance side is imaging background image information 812 relating to the luminance of the background image other than the droplet.
  • the determination unit 7 determines whether or not the peak luminance value I is shifted with respect to the peak luminance value Iref. More specifically, as shown in FIG. 3, when bubbles or foreign matter are mixed in the captured droplet, the image of the captured droplet image information 811 with respect to the image of the reference droplet image information 801. Is blurred as a whole. Therefore, the peak luminance value I is shifted to the high luminance side with respect to the peak luminance value Iref.
  • the determination unit 7 determines whether or not the peak luminance value I is within the range of Iref ⁇ i. This i is preferably about 10 to 30 when the overall luminance is 256 gradations. Thereby, it is possible to detect mixing of bubbles, foreign matters, and the like with higher accuracy.
  • the determination unit 7 determines whether or not the captured image information 81 is smaller than the reference image information 80 by a predetermined value or more with respect to the number of pixels in the range of Iref ⁇ i.
  • the predetermined value is preferably about 25 to 50% of the number of pixels in the range in the reference image information 80, because it becomes possible to detect mixing of bubbles, foreign matters, etc. with higher accuracy. .
  • the determination unit 7 may determine whether or not the captured background image information 812 is smaller than the reference background image information 802 with respect to the number of pixels within a predetermined range from the peak luminance value on the high luminance side. it can.
  • the predetermined range is preferably about 5 to 10% of the number of pixels in the range in the reference background image information 80, because it becomes possible to detect mixing of bubbles, foreign matters, etc. with higher accuracy. .
  • the determination unit 7 can accurately detect the presence of bubbles, foreign matters, and the like based not only on the reference droplet image information 801 but also on the reference background image information 802.
  • Step S16 when the determination unit 7 determines that the captured image information 81 has changed with respect to the reference image information 80, bubbles, foreign matter, or the like are mixed in the particle sorting apparatus 1.
  • Step S16 Thereby, for example, the sample collection is automatically stopped by the control unit 11, or warning information is notified to the user by the notification unit 12. At this time, it is also possible to stabilize the flow path by automatically sucking the sample through a suction port (not shown) provided in the laminar flow generation unit.
  • the determination unit 7 determines that the captured image information 81 has not changed with respect to the reference image information 80, the particle sorting apparatus 1 continues to sort droplets.
  • the particle sorting apparatus 1 of the present embodiment it is possible to easily grasp the presence of bubbles, foreign matters, and the like by comparing the reference image information 80 and the captured image information 81 of the droplet. . Therefore, sample collection can be stopped due to the presence of air bubbles, foreign matters, and the like, and for example, clogging of the flow path and the like due to the inclusion of foreign matters can be suppressed, thereby improving the stability and reliability of the particle sorting apparatus 1. be able to. In addition, even when the sample that has been set to be sorted runs out and air bubbles are mixed, the sample sorting operation can be automatically stopped, and the convenience of the particle sorting apparatus 1 can be improved. Further, since the presence of bubbles or the like can be easily grasped by the first imaging unit 8, it is not necessary to separately provide a device such as a bubble detection sensor in the particle sorting device 1. The degree of freedom can be improved and the manufacturing cost can be reduced.
  • the microchip 2 has been described as an example.
  • the present disclosure is not limited to this, and the same may be applied even if a flow cell is used instead of the microchip 2. An effect is obtained.
  • FIG. 5 is a diagram schematically illustrating a configuration example of the particle sorting apparatus 102 according to the second embodiment of the present disclosure.
  • FIG. 6 is a flowchart showing an outline of a method for detecting bubbles, foreign matters, and the like by the particle sorting apparatus 102 according to the present embodiment. Since air bubbles, foreign substances, etc. are often mixed from the sample inlet 22, a stream that does not contain particles is stable (does not contain air bubbles, foreign substances, etc. as droplets) in many cases.
  • the particle sorting apparatus 102 generates a stream that does not contain particles (a particle-free stream), and sets image information of droplets in the stream as reference image information 80. Therefore, in the particle sorting apparatus 102 of the present embodiment, it is not always necessary to read out data from the storage unit 10 in the process of detecting bubbles, foreign matters, and the like in the configuration of the first embodiment described above.
  • a particle-free stream that does not contain particles is generated (step S21).
  • image information obtained by imaging the droplets in the particle-free stream by the first imaging unit 8 is set as reference image information 80 (step S22).
  • the reference image information 80 may be stored in the storage unit 10 or may not be stored.
  • Steps S12 to S16 a method for setting a sample to be sorted and determining whether bubbles or foreign substances are mixed in the stream containing particles is performed in the same manner as the particle sorting apparatus 1 of the first embodiment.
  • Steps S12 to S16 Other configurations and effects of the particle sorting apparatus 102 are the same as those in the first embodiment of the present disclosure.
  • the droplet image information of the particle-free stream in which bubbles or foreign matters are not mixed is set as the reference image information 80 before sample collection. Therefore, it is not always necessary to read the reference image information 80 stored in advance from the storage unit 10, and the presence of bubbles, foreign matters, and the like in the droplet can be easily determined.
  • FIG. 7 is a diagram schematically illustrating a configuration example of the particle sorting apparatus 103 according to the third embodiment of the present disclosure.
  • FIG. 8 is a flowchart showing an outline of a method for detecting bubbles, foreign matters, and the like by the particle sorting apparatus 103 according to this embodiment.
  • a second imaging unit (camera) 9 is provided for acquiring an image of the droplet that has passed through.
  • the first imaging unit 8 captures the droplet.
  • the obtained image information is set as reference image information 80.
  • imaging elements such as a photoelectric conversion element
  • imaging apparatuses such as CCD and a CMOS camera
  • the second imaging unit 9 may be provided with a moving mechanism for changing its position.
  • a side stream is generated by charging the droplets regularly with positive or negative charges (step S31).
  • the side stream droplets may or may not contain particles.
  • the second imaging unit 9 captures the side stream that has passed between the deflecting plates 5a and 5b, and acquires second image information (step S32).
  • FIG. 9 is a diagram illustrating an example of an image captured by the second imaging unit 9.
  • the image information indicated by A is the stable image information 90
  • the image information indicated by BD is unstable image information 91-93. It is.
  • the determination unit 7 has, for example, a length in the direction in which the stream is formed is an arbitrary L or more and a width is an arbitrary W or less.
  • L / W can be set suitably and a predetermined range can be made into a preferable range.
  • the determination unit 7 can determine that bubbles or foreign matters are not mixed in the droplet, and can use the image information of the droplet imaged by the first imaging unit 8 as the reference image information 80. (Steps S33 and S34).
  • the determination unit 7 converts the image information into unstable image information 91 and The image information that is determined and imaged by the first imaging unit 8 for the droplet is not used as the reference image information.
  • the determination unit 7 similarly converts the image information into the unstable image information 92. judge.
  • FIG. 9D when an image 933 having an arbitrary number of pixels N or more is obtained in addition to the line images 931 and 932 related to the side stream, the determination unit 7 uses the image information as an unstable image. The information 93 is determined.
  • the image information captured by the first imaging unit 8 for the droplet is set as the reference image information 80 (step in FIG. 8). S35).
  • the reference image information 80 may be stored by the storage unit 10 or may not be stored.
  • the side imaging is performed by the second imaging unit 9 until stable image information is obtained.
  • a method for setting a sample to be sorted and determining whether bubbles or foreign matters are mixed in the sample droplets is the particle sorting device 1 or 102 according to the first or second embodiment. (Steps S12 to S16).
  • other configurations and effects of the particle sorting apparatus 103 are the same as those in the first and second embodiments of the present disclosure.
  • the image information of the droplet with a stable side stream is used as the reference image information 80, so that bubbles and foreign matters in the droplet can be more accurately and easily. Etc. can be determined.
  • the sorting and detection of particles by the particle sorting devices 1, 102, 103 described in the first to third embodiments and the analysis by the determination unit 7 are performed by different devices.
  • the particle sorting apparatuses 1, 102, 103 and the apparatus (not shown) provided with the determination unit 7 may be directly connected via a server or can communicate with each other via a network. It may be connected to.
  • the present disclosure can take the following configurations.
  • a particle sorting device comprising a determination unit that determines whether or not captured image information including captured droplet image information about the image has changed.
  • the reference image information includes the reference droplet image information, and reference background image information related to the luminance of a background image other than a droplet having a higher luminance peak value than the reference droplet image information
  • the captured image information includes the captured droplet image information, and captured background image information related to brightness other than a droplet having a luminance peak value higher than that of the captured droplet image information.
  • the determination unit determines whether or not the luminance peak value of the captured droplet image information is higher than the luminance peak value of the reference droplet image information.
  • the determination unit determines the number of pixels of luminance within a predetermined range from the luminance peak value related to the droplet image in the reference droplet image information, and the captured droplet image information is more than the reference droplet image information.
  • the determination unit is configured to detect the number of pixels having luminance within a predetermined range from a peak value of luminance related to an image other than the droplet in the reference image information. (2) to (4).
  • a charging portion for applying a charge to at least a part of a droplet discharged from the orifice;
  • a deflecting plate that is disposed opposite to the fluid stream formed by the droplets and changes the traveling direction of the droplets;
  • a first imaging unit that acquires an image of the droplet at a position where the fluid discharged from the orifice is converted into a droplet, and generates the reference image information and the captured image information;
  • the particle sorting apparatus according to any one of (1) to (5), comprising: (7) The particle sorting apparatus according to any one of (1) to (6), further including a storage unit that stores the reference image information.
  • the particle sorting apparatus according to any one of (1) to (6), wherein the reference image information is image information including an image of a droplet that does not contain particles.
  • a second imaging unit that acquires an image of the droplet that has passed between the deflection plates; The determination unit determines whether the second image information of the droplet acquired by the second imaging unit is preset stable image information; When the second image information is the stable image information, the image information captured by the first imaging unit of the droplet for the second image information is determined as the reference image information. Particle sorting device.
  • the particle sorting apparatus according to any one of (1) to (9), further including a notification unit that notifies the user of warning information.
  • the particle sorting apparatus When the captured image information has changed with respect to the reference image information, the particle sorting apparatus according to any one of (1) to (10), further comprising a control unit that automatically stops sorting of droplets containing particles.
  • a control unit that automatically stops sorting of droplets containing particles.
  • Luminance of the image of a droplet containing particles imaged after ejection from the orifice relative to preset reference image information including reference droplet image information relating to the luminance of the image of the droplet imaged after ejection from the orifice A program for causing a particle sorting device to execute a function of determining whether or not captured image information including captured droplet image information is changed.
  • a particle sorting system comprising a determination unit that determines whether or not captured image information including captured droplet image information is changed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

 簡便に液滴中の気泡や異物等の検出を行うことができる粒子分取装置、粒子分析方法、プログラム及び粒子分取システムを提供する。粒子分取装置に設けられた判定部により、オリフィスからの吐出後に撮像された液滴の画像の輝度に関する基準液滴画像情報を含む予め設定された基準画像情報に対し、オリフィスからの吐出後に撮像された粒子を含有する液滴の画像の輝度に関する撮像液滴画像情報を含む撮像画像情報が変化しているか否かを判定する。

Description

粒子分取装置、粒子分取方法、プログラム及び粒子分取システム
 本技術は、粒子分取装置、粒子分取方法、そのプログラム及び粒子分取システムに関する。より詳しくは、液滴の画像に基づいて液滴中の気泡や異物等の有無を検出する技術に関する。
 一般に、細胞、微生物及びリポソーム等の生体関連粒子を分析する場合は、フローサイトメトリー(フローサイトメータ)が利用されている(例えば、非特許文献1参照)。フローサイトメトリーは、流路内を1列になって通流する粒子に特定波長のレーザ光(励起光)を照射して、各粒子から発せられた蛍光や散乱光を検出することにより、複数の粒子を1個ずつ分析する方法である。このフローサイトメトリーでは、光検出器で検出した光を電気的信号に変換して数値化して、統計解析を行うことにより、個々の粒子の種類、大きさ及び構造等を判定することができる。
 フローサイトメータには、分析結果に基づいて、特定の特性を有する微小粒子のみを分別して回収する機能を備えたものもあり、特に細胞を分取対象とした微小粒子分取装置は「セルソータ」と呼ばれている。このセルソータでは、一般に、振動素子等によりフローセルやマイクロチップに振動を与えることにより、その流路から排出される流体を液滴化している(特許文献1、2参照)。
 このセルソータでは、シースラインやサンプルラインへの気泡や異物等の混入はラミナフローや液滴の乱れを招き、解析データの信頼性の低下やソート精度及びソート純度の低下等につながる。例えば、特許文献3では、気泡検出器を搭載したセルソータについての技術が開示されている。この技術によれば、気泡検出器を流路に連結し、その流路内に存在する気泡を検出することができる。
特表2007-532874号公報 特開2010-190680号公報 米国特許出願公開2007/0257215明細書
中内啓光監修,「細胞工学別冊 実験プロトコルシリーズ フローサイトメトリー自由自在」,第2版,株式会社秀潤社,2006年8月31日発行
 しかしながら、前述した特許文献3に開示の粒子分取装置では、装置内に気泡検出器を搭載しなければならず、装置のコストを上げてしまうことになると共に、装置の構造上の自由度が制限されていた。また、気泡の他に液滴中の異物等の検出も可能にすることが求められていた。
 そこで、本開示は、簡便に液滴中の気泡や異物等の検出を行うことができる粒子分取装置、粒子分取方法、プログラム及び粒子分取システムを提供することを主目的とする。
 本開示は、オリフィスからの吐出後に撮像された液滴の画像の輝度に関する基準液滴画像情報を含む予め設定された基準画像情報に対し、オリフィスからの吐出後に撮像された粒子を含有する液滴の画像の輝度に関する撮像液滴画像情報を含む撮像画像情報が変化しているか否かを判定する判定部を備える粒子分取装置を提供する。
 前記基準画像情報は、前記基準液滴画像情報と、該基準液滴画像情報よりも輝度のピーク値が高い液滴以外の背景画像の輝度に関する基準背景画像情報と、を有し、前記撮像画像情報は、前記撮像液滴画像情報と、該撮像液滴画像情報よりも輝度のピーク値が高い液滴以外の輝度に関する撮像背景画像情報と、を有していてもよい。
 また、前記判定部は、前記基準液滴画像情報の輝度のピーク値よりも、前記撮像液滴画像情報の輝度のピーク値が高いか否かを判定してもよい。
 また、前記判定部は、前記基準液滴画像情報中の液滴画像に関する輝度のピーク値から所定の範囲内にある輝度の画素数について、前記基準液滴画像情報よりも前記撮像液滴画像情報の方が、少ないか否かを判定してもよい。
 また、前記判定部は、前記基準画像情報中の液滴以外の画像に関する輝度のピーク値から所定の範囲内にある輝度の画素数について、前記基準液滴画像情報よりも前記撮像液滴画像情報の方が、少ないか否かを判定してもよい。
 また、前記粒子分取装置は、前記オリフィスから吐出される液滴の少なくとも一部に電荷を付与する荷電部と、前記液滴により形成される流体ストリームを挟んで対向して配置され、前記液滴の進行方向を変化させる偏向板と、前記オリフィスから吐出される流体が液滴化される位置において前記液滴の画像を取得し、前記基準画像情報と前記撮像画像情報とを生成する第1撮像部と、を備えていてもよい。
 このとき、前記基準画像情報を記憶する記憶部を更に備えていてもよい。
 また、前記基準画像情報は、粒子を含有しない液滴の画像を含む画像情報であってもよい。
 更に、前記偏向板間を通過した前記液滴の画像を取得する第2撮像部を更に備え、前記判定部は、前記第2撮像部により取得された前記液滴の第2画像情報が、予め設定された安定画像情報であるか否かを判定し、前記第2画像情報が前記安定画像情報である場合に、前記第2画像情報についての前記液滴の第1撮像部により撮像された画像情報を前記基準画像情報と決定してもよい。
 更に、前記基準画像情報に対し、前記撮像画像情報が変化している場合に、ユーザに警告情報を通知する通知部を備えていてもよい。
 また、前記基準画像情報に対し、前記撮像画像情報が変化している場合に、粒子を含有する液滴の分取を自動で停止させる制御部を更に備えていてもよい。
 本開示に係る粒子分取方法では、判定部により、オリフィスからの吐出後に撮像された液滴の画像の輝度に関する基準液滴画像情報を含む予め設定された基準画像情報に対し、オリフィスからの吐出後に撮像された粒子を含有する液滴の画像の輝度に関する撮像液滴画像情報を含む撮像画像情報が変化しているか否かを判定する。
 本開示に係るプログラムは、オリフィスからの吐出後に撮像された液滴の画像の輝度に関する基準液滴画像情報を含む予め設定された基準画像情報に対し、オリフィスからの吐出後に撮像された粒子を含有する液滴の画像の輝度に関する撮像液滴画像情報を含む撮像画像情報が変化しているか否かを判定する機能を粒子分取装置に実行させる。
 本開示に係る粒子分取システムは、オリフィスからの吐出後に撮像された液滴の画像の輝度に関する基準液滴画像情報を含む予め設定された基準画像情報に対し、オリフィスからの吐出後に撮像された粒子を含有する液滴の画像の輝度に関する撮像液滴画像情報を含む撮像画像情報が変化しているか否かを判定する判定部を備える。
 本開示によれば、簡便に液滴中の気泡や異物等の検出を行うことができる。なお、ここに記載された効果はあくまで例示であって限定されるものでは無く、本開示中に記載されたいずれかの効果であってもよい。
本開示の第1の実施形態に係る粒子分取装置1の構成例を模式的に示す図である。 同実施形態に係る粒子分取装置1による気泡や異物等の検出方法の概要を示すフローチャート図である。 A及びBは第1撮像部8により撮像された画像の例を示す図である。 基準画像情報80及び撮像画像情報81についてのヒストグラムの例を示す図である。 本開示の第2の実施形態に係る粒子分取システム102の構成例を模式的に示す図である。 同実施形態に係る粒子分取装置102による気泡や異物等の検出方法の概要を示すフローチャート図である。 本開示の第3の実施形態に係る粒子分取システム103の構成例を模式的に示す図である。 同実施形態に係る粒子分取装置103による気泡や異物等の検出方法の概要を示すフローチャート図である。 A~Dは第2撮像部9により撮像された画像の例を示す図である。
 以下、本開示を実施するための形態について、添付の図面を参照して詳細に説明する。なお、本開示は、以下に示す各実施形態に限定されるものではない。また、説明は、以下の順序で行う。
 
 1.第1の実施形態
  (予め記憶された基準画像情報に基づいて気泡や異物等を検出する分取装置の例)
 2.第2の実施形態
  (粒子を含有しない粒子非含有液滴の画像情報を基準画像情報とする分取装置の例)
 3.第3の実施形態
  (サイドストリームの画像情報から基準画像情報を決定する分取装置の例)
 4.第4の実施形態
  (粒子の分取と、液滴中の気泡や異物等の検出とを異なる装置で行うシステムの例)
 
<1.第1の実施形態>
 先ず、本開示の第1の実施形態に係る粒子分取装置1について説明する。図1は本開示の第1の実施形態の粒子分取装置1の概略構成を示す図である。
[装置の全体構成]
 本実施形態の粒子分取装置1は、撮像された画像の情報に基づいて粒子を含有する液滴中の気泡や異物等を検出するものであり、図1に示すように、マイクロチップ2、振動素子3、荷電部4、偏向板5a,5b、判定部7、記憶部10等を備えている。
[粒子について]
 本実施形態の粒子分取装置1により分析され、分取される粒子には、細胞、微生物及びリボゾーム等の生体関連微小粒子、又はラテックス粒子、ゲル粒子及び工業用粒子等の合成粒子等が広く含まれる。
 生体関連微小粒子には、各種細胞を構成する染色体、リボゾーム、ミトコンドリア、オルガネラ(細胞小器官)等が含まれる。また、細胞には、植物細胞、動物細胞及び血球系細胞等が含まれる。更に、微生物には、大腸菌などの細菌類、タバコモザイクウイルス等のウイルス類、イースト菌等の菌類などが含まれる。この生体関連微小粒子には、核酸や蛋白質、これらの複合体等の生体関連高分子も包含され得るものとする。
 一方、工業用粒子としては、例えば有機高分子材料、無機材料又は金属材料等で形成されたものが挙げられる。有機高分子材料としては、ポリスチレン、スチレン・ジビニルベンゼン、ポリメチルメタクリレート等を使用することができる。また、無機材料としては、ガラス、シリカ及び磁性材料等を使用することができる。金属材料としては、例えば金コロイド及びアルミニウム等を使用することができる。なお、これらの粒子の形状は、一般には球形であるが、非球形であってもよく、また大きさや質量等も特に限定されない。
[マイクロチップ2]
 マイクロチップ2には、分取対象とする粒子を含む液体(サンプル液)が導入されるサンプルインレット22、シース液が導入されるシースインレット23、詰まりや気泡を解消するための吸引アウトレット24などが形成されている。このマイクロチップ2では、サンプル液は、サンプルインレット22に導入され、シースインレット23に導入されたシース液と合流して、サンプル流路に送液され、サンプル流路の終端に設けられたオリフィス21から吐出される。
 また、サンプル流路には、吸引アウトレット24に連通する吸引流路が接続されている。この吸引流路は、サンプル流路に詰まりや気泡が生じた際に、サンプル流路内を負圧にして流れを一時的に逆流させて詰まりや気泡を解消するためのものであり、吸引アウトレット24には真空ポンプなどの負圧源が接続される。
 マイクロチップ2は、ガラスや各種プラスチック(PP,PC,COP,PDMSなど)により形成することができる。マイクロチップ1の材質は、後述する光検出部から照射される測定光に対して透過性を有し、自家蛍光が少なく、波長分散が小さいために光学誤差が少ない材質とすることが望ましい。
 マイクロチップ2の成形は、ガラス製基板のウェットエッチングやドライエッチングによって、またプラスチック製基板のナノインプリントや射出成型、機械加工によって行うことができる。マイクロチップ2は、例えばサンプル流路等を成形した基板を、同じ材質又は異なる材質の基板で封止することで形成することができる。
[振動素子3]
 振動素子3は、流路内を通流する液に微小な振動を与えることにより、オリフィス21から吐出される流体を液滴化して、流体ストリーム(液滴の流れ)Sを発生させるものであり、圧電素子等を用いることができる。振動素子3は、流路内を通流する液に振動を付与できる位置に設けられていればよく、マイクロチップ2の内部やマイクロチップ2に当接配置する他にも、シース配管等の流路に液を導入する配管に取り付けられていてもよい。
[荷電部4]
 荷電部4は、オリフィス21から吐出される液滴に、正又は負の電荷を付与するものであり、電荷用電極41及びこの電極41に所定の電圧を印加する電圧源(電圧供給部42)等で構成されている。荷電用電極41は、流路中を通流するシース液及び/又はサンプル液に接触配置されて、シース液及び/又はサンプル液に電荷を付与するものであり、例えばマイクロチップ2の荷電電極インレットに挿入される。
 なお、図1では、荷電用電極41をサンプル液に接触するように配置しているが、本開示はこれに限定されるものではなく、シース液に接触するように配置してもよく、サンプル液及びシース液の両方に接触するように配置してもよい。ただし、分取対象の細胞への影響を考慮すると、荷電用電極41は、シース液に接触するように配置することが望ましい。
 このように、所望の液滴に正又は負の電荷を荷電して帯電させることにより、任意の液滴を、電気的な力により分離することが可能となる。また、荷電部4による荷電のタイミングと、振動素子3への供給電圧とを同期させることにより、任意の液滴のみを帯電させることが可能となる。
[偏向板5a,5b]
 偏向板5a,5bは、液滴に付与された電荷との間に作用する電気的な力によって、流体ストリームS中の各液滴の進行方向を変更し、所定の回収容器6a~6cに誘導するものであり、流体ストリームSを挟んで対向配置されている。この偏向板5a,5bには、例えば通常使用される電極を使用することができる。
 偏向板5a,5bには、それぞれ正又は負の異なる電圧が印可され、これにより形成される電界内を荷電された液滴が通過すると、電気的な力(クーロン力)が発生し、各液滴はいずれかの偏向板5a,5bの方向に引き寄せられる。粒子分取装置1では、液滴への荷電の正負や電荷量を変化させることにより、電界により引き寄せられる液滴の流れ(サイドストリーム)の方向を制御することができるため、相互に異なる複数の粒子を同時に分取することが可能となる。
[回収容器6a~6c]
 回収容器6a~6cは、偏向板5a,5bの間を通過した液滴を回収するものであり、実験用として汎用のプラスチック製チューブやガラスチューブ等を使用することができる。これらの回収容器6a~6cは、装置内に交換可能に配置されるものであることが好ましい。また、回収容器6a~6cのうち非目的の粒子を受け入れるものには、回収した液滴の排液路を連結してもよい。
 なお、粒子分取装置1に配置される回収容器の数や種類は、特に限定されるものではない。また、回収容器を3個以上配置する場合には、各液滴が、偏向板5a,5bとの間の電気的な作用力の有無及びその大小によっていずれか1つの回収容器に誘導され、回収されるようにすればよい。
[判定部7]
 判定部7は、基準画像情報80に対して、撮像画像情報81が変化しているか否かを判定する。この基準画像情報80とは、後述するように、オリフィスからの吐出後に撮像された気泡や異物等が混入していない液滴の基準液滴画像情報801を含む画像情報である。また、撮像画像情報81とは、粒子を含有する液滴の画像の輝度に関する撮像液滴画像情報811を含む画像情報である。
 この判定部7により、撮像画像情報81が基準画像情報80に対して変化していると判定した場合には、その粒子を含有する液滴中に気泡や異物等が混入していることが分かる。そのため、気泡や異物等が混入している場合には、分取を中断することができ、装置の安定性や信頼性を維持することができる。
[第1撮像部(カメラ)8]
 第1撮像部(カメラ)8は、オリフィスから吐出される流体が液滴化される位置(ブレークオフポイント)において液滴の画像を取得し、基準画像情報80と撮像画像情報81とを生成する。なお、液滴の撮像は、CCDやCMOSカメラなどの撮像装置の他に、光電変換素子などの各種撮像素子を使用することができる。また、第1撮像部8には、その位置を変更するための移動機構が設けられていてもよい。更に、本実施形態の粒子分取装置1には、第1撮像部8と併せて、撮影領域を照明する光源(図示せず)が設けられていてもよい。第1撮像部8のストロボを液滴形成周期ごとに一定時間発光させることで、液滴が形成される特定のタイミングで液滴画像を取得することが可能となる。
[記憶部10]
 記憶部10は、各種のデータを格納するための装置であり、例えば、ハードディスクドライブ(HDD;Hard Disk Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、又は光磁気記憶デバイス等により構成される。記憶部10は、入出力インターフェースを介して第1撮像部8で得られた画像情報を、記憶する。特に、記憶部10は、後述するように、基準画像情報80を予め記憶しておくことができる。
[制御部11]
 制御部11は、基準画像情報80に対し、撮像画像情報81が変化している場合に、粒子を含有する液滴の分取を自動で停止するように、粒子分取装置1を制御することができる。制御部11によるこの機能を実行させるか否かについては、ユーザが任意に設定しておくことができる。
[通知部12]
 通知部12は、基準画像情報80に対し、撮像画像情報81が変化している場合に、ユーザに警告情報を通知する。この警告情報としては、ユーザが液滴中に気泡や異物等が混入していることを把握することができれば、特に限定されず、例えば、粒子分取装置1に設置されたランプの点滅といった表示情報であってもよいし、警告音等の出力情報であってもよい。
[光検出部]
 更に、本実施形態の粒子分取装置1には、例えばサンプル流路の所定部位に光(測定光)を照射し、サンプル流路を通流する粒子から発生する光(測定対象光)を検出する光検出部(図示せず)が設けられている。光検出部は、従来のフローサイトメトリーと同様に構成することができる。具体的には、レーザー光源と、粒子に対してレーザー光を集光・照射する集光レンズやダイクロイックミラー、バンドパスフィルターなどからなる照射系と、レーザー光の照射によって粒子から発生する測定対象光を検出する検出系とによって構成される。
 検出系は、例えばPMT(Photo Multiplier Tube)や、CCDやCMOS素子等のエリア撮像素子によって構成される。なお、照射系と検出系は同一の光学経路により構成されていても、別個の光学経路により構成されていてもよい。また、光検出部の検出系により検出される測定対象光は、測定光の照射によって粒子から発生する光であって、例えば、前方散乱光や側方散乱光、レイリー散乱やミー散乱等の各種散乱光や蛍光等とすることができる。
[動作]
 次に、本実施形態の粒子分取装置1の動作、即ち、粒子分取装置1を用いて粒子を含有するサンプルの液滴中の気泡や異物等を検出する方法について説明する。
 図2は、本実施形態に係る粒子分取装置1による気泡や異物等の検出方法の概要を示すフローチャート図である。まず、記憶部10から基準画像情報80が読み出される(ステップS11)。
 図3は、第1撮像部8により撮像された画像の例を示す図であり、Aが基準画像情報80に関する画像であり、Bが後述する撮像画像情報81に関する画像である。この基準画像情報80とは、オリフィス21からの吐出後に撮像された液滴の画像の輝度に関する基準液滴画像情報801を含む予め設定された画像情報であり、気泡や異物等が混入していない液滴を含む画像情報である。なお、符号802は、液滴以外の背景画像に関する基準背景画像情報である。なお、液滴形成周波数が10~30kHzであり、第1撮像部8は、約30fpsであるため、この図3に示す画像は、数百~数千個の画像が重ねあわされたものである。
 次に、サンプルが粒子分取装置1にセットされ、液滴の分取が開始される(図2中、ステップS12、S13)。そして、第1撮像部8により、液滴が撮像され、図3Bに示すような画像の撮像画像情報81が得られる(ステップS14)。
 次に、判定部7により、この撮像画像情報81が基準画像情報80に対して変化しているか否かを判定する(ステップS15)。図4は、基準画像情報80及び撮像画像情報81についてのヒストグラムの例を示す図である。このヒストグラムは、図3に示すような第1撮像部8により撮像された画像から得られる情報であり、横軸に輝度を取り、縦軸に各輝度の画素数を取った情報である。
 基準画像情報80には、高輝度(図4中、符号Bで示す輝度)側の画素数が最大となるピーク値と、低輝度(図4中、符号Dで示す輝度)側の画素数が最大となるピーク値Irefとの2つのピーク値が主に存在する。このピーク値Irefを有する低輝度側の画像情報が、基準液滴画像情報801である。一方、高輝度側にピークを有する画像情報が、液滴以外の背景画像の輝度に関する基準背景画像情報802である。なお、符号DとBとの境界の輝度値については、任意に適宜設定することができる。
 同様に、第1撮像部8により、撮像された液滴の撮像液滴画像情報81にも、高輝度側の画素数が最大となるピーク輝度値と、低輝度側の画素数が最大となるピーク輝度値Iとの2つのピーク値が存在する。このピーク輝度値Iを有する低輝度側の画像情報が撮像液滴画像情報811である。一方、高輝度側にピーク輝度値を有する画像情報が液滴以外の背景画像の輝度に関する撮像背景画像情報812である。
 このとき、判定部7により、ピーク輝度値Irefに対し、ピーク輝度値Iがシフトするか否かを判定する。より具体的には、図3に示すように、撮像した液滴に気泡や異物等が混入している場合には、基準液滴画像情報801の画像に対して撮像液滴画像情報811の画像が全体的に薄くぼやける。そのため、ピーク輝度値Iは、ピーク輝度値Irefに対し、高輝度側にシフトする。
 また、このとき、判定部7により、ピーク輝度値IがIref±iの範囲内にあるか否かを判定することが好ましい。このiは、好ましくは、全体の輝度が256階調である場合に、10~30程度である。これにより、より精度良く気泡や異物等の混入を検知することが可能である。
 また、判定部7により、このIref±iの範囲の画素数について、基準画像情報80よりも撮像画像情報81の方が所定の値以上少ないか否かを判定する。この所定の値としては、基準画像情報80中の範囲内の画素数の25~50%程度の値であることが、より精度良く気泡や異物等の混入を検知することが可能になるため好ましい。
 一方、判定部7により、高輝度側のピーク輝度値から所定の範囲内にある画素数に関し、基準背景画像情報802よりも、撮像背景画像情報812の方が少ないか否かを判定することもできる。この画素数が、基準背景画像情報802よりも、撮像背景画像情報812の方が少ない場合に、撮像した液滴中に気泡や異物等が混入していると判定される。この所定の範囲としては、基準背景画像情報80中の範囲内の画素数のうち5~10%程度であることが、より精度良く気泡や異物等の混入を検知することが可能になるため好ましい。このように、判定部7により、基準液滴画像情報801のみならず、基準背景画像情報802に基づいても、気泡や異物等の存在を精度良く検知することができる。
 このようにして、判定部7により、基準画像情報80に対して撮像画像情報81が変化していると判定された場合には、粒子分取装置1には、気泡や異物等が混入していると判断される(ステップS16)。これにより、例えば、制御部11によりサンプルの分取を自動で停止させたり、通知部12によりユーザに警告情報が通知されたりする。このとき、ラミナフロー生成部に設けられた吸引口(図示せず)によりサンプルを自動で吸引することで流路の安定化を図ることも可能である。一方、判定部7により、基準画像情報80に対して撮像画像情報81が変化していないと判定された場合には、引き続き、粒子分取装置1は液滴の分取を行う。
 以上より、本実施形態の粒子分取装置1によれば、基準画像情報80と、液滴の撮像画像情報81とを比較することで、簡便に気泡や異物等の存在を把握することができる。従って、気泡や異物等の存在によりサンプルの分取を停止することができ、例えば、異物の混入による流路等の詰まりを抑制できるため、粒子分取装置1の安定性や信頼性を向上させることができる。また、分取しようとセットしていたサンプルがなくなり気泡が混入した場合にも、サンプルの分取操作を自動で停止することができ、粒子分取装置1の利便性も向上させることができる。また、第1撮像部8により、簡便に気泡等の存在を把握することができるため、粒子分取装置1に気泡検出センサ等の装置を別途設ける必要がなく、粒子分取装置1の構成上の自由度を向上させることができると共に、製造コストを低減できる。
 なお、前述した第1の実施形態では、マイクロチップ2を用いた場合を例に説明したが、本開示はこれに限定されるものではなく、マイクロチップ2の代わりにフローセルを用いても同様の効果が得られる。
<2.第2の実施形態>
 次に、本開示の第2の実施形態に係る粒子分取装置102について説明する。図5は、本開示の第2の実施形態に係る粒子分取装置102の構成例を模式的に示す図である。また、図6は、本実施形態に係る粒子分取装置102による気泡や異物等の検出方法の概要を示すフローチャート図である。気泡や異物等はサンプルインレット22から混入することが多いため、粒子を含有しないストリームは安定である(液滴として気泡や異物等を含有しない)場合が多い。本実施形態の粒子分取装置102は、粒子を含有しないストリーム(粒子非含有ストリーム)を発生させて、そのストリーム中の液滴の画像情報を基準画像情報80とする。そのため、本実施形態の粒子分取装置102では、前述した第1の実施形態の構成に対し、気泡や異物等を検出する工程において、記憶部10からのデータの読み出しを必ずしも必要とはしない。
 本実施形態の粒子分取装置102では、まず、図6に示すように、粒子を含有しない粒子非含有ストリームを発生させる(ステップS21)。次に、この粒子非含有ストリーム中の液滴を第1撮像部8により撮像して得られる画像情報を基準画像情報80とする(ステップS22)。このとき、この基準画像情報80は、記憶部10に記憶してもよいし、記憶しなくてもよい。
 その後、分取対象となるサンプルをセットし、粒子を含有するストリームに気泡や異物等が混入しているか否かを判定する方法は、第1の実施形態の粒子分取装置1と同様に行われる(ステップS12~S16)。また粒子分取装置102のその他の構成及び効果も、本開示の第1の実施形態と同様である。
 以上より、本実施形態の粒子分取装置102によれば、サンプルの分取前に、気泡や異物等が混入していない粒子非含有ストリームの液滴画像情報を基準画像情報80とする。そのため、必ずしも予め記憶した基準画像情報80を記憶部10から読み出す必要がなく、簡便に液滴中の気泡や異物等の存在を判定することができる。
<3.第3の実施形態>
 次に、本開示の第3の実施形態に係る粒子分取装置103について説明する。図7は、本開示の第3の実施形態に係る粒子分取装置103の構成例を模式的に示す図である。また、図8は、本実施形態に係る粒子分取装置103による気泡や異物等の検出方法の概要を示すフローチャート図である。
 図7に示すように、本実施形態の粒子分取装置103では、第1の実施形態の粒子分取装置1及び第2の実施形態の粒子分取装置102と異なり、偏向板5a、5b間を通過した液滴の画像を取得する第2撮像部(カメラ)9を備える。本実施形態の粒子分取装置103では、第2撮像部9でサイドストリームを撮像し、得られる第2画像情報が安定画像情報である場合に、その液滴について第1撮像部8により撮像された画像情報を基準画像情報80とする。
 なお、液滴の撮像は、CCDやCMOSカメラなどの撮像装置の他に、光電変換素子などの各種撮像素子を使用することができる。また、第2撮像部9には、その位置を変更するための移動機構が設けられていてもよい。
 図8に示すように、粒子分取装置103では、まず、液滴に規則的に正又は負の電荷を荷電して帯電させることでサイドストリームを発生させる(ステップS31)。このサイドストリームの液滴は粒子を含有していてもよいし、含有していなくてもよい。次に、第2撮像部9により、偏向板5a、5b間を通過したサイドストリームを撮像し、第2画像情報を取得する(ステップS32)。
 図9は、第2撮像部9により撮像された画像の例を示す図であり、Aに示す画像情報が安定画像情報90であり、B~Dに示す画像情報が不安定画像情報91~93である。図9Aに示すように、判定部7は、サイドストリームに関する画像901、902の夫々について、例えば、ストリームが形成される方向の長さが任意のL以上であって、幅が任意のW以下の線画像が1本である場合に、その画像情報を安定画像情報90であると判定する。このLとWについては、L/Wを適宜設定して、所定の範囲を好ましい範囲とすることができる。そして、判定部7は、その液滴について、気泡や異物等が混入していないと判定し、第1撮像部8により撮像されたその液滴の画像情報を基準画像情報80とすることができる(ステップS33、S34)。
 一方、図9Bに示すように、サイドストリームに関する画像911、912の夫々について、2本以上の線画像情報が得られた場合には、判定部7は、その画像情報を不安定画像情報91と判定し、その液滴について第1撮像部8により撮像された画像情報は基準画像情報とはしない。また、図9Cに示すように、サイドストリームに関する画像921、921の夫々について、幅が任意のW以上である場合にも、同様に、判定部7は、その画像情報を不安定画像情報92と判定する。さらに、図9Dに示すように、サイドストリームに関する線画像931、932以外に、画素数が任意のN以上の画像933が得られた場合にも、判定部7は、その画像情報を不安定画像情報93であると判定する。
 このように、サイドストリームが安定し、安定画像情報90を取得できた場合には、その液滴について第1撮像部8により撮像された画像情報を基準画像情報80とする(図8中、ステップS35)。なお、このとき、この基準画像情報80については、記憶部10が記憶してもよいし、記憶しなくてもよい。一方、不安定画像情報91が得られた場合には、安定画像情報が得られるまで、第2撮像部9によりサイドストリームの撮像が行われる。
 その後、分取対象となるサンプルをセットし、サンプルの液滴に気泡や異物等が混入しているか否かを判定する方法は、第1、第2の実施形態の粒子分取装置1、102と同様にして行われる(ステップS12~S16)。また粒子分取装置103のその他の構成及び効果も、本開示の第1、第2の実施形態と同様である。
 以上より、本実施形態の粒子分取装置103によれば、サイドストリームが安定している液滴の画像情報を基準画像情報80とするため、より精度良く、簡便に液滴中の気泡や異物等の存在を判定することができる。
<4.第4の実施形態>
 次に、本開示の第4の実施形態に係る粒子分取システムについて説明する。本実施形態の粒子分取システムでは、第1~第3の実施形態で説明した粒子分取装置1、102、103による粒子の分取及び検出と、判定部7による解析とを異なる装置で行う。粒子分取装置1、102、103と、判定部7が設けられた装置(図示せず)とは、例えば、サーバを介して直接接続されていてもよいし、ネットワークを介して相互に通信可能に接続されていてもよい。なお、本実施形態の粒子分取システムについては、判定部7が粒子分取装置とは異なる装置に設けられているという点以外の構成及び効果は、本開示の第1~第3の実施形態の粒子分取装置1、102、103と同様である。
 また、本開示は、以下のような構成をとることもできる。
(1)
 オリフィスからの吐出後に撮像された液滴の画像の輝度に関する基準液滴画像情報を含む予め設定された基準画像情報に対し、オリフィスからの吐出後に撮像された粒子を含有する液滴の画像の輝度に関する撮像液滴画像情報を含む撮像画像情報が変化しているか否かを判定する判定部を備える粒子分取装置。
(2)
 前記基準画像情報は、前記基準液滴画像情報と、該基準液滴画像情報よりも輝度のピーク値が高い液滴以外の背景画像の輝度に関する基準背景画像情報と、を有し、
 前記撮像画像情報は、前記撮像液滴画像情報と、該撮像液滴画像情報よりも輝度のピーク値が高い液滴以外の輝度に関する撮像背景画像情報と、を有する(1)に記載の粒子分取装置。
(3)
 前記判定部は、前記基準液滴画像情報の輝度のピーク値よりも、前記撮像液滴画像情報の輝度のピーク値が高いか否かを判定する(2)に記載の粒子分取装置。
(4)
 前記判定部は、前記基準液滴画像情報中の液滴画像に関する輝度のピーク値から所定の範囲内にある輝度の画素数について、前記基準液滴画像情報よりも前記撮像液滴画像情報の方が、少ないか否かを判定する(2)又は(3)に記載の粒子分取装置。
(5)
 前記判定部は、前記基準画像情報中の液滴以外の画像に関する輝度のピーク値から所定の範囲内にある輝度の画素数について、前記基準液滴画像情報よりも前記撮像液滴画像情報の方が、少ないか否かを判定する(2)~(4)のいずれか1つに記載の粒子分取装置。
(6)
 前記オリフィスから吐出される液滴の少なくとも一部に電荷を付与する荷電部と、
 前記液滴により形成される流体ストリームを挟んで対向して配置され、前記液滴の進行方向を変化させる偏向板と、
 前記オリフィスから吐出される流体が液滴化される位置において前記液滴の画像を取得し、前記基準画像情報と前記撮像画像情報とを生成する第1撮像部と、
を備える(1)~(5)のいずれか1つに記載の粒子分取装置。
(7)
 前記基準画像情報を記憶する記憶部を更に備える(1)~(6)のいずれか1つに記載の粒子分取装置。
(8)
 前記基準画像情報は、粒子を含有しない液滴の画像を含む画像情報である(1)~(6)のいずれか1つに記載の粒子分取装置。
(9)
 前記偏向板間を通過した前記液滴の画像を取得する第2撮像部を更に備え、
 前記判定部は、前記第2撮像部により取得された前記液滴の第2画像情報が、予め設定された安定画像情報であるか否かを判定し、
 前記第2画像情報が前記安定画像情報である場合に、前記第2画像情報についての前記液滴の第1撮像部により撮像された画像情報を前記基準画像情報と決定する(6)に記載の粒子分取装置。
(10)
 前記基準画像情報に対し、前記撮像画像情報が変化している場合に、
 ユーザに警告情報を通知する通知部を更に備える(1)~(9)のいずれか1つに記載の粒子分取装置。
(11)
 前記基準画像情報に対し、前記撮像画像情報が変化している場合に、
 粒子を含有する液滴の分取を自動で停止させる制御部を更に備える(1)~(10)のいずれか1つに記載の粒子分取装置。
(12)
 判定部により、オリフィスからの吐出後に撮像された液滴の画像の輝度に関する基準液滴画像情報を含む予め設定された基準画像情報に対し、オリフィスからの吐出後に撮像された粒子を含有する液滴の画像の輝度に関する撮像液滴画像情報を含む撮像画像情報が変化しているか否かを判定する粒子分析方法。
(13)
 オリフィスからの吐出後に撮像された液滴の画像の輝度に関する基準液滴画像情報を含む予め設定された基準画像情報に対し、オリフィスからの吐出後に撮像された粒子を含有する液滴の画像の輝度に関する撮像液滴画像情報を含む撮像画像情報が変化しているか否かを判定する機能を粒子分取装置に実行させるプログラム。
(14)
 オリフィスからの吐出後に撮像された液滴の画像の輝度に関する基準液滴画像情報を含む予め設定された基準画像情報に対し、オリフィスからの吐出後に撮像された粒子を含有する液滴の画像の輝度に関する撮像液滴画像情報を含む撮像画像情報が変化しているか否かを判定する判定部を備える粒子分取システム。
 1、102、103 粒子分取装置
 2 マイクロチップ
 3 振動素子
 4 荷電部
 5a、5b 偏向板
 6a~6c 回収容器
 7 判定部
 8 第1撮像部
 9 第2撮像部
 10 記憶部
 11 制御部
 12 通知部
 21 オリフィス
 22 サンプルインレット
 23 シースインレット
 24 吸引アウトレット
 41 電極
 42 電圧供給部
 80 基準画像情報
 81 撮像画像情報
 90 安定画像情報
 801 基準液滴画像情報
 802 基準背景画像情報
 811 撮像背景画像情報
 812 撮像液滴画像情報
 S 流体ストリーム

Claims (14)

  1.  オリフィスからの吐出後に撮像された液滴の画像の輝度に関する基準液滴画像情報を含む予め設定された基準画像情報に対し、オリフィスからの吐出後に撮像された粒子を含有する液滴の画像の輝度に関する撮像液滴画像情報を含む撮像画像情報が変化しているか否かを判定する判定部を備える粒子分取装置。
  2.  前記基準画像情報は、前記基準液滴画像情報と、該基準液滴画像情報よりも輝度のピーク値が高い液滴以外の背景画像の輝度に関する基準背景画像情報と、を有し、
     前記撮像画像情報は、前記撮像液滴画像情報と、該撮像液滴画像情報よりも輝度のピーク値が高い液滴以外の輝度に関する撮像背景画像情報と、を有する請求項1に記載の粒子分取装置。
  3.  前記判定部は、前記基準液滴画像情報の輝度のピーク値よりも、前記撮像液滴画像情報の輝度のピーク値が高いか否かを判定する請求項2に記載の粒子分取装置。
  4.  前記判定部は、前記基準液滴画像情報中の液滴画像に関する輝度のピーク値から所定の範囲内にある輝度の画素数について、前記基準液滴画像情報よりも前記撮像液滴画像情報の方が、少ないか否かを判定する請求項2に記載の粒子分取装置。
  5.  前記判定部は、前記基準画像情報中の液滴以外の画像に関する輝度のピーク値から所定の範囲内にある輝度の画素数について、前記基準液滴画像情報よりも前記撮像液滴画像情報の方が、少ないか否かを判定する請求項2に記載の粒子分取装置。
  6.  前記オリフィスから吐出される液滴の少なくとも一部に電荷を付与する荷電部と、
     前記液滴により形成される流体ストリームを挟んで対向して配置され、前記液滴の進行方向を変化させる偏向板と、
     前記オリフィスから吐出される流体が液滴化される位置において前記液滴の画像を取得し、前記基準画像情報と前記撮像画像情報とを生成する第1撮像部と、
    を備える請求項1に記載の粒子分取装置。
  7.  前記基準画像情報を記憶する記憶部を更に備える請求項6に記載の粒子分取装置。
  8.  前記基準画像情報は、粒子を含有しない液滴の画像を含む画像情報である請求項6に記載の粒子分取装置。
  9.  前記偏向板間を通過した前記液滴の画像を取得する第2撮像部を更に備え、
     前記判定部は、前記第2撮像部により取得された前記液滴の第2画像情報が、予め設定された安定画像情報であるか否かを判定し、
     前記第2画像情報が前記安定画像情報である場合に、前記第2画像情報についての前記液滴の第1撮像部により撮像された画像情報を前記基準画像情報と決定する請求項6に記載の粒子分取装置。
  10.  前記基準画像情報に対し、前記撮像画像情報が変化している場合に、
     ユーザに警告情報を通知する通知部を更に備える請求項1に記載の粒子分取装置。
  11.  前記基準画像情報に対し、前記撮像画像情報が変化している場合に、
     粒子を含有する液滴の分取を自動で停止させる制御部を更に備える請求項1に記載の粒子分取装置。
  12.  判定部により、オリフィスからの吐出後に撮像された液滴の画像の輝度に関する基準液滴画像情報を含む予め設定された基準画像情報に対し、オリフィスからの吐出後に撮像された粒子を含有する液滴の画像の輝度に関する撮像液滴画像情報を含む撮像画像情報が変化しているか否かを判定する粒子分析方法。
  13.  オリフィスからの吐出後に撮像された液滴の画像の輝度に関する基準液滴画像情報を含む予め設定された基準画像情報に対し、オリフィスからの吐出後に撮像された粒子を含有する液滴の画像の輝度に関する撮像液滴画像情報を含む撮像画像情報が変化しているか否かを判定する機能を粒子分取装置に実行させるプログラム。
  14.  オリフィスからの吐出後に撮像された液滴の画像の輝度に関する基準液滴画像情報を含む予め設定された基準画像情報に対し、オリフィスからの吐出後に撮像された粒子を含有する液滴の画像の輝度に関する撮像液滴画像情報を含む撮像画像情報が変化しているか否かを判定する判定部を備える粒子分取システム。
     
PCT/JP2014/080588 2014-02-13 2014-11-19 粒子分取装置、粒子分取方法、プログラム及び粒子分取システム WO2015122071A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20161256.1A EP3690424B1 (en) 2014-02-13 2014-11-19 Particle sorting device, particle sorting method, and program
JP2015562696A JP6465036B2 (ja) 2014-02-13 2014-11-19 粒子分取装置、粒子分取方法、プログラム及び粒子分取システム
CN201480075065.0A CN105980831B (zh) 2014-02-13 2014-11-19 粒子分捡装置、粒子分捡方法、程序以及粒子分捡系统
US15/116,830 US10309892B2 (en) 2014-02-13 2014-11-19 Particle sorting device, particle sorting method, program, and particle sorting system
EP14882507.8A EP3106857B1 (en) 2014-02-13 2014-11-19 Particle sorting apparatus, particle sorting method, program, and particle sorting system
US16/396,431 US11119030B2 (en) 2014-02-13 2019-04-26 Particle sorting device, particle sorting method, program, and particle sorting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014025156 2014-02-13
JP2014-025156 2014-02-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/116,830 A-371-Of-International US10309892B2 (en) 2014-02-13 2014-11-19 Particle sorting device, particle sorting method, program, and particle sorting system
US16/396,431 Continuation US11119030B2 (en) 2014-02-13 2019-04-26 Particle sorting device, particle sorting method, program, and particle sorting system

Publications (1)

Publication Number Publication Date
WO2015122071A1 true WO2015122071A1 (ja) 2015-08-20

Family

ID=53799826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080588 WO2015122071A1 (ja) 2014-02-13 2014-11-19 粒子分取装置、粒子分取方法、プログラム及び粒子分取システム

Country Status (5)

Country Link
US (2) US10309892B2 (ja)
EP (2) EP3106857B1 (ja)
JP (1) JP6465036B2 (ja)
CN (1) CN105980831B (ja)
WO (1) WO2015122071A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020510222A (ja) * 2017-04-11 2020-04-02 ソニー株式会社 微粒子分類装置と遅延時間決定方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9915935B2 (en) 2012-03-30 2018-03-13 Sony Corporation Microchip-type optical measuring apparatus and optical position adjusting method thereof
JP5924077B2 (ja) 2012-03-30 2016-05-25 ソニー株式会社 微小粒子分取装置及び微小粒子分取装置における軌道方向判定方法
CN103718020B (zh) 2012-03-30 2016-06-29 索尼公司 微粒分类装置及在该装置中优化流体流的方法
JP5994337B2 (ja) 2012-03-30 2016-09-21 ソニー株式会社 微小粒子分取装置及びディレイタイム決定方法
EP3910318B1 (en) 2013-01-28 2024-06-12 Sony Group Corporation Microparticle sorting device, and method and program for sorting microparticles
JP6447506B2 (ja) 2013-10-16 2019-01-09 ソニー株式会社 粒子分取装置及び粒子分取方法
CN105980831B (zh) * 2014-02-13 2021-01-12 索尼公司 粒子分捡装置、粒子分捡方法、程序以及粒子分捡系统
JP6657625B2 (ja) 2014-09-05 2020-03-04 ソニー株式会社 液滴分取装置、液滴分取方法及びプログラム
WO2017068822A1 (ja) 2015-10-19 2017-04-27 ソニー株式会社 画像処理装置、微小粒子分取装置及び画像処理方法
CN106443219A (zh) * 2016-12-08 2017-02-22 东华理工大学 一种静电雾化液滴带电量的检测装置
CN110118715B (zh) * 2018-02-06 2024-05-14 深圳市帝迈生物技术有限公司 一种血细胞脉冲信号分析装置以及方法
US10591400B2 (en) 2018-03-29 2020-03-17 Sony Corporation Micro particle analyzer and micro particle analysis method
EP4001890A4 (en) * 2019-07-19 2023-08-02 Hitachi High-Tech Corporation QUANTITATIVE PARTICLE MEASUREMENT DEVICE

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507525A (ja) * 1994-10-14 1998-07-21 ユニバーシティ オブ ワシントン フローサイトメータジェットモニタシステム
JP2002505423A (ja) * 1998-02-27 2002-02-19 サイトメーション, インコーポレイテッド フローサイトメトリーのための方法および装置
JP2006504970A (ja) * 2002-11-01 2006-02-09 ベックマン コールター,インコーポレーテッド 液滴ソーティングの監視及び制御
US20070257215A1 (en) * 2005-05-06 2007-11-08 Collin Rich Flow cytometry system with bubble detection
JP2009298012A (ja) * 2008-06-13 2009-12-24 Konica Minolta Holdings Inc 液滴吐出検査装置、液滴吐出検査方法及び画像形成装置
WO2013145905A1 (ja) * 2012-03-30 2013-10-03 ソニー株式会社 微小粒子分取装置及び該装置における流体ストリーム最適化方法
JP2013210270A (ja) * 2012-03-30 2013-10-10 Sony Corp 微小粒子分取装置及び微小粒子分取装置における軌道方向判定方法

Family Cites Families (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3380584A (en) 1965-06-04 1968-04-30 Atomic Energy Commission Usa Particle separator
BE793185A (fr) 1971-12-23 1973-04-16 Atomic Energy Commission Appareil pour analyser et trier rapidement des particules telles que des cellules biologiques
US3826364A (en) 1972-05-22 1974-07-30 Univ Leland Stanford Junior Particle sorting method and apparatus
US4009435A (en) 1973-10-19 1977-02-22 Coulter Electronics, Inc. Apparatus for preservation and identification of particles analyzed by flow-through apparatus
US3924947A (en) 1973-10-19 1975-12-09 Coulter Electronics Apparatus for preservation and identification of particles analyzed by flow-through apparatus
DE2632962C3 (de) 1976-07-22 1980-08-21 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V., 3400 Goettingen Partikelseparator
US4173415A (en) 1976-08-20 1979-11-06 Science Spectrum, Inc. Apparatus and process for rapidly characterizing and differentiating large organic cells
US4318481A (en) 1979-08-20 1982-03-09 Ortho Diagnostics, Inc. Method for automatically setting the correct phase of the charge pulses in an electrostatic flow sorter
US4325483A (en) 1979-08-20 1982-04-20 Ortho Diagnostics, Inc. Method for detecting and controlling flow rates of the droplet forming stream of an electrostatic particle sorting apparatus
US4318480A (en) 1979-08-20 1982-03-09 Ortho Diagnostics, Inc. Method and apparatus for positioning the point of droplet formation in the jetting fluid of an electrostatic sorting device
JPS5630870A (en) 1979-08-23 1981-03-28 Fuji Xerox Co Ltd Ink jet printer
US4284496A (en) 1979-12-10 1981-08-18 Newton William A Particle guiding apparatus and method
JPS58187441U (ja) 1982-06-09 1983-12-13 横河電機株式会社 インクジエツトプリンタ
US4538733A (en) 1983-10-14 1985-09-03 Becton, Dickinson And Company Particle sorter with neutralized collection wells and method of using same
JPS6236542A (ja) 1985-08-09 1987-02-17 Canon Inc 粒子解析装置
US4616234A (en) 1985-08-15 1986-10-07 Eastman Kodak Company Simultaneous phase detection and adjustment of multi-jet printer
JPS62167478A (ja) 1985-11-29 1987-07-23 Shimadzu Corp 粒子分取装置
JPS6412245A (en) 1987-07-03 1989-01-17 Canon Kk Particle analyzing device
US4987539A (en) 1987-08-05 1991-01-22 Stanford University Apparatus and method for multidimensional characterization of objects in real time
US5080770A (en) 1989-09-11 1992-01-14 Culkin Joseph B Apparatus and method for separating particles
DE69025256T2 (de) 1989-10-11 1996-06-27 Canon Kk Gerät und Verfahren zur Trennung von Teilchen aus flüssigkeitssuspendierten Teilchen in Zusammenhang mit deren Eigenschaften
US5483469A (en) 1993-08-02 1996-01-09 The Regents Of The University Of California Multiple sort flow cytometer
US5700692A (en) 1994-09-27 1997-12-23 Becton Dickinson And Company Flow sorter with video-regulated droplet spacing
US6861265B1 (en) 1994-10-14 2005-03-01 University Of Washington Flow cytometer droplet formation system
US5641457A (en) 1995-04-25 1997-06-24 Systemix Sterile flow cytometer and sorter with mechanical isolation between flow chamber and sterile enclosure
US5617911A (en) 1995-09-08 1997-04-08 Aeroquip Corporation Method and apparatus for creating a free-form three-dimensional article using a layer-by-layer deposition of a support material and a deposition material
DE19549015C1 (de) 1995-12-28 1997-04-03 Siemens Ag Verfahren und Anordnung zur Überwachung eines abreißenden Flüssigkeitstrahls
JP3258889B2 (ja) 1996-01-11 2002-02-18 株式会社堀場製作所 散乱式粒度分布測定装置における光軸調整方法
US5988480A (en) 1997-12-12 1999-11-23 Micron Technology, Inc. Continuous mode solder jet apparatus
JP2985826B2 (ja) 1997-04-09 1999-12-06 日本電気株式会社 位置検出装置および方法
US6079836A (en) 1998-07-20 2000-06-27 Coulter International Corp. Flow cytometer droplet break-off location adjustment mechanism
US6202734B1 (en) 1998-08-03 2001-03-20 Sandia Corporation Apparatus for jet application of molten metal droplets for manufacture of metal parts
US6221254B1 (en) * 1998-08-25 2001-04-24 J. Rodney Dickerson Purification of liquid streams using carbon dioxide
US6410872B2 (en) * 1999-03-26 2002-06-25 Key Technology, Inc. Agricultural article inspection apparatus and method employing spectral manipulation to enhance detection contrast ratio
US6372506B1 (en) 1999-07-02 2002-04-16 Becton, Dickinson And Company Apparatus and method for verifying drop delay in a flow cytometer
US6813017B1 (en) 1999-10-20 2004-11-02 Becton, Dickinson And Company Apparatus and method employing incoherent light emitting semiconductor devices as particle detection light sources in a flow cytometer
US7024316B1 (en) * 1999-10-21 2006-04-04 Dakocytomation Colorado, Inc. Transiently dynamic flow cytometer analysis system
US6583865B2 (en) 2000-08-25 2003-06-24 Amnis Corporation Alternative detector configuration and mode of operation of a time delay integration particle analyzer
WO2002029106A2 (en) 2000-10-03 2002-04-11 California Institute Of Technology Microfluidic devices and methods of use
US7907765B2 (en) 2001-03-28 2011-03-15 University Of Washington Focal plane tracking for optical microtomography
US7345758B2 (en) 2001-05-17 2008-03-18 Cytopeia Apparatus for analyzing and sorting biological particles
ES2405320T3 (es) 2001-05-17 2013-05-30 Beckman Coulter, Inc. Citómetro de flujo con un sistema de alienación óptica automatizado activo
US7280207B2 (en) 2001-07-25 2007-10-09 Applera Corporation Time-delay integration in a flow cytometry system
US6949715B2 (en) 2002-02-08 2005-09-27 Kelly Arnold J Method and apparatus for particle size separation
US6866370B2 (en) 2002-05-28 2005-03-15 Eastman Kodak Company Apparatus and method for improving gas flow uniformity in a continuous stream ink jet printer
JP4099822B2 (ja) * 2002-07-26 2008-06-11 セイコーエプソン株式会社 ディスペンシング装置、ディスペンシング方法及び生体試料含有溶液吐出不良検出方法
US8486618B2 (en) 2002-08-01 2013-07-16 Xy, Llc Heterogeneous inseminate system
US7201875B2 (en) 2002-09-27 2007-04-10 Becton Dickinson And Company Fixed mounted sorting cuvette with user replaceable nozzle
JP3979304B2 (ja) 2003-02-24 2007-09-19 日本光電工業株式会社 フローセル位置決め方法およびフローセル位置調整可能なフローサイトメータ
EP2305172B1 (en) 2003-03-28 2016-05-11 Inguran, LLC Apparatus and methods for providing sex-sorted animal sperm
CA2566749C (en) * 2003-05-15 2017-02-21 Xy, Inc. Efficient haploid cell sorting for flow cytometer systems
WO2005072399A2 (en) 2004-01-29 2005-08-11 Massachusetts Institute Of Technology Microscale sorting cytometer
US7232687B2 (en) 2004-04-07 2007-06-19 Beckman Coulter, Inc. Multiple sorter monitor and control subsystem for flow cytometer
US7612355B2 (en) * 2004-04-12 2009-11-03 The Regents Of The University Of California Optoelectronic tweezers for microparticle and cell manipulation
JP4304120B2 (ja) 2004-04-30 2009-07-29 ベイバイオサイエンス株式会社 生物学的粒子をソーティングする装置及び方法
PT2884258T (pt) 2004-07-27 2016-12-13 Beckman Coulter Inc Discriminação da citometria de fluxo melhorada com transformação geométrica implementada por computador
US7410233B2 (en) 2004-12-10 2008-08-12 Konica Minolta Holdings, Inc. Liquid droplet ejecting apparatus and a method of driving a liquid droplet ejecting head
JP4047336B2 (ja) 2005-02-08 2008-02-13 独立行政法人科学技術振興機構 ゲル電極付セルソーターチップ
JP4540506B2 (ja) 2005-03-04 2010-09-08 三井造船株式会社 試料液流の位置制御方法および装置
US7518108B2 (en) 2005-11-10 2009-04-14 Wisconsin Alumni Research Foundation Electrospray ionization ion source with tunable charge reduction
US7901947B2 (en) * 2006-04-18 2011-03-08 Advanced Liquid Logic, Inc. Droplet-based particle sorting
JP4304195B2 (ja) 2006-06-13 2009-07-29 ベイバイオサイエンス株式会社 生物学的粒子をソーティングする装置及び方法
US20070291058A1 (en) 2006-06-20 2007-12-20 Fagerquist Randy L Continuous ink jet printing with satellite droplets
JP5168837B2 (ja) 2006-07-27 2013-03-27 ソニー株式会社 画像処理装置、画像処理方法およびプログラム
WO2008022147A1 (en) 2006-08-14 2008-02-21 Mayo Foundation For Medical Education And Research Rare earth nanoparticles
US20080067068A1 (en) 2006-09-19 2008-03-20 Vanderbilt University DC-dielectrophoresis microfluidic apparatus, and applications of same
JP4304634B2 (ja) 2006-10-23 2009-07-29 ソニー株式会社 標識検出装置及び標識検出方法
US7788969B2 (en) * 2006-11-28 2010-09-07 Cummins Filtration Ip, Inc. Combination contaminant size and nature sensing system and method for diagnosing contamination issues in fluids
DE102006056694B4 (de) 2006-11-30 2010-08-05 Advalytix Ag Verfahren zum Durchführen einer enzymatischen Reaktion
US8290625B2 (en) 2007-04-04 2012-10-16 Beckman Coulter, Inc. Flow cytometer sorter
WO2008130623A1 (en) 2007-04-19 2008-10-30 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US7828420B2 (en) 2007-05-16 2010-11-09 Eastman Kodak Company Continuous ink jet printer with modified actuator activation waveform
US7691636B2 (en) 2007-05-23 2010-04-06 Beckman Coulter, Inc. Method and apparatus for compensating for variations in particle trajectories in electrostatic sorter for flowcell cytometer
US8848199B2 (en) 2007-07-10 2014-09-30 Massachusetts Institute Of Technology Tomographic phase microscopy
US7880108B2 (en) 2007-10-26 2011-02-01 Becton, Dickinson And Company Deflection plate
JP4990746B2 (ja) 2007-12-14 2012-08-01 ベイバイオサイエンス株式会社 液体フローに含まれる生物学的粒子を分別する装置ならびにその方法
JP5738597B2 (ja) 2007-12-21 2015-06-24 プレジデント アンド フェローズ オブ ハーバード カレッジ 核酸の配列決定のためのシステムおよび方法
JP4572973B2 (ja) 2008-06-16 2010-11-04 ソニー株式会社 マイクロチップ及びマイクロチップにおける送流方法
RU2520848C2 (ru) 2008-06-30 2014-06-27 Микробикс Байосистемз Инк. Способ и прибор для сортировки клеток
US8248609B2 (en) 2008-11-04 2012-08-21 The Johns Hopkins University Cylindrical illumination confocal spectroscopy system
JP5487638B2 (ja) 2009-02-17 2014-05-07 ソニー株式会社 微小粒子分取のための装置及びマイクロチップ
US8637301B2 (en) 2009-03-02 2014-01-28 The Johns Hopkins University Microfluidic solution for high-throughput, droplet-based single molecule analysis with low reagent consumption
JP5078929B2 (ja) 2009-03-17 2012-11-21 三井造船株式会社 セルソータおよびサンプル分別方法
EP3415235A1 (en) 2009-03-23 2018-12-19 Raindance Technologies Inc. Manipulation of microfluidic droplets
WO2010129787A2 (en) 2009-05-08 2010-11-11 The Johns Hopkins University Single molecule spectroscopy for analysis of cell-free nucleic acid biomarkers
JP5254441B2 (ja) 2009-06-03 2013-08-07 株式会社日立ハイテクノロジーズ フロー式粒子画像解析方法及び装置
JP5304456B2 (ja) 2009-06-10 2013-10-02 ソニー株式会社 微小粒子測定装置
JP5321260B2 (ja) 2009-06-11 2013-10-23 ソニー株式会社 光学的測定装置、並びにフローサイトメーター及び光学的測定方法
US8628648B2 (en) 2009-07-07 2014-01-14 The University Of Akron Apparatus and method for manipulating micro component
JP5446563B2 (ja) 2009-08-06 2014-03-19 ソニー株式会社 微小粒子分取装置、および該微小粒子分取装置を用いたフローサイトメーター
US8570511B2 (en) 2009-09-09 2013-10-29 Brookhaven Science Associates, Llc Wide size range fast integrated mobility spectrometer
WO2011088889A1 (en) * 2010-01-19 2011-07-28 Södra Skogsägarna Ekonomisk Förening Process for production of oxidised cellulose pulp
US9151646B2 (en) * 2011-12-21 2015-10-06 Deka Products Limited Partnership System, method, and apparatus for monitoring, regulating, or controlling fluid flow
CN102792145B (zh) 2010-03-09 2014-12-24 贝克曼考尔特公司 计算流式细胞仪的液滴延迟时间的系统和方法
CN102272580B (zh) 2010-03-31 2014-07-30 古河电气工业株式会社 光信息解析装置及光信息解析方法
JP5437148B2 (ja) 2010-04-23 2014-03-12 ベイバイオサイエンス株式会社 フローサイトメータおよびセルソータ
JP2011237201A (ja) 2010-05-06 2011-11-24 Sony Corp 微小粒子分取装置、マイクロチップ及びマイクロチップモジュール
US8922636B1 (en) 2010-08-20 2014-12-30 The United States Of America As Represented By The Secretary Of The Navy Synthetic aperture imaging for fluid flows
JP2012047464A (ja) 2010-08-24 2012-03-08 Sony Corp 微小粒子測定装置及び光軸補正方法
US9170138B2 (en) 2010-10-01 2015-10-27 The Board Of Trustees Of The Leland Stanford Junior University Enhanced microfluidic electromagnetic measurements
EP2671065B1 (en) 2011-02-04 2019-07-10 Cytonome/ST, LLC Particle sorting apparatus and method
US9267873B2 (en) 2011-03-30 2016-02-23 Empire Technology Development Llc Material sorting system and method of sorting material
US20120301869A1 (en) 2011-05-25 2012-11-29 Inguran, Llc Particle separation devices, methods and systems
JP5847924B2 (ja) * 2011-06-08 2016-01-27 エンパイア テクノロジー ディベロップメント エルエルシー 拡張現実表現のための二次元画像取込み
JP6003020B2 (ja) 2011-08-03 2016-10-05 ソニー株式会社 マイクロチップ及び微小粒子分析装置
WO2013028947A1 (en) 2011-08-25 2013-02-28 Sony Corporation Characterization of motion-related error in a stream of moving micro-entities
JP5880088B2 (ja) * 2012-01-31 2016-03-08 ブラザー工業株式会社 エッジ検出装置、画像データ処理装置、該画像データ処理装置を備える液体吐出装置、エッジ検出方法及びエッジ検出プログラム
US9324190B2 (en) * 2012-02-24 2016-04-26 Matterport, Inc. Capturing and aligning three-dimensional scenes
JP5994337B2 (ja) 2012-03-30 2016-09-21 ソニー株式会社 微小粒子分取装置及びディレイタイム決定方法
JP5782135B2 (ja) 2012-03-30 2015-09-24 ソニー株式会社 微小粒子分取装置及び微小粒子分取装置における位置制御方法
WO2013147114A1 (ja) 2012-03-30 2013-10-03 公益財団法人神奈川科学技術アカデミー イメージングセルソーター
JP5924276B2 (ja) 2012-04-03 2016-05-25 ソニー株式会社 流路デバイス、粒子分取装置及び粒子分取方法
US20130286038A1 (en) 2012-04-30 2013-10-31 General Electric Company Systems and methods for selection and display of multiplexed images of biological tissue
JP2014020918A (ja) * 2012-07-18 2014-02-03 Sony Corp 微小粒子測定装置及び微小粒子分析方法
US9168568B2 (en) 2012-08-01 2015-10-27 Owl biomedical, Inc. Particle manipulation system with cytometric confirmation
JP6065527B2 (ja) 2012-11-08 2017-01-25 ソニー株式会社 微小粒子分取装置及び微小粒子分取方法
EP3910318B1 (en) 2013-01-28 2024-06-12 Sony Group Corporation Microparticle sorting device, and method and program for sorting microparticles
JP2014174139A (ja) 2013-03-13 2014-09-22 Sony Corp 流路デバイス、粒子分取装置、粒子流出方法、及び粒子分取方法
EP2972206B1 (en) 2013-03-14 2024-02-21 Cytonome/ST, LLC Operatorless particle processing systems and methods
WO2014169231A1 (en) 2013-04-12 2014-10-16 Norton Pierce O Automated set-up for cell sorting
US9645080B2 (en) * 2013-04-16 2017-05-09 University Of Washington Systems, devices, and methods for separating, concentrating, and/or differentiating between cells from a cell sample
CN105393094B (zh) * 2013-05-29 2019-07-23 生物辐射实验室股份有限公司 低成本光学高速离散测量系统
JP6554100B2 (ja) 2013-08-16 2019-07-31 バイオ−ラッド・ラボラトリーズ・インコーポレーテッド フローサイトメーターにおいて流体ストリームから液滴を分離及び/又は帯電させるタイミング及び/又は位相の調整
JP6447506B2 (ja) 2013-10-16 2019-01-09 ソニー株式会社 粒子分取装置及び粒子分取方法
JP6136843B2 (ja) 2013-10-17 2017-05-31 ソニー株式会社 粒子分取装置、粒子分取方法及びプログラム
CN105980831B (zh) * 2014-02-13 2021-01-12 索尼公司 粒子分捡装置、粒子分捡方法、程序以及粒子分捡系统
JP6102783B2 (ja) 2014-02-14 2017-03-29 ソニー株式会社 粒子分取装置、粒子分取方法及びプログラム
JP6657625B2 (ja) 2014-09-05 2020-03-04 ソニー株式会社 液滴分取装置、液滴分取方法及びプログラム
CN106663411A (zh) * 2014-11-16 2017-05-10 易欧耐特感知公司 用于增强现实准备、处理和应用的系统和方法
WO2017068822A1 (ja) 2015-10-19 2017-04-27 ソニー株式会社 画像処理装置、微小粒子分取装置及び画像処理方法
WO2017073737A1 (ja) 2015-10-28 2017-05-04 国立大学法人東京大学 分析装置
KR102416357B1 (ko) 2016-10-03 2022-07-04 벡톤 디킨슨 앤드 컴퍼니 유세포측정기 내 유동 흐름의 드롭 지연을 결정하기 위한 방법 및 시스템
US10466158B2 (en) 2017-04-11 2019-11-05 Sony Corporation Microparticle sorting apparatus and delay time determination method
US10591400B2 (en) 2018-03-29 2020-03-17 Sony Corporation Micro particle analyzer and micro particle analysis method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507525A (ja) * 1994-10-14 1998-07-21 ユニバーシティ オブ ワシントン フローサイトメータジェットモニタシステム
JP2002505423A (ja) * 1998-02-27 2002-02-19 サイトメーション, インコーポレイテッド フローサイトメトリーのための方法および装置
JP2006504970A (ja) * 2002-11-01 2006-02-09 ベックマン コールター,インコーポレーテッド 液滴ソーティングの監視及び制御
US20070257215A1 (en) * 2005-05-06 2007-11-08 Collin Rich Flow cytometry system with bubble detection
JP2009298012A (ja) * 2008-06-13 2009-12-24 Konica Minolta Holdings Inc 液滴吐出検査装置、液滴吐出検査方法及び画像形成装置
WO2013145905A1 (ja) * 2012-03-30 2013-10-03 ソニー株式会社 微小粒子分取装置及び該装置における流体ストリーム最適化方法
JP2013210270A (ja) * 2012-03-30 2013-10-10 Sony Corp 微小粒子分取装置及び微小粒子分取装置における軌道方向判定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3106857A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020510222A (ja) * 2017-04-11 2020-04-02 ソニー株式会社 微粒子分類装置と遅延時間決定方法
JP7026145B2 (ja) 2017-04-11 2022-02-25 ソニーグループ株式会社 微粒子分類装置と遅延時間決定方法

Also Published As

Publication number Publication date
US20190323945A1 (en) 2019-10-24
EP3106857A1 (en) 2016-12-21
EP3690424A1 (en) 2020-08-05
EP3690424B1 (en) 2023-12-27
CN105980831A (zh) 2016-09-28
US20170191925A1 (en) 2017-07-06
EP3106857B1 (en) 2020-04-22
CN105980831B (zh) 2021-01-12
EP3106857A4 (en) 2017-10-18
US11119030B2 (en) 2021-09-14
JP6465036B2 (ja) 2019-02-06
US10309892B2 (en) 2019-06-04
JPWO2015122071A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6465036B2 (ja) 粒子分取装置、粒子分取方法、プログラム及び粒子分取システム
JP6958650B2 (ja) 液滴分取装置、液滴分取方法及びプログラム
JP6447506B2 (ja) 粒子分取装置及び粒子分取方法
JP6102783B2 (ja) 粒子分取装置、粒子分取方法及びプログラム
JP6136843B2 (ja) 粒子分取装置、粒子分取方法及びプログラム
JP6102994B2 (ja) 微小粒子分取装置及び微小粒子分取装置における位置制御方法
JP6304034B2 (ja) 微小粒子分取装置、微小粒子分取方法及びプログラム
US8941081B2 (en) Microparticle measurement apparatus and microparticle analysis method
JP6311312B2 (ja) 微小粒子測定装置及び微小粒子測定装置における送液方法
JP2017122734A (ja) 粒子分取装置、粒子分取方法及びプログラム
JP6706011B2 (ja) 粒子分取装置、粒子分取方法及びプログラム
US20240167932A1 (en) Particle analyzer and particle analysis method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562696

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014882507

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014882507

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15116830

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE