WO2015119280A1 - 酵素を利用したフェニルプロパン系化合物の製造方法 - Google Patents

酵素を利用したフェニルプロパン系化合物の製造方法 Download PDF

Info

Publication number
WO2015119280A1
WO2015119280A1 PCT/JP2015/053551 JP2015053551W WO2015119280A1 WO 2015119280 A1 WO2015119280 A1 WO 2015119280A1 JP 2015053551 W JP2015053551 W JP 2015053551W WO 2015119280 A1 WO2015119280 A1 WO 2015119280A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
compound
hydroxy
seq
amino acid
Prior art date
Application number
PCT/JP2015/053551
Other languages
English (en)
French (fr)
Inventor
ゆかり 大田
勇二 秦田
長谷川 良一
真郎 西
Original Assignee
国立研究開発法人海洋研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人海洋研究開発機構 filed Critical 国立研究開発法人海洋研究開発機構
Priority to US15/117,627 priority Critical patent/US20160348136A1/en
Priority to EP15746275.5A priority patent/EP3106522B1/en
Publication of WO2015119280A1 publication Critical patent/WO2015119280A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Definitions

  • the present invention relates to a method for specifically producing a compound having a phenylpropane structure from biomass containing lignin and a lignin-related substance using an enzyme, and an enzyme for the same.
  • Lignin is an amorphous polymer that exists as a component of plant vascular cell walls. It is a complex condensation of phenylpropane-based structural units, and the main feature of its chemical structure is the inclusion of methoxy groups. ing. Lignin has a function of sticking woody plant cells to each other and strengthening the tissue, and 18 to 36% in wood and 15 to 25% in herbs. Therefore, in order to effectively use wood, various attempts have been made to decompose lignin and obtain useful compounds.
  • phenylpropane compounds for example, coumaric acid, cinnamic acid, caffeic acid (3,4-dihydroxycinnamic acid), eugenol, anethole, coniferyl alcohol, sinapil alcohol, ferulic acid and the like are known. Yes.
  • phenylpropane compounds are a group of useful compounds that become pharmaceuticals and functional foods such as perfumes, fragrances, essential oils, bactericides, anesthetics and antioxidants, and synthetic intermediates thereof.
  • a method of gasifying lignin contained in lignocellulosic materials such as wood and rice straw by high-temperature and high-pressure treatment see Patent Documents 1 and 2 below, the description of which is incorporated herein by reference
  • pressurization A method for nonspecifically reducing the molecular weight by a physicochemical method such as a hydrothermal method (see Patent Document 3 below, the description of which is incorporated herein by reference) is known.
  • a physicochemical method such as a hydrothermal method
  • a phenylpropane compound having a unit structure possessed by lignin and having 3 carbon side chains directly bonded to the benzene ring skeleton is further reduced in molecular weight.
  • the carbon side chain directly bonded to the benzene ring skeleton such as guaiacol (guaiacol), syringol, etc.
  • the carbon side chain directly bonded to the benzene ring skeleton such as vanillin, syringaldehyde, etc.
  • the decomposition product contains a wide variety of components, and it is very difficult to obtain only the phenylpropane-based compound, and it cannot be specifically produced.
  • these physicochemical methods are employed, a lot of energy and special equipment are required to implement these methods.
  • Non-Patent Document 1 it is described as “Pseudomonas genus bacteria”, Brevundimonas genus bacteria (see Patent Document 6 below, the description of this document is here) And Pseudomonas bacteria (see Non-Patent Document 2 below, the description of which is incorporated herein by reference).
  • Patent Documents 4 to 6 and Non-Patent Documents 1 and 2 include a model compound of lignin by a sphingobium genus, a brebandimonas genus bacterium, a pseudomonas genus bacterium, and a ⁇ -aryl ether cleaving enzyme produced by these microorganisms.
  • a model compound of lignin by a sphingobium genus a brebandimonas genus bacterium, a pseudomonas genus bacterium, and a ⁇ -aryl ether cleaving enzyme produced by these microorganisms.
  • Non-patent document 3 uses a ⁇ -aryl ether-type degrading enzyme derived from a sphingobium bacterium, and uses guaiacylglycerol- ⁇ -guay.
  • a carbonyl group is formed by acting on the carbon atom at the C ⁇ position of the guaiacylglycerol- ⁇ -guayacyl ether and the alcoholic hydroxy group bonded to the carbon atom.
  • a phenylpropane compound can be produced through an enzyme sequential reaction in three stages of the reaction. It is listed.
  • Patent Documents 5 to 6 and Non-Patent Documents 1 to 3 are methods for producing a phenylpropane-based compound from a lignin model compound using a microorganism or its production enzyme.
  • these documents do not describe that a phenylpropane compound was obtained from natural biomass by allowing microorganisms or enzymes to act.
  • the enzyme described in Patent Document 5 alone cannot produce a phenylpropane-based compound.
  • Non-Patent Document 1 completely decomposes and assimilates guaiacylglycerol- ⁇ -guaiacyl ether, that is, decomposes to CO 2 , it cannot produce a phenylpropane compound. .
  • Patent Document 6 discloses that ⁇ -aryl ether-type degrading enzyme derived from Brevundimonas spp. Is 1- (4-benzyloxy-3-methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy).
  • Propyl-1-one arylglycerol- ⁇ -aryl ether type bond (compound IX described in Patent Document 6) is cleaved specifically and reductively, and free phenolic hydroxyl group of arylglycerol moiety in ⁇ -aryl ether type bond
  • the ⁇ -aryl ether type bond is cleaved regardless of the presence or absence of. However, its activity is 1 / 100th of that for 1- (4-hydroxy-3-methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy) propan-1-one, I can't say that.
  • Patent Document 6 1- (4-hydroxy-3-methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy) propane- which a ⁇ -aryl ether-type degrading enzyme derived from a genus Brevundimonas acts 1-one and its derivative 1- (4-benzyloxy-3-methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy) propan-1-one have two optical isomers. There is no description about the enzyme activity for each optical isomer.
  • Non-Patent Document 2 can metabolize guaiacylglycerol- ⁇ -guaiacyl ether, the produced phenylpropane compound is further metabolized and converted to another compound. As a result, the product yield is very low.
  • Non-Patent Document 3 is a guaiacylglycerol- ⁇ -guaiacyl ether in which four kinds of optical isomers ( ⁇ S, ⁇ R; ⁇ R, ⁇ S; ⁇ R, ⁇ R; ⁇ S, ⁇ S) exist. Only ⁇ S and ⁇ S, ⁇ S guaiacylglycerol- ⁇ -guaiacyl ether can be used as starting materials, but ⁇ S, ⁇ R and ⁇ R, ⁇ R cannot be used as starting materials. As a result, there is a problem that the yield of the obtained phenylpropane-based compound is lowered.
  • Non-Patent Document 3 Furthermore, with respect to the substrate on which the enzyme described in Non-Patent Document 3 acts, only decomposition of a compound having a free phenolic hydroxyl group is known, and no compound having a free phenolic hydroxyl group is described in Non-Patent Document 3. .
  • the problem to be solved by the present invention is that, compared with the methods described in Patent Documents 5 to 6 and Non-Patent Documents 1 to 3, a phenylpropane structure is obtained from natural biomass containing lignin by acting an enzyme. It is an object of the present invention to provide a method for specifically and efficiently producing a compound having the same.
  • the inventors of the present invention have accumulated intensive research, deciphered the genome sequence information of Novosphingobium sp. MBES04 strain, which is a lignin-degrading microorganism isolated from deep-sea sediments, and obtained lignin from the information.
  • MBES04 strain which is a lignin-degrading microorganism isolated from deep-sea sediments, and obtained lignin from the information.
  • an enzyme derived from a microorganism belonging to the genus Novosphingobium is allowed to act on biomass containing lignin and / or a lignin-related substance in the presence of NAD and reduced glutathione.
  • a method for producing a phenylpropane-based compound is provided, including a step of obtaining a propane-based compound.
  • the phenylpropane compound is 3-hydroxy-1- (4-hydroxy-3-methoxyphenyl) -1-propanone, 3-hydroxy-1- (4-hydroxy-3 , 5-dimethoxyphenyl) -1-propanone and 3-hydroxy-1- (4-hydroxyphenyl) -1-propanone.
  • the phenylpropane compound is 3-hydroxy-1- (4-hydroxy-3-methoxyphenyl) -1-propanone.
  • the microorganism belonging to the genus Novosphingobium is Novosphingobium sp. MBES04 (accession number: NITE P-01797).
  • the enzyme is a combination of enzymes described in the following (1) and (2) and (3) and / or (4).
  • glutathione S-transfer having Gst and a multi-domain of PRK15113 and maiA on the N-terminal side
  • Glutathione S-transfer having PRK10387 and maiA multidomains on the Gst and N-terminal side glutatione S-transfer having a multi-domain of Gst, PRK11752, PRK15113 and maiA
  • the enzyme of (1) is C10G0069 having the amino acid sequence set forth in SEQ ID NO: 1 in the sequence listing or C10G0093 having the amino acid sequence set forth in SEQ ID NO: 2 in the sequence listing;
  • the enzyme of (2) is C10G0076 having the amino acid sequence shown in SEQ ID NO: 3 of the sequence listing or C10G0077 having the amino acid sequence of SEQ ID NO: 4 of the sequence listing;
  • the enzyme of (3) is sequence listing
  • the enzyme of (4) is C10G0075 having the amino acid sequence of SEQ ID NO: 6 in the sequence listing.
  • an enzyme of the following (1) derived from a microorganism belonging to the genus Novosphingobium is allowed to act on biomass containing lignin and / or a lignin-related substance in the presence of NAD.
  • the enzyme of (1) is C10G0069 having the amino acid sequence set forth in SEQ ID NO: 1 in the sequence listing or C10G0093 having the amino acid sequence set forth in SEQ ID NO: 2 in the sequence listing.
  • a Guay that belongs to the Rossmann-fold NAD (P) (+) binding protein superfamily derived from a microorganism belonging to the genus Novosphingobium and has a multi-domain of PRK06194.
  • Short-chain dehydrogenase / reductase that oxidizes the carbon atom at the C ⁇ position of acylglycerol- ⁇ -guayacyl ether is provided.
  • the short-chain dehydrogenase / reductase has a molecular weight of 34 kDa which can be confirmed by SDS-PAGE; the optimum pH is 8.5 to 9.5; and the optimum temperature is 10 to 15 ° C.
  • the short-chain dehydrogenase / reductase has a molecular weight of 34 kDa that can be confirmed by SDS-PAGE; the optimum pH is 8.5 to 10.5; and the optimum temperature is 25 to 30 ° C.
  • the Short-chain dehydrogenase / reductase is C10G0069 having the amino acid sequence set forth in SEQ ID NO: 1 in the Sequence Listing or C10G0093 having the amino acid sequence set forth in SEQ ID NO: 2 in the Sequence Listing.
  • a useful compound having a phenylpropane structure can be specifically and efficiently produced from biomass containing lignin and lignin-related substances derived from natural products such as agricultural waste and wood. it can.
  • FIG. 1 is a diagram schematically showing the relationship between one embodiment of the enzyme group used in the production method of the present invention and the optical isomers of the acting substrate.
  • FIG. 2 is a diagram showing the results of a DELTA-BLAST search using the amino acid sequence encoded by the c10g0069 gene as a query.
  • FIG. 3 shows the results of a DELTA-BLAST search using the amino acid sequence encoded by the c10g0093 gene as a query.
  • FIG. 4 shows the results of a DELTA-BLAST search using the amino acid sequence encoded by the c10g0076 gene as a query.
  • FIG. 5 shows the results of a DELTA-BLAST search using the amino acid sequence encoded by the c10g0077 gene as a query.
  • FIG. 6 shows the results of a DELTA-BLAST search using the amino acid sequence encoded by the c10g0078 gene as a query.
  • FIG. 7 shows the results of a DELTA-BLAST search using the amino acid sequence encoded by the c10g0075 gene as a query.
  • FIG. 8 is a diagram showing the result of evaluating the optimum temperature of C10G0069.
  • FIG. 9 is a diagram showing the results of evaluating the optimum pH of C10G0069.
  • FIG. 10 is a diagram showing a result of evaluating the optimum temperature of C10G0093.
  • FIG. 11 is a diagram showing the results of evaluating the optimum pH of C10G0093.
  • FIG. 12 is a diagram showing the result of evaluating the optimum temperature of C10G0076.
  • FIG. 13 is a graph showing the results of evaluating the optimum pH of C10G0076.
  • FIG. 14 is a diagram showing the results of evaluating the optimum temperature of C10G0077.
  • FIG. 15 is a diagram showing the results of evaluating the optimum pH of C10G0077.
  • phenylpropane is produced by allowing an enzyme derived from a microorganism belonging to the genus Novosphingium to act on biomass containing lignin and / or a lignin-related substance in the presence of NAD and reduced glutathione. It is a manufacturing method of a phenylpropane type compound including the process of obtaining a type compound.
  • lignin and lignin-related substances in biomass are subjected to the action of an enzyme derived from a microorganism belonging to the genus Novosphingobium, thereby producing 3-hydroxy-1- (4-hydroxy-3-methoxyphenyl).
  • Phenylpropane compounds such as -1-propanone, 3-hydroxy-1- (4-hydroxy-3,5-dimethoxyphenyl) -1-propanone, 3-hydroxy-1- (4-hydroxyphenyl) -1-propanone Is generated.
  • the phenylpropane compound obtained by the production method of the present invention is not particularly limited as long as it is a compound having a phenylpropane structure.
  • R represents an alkyl group, an alkoxy group or a hydrogen atom having 1 or 2 or more carbon atoms of 1 to 5.
  • R represents an alkyl group, an alkoxy group or a hydrogen atom having 1 or 2 or more carbon atoms of 1 to 5.
  • R represents an alkyl group, an alkoxy group or a hydrogen atom having 1 or 2 or more carbon atoms of 1 to 5.
  • R represents an alkyl group, an alkoxy group or a hydrogen atom having 1 or 2 or more carbon atoms of 1 to 5.
  • a compound having a carbonyl group at the 1-position and a hydroxy group at the 3-position and the 4-position of the phenyl group and more specifically 3-hydroxy-1- (4-hydroxy- 3-methoxyphenyl) -1-propanone, 3-hydroxy-1- (4-hydroxy-3,
  • 3-hydroxy-1- (4-hydroxy-3-methoxyphenyl) -1-propanone has a structure of the following formula (I).
  • 3-Hydroxy-1- (4-hydroxy-3-methoxyphenyl) -1-propanone can be analyzed qualitatively and quantitatively, for example, by reverse phase HPLC.
  • the reverse-phase HPLC conditions are, for example, using an octadecylsilyl group-modified silica gel column (ODS column), eluent A (2 mM ammonium acetate, 0.05% V / V formic acid) and eluent B (100% V / V). Methanol), the column temperature was set to 40 ° C., the flow rate was set to 1.2 ml / min, and a mixed solution of eluent A 90% V / V and eluent B 10% V / V was fed for 1 minute.
  • ODS column octadecylsilyl group-modified silica gel column
  • eluent A (2 mM ammonium acetate, 0.05% V / V formic acid
  • 3-hydroxy-1- (4-hydroxy-3-methoxyphenyl) -1-propanone can be detected as a peak near a retention time of 4.5 minutes by using a UV detector (270 nm). If a standard product of 3-hydroxy-1- (4-hydroxy-3-methoxyphenyl) -1-propanone is used, it can be quantified by a calibration curve method or an internal standard method.
  • biomass containing lignin, a lignin-related substance, or both is used as a raw material.
  • the lignin is not particularly limited as long as it is commonly known in the art.
  • the lignin is present in plant vascular bundles, and mainly comprises three types of phenylpropanoids represented by the following formulas (B) to (D) as structural units. It is known to have a complex polymerized dendritic structure. (B) (C) (D)
  • the lignin-related substance is not particularly limited as long as it is a substance derived from lignin.
  • substances that are model compounds of lignin for example, Guaiacylglycerol- ⁇ -guayacyl ether and the like.
  • Biomass is not particularly limited as long as it contains lignin, lignin-related substances, or both, and examples thereof include natural products such as grass and trees, those obtained by processing these natural products, agricultural waste, and the like. It is done.
  • Biomass containing lignin and / or lignin-related substances can be, for example, solid, suspended, liquid, etc. depending on the presence or absence of pretreatment.
  • a suspension obtained by adding pulverized lignin-containing biomass to a liquid can be used.
  • the lignin-containing biomass may be a lignin extract.
  • the lignin extract for example, powdered lignin-containing biomass is 0.1% W / V to 50% W / V, preferably 1% W / V to 20% W / V. It is suspended in a solvent suitable for extraction of lignin to form a suspension, and this suspension is at 10 ° C. to 150 ° C., preferably 20 ° C. to 130 ° C., more preferably 20 ° C.
  • a solvent suitable for extraction of lignin is not particularly limited, and examples thereof include water, low molecular alcohols such as dioxane, methanol and isopropanol, dimethylformamide, and the like, preferably water and dioxane.
  • an enzyme derived from a Novosphingobium microorganism is used in order to obtain a phenylpropane-based compound from lignin-containing biomass.
  • the microorganism of the genus Novosphingobium is not particularly limited as long as it is a gram-negative bacillus having a size of 0.3 to 0.8 ⁇ 2 to 3 ⁇ m, belonging to the genus Novosphingobium, also known as the genus Sphingomonas.
  • a preferred specific example of the microorganisms belonging to the genus Novosphingobium used in the production method of the present invention is Novosphingium sp. MBES04 (hereinafter also referred to as MBES04 strain).
  • the MBES04 strain is designated as “Novosphingium sp. It has been deposited with the date of receipt dated January 30, 2014 in 2-5-8) Kazusa Kamashishi, Kisarazu City. In addition, Novosfingobium sp. MBES04 has been transferred from domestic deposit to international deposit on February 9, 2015 at the Patent Microbiology Deposit Center of the National Institute of Product Evaluation Technology (Received) Number: NITE ABP-01797).
  • a combination of three types of enzymes that eliminates the reduction site of 3-methoxyphenyl) -1-propanone can be mentioned.
  • the enzyme that oxidizes the carbon atom at the C ⁇ position of guaiacylglycerol- ⁇ -guayacyl ether is the carbon atom at the C ⁇ position of guaiacylglycerol- ⁇ -guayacyl ether, the hydroxy group bonded to the carbon atom at the ⁇ position, or Acting on both to form a carbonyl group at this site to produce 1- (4-hydroxy-3-methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy) propan-1-one It is an enzyme that can 1- (4-Hydroxy-3-methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy) propan-1-one reductively binds an arylglycerol- ⁇ -aryl ether type bond at the ⁇ -position carbon atom
  • the enzyme that cleaves is arylglycerol- ⁇ -aryl ether type at the ⁇ -position carbon atom of 1- (4-hydroxy-3-methoxy
  • the enzyme that eliminates the reduction site of 3-hydroxy-1- (4-hydroxy-3-methoxyphenyl) -1-propanone having a reduction site at the ⁇ -position carbon atom is a reduction present at the ⁇ -position carbon atom. It is an enzyme capable of producing 3-hydroxy-1- (4-hydroxy-3-methoxyphenyl) -1-propanone by acting on a site and eliminating this reduction site.
  • the method for obtaining these enzymes is not particularly limited. For example, by using an enzyme extract obtained from Novosphingobium microorganisms or a fraction thereof, the substrate mass of each enzyme can be reduced. And the presence of the product can be used to obtain any of the above enzymes or a mixture thereof.
  • the enzyme that oxidizes the carbon atom at the C ⁇ position of guaiacylglycerol- ⁇ -guaiacyl ether is not particularly limited as long as it is an enzyme derived from a microorganism belonging to the genus Novosphingobium having the above-described action.
  • Rossmann-fold NAD Short-chain dehydrogenase / reductase belonging to the (P) (+) binding protein superfamily and having a multi-domain of PRK06194 can be mentioned.
  • specific examples of the short-chain dehydrogenase / reductase are C10G0069 described in SEQ ID NO: 1 in the sequence listing and C10G0093 described in SEQ ID NO: 2 in the sequence listing.
  • PRK06194 multidomain is an amino acid sequence often found in hypothetical protein; Provisional with PSSM-Id of 180458.
  • the E-value of PRK06194 is 1.33e-66 for C10G0069 and 1.35e-68 for C10G0093.
  • “having a multi-domain” means that in addition to having the amino acid sequence of the multi-domain itself, having a partial amino acid sequence of the multi-domain on the N-terminal side or the C-terminal side, It means having an approximate amino acid sequence.
  • C10G0069 and C10G0093C oxidize the carbon atom at the C ⁇ position of guaiacylglycerol- ⁇ -guaiacyl ether in the presence of NAD +.
  • these enzymes remove the ⁇ -position carbonyl residue of 1- (4-hydroxy-3-methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy) propan-1-one. Reduction can give a hydroxy group.
  • NADP + and NADPH the enzyme reaction is carried out in the presence of NAD.
  • the optimum pH of C10G0069 is 8.5 to 9.5; and the optimum temperature is 10 to 15 ° C.
  • the optimum pH of C10G0093 is 8.5-10.5; and the optimum temperature is 25-30 ° C.
  • the optimum pH and optimum temperature referred to in this specification are a range of pH and temperature showing a value of about 80% or more from the highest value of the target product among the results measured in Examples described later.
  • guaiacylglycerol- ⁇ -guaiacyl ether the ⁇ -position and ⁇ -position carbon atoms are asymmetric carbons, so ⁇ S, ⁇ R (SR); ⁇ R, ⁇ S (RS); ⁇ R, ⁇ R (RR); There are four types of optical isomers, ⁇ S and ⁇ S (SS). Of these, C10G0069 reacts specifically with the two optical isomers of RS and RR of guaiacylglycerol- ⁇ -guaiacyl ether, and C10G0093 has two optical isomers of SR and SS. It reacts specifically.
  • the enzyme that oxidizes the carbon atom at the C ⁇ position of guaiacylglycerol- ⁇ -guaiacyl ether used in the production method of the present invention is not particularly limited as long as it has the physicochemical properties of C10G0069 or C10G0093 described above. And an enzyme that oxidizes the carbon atom at the C ⁇ position of guaiacylglycerol- ⁇ -guaiacyl ether, which has an amino acid sequence similar to the amino acid sequence set forth in SEQ ID NO: 1 or 2 in the sequence listing.
  • Examples of such an enzyme include guaiacylglycerol- ⁇ -guaiacyl comprising an amino acid sequence having a deletion, substitution or addition of one to several amino acids in the amino acid sequence shown in SEQ ID NO: 1 or 2 in the sequence listing.
  • C ⁇ position of guaiacylglycerol- ⁇ -guayacyl ether comprising an enzyme that oxidizes the carbon atom of C ⁇ position of ether or an amino acid sequence having 90% or more identity with the amino acid sequence set forth in SEQ ID NO: 1 or 2 in the sequence listing
  • an enzyme that oxidizes carbon atoms an enzyme that oxidizes carbon atoms.
  • the range of “1 to several” in “deletion, substitution or addition of one to several amino acids” of the amino acid sequence oxidizes the carbon atom at the C ⁇ position of guaiacylglycerol- ⁇ -guaiacyl ether.
  • 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, It means 19 or 20, preferably about 1, 2, 3, 4 or 5.
  • amino acid deletion means deletion or disappearance of an amino acid residue in the sequence
  • amino acid substitution means that an amino acid residue in the sequence is replaced with another amino acid residue
  • “Addition of amino acid” means that a new amino acid residue is added to the sequence.
  • a specific embodiment of “deletion, substitution or addition of one to several amino acids” includes an embodiment in which one to several amino acids are replaced with another chemically similar amino acid.
  • a case where a certain hydrophobic amino acid is substituted with another hydrophobic amino acid a case where a certain polar amino acid is substituted with another polar amino acid having the same charge, and the like can be mentioned.
  • Such chemically similar amino acids are known in the art for each amino acid.
  • Specific examples include non-polar (hydrophobic) amino acids such as alanine, valine, isoleucine, leucine, proline, tryptophan, phenylalanine, and methionine.
  • Examples of polar (neutral) amino acids include glycine, serine, threonine, tyrosine, glutamine, asparagine, and cysteine.
  • Examples of positively charged (basic) amino acids include arginine, histidine, and lysine.
  • Examples of negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
  • the “identity” in the amino acid sequence is not particularly limited as long as it exhibits an action of oxidizing the carbon atom at the C ⁇ position of guaiacylglycerol- ⁇ -guaiacyl ether.
  • the sequence identity when aligned with the amino acid sequence described in No. 1 or 2 is 90% or more, preferably 95% or more, more preferably 97% or more, and still more preferably 98% or more. Yes, still more preferably 99% or more.
  • the method for determining the identity of the amino acid sequence is not particularly limited. For example, using a commonly known method, the amino acid sequence described in SEQ ID NO: 1 or 2 in the sequence listing is aligned with the target amino acid sequence, It is calculated
  • the molecular weight of C10G0069 or C10G0093 is 34 kDa by SDS-PAGE.
  • the molecular weight represents the molecular weight of the E. coli recombinant protein. Therefore, the molecular weight of the enzyme that oxidizes the carbon atom at the C ⁇ position of guaiacylglycerol- ⁇ -guaiacyl ether having an amino acid sequence similar to the amino acid sequence shown in SEQ ID NO: 1 or 2 in the sequence listing is C10G0069 or C10G0093.
  • the molecular weight is close to the molecular weight.
  • SDS-PAGE is preferably 30 to 40 kDa, more preferably 32 to 36 kDa, still more preferably 33 to 35 kDa, and is preferably around 34 kDa. Even more preferred.
  • a method for obtaining an enzyme that oxidizes the carbon atom at the C ⁇ position of guaiacylglycerol- ⁇ -guaiacyl ether is not limited.
  • a screening method for examining the activity can be mentioned.
  • guaiacylglycerol- ⁇ -guay can be obtained by using a transformant prepared by introducing a vector containing the base sequence shown in SEQ ID NO: 7 or 8 and a foreign gene such as a drug resistance gene or a heterologous base sequence.
  • An enzyme that oxidizes the carbon atom at the C ⁇ position of the acyl ether can be obtained.
  • the enzyme that can be cleaved is not particularly limited as long as it is an enzyme derived from a microorganism belonging to the genus Novosphingobium having the above-mentioned action. Is mentioned.
  • Specific examples of the glutathione S-transferase are C10G0076 described in SEQ ID NO: 3 in the Sequence Listing and C10G0077 described in SEQ ID NO: 4 in the Sequence Listing.
  • Gst is an amino acid sequence commonly found in glutathione S-transferase with PSSM-Id of 2223698.
  • PRK15113 is an amino acid sequence commonly found in glutathione S-transfer; Provisional with PSSM-Id of 185068.
  • maiA is an amino acid sequence often found in maleilacetoacetate isomerase with PSSM-Id of 233333.
  • the E-value of Gst is 4.21e-38 for C10G0076 and 6.35e-11 for C10G0077.
  • the E-value of PRK15113 is 3.10e-16 for C10G0076 and 4.58e-03 for C10G0077.
  • the MaiA E-value is 8.01e-17 for C10G0076 and 1.01e-05 for C10G0077.
  • C10G0076 acts on the ⁇ S form of 1- (4-hydroxy-3-methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy) propan-1-one
  • C10G0077 is 1- (4-hydroxy-3- Acts on the ⁇ R form of methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy) propan-1-one.
  • the gene which consists of a base sequence which codes the amino acid sequence of sequence number 3 and 4 of a sequence table is each described in sequence number 9 and 10 of a sequence table.
  • An enzyme capable of eliminating the reduction site of 3-hydroxy-1- (4-hydroxy-3-methoxyphenyl) -1-propanone having a reduction site at the ⁇ -position carbon atom is the Novosphingobium having the above-described action.
  • the enzyme is not particularly limited as long as it is an enzyme derived from a genus microorganism, but, for example, glutathione S-transfer having Gst and N-terminal multidomains of glutathione S-transfer, Gst, PRK11752, PRK15113, and maiA having multidomains. S-transfer is mentioned.
  • a specific example of glutathione S-transferase having PRK10387 and maiA multidomains on the Gst and N-terminal side is C10G0078 described in SEQ ID NO: 5 in the Sequence Listing.
  • a specific example of glutathione S-transfer having a multi-domain of Gst, PRK11752, PRK15113 and maiA is C10G0075 described in SEQ ID NO: 6 in the Sequence Listing.
  • PRK10387 is an amino acid sequence commonly found in glutaredoxin2; Provisional with a PSSM-Id of 236679.
  • PRK11752 is an amino acid sequence often found in putative S-transfer; Provisional with PSSM-Id of 183298.
  • the G-st E-value is 2.26e-14 for C10G0078 and 5.08e-44 for C10G0075.
  • the MaiA E-value is 9.25e-03 for C10G0078 and 4.73e-09 for C10G0075.
  • the E-value of PRK10387 is 0.02 with respect to C10G0078.
  • the E-value of PRK11752 is 5.41e-52 with respect to C10G0075.
  • the E-value of PRK15113 is 1.11e-12 with respect to C10G0075.
  • C10G0078 acts on the ⁇ S derivative of 1- (4-hydroxy-3-methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy) propan-1-one
  • C10G0075 is 1- (4-hydroxy- Acts on ⁇ S-form and ⁇ R-form of 3-methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy) propan-1-one.
  • the gene which consists of a base sequence which codes the amino acid sequence of sequence number 5 and 6 of a sequence table is each described in sequence number 11 and 12 of a sequence table.
  • C10G0076 and C10G0077 catalyze the activity of glutathione addition cleavage of ⁇ -O-4 bonds when coexisting with reduced glutathione, but do not show activity when no reduced glutathione is present.
  • C10G0078 and C10G0075 catalyze the activity of eliminating glutathione added to the carbon atom at the ⁇ -position when reduced glutathione coexists, but do not show that activity when reduced glutathione is not present. Therefore, in the production method of the present invention, the enzyme reaction is carried out in the presence of reduced glutathione.
  • a phenylpropane-based compound is obtained by allowing an enzyme derived from a microorganism belonging to the genus Novosphingobium to act on lignin-containing biomass.
  • “acting an enzyme” means, for example, an action of oxidizing the carbon atom at the C ⁇ position of guaiacylglycerol- ⁇ -guaiacylether possessed by each enzyme, 1- (4-hydroxy-3-methoxyphenyl) ) 3-hydroxy-2- (2-methoxyphenoxy) propan-1-one ⁇ -position carbon atom in the ⁇ -position, reductively cleaves arylglycerol- ⁇ -aryl ether type bond, reduction to ⁇ -position carbon atom
  • 3-hydroxy-1- (4-hydroxy-3-methoxyphenyl) -1-propanone having a site exerts an action of eliminating the reduction site.
  • C10G0069, C10G0093, C10G0076, C10G0077, C10G0078, and C10G0075 are properly used depending on the optical isomer of the compound serving as the substrate, as described above.
  • a schematic representation of the relationship between these enzymes and acting optical isomers is shown in FIG.
  • the following combinations (1) to (21) are conceivable as combinations of these enzyme groups.
  • C10G0069, C10G0076 and C10G0078 (2) C10G0069, C10G0076 and C10G0075 (3) C10G0069, C10G0076, C10G0078 and C10G0075 (4) C10G0069, C10G0077 and C10G0075 (5) C10G0093, C10G0076 and C10G0078 (6) C10G0093, C10G0076 and C10G0075 (7) C10G0093, C10G0076, C10G0078 and C10G0075 (8) C10G0093, C10G0077 and C10G0075 (9) C10G0069, C10G0076, C10G0077 and C10G0078 (10) C10G0069, C10G0076, C10G0077 and C10G0075 (11) C10G0069, C10G0076, C10G0077, C10G0078 and C10G0075 (12) C10G0093, C10G0076
  • these enzymes are allowed to act on lignin-containing biomass, for example, when a mixture of these enzymes is used, in the presence of NAD for activating C10G0069 and C10G0093 and reduced glutathione for activating C10G0076 and C10G0077 Therefore, it is preferable to set the pH and temperature at which C10G0069, C10G0093, C10G0076, C10G0077, C10G0078 and C10G0075 are active. Further, these enzymes may be used separately, or the addition timing of NAD and reduced glutathione may be changed.
  • C10G0069 and C10G0093 are allowed to act on lignin-containing biomass in the presence of NAD, and then C10G0076 and C10G0077, and C10G0078 and C10G0075 are allowed to act sequentially in the presence of reduced glutathione.
  • a buffer in the working system.
  • the concentration and abundance of each component such as lignin, lignin-related substance, buffer, enzyme, NAD, and reduced glutathione when the enzyme is allowed to act are not particularly limited and can be set as appropriate. Moreover, in order to raise the contact frequency of lignin or a lignin related substance, and an enzyme, you may stir or shake these mixtures.
  • the action time is not particularly limited as long as the production of the phenylpropane-based compound is recognized, and is, for example, several hours to several days, and can be appropriately set depending on the titer of the enzyme and the like. Specifically, it is about 1 hour to 36 hours or more.
  • Phenylpropane compounds produced in the working system can be used as they are without any special treatment.
  • normally known aromatic compounds such as solid-phase extraction method and chromatogram method after working It can be purified by employing a means for purifying the product, and it can be obtained as a solid by further distilling off the solvent and drying.
  • Specific embodiments of the production method of the present invention are as follows, for example.
  • the lignin-containing biomass is suspended in a solvent suitable for dissolving lignin such as dioxane and water, and kept at 20 ° C. to 80 ° C. for several hours to several days.
  • the solid content is removed from the suspension after the incubation to obtain a lignin extract.
  • the lignin extract is dried and the resulting dried product is dissolved in an organic solvent such as ethyl acetate and DMF or a water-containing organic solvent to obtain a lignin extract.
  • Lignin extract enzyme that oxidizes carbon atom at the C ⁇ position of guaiacylglycerol- ⁇ -guaiacyl ether; 1- (4-hydroxy-3-methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy) propane
  • a reaction solution containing an enzyme that eliminates the reduction site, a buffer, an NAD salt, and reduced glutathione is prepared, and the pH is 7 to 10, at 20 to 40 ° C., for several hours to several tens of hours. Let react for hours.
  • the reaction solution after the reaction is purified by solid phase extraction and dried under an inert gas to obtain a solid phenylpropane compound.
  • the phenylpropane-based compound obtained by the production method of the present invention can be used, for example, as a raw material for resins, adhesives, resist materials, pharmaceuticals, etc., or an intermediate thereof.
  • the compound contains 1- (4-hydroxy-3-methoxy Via phenyl) -1,3-propanediol, it can be converted into industrially useful coniferyl alcohol as a raw material for pharmaceuticals, fragrances, food materials and the like.
  • an enzyme of the following (1) derived from a microorganism belonging to the genus Novosphingobium is allowed to act on biomass containing lignin and / or a lignin-related substance in the presence of NAD.
  • HPLC analysis conditions of 1- (4-hydroxy-3-methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy) propan-1-one can be employed.
  • 1- (4-hydroxy-3-methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy) propan-1-one is analyzed qualitatively and quantitatively by, for example, reverse phase HPLC. it can.
  • the reverse-phase HPLC conditions are, for example, using an octadecylsilyl group-modified silica gel column (ODS column), eluent A (2 mM ammonium acetate, 0.05% V / V formic acid) and eluent B (100% V / V). Methanol), the column temperature was set to 40 ° C., the flow rate was set to 1.2 ml / min, and a mixed solution of eluent A 90% V / V and eluent B 10% V / V was fed for 1 minute. Thereafter, the eluent B is fed for 7 minutes in a gradient of 10% V / V to 95% V / V.
  • 3-hydroxy-1- (4-hydroxy-3-methoxyphenyl) -1-propanone can be detected as a peak near a retention time of 6.5 minutes by using a UV detector (270 nm). If a standard product of 1- (4-hydroxy-3-methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy) propan-1-one is used, it can be quantified by a calibration curve method or an internal standard method. Is possible.
  • Preferred embodiments of the enzyme of (1) above are Short-chain dehydrogenase / reductasetC10G0069 described in SEQ ID NO: 1 of the Sequence Listing and Short-chain dehydrogenase / reductase C10G0093 described in SEQ ID NO: 2 of the Sequence Listing.
  • the present invention belongs to the Rossmann-fold NAD (P) (+) binding protein superfamily derived from a microorganism belonging to the genus Novosphingobium and has a multi-domain of PRK06194. Short-chain dehydrogenase / reductase that oxidizes the carbon atom at the C ⁇ position of guaiacylglycerol- ⁇ -guaiacyl ether is provided.
  • a short-chain dehydrogenase / molecular weight that can be confirmed by SDS-PAGE is 34 kDa; an optimum pH is 8.5 to 9.5; and an optimum temperature is 10 to 15 ° C.
  • Short-chain dehydrogenase / reductase having a molecular weight of 34 kDa confirmed by reductase and SDS-PAGE; an optimum pH of 8.5 to 10.5; and an optimum temperature of 25 to 30 ° C.
  • Specific embodiments of the present invention are Short-chain dehydrogenase / reductase C10G0069 described in SEQ ID NO: 1 of the Sequence Listing and Short-chain dehydrogenase / reductase C10G0093 described in SEQ ID NO: 2 of the Sequence Listing.
  • Example 1 Detection of MBES04 strain gene
  • LB medium Becton Dickinson
  • 5 mM magnesium sulfate was inoculated with Novosphingobium MBES04 strain and cultured with shaking at 30 ° C. and 120 rpm for 24 hours.
  • MBES04 strain cells were obtained from the obtained culture broth by centrifugation at 8000 rpm for 5 minutes.
  • Total DNA was extracted from the obtained cells using NucleoSpin Plant II Midi kit (manufactured by Takara Bio Inc.). An 8 kb long mate pair library was created using the extracted DNA, and the sequence was analyzed using the genome sequencer GS FLX system (Roche Diagnostics). As a result of sequence analysis, base sequences related to sequence data having 142,389 reads, an average length of 441.66 bp and a total number of bases of 62,888,162 were obtained.
  • the entire nucleotide sequence contained in the 39 SuperContigs obtained was converted into the gene region encoded by the entire nucleotide sequence contained in the 39 SuperContigs, ie, the protein.
  • the region corresponding to the open reading frame to be encoded was estimated.
  • the SYK-6 strain binds to the carbon atom at the C ⁇ position of Compound I, that is, the first stage reaction when metabolizing ligacylglycerol- ⁇ -guaiacyl ether (Compound I), which is a lignin dimer model compound.
  • Enzymes that catalyze the oxidation of hydroxy groups include LigD, LigL, LigN, and LigO (see Non-Patent Documents 5 and 6) and the ligD gene (YP_004833998), ligL gene (AB491122), ligN gene (AB491222), and The ligO gene (YP_004836720) is known.
  • Table 1 shows information on the homology between the above 6 genes derived from MBES04 and ligD, ligL, ligN and ligO derived from SYK-6.
  • the hit with the gene sequence having the highest sequence match was found to be 71% identical to c01g1162
  • JDR-2 CP001656.1
  • PP1Y strain with 75% identity to c01g1324 gene (FR856862.1), a gene presumed to encode short-chain dehydrogenase / reductase at positions 1154509 to 1155339; Novosphingobium sp. With a 78% consistency with the c10g0069 gene ) Positions 1241135 to 1242028 on the genome of the PP1Y strain (FR856862.1) A gene presumed to encode short-chain dehydrogenase / reductase in the above; on the genome of Novosphingobium sp.
  • PP1Y strain (FR8566862.1) with 76% identity to c10g0080 gene A gene presumed to encode short-chain dehydrogenase / reductase at positions 1251645 to 12525546;
  • Novosphingobium aromaticivorans strain DSM124 with 80% identity to the c10g0093 gene In the position of 844288-844180 on the genome (CP000248.1) 1266103 on the genome of Novosphingobium sp.
  • PP1Y strain (FR8566862.1) with 77% identity to the c10g0094 gene, which is presumed to encode the short-chain dehydrogenase / reductase It was a gene presumed to encode short-chain dehydrogenase / reductase at the position of No. 1266694.
  • the second stage reaction when SYK-6 strain metabolizes Compound I that is, 1- (4-hydroxy-3-methoxyphenyl) -3-hydroxy-2- (2-methoxyphenoxy) propane-1 -Enzymes that catalyze the reaction of cleaving the ether bond at the ⁇ -O-4 position of ONE (compound II) include ligF gene (YP_004833997) (see Non-Patent Document 7) and ligE gene (YP_004833998) (Non-Patent Document 8). Is known).
  • the ligG gene (YP_004833999) (refer nonpatent literature 9) is known as an enzyme which catalyzes the 3rd step reaction which removes glutathione from the glutathione containing intermediate produced by the 2nd step reaction.
  • genes having homology to the ligE gene, the ligF gene, and the ligG gene derived from the SYK-6 strain are represented by Coverage 50% ⁇ and Identity 25% ⁇ .
  • the BLAST homology search was performed with Simality 50% ⁇ , E-value ⁇ e5 as threshold values. As a result, it was found that the c10g0076 gene had 68% identity in ligF, the c10g0077 gene had 80% identity in ligE, and the c10g0078 gene had 71% identity in ligG.
  • BLASTn homology search (Coverage 50% ⁇ ) was performed using the base sequences of 3 genes from the MBES04 strain: c10g0076 gene, c10g0077 gene and c10g0078 gene as a query, the most successful gene sequence was c10g0076 It encodes a glutathione - S-transferase-like protein located at positions 1247655 to 1248181 on the genome of Novosphingium sp.
  • PP1Y strain (FR8566862.1) with 82% identity to the gene Presumed gene; Novosphingobium species with 80% consistency for c10g0078 gene sp.) a gene presumed to encode a glutathione S-transferase-like protein located at positions 1284451 to 1249198 on the genome of the PP1Y strain (FR856862.1); Novosphingo with 78% identity to the c10g0079 gene It was a gene presumed to encode a glutathione S-transferase family protein located at positions 1249325 to 1250064 on the genome of Novosphingium sp. PP1Y strain (FR856862.1).
  • amino acid sequences encoded by the c10g0076 gene and the c10g0077 gene have PRK15113 and maiA multidomains on the N-terminal side. Furthermore, it was found that the amino acid sequence encoded by the c10g0078 gene has PRK10387 and maiA multidomains on the N-terminal side.
  • the c10g0076 gene, c10g0077 gene, and c10g0078 gene are genes close to each other. Furthermore, the c10g0075 gene adjacent to the c10g0076 gene encodes a protein presumed to be Glutathione S-transferase in a direction opposite to the direction encoded by the three genes c10g0076, c10g0077, and c10g0078.
  • a BLASTn search Crossage 50% ⁇
  • each protein encoded by 6 genes of c01g1162 gene, c01g1324 gene, c10g0069 gene, c10g0080 gene, c10g0093 gene, and c10g0094 gene is expressed as C01G1162, C01G1324, C10G0069, C10G0080, C10G0093, and C10G0094; and c10g0075 gene,
  • Each protein encoded by the four genes c10g0076, c10g0077, and c10g0078 was designated as C10G0075, C10G0076, C10G0077, and C10G0078.
  • a PCR reaction was performed using the plasmid pRSETA (manufactured by Invitrogen) as a template and primers A and B shown in Table 2.
  • the primer set shown in Table 2 (C and D, E and F, G and H, I and J, K and L, M and N, O and P, Q and R, S and T, and U and V) PCR was carried out using the genomic DNA of MBES04 strain as a template according to the conditions shown below to obtain cDNA obtained by amplifying the above gene fragments.
  • PCR conditions 1 ⁇ PCR buffer (containing MgCl 2 ) 200 ⁇ m dNTPs, 0.6 ⁇ m 27f, 0.6 ⁇ m 1525r, 1.4 U of LA Taq DNA (manufactured by Polymerase Takara Bio Inc.) Thermal cycler temperature condition 97 ° C 2 minutes, [97 ° C 30 seconds, 60 ° C 1 minute, 72 ° C 90 seconds] x 30 cycles, 72 ° C 5 minutes
  • a plasmid was prepared from the obtained transformant, and it was confirmed by sequence analysis that the nucleotide sequence of the ligated fragment on the plasmid completely matched the gene sequence on the genome of MBES04 strain.
  • Base sequence analysis was performed using BigDye (registered trademark) Terminator v3.1 Cycle Sequencing Kit, v3.1 (manufactured by Applied Biosystems), ABI 3730, XL DNA Analyzer (Applied Biosystems).
  • BL21DE3pLysE manufactured by Life Technology
  • Recombinant enzyme was produced using each transformant, and the resulting recombinant enzyme was purified using Ni-agarose carrier.
  • the obtained compound I was erithro form: threo form ⁇ 3: 1 under these conditions.
  • the RS display was determined with reference to the optical rotation data described in Non-Patent Document 11.
  • Compound I was added to Tris-HCl buffer (pH 7.5) to a final concentration of 5 mM and NAD + (added in the form of sodium salt) to a final concentration of 10 mM. Subsequently, the purified C01G1162, C01G1324, C10G0069, C10G0080, C10G0093 and C10G0094 obtained in Example 3 were added to this solution one by one and incubated at room temperature for 16 hours to obtain a reaction solution. Thereafter, the change of Compound I in the reaction solution was analyzed by HPLC under the following conditions.
  • reaction solution was purified by solid phase extraction (OASISSWAX; manufactured by Waters), and reverse-phase UPLC-time-of-flight accurate mass spectrometry (ACCUITYUUPLC H- Class, XevoG2 QTOF, manufactured by Waters).
  • OASISSWAX solid phase extraction
  • ACCUITYUUPLC H- Class, XevoG2 QTOF reverse-phase UPLC-time-of-flight accurate mass spectrometry
  • Reversed-phase HPLC conditions (reverse-phase UPLC-time-of-flight accurate mass spectrometry conditions) Column; ACQUITY UPLC BEH C18 Column, 130 ⁇ , 1.7 ⁇ m (Waters), 2.1 mm d. ⁇ 100 mm L.
  • Mass analysis conditions (reverse phase UPLC-time-of-flight accurate mass analysis conditions) Detection mass range 100-1000 Da, data acquisition scan interval 0.1 second, desolvation gas temperature 500 ° C, ion source ESI negative mode ion source temperature 150 ° C, cone voltage 30V
  • the molecular weight of the product compound was 318 and the estimated composition formula was C 17 H 18 O 6 .
  • the product compound is Compound II in which a dehydrogenation reaction occurs at the C ⁇ position of Compound I and the alcohol residue (hydroxy group) is changed to a carbonyl group. It was estimated.
  • Example 5 Characteristics of Compound I Degrading Enzyme
  • Compound II was synthesized according to the method described in Non-Patent Document 10. In addition, HPLC analysis of Compound II was performed under the conditions of elution in the order of (1) ⁇ R form and (2) ⁇ S form using Chiral Pack IE3 manufactured by Daicel Corporation as follows.
  • the synthesized compound II was ⁇ R form: ⁇ S form ⁇ 1: 1 under these conditions.
  • the RS display was determined with reference to the optical rotation data described in Non-Patent Document 11.
  • the synthesized compound II was subjected to reverse-phase UPLC-time-of-flight accurate mass spectrometry under the conditions described in Example 4. As a result, it was found that the compound I was well separated from the compound I decomposition product obtained when C10G0069 and C10G0093 were allowed to act on compound I. Consistent mass chromatography and spectra were obtained. From this, it was found that C10G0069 and C10G0093 are proteins having a dehydrogenase activity that oxidizes the hydroxy group at the C ⁇ position of Compound I and changes it to a carbonyl group.
  • reaction solution 100 ⁇ l containing 10 mg / l C10G0069, 10 mM compound I, 20 mM sodium NAD and 50 mM (pH 9.2) N-Cyclohexyl-2-aminoethanesulfonic acid-NaOH (CHES) buffer (pH 9.5),
  • the optimum temperature of C10G0069 was evaluated by reacting at a temperature of 5-45 ° C. for 30 minutes. As a result, as shown in FIG. 8, the optimum temperature was around 10 to 15 ° C.
  • a reaction solution (100 ⁇ l) containing 10 mg / l C10G0069, 10 mM compound I, 20 mM sodium NAD, and 50 mM buffer (MES, MOPS, TAPS, CHES, and CAPS) adjusted to pH 6.0 to 10.4 was added at 15 ° C.
  • the optimal pH of C10G0069 was evaluated by reacting for 30 minutes. As a result, as shown in FIG. 9, the optimum pH was around 8.5 to 9.5.
  • the optimum temperature and optimum pH are based on values obtained by analyzing the concentration of Compound II produced in the reaction solution after the reaction by reverse phase HPLC under the conditions described in Example 4.
  • reaction solution 100 ⁇ l containing 5 mg / l C10G0093, 10 mM compound I, 20 mM NAD sodium and 50 mM (pH 9.2) CHES buffer (pH 9.5) is reacted at a temperature of 5 to 45 ° C. for 30 minutes.
  • CHES buffer pH 9.5
  • a reaction solution (100 ⁇ l) containing 5 mg / l C10G0093, 10 mM compound I and 20 mM sodium NAD and 50 mM buffer (MES, MOPS, TAPS, CHES and CAPS) adjusted to pH 6.0 to 10.4 was prepared at 30 ° C.
  • the optimum pH of C10G0093 was evaluated by reacting for 30 minutes. As a result, as shown in FIG. 11, the optimum pH was around 8.5 to 10.5.
  • the optimum temperature and optimum pH are based on values obtained by analyzing the concentration of Compound II produced in the reaction solution after the reaction by reverse phase HPLC under the conditions described in Example 4.
  • Compound I has four types of optical isomers: ⁇ S, ⁇ R (SR); ⁇ R, ⁇ S (RS); ⁇ R, ⁇ R (RR); ⁇ S, ⁇ S (SS).
  • SR ⁇ S
  • RS ⁇ R
  • RR ⁇ R
  • SS ⁇ S, ⁇ S
  • Chiral HPLC analysis condition column Chiral Pack IE-3 (manufactured by Daicel), 4.6 mm d. ⁇ 250 mm L.
  • Eluent (A) Water, (B) Acetonitrile, liquid delivery: 0-10 minutes 20% V / V (B), 10-15 minutes 20-30% V / V (B), 15-30 minutes 30% V / V (B), column temperature: 40 ° C., flow rate: 1.0 ml / min, detection photodiode array detector UV200-500 nm (PDA model 2998, manufactured by Waters) and killer (system engineering)
  • Example 6 Identification of Compound II Degrading Enzyme
  • Compound I or Compound II was added to Tris-HCl buffer (pH 7.5) to a final concentration of 5 mM and reduced glutathione to a final concentration of 10 mM, and then purified C10G0075, C10G0076, obtained in Example 3, C10G0077 and C10G0078 were added to each protein and incubated at room temperature for 16 hours to obtain a reaction solution. Thereafter, the change of Compound I or Compound II in the reaction solution was analyzed by reverse phase HPLC under the conditions described in Example 4.
  • Example 7 Degradation characteristics of compound II degrading enzyme
  • the reaction conditions when C10G0076 acts on Compound II were examined.
  • C10G0076 catalyzed the cleavage of ⁇ -O-4 linked glutathione in the presence of reduced glutathione, but showed no activity in the absence of reduced glutathione.
  • the molecular weight was shown to be 31 kDa by SDS-PAGE.
  • a reaction solution (100 ⁇ l) containing 5 mg / l C10G0076, 5 mM Compound II, 10 mM reduced glutathione and 100 mM (pH 8.9) CHES buffer (pH 9.5) is reacted at a temperature of 15 to 45 ° C. for 30 minutes.
  • the optimum temperature of C10G0076 was evaluated. As a result, the optimum temperature was around 30 to 35 ° C. as shown in FIG. Further, a reaction solution (100 ⁇ l) containing 5 mg / l C10G0076, 5 mM Compound II, 10 mM reduced glutathione, and 50 mM buffer (MES, MOPS, TAPS, CHES, and CAPS) adjusted to pH 5.6 to 10.4, The optimum pH of C10G0076 was evaluated by reacting at 30 ° C. for 30 minutes. As a result, as shown in FIG. 13, the optimum pH was around 8.5 to 9.5. The optimum temperature and the optimum pH are based on values obtained by analyzing the concentration of guaiacol produced in the reaction solution after the reaction by reverse-phase HPLC under the conditions described in Example 4 (retention time around 5.5 minutes).
  • C10G0077 catalyzed the cleavage of ⁇ -O-4 linked glutathione in the presence of reduced glutathione, but showed no activity in the absence of reduced glutathione.
  • the molecular weight was shown to be 31 kDa by SDS-PAGE.
  • a reaction solution (100 ⁇ l) containing 5 mg / l C10G0077, 5 mM Compound II, 10 mM reduced glutathione and 100 mM (pH 8.9) MOPS buffer (pH 7.5) is reacted at a temperature of 5 to 35 ° C. for 30 minutes. Thus, the optimum temperature of C10G0077 was evaluated.
  • the optimum temperature was around 25-30 ° C. as shown in FIG. Furthermore, a reaction solution (100 ⁇ l) containing 5 mg / l C10G0077, 5 mM Compound II, 10 mM reduced glutathione, and 50 mM buffer (MES, MOPS, TAPS, CHES, and CAPS) adjusted to pH 5.6 to 10.4, 20
  • the optimum pH of C10G0077 was evaluated by reacting at 30 ° C. for 30 minutes. As a result, as shown in FIG. 15, the optimum pH was around 7-8.
  • the optimum temperature and optimum pH are based on values obtained by analyzing the concentration of guaiacol produced in the reaction solution after the reaction by reverse phase HPLC under the conditions described in Example 4.
  • Compound II has two optical isomers, a ⁇ R form and a ⁇ S form.
  • changes in the optical isomer composition of Compound II occurring before and after the reaction were analyzed by HPLC using a chiral column, Chiral Pack IE-3.
  • C10G0076 selectively acts on the ⁇ S form
  • C10G0077 selectively acts on the ⁇ R form.
  • C10G0076 and C10G0077 have reactivity with non-phenolic lignin model dimer compounds of Compound II, indicating that veratrylglycerol- ⁇ -guaiacyl ether (1- (3,4-dimethoxyphenyl) -2- Using (2-methoxyphenoxy) propane-1,3-diol; Compound V), confirmation was made as follows. Normal lignin has many non-phenolic structural units. Therefore, having the activity of decomposing compound V means that the enzyme has the activity of decomposing natural lignin.
  • N, N′-dimethylformamide (DMF) was used as a solvent instead of a phase transfer catalyst, and the aldol reaction conditions of HCHO were set to K 2 CO 2.
  • An improved method was used, such as in a 3- EtOH system.
  • the NMR spectrum of the product was consistent with Compound V data published by USDA. When the 1 H-NMR spectrum was calculated using the integral value of ⁇ -proton, the ratio of erythro isomer to threo isomer was about 1.1: 1.
  • C10G0076 0.1 ⁇ g, 1 mM Compound V and 2 mM reduced glutathione, 100 mM (pH 9.5) N-Cyclohexyl-2-aminoethanesulfonic acid-NaOH (CHES) buffer (pH 9.5) and 10% V / V DMF
  • the mixed solution was reacted at 30 ° C. for 15 minutes.
  • the reaction solution after the reaction was subjected to reverse phase HPLC analysis, decrease in Compound V and formation of guaiacol were observed. This revealed that C10G0076 has reactivity with non-phenolic lignin model dimer compounds.
  • Example 8. Identification of Compound III Generating Enzyme Using Compound II as a substrate, the reaction was carried out with the purified protein of C10G0075, C10G0076 and C10G0077 obtained in Example 3, or the combination of the purified protein of C10G0076, C10G0077 and C10G0078. As a result, it was found that compound III was produced from the reaction product of both combinations. Compound III showed a retention time consistent with the metabolite (3-hydroxy-1- (4-hydroxy-3-methoxyphenyl) -1-propanone) obtained when Compound I was added to the culture medium of MBES04 strain. .
  • the reaction solution was purified by a solid phase extraction method (OASIS WAX; manufactured by Waters) and subjected to reverse phase UPLC-time-of-flight accurate mass spectrometry under the conditions described in Example 4.
  • OASIS WAX solid phase extraction method
  • UPLC-time-of-flight accurate mass spectrometry under the conditions described in Example 4.
  • the analysis result of Compound III was This agreed well with the analysis result of 3-hydroxy-1- (4-hydroxy-3-methoxyphenyl) -1-propanone, which was the main product obtained when the MBES04 strain was cultured in a medium containing Compound I.
  • C10G0076 specifically recognizes ⁇ S form + C10G0075
  • C10G0076 specifically recognizes ⁇ S form + C10G0078
  • C10G0077 specifically recognizes ⁇ R form + C10G0075
  • C10G0077 specifically recognizes ⁇ R form + C10G0078
  • Example 9 Molecular weight of Compound III-producing enzyme
  • the molecular weight of C10G0078 was shown to be 33 kDa by SDS-PAGE.
  • the molecular weight of C10G0075 was shown to be 27 kDa by SDS-PAGE.
  • Example 10 Lignin degradation using Compound I degrading enzyme, Compound II degrading enzyme and Compound III producing enzyme (1)]
  • a compound having a phenylpropane structure was produced from the Casiogakuzu extract by the following procedure. 50 g of dried Casiogakuzu powder was suspended in 300 mL of dioxane and immersed for 6 days at room temperature. The solid content was removed by filtration from the obtained suspension with a filter paper to obtain a filtrate. The filtrate was dried under reduced pressure with an evaporator to obtain a casidioxane extract. Casidioxane extract was dissolved in DMF to a final concentration of 10% W / V. Using the obtained Casiogakuzu extract, a reaction solution having the following composition was prepared and reacted at room temperature for 24 hours.
  • reaction solution 50 ⁇ L was purified by a solid phase extraction method (OASISSWAX; manufactured by Waters) and dried under nitrogen gas. The residue after drying was dissolved in 0.5 mL of 20% V / V acetonitrile and subjected to reverse phase UPLC-time-of-flight accurate mass spectrometry under the conditions described in Example 4.
  • OASISSWAX solid phase extraction method
  • Example 11 Lignin degradation using Compound I degrading enzyme, Compound II degrading enzyme and Compound III producing enzyme (2)] Using the Casiogakuzu extract prepared in Example 10, a reaction solution having the following composition was prepared and reacted at room temperature for 16 hours.
  • any one of the combination purified enzymes C10G0069 protein concentration: 0.41 mg / mL shown in Table 3 1/20 volume Purified enzyme C10G0093 (protein concentration: 0.16 mg / mL) 1/20 volume purified enzyme C10G0076 (protein concentration: 0.29 mg / mL) 1/20 volume purified enzyme C10G0077 (protein concentration: 0.28 mg / mL) 1/20 volume purified enzyme C10G0075 (protein concentration: 0.62 mg / mL) 1/20 volume purified enzyme C10G0078 (protein concentration: 0.10 mg / mL) 1/20 volume reduced glutathione 5 mM NAD sodium salt 5mM
  • reaction solution 50 ⁇ L was purified by a solid phase extraction method (OASISSWAX; manufactured by Waters) and dried under nitrogen gas. The residue after drying was dissolved in 0.5 mL of 20% V / V acetonitrile and subjected to reverse phase UPLC-time-of-flight accurate mass spectrometry under the conditions described in Example 4.
  • OASISSWAX solid phase extraction method
  • Example 12 Lignin degradation using Compound I-degrading enzyme, Compound II-degrading enzyme and Compound III-producing enzyme (3)] 50 g of dried inarawa powder was suspended in a mixed solution of 300 mL of dioxane and 15 mL of water and immersed for 6 days at room temperature. After soaking, insoluble matters were filtered off from the suspension with a filter paper to obtain a filtrate. The filtrate was dried under reduced pressure with an evaporator and then dried with a desiccator to obtain 2.65 g of a solid. 50 ml of ethyl acetate and 70 ml of pure water were added to the solid to dissolve the solid. Furthermore, it melt
  • reaction solution 50 ⁇ L was purified by a solid phase extraction method (OASISSWAX; manufactured by Waters) and dried under nitrogen gas. The residue after drying was dissolved in 0.5 mL of 20% V / V acetonitrile and subjected to reverse phase UPLC-time-of-flight accurate mass spectrometry under the conditions described in Example 4.
  • OASISSWAX solid phase extraction method
  • Example 13 Lignin degradation using Compound I degrading enzyme, Compound II degrading enzyme and Compound III producing enzyme (4)]
  • a compound having a phenylpropane structure from a shiitake mushroom waste bed was produced by the following procedure. 10 g of dried shiitake mushroom bed powder was suspended in 100 mL of ion-exchanged water and immersed at room temperature for 3 hours. The solid content was filtered off from the obtained suspension with a filter paper to obtain a filtrate (water washing solution 1). The residue was suspended in 100 mL of isopropanol and immersed for 3 hours at room temperature. After soaking, the solid content was filtered off with a filter paper to obtain a filtrate (isopro solution 1 after washing with water).
  • Washing solution 1 after washing with water, 25 mL of isopropyl solution 1 and 90% isopropyl solution 1 were taken out and dried under reduced pressure while heating to 45 ° C. with an evaporator. 469, 55 and 247 mg of solids were obtained from Wash Solution 1, Washed Isopro Solution 1 and 90% Isopro Solution 1, respectively.
  • the solid substance obtained from Washing Solution 1 was dissolved in 2 mL (234.4 mg / mL) of water, and after washing, obtained from Isopro Solution 1 (27.4 mg / mL) and 90% Isopro Solution 1 (123.5 mg / mL). Each solid obtained was dissolved in 2 mL of DMF. Using these three kinds of dissolved extracts, a reaction solution having the following composition was prepared and reacted at room temperature for 24 hours.
  • Reaction solution composition (4) Shiitake waste bed extract (one of the above three extracts) 1/20 volume (The concentration of the dry solid contained in the reaction solution is 11.7 mg / mL when the washing solution 1 is used, 1.37 mg / mL when the isopropyl solution 1 is used after washing with water, and 6 when the 90% isopropyl solution 1 is used.
  • reaction solution 50 ⁇ L was purified by a solid phase extraction method (OASISSWAX; manufactured by Waters) and dried under nitrogen gas. The residue after drying was dissolved in 0.5 mL of 20% V / V acetonitrile and subjected to reverse phase UPLC-time-of-flight accurate mass spectrometry under the conditions described in Example 4.
  • OASISSWAX solid phase extraction method
  • Non-Patent Documents 4 to 12 described above are as follows. The description of the documents is incorporated herein by reference: Non-Patent Document 4: Besemer J et al .; Nucleic Acids Research, 2001, vol 29, p2607 Non-Patent Document 5: Masai, E .; S. Kubota. Y. Katayama, S .; Kawai, M .; Yamazaki, and N.K. Morohoshi. 1993. Biosci. Biotechnol. Biochem. 57: 1655-1659.
  • Non-Patent Document 6 Sato Y, Moriuchi H, Hisyama S, Otsuka Y, Oshima K, Kasai D, Nakamura M, Ohara S, Katayama Y, Fukuda M, Masai E. Appl Environ Microbiol. 2009; 75 (16): 5195-201.
  • Non-Patent Document 7 Masai, E .; Y. Katayama, S .; Kubota, S .; Kawai, M .; Yamazaki, and N.K. Morohoshi. 1993. FEBS Lett. 323: 135-140.
  • Non-Patent Document 8 Masai, E .; Y.
  • Non-Patent Document 9 Masai E, Ichimura A, Sato Y, Miyauchi K, Katayama Y, Fukuda M. et al. J Bacteriol. 2003 Mar; 185 (6): 1768-75.
  • Non-Patent Document 10 Hosoya et al .: Journal of the Wood Society of Japan 26 (2) 118-21, 1980
  • Non-Patent Document 11 Hishiyama et al: Tetrahedron Letters 53, 842-845, 2012
  • Non-Patent Document 12 K. Itoh: Mokuzai Gakashishi vol. 38, No. 6, 579-584 (1992)
  • sequences listed in the sequence listing are as follows: [SEQ ID NO: 1] C10G0069 MTQVKGRTAFITGGGSGVALGQAKVFARAGCKVAIADIRQDHLDEAMAWFEAENAKGANYEVMAVKLDITDREAYAKVADEVEAKLGPVELLFNTAGVSHFGAIQDATYDDWDWQIDVNLRGVINGVRTFVPRMIERGNGGHVVNTASMSAFVALKGTGIYCTTKMAVRGLTETLALDLEEHGIGVSLLCPGAVNTNIHEALLTRPKHLADTGYYQAGPEMFAHLKNVIECGMEPETLANHVLKAVEENQLYVLAYPEFRKPLEDIHARVMAALANPEDDPDYDRRVAHGVPGGEAKEEEKTA [SEQ ID NO: 2] C10G0093 MQDLPGKTAFVTGGASGIGLGIAKALLGAGMNVAIADIRQDHLDDAAAELDGGDKVLALQLDVTDRAAFAAAADATEAKFGKIHILCNNAGVAVVGPTD
  • 3-hydroxy-1- (4-hydroxy-3-methoxyphenyl) -1-propanone can be obtained from biomass containing natural lignin and lignin-related substances.
  • 3-Hydroxy-1- (4-hydroxy-3-methoxyphenyl) -1-propanone can be converted into various industrially useful compounds, for example, raw materials for resins, adhesives, resist materials, pharmaceuticals, etc. It can be used as a raw material for a production method of 1- (4-hydroxy-3-methoxyphenyl) -1,3-propanediol and the like that can be expected to be used as

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本発明の目的は、従前の方法と比較して、酵素を作用させることにより、リグニンを含む天然バイオマスからフェニルプロパン構造を有する化合物を特異的かつ効率的に生産する方法を提供することにある。 上記目的は、リグニン及び/又はリグニン関連物質を含むバイオマスに、NAD及び還元型グルタチオンの存在下で、ノボスフィンゴビウム(Novosphingobium)属微生物に由来する酵素を作用させることにより、フェニルプロパン系化合物を得る工程を含む、フェニルプロパン系化合物の製造方法により解決される。

Description

酵素を利用したフェニルプロパン系化合物の製造方法 関連出願の相互参照
本出願は、2014年2月10日出願の日本特願2014-023843号の優先権を主張し、その全記載はここに開示として援用される。
本発明は、酵素を利用してリグニンやリグニン関連物質を含むバイオマスからフェニルプロパン構造を有する化合物を特異的に生産する方法及びそのための酵素に関する。
リグニンは植物の維管束細胞壁成分として存在する無定形高分子物質であって、フェニルプロパン系の構成単位が複雑に縮合したものであり、メトキシ基を含有することが化学構造上の大きな特徴になっている。リグニンは木質化した植物細胞を相互に膠着し、組織を強化する働きをしており、木材中に18~36%、草本中には15~25%存在する。そこで、木材を有効利用するために、リグニンを分解し、有用化合物を得ようとする試みが種々なされている。
一方、フェニルプロパン系化合物としては、例えば、クマル酸、ケイ皮酸、コーヒー酸(3,4-ジヒドロキシケイ皮酸)、オイゲノール、アネトール、コニフェリルアルコール、シナピルアルコール、フェルラ酸などが知られている。フェニルプロパン系化合物は、工業分野においては、香水、香料、精油、殺菌剤、麻酔薬、抗酸化剤などの医薬品や機能性食品及びそれらの合成中間体となる有用な化合物群である。
例えば、木材、イナワラなどのリグノセルロース物質に含まれるリグニンを、高温高圧処理によりガス化する方法(下記特許文献1及び2を参照、該文献の記載はここに開示として援用される)、加圧熱水法(下記特許文献3を参照、該文献の記載はここに開示として援用される)などの物理化学的な方法によって、非特異的に低分子化する方法が知られている。しかしながら、これらの手法では、リグニンから特定の化合物を製造することは非常に困難である。これらの方法を採用すると、リグニンの持つ単位構造であり、ベンゼン環骨格に直接結合する炭素側鎖の炭素数が3個であるフェニルプロパン系化合物はさらに低分子化される。すなわち、グアイアコール(グアヤコール)、シリンゴールなどのベンゼン環骨格に直接結合する炭素側鎖の炭素数が0個のフェノール類や、バニリン、シリンガアルデヒドなどのベンゼン環骨格に直接結合する炭素側鎖の炭素数が1個のフェニルメタン化合物などに非特異的に変換される。また、分解生成物は多種多様な成分が混在しており、フェニルプロパン系化合物のみを取得することは非常に困難であり、特異的に製造することができない。また、これらの物理化学的な方法を採用する場合、これらの方法を実施するためには多くのエネルギーや特別な装置が必要である。
そこで、リグニンを生物学的に処理してリグニン分解物を得ようとする試みがなされている。例えば、リグノセルロース物質に白色腐朽菌を接種及び培養することによってリグニンを分解する方法が知られている(下記特許文献4を参照、該文献の記載はここに開示として援用される)。
ところで、天然リグニン中にはβ-アリールエーテル型結合が約50%存在していることから、β-アリールエーテル型結合を分解し得るか否かは、天然リグニンの分解において重要な意義をもつ。このβ-アリールエーテル型結合の特異的な分解酵素を生産する微生物としては、スフィンゴビウム(Sphingobium)属細菌(下記特許文献5及び非特許文献1を参照、該文献の記載はここに開示として援用される;ただし、非特許文献1には「シュードモナス(Pseudomonas)属細菌」として記載されている)、ブレバンディモナス(Brevundimonas)属細菌(下記特許文献6を参照、該文献の記載はここに開示として援用される)及びシュードモナス属細菌(下記非特許文献2を参照、該文献の記載はここに開示として援用される)が知られている。
特許文献4~6及び非特許文献1~2には、スフィンゴビウム属細菌、ブレバンディモナス属細菌及びシュードモナス属細菌並びにこれらの微生物によって生産されるβ-アリールエーテル切断酵素によって、リグニンのモデル化合物であるグアイアシルグリセロール-β-グアイアシルエーテル又は3-ヒドロキシ-2-(2-メトキシフェノキシ)-1-(3-メトキシ-4-ヒドロキシフェニル)-1-プロパノンのβ-アリールエーテル切断によってフェニルプロパン系化合物を生産する方法が記載されている。
また、下記非特許文献3(該文献の記載はここに開示として援用される)には、スフィンゴビウム属細菌由来のβ-アリールエーテル型結合分解酵素を用いて、グアイアシルグリセロール-β-グアイアシルエーテルからフェニルプロパン系化合物を生産しようとする場合、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子及び該炭素原子に結合するアルコール性ヒドロキシ基に作用してカルボニル基を形成する第1の反応;生じたカルボニル化合物内に存在するβ-O-4位のエーテル結合を開裂させる第2の反応;並びに、第2の反応で生じたグルタチオン含有中間体からグルタチオンを除去する第3の反応の3段階の酵素逐次反応を経ることによって、フェニルプロパン系化合物を製造することができることが記載されている。
特開2012-140346号公報 特開2012-50924号公報 特開2010-239913号公報 特開昭50-46903号公報 特開平5-336976号公報 特開2002-34557号公報
FEBS Lett.249(2),1989,pp.348-352 Mokuzai Gakkaishi,Vol.31(11),1985,pp.956-958 Biosci Biotechnol Biochem.2011;75(12):2404-7
特許文献4に記載の方法によれば、微生物の作用によってリグニンを分解し得る可能性がある。しかし、特許文献4に記載の白色腐朽菌や白色腐朽菌が産生するリグニン分解酵素をリグノセルロース物質に作用させた場合、これらのリグニン分解反応の特異性が非常に低いことから、構造に統一性がない生成物ができるばかりか、主として生成物による重合反応が進行する。したがって、特許文献4に記載の方法は、反応生成物が工業原料としての利用性に欠けるという問題を有する。
特許文献5~6及び非特許文献1~3に記載の方法は、リグニンのモデル化合物から、微生物やその生産酵素を利用して、フェニルプロパン系化合物を製造する方法である。しかし、これらの文献には、天然のバイオマスから、微生物や酵素を作用させることによって、フェニルプロパン系化合物を得たとする記載はない。特に、特許文献5に記載の酵素だけでは、フェニルプロパン系化合物を生産することはできない。また、非特許文献1に記載の微生物はグアイアシルグリセロール-β-グアイアシルエーテルを完全に分解して資化する、すなわちCOにまで分解することから、フェニルプロパン系化合物を生産することはできない。
グアイアシルグリセロール-β-グアイアシルエーテルのように、β-アリールエーテル型結合のうちα位の炭素にOH基が結合した構造は天然のバイオマスに多く見られることから、特許文献6に記載の微生物やその生産酵素を用いて天然のバイオマスを分解することは非常に困難なことである。すなわち、ブレバンディモナス属細菌由来のβ-アリールエーテル型結合分解酵素を用いても、グアイアシルグリセロール-β-グアイアシルエーテルからはフェニルプロパン系化合物を生産することができない。よって、特許文献6に記載の酵素は、β-アリールエーテル型結合のうち、Cα位の炭素がカルボニル基を構成しない場合が多い天然のバイオマスにはほとんど作用することができないという問題がある。
さらに、特許文献6には、ブレバンディモナス属細菌由来のβ-アリールエーテル型結合分解酵素は、1-(4-ベンジロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンのアリールグリセロール-β-アリールエーテル型結合(特許文献6に記載の化合物IX)を特異的かつ還元的に切断し、β-アリールエーテル型結合におけるアリールグリセロール部分の遊離フェノール性水酸基の有無に関わらず、β-アリールエーテル型結合を切断するという記載がある。しかし、その活性は1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンに対する活性の100分の1であり、到底十分な活性とはいえない。
また、特許文献6に記載の酵素を培養によって生産するためには、誘導物質を添加するなど、煩雑な培養条件設定が必要である。該酵素を一般的な組み換え宿主を使用して大量生産するための酵素遺伝子情報は得られていない。特許文献6において、ブレバンディモナス属細菌由来のβ-アリールエーテル型結合分解酵素が作用する1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オン及びその誘導体である1-(4-ベンジロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンには2種の光学異性体が存在するところ、各光学異性体に対する酵素活性についてはなんら記載がない。
また、非特許文献2に記載の微生物は、グアイアシルグリセロール-β-グアイアシルエーテルを代謝することが可能であるとしても、生成されるフェニルプロパン系化合物がさらに代謝され、別の化合物へと変換されるため、生成物の収率は非常に低くなる。
非特許文献3に記載の酵素は、4種類の光学異性体(αS,βR;αR,βS;αR,βR;αS,βS)が存在するグアイアシルグリセロール-β-グアイアシルエーテルのうち、αR,βS体及びαS,βS体のグアイアシルグリセロール-β-グアイアシルエーテルのみを出発原料とすることができるが、αS,βR体及びαR,βR体を出発原料とすることはできない。その結果として、得られるフェニルプロパン系化合物の収量が低くなるという問題がある。さらに非特許文献3に記載の酵素が作用する基質については、遊離フェノール性水酸基を有する化合物の分解のみが知られており、遊離フェノール性水酸基を有しない化合物については非特許文献3において記載がない。
そこで、本発明が解決しようとする課題は、特許文献5~6及び非特許文献1~3に記載の方法と比較して、酵素を作用させることにより、リグニンを含む天然バイオマスからフェニルプロパン構造を有する化合物を特異的かつ効率的に生産する方法を提供することにある。
本発明者らは、上記課題を解決するために鋭意研究を積み重ね、深海沈木から単離したリグニン分解微生物であるノボスフィンゴビウム・エスピー MBES04株のゲノム配列情報を解読し、その情報からリグニンを含む天然バイオマスからフェニルプロパン構造を有する化合物を特異的に生産することに関与する一連の酵素の遺伝子群を取得することに成功した。さらに取得した遺伝子群から組換え酵素群を作製し、リグニン含有バイオマスを基質としてこれらの酵素群の分解様式を解析した結果、フェニルプロパン系化合物を特異的かつ高収率で生産することができる酵素6種を見出した。本発明はこのような成功例や知見に基づいて完成するに至った発明である。
したがって、本発明によれば、リグニン及び/又はリグニン関連物質を含むバイオマスに、NAD及び還元型グルタチオンの存在下で、ノボスフィンゴビウム(Novosphingobium)属微生物に由来する酵素を作用させることにより、フェニルプロパン系化合物を得る工程を含む、フェニルプロパン系化合物の製造方法が提供される。
好ましくは、本発明の製造方法において、前記フェニルプロパン系化合物が、3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノン、3-ヒドロキシ-1-(4-ヒドロキシ-3、5-ジメトキシフェニル)-1-プロパノン及び3-ヒドロキシ-1-(4-ヒドロキシフェニル)-1-プロパノンからなる群から選ばれる一種である。
好ましくは、本発明の製造方法において、前記フェニルプロパン系化合物が、3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンである。
好ましくは、本発明の製造方法において、前記ノボスフィンゴビウム属微生物が、ノボスフィンゴビウム・スピーシーズ(Novosphingobium sp.) MBES04(受託番号:NITE P-01797)である。
好ましくは、本発明の製造方法において、前記酵素が、下記(1)及び(2)、並びに(3)及び/又は(4)に記載の酵素の組み合わせである。
(1)Rossmann-fold NAD(P)(+)結合タンパク質スーパーファミリーに属し、かつ、PRK06194のマルチドメインを有する、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化するShort-chain dehydrogenase/reductase
(2)Gst並びにN末端側にPRK15113及びmaiAのマルチドメインを有する、glutathione S-transferase
(3)Gst及びN末端側にPRK10387及びmaiAのマルチドメインを有する、glutathione S-transferase
(4)Gst、PRK11752、PRK15113及びmaiAのマルチドメインを有する、glutathione S-transferase
好ましくは、本発明の製造方法において、前記(1)の酵素が、配列表の配列番号1に記載のアミノ酸配列を有するC10G0069又は配列表の配列番号2に記載のアミノ酸配列を有するC10G0093であり;前記(2)の酵素が、配列表の配列番号3に記載のアミノ酸配列を有するC10G0076又は配列表の配列番号4に記載のアミノ酸配列を有するC10G0077であり;前記(3)の酵素が、配列表の配列番号5に記載のアミノ酸配列を有するC10G0078であり;及び、前記(4)の酵素が、配列表の配列番号6に記載のアミノ酸配列を有するC10G0075である。
本発明の別の側面によれば、リグニン及び/又はリグニン関連物質を含むバイオマスに、NADの存在下で、ノボスフィンゴビウム(Novosphingobium)属微生物に由来する下記(1)の酵素を作用させることにより、カルボニルフェニル系化合物を得る工程を含む、カルボニルフェニル系化合物の製造方法が提供される。
(1)Rossmann-fold NAD(P)(+)結合タンパク質スーパーファミリーに属し、かつ、PRK06194のマルチドメインを有する、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化するShort-chain dehydrogenase/reductase
好ましくは、本発明の製造方法において、前記(1)の酵素が配列表の配列番号1に記載のアミノ酸配列を有する C10G0069又は配列表の配列番号2に記載のアミノ酸配列を有するC10G0093である。
本発明の別の側面によれば、ノボスフィンゴビウム(Novosphingobium)属微生物に由来する、Rossmann-fold NAD(P)(+)結合タンパク質スーパーファミリーに属し、かつ、PRK06194のマルチドメインを有する、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化するShort-chain dehydrogenase/reductaseが提供される。
好ましくは、本発明の酵素において、前記Short-chain dehydrogenase/reductaseは、SDS-PAGEで確認できる分子量が34kDaであり;最適pHが8.5~9.5であり;かつ、最適温度が10~15℃である。
好ましくは、本発明の酵素において、前記Short-chain dehydrogenase/reductaseは、SDS-PAGEで確認できる分子量が34kDaであり;最適pHが8.5~10.5であり;かつ、最適温度が25~30℃である。
好ましくは、本発明の酵素において、前記Short-chain dehydrogenase/reductaseが、配列表の配列番号1に記載のアミノ酸配列を有する C10G0069又は配列表の配列番号2に記載のアミノ酸配列を有するC10G0093である。
本発明の製造方法や酵素によれば、農業廃棄物や木材などの天然物に由来するリグニンやリグニン関連物質を含むバイオマスからフェニルプロパン構造を有する有用化合物を特異的かつ効率的に製造することができる。
図1は、本発明の製造方法で用いられる酵素群の一態様と、作用する基質の光学異性体との関係を模式化した図である。 図2は、c10g0069遺伝子がコードするアミノ酸配列をクエリーとしてDELTA-BLASTサーチを行った結果を示した図である。 図3は、c10g0093遺伝子がコードするアミノ酸配列をクエリーとしてDELTA-BLASTサーチを行った結果を示した図である。 図4は、c10g0076遺伝子がコードするアミノ酸配列をクエリーとしてDELTA-BLASTサーチを行った結果を示した図である。 図5は、c10g0077遺伝子がコードするアミノ酸配列をクエリーとしてDELTA-BLASTサーチを行った結果を示した図である。 図6は、c10g0078遺伝子がコードするアミノ酸配列をクエリーとしてDELTA-BLASTサーチを行った結果を示した図である。 図7は、c10g0075遺伝子がコードするアミノ酸配列をクエリーとしてDELTA-BLASTサーチを行った結果を示した図である。 図8は、C10G0069の最適温度を評価した結果を示した図である。 図9は、C10G0069の最適pHを評価した結果を示した図である。 図10は、C10G0093の最適温度を評価した結果を示した図である。 図11は、C10G0093の最適pHを評価した結果を示した図である。 図12は、C10G0076の最適温度を評価した結果を示した図である。 図13は、C10G0076の最適pHを評価した結果を示した図である。 図14は、C10G0077の最適温度を評価した結果を示した図である。 図15は、C10G0077の最適pHを評価した結果を示した図である。
以下、本発明の詳細について説明する。
本発明の製造方法は、リグニン及び/又はリグニン関連物質を含むバイオマスに、NAD及び還元型グルタチオンの存在下で、ノボスフィンゴビウム(Novosphingobium)属微生物に由来する酵素を作用させることにより、フェニルプロパン系化合物を得る工程を含む、フェニルプロパン系化合物の製造方法である。
本発明の製造方法では、バイオマス中のリグニン及びリグニン関連物質が、ノボスフィンゴビウム属微生物に由来する酵素の作用を受けることにより、3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノン、3-ヒドロキシ-1-(4-ヒドロキシ-3、5-ジメトキシフェニル)-1-プロパノン、3-ヒドロキシ-1-(4-ヒドロキシフェニル)-1-プロパノンなどのフェニルプロパン系化合物が生成される。
本発明の製造方法で得られるフェニルプロパン系化合物は、フェニルプロパン構造を有する化合物であれば特に限定されず、例えば、下記一般式(A)
Figure JPOXMLDOC01-appb-C000001
        (A)
(式中、Rは1個又は2個以上の炭素数が1~5であるアルキル基、アルコキシ基又は水素原子を示す。)
で表わされる、1位の位置にカルボニル基を有し、かつ、3位及びフェニル基の4位にヒドロキシ基を有する化合物であり、より具体的には3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノン、3-ヒドロキシ-1-(4-ヒドロキシ-3、5-ジメトキシフェニル)-1-プロパノン又は3-ヒドロキシ-1-(4-ヒドロキシフェニル)-1-プロパノンであり、好ましくは3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンである。
これらのうち、例えば、3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンは、下記式(I)の構造からなる。
Figure JPOXMLDOC01-appb-C000002
       (I)
3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンは、例えば、逆相HPLCにより、定性及び定量的に分析できる。逆相HPLCの条件は、例えば、オクタデシルシリル基修飾シリカゲルカラム(ODSカラム)を用いて、溶離液A(2mM 酢酸アンモニウム、0.05%V/V ギ酸)及び溶離液B(100%V/V メタノール)を用いて、カラム温度を40℃、流速を1.2ml/minと設定して、溶離液A 90%V/V及び溶離液B 10%V/Vの混合溶液を1分間送液した後、溶離液Bを10%V/V~95%V/Vのグラジェントで7分間送液する。この条件により、3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンは、UV検出器(270nm)を用いることにより、保持時間4.5分付近のピークとして検出できる。3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンの標準品を用いれば、検量線法や内標準法などにより、定量することが可能である。
本発明の製造方法では、リグニン、リグニン関連物質又はこの両方を含むバイオマスを原料として用いる。リグニンは、当業界において通常知られるものであれば特に限定されないが、例えば、植物の維管束に存在し、主として下記式(B)~(D)として示す3種のフェニルプロパノイドを構成単位として複雑に重合した樹枝状構造を有するものとして知られているものである。
Figure JPOXMLDOC01-appb-C000003
    (B)
Figure JPOXMLDOC01-appb-C000004
    (C)
Figure JPOXMLDOC01-appb-C000005
    (D)
リグニン関連物質は、リグニンから誘導される物質であれば特に限定されず、例えば、リグニンの分解物やリグニンを処理して得られる物質に加えて、リグニンのモデル化合物とされている物質、例えば、グアイアシルグリセロール-β-グアイアシルエーテルなどを含む。バイオマスは、リグニン、リグニン関連物質又はこの両方を含むものであれば特に限定されず、例えば、草や木などの天然物、これら天然物に処理を加えて得られるもの、農業廃棄物などが挙げられる。
リグニン及び/又はリグニン関連物質を含むバイオマス(以下、リグニン含有バイオマスともよぶ。)は、前処理の有無などによって、例えば、固体状、懸濁状、液体状などであり得る。例えば、リグニン含有バイオマスを粉砕したものを液体に加えて得られる懸濁液とすることもできる。
また、リグニン含有バイオマスは、リグニン抽出物であってもよい。リグニン抽出物としては、例えば、リグニン含有バイオマスの粉末化したものを、0.1%W/V~50%W/V、好ましくは1%W/V~20%W/Vとなるように、リグニンの抽出に適した溶媒中に懸濁して懸濁液とし、この懸濁液を10℃~150℃、好ましくは20℃~130℃、より好ましくは20℃~80℃で、数時間~数日間、好ましくは1時間~6日間の抽出処理に供し、次いで抽出処理液から固形分を除いた液体状のリグニン抽出物、又は液体状のリグニン抽出物から溶媒を留去し、乾固することにより得られる固体状のリグニン抽出物などが挙げられる。
リグニンの抽出に適した溶媒は特に限定されず、例えば、水、ジオキサン、メタノール、イソプロパノールなどの低分子アルコール類、ジメチルホルムアミドなどが挙げられ、好ましくは水及びジオキサンである。
本発明の製造方法では、リグニン含有バイオマスからフェニルプロパン系化合物を得るために、ノボスフィンゴビウム属微生物に由来する酵素を用いる。ノボスフィンゴビウム属微生物は、ノボスフィンゴビウム(Novosphingobium)属、別名としてスフィンゴモナス(Sphingomonas)属に属する、0.3~0.8×2~3μmのグラム陰性桿菌であれば特に限定されないが、例えば、各種芳香族化合物を分解することが知られているノボスフィンゴビウム属微生物である。本発明の製造方法において用いられるノボスフィンゴビウム属微生物の好ましい具体例は、ノボスフィンゴビウム・スピーシーズ(Novosphingobium sp.) MBES04(以下、MBES04株ともよぶ。)である。
MBES04株は、微生物の識別の表示を「Novosphingobium sp.MBES04」とし、かつ、受託番号を「NITE P-01797」として、独立行政法人製品評価技術基盤機構の特許微生物寄託センター(〒292-0818 千葉県木更津市かずさ鎌足2-5-8)に2014年1月30日付けの受領日により寄託されている。また、ノボスフィンゴビウム・スピーシーズ MBES04は、独立行政法人製品評価技術基盤機構の特許微生物寄託センターにおいて、2015年2月 9日付けの受領日により、国内寄託から国際寄託へ移管されている(受領番号:NITE ABP-01797)。
本発明の製造方法では、ノボスフィンゴビウム属微生物に由来する2種以上の酵素を組み合わせて用いることが好ましい。具体例として、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化する酵素;1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンのβ位の炭素原子におけるアリールグリセロール-β-アリールエーテル型結合を還元的に切断する酵素;及びβ位の炭素原子に還元部位を有する3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンの該還元部位を脱離する酵素の3種類の酵素の組み合わせが挙げられる。
グアイアシルグリセロール-β-グアイアシルエーテル、1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オン及びβ位の炭素原子に還元部位を有する3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンの構造を下記(E)~(G)に示す。
Figure JPOXMLDOC01-appb-C000006
(E)
Figure JPOXMLDOC01-appb-C000007
(F)
Figure JPOXMLDOC01-appb-C000008
(G)
(式中、Rは還元部位を示す。)
グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化する酵素は、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子、該α位の炭素原子に結合するヒドロキシ基又はその両方に作用して、この部位でカルボニル基を形成させて、1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンを生成させることができる酵素である。1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンのβ位の炭素原子におけるアリールグリセロール-β-アリールエーテル型結合を還元的に切断する酵素は、1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンのβ位の炭素原子におけるアリールグリセロール-β-アリールエーテル型結合に作用して、アリールエーテルと還元剤とを置換することにより、β位の炭素原子に還元部位を有する3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンを生成させることができる酵素である。β位の炭素原子に還元部位を有する3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンの該還元部位を脱離する酵素は、β位の炭素原子に存在する還元部位に作用して、この還元部位を脱離することによって、3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンを生成させることができる酵素である。
これらの酵素を取得する方法は特に限定されないが、例えば、ノボスフィンゴビウム属微生物から得た酵素抽出液やその分画液を用いて、各酵素の基質に作用させることにより、基質量の減少や生成物の存在を確認することで、上記酵素のいずれか又はその混合物を得ることができる。
グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化する酵素は、上記した作用を有するノボスフィンゴビウム属微生物に由来する酵素であれば特に限定されないが、例えば、Rossmann-fold NAD(P)(+)結合タンパク質スーパーファミリーに属し、かつ、PRK06194のマルチドメインを有するShort-chain dehydrogenase/reductaseが挙げられる。また、該Short-chain dehydrogenase/reductaseの具体的な例は、配列表の配列番号1に記載のC10G0069及び配列表の配列番号2に記載のC10G0093である。PRK06194マルチドメインは、PSSM-Idが180458である、hypothetical protein;Provisional中によく見出されるアミノ酸配列である。PRK06194のE-valueは、C10G0069に対して1.33e-66、C10G0093に対して1.35e-68である。本明細書で「マルチドメインを有する」とは、マルチドメインそのもののアミノ酸配列を有することに加えて、マルチドメインの一部のアミノ酸配列をN末端側又はC末端側などに有すること、マルチドメインと近似するアミノ酸配列を有することなどを意味する。
C10G0069及びC10G0093Cの理化学的性質は以下のとおりである。すなわち、C10G0069及びC10G0093CはNAD+の存在下で、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化する。一方、これらの酵素は、NADH存在下では、1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンのα位のカルボニル残基を還元して、ヒドロキシ基を与え得る。ただし、NADP+及びNADPHの存在下では活性を示さない。そこで、本発明の製造方法では、NADの存在下で酵素反応が実施される。C10G0069の最適pHは8.5~9.5であり;及び、最適温度は10~15℃である。C10G0093の最適pHは8.5~10.5であり;及び、最適温度は25~30℃である。なお、本明細書でいう最適pH及び最適温度は、後述する実施例にて測定した結果のうち、目的産物の最も高い値から概ね80%程度以上の値を示すpH及び温度の範囲である。
グアイアシルグリセロール-β-グアイアシルエーテルには、α位及びβ位の炭素原子が不斉炭素であることから、αS,βR(SR);αR,βS(RS);αR,βR(RR);αS,βS(SS)という4種類の光学異性体が存在する。これらのうち、C10G0069は、グアイアシルグリセロール-β-グアイアシルエーテルのRS体及びRR体の2つの光学異性体に特異的に反応し、C10G0093はそのSR体及びSS体の2つの光学異性体に特異的に反応する。
本発明の製造方法で用いられるグアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化する酵素は、上記したC10G0069又はC10G0093の理化学的性質を有するものであれば特に限定されず、例えば、配列表の配列番号1又は2に記載のアミノ酸配列と類似するアミノ酸配列を有する、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化する酵素が挙げられる。
このような酵素としては、例えば、配列表の配列番号1又は2に記載のアミノ酸配列において1から数個のアミノ酸の欠失、置換又は付加を有するアミノ酸配列を含むグアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化する酵素や配列表の配列番号1又は2に記載のアミノ酸配列と90%以上の同一性を有するアミノ酸配列を含むグアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化する酵素が挙げられる。
ここで、アミノ酸配列の「1から数個のアミノ酸の欠失、置換又は付加」における「1から数個」の範囲は、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化する作用を示す範囲であれば特に限定されないが、例えば、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19又は20個、好ましくは1、2、3、4又は5程度を意味する。また、「アミノ酸の欠失」とは配列中のアミノ酸残基の欠落若しくは消失を意味し、「アミノ酸の置換」は配列中のアミノ酸残基が別のアミノ酸残基に置き換えられていること、及び「アミノ酸の付加」とは配列中に新たなアミノ酸残基が付け加えられていることをそれぞれ意味する。
「1から数個のアミノ酸の欠失、置換又は付加」の具体的な態様としては、1から数個のアミノ酸が別の化学的に類似したアミノ酸で置き換えられた態様がある。例えば、ある疎水性アミノ酸を別の疎水性アミノ酸に置換する場合、ある極性アミノ酸を同じ電荷を有する別の極性アミノ酸に置換する場合などを挙げることができる。このような化学的に類似したアミノ酸は、アミノ酸毎に当該技術分野において知られている。具体例を挙げると、非極性(疎水性)アミノ酸としては、アラニン、バリン、イソロイシン、ロイシン、プロリン、トリプトファン、フェニルアラニン、メチオニンなどが挙げられる。極性(中性)アミノ酸としては、グリシン、セリン、スレオニン、チロシン、グルタミン、アスパラギン、システインなどが挙げられる。陽電荷をもつ(塩基性)アミノ酸としては、アルギニン、ヒスチジン、リジンなどが挙げられる。また、負電荷をもつ(酸性)アミノ酸としては、アスパラギン酸、グルタミン酸などが挙げられる。
また、アミノ酸配列における「同一性」(Identity)は、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化する作用を示す範囲であれば特に限定されないが、例えば、配列表の配列番号1又は2に記載のアミノ酸配列とアラインメントした場合の配列間の同一性が90%以上であり、好ましくは95%以上であり、より好ましくは97%以上であり、さらに好ましくは98%以上であり、なおさらに好ましくは99%以上である。アミノ酸配列の同一性を求める方法は特に限定されないが、例えば、通常知られる方法を利用して、配列表の配列番号1又は2に記載のアミノ酸配列と対象となるアミノ酸配列とをアラインメントし、両者の配列の一致率を計算することにより求められる。
C10G0069又はC10G0093の分子量はSDS-PAGEで34kDaである。なお、本明細書では、分子量は大腸菌組換えタンパク質についての分子量を表わす。そこで、配列表の配列番号1又は2に記載のアミノ酸配列と類似するアミノ酸配列を有する、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化する酵素の分子量は、C10G0069又はC10G0093の分子量と近似する分子量であり、例えば、SDS-PAGEで、30~40kDaであることが好ましく、32~36kDaであることがより好ましく、33~35kDaであることがさらに好ましく、34kDa付近であることがなおさらに好ましい。
グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化する酵素を取得する方法は限定されず、例えば、C10G0069又はC10G0093の酵素作用、基質(光学異性体)特異性、理化学的性質、分子量などを指標として、ノボスフィンゴビウム属微生物、例えば、深海(水面下200m以下の海)において、腐食が進んだ針葉樹沈木に生息するノボスフィンゴビウム属微生物を培養した培養上清中の酵素活性を調べるといったスクリーニング法を挙げることができる。また、例えば、配列表の配列番号1又は2の記載を参照して、物理化学的に合成してもよいし、遺伝子工学的に配列表の配列番号1又は2に記載のアミノ酸配列をコードする塩基配列を有する遺伝子から作成してもよい。なお、配列表の配列番号1及び2に記載のアミノ酸配列をコードする塩基配列からなる遺伝子は、それぞれ配列表の配列番号7及び8に記載したものである。例えば、配列番号7又は8に記載の塩基配列と薬剤耐性遺伝子などの外来遺伝子又は異種塩基配列とを含むベクターを導入して作製した形質転換体を利用することにより、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化する酵素を取得することができる。
1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンのβ位の炭素原子におけるアリールグリセロール-β-アリールエーテル型結合を還元的に切断し得る酵素は、上記した作用を有するノボスフィンゴビウム属微生物に由来する酵素であれば特に限定されないが、例えば、Gst並びにN末端側にPRK15113及びmaiAのマルチドメインを有する、glutathione S-transferaseが挙げられる。また、該glutathione S-transferaseの具体的な例は、配列表の配列番号3に記載のC10G0076及び配列表の配列番号4に記載のC10G0077である。Gstは、PSSM-Idが2223698である、glutathione S-transferaseによく見出されるアミノ酸配列である。PRK15113は、PSSM-Idが185068である、glutathione S-transferase;Provisionalによく見出されるアミノ酸配列である。maiAは、PSSM-Idが233333である、maleylacetoacetate isomerase中によく見出されるアミノ酸配列である。GstのE-valueは、C10G0076に対して4.21e-38であり、C10G0077に対して6.35e-11である。PRK15113のE-valueは、C10G0076に対して3.10e-16であり、C10G0077に対して4.58e-03である。maiAのE-valueは、C10G0076に対して8.01e-17であり、C10G0077に対して1.01e-05である。C10G0076は1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンのβS体に作用し、C10G0077は1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンのβR体に作用する。なお、配列表の配列番号3及び4に記載のアミノ酸配列をコードする塩基配列からなる遺伝子は、それぞれ配列表の配列番号9及び10に記載したものである。
β位の炭素原子に還元部位を有する3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンの該還元部位を脱離し得る酵素は、上記した作用を有するノボスフィンゴビウム属微生物に由来する酵素であれば特に限定されないが、例えば、Gst及びN末端側にPRK10387及びmaiAのマルチドメインを有する、glutathione S-transferaseやGst、PRK11752、PRK15113及びmaiAのマルチドメインを有する、glutathione S-transferaseが挙げられる。また、Gst及びN末端側にPRK10387及びmaiAのマルチドメインを有する、glutathione S-transferaseの具体的な例は、配列表の配列番号5に記載のC10G0078である。Gst、PRK11752、PRK15113及びmaiAのマルチドメインを有する、glutathione S-transferaseの具体的な例は、配列表の配列番号6に記載のC10G0075である。PRK10387は、PSSM-Idが236679である、glutaredoxin2;Provisional中によく見出されるアミノ酸配列である。PRK11752は、PSSM-Idが183298である、putative S-transferase;Provisional中によく見出されるアミノ酸配列である。GstのE-valueは、C10G0078に対して2.26e-14であり、C10G0075に対して5.08e-44である。maiAのE-valueは、C10G0078に対して9.25e-03であり、C10G0075に対して4.73e-09である。PRK10387のE-valueは、C10G0078に対して0.02である。PRK11752のE-valueは、C10G0075に対して5.41e-52である。PRK15113のE-valueは、C10G0075に対して1.11e-12である。C10G0078は1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンのβS体由来物に作用し、C10G0075は1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンのβS体由来物及びβR体由来物に作用する。なお、配列表の配列番号5及び6に記載のアミノ酸配列をコードする塩基配列からなる遺伝子は、それぞれ配列表の配列番号11及び12に記載したものである。
glutathione S-transferaseであるC10G0076及びC10G0077は、還元型グルタチオンが共存した場合にβ-O-4結合のグルタチオン添加開裂の活性を触媒するが、還元型グルタチオンが存在しない場合には活性を示さない。また、C10G0078及びC10G0075は、還元型グルタチオンが共存した場合にβ位の炭素原子に付加したグルタチオンを脱離する活性を触媒するが、還元型グルタチオンが存在しない場合にはその活性を示さない。そこで、本発明の製造方法では、還元型グルタチオンの存在下で酵素反応を実施する。
リグニン含有バイオマスにノボスフィンゴビウム属微生物由来の酵素を作用させることにより、フェニルプロパン系化合物が得られる。ここで、「酵素を作用させる」とは、例えば、各酵素が有する、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化する作用、1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンのβ位の炭素原子におけるアリールグリセロール-β-アリールエーテル型結合を還元的に切断する作用、β位の炭素原子に還元部位を有する3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンの該還元部位を脱離する作用を発揮させることを意味する。
C10G0069、C10G0093、C10G0076、C10G0077、C10G0078及びC10G0075は、上記したとおり、基質となる化合物の光学異性体によって使い分けられる。これらの酵素と作用する光学異性体との関係を模式化したものを図1とする。例えば、これらの酵素群の組み合わせとしては、以下の(1)~(21)の組み合わせが考えられる。
(1)C10G0069、C10G0076及びC10G0078
(2)C10G0069、C10G0076及びC10G0075
(3)C10G0069、C10G0076、C10G0078及びC10G0075
(4)C10G0069、C10G0077及びC10G0075
(5)C10G0093、C10G0076及びC10G0078
(6)C10G0093、C10G0076及びC10G0075
(7)C10G0093、C10G0076、C10G0078及びC10G0075
(8)C10G0093、C10G0077及びC10G0075
(9)C10G0069、C10G0076、C10G0077及びC10G0078
(10)C10G0069、C10G0076、C10G0077及びC10G0075
(11)C10G0069、C10G0076、C10G0077、C10G0078及びC10G0075
(12)C10G0093、C10G0076、C10G0077及びC10G0078
(13)C10G0093、C10G0076、C10G0077及びC10G0075
(14)C10G0093、C10G0076、C10G0077、C10G0078及びC10G0075
(15)C10G0069、C10G0093、C10G0076及びC10G0078
(16)C10G0069、C10G0093、C10G0076及びC10G0075
(17)C10G0069、C10G0093、C10G0076、C10G0078及びC10G0075
(18)C10G0069、C10G0093、C10G0077及びC10G0075
(19)C10G0069、C10G0093、C10G0076、C10G0077及びC10G0078
(20)C10G0069、C10G0093、C10G0076、C10G0077及びC10G0075
(21)C10G0069、C10G0093、C10G0076、C10G0077、C10G0078及びC10G0075
これらの酵素をリグニン含有バイオマスに作用させるに際して、例えば、これらの酵素の混合物を用いる場合は、C10G0069及びC10G0093を活性化するためのNAD及びC10G0076及びC10G0077を活性化するための還元型グルタチオンの存在下で、C10G0069、C10G0093、C10G0076、C10G0077、C10G0078及びC10G0075が活性を示すpH及び温度に設定することが好ましい。また、これらの酵素を別々に用いてもよいし、NAD及び還元型グルタチオンの添加タイミングを変えてもよい。例えば、NADの存在下でリグニン含有バイオマスにC10G0069及びC10G0093を作用させた後、還元型グルタチオンの存在下でC10G0076及びC10G0077並びにC10G0078及びC10G0075を順次作用させてもよい。酵素の作用時にpHの変動を抑えるために、作用系内に緩衝剤を添加することが好ましい。
酵素を作用させる際のリグニン、リグニン関連物質、緩衝剤、酵素、NAD、還元型グルタチオンなどの各成分の濃度や存在量は特に限定されず、適宜設定できる。また、リグニンやリグニン関連物質と酵素との接触頻度を高めるために、これらの混合物を撹拌や振とうなどしてもよい。作用時間はフェニルプロパン系化合物の生成が認められる時間であれば特に限定されず、例えば、数時間~数日間であり、酵素の力価などによって適宜設定することができる。具体的には、1時間~36時間程度又はそれ以上の時間である。
作用系において生成されたフェニルプロパン系化合物は、特別な処理を加えることなくそのままの状態で使用することができるが、例えば、作用後に固相抽出法やクロマトグラム法などの通常知られる芳香族化合物を精製する手段を採用して精製したものとすることができ、さらに溶媒を留去し乾燥させれば固体状のものとして得られる。
本発明の製造方法では、本発明の目的を達成し得る限り、上記した酵素作用工程の前段若しくは後段又は工程中に、種々の工程や操作を加入することができる。
本発明の製造方法の具体的態様は、例えば、以下のとおりである。
リグニン含有バイオマスをジオキサンや水などのリグニンを溶解するのに適した溶媒中に懸濁し、20℃~80℃にて数時間~数日間保温する。保温後の懸濁液から固形分を除去して、リグニン抽出液を得る。リグニン抽出液を乾固し、得られた乾固物を酢酸エチルやDMFなどの有機溶媒又は含水有機溶媒に溶解してリグニン抽出物とする。リグニン抽出物;グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化する酵素;1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンのβ位の炭素原子におけるアリールグリセロール-β-アリールエーテル型結合を還元的に切断する酵素;β位の炭素原子に還元部位を有する3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンの該還元部位を脱離する酵素、緩衝剤、NAD塩及び還元型グルタチオンを含む反応液を調製し、pH7~10、20~40℃で、数時間~数十時間反応させる。反応後の反応液から固相抽出法により精製し、不活性ガス下で乾固して、固体状のフェニルプロパン系化合物を得る。
本発明の製造方法によって得られたフェニルプロパン系化合物は、例えば、樹脂、接着剤、レジスト材料、医薬品などの原料又はその中間体として利用することができる。具体的には、本発明の製造方法によって3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンが得られる場合、該化合物は、1-(4-ヒドロキシ-3-メトキシフェニル)-1,3-プロパンジオールを経由して、医薬品、香料、食品材料などの原料として産業上有用なコニフェリルアルコールなどへと転換することができる。
本発明の別の側面によれば、リグニン及び/又はリグニン関連物質を含むバイオマスに、NADの存在下で、ノボスフィンゴビウム(Novosphingobium)属微生物に由来する下記(1)の酵素を作用させることにより、カルボニルフェニル系化合物を得る工程を含む、カルボニルフェニル系化合物の製造方法が提供される。
(1)Rossmann-fold NAD(P)(+)結合タンパク質スーパーファミリーに属し、かつ、PRK06194のマルチドメインを有する、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化するShort-chain dehydrogenase/reductase
カルボニルフェニル系化合物の確認方法は、例えば、1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンのHPLC分析条件を採用できる。具体的には、1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンは、例えば、逆相HPLCにより、定性及び定量的に分析できる。逆相HPLCの条件は、例えば、オクタデシルシリル基修飾シリカゲルカラム(ODSカラム)を用いて、溶離液A(2mM 酢酸アンモニウム、0.05%V/V ギ酸)及び溶離液B(100%V/V メタノール)を用いて、カラム温度を40℃、流速を1.2ml/minと設定して、溶離液A 90%V/V及び溶離液B 10%V/Vの混合溶液を1分間送液した後、溶離液Bを10%V/V~95%V/Vのグラジェントで7分間送液する。この条件により、3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンは、UV検出器(270nm)を用いることにより、保持時間6.5分付近のピークとして検出できる。1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オンの標準品を用いれば、検量線法や内標準法などにより、定量することが可能である。
上記(1)の酵素の好ましい態様は、配列表の配列番号1に記載のShort―chain dehydrogenase/reductase C10G0069及び配列表の配列番号2に記載のShort―chain dehydrogenase/reductase C10G0093である。
また、本発明の別の側面によれば、ノボスフィンゴビウム(Novosphingobium)属微生物に由来する、Rossmann-fold NAD(P)(+)結合タンパク質スーパーファミリーに属し、かつ、PRK06194のマルチドメインを有する、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化するShort-chain dehydrogenase/reductaseが提供される。
本発明の酵素の好ましい態様は、SDS-PAGEで確認できる分子量が34kDaであり;最適pHが8.5~9.5であり;かつ、最適温度が10~15℃であるShort-chain dehydrogenase/reductase、及びSDS-PAGEで確認できる分子量が34kDaであり;最適pHが8.5~10.5であり;かつ、最適温度が25~30℃であるShort-chain dehydrogenase/reductaseである。
本発明の具体的態様は、配列表の配列番号1に記載のShort―chain dehydrogenase/reductase C10G0069、及び配列表の配列番号2に記載のShort―chain dehydrogenase/reductase C10G0093である。
以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例に限定されるものではなく、本発明の課題を解決し得る限り、本発明は種々の態様をとることができる。
[実施例1.MBES04株遺伝子の検出]
5mM 硫酸マグネシウムを添加したLB培地(ベクトンディッキンソン社製)に、ノボスフィンゴビウム(Novosphingobium) MBES04株を接種し、30℃、120rpmで24時間振とう培養を行った。得られた培養液から8000rpm、5分間の遠心操作によりMBES04株菌体を得た。
得られた菌体からNucleoSpin PlantII Midiキット(タカラバイオ社製)を用いて総DNAを抽出した。抽出したDNAを用いて、8kb長のメイトペアライブラリーを作成し、ゲノムシークエンサー GS FLXシステム(ロシュ・ダイアグノティクス社製)を用いて配列の解析を行った。配列解析の結果、リード数142,389、平均長441.66bp 総塩基数62,888,162の配列データに係る塩基配列を得た。
得られた塩基配列を解析ソフトウエアNewbler 2.6(ロシュ・ダイアグノティクス社製)を用いてアセンブルした結果、平均長6434.5bpを持つ783個のコンティグが形成された。続いて、8kbのメイトペアライブラリーの両端シーケンス情報から、各コンティグの配列を精査して得られたメイトペア情報に基づきScaffoldを生成させたところ、総塩基数5,596,306から成る37個のSuperContigが得られた。さらにサンガー法を用いてゲノム配列の一部を再解析し、SuperContigを39個とした。得られた39個のSuperContigに含まれる全塩基配列を、GeneMarkS法(非特許文献4を参照)を用いて、39個のSuperContigに含まれる全塩基配列中にコードされる遺伝子領域、すなわちタンパク質をコードするオープンリーディングフレームに相当する領域を推定した。
[実施例2.リグニン分解酵素の探索]
SYK-6株がリグニン二量体モデル化合物であるグアイアシルグリセロール-β-グアイアシルエーテル(化合物I)を代謝する際の第一段階の反応、すなわち、化合物IのCα位の炭素原子に結合するヒドロキシ基の酸化を触媒する酵素として、LigD、LigL、LigN及びLigO(非特許文献5及び6を参照)並びにそれらをコードするligD遺伝子(YP_004833998)、ligL遺伝子(AB491221)、ligN遺伝子(AB491222)及びligO遺伝子(YP_004836720)が知られている。
そこで、実施例1により得られたMBES04株のゲノム配列情報から検出された全遺伝子をクエリーとして、SYK-6株由来のligD遺伝子、ligL遺伝子、ligN遺伝子及びligO遺伝子に相同性を示す遺伝子を、閾値:Coverage 50%<;Identity 25%<;Similarity 50%<;及びE-value <e5に基づいてBLAST相同性検索(blast 2.2.26; National Center for Biotechnology Information)を行った。
その結果、MBES04株のゲノム配列情報から、Short-chain dehydrogenase/reductaseとアノテーションされる配列を有するc01g1162遺伝子、c01g1324遺伝子、c10g0069遺伝子、c10g0080遺伝子、c10g0093遺伝子及びc10g0094遺伝子の計6つの遺伝子が見出された。
MBES04株由来の上記6遺伝子とSYK-6株由来のligD、ligL、ligN及びligOとの相同性に関する情報を表1に示した。
Figure JPOXMLDOC01-appb-T000009
MBES04株由来の6遺伝子:c01g1162遺伝子、c01g1324遺伝子、c10g0069遺伝子、c10g0080遺伝子、c10g0093遺伝子及びc10g0094遺伝子の塩基配列をクエリーとして相同性検索(BLASTn、http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome、Coverage 50%<)を行ったところ、最も配列一致性の高い遺伝子配列としてヒットしたものは、c01g1162遺伝子に対しては71%の一致性でパエニバシラス・スピーシーズ(Paenibacillus sp.)JDR-2株のゲノム上(CP001656.1)の4935562~4936300番の位置にあるshort-chain dehydrogenase/reductaseをコードすると推定される遺伝子;c01g1324遺伝子に対しては75%の一致性でノボスフィンゴビウム・スピーシーズ(Novosphingobium sp.)PP1Y株のゲノム上(FR856862.1)の1154509~1155339番の位置にあるshort-chain dehydrogenase/reductaseをコードすると推定される遺伝子;c10g0069遺伝子に対しては78%の一致性でノボスフィンゴビウム・スピーシーズ(Novosphingobium sp.)PP1Y株のゲノム上(FR856862.1)の1241135~1242028番の位置にあるshort-chain dehydrogenase/reductaseをコードすると推定される遺伝子;c10g0080遺伝子に対しては76%の一致性でノボスフィンゴビウム・スピーシーズ(Novosphingobium sp.)PP1Y株のゲノム上(FR856862.1)の1251645~1252546番の位置にあるshort-chain dehydrogenase/reductaseをコードすると推定される遺伝子;c10g0093遺伝子に対しては80%の一致性でノボスフィンゴビウム・アロマチシボランス(Novosphingobium aromaticivorans)DSM 12444株のゲノム上(CP000248.1)の843288~844180番の位置にあるshort-chain dehydrogenase/reductaseをコードすると推定される遺伝子;c10g0094遺伝子に対しては77%の一致性でノボスフィンゴビウム・スピーシーズ(Novosphingobium sp.)PP1Y株のゲノム上(FR856862.1)の1266103~1266974番の位置にあるshort-chain dehydrogenase/reductaseをコードすると推定される遺伝子であった。
上記6遺伝子のうち、c10g0069遺伝子及びc10g0093遺伝子がコードするアミノ酸配列を用いてDELTA-BLASTサーチ(National Center for Biotechnology Information、Domain Enhanced Lookup Time Accelerated BLAST)(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&PROGRAM=blastp&BLAST_PROGRAMS=deltaBlast)を行った。その結果、上記2遺伝子がコードするタンパク質は、いずれもRossmann-fold NAD(P)(+)結合タンパク質スーパーファミリーに属し、かつ、PRK06194のマルチドメインを有する、Short-chain dehydrogenase/reductaseであることがわかった(図2及び図3を参照)。
一方、SYK-6株が化合物Iを代謝する際の第2段階の反応、すなわち、1-(4-ヒドロキシ-3-メトキシフェニル)-3-ヒドロキシ-2-(2-メトキシフェノキシ)プロパン-1-オン(化合物II)のβ-O-4位のエーテル結合を開裂させる反応を触媒する酵素として、ligF遺伝子(YP_004833997)(非特許文献7を参照)及びligE遺伝子(YP_004833998)(非特許文献8を参照)が知られている。また、上記第2段階の反応で生じたグルタチオン含有中間体からグルタチオンを除去する第3段階の反応を触媒する酵素として、ligG遺伝子(YP_004833999)(非特許文献9を参照)が知られている。
そこで、実施例1により検出されたMBES04株のゲノム配列情報をクエリーとして、SYK-6株由来のligE遺伝子、ligF遺伝子及びligG遺伝子に相同性を示す遺伝子を、Coverage 50%<、Identity 25%<、Similarity 50%<、 E-value <e5を閾値としてBLAST相同性検索した。その結果、c10g0076遺伝子がligFに68%、c10g0077遺伝子がligEに80%、及びc10g0078遺伝子がligGに71%のIdentity(一致性)を示すことがわかった。
MBES04株由来の3遺伝子:c10g0076遺伝子、c10g0077遺伝子及びc10g0078遺伝子の塩基配列をクエリーとしてBLASTn相同性検索(Coverage 50%<)を行ったところ、最も一致性の高い遺伝子配列としてヒットしたものは、c10g0076遺伝子に対しては82%の一致性でノボスフィンゴビウム・スピーシーズ(Novosphingobium sp.)PP1Y株のゲノム上(FR856862.1)の1247655~1248381番の位置にあるglutathione S-transferase様タンパク質をコードすると推定される遺伝子;c10g0078遺伝子に対しては80%の一致性でノボスフィンゴビウム・スピーシーズ(Novosphingobium sp.)PP1Y株のゲノム上(FR856862.1)の1248451~1249198番の位置にあるglutathione S-transferase様タンパク質をコードすると推定される遺伝子;c10g0079遺伝子に対しては78%の一致性でノボスフィンゴビウム・スピーシーズ(Novosphingobium sp.)PP1Y株のゲノム上(FR856862.1)の1249325~1250064番の位置にあるglutathione S-transferaseファミリータンパク質をコードすると推定される遺伝子であった。
また、c10g0076遺伝子、c10g0077遺伝子及びc10g0078遺伝子がコードするアミノ酸配列を用いてDELTA-BLASTサーチ(National Center for Biotechnology Information、Domain Enhanced Lookup Time Accelerated BLAST)(http://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch&PROGRAM=blastp&BLAST_PROGRAMS=deltaBlast)を行った(図4~6を参照)。その結果、上記3遺伝子がコードするアミノ酸配列は、いずれもGlutathione S-transferaseと推定されるタンパク質に保存されているマルチドメインであるGst(COG0625)配列を有することが示唆された。また、c10g0076遺伝子及びc10g0077遺伝子がコードするアミノ酸配列は、N末端側にPRK15113及びmaiAのマルチドメインを有することがわかった。さらに、c10g0078遺伝子がコードするアミノ酸配列は、N末端側にPRK10387及びmaiAのマルチドメインを有することがわかった。
c10g0076遺伝子、c10g0077遺伝子及びc10g0078遺伝子は、互いに近接した遺伝子である。さらにc10g0076遺伝子に隣接したc10g0075遺伝子は、Glutathione S-transferaseと推定されるタンパク質を、c10g0076遺伝子、c10g0077遺伝子及びc10g0078遺伝子の3遺伝子がコードする向きとは反対向きにコードするものであった。c10g0075遺伝子の塩基配列をクエリーとしてBLASTn検索(Coverage50%<)を行ったところ、最も一致性の高い遺伝子配列としてヒットしたものは、79%の一致性でノボスフィンゴビウム・スピーシーズ(Novosphingobium sp.)PP1Y株のゲノム上(FR856862.1)の1246742~1247371番の位置にあるglutathione S-transferaseをコードすると推定される遺伝子であった。また、このc10g0075遺伝子がコードするアミノ酸配列をクエリーとしてDELTA-BLASTサーチを行ったところ、c10g0075遺伝子がコードするタンパク質は、Gst、PRK11752、PRK15113及びmaiAといった、Glutathione S-transferaseと推定されるタンパク質に保存されたマルチドメイン配列を有していることが示唆された(図7を参照)。
[実施例3.形質転換体を利用した酵素生産]
Short-chain dehydrogenase/reductaseとアノテーションされるMBES04株由来のc01g1162遺伝子、c01g1324遺伝子、c10g0069遺伝子、c10g0080遺伝子、c10g0093遺伝子及びc10g0094遺伝子の6遺伝子にコードされる各タンパク質;並びに、c10g0075遺伝子、c10g0076遺伝子、c10g0077遺伝子及びc10g0078遺伝子の4遺伝子にコードされる各タンパク質が化合物Iの代謝に関与することを確認するために、大腸菌を宿主として、これらの遺伝子がコードするタンパク質を組換え生産する形質転換体を作製した。
ここで、c01g1162遺伝子、c01g1324遺伝子、c10g0069遺伝子、c10g0080遺伝子、c10g0093遺伝子及びc10g0094遺伝子の6遺伝子にコードされる各タンパク質をC01G1162、C01G1324、C10G0069、C10G0080、C10G0093及びC10G0094と表記し;並びに、c10g0075遺伝子、c10g0076遺伝子、c10g0077遺伝子及びc10g0078遺伝子の4遺伝子にコードされる各タンパク質をC10G0075、C10G0076、C10G0077及びC10G0078と表記することにした。
プラスミドpRSETA(インビトロジェン社製)を鋳型とし表2に示すプライマーAとBを用いてPCR反応を行った。一方、表2に示すプライマーセット(CとD、EとF、GとH、IとJ、KとL、MとN、OとP、QとR、SとT、及びUとV)を用いて、MBES04株のゲノムDNAを鋳型として下記に示す条件に従ってPCR反応を行い、上記各遺伝子断片を増幅したcDNAを得た。
Figure JPOXMLDOC01-appb-T000010
PCR条件
1× PCR buffer (MgCl含有)200 μm dNTPs, 0.6 μm 27f, 0.6 μm 1525r, 1.4 U of LA Taq DNA (ポリメラーゼタカラバイオ社製)
サーマルサイクラー温度条件97℃ 2分、[97℃30秒、60℃1分、72℃90秒]×30サイクル、72℃ 5分 
表2に示すプライマーセットを用いたPCR反応により増幅された、pRSETAを鋳型として得られたDNA断片とMBES04株のゲノムDNAを鋳型として得られたDNA断片の各1種とを混合し、次いでIn fusion HDクローニングキット(タカラバイオ社製)を用いて連結することにより組換えプラスミドを得た。得られた組換えプラスミドを、遺伝子毎に、大腸菌(Stellar Competent cell)に導入することにより、形質転換した。
得られた形質転換体からプラスミドを調製し、プラスミド上の連結断片の塩基配列がMBES04株のゲノム上の遺伝子配列と完全に一致することを配列解析により確認した。塩基配列解析はBigDye(登録商標) Terminator v3.1 Cycle Sequencing Kit、v3.1(Applied Biosystems社製)ABI 3730 XL DNA Analyzer(Applied Biosystems社製)を用いた。続いて調製した各プラスミドを用いて、BL21DE3pLysE(ライフテクノロジー社製)を形質転換した。各形質転換体を用いて組換え酵素を生産させ、得られた組換え酵素をNi-アガロース担体を用いて精製した。
[実施例4.化合物I分解酵素の同定]
化合物Iの合成は、非特許文献10に記載の方法に準じて行った。得られた合成物のNMRスペクトルは、USDA(US Forest Products Laboratory)が公開している、化合物Iのデータと一致した。また、化合物IのHPLC分析は、株式会社ダイセル製のキラルパックIE3を用いて、以下のとおりに、(1)αS、βR、(2)αR、βSのerithro体;(3)αR、βR、(4)αS、βSのthreo体の順で溶出する条件で行った。
キラルHPLC分析条件(化合物Iの光学異性体分析条件)
カラム;キラルパックIE-3(ダイセル社製)、4.6 mm I.d. x 250 mm L.溶離液;(A)水、(B)アセトニトリル、送液:20%V/V(B)、カラム温度;40℃、流速:1.0ml/min、検出 フォトダイオードアレイ検出器 UV200-500nm(PDA モデル2998、ウォーターズ社製)及び旋光度検出器(キラライザー、システムエンジニアリング社製)
得られた化合物Iは、この条件で、erithro体:threo体≒3:1であった。なお、上記のRS表示は、非特許文献11に記載の旋光度データを参考に決定した。
化合物Iを終濃度5mM、NAD+(ナトリウム塩の形で添加)を終濃度10mMになるようにトリス塩酸緩衝液(pH7.5)に添加した。次いで、この溶液に、実施例3で得られた精製済のC01G1162、C01G1324、C10G0069、C10G0080、C10G0093及びC10G0094を各一種ずつ添加し、室温で16時間インキュベートして、反応液を得た。その後、下記条件で反応液中の化合物Iの変化をHPLC分析した。
逆相HPLC条件
カラム;Xbridge OST C18(ウォーターズ社製)、4.6mm-I.d.×100mm-L.溶離液;(A)[2mM 酢酸アンモニウム、0.05%V/V ギ酸]、(B)メタノール、送液;0-1min 10%V/V(B)、1-8min 10%V/V-90%V/V(B)、カラム温度;40℃、流速;1.2ml/min、検出;フォトダイオードアレイ検出器 UV200-500nm(PDA モデル2998、ウォーターズ社製)
反応液のHPLC分析の結果、C10G0069又はC10G0093を作用させた場合にのみ、化合物Iが減少し、新たな化合物が生成されていることが分かった。
ここで生成した化合物を同定するために、反応液を固相抽出法(OASIS WAX ;ウォーターズ社製)にて精製し、以下の条件で逆相UPLC-飛行時間型精密質量分析(ACCUITY UPLC H―Class, XevoG2 QTOF,ウォーターズ社製)に供した。
逆相HPLC条件(逆相UPLC-飛行時間型精密質量分析条件)
カラム;ACQUITY UPLC BEH C18 Column,130オングストローム, 1.7 μm、(ウォーターズ社製)、2.1 mm I.d.×100 mm L.溶離液;(A)[2mM 酢酸アンモニウム、0.05%V/V ギ酸]、(B)95%V/V アセトニトリル、送液:0-5分 5%V/V-95%V/V(B)、5-7分 95%V/V(B)、カラム温度;40℃、流速;0.4ml/min
質量分析条件(逆相UPLC-飛行時間型精密質量分析条件)
検出質量範囲100―1000 Da、データ取得スキャン間隔0.1秒、デソルベーションガス温度 500℃、イオンソース ESIネガティブモード イオンソース温度150℃、コーン電圧30V
逆相UPLC-飛行時間型精密質量分析の結果、生成化合物の分子量は318であり、推定組成式はC1718であることがわかった。化合物IのMSスペクトルと生成化合物のMSスペクトルとを比較した結果、生成化合物は化合物IのCα位で脱水素反応が起こり、アルコール残基(ヒドロキシ基)がカルボニル基へと変化した化合物IIであることが推定された。
[実施例5.化合物I分解酵素の特性]
化合物IIの合成は、非特許文献10に記載の方法に準じて行った。また、化合物IIのHPLC分析は、株式会社ダイセル製のキラルパックIE3を用いて、以下のとおりに、(1)βR体、(2)βS体の順で溶出する条件で行った。
キラルHPLC分析条件(化合物IIの光学異性体分析条件)
カラム;キラルパックIE-3(ダイセル社製)、4.6 mm I.d.×250 mm L.溶離液;(A)水、(B)アセトニトリル、送液:30%V/V(B)、カラム温度;40℃、流速:1.0ml/min、検出 フォトダイオードアレイ検出器 UV200-500nm(PDA モデル2998、ウォーターズ社製)及びキラライザー(システムエンジニアリング社製)
合成した化合物IIは、この条件で、βR体:βS体≒1:1であった。なお、上記のRS表示は、非特許文献11に記載の旋光度データを参考に決定した。
合成した化合物IIを実施例4に記載の条件で、逆相UPLC-飛行時間型精密質量分析に供したところ、化合物IにC10G0069及びC10G0093を作用させた場合に得られた化合物I分解物と良く一致するマスクロマト及びスペクトルを得た。このことより、C10G0069及びC10G0093は化合物IのCα位のヒドロキシ基を酸化し、カルボニル基へと変化させるデヒドロゲナーゼ活性を持つタンパク質であることが分かった。
化合物IにC10G0069が作用する場合の反応条件を調べた。C10G0069はNAD+が共存した場合に、Cα位のヒドロキシ基を酸化した。しかし、NAD+が存在しないときには活性を示さなかった。またNADH存在下では、化合物IのCα位のヒドロキシ基を酸化しなかったが、化合物IIのカルボニル残基を還元して、ヒドロキシ基を与えた。NADP+、NADPH存在下では活性を示さなかった。分子量はSDS-PAGEで34kDaであることが示された。また、10mg/l C10G0069、10mM 化合物I、20mM NADナトリウム及び50mM (pH9.2)N-Cyclohexyl-2-aminoethanesulfonic acid-NaOH(CHES)緩衝液(pH9.5)を含む反応液(100μl)を、5~45℃の温度で30分間反応させることによってC10G0069の最適温度を評価した。その結果、図8に示すとおり、最適温度は10~15℃付近であった。さらに、10mg/l C10G0069、10mM 化合物I、20mM NADナトリウム及びpH6.0~10.4に調製した50mM 緩衝液(MES、MOPS、TAPS、CHES及びCAPS)を含む反応液(100μl)を、15℃で30分間反応させることによってC10G0069の最適pHを評価した。その結果、図9に示すとおり、最適pHは8.5~9.5付近であった。なお、最適温度及び最適pHは、反応後の反応液中に生成した化合物IIの濃度を実施例4に記載の条件の逆相HPLCにより分析した値に基づく。
化合物IにC10G0093Cが作用する場合の反応条件を調べた。C10G0093はNAD+が共存した場合に、Cα位のヒドロキシ基を酸化したが、NAD+が存在しないときには活性を示さなかった。またNADH存在下では、化合物IのCα位のヒドロキシ基を酸化しなかったが、化合物IIのカルボニル残基を還元してヒドロキシ基を与えた。NADP+、NADPH存在下でも活性を示さなかった。分子量はSDS-PAGEで34kDaであることが示された。また、5mg/l C10G0093、10mM 化合物I、20mM NADナトリウム及び50mM (pH9.2)CHES緩衝液(pH9.5)を含む反応液(100μl)を、5~45℃の温度で30分間反応させることによってC10G0069の最適温度を評価した。その結果、図10に示すとおり、最適温度は25~30℃付近であった。さらに、5mg/l C10G0093、10mM 化合物I及び20mM NADナトリウム及びpH6.0~10.4に調製した50mM 緩衝液(MES、MOPS、TAPS、CHES及びCAPS)を含む反応液(100μl)を、30℃で30分間反応させることによってC10G0093の最適pHを評価した。その結果、図11に示すとおり、最適pHは8.5~10.5付近であった。なお、最適温度及び最適pHは、反応後の反応液中に生成した化合物IIの濃度を実施例4に記載の条件の逆相HPLCにより分析した値に基づく。
化合物Iには、αS,βR(SR);αR,βS(RS);αR,βR(RR);αS,βS(SS)という4種類の光学異性体が存在する。これらのうち、C10G0069及びC10G0093が基質として作用する化合物Iの光学異性体を調べるために、反応の前後に起こる化合物Iの光学異性体組成の変化及び産物である化合物IIの光学異性体組成を、以下に示す条件でキラルHPLC分析することとした。
キラルHPLC分析条件
カラム;キラルパックIE-3(ダイセル社製)、4.6 mm I.d.×250 mm L.溶離液;(A)水、(B)アセトニトリル、送液:0-10分 20%V/V(B)、10-15分 20-30%V/V(B)、15-30分 30%V/V(B)、カラム温度;40℃、流速:1.0ml/min、検出 フォトダイオードアレイ検出器 UV200-500nm(PDA モデル2998、ウォーターズ社製)及びキラライザー(システムエンジニアリング社製)
キラルHPLC分析の結果、C10G0069は、化合物IのRS及びRRの2つの光学異性体に特異的に反応すること;C10G0093はSR及びSSの2つの光学異性体に特異的に反応することがわかった。
また、化合物IIをNADH存在下で還元する際に生じる化合物Iの光学異性体の大部分(感度補正無のHPLCクロマト面積値で、>90%の光学純度)は、C10G0069の場合にはαR体であり、SC10G0093の場合にはαS体であった。
[実施例6.化合物II分解酵素の同定]
化合物I又は化合物IIを終濃度5mM、還元型グルタチオンを終濃度10mMになるように、トリス塩酸緩衝液(pH7.5)に添加し、次いで実施例3で得られた精製済のC10G0075、C10G0076、C10G0077及びC10G0078をタンパク質毎に添加し、室温で16時間インキュベートして反応液を得た。その後、実施例4に記載の条件で反応液中の化合物I又は化合物IIの変化を逆相HPLCで分析した。
その結果、化合物Iは変化しなかったが、化合物IIはC10G0076又はC10G0077と反応させた場合にのみ、別の2つの化合物へ変化することがわかった。逆相HPLC分析では、化合物IIから生じた一方の物質はグアヤコールであることが、グアヤコール標準品とのリテンションタイム及びUV吸収スペクトルとの比較からわかった。反応後に生じた他方の化合物の構造を推定するために、反応液を、固相抽出法(OASIS WAX ;ウォーターズ社製)にて精製した後に、実施例4に記載の条件で逆相UPLC-飛行時間型精密質量分析に供した。
逆相UPLC-飛行時間型精密質量分析(ネガティブモード)の結果、C10G0076又はC10G0077と化合物IIとの反応によって生じた物質から、m/z500.2のシグナルが得られた。これは、化合物IにSYK-6株のLigE及びLigFを作用させたときに生じると報告されている3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノン(化合物III)のグルタチオン付加体の分子量501.1からプロトンが1つ脱離した値にほぼ相当する。すなわち、C10G0076及びC10G0077は、SYK-6株のLigE及びLigFと同様に、化合物IIのβ-O-4結合を切断する活性を持つと判断された。
[実施例7.化合物II分解酵素の分解特性]
化合物IIにC10G0076が作用する場合の反応条件を調べた。C10G0076は、還元型グルタチオンが共存した場合にβ-O-4結合のグルタチオン添加開裂を触媒したが、還元型グルタチオンが存在しない場合には活性を示さなかった。分子量はSDS-PAGEで31kDaであることが示された。また、5mg/l C10G0076、5mM 化合物II、10mM 還元型グルタチオン及び100mM (pH8.9)CHES緩衝液(pH9.5)を含む反応液(100μl)を、15~45℃の温度で30分間反応させることによってC10G0076の最適温度を評価した。その結果、図12に示すとおり、最適温度は30~35℃付近であった。さらに、5mg/l C10G0076、5mM 化合物II及び10mM 還元型グルタチオン及びpH5.6~10.4に調製した50mM 緩衝液(MES、MOPS、TAPS、CHES及びCAPS)を含む反応液(100μl)を、30℃で30分間反応させることによってC10G0076の最適pHを評価した。その結果、図13に示すとおり、最適pHは8.5~9.5付近であった。なお、最適温度及び最適pHは、反応後の反応液中に生成したグアヤコールの濃度を実施例4に記載の条件(保持時間5.5分付近)の逆相HPLCにより分析した値に基づく。
化合物IIにC10G0077が作用する場合の反応条件を調べた。C10G0077は、還元型グルタチオンが共存した場合にβ-O-4結合のグルタチオン添加開裂を触媒したが、還元型グルタチオンが存在しない場合には活性を示さなかった。分子量はSDS-PAGEで31kDaであることが示された。また、5mg/l C10G0077、5mM 化合物II、10mM 還元型グルタチオン及び100mM (pH8.9)MOPS緩衝液(pH7.5)を含む反応液(100μl)を、5~35℃の温度で30分間反応させることによってC10G0077の最適温度を評価した。その結果、図14に示すとおり、最適温度は25~30℃付近であった。さらに、5mg/l C10G0077、5mM 化合物II及び10mM 還元型グルタチオン及びpH5.6~10.4に調製した50mM 緩衝液(MES、MOPS、TAPS、CHES及びCAPS)を含む反応液(100μl)を、20℃で30分間反応させることによってC10G0077の最適pHを評価した。その結果、図15に示すとおり、最適pHは7~8付近であった。なお、最適温度及び最適pHは、反応後の反応液中に生成したグアヤコールの濃度を実施例4に記載の条件の逆相HPLCにより分析した値に基づく。
化合物IIには、βR体、βS体という2種類の光学異性体が存在する。これらのうち、C10G0076及びC10G0077が基質として作用する光学異性体を調べるために、反応の前後に起こる化合物IIの光学異性体組成の変化を、キラルカラム キラルパックIE-3を用いてHPLC分析した。その結果、C10G0076はβS体に選択的に作用し、C10G0077はβR体に選択的に作用することがわかった。
また、C10G0076及びC10G0077が、化合物IIの非フェノール性リグニンモデル2量体化合物に対する反応性を持つことを、ベラトリルグリセロール-β-グアイアシルエーテル(1-(3,4-ジメトキシフェニル)-2-(2-メトキシフェノキシ)プロパン-1,3-ジオール;化合物V)を用いて、以下のとおりに確認した。なお、通常のリグニンは非フェノール性の構成単位が多い。そこで、化合物Vを分解する活性を有するということは、その酵素は天然のリグニンを分解する活性を有する蓋然性がある。
化合物Vの合成は、非特許文献10及び非特許文献12を参考にして、相関移動触媒を用いる代わりにN,N’-ジメチルホルムアミド(DMF)を溶媒とし、HCHOのアルドール反応条件をKCO-EtOH系で行うなどに改良した方法を用いた。生成物のNMRスペクトルは、USDAが公開している化合物Vのデータと一致した。H-NMRスペクトルで、β-プロトンの積分値を用いて計算したところ、erithro体:threo体の比率は約1.1:1であった。
C10G0076 0.1μg、1mM 化合物V及び2mM 還元型グルタチオンを含む、100mM(pH9.5)N-Cyclohexyl-2-aminoethanesulfonic acid-NaOH(CHES)緩衝液(pH9.5)及び10%V/V DMFの混合溶液を、30℃にて15分間反応させた。反応後の反応液を逆相HPLC分析に供したところ、化合物Vの減少とグアヤコールの生成が見られた。これにより、C10G0076が非フェノール性リグニンモデル2量体化合物に対する反応性を持つことが明らかとなった。非フェノール性リグニンモデル2量体化合物である化合物Vに対する反応の効率は、C10G0076を用いた場合、フェノール性のリグニンモデル2量体化合物である化合物IIに対する反応効率の16.2%に相当した。
一方、C10G0077 1.0μg、1mM 化合物V及び2mM 還元型グルタチオンを含む、100mM 3-Morpholinopropanesulfonic acid-NaOH(MOPS)緩衝液(pH8.0)及び10%V/V DMFの混合溶液を、20℃にて15分間反応させた。反応後の反応液を逆相HPLC分析に供したところ、C10G0077を用いた場合も、化合物Vの減少とグアヤコールの生成が見られた。これにより、C10G0077が非フェノール性リグニンモデル2量体化合物に対する反応性を持つことが明らかとなった。非フェノール性リグニンモデル2量体化合物である化合物Vに対する反応の効率は、C10G0077を用いた場合、フェノール性のリグニンモデル2量体化合物である化合物IIに対する反応効率の380%に相当した。
[実施例8.化合物III生成酵素の同定]
化合物IIを基質として、実施例3で得られたC10G0075、C10G0076及びC10G0077の精製タンパク質;又はC10G0076、C10G0077及びC10G0078の精製タンパク質の組み合わせで反応させた。その結果、両方の組み合せの反応物から、化合物IIIが生成されたことがわかった。化合物IIIは化合物IをMBES04株の培養液に添加した際に得られる代謝物(3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノン)と一致するリテンションタイムを示した。反応液を固相抽出法(OASIS WAX ;ウォーターズ社製)にて精製し、実施例4に記載の条件で逆相UPLC-飛行時間型精密質量分析に供したところ、化合物IIIの分析結果は、化合物Iを含む培地でMBES04株を培養した際に得られた主生成物である3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンの分析結果とよく一致した。
C10G0075及びC10G0078が基質として反応する化合物に光学異性体特異性があることを、実施例3で得られた精製酵素を以下のように組み合わせて、化合物IIの変換反応を行うことによって確認した。酵素反応は、下記(1)~(4)の組み合せ酵素(反応液100μLあたり、精製酵素C10G0075:0.5μg、精製酵素C10G0076:0.5μg、精製酵素C10G0077:0.5μg、精製酵素C10G0078:0.5μgを使用)、1mM 化合物II及び10mM 還元型グルタチオンを含む、100mM MOPS緩衝液(pH8.0)の混合溶液中で、室温にて16時間反応させた。
(1)C10G0076(βS体を特異的に認識)+C10G0075
(2)C10G0076(βS体を特異的に認識)+C10G0078
(3)C10G0077(βR体を特異的に認識)+C10G0075
(4)C10G0077(βR体を特異的に認識)+C10G0078
反応後の基質と生成物の変化をキラルHPLC分析にて検出した。その結果、(1)、(2)及び(3)の組み合わせでは反応が進行し、3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンの生成が見られた。しかし、(4)の組み合わせでは、3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンの生成が見られなかった。したがって、C10G0078はβS体のみを特異的に認識するが、C10G0075はβR体及びβS体の2種の光学異性体の両方から3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンを生成できることがわかった。
[実施例9.化合物III生成酵素の分子量]
C10G0078の分子量はSDS-PAGEで33kDaであることが示された。C10G0075の分子量はSDS-PAGEで27kDaであることが示された。
[実施例10.化合物I分解酵素、化合物II分解酵素及び化合物III生成酵素を用いたリグニン分解(1)]
カシオガクズ抽出液からフェニルプロパン構造を有する化合物を以下の手順で製造した。
乾燥カシオガクズ粉末50gをジオキサン300mLに懸濁し、室温で6日間浸漬した。得られた懸濁液からろ紙で固形分をろ過して除去し、ろ液を得た。ろ液をエバポレーターで減圧乾固し、カシジオキサン抽出物を得た。カシジオキサン抽出物が10%W/V終濃度となるようにDMFに溶解した。得られたカシオガクズ抽出液を用いて、以下の組成の反応液を作成し、室温で24時間反応させた。
反応液(0.1mL)組成(1):
カシオガクズ抽出液 1/20容量
(反応液に含まれる乾燥固形物の濃度は5.0mg/mL)
CHES緩衝液 pH9.2 50mM
精製酵素C10G0069(タンパク質濃度:0.41mg/mL) 1/20容量(5μl)
精製酵素C10G0093(タンパク質濃度:0.16mg/mL) 1/20容量 
精製酵素C10G0076(タンパク質濃度:0.29mg/mL) 1/20容量 
精製酵素C10G0078(タンパク質濃度:0.10mg/mL) 1/20容量 
還元型グルタチオン 5mM
NADナトリウム塩 5mM
反応後、反応液50μLを固相抽出法(OASIS WAX ;ウォーターズ社製)にて精製し、窒素ガス下にて乾固した。乾固後の残渣を、0.5mLの20%V/V アセトニトリルに溶解し、実施例4に記載の条件で逆相UPLC-飛行時間型精密質量分析に供した。
逆相UPLC-飛行時間型精密質量分析の結果、添加酵素の作用により、リテンションタイム2.4分にm/z195.1のシグナルが得られた。本リテンションタイムとマスシグナルの値は、化合物IIIのそれらとよく一致した。その生成量は既知濃度の化合物IIIにおけるシグナル強度から1.1μg/mLと算出された。またリテンションタイム2.5分にm/z225.1のシグナルが得られた。その生成量は、既知濃度の化合物IIIにおけるシグナル強度で計算した場合、0.8μg/mLであった。リテンションタイム2.4分におけるマススペクトルと2.5分におけるマススペクトルとを比較したところ、2.5分に検出された化合物(化合物IV)は化合物III中の水素の1つがメトキシ基に置換された化合物であると予測された。
[実施例11.化合物I分解酵素、化合物II分解酵素及び化合物III生成酵素を用いたリグニン分解(2)]
実施例10で調製したカシオガクズ抽出液を用いて、以下の組成の反応液を作成し、室温で16時間反応させた。
反応液(0.1mL)組成(2):
カシオガクズ抽出液 1/20容量
(反応液に含まれる乾燥固形物の濃度は5.0mg/mL)
TAPS緩衝液 pH8.5 100mM
下記精製酵素のうち、いずれか表3に示す組み合わせ
精製酵素C10G0069(タンパク質濃度:0.41mg/mL) 1/20容量 
精製酵素C10G0093(タンパク質濃度:0.16mg/mL) 1/20容量
精製酵素C10G0076(タンパク質濃度:0.29mg/mL) 1/20容量
精製酵素C10G0077(タンパク質濃度:0.28mg/mL) 1/20容量
精製酵素C10G0075(タンパク質濃度:0.62mg/mL) 1/20容量
精製酵素C10G0078(タンパク質濃度:0.10mg/mL) 1/20容量
還元型グルタチオン 5mM
NADナトリウム塩 5mM
反応後、反応液50μLを固相抽出法(OASIS WAX ;ウォーターズ社製)にて精製し、窒素ガス下にて乾固した。乾固後の残渣を、0.5mLの20%V/V アセトニトリルに溶解し、実施例4に記載の条件で逆相UPLC-飛行時間型精密質量分析に供した。
逆相UPLC-飛行時間型精密質量分析の結果、添加酵素の作用により、生成された化合物IIIの生成量を表3に示した。表3に示されるように、6種の酵素を添加した場合に化合物IIIが最も高い濃度で生成された。
Figure JPOXMLDOC01-appb-T000011
[実施例12.化合物I分解酵素、化合物II分解酵素及び化合物III生成酵素を用いたリグニン分解(3)]
乾燥イナワラ粉末50gを、ジオキサン300mL及び水15mLの混合液に懸濁し、室温で6日間浸漬した。浸漬後、懸濁液からろ紙で不溶物をろ別し、ろ液を得た。ろ液をエバポレーターで減圧乾固、その後デシケーターにて乾燥させ、2.65gの固形物を得た。固形物に酢酸エチル50ml及び純水70mLを添加し、固形物を溶解させた。さらに固形物が10%W/VとなるようにDMFに溶解した。得られたイナワラ抽出物DMF溶液を用いて、以下の組成の反応液を作成し、室温で24時間反応させた。
反応液(0.1mL)組成(3):
イナワラ抽出物DMF液 1/20容量
(反応液に含まれる乾燥固形物の濃度は5.0mg/mL)
CHES緩衝液 pH9.2 50mM
精製酵素C10G0069(タンパク質濃度:0.41mg/mL) 1/20容量 
精製酵素C10G0093(タンパク質濃度:0.16mg/mL) 1/20容量 
精製酵素C10G0075(タンパク質濃度:0.62mg/mL) 1/20容量 
精製酵素C10G0076(タンパク質濃度:0.29mg/mL) 1/20容量 
精製酵素C10G0077(タンパク質濃度:0.28mg/mL) 1/20容量 
還元型グルタチオン 5mM
NADナトリウム塩 5mM
反応後、反応液50μLを固相抽出法(OASIS WAX ;ウォーターズ社製)にて精製し、窒素ガス下にて乾固した。乾固後の残渣を、0.5mLの20%V/V アセトニトリルに溶解し、実施例4に記載の条件で逆相UPLC-飛行時間型精密質量分析に供した。
逆相UPLC-飛行時間型精密質量分析の結果、添加酵素の作用により、化合物III及び化合物IVが生成されていることが確認された。その生成量はそれぞれ8.4μg/mL及び0.7μg/mLであった。
[実施例13.化合物I分解酵素、化合物II分解酵素及び化合物III生成酵素を用いたリグニン分解(4)]
シイタケ廃菌床からのフェニルプロパン構造を有する化合物を以下の手順で製造した。乾燥シイタケ廃菌床粉末10gをイオン交換水100mLに懸濁し、3時間室温で浸漬した。得られた懸濁液からろ紙で固形分をろ別し、ろ液(水洗液1)を得た。残渣をイソプロパノール100mLに懸濁し3時間室温で浸漬した。浸漬後、ろ紙で固形分をろ別し、ろ液(水洗後イソプロ液1)を得た。一方、乾燥シイタケ廃菌床粉末10gを90%V/V イソプロパノール水溶液100mLに懸濁し、3時間室温で浸漬した。ろ紙で固形分をろ過別し、ろ液(90%イソプロ液1)を得た。
水洗液1、水洗後イソプロ液1及び90%イソプロ液1を25mLずつ抜き取り、エバポレーターで45℃に加温しながら、減圧乾固した。水洗液1、水洗後イソプロ液1及び90%イソプロ液1から、それぞれ469、55及び247mgの固形物を得た。水洗液1から得られた固形物は水2mL(234.4mg/mL)に溶解し、水洗後イソプロ液1(27.4mg/mL)及び90%イソプロ液1(123.5mg/mL)から得られた固形物はそれぞれDMF2mLに溶解した。これらの3種の溶解抽出物を用いて、以下の組成の反応液を作成し、室温で24時間反応させた。
反応液組成(4):
シイタケ廃菌床抽出液(上記3種の抽出物の内のいずれか) 1/20容量
(反応液に含まれる乾燥固形物の濃度は水洗液1を用いた場合11.7mg/mL、水洗後イソプロ液1を用いた場合1.37mg/mL、90%イソプロ液1を用いた場合6.18mg/mL)
CHES緩衝液 pH9.2 50mM
精製酵素C10G0069(タンパク質濃度:0.41mg/mL) 1/20容量 
精製酵素C10G0093(タンパク質濃度:0.16mg/mL) 1/20容量
精製酵素C10G0075(タンパク質濃度:0.62mg/mL) 1/20容量 
精製酵素C10G0076(タンパク質濃度:0.29mg/mL) 1/20容量 
精製酵素C10G0077(タンパク質濃度:0.28mg/mL) 1/20容量 
還元型グルタチオン 5mM
NADナトリウム塩 5mM
反応後、反応液50μLを固相抽出法(OASIS WAX ;ウォーターズ社製)にて精製し、窒素ガス下にて乾固した。乾固後の残渣を、0.5mLの20%V/V アセトニトリルに溶解し、実施例4に記載の条件で逆相UPLC-飛行時間型精密質量分析に供した。
逆相UPLC-飛行時間型精密質量分析の結果、添加酵素の作用により、化合物IIIが生成されていることが確認された。その生成量は水洗液1を用いた場合は1.1μg/mL、水洗後イソプロ液1を用いた場合は0.68μg/mL、及び90%イソプロ液1を用いた場合は1.37μg/mLであった。化合物IVの生成量は水洗液1を用いた場合は0.6μg/mL、水洗後イソプロ液1を用いた場合は0.3μg/mL、及び90%イソプロ液1を用いた場合は0.7μg/mLであった。
[参考文献]
上記した非特許文献4~12は以下のとおりである、該文献の記載はここに開示として援用される:
非特許文献4:Besemer Jら;Nucleic Acids Research、2001、vol 29、p2607
非特許文献5:Masai,E.,S.Kubota.Y.Katayama,S.Kawai,M.Yamasaki,and N.Morohoshi.1993.Biosci. Biotechnol.Biochem.57:1655-1659.
非特許文献6:Sato Y,Moriuchi H,Hishiyama S,Otsuka Y,Oshima K,Kasai D,Nakamura M,Ohara S,Katayama Y,Fukuda M,Masai E.Appl Environ Microbiol.2009;75(16):5195-201.
非特許文献7:Masai,E.,Y.Katayama,S.Kubota,S.Kawai, M.Yamasaki,and N.Morohoshi.1993.FEBS Lett.323:135-140.
非特許文献8:Masai,E.,Y.Katayama,S.Kawai,S.Nishikawa,M.Yamasaki,and N.Morohoshi.1991.J.Bacteriol.173:7950-7955.
非特許文献9:Masai E,Ichimura A,Sato Y,Miyauchi K,Katayama Y,Fukuda M.J Bacteriol.2003 Mar;185(6):1768-75.
非特許文献10:細谷ら:木材学会誌26(2)118-21、1980
非特許文献11:Hishiyama et al:Tetrahedron Letters53,842-845、2012
非特許文献12:K.Itoh: Mokuzai Gakkaishi vol. 38,No.6, 579-584(1992)
配列表に記載の配列は以下のとおりである:
[配列番号1]C10G0069
MTQVKGRTAFITGGGSGVALGQAKVFARAGCKVAIADIRQDHLDEAMAWFEAENAKGANYEVMAVKLDITDREAYAKVADEVEAKLGPVELLFNTAGVSHFGAIQDATYDDWDWQIDVNLRGVINGVRTFVPRMIERGNGGHVVNTASMSAFVALKGTGIYCTTKMAVRGLTETLALDLEEHGIGVSLLCPGAVNTNIHEALLTRPKHLADTGYYQAGPEMFAHLKNVIECGMEPETLANHVLKAVEENQLYVLAYPEFRKPLEDIHARVMAALANPEDDPDYDRRVAHGVPGGEAKEEEKTA
[配列番号2]C10G0093
MQDLPGKTAFVTGGASGIGLGIAKALLGAGMNVAIADIRQDHLDDAAAELDGGDKVLALQLDVTDRAAFAAAADATEAKFGKIHILCNNAGVAVVGPTDMATFADWDWVMGVNVGGTINGIVTMLPRMLKHGEGGHIVNTASMSALVPAPGTTIYSSGKAAVTSMMECMRPELESRGIVCSAFCPGAVQSNIAEAGRTRPDALAETGYAEADKGRQAGGSFFHLYQTKEEVGERVLTGILNDELYILTHAEFLIGVQERGEATTAAVQVQLPENEEYKNTFGVLFRNSAITQEIDRQKALRAAQMSEAGVA
[配列番号3]C10G0076
MLTLYSFGPGANSLKPLLALYEKGLEFTPRFVDPTKFEHHEEWFKKINPRGQVPALDHDGNVITESTVICEYLEDAFPDAPRLRPTDPVQIAEMRVWTKWVDEYFCWCVSTIGWERGIGPMARALSDEEFEEKVKRIPIPEQQAKWRSARAGFPKEVLDEEMRKIRVSIDRLEKRLSESTWLAGEDYTLADICNFAIANGMEKGFDDIVNTAATPNLVAWIERINARPACIEMFAKSKSEFAARKPFAKSEEQAQA
[配列番号4]C10G0077
MAKDNRITLYDLQLASGCTISPFVWRTKYALAHKGFDMDIVPGGFTGIAERTGGRSERAPVIVDDGKWVLDSWKIAEYLDETYPDRPMLFEGPSMKVLTKFLDAWLWKTIIAPWFRCYILDYHDLSLPQDHAYVRESRETMFLGGQKLEDVQAGREDRLPHVPPLLEPLRQLLRDTPWLGGATPNYADYTALAIFLWTGSVCTTPPLTEDDPLRDWLDRGFDLYGGLGRHPGMHTLFGLKLREGDPEPFDRTGLGIEPAPVNQGSAEPATAS
[配列番号5]C10G0078
MYQIPGCPFSERVELLLDLKGLGDVLVDHEIDISKPRPDWLLKKTRGTTSLPALELENGETLKESMVIMRYIEDRFPEVPVARQDPYEHALEAMLCATDGAYTGAGYRMILNRDKARREELKAEVDAQYARLDDFLRHYSPDGVYLFDRFGWAEVAFAPMFKRLWFLEYYEDYEVPQNLTRVLLWREATLAEPVVQARHGHRELMTLYYDYTQGGGNGRLPEGRSVSSFTLDPPWRARPMPPRDKWGQGASDAELGLIPGITVRSDTVPA
[配列番号6]C10G0075
MLEELDANYTLRPISLTNREQKEDWYLARNPNGRIPTLIDHEVDAGNGGFAVFESGAILIYLAEKFGRFLPADTMGRSRAIQWVMWQMSGLGPMMGQATVFNRYFEPRLPEVIDRYTRESRRLFEVMDTHLADNEFLAGDYSIADIACFPWVRGHDWACIDMEGLPHLQRWFETIGERPAVQRGLLLPEPPKADEMAEKTTRQGKNILA
[配列番号7]c10g0069遺伝子
ATGACACAGGTAAAGGGACGCACCGCGTTCATCACTGGCGGCGGTTCGGGCGTGGCGCTCGGCCAGGCCAAGGTTTTCGCCAGGGCTGGCTGCAAGGTCGCCATTGCCGACATCCGCCAGGATCACCTCGACGAGGCCATGGCCTGGTTCGAGGCCGAGAACGCCAAGGGCGCGAACTACGAGGTGATGGCGGTCAAACTCGACATCACCGACCGCGAGGCTTACGCCAAGGTCGCCGACGAGGTGGAAGCGAAGCTGGGGCCCGTCGAACTGCTGTTCAACACCGCCGGGGTCTCGCACTTCGGCGCGATCCAGGATGCCACTTACGACGACTGGGACTGGCAGATCGACGTCAACCTGCGCGGTGTGATCAACGGCGTGCGCACCTTCGTGCCGCGCATGATCGAGCGCGGCAACGGCGGCCACGTGGTCAACACCGCCTCGATGTCGGCCTTCGTGGCGCTCAAGGGCACGGGCATCTACTGCACCACCAAGATGGCGGTGCGCGGGCTGACCGAGACTCTGGCCCTCGATCTGGAAGAGCATGGCATCGGCGTGTCGCTGCTGTGCCCGGGCGCGGTCAACACCAACATTCACGAAGCGCTGCTGACCCGCCCCAAGCATCTGGCGGACACCGGCTACTACCAGGCCGGGCCGGAGATGTTCGCGCATCTCAAGAACGTGATCGAATGCGGCATGGAGCCCGAGACGCTGGCGAACCACGTCCTGAAGGCCGTGGAGGAGAACCAGCTTTACGTTCTCGCCTATCCGGAATTCCGCAAGCCGCTGGAAGACATCCACGCGCGCGTCATGGCCGCCCTCGCCAATCCCGAGGACGATCCCGACTACGACCGGCGCGTGGCGCACGGCGTACCGGGCGGCGAGGCCAAGGAGGAGGAAAAGACGGCATGA
[配列番号8]c10g0093遺伝子
ATGCAGGATCTACCGGGGAAGACCGCCTTTGTGACCGGCGGCGCCAGCGGGATTGGCCTGGGGATAGCCAAGGCCCTGCTGGGGGCGGGCATGAACGTTGCTATCGCCGACATTCGCCAGGACCATCTCGATGACGCCGCAGCCGAACTGGACGGCGGCGACAAGGTGCTCGCGCTCCAGCTCGACGTCACCGATCGCGCTGCCTTTGCCGCCGCCGCCGATGCCACCGAGGCCAAGTTCGGCAAGATCCACATCCTGTGCAACAACGCAGGGGTTGCGGTTGTCGGCCCCACCGACATGGCGACTTTCGCCGACTGGGACTGGGTCATGGGCGTGAACGTGGGCGGCACGATCAACGGCATCGTCACCATGCTGCCGCGCATGTTGAAGCACGGCGAGGGCGGCCACATCGTCAACACCGCCTCGATGTCCGCGCTCGTGCCCGCGCCGGGCACCACGATCTATTCCTCGGGCAAAGCCGCCGTCACCTCGATGATGGAATGCATGCGCCCCGAACTGGAATCGCGCGGCATCGTGTGCTCGGCCTTCTGCCCAGGCGCGGTGCAGTCGAACATTGCCGAAGCCGGGCGCACCCGTCCCGACGCGCTGGCCGAGACCGGCTACGCCGAGGCCGACAAGGGGCGCCAGGCGGGGGGCAGTTTCTTCCACCTCTACCAGACCAAGGAAGAGGTCGGTGAGCGCGTGCTGACGGGCATCCTCAACGATGAACTCTACATCCTCACCCACGCCGAGTTCCTCATCGGCGTGCAGGAGCGCGGCGAGGCGACCACCGCGGCGGTGCAGGTCCAGTTGCCCGAGAACGAGGAGTACAAGAACACCTTCGGCGTGCTCTTCCGCAACTCGGCGATCACCCAGGAGATCGATCGGCAGAAGGCCCTGCGCGCCGCGCAGATGTCCGAAGCCGGCGTCGCGTAA
[配列番号9]c10g0076遺伝子
ATGTTGACGCTGTACAGCTTTGGCCCCGGAGCCAATTCGCTTAAGCCCCTGCTGGCCCTTTACGAGAAAGGCCTCGAATTTACGCCGCGCTTCGTCGATCCGACCAAGTTCGAGCATCACGAGGAATGGTTCAAGAAGATCAACCCGCGCGGCCAGGTTCCCGCGCTCGATCACGATGGCAACGTCATCACCGAATCGACGGTGATTTGCGAATACCTCGAAGACGCCTTCCCCGATGCGCCCCGGCTGCGTCCCACCGACCCTGTGCAGATCGCCGAGATGCGGGTCTGGACCAAGTGGGTGGACGAATACTTCTGCTGGTGCGTCTCCACCATCGGCTGGGAGCGCGGCATCGGTCCGATGGCCCGTGCCCTGTCGGACGAGGAGTTCGAGGAAAAGGTCAAACGCATCCCGATCCCTGAGCAGCAGGCCAAGTGGCGCAGCGCCCGCGCCGGCTTCCCCAAGGAGGTTCTGGACGAGGAAATGCGCAAGATCCGCGTCTCGATCGACCGTCTCGAAAAGCGCCTTTCCGAAAGCACCTGGCTGGCGGGCGAGGACTATACGCTTGCCGACATCTGCAACTTCGCCATCGCCAACGGCATGGAGAAGGGCTTTGATGACATCGTCAATACGGCCGCTACGCCCAACCTCGTCGCCTGGATCGAACGCATCAACGCGCGTCCCGCCTGCATCGAGATGTTCGCCAAGTCCAAGAGCGAGTTCGCCGCGCGCAAGCCCTTCGCCAAGAGCGAAGAGCAGGCACAGGCCTGA
[配列番号10]c10g0077遺伝子
ATGGCCAAGGACAACCGCATAACGCTTTACGATCTGCAGCTTGCCTCGGGCTGCACGATCAGCCCCTTCGTGTGGCGCACCAAGTACGCGCTGGCGCACAAGGGCTTCGACATGGATATCGTGCCGGGCGGCTTTACCGGCATTGCCGAGCGCACGGGCGGGCGTTCCGAACGTGCGCCAGTGATCGTCGACGATGGCAAGTGGGTGCTCGACAGCTGGAAGATCGCCGAATACCTCGATGAGACTTATCCCGATCGCCCGATGCTGTTCGAGGGCCCTTCCATGAAGGTGCTCACCAAGTTCCTCGACGCCTGGCTATGGAAGACGATCATCGCGCCGTGGTTCCGCTGCTACATCCTCGACTACCATGATCTGTCGTTGCCGCAGGACCATGCCTACGTGCGCGAATCGCGCGAGACGATGTTCCTGGGCGGGCAGAAGCTGGAGGATGTGCAGGCGGGCCGCGAGGATCGGCTTCCGCACGTGCCGCCGTTGCTGGAGCCGCTGCGCCAGCTGCTGCGCGATACGCCCTGGCTGGGCGGTGCGACACCCAACTACGCGGACTACACCGCGCTCGCCATCTTCCTGTGGACCGGCTCTGTGTGCACCACGCCGCCGCTCACCGAGGATGACCCGTTACGCGACTGGCTCGACCGCGGCTTCGACCTTTACGGCGGGCTGGGGCGTCATCCGGGCATGCACACGCTGTTCGGCCTGAAGCTGCGCGAGGGCGATCCAGAGCCTTTCGACCGCACCGGCCTTGGCATCGAGCCCGCGCCGGTCAACCAGGGCTCGGCCGAGCCGGCTACGGCGAGCTGA
[配列番号11]c10g0078遺伝子
ATGTACCAGATCCCGGGCTGCCCGTTCTCGGAGCGGGTGGAGTTGTTGCTCGATCTCAAGGGGCTGGGCGATGTCCTCGTCGACCACGAGATCGACATTTCCAAACCGCGCCCGGACTGGCTCCTGAAGAAGACGCGGGGGACGACTTCGCTTCCCGCGCTGGAGCTGGAGAACGGGGAGACCTTGAAGGAGAGCATGGTCATCATGCGCTACATCGAGGACCGCTTCCCCGAAGTTCCGGTCGCGCGCCAGGATCCCTACGAGCACGCCCTCGAGGCGATGCTGTGCGCGACCGATGGCGCCTACACCGGGGCGGGCTATCGCATGATCCTGAACCGGGACAAGGCCAGGCGCGAGGAATTGAAGGCCGAAGTCGATGCGCAGTACGCCCGGCTCGACGATTTCCTGCGGCACTACAGCCCGGATGGGGTCTACCTGTTCGACCGTTTCGGCTGGGCCGAAGTGGCCTTTGCGCCGATGTTCAAGCGGCTGTGGTTCCTCGAATACTACGAGGACTACGAGGTGCCGCAGAACCTGACGCGGGTGCTTCTGTGGCGCGAGGCGACACTGGCCGAACCTGTCGTGCAGGCGCGCCACGGCCACCGCGAGCTGATGACGCTCTACTACGACTACACCCAGGGCGGTGGAAACGGACGTCTGCCCGAAGGGCGCAGCGTCTCCAGCTTCACCCTCGATCCGCCGTGGCGCGCGCGGCCCATGCCGCCGCGTGACAAGTGGGGGCAGGGCGCCAGCGATGCCGAGCTCGGGCTGATCCCGGGCATTACCGTCCGTTCGGACACGGTGCCCGCCTGA
[配列番号12]c10g0075遺伝子
ATGCTCGAGGAGCTGGACGCGAACTACACGTTGCGTCCGATCTCGCTGACCAACCGCGAGCAGAAGGAAGACTGGTATCTCGCCCGCAATCCCAACGGGCGTATCCCCACACTGATCGACCATGAGGTCGATGCCGGGAACGGCGGTTTTGCGGTGTTCGAATCGGGTGCGATCCTGATCTACCTTGCCGAGAAGTTCGGCCGTTTCCTGCCAGCCGACACGATGGGCCGCAGCCGCGCGATCCAGTGGGTGATGTGGCAGATGTCGGGCCTCGGCCCCATGATGGGACAGGCGACCGTCTTCAACCGCTACTTCGAGCCCAGGCTGCCCGAGGTCATCGACCGCTACACGCGCGAGAGCCGCCGCCTCTTCGAAGTGATGGACACGCACCTCGCCGACAACGAATTCCTCGCGGGCGACTATTCGATCGCCGACATCGCCTGCTTCCCGTGGGTGCGCGGGCATGACTGGGCCTGCATCGACATGGAGGGGCTGCCCCACCTGCAACGCTGGTTCGAGACCATCGGTGAGCGCCCGGCCGTCCAGCGCGGCCTGCTCTTGCCCGAACCGCCCAAGGCGGACGAGATGGCCGAGAAGACGACCCGCCAGGGCAAGAACATCCTGGCCTGA
[配列番号13]プライマーA
TCTCGAGCTCGGATCC
[配列番号14]プライマーB
CTGGTACCATGGAATTCG
[配列番号15]プライマーC
GGATCCGAGCTCGAGATGATCAAGGGTATCGAAGG
[配列番号16]プライマーD
CGAATTCCATGGTACCAGTCAGAACTCCTGTGCGG
[配列番号17]プライマーE
GGATCCGAGCTCGAGATGACGAACTGGCTTATCAC
[配列番号18]プライマーF
CGAATTCCATGGTACCAGTCAGACCTCGGCGAAG
[配列番号19]プライマーG
GGATCCGAGCTCGAGATGACACAGGTAAAGGGACG
[配列番号20]プライマーH
CGAATTCCATGGTACCAGTCATGCCGTCTTTTCCTC
[配列番号21]プライマーI
GGATCCGAGCTCGAGATGGGAGAGACGACAAAAC
[配列番号22]プライマーJ
CGAATTCCATGGTACCAGTCAGGTGAGGTCGGC
[配列番号23]プライマーK
GGATCCGAGCTCGAGATGCAGGATCTACCGGG
[配列番号24]プライマーL
CGAATTCCATGGTACCGCAAGCTGTGTCATGC
[配列番号25]プライマーM
GGATCCGAGCTCGAGATGACGGGCGGGG
[配列番号26]プライマーN
CGAATTCCATGGTACCAGTCAGAGCGCGTTGGC
[配列番号27]プライマーO
GGATCCGAGCTCGAGATGCTGGAACTGTGGACTTC
[配列番号28]プライマーP
CGAATTCCATGGTACCAGGTAGGTGTGCTCATCGTTCA
[配列番号29]プライマーQ
GGATCCGAGCTCGAGATGTTGACGCTGTACAGCTTTG
[配列番号30]プライマーR
CGAATTCCATGGTACCAGCTCCTCAGGCCTGTGC
[配列番号31]プライマーS
GGATCCGAGCTCGAGATGGCCAAGGACAACC
[配列番号32]プライマーT
CGAATTCCATGGTACCAGTCAGCTCGCCGTAGC
[配列番号33]プライマーU
GGATCCGAGCTCGAGATGGCATGGGACGATG 
[配列番号34]プライマーV
CGAATTCCATGGTACCAGGATGACGGTGTGCTTCAC
本発明の製造方法や酵素によって、天然のリグニンやリグニン関連物質を含むバイオマスから3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンが得られる。3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンは、種々の産業上有用な化合物に変換することができ、例えば、樹脂、接着剤、レジスト材料、医薬品などの原料として利用することが期待できる1-(4-ヒドロキシ-3-メトキシフェニル)-1,3-プロパンジオールなどの製造方法の原料として利用することができる。

Claims (12)

  1. リグニン及び/又はリグニン関連物質を含むバイオマスに、NAD及び還元型グルタチオンの存在下で、ノボスフィンゴビウム(Novosphingobium)属微生物に由来する酵素を作用させることにより、フェニルプロパン系化合物を得る工程
    を含む、フェニルプロパン系化合物の製造方法。
  2. 前記フェニルプロパン系化合物が、3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノン、3-ヒドロキシ-1-(4-ヒドロキシ-3、5-ジメトキシフェニル)-1-プロパノン及び3-ヒドロキシ-1-(4-ヒドロキシフェニル)-1-プロパノンからなる群から選ばれる一種である、請求項1に記載の製造方法。
  3. 前記フェニルプロパン系化合物が、3-ヒドロキシ-1-(4-ヒドロキシ-3-メトキシフェニル)-1-プロパノンである、請求項1に記載の製造方法。
  4. 前記ノボスフィンゴビウム属微生物が、ノボスフィンゴビウム・スピーシーズ(Novosphingobium sp.) MBES04(受託番号:NITE P-01797)である、請求項1に記載の製造方法。
  5. 前記酵素が、下記(1)及び(2)、並びに(3)及び/又は(4)に記載の酵素の組み合わせである、請求項1に記載の製造方法。
    (1)Rossmann-fold NAD(P)(+)結合タンパク質スーパーファミリーに属し、かつ、PRK06194のマルチドメインを有する、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化するShort-chain dehydrogenase/reductase
    (2)Gst並びにN末端側にPRK15113及びmaiAのマルチドメインを有する、glutathione S-transferase
    (3)Gst及びN末端側にPRK10387及びmaiAのマルチドメインを有する、glutathione S-transferase
    (4)Gst、PRK11752、PRK15113及びmaiAのマルチドメインを有する、glutathione S-transferase
  6. 前記(1)の酵素が、配列表の配列番号1に記載のアミノ酸配列を有するC10G0069又は配列表の配列番号2に記載のアミノ酸配列を有するC10G0093であり;
    前記(2)の酵素が、配列表の配列番号3に記載のアミノ酸配列を有するC10G0076又は配列表の配列番号4に記載のアミノ酸配列を有するC10G0077であり;
    前記(3)の酵素が、配列表の配列番号5に記載のアミノ酸配列を有するC10G0078であり;及び
    前記(4)の酵素が、配列表の配列番号6に記載のアミノ酸配列を有するC10G0075である、請求項5に記載の製造方法。
  7. リグニン及び/又はリグニン関連物質を含むバイオマスに、NADの存在下で、ノボスフィンゴビウム(Novosphingobium)属微生物に由来する下記(1)の酵素を作用させることにより、カルボニルフェニル系化合物を得る工程
    を含む、カルボニルフェニル系化合物の製造方法。
    (1)Rossmann-fold NAD(P)(+)結合タンパク質スーパーファミリーに属し、かつ、PRK06194のマルチドメインを有する、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化するShort-chain dehydrogenase/reductase
  8. 前記(1)の酵素が配列表の配列番号1に記載のアミノ酸配列を有する C10G0069又は配列表の配列番号2に記載のアミノ酸配列を有するC10G0093である、請求項7に記載の製造方法。
  9. ノボスフィンゴビウム(Novosphingobium)属微生物に由来する、Rossmann-fold NAD(P)(+)結合タンパク質スーパーファミリーに属し、かつ、PRK06194のマルチドメインを有する、グアイアシルグリセロール-β-グアイアシルエーテルのCα位の炭素原子を酸化するShort-chain dehydrogenase/reductase。
  10. 前記Short-chain dehydrogenase/reductaseは、SDS-PAGEで確認できる分子量が34kDaであり;最適pHが8.5~9.5であり;かつ、最適温度が10~15℃である、請求項9に記載のShort-chain dehydrogenase/reductase。
  11. 前記Short-chain dehydrogenase/reductaseは、SDS-PAGEで確認できる分子量が34kDaであり;最適pHが8.5~10.5であり;かつ、最適温度が25~30℃である、請求項9に記載のShort-chain dehydrogenase/reductase。
  12. 前記Short-chain dehydrogenase/reductaseが、配列表の配列番号1に記載のアミノ酸配列を有するC10G0069又は配列表の配列番号2に記載のアミノ酸配列を有するC10G0093である、請求項9に記載のShort-chain dehydrogenase/reductase。
     
     
PCT/JP2015/053551 2014-02-10 2015-02-09 酵素を利用したフェニルプロパン系化合物の製造方法 WO2015119280A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/117,627 US20160348136A1 (en) 2014-02-10 2015-02-09 Method for producing phenyl propane-based compounds using enzymes
EP15746275.5A EP3106522B1 (en) 2014-02-10 2015-02-09 Method for producing phenyl propane-based compounds using enzymes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014023843A JP5935225B2 (ja) 2014-02-10 2014-02-10 酵素を利用したフェニルプロパン系化合物の製造方法
JP2014-023843 2014-02-10

Publications (1)

Publication Number Publication Date
WO2015119280A1 true WO2015119280A1 (ja) 2015-08-13

Family

ID=53778077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053551 WO2015119280A1 (ja) 2014-02-10 2015-02-09 酵素を利用したフェニルプロパン系化合物の製造方法

Country Status (4)

Country Link
US (1) US20160348136A1 (ja)
EP (1) EP3106522B1 (ja)
JP (1) JP5935225B2 (ja)
WO (1) WO2015119280A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034557A (ja) * 2000-07-18 2002-02-05 Rengo Co Ltd リグニンの主要な単位間結合であるアリールグリセロール−β−アリールエーテル型結合の切断酵素、その製造方法およびその生産微生物
JP2006230255A (ja) * 2005-02-23 2006-09-07 National Institute Of Advanced Industrial & Technology 新規微生物
JP2012130326A (ja) * 2010-12-24 2012-07-12 Tokyo Univ Of Agriculture & Technology 新規ピノレジノールレダクターゼ遺伝子及び当該遺伝子を導入した形質転換植物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2218773A1 (en) * 2009-02-17 2010-08-18 Deinove Compositions and methods for degrading lignocellulosic biomass
US20120202272A1 (en) * 2010-09-16 2012-08-09 Ranjini Chatterjee Lige-type systems for bioconversion of lignin-derived compounds

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034557A (ja) * 2000-07-18 2002-02-05 Rengo Co Ltd リグニンの主要な単位間結合であるアリールグリセロール−β−アリールエーテル型結合の切断酵素、その製造方法およびその生産微生物
JP2006230255A (ja) * 2005-02-23 2006-09-07 National Institute Of Advanced Industrial & Technology 新規微生物
JP2012130326A (ja) * 2010-12-24 2012-07-12 Tokyo Univ Of Agriculture & Technology 新規ピノレジノールレダクターゼ遺伝子及び当該遺伝子を導入した形質転換植物

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
AKIHITO OCHIAI: "Sphingomonas wa Yutosei", JOURNAL OF THE SOCIETY FOR BIOSCIENCE AND BIOENGINEERING, JAPAN, vol. 89, no. 10, October 2011 (2011-10-01), pages 614, XP008182268 *
GALL, D.L. ET AL.: "A Group of Sequence-Related Sphingomonad Enzymes Catalyzes Cleavage of beta- Aryl Ether Linkages in Lignin beta-Guaiacyl and beta- Syringyl Ether Dimers", ENVIRON. SCI. TECHNOL., 2014.09, vol. 48, pages 12454 - 12463, XP 055218461 *
GALL, D.L. ET AL.: "Stereochemical Features of Glutathione-dependent Enzymes in the Sphingobium sp. Strain SYK-6 beta-Aryl Etherase Pathway", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 289, no. 12, pages 8656 - 8667, XP 055218446 *
KAGAMI IIDA ET AL.: "Shinkai Chinboku kara Tanri shita Novosphingobium-zoku Saikin no 2 Ryotai Lignin Model Kagobutsu beta-0-4 Ketsugo Kangenteki Kairetsu Kosogun no Kaiseki", DAI 64 KAI ABSTRACTS OF THE ANNUAL MEETING OF THE JAPAN WOOD RESEARCH SOCIETY, 3 March 2014 (2014-03-03), XP008182386 *
KANAKO KUROSAWA ET AL.: "Shinkai Yurai Novosphingobium-zoku Saikin o Mochiita Biomass kara no Hokozoku Monomer Seisan", DAI 64 KAI ABSTRACTS OF THE ANNUAL MEETING OF THE JAPAN WOOD RESEARCH SOCIETY, 3 March 2014 (2014-03-03), XP008182384 *
MASAI, E. ET AL.: "Complete Genome Sequence of Sphingobium sp. Strain SYK-6, a Degrader of Lignin-Derived Biaryls and Monoaryls", JOURNAL OF BACTERIOLOGY, vol. 194, no. 2, January 2012 (2012-01-01), pages 534 - 535, XP 055218448 *
OHTA, Y. ET AL.: "Draft Genome Sequence of Novosphingobium sp. Strain MBES04, Isolated from Sunken Wood from Suruga Bay, Japan", GENOME ANNOUNCEMENTS, vol. 3, no. Issue 1, 15 January 2015 (2015-01-15), pages e01373 - 14, XP 055218472 *
See also references of EP3106522A4 *
TAKAO KISHIMOTO: "Synthesis of Lignin Model Compounds and Their Application to Wood Research", JOURNAL OF WOOD SCIENCE, vol. 55, no. 4, 2009, pages 187 - 197, XP 055218459 *
YUKARI OTA ET AL.: "Shinkai Chinboku kara Tanri shita Bacteria no Bunruigakuteki Ichi to Hokozoku Monomer Taisha", DAI 57 KAI PROCEEDINGS OF THE LIGNIN SYMPOSIUM, 1 October 2012 (2012-10-01), pages 128, XP008182505 *
YUKARI OTA ET AL.: "Shinkai Chinboku kara Tanri shita Biseibutsu ga Seisan suru Lignin Yurai Hokozoku Monomer Genryo to shite no Potential", DAI 64 KAI ABSTRACTS OF THE ANNUAL MEETING OF THE JAPAN WOOD RESEARCH SOCIETY, 3 March 2014 (2014-03-03), XP008182385 *

Also Published As

Publication number Publication date
EP3106522B1 (en) 2021-09-22
EP3106522A1 (en) 2016-12-21
US20160348136A1 (en) 2016-12-01
EP3106522A4 (en) 2017-08-16
JP2015149909A (ja) 2015-08-24
JP5935225B2 (ja) 2016-06-15

Similar Documents

Publication Publication Date Title
KR101354546B1 (ko) 케토 화합물의 입체구조 선택적인 환원을 위한 산화환원효소
von Heimendahl et al. Pinoresinol–lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum
CZ20012792A3 (cs) Polypeptid, polynukleotid kódující polypeptid, expresní vektor, transformant a způsob přípravy
EP2022852B1 (en) Method for production of optically active amine compound, recombinant vector, and transformant carrying the vector
WO2001061014A1 (fr) (r)-2-octanol deshydrogenase, production de cet enzyme, adn codant pour cet enzyme et production d'alcool a l'aide de cet enzyme
CN106164260B (zh) 一种假丝酵母羰基还原酶及用于制备(r)-6-羟基-8-氯辛酸酯的方法
WO1998040472A2 (en) Carboxylic acid reductase, and methods of using same
JP4938786B2 (ja) シトロネラールの生産法
JP7067706B2 (ja) 形質転換微生物及びその利用
Wang et al. An enoate reductase Achr-OYE4 from Achromobacter sp. JA81: characterization and application in asymmetric bioreduction of C= C bonds
Han et al. Bacterial biotransformation of phenylpropanoid compounds for producing flavor and fragrance compounds
Kim et al. Construction of an engineered biocatalyst system for the production of medium‐chain α, ω‐dicarboxylic acids from medium‐chain ω‐hydroxycarboxylic acids
JP5935225B2 (ja) 酵素を利用したフェニルプロパン系化合物の製造方法
WO2015119281A1 (ja) 酵素を利用したフェニルプロパン系化合物中間体の製造方法
TWI589696B (zh) 立體選擇性酶催化還原酮基化合物之方法
WO2015119282A1 (ja) 酵素を利用したフェニルプロパン系化合物の製造方法
WO2006013802A1 (ja) エナンチオマー豊富化化合物の製造方法
JP5349846B2 (ja) 1α,25−ジヒドロキシビタミンDの製造方法
WO2005123921A1 (ja) 新規グリセロール脱水素酵素、その遺伝子、及びその利用法
WO2022210236A1 (ja) バニリン酸産生形質転換微生物及びその利用
JP2007228926A (ja) グリオキシル酸製造用酵素及びそれを用いたグリオキシル酸の製造方法
Kohring et al. Stereoselective oxidation of aliphatic diols and reduction of hydroxy-ketones with galactitol dehydrogenase from Rhodobacter spaeroides D
KR101886674B1 (ko) 피리독살인산을 이용하는 대장균 기반의 고급 알코올 생산 방법
JP7083124B2 (ja) ムコン酸産生形質転換微生物及びその利用
JP5900931B2 (ja) 微生物を利用したフェニルプロパン系化合物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746275

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15117627

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015746275

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015746275

Country of ref document: EP