WO2015119101A1 - 薄膜製造装置、マスクセット、薄膜製造方法 - Google Patents

薄膜製造装置、マスクセット、薄膜製造方法 Download PDF

Info

Publication number
WO2015119101A1
WO2015119101A1 PCT/JP2015/052952 JP2015052952W WO2015119101A1 WO 2015119101 A1 WO2015119101 A1 WO 2015119101A1 JP 2015052952 W JP2015052952 W JP 2015052952W WO 2015119101 A1 WO2015119101 A1 WO 2015119101A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film
measurement
main
forming
Prior art date
Application number
PCT/JP2015/052952
Other languages
English (en)
French (fr)
Inventor
万里 深尾
憲昭 糟谷
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to JP2015560980A priority Critical patent/JP6227014B2/ja
Priority to CN201580007320.2A priority patent/CN105980597A/zh
Priority to KR1020167020889A priority patent/KR20160117452A/ko
Publication of WO2015119101A1 publication Critical patent/WO2015119101A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks

Definitions

  • the present invention relates to a technique for measuring a film thickness, and more particularly, to a technique for managing a film forming process by measurement by ellipsometry.
  • a film deposition system such as a vacuum deposition system
  • fine particles of the constituent material of the thin film are discharged from a film deposition source installed in the film deposition chamber and attached to the deposition target to form a thin film with a desired film thickness.
  • management of the film thickness of the thin film is important, but a technique for growing the thin film while measuring the film thickness using a film thickness sensor is common.
  • the evaporation source 112 is disposed in the vacuum chamber 111, and the mask 113 and the film formation target 114 are disposed above the evaporation source 112.
  • the thin film material fine particles here, vapor
  • the vapor that has passed through the opening formed in the mask 113 reaches the film formation target 114, A thin film having a pattern according to the opening pattern of the mask 113 is formed.
  • a crystal resonator 115 is disposed at a position where the vapor of the evaporation source 112 reaches. Fine particles emitted from the evaporation source 112 reach the crystal resonator 115 in addition to the film formation target 114, and the crystal The film thickness of the thin film grown on the surface of the vibrator 115 is measured using the change in the resonance frequency of the crystal vibrator 115 and converted into the film thickness value of the thin film formed on the surface of the film formation target 114. In such a film thickness measurement, in addition to low measurement accuracy, it is necessary to frequently replace the crystal unit 115 on which a thin film grows, which deteriorates the operating rate of the apparatus.
  • the film formation target is taken out of the film formation chamber, and an ellipsometer or other film is formed.
  • the film thickness meter using a vibrator is easily affected by factors such as a decrease in frequency and temperature change, while the ellipsometry film thickness measurement is accurate and provides a highly reliable film thickness value. Obtainable. However, since the ellipsometer is placed in the atmosphere, if the measurement target is taken out into the atmosphere and measurement is performed, a long time is required for the measurement work, and the measurement result is immediately applied to the film formation process. It is difficult to reflect.
  • the present invention was created in order to solve the above-described problems of the prior art.
  • the film thickness is measured by ellipsometry without exposing the film formation target to the atmosphere, and the measured film thickness value is produced in a short time. It is to provide a technique that can be reflected in the process.
  • the present invention provides a first film-forming source that discharges first fine particles that are fine particles of a first film-forming substance, and a second film that is fine particles of a second film-forming substance.
  • a second film-forming source that discharges fine particles; first and second film-forming chambers in which the first and second film-forming sources are respectively disposed; and a first main opening.
  • An ellipsometer having a light receiving portion for receiving light, and in the first film formation chamber, the film formation object and the first mask are opposed to each other and pass through the first main opening.
  • a first main thin film is formed on the film formation target by the first fine particles, and the film formation target and the second mask are formed in the second film formation chamber. Is directed, by the second of said second particle passing through the main opening, a second A thin film production apparatus main thin film is formed on the film-forming target,
  • the first mask has a first sub-opening at a location different from the first main opening
  • the second mask has a second sub-opening at a location different from the second main opening.
  • the second measurement thin film is in contact with the surface of the film formation target by the second fine particles that have passed through the second sub-opening.
  • a moving chamber into which the film forming object unloaded from the first film forming chamber is carried in is provided, and the light transmitting unit and the light receiving unit are provided in the moving chamber.
  • the surface of the first measurement thin film of the film formation target disposed in the moving chamber is exposed, Serial first of said polarized light to the exposed surface of the measuring film is irradiated, a thin film production apparatus thickness value is measured of the reflected light incident on the light receiving portion and the first measurement membrane.
  • the present invention is a thin film manufacturing apparatus in which the second main thin film and the second measurement thin film are formed after measuring the film thickness value of the first measurement thin film.
  • the first and second film forming chambers and the moving chamber are unloaded from the first film forming chamber in which the first main thin film and the first measurement thin film are formed.
  • the film formation object is carried into the second film formation chamber after the polarized light is irradiated onto the first measurement thin film in the moving chamber, and the second main thin film and the second measurement are carried out. It is the thin film manufacturing apparatus arrange
  • the present invention provides a thin film manufacturing apparatus in which after the first and second main thin films and the first and second measurement thin films are formed, the film thickness value of the first measurement thin film is measured. It is.
  • the second measurement thin film of the film formation target disposed in the moving chamber is irradiated with the polarized light, and reflected light is incident on the light receiving unit, so that the second measurement thin film is formed. It is a thin film manufacturing apparatus in which a thickness value is measured.
  • the present invention is the thin film manufacturing apparatus in which the first and second main thin films are formed on the same place on the surface of the film formation target.
  • the present invention includes a third film forming source that discharges third fine particles that are fine particles of a third film forming substance, a third film forming chamber in which the third film forming source is disposed, A main mask and a third sub-opening, and a third mask disposed in the third film formation chamber, wherein the film formation object
  • the first and second particles are opposed to each other by the third fine particles passing through the third main opening and the third fine particles passing through the third sub-opening.
  • the main thin film and the first and second measurement thin films are formed, and the third main thin film and the third measurement thin film are formed on the film formation object on which the surfaces of the first and second measurement thin films are exposed.
  • the third measurement thin film is formed in contact with the film formation target, and the third main thin film and the third measurement thin film are formed. After the bets have been formed also, the first surface of the second measuring thin film is a thin film manufacturing apparatus is left exposed.
  • the present invention is the thin film manufacturing apparatus in which the third main thin film and the third measurement thin film are formed after the film thickness values of the first and second measurement thin films are measured.
  • the present invention is the thin film manufacturing apparatus in which the first, second, and third main thin films are formed on the same place on the surface of the film formation target.
  • the present invention has a main opening through which fine particles of a film-forming substance pass and a shielding portion that shields the fine particles, and faces the film formation target, and passes the main particles through the main opening.
  • a mask set comprising a plurality of the masks for forming a main thin film for each of the masks on the surface of the film formation target, each of the plurality of masks having a sub-opening,
  • the shielding part of the other mask faces the position of the film formation target facing the sub-opening of the one mask, and the fine particles that have passed through the sub-opening cause the top of the film formation target
  • a mask set configured to form a sub-thin film together with the main thin film for each of the masks.
  • the present invention is the mask set in which at least a part of the sub-thin film is a measurement thin film in contact with the film formation target.
  • the present invention is a thin film manufacturing method for sequentially forming a plurality of thin films one by one on a film formation target, and is a single thin film included from a thin film formed first to a thin film formed in the immediately preceding last film. And after forming the one thin film including the measurement thin film in contact with the film formation target, the film forming apparatus that forms the one thin film passes through the moving chamber to the film forming apparatus that forms the next thin film. When moving, the measurement thin film of the one thin film was irradiated with polarized light in the moving chamber, reflected light was received, and the film thickness value of the measurement thin film was obtained from the change in the polarization state.
  • a film thickness value is compared with a reference range, and an alarm is output if the film thickness value is outside the reference range.
  • the present invention has a main opening through which fine particles of a film-forming substance pass and a shielding portion that shields the fine particles, and faces the film formation target, and passes the main particles through the main opening.
  • a mask set comprising a plurality of the masks for forming a main thin film for each of the masks on the surface of the film formation target, each of the plurality of masks having a sub-opening,
  • the shielding part of the other mask faces the position of the film formation target facing the sub-opening of the one mask, and the fine particles that have passed through the sub-opening cause the top of the film formation target
  • a mask set configured to form a measurement thin film in contact with the film formation target under the same formation conditions together with the main thin film is used.
  • the present invention compares the measured film thickness value with a reference range, and if the comparison result indicates that the film thickness value is outside the reference range, the film thickness value falls within the reference range.
  • the main thin film and the measurement thin film are formed by causing one mask to face the first film forming object among the plurality of film forming objects facing the same mask one by one. Forming the main thin film and the measurement thin film by facing the same mask to a second film formation target after forming and measuring the film thickness, When the comparison result of the first film formation object indicates that the measured film thickness value is outside the reference range, the main film and the measurement are added to the second film formation object.
  • the main thin film and the measurement thin film are finally formed by the mask facing each other.
  • the film thickness value is a method for producing a thin film, which is measured in the vacuum atmosphere before being taken out into the atmosphere.
  • the measurement target thin film formed by each of the masks after being carried out to the atmosphere is exposed by the surface, formed by each of the masks, and the film thickness value is measured in the vacuum atmosphere.
  • the film thickness value of a desired thin film to be measured among the target thin films is measured after the film formation target is carried out into the atmosphere.
  • the main thin film and the measurement thin film are formed by the mask first facing the film formation target, the main thin film and the measurement thin film are finally formed by the mask facing each other.
  • the thin film to be measured is formed on the surface of each thin film formed by each of the masks after being placed in a vacuum atmosphere and then being carried out to the atmosphere.
  • the present invention is a thin film manufacturing method for manufacturing a laminated film by laminating at least two main thin films formed by the mask.
  • the present invention is an ellipsometer, in which the light transmitting unit for emitting polarized emission light and the light receiving unit for receiving incident light are placed in the vacuum atmosphere, and among the measurement thin films formed by the masks, The emitted light is emitted toward the measurement thin film formed by at least one of the masks, and the reflected light reflected by the measurement thin film irradiated with the emitted light is incident on the light receiving unit.
  • the film thickness of the measurement thin film irradiated with the emitted light is measured from the polarization state of the reflected light.
  • a single layer film can be measured when a plurality of thin films are stacked to form a stacked film, an accurate film thickness value can be obtained.
  • the film thickness is measured at a stage before the laminated film is formed, if the measurement result of the film thickness is an abnormal value, the film is formed in the film forming chamber in which a thin film having an abnormal value is formed. Since the process can be stopped and the cause of the abnormality can be removed and then recovered, the amount of defective products can be reduced.
  • the film thickness of the thin film can be measured in a short time after the thin film is formed by one film forming source, the film forming conditions of the one film forming source can be changed in a short time depending on the measurement result. Therefore, the film thickness value can be maintained at a constant value.
  • the film thickness is measured to obtain a measurement result, and the measurement result indicates that the measured film thickness value is outside the reference range If the thin film formation conditions are changed so that the film thickness value falls within the reference range before the main thin film is formed by facing the mask on which the measurement thin film is measured on the next film formation target, The number of film formation objects whose film thickness values are outside the reference range can be reduced.
  • the formation conditions are not changed.
  • the thin film manufacturing apparatus of the first example of the present invention (a) to (c): Deposition chamber (a), (b): Moving room (a): a plan view of the film-forming target (b): A 0 -A 0 line cutting off cross-sectional view of the object to be film before film formation (c): B 0 -B 0 line in the film-forming target cutting off Cross section (a): Plan view of a film formation target on which the first thin film is formed (b): A 1 -A 1 line cut cross-sectional view of the film formation target (c): B 1-of the film formation target B 1 line cutting cross section (d): Plan view of mask for forming the first thin film (a): Plan view of the film formation target on which the second layer thin film is formed (b): Cross section taken along line A 2 -A 2 of the film formation target (c): B of the film formation target 2 -B 2-wire cutting off cross-sectional view (d): a plan view of a mask for forming the second layer
  • FIG. 1 shows a thin film manufacturing apparatus 10a of a first example of the present invention.
  • Reference numeral 11 in FIG. 1 denotes a film forming unit, and the thin film manufacturing apparatus 10a is configured by connecting a plurality of film forming units 11 in a line.
  • each film forming unit 11 has the same structure, and has a first moving chamber 21, a second moving chamber 23, and one or a plurality of film forming chambers 22.
  • Each film forming unit 11 has a plurality of film forming chambers 22 (two in this case), and a film forming source 20 that discharges fine particles of a film forming material is provided in each film forming chamber 22.
  • the fine particles of the film-forming substance include vapor of the film-forming substance (including gas generated by sublimation) and sputtering particles.
  • a transfer device 25 is arranged, and the transfer device 25 (here, a transfer robot) places a hand 26 on which a film formation target is placed and moves.
  • the film formation target is a plate-shaped substrate such as a glass substrate or a semiconductor wafer.
  • the film forming chamber 22 and the second moving chamber 23 of each film forming unit 11 are connected to the first moving chamber 21 of the film forming unit 11.
  • the transfer device 25 of each film forming unit 11 is controlled by a control device 37.
  • the control device 37 controls the movement of the hand 26 and places a film formation target on the hand 26, the first moving chamber 21.
  • the film formation object can be carried in and out of the film formation chamber 22 connected to the.
  • the film formation target object is sequentially moved in the plurality of film formation units 11, and the second moving chamber of the film formation unit 11 on the upstream side of the movement in the plurality of film formation units 11 arranged in a row.
  • 23 is also connected to the first transfer chamber 21 of the film forming unit 11 on the downstream side.
  • a pretreatment device 41 for performing a pre-process of the thin film manufacturing apparatus 10a is connected to the first moving chamber 21 of the most upstream film forming unit 11, and the second moving chamber 23 of the most downstream film forming unit 11 is
  • the thin film manufacturing apparatus 10a is connected to a post-processing apparatus 42 that performs a post-process.
  • the transfer device 25 in each first moving chamber 21 is a component arranged inside the second moving chamber 23 or the pretreatment device 41 of the upstream film forming unit 11 connected to the first moving chamber 21.
  • the film object is placed on the hand 26 and moved to the film forming chamber 22.
  • a film formation target disposed inside the film formation chamber 22 can be placed on the hand 26 and moved to the second moving chamber 23 or the post-processing apparatus 42 of the film formation unit on the downstream side.
  • FIG. 2A shows the inside of each film forming chamber 22.
  • Each film forming chamber 22 has a vacuum chamber 50, and a mask holding device 51 and a substrate holding device 52 are arranged inside the vacuum chamber 50. The mask 3 is held by the mask holding device 51.
  • Reference numerals 3 1 to 3 3 and 3 10 in FIGS. 5 (d), 6 (d), 7 (d), and 8 (d) are examples of the mask 3 that can be used in the present invention.
  • the mask set is composed of a plurality of masks 3 1 to 3 3 and 3 10 for forming a thin film.
  • the masks 3 1 to 3 3 and 3 10 shown in FIGS. 5D to 8D may be arranged in different film forming chambers 22 to form a thin film on a single film formation target.
  • One or more desired masks out of the plurality of masks 3 1 to 3 3 and 3 10 may be arranged in the same film formation chamber 22.
  • Reference numeral 4 in FIG. 2 (b) indicates a film formation object carried into each film formation chamber 22, and the film formation object 4 is held by the substrate holding device 52, and FIG.
  • the mask 3 is positioned between the film formation target 4 and the film formation source 20, and the mask 3 and the film formation target 4 face each other in parallel.
  • Each mask 3 is formed with a mask alignment mark, and a film alignment target 4 is formed with a substrate alignment mark (an alignment mark is not shown).
  • a transparent window 57 is airtightly provided on the wall surface of the vacuum chamber 50.
  • An imaging device 55 is disposed in the vicinity of the window outside the vacuum chamber 50, and the inside of the vacuum chamber 50 is observed by the imaging device 55 through the window 57, and the mask holding device 51. In the state where the mask 3 and the film formation target 4 are respectively disposed on the substrate holding device 52, the substrate alignment mark and the mask alignment mark can be observed by the imaging device 55.
  • One or both of the substrate holding device 52 and the mask holding device 51 are connected to the alignment device 53, and when the alignment device 53 operates, the mask 3 and the film formation target 4 are maintained in a parallel state. However, either or both of the substrate holding device 52 and the mask holding device 51 are relatively moved so that the relative position between the mask 3 and the film formation target 4 can be changed.
  • the imaging device 55 is connected to the alignment device 53, and the imaging result captured by the imaging device 55 is output to the alignment device 53.
  • the substrate alignment mark and the mask alignment mark are observed by the imaging device 55, and an error between the predetermined relative position and the actual relative position of the imaged image is obtained from the imaging result by the alignment device 53.
  • the alignment between the mask 3 and the film formation target 4 is relatively moved by the alignment device 53 so that the error is reduced.
  • the film formation target 4 is provided, the coordinate axis for specifying the position on the film formation target 4 and the mask 3 are provided. It is assumed that the coordinate axes for specifying the positions coincide with each other except for the difference in the distance direction between the mask 3 and the film formation target 4.
  • the mask 3 disposed in each film forming chamber 22 has a plate shape that does not allow particles to pass through.
  • the deposited film forming source 20 faces any one of the masks 3 1 to 3 3 , 3 10 .
  • Respective masks 3 1 to 3 3 , 3 10 , main openings 17 1 to 17 3 , 17 10 , and sub-openings 16 1 to 16 3 , 16 10 are represented by reference numerals 3 , 17, and 16.
  • the thin film is formed at a position facing the main opening 17 by the fine particles emitted from one film forming source 20 and passed through the main opening 17.
  • a thin film is formed at a position facing the sub-opening 16 by the fine particles emitted from 20 and passing through the sub-opening 16.
  • the alignment is completed.
  • the main opening 17 faces the place where the main thin film is formed by the mask 3 aligned with the film formation target 4, and the sub opening 16 is formed by the mask 3 so that the sub thin film is Facing the place to be formed.
  • the film formation target 4 and the mask 3 move relatively close to each other, and the film formation target 4 and the mask 3 come into contact with each other, or The film formation target 4 and the mask 3 are separated from each other and held in the vacuum chamber 50.
  • the inside of the film formation chamber 22 is in a vacuum atmosphere when the film formation target 4 is carried in, and when alignment between the film formation target 4 and the mask 3 is completed, a thin film is formed from the film formation source 20.
  • the fine particles of the material to be discharged are discharged into the vacuum chamber 50, and the main thin film and the sub thin film are formed at the positions where they are to be formed.
  • the main thin film is a thin film constituting a part of a product manufactured by the thin film manufacturing apparatus, and the sub-thin film is a thin film used for film thickness measurement as will be described later. Assuming that the thin film formed inside one film forming chamber 22 is a single layer, the thin films are sequentially formed on each film forming object 4 by each film forming chamber 22.
  • Reference numerals 7 1 to 7 3 and 7 10 in FIGS. 5 (a), (c), 6 (a), (c), 7 (a), (c), 8 (a), (c) are as follows.
  • the main thin film formed by the first film forming chamber 22 to the third film forming chamber 22 and the last film forming chamber 22, and FIGS. 5 (a), 5 (c), 6 (a), ( c), FIGS. 7A, 7C, 8A, and 8C, reference numerals 6 1 to 6 3 and 6 10 denote the first film formation chamber 22 to the third film formation chamber 22, respectively. This is a sub-thin film formed in the last film formation chamber 22.
  • the sub-openings 16 1 to 16 3 and 16 10 are arranged at the peripheral portions of the masks 3 1 to 3 3 . but formation position of the sub-openings 16 1 to 16 10 is not limited to this, the sub-apertures 16 1 to 16 10 are formed in the shielding portion 15 between the main adjacent openings 17 1 to 17 10 Also good.
  • the sub-opening 16 10 of the mask 3 10 shown in FIG. 12B is disposed in the shielding portion 15 between the main openings 17 10 adjacent in the vertical direction, and as shown in FIG.
  • the main thin films 7 1 to 7 10 to be formed are arranged around the laminated film.
  • the first main thin film 71 is formed in contact with the surface of the film-forming target 4
  • the second and subsequent main thin film 7 2 to 7 10 are formed in contact with the surfaces of the main thin films 7 1 to 7 9 formed immediately before. Therefore, the main thin films 7 1 to 7 10 formed one by one in the plurality of film forming chambers 22 are formed. 7 10 are laminated to form a laminated film 8 (FIG. 8C).
  • first major film 71 a predetermined th main thin film of the second and subsequent, may be formed in contact with the film-forming target 4, further also on such main thin film, other film formation Even if the main thin film formed in the chamber 22 is formed to form a laminated film, it is included in the present invention.
  • the sub-thin films 6 1 to 6 10 are formed in contact with the film formation target 4, and the sub-thin films 6 1 to 6 10 are in contact with the film formation target 4.
  • the formed portion is called a measurement thin film
  • the measurement thin film formed in each film formation chamber 22 is formed at a different location on the film formation target 4.
  • the main opening 17 of one mask 3 is entirely or partially used as the main opening 17 of the other mask 3 or the mask used before the mask 3.
  • 3 sub-openings 16 may overlap.
  • the main openings 17 of one mask 3 are overlapped with the main openings 17 of all other masks 3.
  • the portion where the measurement thin film is formed does not overlap the main openings 17 and the sub-openings 16 of the other masks 3. Measurement of the sub-opening 16 of one mask 3 among the masks 3 arranged in different film forming chambers 22 when the masks 3 are overlapped so that the coordinates provided on the mask 3 coincide with each other. The portion where the thin film is formed does not overlap the sub-opening 16 and the main opening 17 of the other mask.
  • each film forming chamber 22 When the main thin films 7 1 to 7 10 and the sub thin films 6 1 to 6 10 formed in each film forming chamber 22 are represented by reference numerals 7 and 6, the main thin film 7 and the sub thin film 6 are formed in each film forming chamber 22.
  • the film formation target 4 on which is formed is moved to the other film formation chamber 22 or the second movement chamber 23 through the first movement chamber 21.
  • the second moving chamber 23 has been moved.
  • the second moving chamber 23 has a vacuum chamber 40, and the measuring device main body 34 of the ellipsometer 30 is disposed outside the vacuum chamber 40. Inside the second moving chamber 23, a light transmitting unit 32, a light receiving unit 33, and a substrate arrangement unit 45 of the ellipsometer 30 are arranged.
  • the light transmitting unit 32 emits the polarized emitted light in a predetermined direction
  • the light receiving unit 33 receives the incident light and outputs the polarization state of the incident light to the measuring apparatus main body 34.
  • the film formation target 4 on which the main thin film 7 and the sub thin film 6 are formed is carried into the vacuum chamber 40 of the second moving chamber 23 and is placed on the substrate placement portion 45 as shown in FIG. Be placed.
  • the substrate placement unit 45 is provided with a moving device 44, and the film forming target 4 placed on the substrate placement unit 45 is transferred to the sub-thin film 6 to be measured by the operation of the moving device 44. It moves so that the polarization
  • the thin films formed in the film forming chamber 22 at least the portion of the thin film for measurement that has not been subjected to film thickness measurement has an exposed surface, and polarized emission light is irradiated onto the measurement thin film. When reflected, reflected light is generated.
  • the light receiving unit 33 is disposed at a position where the reflected light generated by the reflection of the measurement thin film is incident.
  • the polarization state of the reflected light is changed to the measurement apparatus main body 34. Is output.
  • the measuring device main body 34 obtains a change in the polarization state between the polarized emission light emitted from the light transmitting unit 32 and the reflected light received by the light receiving unit 33 from the input signal indicating the polarization state, and stored. From the calculated procedure, the film thickness of the thin film for measurement is obtained.
  • a plurality of measurement thin films formed in different film formation chambers 22 are formed on the surface of the film formation target 4, and among the measurement thin films, a plurality of unmeasured measurement thin films are formed. 4, after measuring the film thickness of one measurement thin film, the substrate placement device is moved by the moving device 44, and the light transmitting section 32 is emitted to another unmeasured measurement thin film. The deflected light is incident, the reflection hole is received by the light receiving unit 33, and the thickness of the measurement thin film is measured.
  • each of the second moving chambers 23 it is possible to measure the film thickness of a plurality of unmeasured thin films for measurement, and the obtained film thickness value is stored in the storage device of the measurement apparatus main body 34. At the same time, it is output to the control device 37. Further, the obtained film thickness value is displayed on a display device connected to the measuring device main body 34.
  • a reference range of film thickness values is stored for each film forming source 20, and the measured thickness value of the thin film is compared with the reference range corresponding to the measured thin film.
  • the measured film thickness is not within the reference range (when the measured value is smaller than the minimum value of the reference range or larger than the maximum value)
  • it is determined that an abnormal value of the film thickness has been detected.
  • an alarm is given that an abnormal situation has occurred, the film forming process in the film forming chamber 22 in which the thin film having an abnormal value is formed is stopped, and the film forming object in which the thin film having the abnormal value is formed 4 is distinguished from other film forming objects 4 so that it can be regenerated or discarded.
  • the film formation process in the film formation chamber 22 is resumed, and the film formation target 4 that was in the process of manufacturing the laminated film is The laminated film is completed.
  • the measured value is within the reference range (when the measured value is not less than the minimum value and not more than the maximum value of the reference range)
  • the alarm is not issued and the next step is performed.
  • the film thickness value measured one or more times before the thin film formed by the same film forming source 20 and the film measured this time
  • the film formation time is shortened, and conversely, when the film thickness value is small, the thin film is formed. It is possible to manage the production process such as lengthening the time.
  • the film forming chamber 22, the first moving chamber 21, and the second moving chamber 23 are each provided with an evacuation device.
  • Each vacuum evacuation device is connected to the control device 37, the operation is started by the control device 37, each chamber is closed and evacuated, and each chamber is previously in a vacuum atmosphere.
  • the film formation target 4 arranged in the pretreatment apparatus 41 is moved by the control device 37 by the substrate transfer robot of the first film formation unit 11 and is carried into the first film formation chamber 22.
  • FIG. 4A shows a plan view of the film formation target 4, and the surface of the film formation target 4 is exposed.
  • FIG. 4B is a cross-sectional view taken along the line A 0 -A 0
  • FIG. 4C is a cross-sectional view taken along the line B 0 -B 0 .
  • the film formation target 4 and the mask 3 are aligned, and the fine particles are released from the film formation source 20 disposed in the film formation chamber 22, so that the surface of the film formation target 4.
  • the thin film is formed in the same procedure in another film forming chamber 22 connected to the same first moving chamber 21.
  • one film forming chamber 22 is provided in one film forming unit 11, and when the first thin film is formed, the film forming process in the film forming unit 11 is terminated and the film is formed. Thickness may be measured, or three or more film forming chambers 22 are provided, and in each film forming chamber 22, a plurality of thin films are respectively formed on one film forming object 4, and those thin films are formed. The film thickness may be measured in one second moving chamber 23.
  • first and second film forming chambers 22 are provided, and when a thin film is formed in the first and second film forming chambers 22, film forming is performed.
  • the object 4 is carried into the second moving chamber 23 of the first film forming unit 11 and is formed in two layers of sub-thin films 6 1 , 6 2 formed in the first and second film forming chambers 22.
  • the thickness of the measurement thin film portion is measured.
  • FIG. 3B shows the inside of the second moving chamber 23 when the first and second sub-thin films 6 1 and 6 2 are measured.
  • the first and second main thin films 7 1 and 7 2 are omitted.
  • the transfer device 25 of the second film forming unit 11 located adjacent to the film forming unit 11 on the downstream side is the first second moving chamber on the upstream side.
  • the film forming target 4 disposed in the second film forming unit 11 is unloaded from the second moving chamber 23. To form a thin film.
  • FIG. 6 (b), FIG. 7 (b), and FIG. 8 (b) show the A 2 -A 2 cut line in FIG. 6 (a), the A 3 -A 3 cut line in FIG. 7 (a), and FIG. a cutting off sectional view taken along each of the a 10 -A 10 cutting off line (a), FIG. 6 (c), the FIG. 7 (c), the 8 and (c) is, B 2 -B 2 cutting off line
  • FIG. 4 is a cross-sectional view taken along lines B 3 -B 3 and B 10 -B 10 .
  • FIG. 5 (d) is a one-th mask 3 1 arranged in the deposition chamber 22
  • Fig. (A) is, by the mask 3 1, one second film forming chamber 22, the first layer of the main the surface of the thin film 71 and the sub-thin film 61 and the film formation target object formed 4 is shown.
  • the thin film formed in the first film formation chamber 22 is formed in contact with the film formation target 4.
  • FIGS. 6D and 7D show masks 3 2 and 3 3 disposed in the second film formation chamber 22 and the third film formation chamber 22, respectively.
  • 7 (a) shows that the second and third main thin films 7 2 and 7 3 and the sub thin films 6 2 and 6 3 are separated by the masks 3 2 and 3 3 of the second and third film forming chambers 22. It is the surface of the formed film formation target 4.
  • the masks 3 1 to 3 3 arranged in the first to third film formation chambers 22 are the masks 3 1. ⁇ 3 3, mask 3 1-3
  • main opening 17 1 of each mask 3 1-3 3 -17 3 are arranged in the same place, and the sub-openings 16 1 to 16 3 are arranged in the same size and spaced apart from each other. Therefore, of the main thin films 7 1 to 7 3 and the sub thin films 6 1 to 6 3 formed in the first to third film forming chambers 22, the main thin films 7 1 to 7 3 are laminated in three layers. Therefore, the sub-thin films 6 1 to 6 3 are arranged at a predetermined interval.
  • the film formation target 4 is carried into the second moving chamber 23 of the second film formation unit 11, and the third and fourth The thicknesses of the sub-thin films 6 3 and 6 4 are measured.
  • a plurality of thin films are formed in the film forming chamber 22 respectively, and when the last thin film is formed, a laminated film 8 (FIG. 8C) in which the plurality of thin films are stacked is completed.
  • the last is a mask 3 10 to form a thin film of (tenth here), as shown in FIG. 8 (a) ⁇ (c), the main film
  • the thin films formed in order in all the film forming chambers 22 are provided with measurement thin films, respectively, and after the last thin film is formed. However, the surface of each measurement thin film is exposed.
  • the thin film of the last previous layer and the thin film of the last layer are formed, and the film formation target 4 on which the last thin film is formed moves to the second moving chamber 23.
  • the film formation target 4 on which the last thin film is formed moves to the second moving chamber 23.
  • the film thickness of the thin film can be measured by the ellipsometer 30 after forming the thin film and before forming another thin film.
  • the film formation target 4 is moved from the second moving chamber 23 of the last film formation unit 11 to the inside of the post-processing apparatus 42 that performs a post-process. .
  • an alarm when an abnormal value is detected can be displayed by displaying it on a display device connected to the measuring device main body 34 or another device.
  • an alarm can be output with sound from a speaker provided in the measurement apparatus main body 34 or another apparatus, and a lamp provided in the measurement apparatus main body 34 or other apparatus may be blinked.
  • the film formation source 20 can be an evaporation source, a sputtering target, or the like.
  • the film formation source 20 is an evaporation source
  • the film formation material disposed in the film formation source 20 is heated and evaporated or Sublimation causes fine particles made of vapor or sublimate to be released into the film forming chamber 22.
  • the film forming source 20 is a sputtering target
  • a sputtering gas is introduced into the film forming chamber 22
  • a plasma of the sputtering gas is generated on the film forming source 20
  • the film forming source 20 is sputtered to form fine particles made of sputtered particles. Is released from the film forming source 20 into the film forming chamber 22.
  • the film forming source 20 that can be used in the present invention is not limited to an evaporation source or a sputtering target, and any film forming source 20 that emits fine particles of a film forming material may be used.
  • the mask 3 is also arranged at a position facing the film formation source 20.
  • the light transmitting unit 32 and the light receiving unit 33 are arranged in the second moving chamber 23.
  • the thin film manufacturing apparatus 10b of the second example of the present invention shown in FIG. 32 and the light receiving unit 33 are not arranged in the second moving chamber 23 but are arranged inside the first moving chamber 21.
  • Other configurations of the second thin film manufacturing apparatus 10b are the same as those of the first thin film manufacturing apparatus 10a.
  • the film thickness was measured after moving from the first moving chamber 21 to the second moving chamber 23.
  • the second thin film manufacturing apparatus 10b the first movement was performed.
  • the second thin film manufacturing is performed in the same procedure as when thin film formation and film thickness measurement are performed by the first thin film manufacturing apparatus 10a. Thin film formation and film thickness measurement can be performed by the apparatus 10b.
  • the light transmitting unit 32 and the light receiving unit 33 may be a moving chamber disposed between at least two film forming chambers 22 instead of the inside of the film forming chamber 22.
  • the present invention includes both the case where the light transmitter 32 and the light receiver 33 are provided and the case where the light transmitter 32 and the light receiver 33 are provided in the second moving chamber 23.
  • the light transmitter 32 and the light receiver 33 are disposed in a vacuum atmosphere, and the measuring device body 34 of the ellipsometer 30 is disposed outside the vacuum chamber 40.
  • the light transmitting unit 32, the light receiving unit 33, and the measuring device main body 34 are arranged in the vacuum chamber 40, and each is placed in a vacuum atmosphere.
  • the transfer chamber 24 can also be used in the present invention.
  • a moving chamber in the case where the light transmitter 32, the light receiver 33, and the measuring device main body 34 are arranged outside the vacuum chamber 40 and the ellipsometer 30 is placed in the atmosphere is also used in the present invention. be able to.
  • each mask 3 is formed into a pattern on which no other thin film is formed. If a thin film for measurement whose surface is exposed is formed on an object, after forming a main thin film and a sub thin film with each mask 3, the film thickness value of the measurement thin film portion of each sub thin film is measured. Can do. Furthermore, the film thickness value of each measurement thin film can be measured even after the film formation target is carried out into the atmosphere.
  • the corresponding measurement thin film is formed with the surface exposed on one film formation target, so the film thickness measurement for each main thin film There is no need to use this substrate, and it takes only a short time to obtain appropriate formation conditions for each main thin film when forming a laminated film in which each main thin film is laminated.
  • the film thickness value is obtained immediately after the main thin film is formed, the formation conditions of the main thin film whose production is started after the measurement of the film thickness value can be changed, and the surface of each measurement thin film can be changed. If no other thin film is formed, the film thickness value of each measurement thin film can be measured even after the formation of the main thin film is completed and it is carried out to the atmosphere. In order to complement the measurement, the film thickness value may be measured after being carried out to the atmosphere.
  • the film thickness value may not be measured in vacuum, and the film thickness value may be measured after being transported to the atmosphere, or the film thickness measured in vacuum is transported to the atmosphere. After the measurement, the film thickness value may be measured again.
  • the thickness of the measurement thin film can be measured in a vacuum atmosphere before the film formation target is carried out to the atmosphere. Measurement accuracy can be improved without increasing the measurement time during the film-forming process, such as measuring a small number of measurement points in a vacuum atmosphere and measuring a large number of measurement points after carrying them out to the atmosphere.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 膜厚の測定結果を成膜工程に直ぐに反映させることができる薄膜製造装置と薄膜製造方法を提供する。 一つの成膜ユニット11の成膜室22内で成膜対象物にパターニングされた薄膜を形成した後、他の成膜ユニット11の成膜室22に移動させてパターニングされた他の薄膜を形成する際に、成膜ユニット11の間に位置する第一又は第二の移動室21,23の中で、形成された薄膜のうち、成膜対象物表面に接触している測定用薄膜の部分に、送光部32から偏光を照射し、反射光を受光部33で受光し、エリプソメータによって薄膜の膜厚を求める。測定結果が異常値である場合には、異常値を示す薄膜を形成する成膜室22の運転を停止させる。複数の成膜室22で異なる薄膜を形成する際に、各薄膜の測定用部分は離間して位置するようにマスクを形成しておくと、二層以上の薄膜形成後にも膜厚測定を行うことができる。

Description

薄膜製造装置、マスクセット、薄膜製造方法
 本発明は、膜厚測定の技術に関し、特に、エリプソメトリによる測定によって、成膜工程の管理をする技術に関する。
 真空蒸着装置等の成膜装置では、成膜室の内部に設置された成膜源から、薄膜の構成材料の微粒子を放出し、成膜対象物に付着させ、所望の膜厚の薄膜を形成する。
 従って、薄膜の膜厚の管理が重要になるが、膜厚センサを使用し、膜厚を測定しながら薄膜を成長させる技術が一般的である。
 例えば、図10の符号110に示す蒸着装置では、真空槽111の中に蒸発源112が配置され、その上方に、マスク113と成膜対象物114とが配置されており、真空槽111内が真空雰囲気にされた状態で、蒸発源112から薄膜材料の微粒子(ここでは蒸気である)が放出されると、マスク113に形成された開口を通過した蒸気が成膜対象物114に到達し、マスク113の開口のパターンに従ったパターンの薄膜が形成される。
 蒸発源112の蒸気が到達する位置には、水晶振動子115が配置されており、蒸発源112から放出された微粒子は、成膜対象物114の他、水晶振動子115にも到達し、水晶振動子115の表面に成長する薄膜の膜厚が、水晶振動子115の共振周波数の変化を用いて測定され、成膜対象物114の表面に形成される薄膜の膜厚値に換算される。
 このような膜厚測定では、測定精度が低いことに加え、薄膜が成長してしまう水晶振動子115を頻繁に交換する必要が生じ、装置の稼働率を悪化させる。
 成膜中に膜厚を測定する管理の他には、時間管理等によって所望膜厚と推定される薄膜を形成した後、成膜対象物を成膜室の外部に搬出し、エリプソメータ等の膜厚計を使って膜厚の測定を行うことで、形成された薄膜の膜厚が、基準範囲内であるかどうかの確認を行う管理方法がある。
 振動子を用いた膜厚計は、周波数の低下や温度変化などの要因により測定値が影響を受け易いのに対し、エリプソメトリの膜厚測定は正確であり、信頼性の高い膜厚値を得ることができる。
 しかしながら、エリプソメータは大気中に配置されているため、測定対象である成膜対象物を大気中に搬出して測定を行うと、測定作業に長時間が必要となり、測定結果を成膜工程に直ぐに反映させることは困難である。
 また、有機EL デバイスのような多層の積層膜を形成する場合、積層膜の膜厚を測定することは技術上困難であり、測定結果を成膜工程に反映させることができない。
 下記はエリプソメータを有する従来技術の成膜装置である。
特表2012-502177号
 本発明は、上記従来技術の課題を解決するために創作されたものであり、成膜対象物を大気に曝すことなくエリプソメトリによって膜厚を測定し、測定した膜厚値を短時間で生産工程に反映させることができる技術を提供することにある。
 上記課題を解決するために、本発明は、第一の成膜物質の微粒子である第一の微粒子を放出する第一の成膜源と、第二の成膜物質の微粒子である第二の微粒子を放出する第二の成膜源と、前記第一、第二の成膜源がそれぞれ配置された第一、第二の成膜室と、第一の主開口が形成され、前記第一の成膜室に配置された第一のマスクと、第二の主開口が形成され、前記第二の成膜室に配置された第二のマスクと、偏光を射出する送光部と、入射光を受光する受光部とを有するエリプソメータと、を有し、前記第一の成膜室では、成膜対象物と前記第一のマスクとが対向され、前記第一の主開口を通過した前記第一の微粒子によって、前記成膜対象物上に第一の主薄膜が形成され、前記第二の成膜室では、前記成膜対象物と前記第二のマスクとが対向され、前記第二の主開口を通過した前記第二の微粒子によって、前記成膜対象物上に第二の主薄膜が形成される薄膜製造装置であって、
 前記第一のマスクには、前記第一の主開口とは異なる場所に第一の副開口が形成され、前記第二のマスクには、前記第二の主開口とは異なる場所に第二の副開口が形成され、前記第一の成膜室で薄膜を形成するときに、前記第一の副開口を通過した第一の微粒子によって前記成膜対象物の表面と接触した第一の測定用薄膜が形成され、前記第二の成膜室で薄膜を形成するときに、前記第二の副開口を通過した第二の微粒子によって前記成膜対象物の表面と接触した第二の測定用薄膜が形成されるようにされており、前記第一の成膜室から搬出される前記成膜対象物が搬入される移動室が設けられ、前記送光部と前記受光部とは、前記移動室内に配置され、前記移動室内に配置された前記成膜対象物の前記第一の測定用薄膜の表面は露出され、前記第一の測定用薄膜の露出された表面に前記偏光が照射され、反射光が前記受光部に入射して前記第一の測定用薄膜の膜厚値が測定される薄膜製造装置である。
 本発明は、前記第一の測定用薄膜の膜厚値を測定した後、前記第二の主薄膜と前記第二の測定用薄膜とが形成される薄膜製造装置である。
 本発明は、前記第一、第二の成膜室と前記移動室とは、前記第一の主薄膜と前記第一の測定用薄膜とが形成され前記第一の成膜室から搬出された前記成膜対象物が、前記移動室内で前記第一の測定用薄膜に前記偏光が照射された後、前記第二の成膜室に搬入され、前記第二の主薄膜と前記第二の測定用薄膜とが形成されるように配置された薄膜製造装置である。
 本発明は、前記第一、第二の主薄膜と、前記第一、第二の測定用薄膜とが形成された後、前記第一の測定用薄膜の膜厚値が測定される薄膜製造装置である。
 本発明は、前記移動室内に配置された前記成膜対象物の前記第二の測定用薄膜に前記偏光が照射され、反射光が前記受光部に入射して前記第二の測定用薄膜の膜厚値が測定される薄膜製造装置である。
 本発明は、前記第一、第二の主薄膜は、前記成膜対象物の表面の同じ場所の上に形成される薄膜製造装置である。
 本発明は、第三の成膜物質の微粒子である第三の微粒子を放出する第三の成膜源と、前記第三の成膜源が配置された第三の成膜室と、第三の主開口と第三の副開口とが形成され、前記第三の成膜室に配置された第三のマスクと、を有し、前記第三の成膜室では、前記成膜対象物と前記第三のマスクとが対向され、前記第三の主開口を通過した前記第三の微粒子と、前記第三の副開口を通過した前記第三の微粒子とによって、前記第一、第二の主薄膜と前記第一、第二の測定用薄膜とが形成され、前記第一、第二の測定用薄膜の表面が露出された前記成膜対象物上に、第三の主薄膜と第三の測定用薄膜とが形成される薄膜製造装置であって、前記第三の測定用薄膜は前記成膜対象物と接触して形成され、前記第三の主薄膜と前記第三の測定用薄膜とが形成された後にも、前記第一、第二の測定用薄膜の表面は露出されたままにされる薄膜製造装置である。
 本発明は、前記第一、第二の測定用薄膜の膜厚値が測定された後、前記第三の主薄膜と前記第三の測定用薄膜とが形成される薄膜製造装置である。
 本発明は、前記第一、第二、第三の主薄膜は、前記成膜対象物の表面の同じ場所の上に形成される薄膜製造装置である。
 本発明は、成膜物質の微粒子を通過させる主開口と、前記微粒子を遮蔽する遮蔽部とを有し、成膜対象物と対面され、前記主開口を通過した前記微粒子を前記成膜対象物に到達させ、前記成膜対象物の表面に、各前記マスク毎に主薄膜を形成する複数の前記マスクから成るマスクセットであって、複数の前記各マスクは、副開口をそれぞれ有し、いずれか一枚の前記マスクの前記副開口と対面する前記成膜対象物の位置には、他の前記マスクの遮蔽部が対面し、前記副開口を通過した前記微粒子によって、前記成膜対象物上に各前記マスク毎に前記主薄膜と一緒に副薄膜を形成するように構成されたマスクセットである。
 本発明は、前記副薄膜の少なくとも一部は、前記成膜対象物に接触する測定用薄膜にされるマスクセットである。
 本発明は、成膜対象物上に複数の薄膜を一層ずつ順番に形成する薄膜製造方法であって、最初に形成する薄膜から最後の直前の順番で形成する薄膜までに含まれる一の薄膜であり、前記成膜対象物と接触する測定用薄膜を含む前記一の薄膜を形成した後前記一の薄膜を形成した成膜装置から、次の薄膜を形成する成膜装置に移動室を介して移動させる際に、前記移動室内で前記一の薄膜の前記測定用薄膜に偏光を照射し、反射光を受光して、偏光状態の変化から、前記測定用薄膜の膜厚値を求め、求めた膜厚値を基準範囲と比較し、前記基準範囲外であると警報を出力する薄膜製造方法である。
 本発明は、成膜物質の微粒子を通過させる主開口と、前記微粒子を遮蔽する遮蔽部とを有し、成膜対象物と対面され、前記主開口を通過した前記微粒子を前記成膜対象物に到達させ、前記成膜対象物の表面に、各前記マスク毎に主薄膜を形成する複数の前記マスクから成るマスクセットであって、複数の前記各マスクは、副開口をそれぞれ有し、いずれか一枚の前記マスクの前記副開口と対面する前記成膜対象物の位置には、他の前記マスクの遮蔽部が対面し、前記副開口を通過した前記微粒子によって、前記成膜対象物上に各前記マスク毎に、前記主薄膜と一緒に同一の形成条件で、前記成膜対象物に接触した測定用薄膜が形成されるように構成されたマスクセットを用い、各前記マスクに前記成膜対象物を一枚ずつ対面させ、各前記マスクによって前記成膜対象物上に前記主薄膜をそれぞれ形成する薄膜製造方法であって、各前記マスクの前記副開口によって形成される前記測定用薄膜は、前記成膜対象物と接触させて形成し、前記測定用薄膜の膜厚値を測定して前記主薄膜の膜厚値を求める薄膜製造方法である。
 本発明は、測定した前記膜厚値を基準範囲と比較し、比較結果が前記膜厚値は前記基準範囲外であることを示す場合には、前記膜厚値が前記基準範囲内に入るように、前記膜厚値が測定された前記測定用薄膜と前記測定用薄膜と一緒に形成する前記主薄膜とを形成する形成条件を変更する薄膜製造方法である。
 本発明は、同じ前記マスクに一枚ずつ対面される複数の前記成膜対象物のうち、第一の成膜対象物に一の前記マスクを対面させて前記主薄膜と前記測定用薄膜とを形成し、膜厚を測定して前記比較結果を得た後、第二の成膜対象物に同じ前記マスクを対面させて前記主薄膜と前記測定用薄膜とを形成する薄膜形成方法であって、前記第一の成膜対象物の前記比較結果が、測定した前記膜厚値は前記基準範囲外であることを示す場合には、前記第二の成膜対象物に前記主薄膜と前記測定用薄膜とが形成される前に、前記形成条件を変更する薄膜製造方法である。
 本発明は、前記成膜対象物は、最初に対面される前記マスクによって前記主薄膜と前記測定用薄膜とが形成された後、最後に対面される前記マスクによって前記主薄膜と前記測定用薄膜とが形成されるまでの間は、真空雰囲気に置かれた後、大気中に搬出される薄膜形成方法であって、各前記マスクによって形成した前記測定対象薄膜のうち、所望の前記測定対象薄膜の前記膜厚値は、大気中に搬出する前に、前記真空雰囲気中で測定する薄膜製造方法である。
 本発明は、大気中に搬出した後も各前記マスクによって形成した前記測定対象薄膜は表面を露出させておき、各前記マスクによって形成し、前記真空雰囲気中で前記膜厚値を測定した前記測定対象薄膜のうち、所望の前記測定対象薄膜の前記膜厚値を、前記成膜対象物を大気中に搬出した後、測定する薄膜製造方法である。
 本発明は、前記成膜対象物は、最初に対面される前記マスクによって前記主薄膜と前記測定用薄膜とが形成された後、最後に対面される前記マスクによって前記主薄膜と前記測定用薄膜とが形成されるまでの間は、真空雰囲気に置かれた後、大気中に搬出される薄膜形成方法であって、大気中に搬出した後も各前記マスクによって形成した前記測定対象薄膜は表面を露出させておき、各前記マスクによって形成した前記測定対象薄膜のうち、所望の前記測定対象薄膜の前記膜厚値を前記成膜対象物を大気中に搬出した後、測定する薄膜製造方法である。
 本発明は、少なくとも二枚以上前記マスクで形成される前記主薄膜を積層させ、積層膜を製造する薄膜製造方法である。
 本発明は、エリプソメータの、偏光された射出光を射出する送光部と、入射光を受光する受光部とを前記真空雰囲気中に置き、各前記マスクで形成された前記測定用薄膜のうち、少なくとも一枚の前記マスクで形成された前記測定用薄膜に向けて前記射出光を射出し、前記射出光が照射された前記測定用薄膜で反射された反射光を前記受光部に入射させ、入射した前記反射光の偏光状態から、前記射出光が照射された前記測定用薄膜の膜厚を測定する薄膜製造方法である。
 複数の薄膜を積層させて積層膜を形成する際に、単層膜の測定を行うことができるから、正確な膜厚値を求めることができる。
 また、積層膜が形成される前の段階で、膜厚を測定するから、膜厚の測定結果が異常値であった場合には、異常値を示す薄膜を形成した成膜室での成膜工程を中止させ、異常の原因を除去した後、復旧させることができるので、不良品の発生量が少なくなる。
 また、一の成膜源による薄膜が形成された後、短時間でその薄膜の膜厚を測定することができるので、測定結果によって、その一の成膜源の成膜条件を短時間で変更することができるので、膜厚値を一定値に維持することができる。
 一の成膜対象物をマスクに対面させて薄膜を形成し、膜厚を測定して測定結果を求め、測定結果が、測定した膜厚値は基準範囲外であることを示していた場合には、次の成膜対象物に測定した測定用薄膜を形成したマスクを対面させて主薄膜を形成する前に、膜厚値が基準範囲内に入るように薄膜の形成条件を変更すれば、膜厚値が基準範囲外である成膜対象物の数を減少させることができる。
 測定結果が、膜厚値は基準範囲内であることを示していた場合には、形成条件は変更しない。
本発明の第一例の薄膜製造装置 (a)~(c):成膜室 (a)、(b):移動室 (a):成膜対象物の平面図  (b):薄膜形成前の成膜対象物のA0-A0線截断断面図 (c):その成膜対象物のB0-B0線截断断面図 (a):最初の薄膜が形成された成膜対象物の平面図  (b):その成膜対象物のA1-A1線截断断面図 (c):その成膜対象物のB1-B1線截断断面図  (d):最初の薄膜を形成するマスクの平面図 (a):二層目の薄膜が形成された成膜対象物の平面図  (b):その成膜対象物のA2-A2線截断断面図 (c):その成膜対象物のB2-B2線截断断面図  (d):二層目の薄膜を形成するマスクの平面図 (a):三層目の薄膜が形成された成膜対象物の平面図  (b):その成膜対象物のA3-A3線截断断面図 (c):その成膜対象物のB3-B3線截断断面図  (d):三層目の薄膜を形成するマスクの平面図 (a):最後の薄膜が形成された成膜対象物の平面図  (b):その成膜対象物のA10-A10線截断断面図 (c):その成膜対象物のB10-B10線截断断面図  (d):最後の薄膜を形成するマスクの平面図 本発明の第二例の薄膜製造装置 従来技術の薄膜製造装置 移動室の他の例 (a)、(b):副開口の位置を説明するための図面
<薄膜製造装置>
 図1は、本発明の第一例の薄膜製造装置10aを示している。
 図1の符号11は、成膜ユニットを示しており、この薄膜製造装置10aは、複数の成膜ユニット11が一列に接続されて構成されている。
 この例では、各成膜ユニット11は同じ構造であり、第一の移動室21と、第二の移動室23と、一台乃至複数台の成膜室22とをそれぞれ有している。各成膜ユニット11は、成膜室22を、複数台(ここでは二台)をそれぞれ有しており、各成膜室22には、成膜物質の微粒子を放出する成膜源20がそれぞれ配置されている。成膜物質の微粒子には、成膜物質の蒸気(昇華により発生した気体を含む)や、スパッタリング粒子が含まれる。
 各成膜ユニット11の第一の移動室21の中には、搬送装置25がそれぞれ配置されており、搬送装置25(ここでは搬送ロボット)は、成膜対象物を載せて移動するハンド26を有している。成膜対象物は、ガラス基板や半導体ウェハー等の板状の基板である。
 各成膜ユニット11の成膜室22と第二の移動室23とは、その成膜ユニット11の第一の移動室21に接続されている。
 各成膜ユニット11の搬送装置25は、制御装置37によって制御されており、制御装置37がハンド26の移動を制御し、ハンド26上に成膜対象物を載せると、第一の移動室21に接続された成膜室22内に、成膜対象物を搬出入できるようにされている。
 成膜対象物は、複数の成膜ユニット11内を、順番に移動しており、一列に配置された複数の成膜ユニット11中の移動の上流側の成膜ユニット11の第二の移動室23は、下流側の成膜ユニット11の第一の移動室21にも接続されている。最上流の成膜ユニット11の第一の移動室21には、この薄膜製造装置10aの前工程を行う前処理装置41が接続され、最下流の成膜ユニット11の第二の移動室23は、この薄膜製造装置10aの後工程を行う後処理装置42に接続されている。
 各第一の移動室21内の搬送装置25は、第一の移動室21に接続された上流側の成膜ユニット11の第二の移動室23又は前処理装置41の内部に配置された成膜対象物をハンド26上に載せて成膜室22に移動させる。
 また、成膜室22の内部に配置された成膜対象物をハンド26上に載せて下流側の成膜ユニットの第二の移動室23又は後処理装置42に移動させることができる。
 図2(a)には、各成膜室22の内部が示されている。各成膜室22は真空槽50を有しており、真空槽50の内部にはマスク保持装置51と基板保持装置52とが配置されている。マスク保持装置51には、マスク3が保持されている。
 図5(d)、図6(d)、図7(d)、図8(d)の符号31~33、310は、本発明に用いることができるマスク3の例であり、複数の薄膜を形成する際の、最初の層の薄膜と、二層目の薄膜と、三層目の薄膜と、最後の層の薄膜とを形成するマスクをそれぞれ示しており、同じ成膜対象物に、薄膜を形成する複数のマスク31~33、310から成るマスクセットである。
 図5(d)から図8(d)のマスク31~33、310は、それぞれ異なる成膜室22に配置し、一枚の成膜対象物に薄膜を形成してもよいし、複数のマスク31~33、310のうちの一枚乃至複数枚の所望のマスクを同じ成膜室22に配置してもよい。
 図2(b)の符号4は、各成膜室22内に搬入された成膜対象物を示しており、その成膜対象物4は、基板保持装置52によって保持され、図2(b)に示されたように、マスク3は成膜対象物4と成膜源20との間に位置し、マスク3と成膜対象物4とは平行に離間して対面する。
 各マスク3にはマスクアラインメントマークが形成され、成膜対象物4には基板アラインメントマークが形成されている(アライメントマークは不図示)。
 真空槽50の壁面には、透明な窓57が気密に設けられている。真空槽50の外部の窓の付近には、撮像装置55が配置されており、撮像装置55によって、窓57を介して真空槽50の内部が観察されるようになっており、マスク保持装置51と基板保持装置52とに、マスク3と成膜対象物4とがそれぞれ配置された状態では、撮像装置55によって、基板アラインメントマークとマスクアラインメントマークとが観察できるようになっている。
 基板保持装置52とマスク保持装置51のいずれか一方又は両方は、位置合わせ装置53に接続されており、位置合わせ装置53が動作すると、マスク3と成膜対象物4との平行状態を維持しながら、基板保持装置52とマスク保持装置51のいずれか一方又は両方を相対的に移動させ、マスク3と成膜対象物4との間の相対位置を変更できるようになっている。
 撮像装置55は、位置合わせ装置53に接続されており、撮像装置55が撮像した撮像結果は位置合わせ装置53に出力される。
 撮像装置55によって、基板アラインメントマークとマスクアラインメントマークとが観察され、位置合わせ装置53によって、撮像結果から所定の相対的な位置と、撮像された実際の相対的な位置との間の誤差が求められ、その誤差が減少するように、マスク3と成膜対象物4との間が、位置合わせ装置53によって相対的に移動され、位置合わせが行われる。
 誤差が所定値よりも小さくなり、位置合わせが完了した時には、成膜対象物4に設けられ、成膜対象物4上の位置を特定する座標軸と、マスク3上に設けられ、マスク3上の位置を特定する座標軸とが、マスク3と成膜対象物4との間の距離方向の相違を除いて、一致するものとする。
 各成膜室22の内部に配置されたマスク3には、図5(d)から図8(d)のマスク31~33、310に示されたように、粒子を通過させない板状の遮蔽部15に、貫通孔である主開口171~173、1710と副開口161~163、1610との二種類の開口が形成されており、各成膜室22内に配置された成膜源20は、いずれか一枚のマスク31~33、310に対面する。
 各マスク31~33、310と、主開口171~173、1710と、副開口161~163、1610とを、符号3、17、16で代表させると、マスク3と位置合わせがされた成膜対象物4には、一の成膜源20から放出され、主開口17を通過した微粒子によって主開口17と対向された位置に薄膜が形成され、同じ成膜源20から放出され、副開口16を通過した微粒子によって副開口16と対向された位置に、薄膜が形成される。
 各成膜室22の内部で主開口17を通過した微粒子によって形成される薄膜を主薄膜と呼び、副開口16を通過した粒子によって形成される薄膜を副薄膜と呼ぶと、位置合わせが完了された状態では、主開口17は、成膜対象物4と位置合わせがされたマスク3によって、主薄膜が形成される場所に対面しており、副開口16は、そのマスク3によって、副薄膜が形成される場所に対面している。
 位置合わせが完了された後、図2(c)に示されたように、成膜対象物4とマスク3とは相対的に近接移動し、成膜対象物4とマスク3は接触し、又は、成膜対象物4とマスク3とは離間して近接され、真空槽50内で保持される。
 成膜室22の内部は、成膜対象物4が搬入されるときには真空雰囲気にされており、成膜対象物4とマスク3との位置合わせが完了すると、成膜源20から、薄膜を形成する材料の微小粒子が真空槽50の内部に放出され、主薄膜と副薄膜とは、形成されるべき場所に形成される。
 なお、主薄膜は、薄膜製造装置で製造する製品の一部を構成する薄膜であり、副薄膜は、後述するように、膜厚測定に用いられる薄膜である。
 一台の成膜室22の内部で形成される薄膜を一層とすると、一枚の成膜対象物4上には、各成膜室22によって、薄膜が一層ずつ順番に形成されている。
 図5(a)、(c)、図6(a)、(c)、図7(a)、(c)、図8(a)、(c)の符号71~73、710は、最初の成膜室22~三番目の成膜室22と、最後の成膜室22とで形成された主薄膜であり、図5(a)、(c)、図6(a)、(c)、図7(a)、(c)、図8(a)、(c)の符号61~63、610は、最初の成膜室22~三番目の成膜室22と、最後の成膜室22とで形成された副薄膜である。
 なお、図5(d)から図8(d)のマスク31~33、310では、副開口161~163、1610はマスクク31~33の周縁部に配置されていたが、副開口161~1610の形成位置はこれに限定されるものではなく、副開口161~1610は、隣り合う主開口171~1710の間の遮蔽部15に形成されても良い。例えば、図12(b)に示すマスク310の副開口1610は、上下方向に隣り合う主開口1710の間の遮蔽部15に配置されており、図12(a)に示すように、そのマスク310を含む各マスク31~310の副開口161~1610によって形成される副薄膜61~610は、各マスク31~310の主開口171~1710によって形成される主薄膜71~710が積層された積層膜の周囲に配置されている。
 次に、上述した薄膜製造装置10aでは、各成膜室22の内部で、最初の主薄膜71は成膜対象物4の表面に接触して形成されており、二番目以降の主薄膜72~710は、直前に形成された主薄膜71~79の表面に接触して形成されており、従って、複数の成膜室22の内部で一層ずつ形成された主薄膜71~710は積層されて積層膜8(図8(c))を構成するようになっている。
 最初の主薄膜71の他、二番目以降の所定番目の主薄膜が、成膜対象物4と接触して形成されてもよく、更に、そのような主薄膜上にも、他の成膜室22で形成された主薄膜が形成されて、積層膜を構成しても、本発明に含まれる。
 他方、副薄膜61~610は、全部、又は一部が成膜対象物4と接触して形成されており、副薄膜61~610のうち、成膜対象物4と接触して形成された部分を測定用薄膜と呼ぶと、各成膜室22内で形成される測定用薄膜は、成膜対象物4上で、異なる場所に形成されることになる。
 各成膜室22で使用されるマスク3を、各マスク3に設けられた座標軸が、マスク3間の距離方向の相違以外は、一致するように、マスク3同士を重ね合わせたときに、各マスク3を用いて測定用薄膜が形成されれば、一のマスク3の主開口17は、その全部又は一部が他のマスク3の主開口17やそのマスク3よりも前に用いられたマスク3の副開口16と重なり合ってもよい。この例では、一枚のマスク3の主開口17は、他の全部のマスク3の主開口17と全部が重なり合うようになっている。
 他方、一枚のマスク3の副開口16のうち、測定用薄膜を形成する部分は、他のマスク3の主開口17と副開口16とには重なり合わず、従って、マスク3間の距離方向の相違以外はマスク3に設けられた座標が一致するように各マスク3を重ね合わせたときに、異なる成膜室22に配置されるマスク3のうち、一のマスク3の副開口16の測定用薄膜を形成する部分は、他のマスクの副開口16や主開口17に重なり合わないようになっている。
 従って、複数の成膜室22を用いて主薄膜71~710が積層された後でも、副薄膜61~610の測定用薄膜の部分の表面は、露出されたままになっている。
 なお、図8の例では、副薄膜61~610の全部が測定用薄膜にされている。
 各成膜室22で形成された主薄膜71~710と副薄膜61~610とを符号7,6で代表させると、各成膜室22内で、主薄膜7と副薄膜6とが形成された成膜対象物4は、第一の移動室21を通って他の成膜室22又は第二の移動室23に移動される。ここでは第二の移動室23に移動したものとする。
 図3(a)を参照し、第二の移動室23は真空槽40を有しており、その真空槽40の外部には、エリプソメータ30の測定装置本体34が配置されている。第二の移動室23の内部には、エリプソメータ30の送光部32と受光部33と、基板配置部45とが配置されている。
 送光部32は偏光された射出光を、所定方向に向けて射出するようにされており、受光部33は、入射光を受光し、入射光の偏光状態を測定装置本体34に出力する。
 主薄膜7と副薄膜6とが形成された成膜対象物4は、第二の移動室23の真空槽40内に搬入され、同図(b)に示すように、基板配置部45上に配置される。
 基板配置部45には移動装置44が設けられており、移動装置44の動作により、基板配置部45上に配置された成膜対象物4は、測定対象の副薄膜6に、送光部32が射出する偏光された射出光が照射されるように移動する。
 成膜室22で形成された薄膜のうち、少なくとも、膜厚測定がされていない薄膜の測定用薄膜の部分は、表面が露出されており、偏光された射出光が測定用薄膜に照射されて、反射されると反射光が生成される。
 受光部33は、測定用薄膜の反射で生成された反射光が入射する位置に配置されており、受光部33が入射した反射光を受光すると、反射光の偏光状態が、測定装置本体34に出力される。
 測定装置本体34には、入力された偏光状態を示す信号から、送光部32が射出した偏光された射出光と受光部33が受光した反射光との間の偏光状態の変化を求め、記憶された算出手順から、測定用薄膜の膜厚を求める。
 成膜対象物4の表面には、異なる成膜室22で形成された複数の測定用薄膜が形成されており、それら測定用薄膜のうち、未測定の複数の測定用薄膜が成膜対象物4上に形成されていた場合、一層の測定用薄膜の膜厚測定を行った後、移動装置44によって基板配置装置を移動させ、他の未測定の測定用薄膜に送光部32が射出する偏向光を入射させ、反射孔を受光部33で受光して、その測定用薄膜の膜厚を測定する。
 このように、各第二の移動室23では、複数の未測定の測定用薄膜の膜厚測定が可能であり、求められた膜厚の値は、測定装置本体34の記憶装置に記憶されると共に、制御装置37に出力される。また、求められた膜厚値は、測定装置本体34に接続された表示装置に、表示される。
 測定装置本体34には、膜厚の値の基準範囲が、成膜源20毎に記憶されており、測定した薄膜の膜厚の測定値と、測定した薄膜に対応する基準範囲とが比較され、測定した膜厚が、基準範囲内ではなかったとき(測定値が、基準範囲の最小値より小さいか、又は最大値よりも大きいとき)に、膜厚の異常値を検出したものと判断し、異常事態の発生があったことを警報すると共に、異常値とされた薄膜を形成した成膜室22での成膜工程を停止させると共に、その異常値の薄膜が形成された成膜対象物4は、再生又は廃棄できるように他の成膜対象物4とは区別する。
 異常値の原因と、異常値が生じた成膜対象物4とが除去された後、成膜室22での成膜工程が再開され、積層膜の製造途中であった成膜対象物4は、積層膜が完成される。
 測定値が、基準範囲の中に位置するとき(測定値が基準範囲の最小値以上最大値以下のとき)は警報はされず、次の工程が行われる。
 ここで、測定した膜厚値が基準範囲の中に位置する場合には、同じ成膜源20によって形成された薄膜の一回乃至複数回前に測定された膜厚値と今回測定された膜厚値とを比較し、測定した膜厚値が徐々に大きくなっている場合には、その薄膜の成膜時間を短くし、逆に膜厚値が小さくなっている場合はその薄膜の成膜時間を長くする等の、生産工程の管理を行うことができる。
<積層膜の製造>
 この薄膜製造装置10aによって、積層膜を形成する手順を説明する。
 成膜室22と、第一の移動室21と、第二の移動室23とには、それぞれ真空排気装置が設けられている。
 各真空排気装置は制御装置37に接続されており、制御装置37によって動作が開始され、各室は閉じられて真空排気され、各室内は、予め真空雰囲気にされている。
 制御装置37により、前処理装置41に配置された成膜対象物4を、一番目の成膜ユニット11の基板搬送ロボットによって移動させ、一番目の成膜室22の内部に搬入する。
 図4(a)は、その成膜対象物4の平面図が示されており、成膜対象物4の表面が露出されている。同図(b)は、A0-A0截断線に沿った截断断面図であり、同図(c)は、B0-B0截断線に沿った截断断面図である。
 一番目の成膜室22で成膜対象物4とマスク3との位置合わせを行い、その成膜室22内に配置された成膜源20から微粒子を放出させ、成膜対象物4の表面にパターニングされた薄膜を形成した後、同じ第一の移動室21に接続された他の成膜室22で、同じ手順で薄膜を形成する。それとは異なり、一つの成膜ユニット11内には一台の成膜室22を設け、一番目の薄膜の薄膜が形成されると、その成膜ユニット11での成膜工程を終了させて膜厚測定を行ってもよいし、また、3室以上の成膜室22を設け、各成膜室22で、一枚の成膜対象物4に複数の薄膜をそれぞれ形成し、それらの薄膜を一室の第二の移動室23で膜厚測定を行ってもよい。
 ここでは一番目の成膜ユニット11では、一番目と二番目の二室の成膜室22が設けられており、一番目と二番目の成膜室22で薄膜が形成されると、成膜対象物4は、一番目の成膜ユニット11の第二の移動室23の内部に搬入され、一番目と二番目の成膜室22内で形成された二層の副薄膜61,62の測定用薄膜の部分の膜厚が測定される。
 図3(b)は、一番目と二番目の副薄膜61、62を測定するときの第二の移動室23内を示している。但し、同図(b)では、一層目と二層目の主薄膜71,72は省略されている。
 測定後、異常値が検出されない場合には、その成膜ユニット11に隣接して下流側に位置する二番目の成膜ユニット11の搬送装置25が、上流側の一番目の第二の移動室23内に配置された成膜対象物4を、その第二の移動室23から搬出させ、二番目の成膜ユニット11の第一の移動室21に接続された三番目の成膜室22内に搬入し、薄膜を形成する。
 図6(b)、図7(b)、図8(b)は、図6(a)のA2-A2截断線と、図7(a)のA3-A3截断線と図8(a)のA10-A10截断線とにそれぞれ沿った截断断面図であり、図6(c)、図7(c)、図8(c)とは、B2-B2截断線、B3-B3截断線、B10-B10截断線とにそれぞれ沿った截断断面図である。
 図5(d)は、一番目の成膜室22に配置されたマスク31であり、同図(a)は、そのマスク31により、一番目の成膜室22で、一層目の主薄膜71と副薄膜61とが形成された成膜対象物4の表面が示されている。
 第一番目の成膜室22で形成された薄膜は、成膜対象物4に接触して形成されている。
 また、図6(d)、図7(d)は、二番目の成膜室22と三番目の成膜室22に配置されたマスク32,33であり、図6(a)、図7(a)は、二番目と三番目の成膜室22のマスク32,33により、二層目と三層目の主薄膜72,73と副薄膜62,63とが形成された成膜対象物4の表面である。
 図5(d)、図6(d)、図7(d)から分かるように、第一番目~第三番目の成膜室22に配置されたマスク31~33は、各マスク31~33を、マスク31~33上の座標軸がマスク31~33間の距離方向の相違を除いて一致するように重ね合わせると、各マスク31~33の主開口171~173同士は同じ場所に配置されており、副開口161~163同士は同じ大きさで一定間隔離間して配置されている。
 従って、第一番目~第三番目の成膜室22で形成された主薄膜71~73と副薄膜61~63のうち、主薄膜71~73は三層が積層されており、副薄膜61~63は一定間隔で離間して配置されることになる。
 次に、四番目の成膜室22で薄膜が形成されると、成膜対象物4は、二番目の成膜ユニット11の第二の移動室23に搬入され、第三番目と第四番目の副薄膜63、64の測定用薄膜の部分の膜厚が測定される。
 このように、複数の薄膜が、それぞれ成膜室22で形成され、最後の薄膜が形成されると、複数の薄膜を積層した積層膜8(図8(c))が完成する。
 図8(d)に記載されたマスク3は、最後(ここでは十番目)の薄膜を形成するマスク310であり、図8(a)~(c)に示されているように、主薄膜71~710の全部の層が積層されているが、全部の成膜室22で順番に形成された薄膜には、測定用薄膜がそれぞれ設けられており、最後の薄膜が形成された後でも、各測定用薄膜は、それぞれ表面が露出されている。
 最後の成膜ユニット11では、最後の直前の層の薄膜と、最後の層の薄膜とが形成されており、最後の薄膜が形成された成膜対象物4は第二の移動室23に移動され、最後の薄膜の測定用薄膜と、その直前の層の薄膜の測定用薄膜とのいずれか一方に偏光された射出光が照射され、膜厚が測定された後、他方に偏光された射出光が照射され、膜厚が測定される。
 このように、上記薄膜製造装置10aでは、測定用薄膜上に、他の層の薄膜が形成されないようになっているから、一枚の成膜対象物4の上に複数の薄膜を形成するときには、全部の薄膜を形成する前に、既に形成された複数の薄膜の膜厚を測定することが可能である。特に、所望の薄膜については、薄膜の形成後、他の薄膜を形成する前に、エリプソメータ30によって、薄膜の膜厚を測定することができる。
 なお、全部の薄膜の膜厚が測定された後、成膜対象物4は、最後の成膜ユニット11の第二の移動室23から、後工程を行う後処理装置42の内部に移動される。
 以上に説明した例では、薄膜製造装置10a内での複数の薄膜形成が終了したときに、各成膜源20によって形成された測定用薄膜の表面は露出しており、他の薄膜は形成されていない。従って、薄膜製造装置10a内から搬出した後でも、各薄膜の膜厚を再測定することが可能である。
 なお、異常値を検出したときの警報は、測定装置本体34や他の装置に接続された表示装置に表示することで行うことができる。また、測定装置本体34や他の装置に設けられたスピーカーから音で警報を出力することができるし、また、測定装置本体34や他の装置に設けられたランプを点滅させてもよい。
 また、成膜源20は、蒸発源、スパッタリングターゲット等を用いることができ、成膜源20が蒸発源であるときは、成膜源20内に配置された成膜物質が加熱され、蒸発又は昇華して、蒸気や昇華物から成る微粒子が成膜室22内に放出される。
 成膜源20がスパッタリングターゲットのときは、成膜室22内にスパッタリングガスが導入され、成膜源20上にスパッタリングガスのプラズマが生成され、成膜源20がスパッタリングされてスパッタリング粒子から成る微粒子が成膜源20から成膜室22内に放出される。
 また、本発明に用いることができる成膜源20は、蒸発源やスパッタリングターゲットに限定されるものではなく、他にも成膜物質の微粒子を放出する成膜源20であれば、成膜室22内に配置することができ、その成膜源20の場合も、マスク3は、成膜源20と対面する位置に配置される。
 上記薄膜製造装置10aでは、送光部32と受光部33は第二の移動室23に配置されていたが、図9に示した本発明の第二例の薄膜製造装置10bでは、送光部32と受光部33は、第二の移動室23には配置されておらず、第一の移動室21の内部に配置されている。第二の薄膜製造装置10bの他の構成は、第一の薄膜製造装置10aと同じである。
 第一の薄膜製造装置10aでは、第一の移動室21から第二の移動室23に移動した後、膜厚測定が行われていたが、第二の薄膜製造装置10bでは、第一の移動室21から第二の移動室23に移動する直前で膜厚測定を行うと、第一の薄膜製造装置10aによって薄膜形成と膜厚測定とを行った場合と同じ手順で、第二の薄膜製造装置10bによって薄膜形成と膜厚測定とを行うことができる。
 要するに、送光部32と受光部33は、成膜室22の内部ではなく、少なくとも二台の成膜室22の間に配置された移動室であればよく、第一の移動室21に、送光部32と受光部33が設けられる場合と、第二の移動室23に、送光部32と受光部33が設けられる場合との、いずれの場合であっても本発明に含まれる。
 なお、図3(a)の第二の移動室23では、送光部32と受光部33とが真空雰囲気中に配置され、エリプソメータ30の測定装置本体34は真空槽40の外部に配置されていたが、本発明は、図11に示すように、送光部32と受光部33と測定装置本体34とを真空槽40の内部に配置して、それぞれ真空雰囲気中に置かれた第二の移動室24も本発明に用いることができる。
 更にまた、それとは逆に、送光部32と受光部33と測定装置本体34とを真空槽40の外部に配置して、エリプソメータ30を大気中に置く場合の移動室も、本発明に用いることができる。
 また、成膜対象物に接触して形成された測定用薄膜の表面上には、他の薄膜が形成されないパターンにされた各マスク3を用いて、各マスク3によって、一枚の成膜対象物上に、それぞれ表面が露出された測定用薄膜を形成しておけば、各マスク3によって主薄膜と副薄膜とを形成した後、各副薄膜の測定薄膜部分の膜厚値を測定することができる。更に、成膜対象物を大気中に搬出した後であっても各測定用薄膜の膜厚値を測定することができる。
 また、異なる物質や異なる形成条件で形成される主薄膜毎に、対応する測定用薄膜が一枚の成膜対象物上に表面を露出させて形成されるので、主薄膜毎に膜厚測定用の基板を用いる必要は無く、各主薄膜を積層させた積層膜を形成する際に、各主薄膜の適切な形成条件を求めるための時間は短時間で済む。
 また、主薄膜を形成した後、直ぐに膜厚値が求められるので、膜厚値の測定後に製造が開始される主薄膜の形成条件を変更することができ、また、各測定用薄膜の表面には他の薄膜が形成されないようにすれば、主薄膜の形成が終了し、大気に搬出した後であっても、各測定用薄膜の膜厚値を測定することができるから、真空中での測定を補完するために、大気に搬出した後に膜厚値を測定してもよい。
 真空中では膜厚値を測定しなかった測定用薄膜を、大気に搬出した後に膜厚値の測定を行ってもよいし、真空中で膜厚値を測定した測定用薄膜を、大気に搬出した後に膜厚値の測定を再度行ってもよい。
 このように大気中で膜厚値の測定を行う場合であっても、測定後、成膜対象物を真空雰囲気中に戻して成膜を行う必要は無いので、薄膜形成作業に長時間を要することは無い。また、成膜対象物を大気中に搬出した後、必要が生じたときに測定用薄膜の膜厚を測定をすればよいので、必要が無い測定はしなくても済む。
 また、各マスクによって形成する測定用薄膜の表面を露出させた場合は、成膜対象物を大気中に搬出する前に、測定用薄膜の膜厚を真空雰囲気中で測定することができるので、真空雰囲気中で小数の測定点を測定し、大気中に搬出した後に多数の測定点を測定する等、成膜工程中の測定時間を長くせずに、測定精度を高めることができる。
3,31~310……マスク
4……成膜対象物
6,61~610……副薄膜
7,71~710……主薄膜
10a、10b……薄膜形成装置
16,161~1610……副開口
17,171~1710……主開口
20……成膜源
22……成膜室
21,23,24……移動室
30……エリプソメータ
32……送光部
33……受光部

Claims (20)

  1.  第一の成膜物質の微粒子である第一の微粒子を放出する第一の成膜源と、
     第二の成膜物質の微粒子である第二の微粒子を放出する第二の成膜源と、
     前記第一、第二の成膜源がそれぞれ配置された第一、第二の成膜室と、
     第一の主開口が形成され、前記第一の成膜室に配置された第一のマスクと、
     第二の主開口が形成され、前記第二の成膜室に配置された第二のマスクと、
     偏光を射出する送光部と、入射光を受光する受光部とを有するエリプソメータと、
    を有し、
     前記第一の成膜室では、成膜対象物と前記第一のマスクとが対向され、前記第一の主開口を通過した前記第一の微粒子によって、前記成膜対象物上に第一の主薄膜が形成され、前記第二の成膜室では、前記成膜対象物と前記第二のマスクとが対向され、前記第二の主開口を通過した前記第二の微粒子によって、前記成膜対象物上に第二の主薄膜が形成される薄膜製造装置であって、
     前記第一のマスクには、前記第一の主開口とは異なる場所に第一の副開口が形成され、
     前記第二のマスクには、前記第二の主開口とは異なる場所に第二の副開口が形成され、
     前記第一の成膜室で薄膜を形成するときに、前記第一の副開口を通過した第一の微粒子によって前記成膜対象物の表面と接触した第一の測定用薄膜が形成され、前記第二の成膜室で薄膜を形成するときに、前記第二の副開口を通過した第二の微粒子によって前記成膜対象物の表面と接触した第二の測定用薄膜が形成されるようにされており、
     前記第一の成膜室から搬出される前記成膜対象物が搬入される移動室が設けられ、
     前記送光部と前記受光部とは、前記移動室内に配置され、
     前記移動室内に配置された前記成膜対象物の前記第一の測定用薄膜の表面は露出され、前記第一の測定用薄膜の露出された表面に前記偏光が照射され、反射光が前記受光部に入射して前記第一の測定用薄膜の膜厚値が測定される薄膜製造装置。
  2.  前記第一の測定用薄膜の膜厚値を測定した後、前記第二の主薄膜と前記第二の測定用薄膜とが形成される請求項1記載の薄膜製造装置。
  3.  前記第一、第二の成膜室と前記移動室とは、前記第一の主薄膜と前記第一の測定用薄膜とが形成され前記第一の成膜室から搬出された前記成膜対象物が、前記移動室内で前記第一の測定用薄膜に前記偏光が照射された後、前記第二の成膜室に搬入され、前記第二の主薄膜と前記第二の測定用薄膜とが形成されるように配置された請求項2記載の薄膜製造装置。
  4.  前記第一、第二の主薄膜と、前記第一、第二の測定用薄膜とが形成された後、前記第一の測定用薄膜の膜厚値が測定される請求項1記載の薄膜製造装置。
  5.  前記移動室内に配置された前記成膜対象物の前記第二の測定用薄膜に前記偏光が照射され、反射光が前記受光部に入射して前記第二の測定用薄膜の膜厚値が測定される請求項1乃至請求項4のいずれか1項記載の薄膜製造装置。
  6.  前記第一、第二の主薄膜は、前記成膜対象物の表面の同じ場所の上に形成される請求項1乃至請求項4のいずれか1項記載の薄膜製造装置。
  7.  第三の成膜物質の微粒子である第三の微粒子を放出する第三の成膜源と、
     前記第三の成膜源が配置された第三の成膜室と、
     第三の主開口と第三の副開口とが形成され、前記第三の成膜室に配置された第三のマスクと、
     を有し、
     前記第三の成膜室では、前記成膜対象物と前記第三のマスクとが対向され、前記第三の主開口を通過した前記第三の微粒子と、前記第三の副開口を通過した前記第三の微粒子とによって、前記第一、第二の主薄膜と前記第一、第二の測定用薄膜とが形成され、前記第一、第二の測定用薄膜の表面が露出された前記成膜対象物上に、第三の主薄膜と第三の測定用薄膜とが形成される薄膜製造装置であって、
     前記第三の測定用薄膜は前記成膜対象物と接触して形成され、
     前記第三の主薄膜と前記第三の測定用薄膜とが形成された後にも、前記第一、第二の測定用薄膜の表面は露出されたままにされる請求項1乃至請求項4のいずれか1項記載の薄膜製造装置。
  8.  前記第一、第二の測定用薄膜の膜厚値が測定された後、前記第三の主薄膜と前記第三の測定用薄膜とが形成される請求項7記載の薄膜製造装置。
  9.  前記第一、第二、第三の主薄膜は、前記成膜対象物の表面の同じ場所の上に形成される請求項7記載の薄膜製造装置。
  10.  成膜物質の微粒子を通過させる主開口と、前記微粒子を遮蔽する遮蔽部とを有し、成膜対象物と対面され、前記主開口を通過した前記微粒子を前記成膜対象物に到達させ、前記成膜対象物の表面に、各前記マスク毎に主薄膜を形成する複数の前記マスクから成るマスクセットであって、
     複数の前記各マスクは、副開口をそれぞれ有し、
     いずれか一枚の前記マスクの前記副開口と対面する前記成膜対象物の位置には、他の前記マスクの遮蔽部が対面し、前記副開口を通過した前記微粒子によって、前記成膜対象物上に各前記マスク毎に前記主薄膜と一緒に副薄膜を形成するように構成されたマスクセット。
  11.  前記副薄膜の少なくとも一部は、前記成膜対象物に接触する測定用薄膜にされる請求項10記載のマスクセット。
  12.  成膜対象物上に複数の薄膜を一層ずつ順番に形成する薄膜製造方法であって、
     最初に形成する薄膜から最後の直前の順番で形成する薄膜までに含まれる一の薄膜であり、前記成膜対象物と接触する測定用薄膜を含む前記一の薄膜を形成した後前記一の薄膜を形成した成膜装置から、次の薄膜を形成する成膜装置に移動室を介して移動させる際に、
     前記移動室内で前記一の薄膜の前記測定用薄膜に偏光を照射し、反射光を受光して、偏光状態の変化から、前記測定用薄膜の膜厚値を求め、求めた膜厚値を基準範囲と比較し、前記基準範囲外であると警報を出力する薄膜製造方法。
  13.  成膜物質の微粒子を通過させる主開口と、前記微粒子を遮蔽する遮蔽部とを有し、成膜対象物と対面され、前記主開口を通過した前記微粒子を前記成膜対象物に到達させ、前記成膜対象物の表面に、各前記マスク毎に主薄膜を形成する複数の前記マスクから成るマスクセットであって、
     複数の前記各マスクは、副開口をそれぞれ有し、
     いずれか一枚の前記マスクの前記副開口と対面する前記成膜対象物の位置には、他の前記マスクの遮蔽部が対面し、前記副開口を通過した前記微粒子によって、前記成膜対象物上に各前記マスク毎に、前記主薄膜と一緒に同一の形成条件で、前記成膜対象物に接触した測定用薄膜が形成されるように構成されたマスクセットを用い、
     各前記マスクに前記成膜対象物を一枚ずつ対面させ、各前記マスクによって前記成膜対象物上に前記主薄膜をそれぞれ形成する薄膜製造方法であって、
     各前記マスクの前記副開口によって形成される前記測定用薄膜は、前記成膜対象物と接触させて形成し、
     前記測定用薄膜の膜厚値を測定して前記主薄膜の膜厚値を求める薄膜製造方法。
  14.  測定した前記膜厚値を基準範囲と比較し、比較結果が前記膜厚値は前記基準範囲外であることを示す場合には、前記膜厚値が前記基準範囲内に入るように、前記膜厚値が測定された前記測定用薄膜と前記測定用薄膜と一緒に形成する前記主薄膜とを形成する形成条件を変更する請求項13記載の薄膜製造方法。
  15.  同じ前記マスクに一枚ずつ対面される複数の前記成膜対象物のうち、第一の成膜対象物に一の前記マスクを対面させて前記主薄膜と前記測定用薄膜とを形成し、膜厚を測定して前記比較結果を得た後、第二の成膜対象物に同じ前記マスクを対面させて前記主薄膜と前記測定用薄膜とを形成する薄膜形成方法であって、
     前記第一の成膜対象物の前記比較結果が、測定した前記膜厚値は前記基準範囲外であることを示す場合には、前記第二の成膜対象物に前記主薄膜と前記測定用薄膜とが形成される前に、前記形成条件を変更する請求項14記載の薄膜製造方法。
  16.  前記成膜対象物は、最初に対面される前記マスクによって前記主薄膜と前記測定用薄膜とが形成された後、最後に対面される前記マスクによって前記主薄膜と前記測定用薄膜とが形成されるまでの間は、真空雰囲気に置かれた後、大気中に搬出される薄膜形成方法であって、
     各前記マスクによって形成した前記測定対象薄膜のうち、所望の前記測定対象薄膜の前記膜厚値は、大気中に搬出する前に、前記真空雰囲気中で測定する請求項13乃至請求項15のいずれか1項記載の薄膜製造方法。
  17.  大気中に搬出した後も各前記マスクによって形成した前記測定対象薄膜は表面を露出させておき、
     各前記マスクによって形成し、前記真空雰囲気中で前記膜厚値を測定した前記測定対象薄膜のうち、所望の前記測定対象薄膜の前記膜厚値を、前記成膜対象物を大気中に搬出した後、測定する請求項16記載の薄膜製造方法。
  18.  前記成膜対象物は、最初に対面される前記マスクによって前記主薄膜と前記測定用薄膜とが形成された後、最後に対面される前記マスクによって前記主薄膜と前記測定用薄膜とが形成されるまでの間は、真空雰囲気に置かれた後、大気中に搬出される薄膜形成方法であって、
     大気中に搬出した後も各前記マスクによって形成した前記測定対象薄膜は表面を露出させておき、
     各前記マスクによって形成した前記測定対象薄膜のうち、所望の前記測定対象薄膜の前記膜厚値を前記成膜対象物を大気中に搬出した後、測定する請求項13乃至請求項15のいずれか1項記載の薄膜製造方法。
  19.  少なくとも二枚以上前記マスクで形成される前記主薄膜を積層させ、積層膜を製造する請求項13乃至請求項15のいずれか1項記載の薄膜製造方法。
  20.  エリプソメータの、偏光された射出光を射出する送光部と、入射光を受光する受光部とを前記真空雰囲気中に置き、各前記マスクで形成された前記測定用薄膜のうち、少なくとも一枚の前記マスクで形成された前記測定用薄膜に向けて前記射出光を射出し、前記射出光が照射された前記測定用薄膜で反射された反射光を前記受光部に入射させ、入射した前記反射光の偏光状態から、前記射出光が照射された前記測定用薄膜の膜厚を測定する請求項13乃至請求項15のいずれか1項記載の薄膜製造方法。
     
PCT/JP2015/052952 2014-02-04 2015-02-03 薄膜製造装置、マスクセット、薄膜製造方法 WO2015119101A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015560980A JP6227014B2 (ja) 2014-02-04 2015-02-03 薄膜製造装置、薄膜製造方法
CN201580007320.2A CN105980597A (zh) 2014-02-04 2015-02-03 薄膜制造装置、掩模组、薄膜制造方法
KR1020167020889A KR20160117452A (ko) 2014-02-04 2015-02-03 박막 제조 장치, 마스크 세트, 박막 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014019038 2014-02-04
JP2014-019038 2014-02-04

Publications (1)

Publication Number Publication Date
WO2015119101A1 true WO2015119101A1 (ja) 2015-08-13

Family

ID=53777906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052952 WO2015119101A1 (ja) 2014-02-04 2015-02-03 薄膜製造装置、マスクセット、薄膜製造方法

Country Status (5)

Country Link
JP (1) JP6227014B2 (ja)
KR (1) KR20160117452A (ja)
CN (1) CN105980597A (ja)
TW (1) TWI655305B (ja)
WO (1) WO2015119101A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021161490A (ja) * 2020-03-31 2021-10-11 キヤノントッキ株式会社 成膜装置及び電子デバイスの製造方法
JP2021161488A (ja) * 2020-03-31 2021-10-11 キヤノントッキ株式会社 成膜装置、成膜方法、及び電子デバイスの製造方法
JP2021161489A (ja) * 2020-03-31 2021-10-11 キヤノントッキ株式会社 成膜装置、成膜方法、及び電子デバイスの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102527120B1 (ko) * 2020-03-31 2023-04-27 캐논 톡키 가부시키가이샤 성막 장치, 성막 방법, 및 전자 디바이스의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212762A (ja) * 1988-02-17 1989-08-25 Konica Corp 連続蒸着装置の膜厚制御方法
JP2005281858A (ja) * 2004-03-03 2005-10-13 Sanyo Electric Co Ltd 堆積厚測定方法、材料層の形成方法、堆積厚測定装置および材料層の形成装置
JP2006176831A (ja) * 2004-12-22 2006-07-06 Tokyo Electron Ltd 蒸着装置
JP2012502177A (ja) * 2008-09-05 2012-01-26 エスエヌユー プレシジョン カンパニー,リミテッド 蒸着装置及びこれを利用する蒸着方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100487948C (zh) * 2004-03-03 2009-05-13 三洋电机株式会社 测定沉积膜厚度的方法及装置和形成材料层的方法及装置
JP5126909B2 (ja) * 2010-10-08 2013-01-23 株式会社シンクロン 薄膜形成方法及び薄膜形成装置
JP2012112037A (ja) * 2010-11-04 2012-06-14 Canon Inc 成膜装置及びこれを用いた成膜方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212762A (ja) * 1988-02-17 1989-08-25 Konica Corp 連続蒸着装置の膜厚制御方法
JP2005281858A (ja) * 2004-03-03 2005-10-13 Sanyo Electric Co Ltd 堆積厚測定方法、材料層の形成方法、堆積厚測定装置および材料層の形成装置
JP2006176831A (ja) * 2004-12-22 2006-07-06 Tokyo Electron Ltd 蒸着装置
JP2012502177A (ja) * 2008-09-05 2012-01-26 エスエヌユー プレシジョン カンパニー,リミテッド 蒸着装置及びこれを利用する蒸着方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021161490A (ja) * 2020-03-31 2021-10-11 キヤノントッキ株式会社 成膜装置及び電子デバイスの製造方法
JP2021161488A (ja) * 2020-03-31 2021-10-11 キヤノントッキ株式会社 成膜装置、成膜方法、及び電子デバイスの製造方法
JP2021161489A (ja) * 2020-03-31 2021-10-11 キヤノントッキ株式会社 成膜装置、成膜方法、及び電子デバイスの製造方法
JP7150776B2 (ja) 2020-03-31 2022-10-11 キヤノントッキ株式会社 成膜装置及び電子デバイスの製造方法
JP2022167957A (ja) * 2020-03-31 2022-11-04 キヤノントッキ株式会社 成膜装置及び電子デバイスの製造方法
JP7291098B2 (ja) 2020-03-31 2023-06-14 キヤノントッキ株式会社 成膜装置、成膜方法、及び電子デバイスの製造方法
JP7431088B2 (ja) 2020-03-31 2024-02-14 キヤノントッキ株式会社 成膜装置、成膜方法、及び電子デバイスの製造方法

Also Published As

Publication number Publication date
CN105980597A (zh) 2016-09-28
TWI655305B (zh) 2019-04-01
TW201538766A (zh) 2015-10-16
JPWO2015119101A1 (ja) 2017-03-23
JP6227014B2 (ja) 2017-11-08
KR20160117452A (ko) 2016-10-10

Similar Documents

Publication Publication Date Title
JP6227014B2 (ja) 薄膜製造装置、薄膜製造方法
JP4818073B2 (ja) 膜厚測定方法
TWI686845B (zh) 用於沈積之監控系統與其中之操作之方法
JP5888919B2 (ja) 成膜装置及び成膜方法
KR101496667B1 (ko) 진공 증착장치
TWI433947B (zh) 真空氣相沉積系統
TWI647530B (zh) 用於沉積之監控系統及其操作方法
WO2015172463A1 (zh) 一种测量装置及镀膜设备
US20120103255A1 (en) Alignment method, alignment apparatus, and organic el element manufacturing apparatus
WO2014050319A1 (ja) 成膜装置および成膜方法
JP2014515789A (ja) 蒸着アプリケーションのための測定装置及び方法
KR20120047808A (ko) 성막 장치 및 성막 방법
EP2090674B1 (en) Vacuum coating installation and method of producing a coating layer on a substrate.
KR20150018258A (ko) 유기 발광 표시 장치의 제조 장치 및 제조 방법
JP6408349B2 (ja) 基板搬送方法
KR20180027140A (ko) 인라인 타입 박막 증착 공정 시 박막 두께 제어 방법 및 장치
US20150134112A1 (en) Mechanisms for positioning robot blade
US20220316860A1 (en) Thickness measuring device
JP2023069782A (ja) 成膜制御装置、成膜装置及び成膜方法
TWI675181B (zh) 晶圓薄膜量測方法及裝置
JP2003029026A (ja) 光学薄膜の成膜装置及び成膜方法並びに光学フィルタ
KR20170105614A (ko) 박막 형성 장치
JPH11162954A (ja) 光学的手段による薄膜測定方法及び装置並びに成膜装置
KR20140058019A (ko) 박막 증착 장치 및 그것을 이용한 박막 증착 방법
JP5839868B2 (ja) 膜厚測定方法および膜厚測定システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015560980

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167020889

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746293

Country of ref document: EP

Kind code of ref document: A1