WO2015115137A1 - 監視装置、監視システム、監視方法、補正情報作成装置、補正情報作成方法及びプログラム - Google Patents

監視装置、監視システム、監視方法、補正情報作成装置、補正情報作成方法及びプログラム Download PDF

Info

Publication number
WO2015115137A1
WO2015115137A1 PCT/JP2015/050243 JP2015050243W WO2015115137A1 WO 2015115137 A1 WO2015115137 A1 WO 2015115137A1 JP 2015050243 W JP2015050243 W JP 2015050243W WO 2015115137 A1 WO2015115137 A1 WO 2015115137A1
Authority
WO
WIPO (PCT)
Prior art keywords
predetermined unit
feature
measurement
feature value
measurement data
Prior art date
Application number
PCT/JP2015/050243
Other languages
English (en)
French (fr)
Inventor
永典 實吉
貴裕 戸泉
康将 本間
龍 橋本
鈴木 勝也
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/115,152 priority Critical patent/US10495674B2/en
Priority to JP2015559843A priority patent/JP6547631B2/ja
Publication of WO2015115137A1 publication Critical patent/WO2015115137A1/ja
Priority to US16/681,427 priority patent/US11067612B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/133Arrangements for measuring electric power or power factor by using digital technique
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging

Definitions

  • the present invention relates to a monitoring device, a monitoring system, a monitoring method, a correction information creation device, a correction information creation method, and a program.
  • HEMS Home Energy Management System
  • Patent Document 1 discloses a technique for grasping the power consumption of an individual electric device by providing a dedicated power consumption measuring device for the individual electric device.
  • Patent Documents 2 and 3 disclose techniques for estimating the operating state of an electric device without directly measuring the power consumption of the individual electric device. Specifically, each electrical device that has been held in advance by installing a measurement sensor that measures characteristic quantities such as power supply current, power supply voltage, or calculated values such as statistics obtained from them on a power supply trunk such as a switchboard A technique for estimating which electrical device is in operation using the characteristic amount (reference information) during operation of the sensor and the measurement result of the measurement sensor is disclosed.
  • Patent Document 4 discloses a technique for generating a feature amount (reference information) necessary for estimating the operating state of each individual electric device as described above. Specifically, a technology that operates electrical devices in the house to be measured one by one, measures specific data (current consumption, etc.) individually, extracts feature values from the measured data of each electrical device, and stores them. Is disclosed.
  • JP 2007-225374 A Japanese Patent No. 3403368 Japanese Patent No. 4556511 Japanese Patent No. 4433890
  • a feature amount that is a combination of feature amounts (hereinafter referred to as “reference feature amounts”) of each of a plurality of electrical devices prepared in advance and a predetermined value measured with a distribution board for example, Features extracted from measurement data such as total current consumption, total power consumption, voltage, etc. in units (eg, each home, a specific room in each home, each office, etc.)
  • Patent Document 4 a plurality of electric devices installed in a measurement house are operated one by one, the total load current and voltage are measured one by one, and a reference feature is generated using the measurement data.
  • Technology is disclosed.
  • other electrical devices cannot be operated while one electrical device is being measured in order to generate the reference feature amount.
  • a restriction is imposed on the user that other electrical devices installed in the measurement target house cannot be operated.
  • an electric device such as a refrigerator that is supposed to be always operated is in operation, the measurement cannot be performed.
  • the inventors of the present application may replace an electric device of the same type as an electric device installed in a predetermined unit (eg, each home, a specific room in each home, each office, etc.) (eg, a laboratory, We studied a technique for generating reference features for each electrical device using measurement data (eg, current consumption, power consumption, voltage, etc.) measured in a laboratory. According to this technique, the above-described problem existing in the technique described in Patent Document 4 can be solved. However, the present inventors have newly found the following problems in the technology.
  • the relationship between the measuring device and the electric device when measuring the measurement data for extracting the reference feature amount is likely to be different from the relationship between the measuring device and the electric device in a predetermined unit.
  • the relationship between the measuring instrument and the electrical equipment includes all factors that affect the measurement data.For example, the length of the wiring between the measuring instrument and the electrical equipment, the number and length of wiring branched from the wiring, The number and type of other connected electrical devices can be considered.
  • the relationship between the measuring instrument and the electrical device in a predetermined unit is as shown in FIG.
  • the electric device A in FIG. 12 for example, there are a plurality of branches in the wiring connecting the measuring device installed near the switchboard and the electric device A, and the other electric devices B to D are there. You can see that it is connected.
  • the relationship between the measuring device and the electric device A when measuring the electric device A in order to extract the reference feature amount of the electric device A in a laboratory or the like is as shown in FIG. 13, for example. In FIG. 13, the measuring instrument and the electric device A are connected on a one-to-one basis. Comparing FIG. 12 and FIG.
  • the length of the wiring between the measuring instrument and the electrical equipment A, the number and length of the wiring branched from the wiring, the number and the types of other electrical equipment connected to these wirings, etc. are different from each other.
  • the relationship between the measuring instrument and the electric device A in the measurement in a laboratory or the like may not be one-to-one as shown in FIG. However, even in a case where there is no one-to-one relationship, the relationship between the measuring device and the electric device A in the measurement in a laboratory or the like rarely matches the relationship between the measuring device and the electric device A within a predetermined unit. .
  • the measurement data such as the current consumption, power consumption, and voltage of the electric device A measured by the measuring device may be different. That is, measurement data such as current consumption, power consumption and voltage of electrical equipment A measured in a laboratory, etc., measurement data such as current consumption, power consumption and voltage of electrical equipment A measured within a predetermined unit, and Can be different.
  • the reference feature amount of the electrical device A prepared in advance is different from the feature amount of the electrical device A that appears in the measurement data measured within a predetermined unit. As a result, the accuracy of estimating the operating electrical equipment is degraded.
  • an electrical device of the same type as an electrical device installed in a predetermined unit e.g., each home, a specific room in each home, each office, etc.
  • another location e.g., laboratory, laboratory, etc.
  • the accuracy of the estimation process that estimates the operating electrical equipment in the technology that generates the reference feature value of each electrical equipment using the measurement data e.g current consumption, power consumption, voltage, etc.
  • a feature amount storage means for storing a device feature amount that is a feature amount at the time of operation of each of a plurality of electrical devices installed in a predetermined unit; Measurement data acquisition means for acquiring predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage measured in the predetermined unit; Feature quantity extraction means for acquiring a measurement feature quantity that is the feature quantity included in the predetermined unit measurement data; Correction means for correcting the first feature value which is the device feature value or the measurement feature value; Using the corrected first feature value and the second feature value that is the device feature value or the measurement feature value and is different from the first feature value, An estimation means for estimating an electrical device, A monitoring device is provided.
  • a feature amount storage means for storing a device feature amount that is a feature amount at the time of operation of each of a plurality of electrical devices installed in a predetermined unit; Measurement data acquisition means for acquiring predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage measured in the predetermined unit; Feature quantity extraction means for acquiring a measurement feature quantity that is the feature quantity included in the predetermined unit measurement data; First correction means for correcting the device feature amount; Second correction means for correcting the measurement feature amount; Estimating means for estimating an operating electric device using the corrected device feature value and the corrected measurement feature value; A monitoring device is provided.
  • a feature amount storage means for storing a device feature amount that is a feature amount at the time of operation of each of a plurality of electrical devices installed in a predetermined unit; Measurement data acquisition means for acquiring predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage measured in the predetermined unit; Correction means for correcting the predetermined unit measurement data; Feature quantity extraction means for acquiring a corrected measurement feature quantity that is the feature quantity included in the predetermined unit measurement data after correction; Estimating means for estimating an operating electrical device using the device feature value and the corrected measurement feature value; A monitoring device is provided.
  • Reference data that is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in a predetermined unit in an environment different from the predetermined unit is stored.
  • Reference data storage means comprising Correction means for correcting the reference data of each of the plurality of electrical devices;
  • a corrected device feature value generation means for acquiring a corrected device feature value that is a feature value of each of the electric devices included in each of the corrected reference data;
  • Measurement data acquisition means for acquiring predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage measured in the predetermined unit;
  • Feature quantity extraction means for acquiring a measurement feature quantity that is the feature quantity included in the predetermined unit measurement data; Estimating means for estimating an operating electric device using the corrected device feature value and the measurement feature value;
  • a monitoring device is provided.
  • Reference data that is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in a predetermined unit in an environment different from the predetermined unit is stored.
  • Reference data storage means First correction means for correcting the reference data of each of the plurality of electrical devices;
  • a corrected device feature value generation means for acquiring a corrected device feature value that is a feature value of each of the electric devices included in each of the corrected reference data;
  • Measurement data acquisition means for acquiring predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage measured in the predetermined unit;
  • Second correction means for correcting the predetermined unit measurement data;
  • Feature quantity extraction means for acquiring a corrected measurement feature quantity that is the feature quantity included in the predetermined unit measurement data after correction;
  • Estimating means for estimating an operating electric device using the corrected device feature value and the corrected measurement feature value;
  • a monitoring device is provided.
  • the monitoring device A transfer device that acquires predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage measured by a measuring instrument installed in a predetermined unit, and transmits the data to the monitoring device; A monitoring system is provided.
  • a device feature amount that is a feature amount at the time of operation of each of a plurality of electrical devices installed within a predetermined unit is stored,
  • a device feature amount that is a feature amount at the time of operation of each of a plurality of electrical devices installed within a predetermined unit is stored,
  • a device feature amount that is a feature amount at the time of operation of each of a plurality of electrical devices installed within a predetermined unit is stored,
  • Computer Reference data that is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in a predetermined unit in an environment different from the predetermined unit is stored.
  • a correction step of correcting the reference data of each of the plurality of electrical devices A corrected device feature value generation step of acquiring a corrected device feature value that is a feature value of each of the electrical devices included in each of the corrected reference data;
  • a feature quantity extraction step of acquiring a measurement feature quantity that is the feature quantity included in the predetermined unit measurement data;
  • Computer Reference data that is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in a predetermined unit in an environment different from the predetermined unit is stored.
  • a first correction step of correcting the reference data of each of a plurality of the electrical devices A corrected device feature value generation step of acquiring a corrected device feature value that is a feature value of each of the electrical devices included in each of the corrected reference data;
  • a feature amount extraction step of acquiring a corrected measurement feature amount that is the feature amount included in the predetermined unit measurement data after correction;
  • Computer A feature amount storage means for storing device feature amounts, which are feature amounts at the time of operation of each of a plurality of electrical devices installed in a predetermined unit; Measurement data acquisition means for acquiring predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage measured in the predetermined unit; Feature quantity extraction means for obtaining a measurement feature quantity that is the feature quantity included in the predetermined unit measurement data; Correction means for correcting the first feature value which is the device feature value or the measurement feature value; Using the corrected first feature value and the second feature value that is the device feature value or the measurement feature value and is different from the first feature value, An estimation means for estimating an electrical device A program for functioning as a server is provided.
  • Computer A feature amount storage means for storing device feature amounts, which are feature amounts at the time of operation of each of a plurality of electrical devices installed in a predetermined unit; Measurement data acquisition means for acquiring predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage measured in the predetermined unit; Feature quantity extraction means for obtaining a measurement feature quantity that is the feature quantity included in the predetermined unit measurement data; First correction means for correcting the device feature value; Second correction means for correcting the measurement feature value; Estimating means for estimating an operating electrical device using the corrected device feature value and the corrected measurement feature value; A program for functioning as a server is provided.
  • Computer A feature amount storage means for storing device feature amounts, which are feature amounts at the time of operation of each of a plurality of electrical devices installed in a predetermined unit; Measurement data acquisition means for acquiring predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage measured in the predetermined unit; Correction means for correcting the predetermined unit measurement data; Feature quantity extraction means for obtaining a corrected measurement feature quantity that is the feature quantity included in the predetermined unit measurement data after correction; Estimating means for estimating an operating electrical device using the device feature value and the corrected measurement feature value, A program for functioning as a server is provided.
  • Computer Reference data that is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in a predetermined unit in an environment different from the predetermined unit is stored.
  • Reference data storage means Correction means for correcting the reference data of each of the plurality of electrical devices,
  • a post-correction device feature value generation means for acquiring a post-correction device feature value that is a feature value of each of the electrical devices included in each of the corrected reference data;
  • Measurement data acquisition means for acquiring predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage measured in the predetermined unit;
  • Feature quantity extraction means for obtaining a measurement feature quantity that is the feature quantity included in the predetermined unit measurement data;
  • Estimating means for estimating an operating electric device using the corrected device feature value and the measurement feature value;
  • a program for functioning as a server is provided.
  • Reference data that is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in a predetermined unit in an environment different from the predetermined unit is stored.
  • Reference data storage means First correction means for correcting the reference data of each of the plurality of electrical devices;
  • a post-correction device feature value generation means for acquiring a post-correction device feature value that is a feature value of each of the electrical devices included in each of the corrected reference data;
  • Measurement data acquisition means for acquiring predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage measured in the predetermined unit;
  • Second correction means for correcting the predetermined unit measurement data;
  • Feature quantity extraction means for obtaining a corrected measurement feature quantity that is the feature quantity included in the predetermined unit measurement data after correction;
  • Estimating means for estimating an operating electric device using the corrected device feature value and the corrected measurement feature value;
  • a program for functioning as a server is provided.
  • Means for obtaining predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage of an electrical device measured in a first environment Means for obtaining reference data that is at least one of a total current consumption, a total power consumption, and a voltage of the electrical device measured in a second environment different from the first environment; Means for creating correction information for canceling a difference between the predetermined unit measurement data and the reference data based on the predetermined unit measurement data and the reference data; Is provided.
  • Means for obtaining predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage of an electrical device measured in a first environment Means for obtaining a measurement feature quantity which is a feature quantity included in the predetermined unit measurement data; Means for obtaining reference data that is at least one of a total current consumption, a total power consumption, and a voltage of the electrical device measured in a second environment different from the first environment; Means for acquiring a device feature quantity which is a feature quantity included in the reference data; Means for creating correction information for canceling the difference between the device feature value and the measurement feature value based on the device feature value and the measurement feature value; Is provided.
  • Computer Means for obtaining predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage of an electrical device measured in a first environment Means for obtaining reference data that is at least one of a total current consumption, a total power consumption, and a voltage of the electrical device measured in a second environment different from the first environment; Means for creating correction information for canceling a difference between the predetermined unit measurement data and the reference data based on the predetermined unit measurement data and the reference data;
  • a program for functioning as a server is provided.
  • Computer Obtaining predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage of an electrical device measured in a first environment; and Obtaining reference data that is at least one of a total current consumption, a total power consumption, and a voltage of the electrical device measured in a second environment different from the first environment; Creating correction information for canceling a difference between the predetermined unit measurement data and the reference data based on the predetermined unit measurement data and the reference data; A correction information generation method for executing is provided.
  • Computer Obtaining predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage of an electrical device measured in a first environment; and Obtaining a measurement feature quantity that is a feature quantity included in the predetermined unit measurement data; Obtaining reference data that is at least one of a total current consumption, a total power consumption, and a voltage of the electrical device measured in a second environment different from the first environment; Obtaining a device feature value which is a feature value included in the reference data; Creating correction information for canceling the difference between the device feature value and the measurement feature value based on the device feature value and the measurement feature value; A correction information generation method for executing is provided.
  • an electrical device of the same type as an electrical device installed in a predetermined unit eg, each home, a specific room in each home, each office, etc.
  • a predetermined unit e.g., each home, a specific room in each home, each office, etc.
  • another location e.g. laboratory, laboratory.
  • Etc. using the measurement data (eg current consumption, power consumption, voltage, etc.)
  • a technique for reducing the inconvenience that the accuracy of the system becomes worse is realized.
  • FIG. 1 It is a figure which shows notionally an example of the hardware constitutions of the monitoring apparatus of this embodiment. It is a figure which shows an example of the functional block diagram of the monitoring apparatus of this embodiment. It is a flowchart which shows an example of the flow of a process of the monitoring apparatus of this embodiment. It is a conceptual diagram for demonstrating the example of application of the monitoring apparatus of this embodiment. It is a conceptual diagram for demonstrating the example of application of the monitoring apparatus of this embodiment. It is a figure which shows an example of the functional block diagram of the monitoring apparatus of this embodiment. It is a figure which shows an example of the functional block diagram of the monitoring apparatus of this embodiment. It is a flowchart which shows an example of the flow of a process of the monitoring apparatus of this embodiment.
  • FIG. 1 It is a figure which shows an example of the functional block diagram of the monitoring apparatus of this embodiment. It is a flowchart which shows an example of the flow of a process of the monitoring apparatus of this embodiment. It is a figure which shows an example of the functional block diagram of the monitoring apparatus of this embodiment. It is a conceptual diagram for demonstrating the subject of the monitoring apparatus of this embodiment. It is a conceptual diagram for demonstrating the subject of the monitoring apparatus of this embodiment. It is a figure which shows an example of the functional block diagram of the monitoring apparatus of the modification of this embodiment. It is a figure which shows an example of the functional block diagram of the monitoring apparatus of the modification of this embodiment. It is a figure which shows an example of the functional block diagram of the monitoring apparatus of this embodiment. It is a figure which shows an example of the functional block diagram of the monitoring apparatus of this embodiment. It is a figure which shows an example of the functional block diagram of the monitoring apparatus of this embodiment. It is a figure which shows an example of the functional block diagram of the monitoring apparatus of this embodiment. It is a figure
  • Each unit included in the monitoring device includes a CPU (Central Processing Unit) of an arbitrary computer, a memory, a program loaded in the memory (in addition to a program stored in the memory from the stage of shipping the device in advance, a CD (Including programs downloaded from storage media such as (Compact Disc) and servers on the Internet), storage units such as hard disks for storing the programs, and any hardware and software such as a network connection interface Realized by combination.
  • a CPU Central Processing Unit
  • memory a program loaded in the memory (in addition to a program stored in the memory from the stage of shipping the device in advance
  • a CD including programs downloaded from storage media such as (Compact Disc) and servers on the Internet)
  • storage units such as hard disks for storing the programs
  • any hardware and software such as a network connection interface Realized by combination.
  • FIG. 1 is a diagram conceptually illustrating an example of a hardware configuration of the monitoring apparatus according to the present embodiment.
  • the monitoring device of this embodiment includes, for example, a CPU 1A, a RAM (Random Access Memory) 2A, a ROM (Read Only Memory) 3A, a display control unit 4A, a touch panel display 5A, which are connected to each other via a bus 10A.
  • An operation receiving unit 6A, an operation unit 7A, a communication unit 8A, an auxiliary storage device 9A, and the like are included.
  • other elements such as an input / output interface connected to an external device by wire, a microphone, and a speaker may be provided.
  • the CPU 1A controls the entire computer of the monitoring device together with each element.
  • the ROM 3A includes an area for storing programs for operating the computer, various application programs, various setting data used when these programs operate.
  • the RAM 2A includes an area for temporarily storing data, such as a work area for operating a program.
  • the auxiliary storage device 9A is, for example, an HDD (Hard Disc Drive), and can store a large amount of data.
  • the touch panel display 5A includes a display device (LED (Light Emitting Diode) display, liquid crystal display, organic EL (Electro Luminescence) display, etc.) and a touch pad.
  • the display control unit 4A reads data stored in a VRAM (Video RAM), performs predetermined processing on the read data, and then sends the data to the touch panel display 5A to display various screens.
  • the operation reception unit 6A receives various operations via the operation unit 7A.
  • the operation unit 7A includes operation keys, operation buttons, switches, a jog dial, a touch panel display, a keyboard, and the like.
  • the communication unit 8A is wired and / or wirelessly connected to a network such as the Internet or a LAN (Local Area Network) and communicates with other electronic devices.
  • the monitoring device includes a feature amount obtained by combining feature amounts (reference feature amounts) of a plurality of electrical devices prepared in advance, and a predetermined unit (e.g., each household, The operating status of the electrical equipment by comparing the feature values (measurement feature values) extracted from the measurement data such as total current consumption, total power consumption, voltage, etc. in a specific room in each home, office, etc.) Is estimated.
  • a predetermined unit e.g., each household
  • the operating status of the electrical equipment by comparing the feature values (measurement feature values) extracted from the measurement data such as total current consumption, total power consumption, voltage, etc. in a specific room in each home, office, etc.
  • an electrical device of the same type as that installed in a predetermined unit eg, each home, a specific room in each home, each office, etc.
  • a reference feature amount of each electric device is generated using measurement data (eg, current consumption, power consumption, voltage, etc.) measured in a room.
  • the predetermined unit when estimating the operating state of the electrical equipment, first, the predetermined unit is taken into consideration in consideration of the environmental difference between the predetermined unit and the other place (eg, laboratory, laboratory, etc.).
  • the measurement feature amount extracted from the measurement data measured in step 1 is corrected to a value that is considered to be obtained when the measurement feature amount is placed in another place (eg, laboratory, laboratory, etc.).
  • the operating state of the electric device is estimated using the corrected measurement feature value and the reference feature value.
  • the monitoring device 10 of the present embodiment includes a feature amount storage unit 11, a measurement data acquisition unit 12, a feature amount extraction unit 13, a correction unit 15, and an estimation unit 16.
  • the feature amount storage unit 11 stores a device feature amount (reference feature amount) that is a feature amount at the time of operation of each of a plurality of electrical devices installed in a predetermined unit in association with identification information of each electrical device. .
  • the feature amount storage unit 11 may store a feature amount when each electric device is turned on, or a feature amount for each operating state of each electric device, for example, a feature amount for each power consumption (eg, power consumption). May be stored in association with each other such as a feature amount when A is greater than 0W and less than or equal to AW, a feature amount when greater than AW and less than or equal to BW, and the like.
  • the predetermined unit is a unit for estimating the operating state of the electrical equipment. That is, according to the monitoring device 10 of the present embodiment, it is possible to estimate whether or not each electrical device installed in a predetermined unit is operating.
  • the predetermined unit only needs to be able to measure measurement data including at least one of total current consumption (instantaneous value), total power consumption (instantaneous value), and voltage (instantaneous value) in the unit.
  • the predetermined unit is one home, one store, one company, one building where there are multiple homes, multiple stores, multiple companies, etc., one community where a plurality of homes gather, and the like. May be.
  • a unit for each branch of a distribution board installed in a home or a store, one outlet, or one table tap can be set as a predetermined unit.
  • the device feature quantity (reference feature quantity) stored in the feature quantity storage unit 11 is the current consumption (instantaneous value), power consumption (instantaneous value), and voltage (instantaneous value) measured during operation of each electrical device.
  • device feature values include frequency intensity / phase of current consumption (harmonic component), phase, change in current consumption, average value, peak value, effective value, crest factor, waveform rate, current change convergence time, energization time
  • the peak position, the time difference between the peak position of the voltage and the peak position of the current consumption, the power factor, and the like may be used. Naturally, it is not limited to the illustration here.
  • Such a device feature amount is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in the predetermined unit in an environment different from the predetermined unit.
  • the feature amount extracted from the reference data is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in the predetermined unit in an environment different from the predetermined unit.
  • a service provider who provides a service for visualizing the operating state of an electrical device using the monitoring device 10 measures reference data of each electrical device in its own management area (eg, laboratory, laboratory, etc.). To do.
  • the manufacturer of the electric device may measure the reference data of each of its own electric devices in its own management area (eg, laboratory, laboratory, etc.). Then, the service provider may obtain reference data from the manufacturer.
  • the service provider can create a database (hereinafter referred to as “reference data database”) in which the reference data obtained in this way is associated with the identification information of each electrical device.
  • the service provider extracts feature quantities (apparatus feature quantities) from the reference data obtained in this way, and a database (hereinafter, referred to as “equipment feature quantities”) is associated with identification information of each of a plurality of electric appliances. “Device feature database”) can be generated. Then, when the service provider grasps the type of electrical equipment installed in a predetermined unit, the service provider extracts the equipment feature quantity of the electrical equipment from the equipment feature quantity database and stores it in the feature quantity storage unit 11.
  • the series of processing may be realized by computer processing.
  • the service provider obtains reference data of the electrical device and adds it to the reference data database each time. It is possible to perform processing and processing for extracting a device feature amount from newly acquired reference data and adding it to the device feature amount database. In this way, the service provider can expand the reference data database and the device feature amount database.
  • the service provider may manage the measurement conditions when measuring the reference data of each electric device in the device feature amount database or the reference data database, for example.
  • the measurement conditions include all factors that can affect the measurement results (measured values). For example, the length of the wiring between the measuring instrument and the electrical device, the number and length of the wiring branched from the wiring, Number and type of other connected electrical devices, length from distribution board to electrical device, measuring device identification information (part number, lot number, etc.), inherently potentially including immediately after the measuring device is manufactured Information on the measurement error, information on the place where the measurement was performed (eg, whether there are transformers, substations, large-scale power consumption facilities, etc., and the distance to the surroundings, etc.).
  • the information related to the measurement error unique to the measuring instrument may be information provided by the manufacturer of the measuring instrument, for example.
  • the measurement data acquisition unit 12 is measurement data (hereinafter, referred to as at least one of total current consumption (instantaneous value), total power consumption (instantaneous value), and voltage (instantaneous value) measured within a predetermined unit. , Referred to as “predetermined unit measurement data”).
  • predetermined unit measurement data For example, the measurement data acquisition unit 12 connects predetermined unit measurement data measured by a measuring instrument installed corresponding to a power supply inlet, a distribution board, an outlet, or a table tap, between the monitoring apparatus 10 and the measuring device. It is acquired via a network such as a communication cable, the Internet, or a LAN.
  • the measurement data acquisition unit 12 includes a plurality of measuring devices.
  • Measuring units eg, measuring devices installed near the distribution board in each household
  • the unit is determined by adding the measured data measured together (synchronized). Unit measurement data can be acquired.
  • the feature amount extraction unit 13 extracts a measurement feature amount that is a feature amount included in the predetermined unit measurement data from the predetermined unit measurement data acquired by the measurement data acquisition unit 12.
  • the measurement feature amount is the same type of feature amount as the device feature amount stored in the feature amount storage unit 11.
  • the correction unit 15 corrects the measurement feature amount extracted by the feature amount extraction unit 13 based on unit feature information indicating a feature of a predetermined unit. In other words, the correction unit 15 measures the measurement conditions when measuring the reference data for extracting the device feature value and the measurement conditions when measuring the predetermined unit measurement data for extracting the measurement feature value (for a predetermined unit). Due to the difference from the condition specified by the unit feature information), the measurement feature amount is corrected in a direction to cancel the difference appearing between the measurement feature amount and the device feature amount.
  • the unit characteristic information includes all factors that can affect the measurement result (measured value) when measuring the predetermined unit measurement data of the electrical equipment with the measuring device installed in the predetermined unit.
  • Unit feature information includes, for example, information about wiring within a predetermined unit, specifically the length of the wiring between the measuring instrument and the electrical equipment, and from the distribution board to each outlet connected to each electrical equipment. Consider the length, number of branches from the distribution board, cable length of each electrical device, whether or not an extension cord exists between the outlet and each electrical device, and the length of the extension cord if any. It is done.
  • unit characteristic information information for identifying electrical devices connected to wiring within a predetermined unit, for example, electrical devices connected to the same branch and connected to each other via wiring (example: number Information, etc.).
  • unit characteristic information identification information of the measuring instrument (part number, lot number, etc.), information on inherent measurement errors potentially included immediately after the measuring instrument is manufactured, information on the environment around the predetermined unit (Example: Whether there are transformers, substations, large-scale power consumption facilities, etc., and the distance to them).
  • a service provider that provides a service that visualizes the operating state of an electrical device using the monitoring device 10 acquires unit feature information from the service recipient as preparation for starting the provision of the service. Then, the service provider considers the acquired unit feature information, the measurement conditions when the reference data is measured, etc., and correction information for the correction unit 15 to correct the measurement feature value, for example, a transfer function (measurement feature).
  • a transfer function having the measured quantity as an input and the corrected measured feature quantity as an output is generated and held in the correction unit 15.
  • the characteristics as an LC circuit of the circuit to which the electrical device was connected when measuring the predetermined unit measurement data and the reference data by considering the wiring as an inductance and the electrical device connected to the wiring as the capacitance.
  • Correction information (for example, transfer function) may be generated so as to cancel the difference in characteristics.
  • the correction unit 15 inputs the measurement feature value, for example, into a transfer function, and obtains the corrected measurement feature value.
  • the estimation unit 16 estimates an operating electrical device using the corrected measurement feature value and the device feature value. Although the estimation process by the estimation unit 16 can be realized according to the conventional technique, an example will be described below.
  • the corrected measurement feature value is the device feature value of one or more electrical devices (eg, device feature value in one operating state). It is a feature value that is added together. Therefore, the estimation unit 16 has one device feature value of one electrical device selected from a plurality of device feature values stored in the feature value storage unit 11 (eg, device feature value in any operating state). Or, compare the feature value that is the sum of the device feature values of multiple electrical devices (eg, device feature value in one operating state) with the corrected measurement feature value, and match the corrected measurement feature value. A combination of device feature amounts (which may be a concept including a range of a predetermined error) is specified. And the estimation part 16 estimates the electrical equipment corresponding to the equipment feature-value contained in the specified combination as an operating electrical equipment. In addition, the operating state (eg, power consumption) of each electrical device is estimated.
  • the operating state eg, power consumption
  • a service provider that provides a service for visualizing the operating state of the electrical device using the monitoring device 10 selects an electrical device installed in a predetermined unit.
  • Information to be specified and unit feature information indicating the feature of the predetermined unit are acquired from the service recipient.
  • the service provider extracts a predetermined device feature amount from, for example, a device feature amount database based on the acquired information specifying the electrical device installed in the predetermined unit, and stores it in the feature amount storage unit 11.
  • the service provider considers the acquired unit feature information, the measurement conditions when measuring the reference data, and the like, correction information for the correction unit 15 to correct the measurement feature, for example, transfer function (measurement feature).
  • a transfer function having the measured quantity as an input and the corrected measured feature quantity as an output is generated and held in the correction unit 15.
  • the measurement data acquisition unit 12 acquires predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage measured within a predetermined unit.
  • the measurement data acquisition unit 12 uses predetermined unit measurement data measured by a measuring instrument installed in the vicinity of a power supply inlet, a distribution board, or the like, a communication cable that connects the monitoring apparatus 10 and the measuring device, the Internet, a LAN, or the like. Via the network.
  • the feature quantity extraction unit 13 extracts the measurement feature quantity included in the predetermined unit measurement data from the predetermined unit measurement data acquired in S10.
  • the correction unit 15 inputs the measurement feature amount acquired by the feature amount extraction unit 13 in S11 to correction information (for example, transfer function) held in advance, and uses the output as the corrected measurement feature amount. obtain.
  • correction information for example, transfer function
  • the estimation unit 16 uses the device feature value stored in the feature value storage unit 11 and the corrected measurement feature value corrected by the correction unit 15 in S15 to operate the electric device. Is estimated.
  • the monitoring device 10 is installed in an area 100 of a service recipient who receives a service that visualizes the operating state of an electrical device using the monitoring device 10 such as each home or company.
  • the monitoring device 10 is connected to a measuring device 20 that measures predetermined unit measurement data within a predetermined unit via a network such as a communication cable or a LAN.
  • the measuring device 20 is installed in the vicinity of a power feed inlet, a distribution board, and the like.
  • the measurement data acquisition unit 12 of the monitoring device 10 acquires predetermined unit measurement data from the measuring device 20.
  • the transmission of the predetermined unit measurement data from the measuring device 20 to the monitoring device 10 may be a real time process or a batch process.
  • the monitoring device 10 can include an output device such as a display and a speaker. And the monitoring apparatus 10 can output the result which the estimation part 16 estimated via the output device.
  • the monitoring device 10 may estimate an electrical device (and an operating state) that is operating at that time in real time, and output an estimation result, or a predetermined time zone (eg, 24 hours from 0 o'clock).
  • Visualization of changes in the operating state of electrical equipment over time eg: time series graphs showing details of ON / OFF state and / or operating state of each of a plurality of electrical equipments at each time, operating at each time
  • the estimation result obtained by performing a time-series graph indicating the type of electrical device may be output at a predetermined timing. Further, the monitoring device 10 may transmit the estimation result to the terminal device (mobile terminal or the like) 40 of the service recipient via the network 300.
  • the monitoring device 10 is installed in an area 200 of a service provider that provides a service for visualizing the operating state of an electrical device using the monitoring device 10.
  • a transfer device 30 is installed in an area 100 of a service recipient who receives a service for visualizing the operating state of an electrical device using the monitoring device 10 such as each home or company.
  • the transfer device 30 is connected to the measuring device 20 that measures predetermined unit measurement data within a predetermined unit via a network such as a communication cable or a LAN.
  • the transfer device 30 acquires predetermined unit measurement data from the measuring instrument 20.
  • the transfer device 30 transmits the acquired predetermined unit measurement data to the monitoring device 10 installed in the service provider area 200 via the network 300.
  • the process in which the transfer device 30 acquires predetermined unit measurement data from the measuring device 20 and transmits it to the monitoring device 10 may be a real-time process or a batch process.
  • the monitoring device 10 transmits the result estimated by the estimation unit 16 to the transfer device 30 and the terminal device 40.
  • the transfer device 30 and the terminal device 40 output the received estimation result via an output device such as a display or a speaker.
  • the monitoring device 10 may estimate the electrical equipment (and the operating state) that is operating at that time in real time, and may transmit the result to the transfer device 30 or the terminal device 40, or may be a predetermined time.
  • Visualization of temporal changes in the operating state of electrical equipment in a band (eg, from 0:00 to 24:00) (eg: time series graph showing details of ON / OFF state and / or operating state of each of a plurality of electrical equipments at each time
  • the estimation result obtained by performing a time-series graph indicating the type of electrical equipment operating at each time may be transmitted to the transfer device 30 or the terminal device 40 at a predetermined timing.
  • the monitoring apparatus 10 uses an electrical device of the same type as an electrical device installed in a predetermined unit (eg, each home, a specific room in each home, each office, etc.) in another location (eg, a laboratory).
  • Laboratory feature etc. is used to generate device feature values (reference feature values) of each electric device using reference data (eg, current consumption, power consumption, voltage, etc.) measured in the laboratory.
  • reference data eg, current consumption, power consumption, voltage, etc.
  • the device feature amount of the first electrical device and the feature amount (measurement feature amount) of the first electrical device appearing in the reference data measured in a predetermined unit are different from each other. Can be. As a result, the accuracy of the process of estimating the operating electrical equipment is degraded.
  • the monitoring apparatus 10 measures measurement conditions when measuring reference data for extracting device feature values and predetermined unit measurement data for extracting measurement feature values. After correcting the measurement feature amount in a direction that cancels out the difference between the measurement feature amount and the device feature amount due to the difference from the measurement condition (condition specified by the unit feature information of a predetermined unit) Then, using the corrected measurement feature value and the device feature value, a process of estimating the operating electrical device is performed. For this reason, it is possible to estimate the operating electrical equipment with high accuracy.
  • the “measurement feature” was corrected in a direction to cancel the difference between the measurement feature and the device feature.
  • the “apparatus feature amount” is corrected in a direction to cancel the difference appearing between the measurement feature quantity and the appliance feature quantity.
  • FIG. 6 shows an example of a functional block diagram of the monitoring apparatus 10 of the present embodiment.
  • the monitoring apparatus 10 of this embodiment includes a feature amount storage unit 11, a measurement data acquisition unit 12, a feature amount extraction unit 13, a correction unit 25, an estimation unit 26, and a corrected device feature amount. And a storage unit 29. Since the configuration of the feature amount storage unit 11, the measurement data acquisition unit 12, and the feature amount extraction unit 13 is the same as that of the first embodiment, description thereof is omitted here.
  • the correction unit 25 corrects the device feature amount stored in the feature amount storage unit 11 based on unit feature information indicating a feature of a predetermined unit.
  • the correction unit 15 measures the measurement conditions when measuring the reference data for extracting the device feature value and the measurement conditions when measuring the predetermined unit measurement data for extracting the measurement feature value (for a predetermined unit). Due to the difference from the condition specified by the unit feature information), the device feature amount is corrected in a direction to cancel the difference appearing between the measurement feature amount and the device feature amount.
  • the correction of the device feature amount can be realized by the same means as the correction of the measurement feature amount described in the first embodiment.
  • the post-correction device feature value storage unit 29 stores the corrected device feature value corrected by the correction unit 25. Then, the estimation unit 26 operates using the measured feature value generated by the feature value extraction unit 13 and the corrected device feature value stored in the corrected device feature value storage unit 29. Estimate equipment. Since the process of estimating the electrical device in which the estimation unit 26 is operating is the same as that in the first embodiment, description thereof is omitted here.
  • FIG. 7 shows another example of a functional block diagram of the monitoring apparatus 10 of the present embodiment.
  • the monitoring apparatus 10 of the present embodiment includes a measurement data acquisition unit 12, a feature amount extraction unit 13, an estimation unit 26, and a corrected device feature amount storage unit 29.
  • the feature amount storage unit 11 and the correction unit 25 are provided in a device different from the monitoring device 10. Then, the different device generates a corrected device feature value, and the generated corrected device feature value is stored in the corrected device feature value storage unit 29 of the monitoring device 10.
  • the application example of the monitoring apparatus 10 of this embodiment is the same as that of 1st Embodiment.
  • a service provider that provides a service for visualizing the operating state of the electrical device using the monitoring device 10 selects an electrical device installed in a predetermined unit.
  • Information to be specified and unit characteristic information are acquired from the service recipient.
  • the service provider extracts a predetermined device feature amount from, for example, a device feature amount database based on the acquired information specifying the electrical device installed in the predetermined unit, and stores it in the feature amount storage unit 11. .
  • the service provider considers the acquired unit feature information, measurement conditions when the reference data is measured, and the like, correction information for the correction unit 25 to correct the device feature, such as a transfer function (device feature).
  • the transfer function having the input as the input and the corrected device feature as an output is generated and held in the correction unit 25.
  • the correction unit 25 inputs the device feature amount stored in the feature amount storage unit 11 into, for example, a transfer function, and obtains the corrected device feature amount as an output.
  • the correction unit 25 stores the obtained corrected device feature value in the corrected device feature value storage unit 29.
  • the measurement data acquisition unit 12 acquires predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage measured within a predetermined unit.
  • the measurement data acquisition unit 12 uses predetermined unit measurement data measured by a measuring instrument installed in the vicinity of a power supply inlet, a distribution board, or the like, a communication cable that connects the monitoring apparatus 10 and the measuring device, the Internet, a LAN, or the like. Via the network.
  • the feature quantity extraction unit 13 extracts the measurement feature quantity included in the predetermined unit measurement data from the predetermined unit measurement data acquired in S20.
  • the estimation unit 26 operates by using the device feature value stored in the corrected device feature value storage unit 29 and the measurement feature value acquired by the feature value extraction unit 13 in S21. Estimate electrical equipment.
  • the same operational effects as those of the first embodiment can be realized.
  • the correction process by the correction unit 25 is not included in the process of estimating the operating electrical device, the estimation result can be calculated faster than in the first embodiment.
  • either the measurement feature value or the device feature value is corrected so as to cancel the difference appearing between them.
  • both the measurement feature value and the device feature value are predetermined. You may correct
  • standard of (1) may be negated.
  • the monitoring apparatus 10 of this embodiment includes a feature amount storage unit 11, a measurement data acquisition unit 12, a feature amount extraction unit 13, a correction unit (second correction unit) 15, and a correction unit (first correction unit). 1 correction unit) 25, a corrected device feature quantity storage unit 29, and an estimation unit 56.
  • the feature amount storage unit 11 stores a device feature amount (reference feature amount) that is a feature amount at the time of operation of each of a plurality of electrical devices installed in a predetermined unit in association with identification information of each electrical device. .
  • the predetermined unit is a unit for estimating the operating state of the electrical equipment. That is, according to the monitoring device 10 of the modification of the present embodiment, it is possible to estimate whether or not each electric device installed in a predetermined unit is operating and its operating state.
  • the predetermined unit is capable of measuring predetermined unit measurement data including at least one of total current consumption (instantaneous value), total power consumption (instantaneous value), and voltage (instantaneous value) within the unit. That's fine.
  • the predetermined unit is one home, one store, one company, one building where there are multiple homes, multiple stores, multiple companies, etc., one community where a plurality of homes gather, and the like. May be.
  • a unit for each branch of a distribution board installed in a home or a store, one outlet, or one table tap can be set as a predetermined unit.
  • the device feature quantity stored in the feature quantity storage unit 11 is at least one of current consumption (instantaneous value), power consumption (instantaneous value), and voltage (instantaneous value) measured during operation of each electrical device.
  • This is a feature quantity that can be extracted from the measurement data included.
  • device feature values include frequency intensity / phase of current consumption (harmonic component), phase, change in current consumption, average value, peak value, effective value, crest factor, waveform rate, current change convergence time, energization time
  • the peak position, the time difference between the peak position of the voltage and the peak position of the current consumption, the power factor, and the like may be used. Naturally, it is not limited to the illustration here.
  • Such a device feature amount is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in the predetermined unit in an environment different from the predetermined unit.
  • the feature amount extracted from the reference data is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in the predetermined unit in an environment different from the predetermined unit.
  • a service provider who provides a service for visualizing the operating state of an electrical device using the monitoring device 10 measures reference data of each electrical device in its own management area (eg, laboratory, laboratory, etc.). To do.
  • the manufacturer of the electric device may measure the reference data of each of its own electric devices in its own management area (eg, laboratory, laboratory, etc.). Then, the service provider may obtain reference data from the manufacturer.
  • the service provider can create a database (hereinafter referred to as “reference data database”) in which the reference data obtained in this way is associated with the identification information of each electrical device.
  • the service provider extracts feature quantities (apparatus feature quantities) from the reference data obtained in this way, and a database (hereinafter, referred to as “equipment feature quantities”) is associated with identification information of each of a plurality of electric appliances. “Device feature database”) can be generated. Then, when the service provider grasps the type of electrical equipment installed in a predetermined unit, the service provider extracts the equipment feature quantity of the electrical equipment from the equipment feature quantity database and stores it in the feature quantity storage unit 11.
  • the series of processing may be realized by computer processing.
  • the service provider obtains reference data of the electrical device and adds it to the reference data database each time. It is possible to perform processing and processing for extracting a device feature amount from newly acquired reference data and adding it to the device feature amount database. In this way, the service provider can expand the reference data database and the device feature amount database.
  • the service provider may manage the measurement conditions when measuring the reference data of each electric device in the device feature amount database or the reference data database, for example.
  • the measurement conditions include all factors that can affect the measurement results (measured values). For example, the length of the wiring between the measuring instrument and the electrical device, the number and length of the wiring branched from the wiring, Number and type of other connected electrical devices, length from distribution board to electrical device, measuring device identification information (part number, lot number, etc.), inherently potentially including immediately after the measuring device is manufactured Information on the measurement error, information on the place where the measurement was performed (eg, whether there are transformers, substations, large-scale power consumption facilities, etc., and the distance to the surroundings, etc.).
  • the information related to the measurement error unique to the measuring instrument may be information provided by the manufacturer of the measuring instrument, for example.
  • the measurement data acquisition unit 12 is predetermined unit measurement data that is at least one of total current consumption (instantaneous value), total power consumption (instantaneous value), and voltage (instantaneous value) measured within a predetermined unit.
  • the measurement data acquisition unit 12 connects predetermined unit measurement data measured by a measuring instrument installed corresponding to a power supply inlet, a distribution board, an outlet, or a table tap, between the monitoring apparatus 10 and the measuring device. It is acquired via a network such as a communication cable, the Internet, or a LAN.
  • the measurement data acquisition unit 12 includes a plurality of measuring devices.
  • Measuring units eg, measuring devices installed near distribution boards in each household
  • the unit by adding the predetermined unit measurement data measured by each unit in time (synchronized)
  • the predetermined unit measurement data can be acquired.
  • the feature amount extraction unit 13 extracts a measurement feature amount that is a feature amount included in the predetermined unit measurement data from the predetermined unit measurement data acquired by the measurement data acquisition unit 12.
  • the measurement feature amount is the same type of feature amount as the device feature amount stored in the feature amount storage unit 11.
  • the correction unit 15 corrects the measurement feature amount extracted by the feature amount extraction unit 13 based on unit feature information indicating a feature of a predetermined unit. That is, the correction unit 15 is specified by a measurement condition (reference condition) serving as a predetermined reference and a measurement condition (specified by unit feature information of a predetermined unit) when measuring predetermined unit measurement data for extracting a measurement feature amount.
  • the measurement feature quantity is corrected in a direction to cancel the difference appearing between the feature quantity measured under the measurement condition (reference condition) serving as a predetermined reference and the device feature quantity.
  • the unit characteristic information includes all factors that can affect the measurement result (measured value) when measuring the predetermined unit measurement data of the electrical equipment with the measuring device installed in the predetermined unit.
  • Unit feature information includes, for example, information about wiring within a predetermined unit, specifically the length of the wiring between the measuring instrument and the electrical equipment, and from the distribution board to each outlet connected to each electrical equipment. Consider the length, number of branches from the distribution board, cable length of each electrical device, whether or not an extension cord exists between the outlet and each electrical device, and the length of the extension cord if any. It is done.
  • unit characteristic information information for identifying electrical devices connected to wiring within a predetermined unit, for example, electrical devices connected to the same branch and connected to each other via wiring (example: number Information, etc.).
  • unit characteristic information identification information of the measuring instrument (part number, lot number, etc.), information on inherent measurement errors potentially included immediately after the measuring instrument is manufactured, information on the environment around the predetermined unit (Example: Whether there are transformers, substations, large-scale power consumption facilities, etc., and the distance to them).
  • a service provider that provides a service that visualizes the operating state of an electrical device using the monitoring device 10 acquires unit feature information from the service recipient as preparation for starting the provision of the service. Then, the service provider considers the acquired unit feature information, the measurement conditions when the reference data is measured, the measurement conditions that serve as a predetermined standard, and the like, so that the correction unit 15 corrects the measurement feature value.
  • Information for example, a transfer function (a transfer function having the measured feature value as an input and the corrected measured feature value as an output) is generated and held in the correction unit 15.
  • Correction information (for example, transfer function) may be generated so as to cancel the difference in characteristics.
  • the correction unit 15 inputs the measurement feature value, for example, into a transfer function, and obtains the corrected measurement feature value.
  • the correction unit 25 corrects the device feature amount stored in the feature amount storage unit 11 based on unit feature information indicating a feature of a predetermined unit. That is, the correction unit 25 determines that the device feature amount and the predetermined amount are caused by the difference between the measurement condition when the reference data for extracting the device feature amount is measured and the measurement condition (reference condition) serving as a predetermined reference.
  • the device feature value is corrected in a direction to cancel out the difference appearing between the feature value and the feature value measured under the measurement condition that is the reference of the above.
  • the correction of the device feature amount can be realized by the same means as the correction of the measurement feature amount described in the first embodiment.
  • the post-correction device feature value storage unit 29 stores the corrected device feature value corrected by the correction unit 25.
  • the estimation unit 56 estimates an operating electrical device by using the corrected measurement feature value and the corrected device feature value. Although the estimation process by the estimation unit 56 can be realized according to the conventional technique, an example will be described below.
  • the corrected measurement feature value is a feature value obtained by adding the device feature values of one or more electrical devices. Therefore, the estimation unit 56 adds one corrected device feature value selected from a plurality of device feature values stored in the corrected device feature value storage unit 29 or a plurality of corrected device feature values. A combination of corrected device feature values that compares the combined feature values with the corrected measured feature values and matches the corrected measured feature values (may be a concept that includes a predetermined error range). Is identified. And the estimation part 56 estimates the electrical equipment corresponding to the apparatus feature-value after correction
  • ⁇ Third Embodiment> measurement conditions when measuring reference data for extracting device feature values and measurement conditions when measuring predetermined unit measurement data for extracting measurement feature values (predetermined "Measurement feature” or “equipment feature” in the direction to cancel the difference that appears between the measurement feature quantity and the equipment feature quantity due to the difference from the unit feature information) Corrected.
  • predetermined unit measurement data before extracting the measurement feature value is corrected in a direction to cancel the difference appearing between the measurement feature value and the device feature value.
  • FIG. 9 shows an example of a functional block diagram of the monitoring apparatus 10 of the present embodiment.
  • the monitoring apparatus 10 of this embodiment includes a feature amount storage unit 11, a measurement data acquisition unit 12, a feature amount extraction unit 33, a correction unit 35, and an estimation unit 36. Since the configuration of the feature amount storage unit 11 and the measurement data acquisition unit 12 is the same as that of the first embodiment, description thereof is omitted here.
  • the correction unit 35 corrects the predetermined unit measurement data acquired by the measurement data acquisition unit 12 based on unit feature information indicating characteristics of a predetermined unit. That is, the correction unit 35 measures the measurement conditions when measuring the reference data for extracting the device feature value and the measurement conditions when measuring the predetermined unit measurement data for extracting the measurement feature value (for a predetermined unit).
  • the predetermined unit measurement data is corrected in a direction to cancel the difference appearing between the measurement feature quantity and the device feature quantity due to the difference from the condition specified by the unit feature information.
  • the correction of the predetermined unit measurement data can be realized by the same means as the correction of the measurement feature value described in the first embodiment.
  • the feature amount extraction unit 33 extracts a feature amount (corrected measurement feature amount) included in the corrected predetermined unit measurement data from the corrected predetermined unit measurement data corrected by the correction unit 35.
  • the estimation unit 36 estimates an operating electrical device using the corrected measured feature amount extracted by the feature amount extraction unit 33 and the device feature amount stored in the feature amount storage unit 11. Since the process of estimating the electrical device in which the estimation unit 36 is operating is the same as in the first embodiment, the description thereof is omitted here.
  • the application example of the monitoring apparatus 10 of this embodiment is the same as that of 1st Embodiment.
  • a service provider that provides a service for visualizing the operating state of the electrical device using the monitoring device 10 selects an electrical device installed in a predetermined unit. Information to be specified and unit characteristic information are acquired from the service recipient. Then, the service provider extracts a predetermined device feature amount from, for example, a device feature amount database based on the acquired information specifying the electrical device installed in the predetermined unit, and stores it in the feature amount storage unit 11. .
  • the service provider considers the acquired unit feature information, the measurement conditions when the reference data is measured, and the like, correction information for the correction unit 35 to correct the predetermined unit measurement data, for example, a transfer function (predetermined The unit measurement data is used as an input, and a transfer function having the corrected predetermined unit measurement data as an output is generated and held in the correction unit 35.
  • a transfer function predetermined The unit measurement data is used as an input, and a transfer function having the corrected predetermined unit measurement data as an output is generated and held in the correction unit 35.
  • the measurement data acquisition unit 12 acquires predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage measured in a predetermined unit.
  • the measurement data acquisition unit 12 uses predetermined unit measurement data measured by a measuring instrument installed in the vicinity of a power supply inlet, a distribution board, or the like, a communication cable that connects the monitoring apparatus 10 and the measuring device, the Internet, a LAN, or the like. Via the network.
  • the correction unit 35 inputs the predetermined unit measurement data acquired by the measurement data acquisition unit 12 in S30 to correction information (eg, transfer function) held in advance, and the predetermined unit measurement after correcting the output. Get as data.
  • the feature amount extraction unit 33 extracts a feature amount (corrected measurement feature amount) included in the predetermined unit measurement data from the corrected predetermined unit measurement data.
  • the estimation unit 36 operates using the device feature value stored in the feature value storage unit 11 and the corrected measurement feature value extracted by the feature value extraction unit 33 in S32. Estimate equipment.
  • FIG. 11 shows an example of a functional block diagram of the monitoring device 10 of the present embodiment.
  • the monitoring apparatus 10 of the present embodiment includes a measurement data acquisition unit 12, a feature amount extraction unit 13, a correction unit 45, an estimation unit 46, a reference data storage unit 47, and a corrected device feature amount.
  • a generation unit 48 and a corrected device feature amount storage unit 49 are included. Since the configuration of the measurement data acquisition unit 12 and the feature amount extraction unit 13 is the same as that of the first embodiment, description thereof is omitted here.
  • the reference data storage unit 47 is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in a predetermined unit in an environment different from the predetermined unit. Store some reference data. For example, when a service provider that provides a service for visualizing the operating state of an electrical device using the monitoring device 10 identifies an electrical device installed in a predetermined unit, the reference described in the first embodiment From the data database, the reference data of the identified electrical device can be extracted and stored in the reference data storage unit 47.
  • the correction unit 45 corrects the reference data of each of the plurality of electrical devices stored in the reference data storage unit 47 based on unit feature information indicating a predetermined unit feature. That is, the correction unit 45 measures the measurement conditions when measuring the reference data for extracting the device feature value and the measurement conditions when measuring the predetermined unit measurement data for extracting the measurement feature value (for a predetermined unit).
  • the reference data is corrected in a direction to cancel the difference appearing between the measurement feature quantity and the device feature quantity due to the difference from the condition specified by the unit feature information.
  • the correction of the reference data can be realized by the same means as the correction of the measurement feature amount described in the first embodiment.
  • the post-correction device feature value generation unit 48 extracts a post-correction device feature value that is a feature value of each electrical device included in each reference data from each of the corrected reference data.
  • the corrected device feature value storage unit 49 stores the corrected device feature value generated by the corrected device feature value generation unit 48 in association with the identification information of each electric device.
  • the estimation unit 46 estimates an operating electrical device using the measured feature value extracted by the feature value extraction unit 13 and the corrected device feature value stored in the corrected device feature value storage unit 49. To do. Since the process of estimating the electrical device in which the estimation unit 46 is operating is the same as in the first embodiment, the description thereof is omitted here.
  • the monitoring apparatus 10 of the present embodiment may not include the correction unit 45, the reference data storage unit 47, and the corrected device feature value generation unit 48.
  • the correction unit 45, the reference data storage unit 47, and the corrected device feature value generation unit 48 are provided in a device different from the monitoring device 10. Then, the different device generates a corrected device feature value, and the generated corrected device feature value is stored in the corrected device feature value storage unit 49 of the monitoring device 10.
  • the application example of the monitoring apparatus 10 of this embodiment is the same as that of 1st Embodiment.
  • a service provider that provides a service for visualizing the operating state of the electrical device using the monitoring device 10 selects an electrical device installed in a predetermined unit.
  • Information to be specified and unit characteristic information are acquired from the service recipient.
  • the service provider retrieves predetermined reference data from, for example, a reference data database based on the acquired information specifying the electrical device installed in the predetermined unit, and stores it in the reference data storage unit 47.
  • the service provider considers the acquired unit feature information, measurement conditions when the reference data is measured, and the like, correction information for the correction unit 45 to correct the reference data, for example, transfer function (reference data And a transfer function that outputs the corrected reference data as an output is generated and held in the correction unit 45.
  • the correction unit 45 inputs the reference data stored in the reference data storage unit 47 to, for example, a transfer function, and obtains corrected reference data as an output. Thereafter, the corrected device feature value generation unit 48 extracts the device feature value from the corrected reference data, and stores it in the corrected device feature value storage unit 49 as the corrected device feature value.
  • the measurement data acquisition unit 12 acquires predetermined unit measurement data that is at least one of total current consumption, total power consumption, and voltage measured within a predetermined unit.
  • the measurement data acquisition unit 12 uses predetermined unit measurement data measured by a measuring instrument installed in the vicinity of a power supply inlet, a distribution board, or the like, a communication cable that connects the monitoring apparatus 10 and the measuring device, the Internet, a LAN, or the like. Via the network.
  • the feature quantity extraction unit 13 extracts the measurement feature quantity included in the predetermined unit measurement data from the predetermined unit measurement data acquired in S20.
  • the estimation unit 26 operates by using the corrected device feature value stored in the corrected device feature value storage unit 49 and the measurement feature value acquired by the feature value extraction unit 13 in S21. Estimate the electrical equipment that is.
  • the same operational effects as those of the first embodiment can be realized.
  • the correction process by the correction unit 45 is not included in the process of estimating the operating electric device, the estimation result can be calculated faster than in the first and third embodiments.
  • advice for power saving can be given.
  • the monitoring device 10 of the first to fourth embodiments it is possible to confirm the time change of the operating state of the electrical equipment in one day (from 0:00 to 24:00). Based on such output, it is possible to specify a time zone or the like in which the electric device is frequently used, and to give advice such as consciously reducing the use in that time.
  • the timing of electrical equipment maintenance eg, cleaning of an air conditioner
  • the accumulated operation time of each electrical device can be calculated by accumulating the estimation results. For example, it is possible to make a notification that prompts maintenance at a timing when the accumulated time reaches a predetermined value.
  • current consumption, power consumption, voltage, measurement characteristics, and the like may change due to failure of electrical equipment or aging of some components. Therefore, for example, when such a change is detected, a notification for urging maintenance can be performed.
  • advice on the use of a refrigerator can be given.
  • the current consumption, the power consumption, the voltage, the measurement feature amount, and the like can be changed according to the state of loading inside the refrigerator.
  • the monitoring device 10 of the first to fourth embodiments such a change can be detected. Based on this change, it is possible to notify a warning of overpacking or a reminder to increase the stockpile because the internal items are low.
  • the monitoring device 10 of the first to fourth embodiments it is possible to detect whether or not the usage pattern of the electric device is different from the usual by comparing the past estimation result history. it can. If the usage pattern of electrical equipment is different from usual, there may be some change in the service recipient (electric equipment user) (eg, illness, involvement in an incident, etc.). Therefore, in such a case, a warning can be notified to the contact information registered in advance.
  • the service recipient electrical equipment user
  • estimating a user's life rhythm and the like based on a usage pattern of an electrical device e.g., usage pattern in one day. Can do. For this reason, lifestyle rhythms are improved for users with irregular lifestyle rhythms (eg, many activities at night (using many electrical devices at night), daytime activities and nighttime activities appear irregularly, etc.) Can be warned to do.
  • either “reference data” or “predetermined unit measurement data” is corrected so as to cancel the difference appearing between them. Both the “reference data” and the “predetermined unit measurement data” may be corrected so as to cancel the difference appearing between the feature quantity measured under the measurement conditions serving as the standard of the above.
  • the monitoring apparatus 10 of this embodiment includes a measurement data acquisition unit 12, a correction unit (second correction unit) 35, a feature amount extraction unit 33, a reference data storage unit 47, and a correction unit (first unit). 1 correction unit) 45, a corrected device feature value generation unit 48, a corrected device feature value storage unit 49, and an estimation unit 66. Since the configuration of the measurement data acquisition unit 12 is the same as that of the first embodiment, description thereof is omitted here. In addition, the configuration of the reference data storage unit 47 is the same as that of the fourth embodiment, and a description thereof is omitted here.
  • the correction unit 35 corrects the predetermined unit measurement data acquired by the measurement data acquisition unit 12 based on unit feature information indicating characteristics of a predetermined unit. That is, the correction unit 35 is specified by a measurement condition (reference condition) serving as a predetermined reference and a measurement condition (measured by unit feature information of a predetermined unit) when measuring predetermined unit measurement data for extracting a measurement feature amount.
  • the predetermined unit measurement data is corrected in a direction to cancel the difference appearing between the measurement feature quantity and the feature quantity measured under the measurement condition (reference condition) serving as a predetermined reference.
  • the correction of the predetermined unit measurement data can be realized by the same means as the correction of the predetermined unit measurement data described in the third embodiment.
  • the feature amount extraction unit 33 extracts a feature amount (corrected measurement feature amount) included in the corrected predetermined unit measurement data from the corrected predetermined unit measurement data corrected by the correction unit 35.
  • the correction unit 45 corrects the reference data of each of the plurality of electrical devices stored in the reference data storage unit 47 based on unit feature information indicating a predetermined unit feature. That is, the correction unit 45 determines that the device feature amount and the predetermined amount are different from each other due to the difference between the measurement condition when the reference data for extracting the device feature amount is measured and the measurement condition (reference condition) that is a predetermined reference.
  • the reference data is corrected in a direction to cancel out the difference appearing with the feature quantity measured under the measurement condition (standard condition) as the standard of the above.
  • the correction of the reference data can be realized by the same means as the correction of the reference data described in the fourth embodiment.
  • the post-correction device feature value generation unit 48 extracts a post-correction device feature value that is a feature value of each electrical device included in each reference data from each of the corrected reference data.
  • the corrected device feature value storage unit 49 stores the corrected device feature value generated by the corrected device feature value generation unit 48 in association with the identification information of each electric device.
  • the estimation unit 66 uses the feature amount extracted from the predetermined unit measurement data after being corrected by the correction unit 35 and the corrected device feature value stored in the corrected device feature value storage unit 49. Estimate the operating electrical equipment. Since the process of estimating the electrical device in which the estimation unit 66 is operating is the same as that of the first embodiment, the description thereof is omitted here.
  • correction feature information for generating measurement feature values is generated in consideration of unit feature information of the measurement environment and measurement conditions when measuring reference data. However, feature values and data after correction are obtained using the correction information.
  • “measurement feature value”, “apparatus feature value (reference feature value)”, “predetermined unit” based on the predetermined unit measurement data measured in a predetermined unit and the reference data.
  • Correction information for example, transfer function
  • unit feature information used in the first to fourth embodiments is not necessary.
  • FIG. 16 shows an example of a functional block diagram of the present embodiment.
  • the monitoring apparatus 10 of the present embodiment includes a measurement data acquisition unit 12, a reference data storage unit 47, a correction information creation unit 70, and a correction unit 55. Since the configurations of the measurement data acquisition unit 12 and the reference data storage unit 47 are the same as those in the first to fourth embodiments, description thereof is omitted here.
  • the correction unit 55 is the same as in the first to fourth embodiments except that the corrected feature amount and data are obtained using the correction information (eg, transfer function) generated by the correction information generation unit 70. Therefore, explanation here is omitted.
  • the correction information eg, transfer function
  • the correction information creation unit 70 creates correction information, for example, a transfer function, for canceling these differences based on the predetermined unit measurement data and the reference data.
  • the correction information (eg, transfer function) created by the correction information creation unit 70 is stored in the correction unit 55.
  • the correction information creation unit 70 includes a device single data extraction unit 72, feature amount extraction units 71 and 73, and a correction parameter extraction unit 74.
  • the device single data extraction unit 72 extracts single device data from the predetermined unit measurement data, and links the extracted data with information such as the device name.
  • the means for extracting the data of a single device from the predetermined unit measurement data is not particularly limited.
  • the time point when the measured value fluctuates by a predetermined level or more in the predetermined unit measurement data may be specified as the time point when the operating state of a certain electric device fluctuates.
  • the difference of the data before and after that time may be extracted as the predetermined unit measurement data of the electric device. Thereafter, an input such as the device name of the electrical device whose operating state has been changed at that time is received from the user.
  • the device single data extraction unit 72 can also use the methods shown in the following embodiments.
  • the feature amount extraction unit 71 extracts a predetermined feature amount from the reference data of each electric device.
  • the feature amount extraction unit 73 extracts a predetermined feature amount from the predetermined unit measurement data of each electrical device extracted by the device single data extraction unit 72.
  • the correction parameter extraction unit 74 includes a device feature amount (reference feature amount) of the first electric device extracted by the feature amount extraction unit 71, a measurement feature amount of the first electric device extracted by the feature amount extraction unit 73, Correction information (eg, transfer function) for correcting at least one of “measurement feature value” and “apparatus feature value (reference feature value)” is generated in a direction to cancel the difference between the two. For example, the difference may be canceled by multiplying at least one of the correction information, “measurement feature value”, and “apparatus feature value (reference feature value)” by a predetermined coefficient. It may be a thing.
  • the content of the correction information creation unit 70 in FIG. 17 is an example, and other forms may be taken. For example, it can also be set as the structure which does not have the feature-value extraction parts 71 and 73.
  • FIG. the reference data of the first electrical device is input from the reference data storage unit 47 to the correction parameter extraction unit 74.
  • predetermined unit measurement data of the first electric device is input from the device single data extraction unit 72 to the correction parameter extraction unit 74.
  • the correction parameter extraction unit 74 corrects at least one of “reference data” and “predetermined unit measurement data” in a direction that cancels the difference between the reference data and the predetermined unit measurement data (for example, : Transfer function).
  • the correction information may be one that cancels the difference by multiplying at least one of “reference data” and “predetermined unit measurement data” by a predetermined coefficient, and is shown in the following examples. Also good.
  • the correction information creation unit 70 is in the monitoring apparatus 10, but the location of the correction information creation unit 70 may be in another environment such as on an external server.
  • the means for acquiring predetermined unit measurement data that is at least one of the total current consumption, the total power consumption, and the voltage of the electrical equipment measured in the first environment is different from the first environment.
  • Means for acquiring reference data that is at least one of total current consumption, total power consumption, and voltage of the electrical device measured in a second environment; and the predetermined unit measurement data and the reference data Based on this, a correction information creating device is realized that includes means (correction information creating unit 70) for creating correction information for canceling the difference between the predetermined unit measurement data and the reference data.
  • a correction information generation apparatus is provided that includes a correction information generation unit (correction information generation unit 70) for canceling a difference between feature amounts.
  • the fifth embodiment will be described using a specific example.
  • the voltage waveform is measured, for example, using resistance division from an outlet in the user environment.
  • the current waveform is measured by installing a clamp-type CT (Current Transformer) on the main part of the distribution board.
  • the measured voltage / current is phase-matched at the zero cross point where the voltage changes from negative to positive, and phase adjustment is performed so that the voltage / current waveform has the same phase data in each measurement.
  • the current waveform data of the device alone is extracted from the time-series data of the measured voltage / current waveform.
  • power time-series data is created from voltage-current waveform time-series data, and an average value and a variance value are calculated for each time-series data.
  • a power threshold is created, and the point at which the power value exceeds the threshold is used as the device power ON / OFF switching timing, and the time-series data of the current waveform is averaged before and after that.
  • the current waveform data of the device alone is extracted by taking the difference.
  • the current waveform data of the device alone may be extracted individually, for example, by installing a current sensor in an outlet.
  • the current waveform data with the device name information added is transmitted to the external server.
  • reference data in which the device name and current waveform are linked is prepared in advance, and the correction parameter (transfer function) is extracted by comparing this reference data with the current waveform data of the device transmitted from the user environment. To do. Since the reference data and the measurement data can be associated with each other by the device name information, the correction parameter may be extracted at a place other than the external server.
  • the reference data of the current waveform and the predetermined unit measurement data of the current waveform are decomposed into harmonic components by FFT or the like, and the following two values R and T (weighted average) are obtained using the vectors r, ⁇ r, and ⁇ .
  • R and T weighted average
  • r is the harmonic intensity of the user environment data
  • is the difference between the values of both environments
  • i is the harmonic order
  • is the value obtained by dividing the phase of the harmonic by the harmonic order (the phase of each harmonic is Represents a value in accordance with the phase of the reference wave).
  • the current waveform reference data f (t) of the external server is corrected to the current waveform measurement data R ⁇ f (t ⁇ T) of the user environment.
  • the correction parameter has a different value for each device.
  • t represents the phase of the current waveform.
  • T is a phase difference to be corrected, but may be converted into time, in which case t represents time.
  • FIG. 18 shows an example of a current waveform corrected by the method of this embodiment.
  • R and T may be obtained simply from reference wave intensity and phase information.
  • a method of determining R and T that minimizes the error function by fitting may be used.
  • the method of creating the transfer function is not limited to FIG. 17, and the integral of the absolute value of the difference between the functions of the external server data and the user environment data created based on the FFT data is calculated during one waveform period. A method of determining R and T so as to be minimized may be used.
  • each value of the current waveform and the feature value is not individually corrected, but all values can be corrected using a deviation between the binary values of intensity and phase. It is also possible to correct feature vectors such as wave intensity and phase.
  • correction information eg, transfer function
  • correction information eg, transfer function
  • correction information eg, transfer function
  • the correction information can be created only by comparing data, so that the user environment changes with time, such as the configuration of each household electrical device changes, Even when the estimation accuracy deteriorates, the correction information (eg, transfer function) can be newly updated to prevent the estimation accuracy from deteriorating. It is also possible to maintain the estimation accuracy within a certain accuracy by providing a threshold of accuracy and detecting deterioration of the estimation accuracy and updating the correction information (eg, transfer function) each time.
  • the estimation accuracy for providing the threshold value may be any range of estimation accuracy, that is, the estimation accuracy of the device of the entire building, the estimation accuracy of each device, or the estimation accuracy of several device groups.
  • the fifth embodiment is used in a method in which a plurality of correction waveforms (eg, transfer functions) are created by obtaining a plurality of reference waveforms using a plurality of reference loads, the device is not operated in advance. It is also possible to create correction information (eg transfer function).
  • correction waveforms eg, transfer functions
  • correction information eg, transfer function
  • correction information is created only by comparing data, so that correction information (eg, transfer function) is created without considering the environment at home in detail. can do.
  • correction information eg, transfer function
  • a plurality of other rooms The same correction information (for example, transfer function) can be diverted.
  • the state of the device is estimated on the external server after correcting the reference data of the external server for each electrical device in the user environment. It is also possible to create an estimation function by learning. By receiving the estimation function created in the external server to the user environment, receive a power visualization service that can accurately estimate the state of each device from the current waveform data without creating the estimation function in the user environment. Will be able to.
  • a feature amount storage means for storing a device feature amount that is a feature amount at the time of operation of each of a plurality of electrical devices installed in a predetermined unit; Measurement data acquisition means for acquiring measurement data that is at least one of total current consumption, total power consumption, and voltage measured within the predetermined unit; Feature quantity extraction means for acquiring a measurement feature quantity that is the feature quantity included in the measurement data; Correction means for correcting the first feature amount, which is the device feature amount or the measurement feature amount, based on unit feature information indicating the feature of the predetermined unit; Using the corrected first feature value and the second feature value that is the device feature value or the measurement feature value and is different from the first feature value, An estimation means for estimating an electrical device, Having a monitoring device.
  • a feature amount storage means for storing a device feature amount that is a feature amount at the time of operation of each of a plurality of electrical devices installed in a predetermined unit; Measurement data acquisition means for acquiring measurement data that is at least one of total current consumption, total power consumption, and voltage measured within the predetermined unit; Feature quantity extraction means for acquiring a measurement feature quantity that is the feature quantity included in the measurement data; First correction means for correcting the device feature amount based on unit feature information indicating the feature of the predetermined unit; Second correction means for correcting the measurement feature value based on the unit feature information; Estimating means for estimating an operating electric device using the corrected device feature value and the corrected measurement feature value; Having a monitoring device. 3.
  • a feature amount storage means for storing a device feature amount that is a feature amount at the time of operation of each of a plurality of electrical devices installed in a predetermined unit; Measurement data acquisition means for acquiring measurement data that is at least one of total current consumption, total power consumption, and voltage measured within the predetermined unit; Correction means for correcting the measurement data based on unit feature information indicating features of the predetermined unit; Feature quantity extraction means for acquiring a corrected measurement feature quantity that is the feature quantity included in the measurement data after correction; Estimating means for estimating an operating electrical device using the device feature value and the corrected measurement feature value; Having a monitoring device. 4).
  • Reference data that is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in a predetermined unit in an environment different from the predetermined unit is stored.
  • Reference data storage means ; Correction means for correcting the reference data of each of the plurality of electric devices based on unit feature information indicating the characteristics of the predetermined unit;
  • a corrected device feature value generation means for acquiring a corrected device feature value that is a feature value of each of the electric devices included in each of the corrected reference data;
  • Measurement data acquisition means for acquiring measurement data that is at least one of total current consumption, total power consumption, and voltage measured within the predetermined unit;
  • Feature quantity extraction means for acquiring a measurement feature quantity that is the feature quantity included in the measurement data; Estimating means for estimating an operating electric device using the corrected device feature value and the measurement feature value; Having a monitoring device.
  • Reference data that is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in a predetermined unit in an environment different from the predetermined unit is stored.
  • Reference data storage means First correction means for correcting the reference data of each of the plurality of electric devices based on unit feature information indicating the characteristics of the predetermined unit;
  • a corrected device feature value generation means for acquiring a corrected device feature value that is a feature value of each of the electric devices included in each of the corrected reference data;
  • Measurement data acquisition means for acquiring measurement data that is at least one of total current consumption, total power consumption, and voltage measured within the predetermined unit;
  • Second correction means for correcting the measurement data based on the unit feature information;
  • Feature quantity extraction means for acquiring a corrected measurement feature quantity that is the feature quantity included in the measurement data after correction;
  • Estimating means for estimating an operating electric device using the corrected device feature value and the corrected measurement feature value; Having a monitoring device.
  • the device feature amount is at least one of current consumption, power consumption, and voltage measured by placing each of the plurality of electric devices installed in the predetermined unit in an environment different from the predetermined unit.
  • the unit characteristic information includes at least one of information relating to a wiring in the predetermined unit and information specifying the electric device connected to the wiring in the predetermined unit. 8).
  • the correction unit is configured as an LC circuit of the predetermined unit specified by considering the wiring in the predetermined unit as an inductance and considering the electric device connected to the wiring in the predetermined unit as a capacitance.
  • the first correction unit and the second correction unit are specified by using the wiring in the predetermined unit as an inductance and considering the electric device connected to the wiring in the predetermined unit as a capacitance.
  • a monitoring device according to any one of 1 to 9, A transfer device that acquires measurement data that is at least one of total current consumption, total power consumption, and voltage measured by a measuring instrument installed in a predetermined unit, and transmits the measurement data to the monitoring device; Having a surveillance system. 11.
  • a device feature amount that is a feature amount at the time of operation of each of a plurality of electrical devices installed within a predetermined unit is stored,
  • a device feature amount that is a feature amount at the time of operation of each of a plurality of electrical devices installed within a predetermined unit is stored,
  • a device feature amount that is a feature amount at the time of operation of each of a plurality of electrical devices installed within a predetermined unit is stored,
  • Computer Reference data that is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in a predetermined unit in an environment different from the predetermined unit is stored. Leave A correction step of correcting the reference data of each of a plurality of the electrical devices based on unit feature information indicating features of the predetermined unit; A corrected device feature value generation step of acquiring a corrected device feature value that is a feature value of each of the electrical devices included in each of the corrected reference data; A measurement data acquisition step of acquiring measurement data that is at least one of total current consumption, total power consumption, and voltage measured within the predetermined unit; A feature quantity extraction step of obtaining a measurement feature quantity that is the feature quantity included in the measurement data; An estimation step for estimating an operating electrical device using the corrected device feature value and the measurement feature value; Monitoring method to execute.
  • Computer Reference data that is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in a predetermined unit in an environment different from the predetermined unit is stored. Leave A first correction step of correcting the reference data of each of the plurality of electrical devices based on unit feature information indicating the characteristics of the predetermined unit; A corrected device feature value generation step of acquiring a corrected device feature value that is a feature value of each of the electrical devices included in each of the corrected reference data; A measurement data acquisition step of acquiring measurement data that is at least one of total current consumption, total power consumption, and voltage measured within the predetermined unit; A second correction step of correcting the measurement data based on the unit feature information; A feature amount extraction step of acquiring a corrected measurement feature amount that is the feature amount included in the measurement data after correction; An estimation step of estimating an operating electrical device using the corrected device feature value and the corrected measurement feature value; Monitoring method to execute.
  • the device feature amount is at least one of current consumption, power consumption, and voltage measured by placing each of the plurality of electric devices installed in the predetermined unit in an environment different from the predetermined unit.
  • a monitoring method which is a feature amount of each of the electric devices extracted from reference data. 17.
  • the monitoring method includes at least one of the unit feature information including information on wiring in the predetermined unit and information specifying the electric device connected to the wiring in the predetermined unit. 18.
  • the wiring in the predetermined unit is an inductance
  • the electric device connected to the wiring in the predetermined unit is regarded as an electrostatic capacity as the LC circuit of the predetermined unit specified.
  • a monitoring method for performing the correction in consideration of the characteristics of 19 In the monitoring method according to 17 depending on 12 or 15, In the first correction step and the second correction step, the wiring in the predetermined unit is used as an inductance, and the electric device connected to the wiring in the predetermined unit is specified as a capacitance.
  • Computer A feature amount storage means for storing device feature amounts, which are feature amounts at the time of operation of each of a plurality of electrical devices installed in a predetermined unit; Measurement data acquisition means for acquiring measurement data that is at least one of total current consumption, total power consumption, and voltage measured in the predetermined unit; Feature quantity extraction means for acquiring a measurement feature quantity that is the feature quantity included in the measurement data; Correction means for correcting the first feature amount, which is the device feature amount or the measurement feature amount, based on unit feature information indicating the feature of the predetermined unit; Using the corrected first feature value and the second feature value that is the device feature value or the measurement feature value and is different from the first feature value, An estimation means for estimating an electrical device Program to function as. 21.
  • Computer A feature amount storage means for storing device feature amounts, which are feature amounts at the time of operation of each of a plurality of electrical devices installed in a predetermined unit; Measurement data acquisition means for acquiring measurement data that is at least one of total current consumption, total power consumption, and voltage measured in the predetermined unit; Feature quantity extraction means for acquiring a measurement feature quantity that is the feature quantity included in the measurement data; First correction means for correcting the device feature amount based on unit feature information indicating the feature of the predetermined unit; Second correction means for correcting the measurement feature value based on the unit feature information; Estimating means for estimating an operating electrical device using the corrected device feature value and the corrected measurement feature value; Program to function as. 22.
  • Computer A feature amount storage means for storing device feature amounts, which are feature amounts at the time of operation of each of a plurality of electrical devices installed in a predetermined unit; Measurement data acquisition means for acquiring measurement data that is at least one of total current consumption, total power consumption, and voltage measured in the predetermined unit; Correction means for correcting the measurement data based on unit feature information indicating the feature of the predetermined unit; Feature quantity extraction means for acquiring a corrected measurement feature quantity that is the feature quantity included in the measurement data after correction; Estimating means for estimating an operating electrical device using the device feature value and the corrected measurement feature value, Program to function as. 23.
  • Reference data that is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in a predetermined unit in an environment different from the predetermined unit is stored.
  • Reference data storage means Correction means for correcting the reference data of each of the plurality of electrical devices based on unit feature information indicating the characteristics of the predetermined unit;
  • a post-correction device feature value generation means for acquiring a post-correction device feature value that is a feature value of each of the electrical devices included in each of the corrected reference data;
  • Measurement data acquisition means for acquiring measurement data that is at least one of total current consumption, total power consumption, and voltage measured in the predetermined unit;
  • Feature quantity extraction means for acquiring a measurement feature quantity that is the feature quantity included in the measurement data;
  • Estimating means for estimating an operating electric device using the corrected device feature value and the measurement feature value; Program to function as.
  • Reference data that is at least one of current consumption, power consumption, and voltage measured by placing each of a plurality of electrical devices installed in a predetermined unit in an environment different from the predetermined unit is stored.
  • Reference data storage means First correction means for correcting the reference data of each of the plurality of electrical devices based on unit feature information indicating the characteristics of the predetermined unit;
  • a post-correction device feature value generation means for acquiring a post-correction device feature value that is a feature value of each of the electrical devices included in each of the corrected reference data;
  • Measurement data acquisition means for acquiring measurement data that is at least one of total current consumption, total power consumption, and voltage measured in the predetermined unit;
  • Second correction means for correcting the measurement data based on the unit feature information;
  • Feature quantity extraction means for acquiring a corrected measurement feature quantity that is the feature quantity included in the measurement data after correction;
  • Estimating means for estimating an operating electric device using the corrected device feature value and the corrected measurement feature value; Program to function as.
  • the device feature amount is at least one of current consumption, power consumption, and voltage measured by placing each of the plurality of electric devices installed in the predetermined unit in an environment different from the predetermined unit.
  • the unit feature information includes a program including at least one of information related to a wiring in the predetermined unit and information for specifying the electric device connected to the wiring in the predetermined unit. 27.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶部(11)と、所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得部(12)と、所定単位測定データに含まれる特徴量である測定特徴量を取得する特徴量抽出部(13)と、記機器特徴量又は測定特徴量である第1の特徴量を、所定の単位の特徴を示す単位特徴情報に基づいて補正する補正部(15)と、補正後の第1の特徴量と、機器特徴量又は測定特徴量であって、第1の特徴量と異なる特徴量である第2の特徴量とを利用して、稼働している電気機器を推定する推定部(16)と、を有する監視装置(10)。

Description

監視装置、監視システム、監視方法、補正情報作成装置、補正情報作成方法及びプログラム
 本発明は、監視装置、監視システム、監視方法、補正情報作成装置、補正情報作成方法及びプログラムに関する。
 近年、一般家庭の電気使用者向けに、HEMS(Home Energy Management System)と呼ばれる住宅のエネルギー管理を行うシステムが提供されている。HEMSは、センサや情報技術を活用したシステムである。HEMSによれば、各家庭での電力使用状況を把握し、可視化等することができる。結果、節電や電気料金の低減が促進され、これにより、省エネルギー効果が得られることが期待されている。同様の取り組みが、オフィスフロアやビル、店舗といった領域に拡大して適用され始めている。
 また、家庭等内での個別の電気機器の稼動状態を把握し、このような情報をも可視化する技術が提案されている。当該技術によれば、各家庭内での現時点における電気機器の稼働状態(稼動している電気機器の種類等)を把握できるほか、各電気機器の使用パターン等をも把握することが可能となる。関連する技術が特許文献1乃至4に開示されている。
 特許文献1には、個別の電気機器に専用の消費電力測定装置を備えることにより、個別の電気機器の消費電力を把握する技術が開示されている。
 特許文献2及び3には、個別の電気機器の消費電力を直接測定せずに電気機器の稼動状態を推定する技術が開示されている。具体的には、電源電流、電源電圧、あるいはそれらから得られる統計量などの計算値といった特徴量を測定する測定センサを配電盤等の電源幹線部に設置し、予め保持しておいた各電気機器の稼動時の特徴量(参照情報)と測定センサの測定結果を利用して、どの電気機器が稼動しているかを推定する技術が開示されている。
 特許文献4には、上記のような個別の電気機器の稼働状態の推定に必要な特徴量(参照情報)を生成する技術が開示されている。具体的には、被計測家屋内の電気機器を1つずつ稼働させて所定のデータ(消費電流等)を個別に測定し、測定した各電気機器のデータから特徴量を抽出して保存する技術が開示されている。
特開2007-225374号公報 特許第3403368号公報 特許第4565511号公報 特許第4433890号公報
 特許文献1に記載の技術では、個別の電気機器に消費電力測定装置を設置するため、電気機器の台数分だけ電力測定センサを用意しなければいけない。このため、システム全体のコストが高価になり、ユーザの導入が困難になるなどの問題がある。
 特許文献2乃至4の技術のように、予め用意しておいた複数の電気機器各々の特徴量(以下、「参照特徴量」)を組み合わせた特徴量と、例えば分電盤で測定した所定の単位(例:各家庭、ある家庭内の特定の部屋、各オフィス等)内の総消費電流、総消費電力、電圧等である測定データから抽出した特徴量(以下、「測定特徴量」)とを比較することで、所定の単位内における電気機器の稼動状態を推定する技術によれば、上記特許文献1に記載の技術の問題を解決することができる。
 しかし、当該技術の場合、所定の単位内に設置された電気機器各々の参照特徴量を予め用意し、システムに記憶しておく必要があるが、従来、このような参照特徴量を効率的に作成し、システムに記憶しておく技術が存在しなかった。
 特許文献4には、被計測家屋に設置された複数の電気機器を1つずつ稼動させて1つずつの総負荷電流ならびに電圧を測定し、当該測定データを利用して参照特徴量を生成する技術が開示されている。しかし、当該技術の場合、参照特徴量を生成するためにある電気機器を測定している間、他の電気機器を稼動できないという問題がある。すなわち、測定中、被計測家屋に設置された他の電気機器を稼動できないという制限をユーザに課すこととなる。冷蔵庫等、常時稼働させておくことを前提とした電気機器が稼動中である場合、当該測定を実行できなくなる。
 そこで、本願発明者らは、所定の単位(例:各家庭、ある家庭内の特定の部屋、各オフィス等)に設置された電気機器と同種の電気機器を他の場所(例:研究室、実験室等)に置いて測定した測定データ(例:消費電流、消費電力、電圧等)を利用して、各電気機器の参照特徴量を生成する技術を検討した。当該技術によれば、特許文献4に記載の技術に存在する上記課題を解決できる。しかし、本願発明者らは当該技術において、以下のような課題を新たに見出した。
 参照特徴量を抽出するための測定データを測定する際の測定器と電気機器の関係は、所定の単位における測定器とその電気機器の関係と異なる可能性が高い。測定器と電気機器の関係は、測定データに影響を及ぼすあらゆる因子を含み、例えば、測定器と電気機器間の配線の長さ、当該配線から分岐した配線の数や長さ、これらの配線に接続された他の電気機器の数や種類等が考えられる。
 例えば、所定の単位における測定器と電気機器の関係は、図12に示すようになる。図12において電気機器Aに着目した場合、例えば配電盤付近に設置された測定器と、電気機器Aとを接続する配線には複数の分岐が存在し、他の複数の電気機器B乃至Dがそこに接続していることが分かる。一方、研究室等で電気機器Aの参照特徴量を抽出するために電気機器Aを測定する際の測定器と電気機器Aの関係は、例えば図13に示すようになる。図13においては、測定器と電気機器Aとが一対一で接続されている。図12と図13を比べると、測定器と電気機器A間の配線の長さ、当該配線から分岐した配線の数や長さ、これらの配線に接続された他の電気機器の数や種類等が互いに異なる。なお、研究室等での測定における測定器と電気機器Aの関係は、図13に示すように一対一とならない場合もある。しかし、一対一にならない場合であっても、研究室等での測定における測定器と電気機器Aの関係が、所定の単位内における測定器と電気機器Aの関係と一致することは稀である。
 上述のように測定器と電気機器Aとの関係が異なると、測定器で測定される電気機器Aの消費電流、消費電力及び電圧等の測定データも異なり得る。すなわち、研究室等で測定される電気機器Aの消費電流、消費電力及び電圧等の測定データと、所定の単位内で測定される電気機器Aの消費電流、消費電力及び電圧等の測定データとは異なり得る。このような場合、予め用意しておいた電気機器Aの参照特徴量と、所定の単位内で測定された測定データに現れる電気機器Aの特徴量とが異なったものとなる。結果、稼動している電気機器を推定する精度が悪くなる。
 本発明は、所定の単位(例:各家庭、ある家庭内の特定の部屋、各オフィス等)に設置された電気機器と同種の電気機器を他の場所(例:研究室、実験室等)に置いて測定した測定データ(例:消費電流、消費電力、電圧等)を利用して、各電気機器の参照特徴量を生成する技術において、稼動している電気機器を推定する推定処理の精度が悪くなる不都合を軽減する技術を提供することを課題とする。
 本発明によれば、
 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段と、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段と、
 前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段と、
 前記機器特徴量又は前記測定特徴量である第1の特徴量を補正する補正手段と、
 補正後の前記第1の特徴量と、前記機器特徴量又は前記測定特徴量であって、前記第1の特徴量と異なる特徴量である第2の特徴量とを利用して、稼働している電気機器を推定する推定手段と、
を有する監視装置が提供される。
 また、本発明によれば、
 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段と、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段と、
 前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段と、
 前記機器特徴量を補正する第1の補正手段と、
 前記測定特徴量を補正する第2の補正手段と、
 補正後の前記機器特徴量及び補正後の前記測定特徴量を利用して、稼働している電気機器を推定する推定手段と、
を有する監視装置が提供される。
 また、本発明によれば、
 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段と、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段と、
 前記所定単位測定データを補正する補正手段と、
 補正後の前記所定単位測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出手段と、
 前記機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定手段と、
を有する監視装置が提供される。
 また、本発明によれば、
 所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶する参照データ記憶手段と、
 複数の前記電気機器各々の前記参照データを補正する補正手段と、
 補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成手段と、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段と、
 前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段と、
 前記補正後機器特徴量と、前記測定特徴量とを利用して、稼働している電気機器を推定する推定手段と、
を有する監視装置が提供される。
 また、本発明によれば、
 所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶する参照データ記憶手段と、
 複数の前記電気機器各々の前記参照データを補正する第1の補正手段と、
 補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成手段と、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段と、
 前記所定単位測定データを補正する第2の補正手段と、
 補正後の前記所定単位測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出手段と、
 前記補正後機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定手段と、
を有する監視装置が提供される。
 また、本発明によれば、
 上記監視装置と、
 所定の単位内に設置された測定器が測定した総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得し、前記監視装置に送信する転送装置と、
を有する監視システムが提供される。
 また、本発明によれば、
 コンピュータが、
 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶しておき、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得工程と、
 前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出工程と、
 前記機器特徴量又は前記測定特徴量である第1の特徴量を補正する補正工程と、
 補正後の前記第1の特徴量と、前記機器特徴量又は前記測定特徴量であって、前記第1の特徴量と異なる特徴量である第2の特徴量とを利用して、稼働している電気機器を推定する推定工程と、
を実行する監視方法が提供される。
 また、本発明によれば、
 コンピュータが、
 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶しておき、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得工程と、
 前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出工程と、
 前記機器特徴量を補正する第1の補正工程と、
 前記測定特徴量を補正する第2の補正工程と、
 補正後の前記機器特徴量及び補正後の前記測定特徴量を利用して、稼働している電気機器を推定する推定工程と、
を実行する監視方法が提供される。
 また、本発明によれば、
 コンピュータが、
 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶しておき、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得工程と、
 前記所定単位測定データを補正する補正工程と、
 補正後の前記所定単位測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出工程と、
 前記機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定工程と、
を実行する監視方法が提供される。
 また、本発明によれば、
 コンピュータが、
 所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶しておき、
 複数の前記電気機器各々の前記参照データを補正する補正工程と、
 補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成工程と、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得工程と、
 前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出工程と、
 前記補正後機器特徴量と、前記測定特徴量とを利用して、稼働している電気機器を推定する推定工程と、
を実行する監視方法が提供される。
 また、本発明によれば、
 コンピュータが、
 所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶しておき、
 複数の前記電気機器各々の前記参照データを補正する第1の補正工程と、
 補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成工程と、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得工程と、
 前記所定単位測定データを補正する第2の補正工程と、
 補正後の前記所定単位測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出工程と、
 前記補正後機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定工程と、
を実行する監視方法が提供される。
 また、本発明によれば、
 コンピュータを、
 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段、
 前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段、
 前記機器特徴量又は前記測定特徴量である第1の特徴量を補正する補正手段、
 補正後の前記第1の特徴量と、前記機器特徴量又は前記測定特徴量であって、前記第1の特徴量と異なる特徴量である第2の特徴量とを利用して、稼働している電気機器を推定する推定手段、
として機能させるためのプログラムが提供される。
 また、本発明によれば、
 コンピュータを、
 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段、
 前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段、
 前記機器特徴量を補正する第1の補正手段、
 前記測定特徴量を補正する第2の補正手段、
 補正後の前記機器特徴量及び補正後の前記測定特徴量を利用して、稼働している電気機器を推定する推定手段、
として機能させるためのプログラムが提供される。
 また、本発明によれば、
 コンピュータを、
 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段、
 前記所定単位測定データを補正する補正手段、
 補正後の前記所定単位測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出手段、
 前記機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定手段、
として機能させるためのプログラムが提供される。
 また、本発明によれば、
 コンピュータを、
 所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶する参照データ記憶手段、
 複数の前記電気機器各々の前記参照データを補正する補正手段、
 補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成手段、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段、
 前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段、
 前記補正後機器特徴量と、前記測定特徴量とを利用して、稼働している電気機器を推定する推定手段、
として機能させるためのプログラムが提供される。
 また、本発明によれば、
 コンピュータを、
 所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶する参照データ記憶手段、
 複数の前記電気機器各々の前記参照データを補正する第1の補正手段、
 補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成手段、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段、
 前記所定単位測定データを補正する第2の補正手段、
 補正後の前記所定単位測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出手段、
 前記補正後機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定手段、
として機能させるためのプログラムが提供される。
 また、本発明によれば、
 第1の環境下で測定された電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する手段と、
 前記第1の環境と異なる第2の環境下で測定された前記電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである参照データを取得する手段と、
 前記所定単位測定データ及び前記参照データに基づいて、前記所定単位測定データ及び前記参照データの間の差分を打ち消すための補正情報を作成する手段と、
を有する補正情報作成装置が提供される。
 また、本発明によれば、
 第1の環境下で測定された電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する手段と、
 前記所定単位測定データに含まれる特徴量である測定特徴量を取得する手段と、
 前記第1の環境と異なる第2の環境下で測定された前記電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである参照データを取得する手段と、
 前記参照データに含まれる特徴量である機器特徴量を取得する手段と、
 前記機器特徴量及び前記測定特徴量に基づいて、前記機器特徴量及び前記測定特徴量の間の差分を打ち消すための補正情報を作成する手段と、
を有する補正情報作成装置が提供される。
 また、本発明によれば、
 コンピュータを、
 第1の環境下で測定された電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する手段、
 前記第1の環境と異なる第2の環境下で測定された前記電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである参照データを取得する手段、
 前記所定単位測定データ及び前記参照データに基づいて、前記所定単位測定データ及び前記参照データの間の差分を打ち消すための補正情報を作成する手段、
として機能させるためのプログラムが提供される。
 また、本発明によれば、
 コンピュータを、
 第1の環境下で測定された電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する手段、
 前記所定単位測定データに含まれる特徴量である測定特徴量を取得する手段、
 前記第1の環境と異なる第2の環境下で測定された前記電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである参照データを取得する手段、
 前記参照データに含まれる特徴量である機器特徴量を取得する手段、
 前記機器特徴量及び前記測定特徴量に基づいて、前記機器特徴量及び前記測定特徴量の間の差分を打ち消すための補正情報を作成する手段、
として機能させるためのプログラムが提供される。
 また、本発明によれば、
 コンピュータが、
 第1の環境下で測定された電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する工程と、
 前記第1の環境と異なる第2の環境下で測定された前記電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである参照データを取得する工程と、
 前記所定単位測定データ及び前記参照データに基づいて、前記所定単位測定データ及び前記参照データの間の差分を打ち消すための補正情報を作成する工程と、
を実行する補正情報作成方法が提供される。
 また、本発明によれば、
 コンピュータが、
 第1の環境下で測定された電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する工程と、
 前記所定単位測定データに含まれる特徴量である測定特徴量を取得する工程と、
 前記第1の環境と異なる第2の環境下で測定された前記電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである参照データを取得する工程と、
 前記参照データに含まれる特徴量である機器特徴量を取得する工程と、
 前記機器特徴量及び前記測定特徴量に基づいて、前記機器特徴量及び前記測定特徴量の間の差分を打ち消すための補正情報を作成する工程と、
を実行する補正情報作成方法が提供される。
 本発明によれば、所定の単位(例:各家庭、ある家庭内の特定の部屋、各オフィス等)に設置された電気機器と同種の電気機器を他の場所(例:研究室、実験室等)に置いて測定した測定データ(例:消費電流、消費電力、電圧等)を利用して、各電気機器の参照特徴量を生成する技術において、稼動している電気機器を推定する推定処理の精度が悪くなる不都合を軽減する技術が実現される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本実施形態の監視装置のハードウエア構成の一例を概念的に示す図である。 本実施形態の監視装置の機能ブロック図の一例を示す図である。 本実施形態の監視装置の処理の流れの一例を示すフローチャートである。 本実施形態の監視装置の適用例を説明するための概念図である。 本実施形態の監視装置の適用例を説明するための概念図である。 本実施形態の監視装置の機能ブロック図の一例を示す図である。 本実施形態の監視装置の機能ブロック図の一例を示す図である。 本実施形態の監視装置の処理の流れの一例を示すフローチャートである。 本実施形態の監視装置の機能ブロック図の一例を示す図である。 本実施形態の監視装置の処理の流れの一例を示すフローチャートである。 本実施形態の監視装置の機能ブロック図の一例を示す図である。 本実施形態の監視装置の課題を説明するための概念図である。 本実施形態の監視装置の課題を説明するための概念図である。 本実施形態の変形例の監視装置の機能ブロック図の一例を示す図である。 本実施形態の変形例の監視装置の機能ブロック図の一例を示す図である。 本実施形態の監視装置の機能ブロック図の一例を示す図である。 本実施形態の監視装置の機能ブロック図の一例を示す図である。 本実施形態の作用効果を説明するための図である。
 まず、本実施形態の監視装置のハードウエア構成の一例について説明する。本実施形態の監視装置が備える各部は、任意のコンピュータのCPU(Central Processing Unit)、メモリ、メモリにロードされたプログラム(あらかじめ装置を出荷する段階からメモリ内に格納されているプログラムのほか、CD(Compact Disc)等の記憶媒体やインターネット上のサーバ等からダウンロードされたプログラムも含む)、そのプログラムを格納するハードディスク等の記憶ユニット、ネットワーク接続用インタフェイスを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置にはいろいろな変形例があることは、当業者には理解されるところである。
 図1は、本実施形態の監視装置のハードウエア構成の一例を概念的に示す図である。図示するように、本実施形態の監視装置は、例えば、バス10Aで相互に接続されるCPU1A、RAM(Random Access Memory)2A、ROM(Read Only Memory)3A、表示制御部4A、タッチパネルディスプレイ5A、操作受付部6A、操作部7A、通信部8A、補助記憶装置9A等を有する。なお、図示しないが、その他、外部機器と有線で接続される入出力インタフェイス、マイク、スピーカ等の他の要素を備えてもよい。
 CPU1Aは各要素とともに監視装置のコンピュータ全体を制御する。ROM3Aは、コンピュータを動作させるためのプログラムや各種アプリケーションプログラム、それらのプログラムが動作する際に使用する各種設定データなどを記憶する領域を含む。RAM2Aは、プログラムが動作するための作業領域など一時的にデータを記憶する領域を含む。補助記憶装置9Aは、例えばHDD(Hard Disc Drive)であり、大容量のデータを記憶可能である。
 タッチパネルディスプレイ5Aは、表示装置(LED(Light Emitting Diode)表示器、液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ等)と、タッチパッドとが一体になっている。表示制御部4Aは、VRAM(Video RAM)に記憶されたデータを読み出し、読み出したデータに対して所定の処理を施した後、タッチパネルディスプレイ5Aに送って各種画面表示を行う。操作受付部6Aは、操作部7Aを介して各種操作を受付ける。操作部7Aは、操作キー、操作ボタン、スイッチ、ジョグダイヤル、タッチパネルディスプレイ、キーボードなどを含む。通信部8Aは、有線及び/又は無線で、インターネット、LAN(Local Area Network)等のネットワークに接続し、他の電子機器と通信する。
 以下、本実施の形態について説明する。なお、以下の実施形態の説明において利用する機能ブロック図は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。これらの図においては、各装置は1つの機器により実現されるよう記載されているが、その実現手段はこれに限定されない。すなわち、物理的に分かれた構成であっても、論理的に分かれた構成であっても構わない。なお、同一の構成要素には同一の符号を付し、適宜説明を省略する。
<第1の実施形態>
 最初に、本実施形態の概要について説明する。本実施形態の監視装置は、予め用意しておいた複数の電気機器各々の特徴量(参照特徴量)を組み合わせた特徴量と、例えば分電盤で測定した所定の単位(例:各家庭、ある家庭内の特定の部屋、各オフィス等)内の総消費電流、総消費電力、電圧等である測定データから抽出した特徴量(測定特徴量)とを比較することで、電気機器の稼動状態を推定する。なお、本実施形態では、所定の単位(例:各家庭、ある家庭内の特定の部屋、各オフィス等)に設置された電気機器と同種の電気機器を他の場所(例:研究室、実験室等)に置いて測定した測定データ(例:消費電流、消費電力、電圧等)を利用して、各電気機器の参照特徴量を生成する。
 そして、本実施形態では、電気機器の稼動状態を推定する際、まず、所定の単位と上記他の場所(例:研究室、実験室等)との環境の違いを考慮して、所定の単位で測定された測定データから抽出された測定特徴量を、上記他の場所(例:研究室、実験室等)に置いて測定した場合に得られたと考えられる値に補正する。そして、補正後の測定特徴量と、参照特徴量とを利用して、電気機器の稼動状態を推定する。
 次に、本実施形態の構成について説明する。図2に、本実施形態の監視装置10の機能ブロック図の一例を示す。図示するように、本実施形態の監視装置10は、特徴量記憶部11と、測定データ取得部12と、特徴量抽出部13と、補正部15と、推定部16とを有する。
 特徴量記憶部11は、所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量(参照特徴量)を、各電気機器の識別情報に対応付けて記憶する。なお、特徴量記憶部11は、各電気機器の電源ON時の特徴量を記憶してもよいし、各電気機器の稼働状態毎の特徴量、例えば消費電力毎の特徴量(例:消費電力が0Wより大AW以下の時の特徴量、AWより大BW以下の時の特徴量・・・等)を対応付けて記憶してもよい。
 所定の単位は、電気機器の稼動状態を推定する単位である。すなわち、本実施形態の監視装置10によれば、所定の単位内に設置された電気機器各々が稼動しているか否かを推定することができる。所定の単位は、少なくともその単位内における総消費電流(瞬時値)、総消費電力(瞬時値)、及び、電圧(瞬時値)の中の少なくとも1つを含む測定データを測定可能であればよい。例えば、所定の単位は、1つの家庭、1つの店舗、1つの会社、複数の家庭や複数の店舗や複数の会社などが存在する1つの建物、複数の家庭が集まった1つのコミュニティなどであってもよい。同様に、家庭や店舗に設置される分電盤の1つの分岐毎のまとまりや、1つのコンセントや、1つのテーブルタップを、所定の単位とすることもできる。
 特徴量記憶部11が記憶する機器特徴量(参照特徴量)は、各電気機器の稼動時に測定される消費電流(瞬時値)、消費電力(瞬時値)、及び、電圧(瞬時値)の中の少なくとも1つを含む測定データから抽出可能な特徴量である。例えば、機器特徴量は、消費電流の周波数強度・位相(高調波成分)、位相、消費電流の変化、平均値、ピーク値、実効値、波高率、波形率、電流変化の収束時間、通電時間、ピークの位置、電圧のピーク位置と消費電流のピーク位置との間の時間差、力率などであってもよい。当然、ここでの例示に限定されない。
 このような機器特徴量は、上記所定の単位内に設置された複数の電気機器各々を、所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データから抽出した特徴量である。
 ここで、このような機器特徴量を生成し、特徴量記憶部11に記憶させる処理の一例を説明する。例えば、監視装置10を利用して電気機器の稼動状態を可視化するサービスを提供するサービス提供者は、自己の管理エリア(例:研究室、実験室等)内で電気機器各々の参照データを測定する。なお、電気機器の製造メーカが自己の管理エリア(例:研究室、実験室等)内で自社の電気機器各々の参照データを測定してもよい。そして、サービス提供者は、製造メーカから参照データを取得してもよい。サービス提供者は、このようにして得られた参照データを各電気機器の識別情報に対応付けたデータベース(以下、「参照データデータベース」)を作成することができる。
 また、サービス提供者は、このようにして得られた参照データから特徴量(機器特徴量)を抽出し、複数の電気機器各々の識別情報に各々の機器特徴量を対応付けたデータベース(以下、「機器特徴量データベース」)を生成することができる。そして、サービス提供者は、所定の単位内に設置されている電気機器の種類を把握すると、当該機器特徴量データベースからその電気機器の機器特徴量を取り出し、特徴量記憶部11に記憶させる。なお、当該一連の処理をコンピュータ処理で実現してもよい。
 仮に、機器特徴量データベース内に所定の単位内に設置されたある電気機器の機器特徴量がない場合、サービス提供者はその都度、その電気機器の参照データを取得して参照データデータベースに追加する処理、及び、新たに取得した参照データから機器特徴量を抽出して、機器特徴量データベースに追加する処理を行うことができる。このようにすることで、サービス提供者は、参照データデータベース、及び、機器特徴量データベースを拡大していくことができる。
 なお、サービス提供者は、例えば機器特徴量データベース又は参照データデータベース内で、各電気機器の参照データを測定した際の測定条件を管理しておいてもよい。測定条件は、測定結果(測定値)に影響を与え得るあらゆる因子を含み、例えば、測定器と電気機器間の配線の長さ、当該配線から分岐した配線の数や長さ、これらの配線に接続された他の電気機器の数や種類、分電盤から電気機器までの長さ、測定器の識別情報(品番、ロット番号等)、当該測定器が製造された直後から潜在的に含む固有の測定誤差の情報、測定を行った場所の情報(例:周囲に変圧器、変電所、大規模電力消費施設等があるか否か、また、そこまでの距離等)等が考えられる。測定器固有の測定誤差に関する情報は、例えば、測定器の製造メーカが提供している情報であってもよい。
 測定データ取得部12は、所定の単位内において測定された総消費電流(瞬時値)、総消費電力(瞬時値)、及び、電圧(瞬時値)の中の少なくとも1つである測定データ(以下、「所定単位測定データ」という)を取得する。例えば、測定データ取得部12は、給電引込口、分電盤、コンセント、又は、テーブルタップに対応して設置された測定器が測定した所定単位測定データを、監視装置10と測定機器間を繋ぐ通信ケーブル、インターネットやLAN等のネットワーク等を介して取得する。なお、1つの所定の単位内に複数の測定器が設置されている場合(例:複数の家庭が集まった1つのコミュニティが所定の単位である場合等)、測定データ取得部12は、複数の測定器(例:各家庭の分電盤付近などに設置された測定器)各々が測定した測定データを、時刻を合わせて(同期させて)足し合わせることで、その単位(そのコミュニティ)の所定単位測定データを取得することができる。
 特徴量抽出部13は、測定データ取得部12が取得した所定単位測定データから、当該所定単位測定データに含まれる特徴量である測定特徴量を抽出する。測定特徴量は、特徴量記憶部11が記憶する機器特徴量と同じ種類の特徴量である。
 補正部15は、特徴量抽出部13が抽出した測定特徴量を、所定の単位の特徴を示す単位特徴情報に基づいて補正する。すなわち、補正部15は、機器特徴量を抽出するための参照データを測定した際の測定条件と、測定特徴量を抽出するための所定単位測定データを測定した際の測定条件(所定の単位の単位特徴情報で特定される条件)との違いに起因して、測定特徴量と機器特徴量との間に現れる差を打ち消す方向に、測定特徴量を補正する。
 単位特徴情報は、所定の単位に設置された測定器で電気機器の所定単位測定データを測定した際に測定結果(測定値)に影響を与え得るあらゆる因子を含む。単位特徴情報としては、例えば、所定の単位内における配線に関する情報、具体的には、測定器と電気機器間の配線の長さ、分電盤から各電気機器が接続している各コンセントまでの長さ、分電盤からの分岐の数、各電気機器が備えるケーブルの長さ、コンセントと各電器機器間に延長コードが存在するか否か、延長コードが存在する場合その長さ等が考えられる。その他、単位特徴情報としては、所定の単位内で配線に繋がった電気機器を特定する情報、例えば、同じ分岐に接続しており、配線を介して互いに接続された電気機器を特定(例:数、種類等)する情報等が考えられる。さらに、単位特徴情報としては、測定器の識別情報(品番、ロット番号等)、当該測定器が製造された直後から潜在的に含む固有の測定誤差の情報、所定の単位の周辺の環境に関する情報(例:周囲に変圧器、変電所、大規模電力消費施設等があるか否か、また、そこまでの距離等)等が考えられる。
 例えば、監視装置10を利用して電気機器の稼動状態を可視化するサービスを提供するサービス提供者は、当該サービスの提供を開始するための準備として、単位特徴情報をサービス受領者から取得する。そして、サービス提供者は、取得した単位特徴情報や、参照データを測定した際の測定条件などを考慮して、補正部15が測定特徴量を補正するための補正情報、例えば伝達関数(測定特徴量を入力とし、補正後の測定特徴量を出力とする伝達関数)を生成し、補正部15に保持させておく。例えば、配線をインダクタンスとし、当該配線に繋がった電気機器を静電容量とみなすことで、所定単位測定データ及び参照データ各々の測定の際に電気機器が接続していた回路のLC回路としての特性を特定し、各々の特性の違いを打ち消すような補正情報(例:伝達関数)を生成してもよい。補正部15は、単位特徴情報取得部14から測定特徴量を取得すると、例えば伝達関数に入力し、補正後の測定特徴量を得る。
 推定部16は、補正後の測定特徴量と、機器特徴量とを利用して、稼働している電気機器を推定する。推定部16による推定処理は、従来技術に準じて実現できるが、以下、一例を説明する。
 所定の単位内で1つ以上の電気機器が稼働中である場合、補正後の測定特徴量は、1つ以上の電気機器の機器特徴量(例:1つの稼働状態時の機器特徴量)を足し合わせた特徴量となる。そこで、推定部16は、特徴量記憶部11に記憶されている複数の機器特徴量から選択された1つの電気機器の1つの機器特徴量(例:いずれかの稼働状態時の機器特徴量)、または、複数の電気機器の機器特徴量(例:1つの稼働状態時の機器特徴量)を足し合わせた特徴量と、補正後の測定特徴量を比較し、補正後の測定特徴量と一致(所定の誤差の範囲のものを含む概念であってもよい)する機器特徴量の組み合わせを特定する。そして、推定部16は、特定した組み合わせに含まれる機器特徴量に対応した電気機器を、稼働中の電気機器と推定する。また、各電気機器の稼働状態(例:消費電力)を推定する。
 次に、図3のフローチャートを用いて、本実施形態の監視装置10の処理の流れの一例を説明する。
 まず、監視装置10を利用して電気機器の稼動状態を可視化するサービスを提供するサービス提供者は、当該サービスの提供を開始するための準備として、所定の単位内に設置されている電気機器を特定する情報、及び、当該所定の単位の特徴を示す単位特徴情報をサービス受領者から取得する。そして、サービス提供者は、取得した所定の単位内に設置されている電気機器を特定する情報に基づいて、例えば機器特徴量データベースから所定の機器特徴量を取り出し、特徴量記憶部11に記憶させる。また、サービス提供者は、取得した単位特徴情報や、参照データを測定した際の測定条件などを考慮して、補正部15が測定特徴量を補正するための補正情報、例えば伝達関数(測定特徴量を入力とし、補正後の測定特徴量を出力とする伝達関数)を生成し、補正部15に保持させておく。
 S10では、測定データ取得部12は、所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する。例えば、測定データ取得部12は、給電引込口や分電盤等の付近に設置された測定器が測定した所定単位測定データを、監視装置10と測定機器間を繋ぐ通信ケーブル、インターネットやLAN等のネットワーク等を介して取得する。
 S11では、特徴量抽出部13は、S10で取得された所定単位測定データから、当該所定単位測定データに含まれている測定特徴量を抽出する。S12では、補正部15は、予め保持している補正情報(例:伝達関数)に、S11で特徴量抽出部13が取得した測定特徴量を入力し、その出力を補正後の測定特徴量として得る。
 S13では、推定部16は、特徴量記憶部11に記憶されている機器特徴量と、S15で補正部15により補正された補正後の測定特徴量とを利用して、稼動している電気機器を推定する。
 次に、図4及び図5を用いて、本実施形態の監視装置10の適用例について説明する。図4の例では、監視装置10は、各家庭や各会社など、監視装置10を利用して電気機器の稼動状態を可視化するサービスを受けるサービス受領者のエリア100内に設置されている。監視装置10は、所定の単位内の所定単位測定データを測定する測定器20と通信ケーブル、LAN等のネットワーク等を介して接続されている。測定器20は、給電引込口や分電盤等の付近に設置される。監視装置10の測定データ取得部12は、測定器20から所定単位測定データを取得する。測定器20から監視装置10への所定単位測定データの送信は、リアルタイム処理であってもよいし、バッチ処理であってもよい。
 監視装置10は、ディスプレイ、スピーカなどの出力装置を備えることができる。そして、監視装置10は、出力装置を介して、推定部16が推定した結果を出力することができる。なお、監視装置10は、リアルタイムにその時点で稼動している電気機器(及び稼働状態)を推定し、推定結果を出力してもよいし、または、所定の時間帯(例:0時から24時等)における電気機器の稼動状態の時間変化を可視化(例:複数の電気機器各々の各時間におけるON/OFF状態及び/又は稼働状態の詳細を示す時系列グラフ、各時間において稼動している電気機器の種類を示す時系列グラフ等)した推定結果を、所定のタイミングで出力してもよい。また、監視装置10は、ネットワーク300を介してサービス受領者の端末装置(携帯端末等)40に推定結果を送信してもよい。
 図5の例では、監視装置10は、監視装置10を利用して電気機器の稼動状態を可視化するサービスを提供するサービス提供者のエリア200内に設置されている。各家庭や各会社など、監視装置10を利用して電気機器の稼動状態を可視化するサービスを受けるサービス受領者のエリア100内には、転送装置30が設置されている。転送装置30は、所定の単位内の所定単位測定データを測定する測定器20と通信ケーブル、LAN等のネットワーク等を介して接続されている。転送装置30は、測定器20から所定単位測定データを取得する。そして、転送装置30は、取得した所定単位測定データを、ネットワーク300を介してサービス提供者のエリア200内に設置された監視装置10に送信する。転送装置30が所定単位測定データを測定器20から取得し、監視装置10に送信する処理は、リアルタイム処理であってもよいし、バッチ処理であってもよい。
 監視装置10は、転送装置30や端末装置40に推定部16が推定した結果を送信する。転送装置30や端末装置40は、ディスプレイやスピーカ等の出力装置を介して、受信した推定結果を出力する。なお、監視装置10は、リアルタイムにその時点で稼動している電気機器(及び稼働状態)を推定し、その結果を転送装置30や端末装置40に送信してもよいし、または、所定の時間帯(例:0時から24時等)における電気機器の稼動状態の時間変化を可視化(例:複数の電気機器各々の各時間におけるON/OFF状態及び/又は稼働状態の詳細を示す時系列グラフ、各時間において稼動している電気機器の種類を示す時系列グラフ等)した推定結果を、所定のタイミングで転送装置30や端末装置40に送信してもよい。
 次に、本実施形態の作用効果について説明する。本実施形態の監視装置10は、所定の単位(例:各家庭、ある家庭内の特定の部屋、各オフィス等)に設置された電気機器と同種の電気機器を他の場所(例:研究室、実験室等)に置いて測定した参照データ(例:消費電流、消費電力、電圧等)を利用して、各電気機器の機器特徴量(参照特徴量)を生成する。そして、このようにして生成した機器特徴量を利用して、稼働している電気機器を推定する処理を行う。このような本実施形態の場合、機器特徴量を生成するための測定を所定の単位毎において行う必要がない。このため、機器特徴量の生成のために、サービス受領者に不要な負担を掛けることがない。
 なお、このように構成した場合、第1の電気機器の機器特徴量と、所定の単位で測定した参照データ中に現れる第1の電気機器の特徴量(測定特徴量)とが異なった値になり得る。結果、稼動している電気機器を推定する処理の精度が悪くなる。
 当該不都合を軽減するため、本実施形態の監視装置10は、機器特徴量を抽出するための参照データを測定した際の測定条件と、測定特徴量を抽出するための所定単位測定データを測定した際の測定条件(所定の単位の単位特徴情報で特定される条件)との違いに起因して、測定特徴量と機器特徴量との間に現れる差を打ち消す方向に測定特徴量を補正した後、補正後の測定特徴量と、機器特徴量とを利用して、稼動している電気機器を推定する処理を行う。このため、精度よく、稼動している電気機器を推定することができる。
<第2の実施形態>
 第1の実施形態では、機器特徴量を抽出するための参照データを測定した際の測定条件と、測定特徴量を抽出するための所定単位測定データを測定した際の測定条件(所定の単位の単位特徴情報で特定される条件)との違いに起因して、測定特徴量と機器特徴量との間に現れる差を打ち消す方向に、「測定特徴量」を補正した。これに対し、本実施形態では、測定特徴量と機器特徴量との間に現れる差を打ち消す方向に、「機器特徴量」を補正する。
 図6に、本実施形態の監視装置10の機能ブロック図の一例を示す。図示するように、本実施形態の監視装置10は、特徴量記憶部11と、測定データ取得部12と、特徴量抽出部13と、補正部25と、推定部26と、補正後機器特徴量記憶部29とを有する。特徴量記憶部11、測定データ取得部12、及び、特徴量抽出部13の構成は第1の実施形態と同様であるので、ここでの説明は省略する。
 補正部25は、特徴量記憶部11に記憶されている機器特徴量を、所定の単位の特徴を示す単位特徴情報に基づいて補正する。すなわち、補正部15は、機器特徴量を抽出するための参照データを測定した際の測定条件と、測定特徴量を抽出するための所定単位測定データを測定した際の測定条件(所定の単位の単位特徴情報で特定される条件)との違いに起因して、測定特徴量と機器特徴量との間に現れる差を打ち消す方向に、機器特徴量を補正する。機器特徴量の補正は、第1の実施形態で説明した測定特徴量の補正と同様の手段で実現できる。
 補正後機器特徴量記憶部29は、補正部25が補正した補正後の機器特徴量を記憶する。そして、推定部26は、特徴量抽出部13が生成した測定特徴量と、補正後機器特徴量記憶部29に記憶されている補正後の機器特徴量とを利用して、稼動している電気機器を推定する。推定部26が稼動している電気機器を推定する処理は第1の実施形態と同様であるので、ここでの説明は省略する。
 図7に、本実施形態の監視装置10の機能ブロック図の他の一例を示す。図示するように、本実施形態の監視装置10は、測定データ取得部12と、特徴量抽出部13と、推定部26と、補正後機器特徴量記憶部29とを有する。図6の例と比べると、特徴量記憶部11及び補正部25を有するか否かにおいて相違する。図7の例の場合、特徴量記憶部11及び補正部25は、監視装置10と異なる装置内に備えられる。そして、当該異なる装置が補正後の機器特徴量を生成し、生成された補正後の機器特徴量が監視装置10の補正後機器特徴量記憶部29に記憶される。
 なお、本実施形態の監視装置10の適用例は、第1の実施形態と同様である。
 次に、図8のフローチャートを用いて、本実施形態の監視装置10の処理の流れの一例を説明する。
 まず、監視装置10を利用して電気機器の稼動状態を可視化するサービスを提供するサービス提供者は、当該サービスの提供を開始するための準備として、所定の単位内に設置されている電気機器を特定する情報、及び、単位特徴情報をサービス受領者から取得する。そして、サービス提供者は、取得した所定の単位内に設置されている電気機器を特定する情報に基づいて、例えば機器特徴量データベースから所定の機器特徴量を取り出し、特徴量記憶部11に記憶させる。また、サービス提供者は、取得した単位特徴情報や、参照データを測定した際の測定条件などを考慮して、補正部25が機器特徴量を補正するための補正情報、例えば伝達関数(機器特徴量を入力とし、補正後の機器特徴量を出力とする伝達関数)を生成し、補正部25に保持させる。すると補正部25は、特徴量記憶部11に記憶されている機器特徴量を例えば伝達関数に入力し、出力として補正後の機器特徴量を得る。そして、補正部25は、得た補正後の機器特徴量を補正後機器特徴量記憶部29に記憶させる。
 S20では、測定データ取得部12は、所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する。例えば、測定データ取得部12は、給電引込口や分電盤等の付近に設置された測定器が測定した所定単位測定データを、監視装置10と測定機器間を繋ぐ通信ケーブル、インターネットやLAN等のネットワーク等を介して取得する。
 S21では、特徴量抽出部13は、S20で取得された所定単位測定データから、当該所定単位測定データに含まれている測定特徴量を抽出する。S22では、推定部26は、補正後機器特徴量記憶部29に記憶されている機器特徴量と、S21で特徴量抽出部13により取得された測定特徴量とを利用して、稼動している電気機器を推定する。
 以上説明した本実施形態によれば、第1の実施形態と同様の作用効果を実現することができる。また、稼動している電気機器を推定する処理内に、補正部25による補正処理が含まれないので、第1の実施形態よりも速く推定結果を算出することができる。
 なお、実施形態1及び実施形態2では、測定特徴量及び機器特徴量のいずれかを、これらの間に現れる差を打ち消すように補正していたが、測定特徴量及び機器特徴量の両方を所定の基準となる測定条件(基準条件)にて測定した特徴量との間に現れる差を打ち消すように補正してもよい。
 具体的に本実施形態の変形例の構成について説明する。図14に、本実施形態の変形例の監視装置10の機能ブロック図の一例を示す。図示するように、本実施形態の監視装置10は、特徴量記憶部11と、測定データ取得部12と、特徴量抽出部13と、補正部(第2補正部)15と、補正部(第1補正部)25と、補正後機器特徴量記憶部29と、推定部56とを有する。
 特徴量記憶部11は、所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量(参照特徴量)を、各電気機器の識別情報に対応付けて記憶する。
 所定の単位は、電気機器の稼動状態を推定する単位である。すなわち、本実施形態の変形例の監視装置10によれば、所定の単位内に設置された電気機器各々が稼動しているか否かまたその稼働状態を推定することができる。所定の単位は、少なくともその単位内における総消費電流(瞬時値)、総消費電力(瞬時値)、及び、電圧(瞬時値)の中の少なくとも1つを含む所定単位測定データを測定可能であればよい。例えば、所定の単位は、1つの家庭、1つの店舗、1つの会社、複数の家庭や複数の店舗や複数の会社などが存在する1つの建物、複数の家庭が集まった1つのコミュニティなどであってもよい。同様に、家庭や店舗に設置される分電盤の1つの分岐毎のまとまりや、1つのコンセントや、1つのテーブルタップを、所定の単位とすることもできる。
 特徴量記憶部11が記憶する機器特徴量は、各電気機器の稼動時に測定される消費電流(瞬時値)、消費電力(瞬時値)、及び、電圧(瞬時値)の中の少なくとも1つを含む測定データから抽出可能な特徴量である。例えば、機器特徴量は、消費電流の周波数強度・位相(高調波成分)、位相、消費電流の変化、平均値、ピーク値、実効値、波高率、波形率、電流変化の収束時間、通電時間、ピークの位置、電圧のピーク位置と消費電流のピーク位置との間の時間差、力率などであってもよい。当然、ここでの例示に限定されない。
 このような機器特徴量は、上記所定の単位内に設置された複数の電気機器各々を、所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データから抽出した特徴量である。
 ここで、このような機器特徴量を生成し、特徴量記憶部11に記憶させる処理の一例を説明する。例えば、監視装置10を利用して電気機器の稼動状態を可視化するサービスを提供するサービス提供者は、自己の管理エリア(例:研究室、実験室等)内で電気機器各々の参照データを測定する。なお、電気機器の製造メーカが自己の管理エリア(例:研究室、実験室等)内で自社の電気機器各々の参照データを測定してもよい。そして、サービス提供者は、製造メーカから参照データを取得してもよい。サービス提供者は、このようにして得られた参照データを各電気機器の識別情報に対応付けたデータベース(以下、「参照データデータベース」)を作成することができる。
 また、サービス提供者は、このようにして得られた参照データから特徴量(機器特徴量)を抽出し、複数の電気機器各々の識別情報に各々の機器特徴量を対応付けたデータベース(以下、「機器特徴量データベース」)を生成することができる。そして、サービス提供者は、所定の単位内に設置されている電気機器の種類を把握すると、当該機器特徴量データベースからその電気機器の機器特徴量を取り出し、特徴量記憶部11に記憶させる。なお、当該一連の処理をコンピュータ処理で実現してもよい。
 仮に、機器特徴量データベース内に所定の単位内に設置されたある電気機器の機器特徴量がない場合、サービス提供者はその都度、その電気機器の参照データを取得して参照データデータベースに追加する処理、及び、新たに取得した参照データから機器特徴量を抽出して、機器特徴量データベースに追加する処理を行うことができる。このようにすることで、サービス提供者は、参照データデータベース、及び、機器特徴量データベースを拡大していくことができる。
 なお、サービス提供者は、例えば機器特徴量データベース又は参照データデータベース内で、各電気機器の参照データを測定した際の測定条件を管理しておいてもよい。測定条件は、測定結果(測定値)に影響を与え得るあらゆる因子を含み、例えば、測定器と電気機器間の配線の長さ、当該配線から分岐した配線の数や長さ、これらの配線に接続された他の電気機器の数や種類、分電盤から電気機器までの長さ、測定器の識別情報(品番、ロット番号等)、当該測定器が製造された直後から潜在的に含む固有の測定誤差の情報、測定を行った場所の情報(例:周囲に変圧器、変電所、大規模電力消費施設等があるか否か、また、そこまでの距離等)等が考えられる。測定器固有の測定誤差に関する情報は、例えば、測定器の製造メーカが提供している情報であってもよい。
 測定データ取得部12は、所定の単位内において測定された総消費電流(瞬時値)、総消費電力(瞬時値)、及び、電圧(瞬時値)の中の少なくとも1つである所定単位測定データを取得する。例えば、測定データ取得部12は、給電引込口、分電盤、コンセント、又は、テーブルタップに対応して設置された測定器が測定した所定単位測定データを、監視装置10と測定機器間を繋ぐ通信ケーブル、インターネットやLAN等のネットワーク等を介して取得する。なお、1つの所定の単位内に複数の測定器が設置されている場合(例:複数の家庭が集まった1つのコミュニティが所定の単位である場合等)、測定データ取得部12は、複数の測定器(例:各家庭の分電盤付近などに設置された測定器)各々が測定した所定単位測定データを、時刻を合わせて(同期させて)足し合わせることで、その単位(そのコミュニティ)の所定単位測定データを取得することができる。
 特徴量抽出部13は、測定データ取得部12が取得した所定単位測定データから、当該所定単位測定データに含まれる特徴量である測定特徴量を抽出する。測定特徴量は、特徴量記憶部11が記憶する機器特徴量と同じ種類の特徴量である。
 補正部15は、特徴量抽出部13が抽出した測定特徴量を、所定の単位の特徴を示す単位特徴情報に基づいて補正する。すなわち、補正部15は、所定の基準となる測定条件(基準条件)と、測定特徴量を抽出するための所定単位測定データを測定した際の測定条件(所定の単位の単位特徴情報で特定される条件)との違いに起因して、所定の基準となる測定条件(基準条件)において測定された特徴量と機器特徴量との間に現れる差を打ち消す方向に、測定特徴量を補正する。
 単位特徴情報は、所定の単位に設置された測定器で電気機器の所定単位測定データを測定した際に測定結果(測定値)に影響を与え得るあらゆる因子を含む。単位特徴情報としては、例えば、所定の単位内における配線に関する情報、具体的には、測定器と電気機器間の配線の長さ、分電盤から各電気機器が接続している各コンセントまでの長さ、分電盤からの分岐の数、各電気機器が備えるケーブルの長さ、コンセントと各電器機器間に延長コードが存在するか否か、延長コードが存在する場合その長さ等が考えられる。その他、単位特徴情報としては、所定の単位内で配線に繋がった電気機器を特定する情報、例えば、同じ分岐に接続しており、配線を介して互いに接続された電気機器を特定(例:数、種類等)する情報等が考えられる。さらに、単位特徴情報としては、測定器の識別情報(品番、ロット番号等)、当該測定器が製造された直後から潜在的に含む固有の測定誤差の情報、所定の単位の周辺の環境に関する情報(例:周囲に変圧器、変電所、大規模電力消費施設等があるか否か、また、そこまでの距離等)等が考えられる。
 例えば、監視装置10を利用して電気機器の稼動状態を可視化するサービスを提供するサービス提供者は、当該サービスの提供を開始するための準備として、単位特徴情報をサービス受領者から取得する。そして、サービス提供者は、取得した単位特徴情報、参照データを測定した際の測定条件、及び所定の基準となる測定条件などを考慮して、補正部15が測定特徴量を補正するための補正情報、例えば伝達関数(測定特徴量を入力とし、補正後の測定特徴量を出力とする伝達関数)を生成し、補正部15に保持させておく。例えば、配線をインダクタンスとし、当該配線に繋がった電気機器を静電容量とみなすことで、所定単位測定データ及び参照データ各々の測定の際に電気機器が接続していた回路のLC回路としての特性を特定し、各々の特性の違いを打ち消すような補正情報(例:伝達関数)を生成してもよい。補正部15は、単位特徴情報取得部14から測定特徴量を取得すると、例えば伝達関数に入力し、補正後の測定特徴量を得る。
 補正部25は、特徴量記憶部11に記憶されている機器特徴量を、所定の単位の特徴を示す単位特徴情報に基づいて補正する。すなわち、補正部25は、機器特徴量を抽出するための参照データを測定した際の測定条件と、所定の基準となる測定条件(基準条件)との違いに起因して、機器特徴量と所定の基準となる測定条件において測定された特徴量との間に現れる差を打ち消す方向に、機器特徴量を補正する。機器特徴量の補正は、第1の実施形態で説明した測定特徴量の補正と同様の手段で実現できる。
 補正後機器特徴量記憶部29は、補正部25が補正した補正後の機器特徴量を記憶する。
 推定部56は、補正後の測定特徴量と、補正後の機器特徴量とを利用して、稼働している電気機器を推定する。推定部56による推定処理は、従来技術に準じて実現できるが、以下、一例を説明する。
 所定の単位内で1つ以上の電気機器が稼働中である場合、補正後の測定特徴量は、1つ以上の電気機器の機器特徴量を足し合わせた特徴量となる。そこで、推定部56は、補正後機器特徴量記憶部29に記憶されている複数の機器特徴量から選択された1つの補正後の機器特徴量、または、複数の補正後の機器特徴量を足し合わせた特徴量と、補正後の測定特徴量を比較し、補正後の測定特徴量と一致(所定の誤差の範囲のものを含む概念であってもよい)する補正後の機器特徴量の組み合わせを特定する。そして、推定部56は、特定した組み合わせに含まれる補正後の機器特徴量に対応した電気機器を、稼働中の電気機器と推定する。
<第3の実施形態>
 第1及び第2の実施形態では、機器特徴量を抽出するための参照データを測定した際の測定条件と、測定特徴量を抽出するための所定単位測定データを測定した際の測定条件(所定の単位の単位特徴情報で特定される条件)との違いに起因して、測定特徴量と機器特徴量との間に現れる差を打ち消す方向に、「測定特徴量」又は「機器特徴量」を補正した。これに対し、本実施形態では、測定特徴量と機器特徴量との間に現れる差を打ち消す方向に、測定特徴量を抽出する前の「所定単位測定データ」を補正する。
 図9に、本実施形態の監視装置10の機能ブロック図の一例を示す。図示するように、本実施形態の監視装置10は、特徴量記憶部11と、測定データ取得部12と、特徴量抽出部33と、補正部35と、推定部36とを有する。特徴量記憶部11、及び、測定データ取得部12の構成は第1の実施形態と同様であるので、ここでの説明は省略する。
 補正部35は、測定データ取得部12が取得した所定単位測定データを、所定の単位の特徴を示す単位特徴情報に基づいて補正する。すなわち、補正部35は、機器特徴量を抽出するための参照データを測定した際の測定条件と、測定特徴量を抽出するための所定単位測定データを測定した際の測定条件(所定の単位の単位特徴情報で特定される条件)との違いに起因して、測定特徴量と機器特徴量との間に現れる差を打ち消す方向に、所定単位測定データを補正する。所定単位測定データの補正は、第1の実施形態で説明した測定特徴量の補正と同様の手段で実現できる。
 特徴量抽出部33は、補正部35により補正された補正後の所定単位測定データから、当該補正後の所定単位測定データに含まれる特徴量(補正後測定特徴量)を抽出する。
 推定部36は、特徴量抽出部33が抽出した補正後測定特徴量と、特徴量記憶部11に記憶されている機器特徴量とを利用して、稼動している電気機器を推定する。推定部36が稼動している電気機器を推定する処理は第1の実施形態と同様であるので、ここでの説明は省略する。
 なお、本実施形態の監視装置10の適用例は、第1の実施形態と同様である。
 次に、図10のフローチャートを用いて、本実施形態の監視装置10の処理の流れの一例を説明する。
 まず、監視装置10を利用して電気機器の稼動状態を可視化するサービスを提供するサービス提供者は、当該サービスの提供を開始するための準備として、所定の単位内に設置されている電気機器を特定する情報、及び、単位特徴情報をサービス受領者から取得する。そして、サービス提供者は、取得した所定の単位内に設置されている電気機器を特定する情報に基づいて、例えば機器特徴量データベースから所定の機器特徴量を取り出し、特徴量記憶部11に記憶させる。また、サービス提供者は、取得した単位特徴情報や、参照データを測定した際の測定条件などを考慮して、補正部35が所定単位測定データを補正するための補正情報、例えば伝達関数(所定単位測定データを入力とし、補正後の所定単位測定データを出力とする伝達関数)を生成し、補正部35に保持させておく。
 S30では、測定データ取得部12は、所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する。例えば、測定データ取得部12は、給電引込口や分電盤等の付近に設置された測定器が測定した所定単位測定データを、監視装置10と測定機器間を繋ぐ通信ケーブル、インターネットやLAN等のネットワーク等を介して取得する。
 S31では、補正部35は、予め保持している補正情報(例:伝達関数)に、S30で測定データ取得部12が取得した所定単位測定データを入力し、その出力を補正後の所定単位測定データとして得る。S32では、特徴量抽出部33は、補正後の所定単位測定データから、当該所定単位測定データに含まれている特徴量(補正後測定特徴量)を抽出する。S33では、推定部36は、特徴量記憶部11に記憶されている機器特徴量と、S32で特徴量抽出部33により抽出された補正後測定特徴量とを利用して、稼動している電気機器を推定する。
 以上説明した本実施形態によれば、第1の実施形態と同様の作用効果を実現することができる。
<第4の実施形態>
 第1乃至第3の実施形態では、機器特徴量を抽出するための参照データを測定した際の測定条件と、測定特徴量を抽出するための所定単位測定データを測定した際の測定条件(所定の単位の単位特徴情報で特定される条件)との違いに起因して、測定特徴量と機器特徴量との間に現れる差を打ち消す方向に、「測定特徴量」、「機器特徴量」又は「所定単位測定データ」を補正した。これに対し、本実施形態では、測定特徴量と機器特徴量との間に現れる差を打ち消す方向に、機器特徴量を抽出する前の「参照データ」を補正する。
 図11に、本実施形態の監視装置10の機能ブロック図の一例を示す。図示するように、本実施形態の監視装置10は、測定データ取得部12と、特徴量抽出部13と、補正部45と、推定部46と、参照データ記憶部47と、補正後機器特徴量生成部48と、補正後機器特徴量記憶部49とを有する。測定データ取得部12、及び、特徴量抽出部13の構成は第1の実施形態と同様であるので、ここでの説明は省略する。
 参照データ記憶部47は、所定の単位内に設置された複数の電気機器各々を、所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶する。例えば、監視装置10を利用して電気機器の稼動状態を可視化するサービスを提供するサービス提供者は、所定の単位内に設置されている電気機器を特定すると、第1の実施形態で説明した参照データデータベースから、特定した電気気機器の参照データを取り出し、参照データ記憶部47に記憶させることができる。
 補正部45は、参照データ記憶部47に記憶されている複数の電気機器各々の参照データを、所定の単位の特徴を示す単位特徴情報に基づいて補正する。すなわち、補正部45は、機器特徴量を抽出するための参照データを測定した際の測定条件と、測定特徴量を抽出するための所定単位測定データを測定した際の測定条件(所定の単位の単位特徴情報で特定される条件)との違いに起因して、測定特徴量と機器特徴量との間に現れる差を打ち消す方向に、参照データを補正する。参照データの補正は、第1の実施形態で説明した測定特徴量の補正と同様の手段で実現できる。
 補正後機器特徴量生成部48は、補正後の参照データ各々から、各参照データに含まれる電気機器各々の特徴量である補正後機器特徴量を抽出する。補正後機器特徴量記憶部49は、補正後機器特徴量生成部48が生成した補正後機器特徴量を、各電気機器の識別情報に対応付けて記憶する。
 推定部46は、特徴量抽出部13が抽出した測定特徴量と、補正後機器特徴量記憶部49に記憶されている補正後機器特徴量とを利用して、稼動している電気機器を推定する。推定部46が稼動している電気機器を推定する処理は第1の実施形態と同様であるので、ここでの説明は省略する。
 なお、本実施形態の監視装置10は、補正部45、参照データ記憶部47、及び、補正後機器特徴量生成部48を備えなくてもよい。この場合、補正部45、参照データ記憶部47、及び、補正後機器特徴量生成部48は、監視装置10と異なる装置内に備えられる。そして、当該異なる装置が補正後機器特徴量を生成し、生成された補正後機器特徴量が監視装置10の補正後機器特徴量記憶部49に記憶される。
 なお、本実施形態の監視装置10の適用例は、第1の実施形態と同様である。
 次に、図8のフローチャートを用いて、本実施形態の監視装置10の処理の流れの一例を説明する。
 まず、監視装置10を利用して電気機器の稼動状態を可視化するサービスを提供するサービス提供者は、当該サービスの提供を開始するための準備として、所定の単位内に設置されている電気機器を特定する情報、及び、単位特徴情報をサービス受領者から取得する。そして、サービス提供者は、取得した所定の単位内に設置されている電気機器を特定する情報に基づいて、例えば参照データデータベースから所定の参照データを取り出し、参照データ記憶部47に記憶させる。また、サービス提供者は、取得した単位特徴情報や、参照データを測定した際の測定条件などを考慮して、補正部45が参照データを補正するための補正情報、例えば伝達関数(参照データを入力とし、補正後の参照データを出力とする伝達関数)を生成し、補正部45に保持させる。すると補正部45は、参照データ記憶部47に記憶されている参照データを例えば伝達関数に入力し、出力として補正後の参照データを得る。その後、補正後機器特徴量生成部48は、補正後の参照データから機器特徴量を抽出し、補正後機器特徴量として補正後機器特徴量記憶部49に記憶させる。
 S20では、測定データ取得部12は、所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する。例えば、測定データ取得部12は、給電引込口や分電盤等の付近に設置された測定器が測定した所定単位測定データを、監視装置10と測定機器間を繋ぐ通信ケーブル、インターネットやLAN等のネットワーク等を介して取得する。
 S21では、特徴量抽出部13は、S20で取得された所定単位測定データから、当該所定単位測定データに含まれている測定特徴量を抽出する。S22では、推定部26は、補正後機器特徴量記憶部49に記憶されている補正後機器特徴量と、S21で特徴量抽出部13により取得された測定特徴量とを利用して、稼動している電気機器を推定する。
 以上説明した本実施形態によれば、第1の実施形態と同様の作用効果を実現することができる。また、稼動している電気機器を推定する処理内に、補正部45による補正処理が含まれないので、第1及び第3の実施形態よりも速く推定結果を算出することができる。
 ここで、第1乃至第4の実施形態の監視装置10で推定された結果に基づいて実現されるサービスの例を説明する。
 例えば、節電のためのアドバイスを行うことができる。第1乃至第4の実施形態の監視装置10によれば、1日(0時から24時)における電気機器の稼動状態の時間変化が確認できる。このような出力に基づいて、電気機器の使用が多い時間帯等を特定し、その時間における使用を意識的に減らすなどのアドバイスを行うことができる。
 その他の例として、電気機器のメンテナンス(例:エアコンの掃除)のタイミングを通知することができる。第1乃至第4の実施形態の監視装置10によれば、推定結果を蓄積していくことで、各電気機器の累積稼働時間を算出することができる。例えば、累積時間が所定の値となったタイミングで、メンテナンスを促す通知を行うことができる。また、電気機器の故障や一部部品の経年劣化により、消費電流、消費電力、電圧や、測定特徴量などが変化しうる。そこで、例えば、このような変化を検知すると、メンテナンスを促す通知を行うことができる。
 その他の例として、冷蔵庫の使用に関するアドバイスを行うことができる。冷蔵庫は、その内部への積み込み状態に応じて、消費電流、消費電力、電圧、測定特徴量などが変化しうる。第1乃至第4の実施形態の監視装置10によれば、このような変化を検知することができる。この変化に基づいて、詰め込みすぎの警告や、内部の物が少なくなっているので備蓄を増やす催促などを通知することができる。
 その他の例として、第1乃至第4の実施形態の監視装置10によれば、過去の推定結果の履歴と比較することで、電気機器の使用パターンがいつもと異なるか否かを検知することができる。電気機器の使用パターンがいつもと異なった場合、サービス受領者(電気機器の使用者)に何らかの変化(例:病気、事件に巻き込まれた等)が生じている可能性がある。そこで、このような場合、予め登録していた連絡先に警告を通知することができる。
 その他の例として、第1乃至第4の実施形態の監視装置10によれば、電気機器の使用パターン(例:1日の中の使用パターン)に基づいて、ユーザの生活リズム等を推定することができる。そこで、不規則な生活リズム(例:夜中の活動が多い(夜中に多くの電気機器を使用)、昼間の活動と夜中の活動が不規則に現れる等)のユーザに対して、生活リズムを改善するよう警告することができる。
 実施形態3及び実施形態4では、「参照データ」及び「所定単位測定データ」のいずれかを、これらの間に現れる差を打ち消すように補正していたが、機器特徴量及び測定特徴量と所定の基準となる測定条件にて測定した特徴量との間に現れる差を打ち消すように、「参照データ」及び「所定単位測定データ」の両方を補正してもよい。
 具体的に本実施形態の変形例の構成について説明する。図15に、本実施形態の変形例の監視装置10の機能ブロック図の一例を示す。図示するように、本実施形態の監視装置10は、測定データ取得部12と、補正部(第2補正部)35と、特徴量抽出部33と、参照データ記憶部47と、補正部(第1補正部)45と、補正後機器特徴量生成部48と、補正後機器特徴量記憶部49と推定部66とを有する。測定データ取得部12の構成は第1の実施形態と同様であるので、ここでの説明は省略する。また、参照データ記憶部47の構成は、第4の実施形態と同様であるので、ここでの説明は省略する。
 補正部35は、測定データ取得部12が取得した所定単位測定データを、所定の単位の特徴を示す単位特徴情報に基づいて補正する。すなわち、補正部35は、所定の基準となる測定条件(基準条件)と、測定特徴量を抽出するための所定単位測定データを測定した際の測定条件(所定の単位の単位特徴情報で特定される条件)との違いに起因して、測定特徴量と所定の基準となる測定条件(基準条件)で測定した特徴量との間に現れる差を打ち消す方向に、所定単位測定データを補正する。所定単位測定データの補正は、第3の実施形態で説明した所定単位測定データの補正と同様の手段で実現できる。
 特徴量抽出部33は、補正部35により補正された補正後の所定単位測定データから、当該補正後の所定単位測定データに含まれる特徴量(補正後測定特徴量)を抽出する。
 補正部45は、参照データ記憶部47に記憶されている複数の電気機器各々の参照データを、所定の単位の特徴を示す単位特徴情報に基づいて補正する。すなわち、補正部45は、機器特徴量を抽出するための参照データを測定した際の測定条件と、所定の基準となる測定条件(基準条件)との違いに起因して、機器特徴量と所定の基準となる測定条件(基準条件)において測定された特徴量との間に現れる差を打ち消す方向に、参照データを補正する。参照データの補正は、第4の実施形態で説明した参照データの補正と同様の手段で実現できる。
 補正後機器特徴量生成部48は、補正後の参照データ各々から、各参照データに含まれる電気機器各々の特徴量である補正後機器特徴量を抽出する。補正後機器特徴量記憶部49は、補正後機器特徴量生成部48が生成した補正後機器特徴量を、各電気機器の識別情報に対応付けて記憶する。
 推定部66は、補正部35により補正された後の所定単位測定データから抽出された特徴量と、補正後機器特徴量記憶部49に記憶されている補正後機器特徴量とを利用して、稼動している電気機器を推定する。推定部66が稼動している電気機器を推定する処理は第1の実施形態と同様であるので、ここでの説明は省略する。
<第5の実施形態>
 第1乃至第4の実施形態では、測定環境の単位特徴情報や、参照データを測定した際の測定条件などを考慮して測定特徴量を補正するための補正情報(例:伝達関数)を生成し、当該補正情報を用いて補正後の特徴量やデータを得ていた。これに対して、本実施形態では、所定の単位で測定された所定単位測定データと、参照データとに基づいて、「測定特徴量」、「機器特徴量(参照特徴量)」、「所定単位測定データ」及び「参照データ」の少なくとも1つを補正するための補正情報(例:伝達関数)を生成し、当該補正情報を用いて補正後の特徴量やデータを得る。このような本実施形態によれば、第1乃至第4の実施形態で利用していた単位特徴情報が不要となる。
<第5の実施形態:機能構成>
 図16に、本実施形態の機能ブロック図の一例を示す。本実施形態の監視装置10は、測定データ取得部12と、参照データ記憶部47と、補正情報作成部70と、補正部55とを有する。測定データ取得部12及び参照データ記憶部47の構成は、第1乃至第4の実施形態と同様であるので、ここでの説明は省略する。補正部55は、補正情報作成部70が作成した補正情報(例:伝達関数)を用いて、補正後の特徴量やデータを得る点を除き、第1乃至第4の実施形態と同様であるので、ここでの説明は省略する。
 補正情報作成部70は、所定単位測定データ及び参照データに基づいて、これらの差分を打ち消すための補正情報、例えば伝達関数を作成する。補正情報作成部70で作成された補正情報(例:伝達関数)は、補正部55に保存される。補正情報作成部70は、例えば図17に示すように、機器単体データ抽出部72と、特徴量抽出部71及び73と、補正パラメータ抽出部74とを有する。
 機器単体データ抽出部72は、所定単位測定データから機器単体のデータを抽出し、抽出したデータを機器名などの情報と結び付ける。所定単位測定データから機器単体のデータを抽出する手段は特段制限されない。例えば所定単位測定データにおいて測定値が所定レベル以上変動した時点を、ある電気機器の稼働状態が変動した時点として特定してもよい。そして、その時点の前後のデータの差分を、当該電気機器の所定単位測定データとして抽出してもよい。その後、その時に稼働状態を変更した電気機器の機器名などの入力をユーザから受付ける。ユーザからの入力を受付ける代わりに、建物の内外の温度センサから冷暖房機器の稼働状況を得る、振動センサから換気扇などの稼働状況を得る、照度センサから照明機器の稼働状況を得るなど、同じ時間における別センサデータ情報を別途測定しておき、これらのセンサとの相関を見ることによって各電気機器の識別情報を得ることもできる。このように、所定単位測定データにおいて測定値が所定レベル以上変動した時点で稼働状況が変動した電気機器を別センサデータで特定してもよい。なお、機器単体データ抽出部72は、以下の実施例で示す手法を利用することもできる。
 特徴量抽出部71は、各電気機器の参照データから所定の特徴量を抽出する。特徴量抽出部73は、機器単体データ抽出部72が抽出した各電気機器の所定単位測定データから所定の特徴量を抽出する。補正パラメータ抽出部74は、特徴量抽出部71が抽出した第1の電気機器の機器特徴量(参照特徴量)と、特徴量抽出部73が抽出した第1の電気機器の測定特徴量と、の差分を打ち消す方向に、「測定特徴量」及び「機器特徴量(参照特徴量)」の少なくとも1つを補正するための補正情報(例:伝達関数)を生成する。例えば、補正情報、「測定特徴量」及び「機器特徴量(参照特徴量)」の少なくとも一方に所定の係数を掛けることで、差分を打ち消すものであってもよいし、以下の実施例で示すものであってもよい。
 なお、図17の補正情報作成部70の内容はひとつの例であり、これ以外の形をとっても構わない。例えば、特徴量抽出部71及び73を有さない構成とすることもできる。この場合、第1の電気機器の参照データが、参照データ記憶部47から補正パラメータ抽出部74に入力される。また、第1の電気機器の所定単位測定データが、機器単体データ抽出部72から補正パラメータ抽出部74に入力される。そして、補正パラメータ抽出部74は、当該参照データと当該所定単位測定データとの差分を打ち消す方向に、「参照データ」及び「所定単位測定データ」の少なくとも1つを補正するための補正情報(例:伝達関数)を生成する。例えば、補正情報は、「参照データ」及び「所定単位測定データ」の少なくとも一方に所定の係数を掛けることで、差分を打ち消すものであってもよいし、以下の実施例で示すものであってもよい。
 さらに、図16及び図17では補正情報作成部70は監視装置10内にあるが、補正情報作成部70の場所は、外部サーバ上のような別環境にあってもよい。
 例えば、第1の環境下で測定された電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する手段と、前記第1の環境と異なる第2の環境下で測定された前記電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである参照データを取得する手段と、前記所定単位測定データ及び前記参照データに基づいて、前記所定単位測定データ及び前記参照データの間の差分を打ち消すための補正情報を作成する手段(補正情報作成部70)と、を有する補正情報作成装置が実現される。
 また、第1の環境下で測定された電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する手段と、前記所定単位測定データに含まれる特徴量である測定特徴量を取得する手段と、前記第1の環境と異なる第2の環境下で測定された前記電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである参照データを取得する手段と、前記参照データに含まれる特徴量である機器特徴量を取得する手段と、前記機器特徴量及び前記測定特徴量に基づいて、前記機器特徴量及び前記測定特徴量の間の差分を打ち消すための補正情報を作成する手段(補正情報作成部70)と、を有する補正情報作成装置が実現される。
<第5の実施形態の実施例>
 次に第5の実施形態について、具体的な実施例を用いて説明する。まず、あるユーザ環境において、電源幹線における電圧波形と電流波形データを測定する。電圧波形は、例えばユーザ環境におけるコンセントから抵抗分割などを用いて測定する。電流波形は、分電盤の基幹部分にクランプ式のCT(Current Transformer)などを設置して測定する。測定した電圧電流は、電圧が負から正になるゼロクロス点で位相合わせを行い、電圧電流波形が各測定で同じ位相のデータになるように位相調整を行う。
 次に、測定された電圧電流波形の時系列データから、機器単独の電流波形データを抽出する。例えば、電圧電流波形の時系列データから電力の時系列データを作成し、各時系列データについて平均値と分散値を計算する。この平均値と分散値を使って、電力の閾値を作成し、電力の値が閾値を超えた点を機器の電源ON/OFFの切替タイミングとして、その前後でそれぞれ電流波形の時系列データを平均化し、差分をとることによって機器単独の電流波形データを抽出する。機器単独の電流波形データは、例えば、コンセントに電流センサを設置するなどして個別に抽出しても構わない。
 抽出された機器単独の電流波形データに機器名などの情報を付加する。例えば、新しく電流波形データが抽出されたときに、ユーザにアラームを出すなどして機器名を入力してもらうことで、機器名情報を付加する。
 次に機器名情報が付加された電流波形データを、外部サーバに送信する。外部サーバでは、機器名と電流波形が結びついた参照データが予め用意されており、この参照データとユーザ環境から送信された機器の電流波形データとを比較することによって補正パラメータ(伝達関数)を抽出する。なお、参照データと測定データは機器名情報によって対応づけることができるので、補正パラメータの抽出は、外部サーバ以外の場所で行ってもよい。
 次に具体的な補正パラメータ(伝達関数)の抽出方法について説明する。電流波形の参照データと電流波形の所定単位測定データをFFTなどで高調波成分に分解し、各ベクトルr、Δr、Δθを用いて、以下の2つの値R及びT(加重平均)を求める。なお、rはユーザ環境のデータの高調波強度、Δは両環境の値の差、iは高調波の次数、θは高調波の位相を高調波次数で割った値(各高調波の位相を基準波の位相に合わせた値)を表す。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 これらの補正パラメータを用いて、外部サーバの電流波形参照データf(t)をユーザ環境の電流波形測定データR×f(t-T)に補正する。補正パラメータは機器ごとに異なる値を持つ。tは電流波形の位相を表す。Tは補正する位相差であるが、時間に変換してもよく、その場合、tは時間を表す。
 図18に本実施例の方法で補正を行った電流波形の例を示す。補正前のデータを観察すると、同じ電気機器を同じ状態で稼働させたにも関わらず、環境が異なると、位相や大きさのずれが生じることが分かる。そして、補正後のデータを観察すると、本実施例の補正により、環境の違いに起因して生じていた位相や大きさのずれが修正され、データがほぼ一致していることが分かる。
 なお、RとTを求める方法はこの方法に限らない。例えば、加重平均を求めるのではなく、単に基準波の強度と位相の情報のみからRとTを求めてもよい。また、フィッティングによって誤差関数を最小にするRとTを決める方法などを用いてもよい。さらには、伝達関数を作成する方法も、図17に限らず、FFTしたデータを基に作成した外部サーバデータとユーザ環境データの関数同士の差の絶対値の積分が、波形1周期の間で最小になるようなRとTを決める方法を用いてもよい。
<第5の実施形態:効果>
 第5の実施形態では、電流波形や特徴量の各値を個別に補正するのではなく、強度と位相の2値のずれを用いて全ての値を補正できるので、電流波形だけでなく、高調波の強度や位相などの特徴量ベクトル等も補正することができる。
 また、第5の実施形態を用いれば、全ての状態に対する補正情報(例:伝達関数)を作る必要はなく、各電気機器に対する補正情報(例:伝達関数)を作るだけでよいので、補正部55の構成が複雑にならない。
 また、第5の実施形態を用いれば、データの比較のみで補正情報(例:伝達関数)を作成することができるので、各家庭の電気機器の構成が変わるなどユーザ環境が時間変化して、推定精度が悪くなった場合にも、新しく補正情報(例:伝達関数)を更新して、推定精度の悪化を防ぐこともできる。精度の閾値を設けて推定精度の悪化を検出し、その度に補正情報(例:伝達関数)を更新することで、推定精度を一定の精度内で保つこともできる。ここで閾値を設ける推定精度は、どのような範囲の推定精度でも構わない、つまり建物全体の機器の推定精度でも、機器個別の推定精度でも、いくつかの機器グループにおける推定精度でもよい。
 また、第5の実施形態を、複数のリファレンス負荷を用いて複数のリファレンス波形を得ることで複数の補正情報(例:伝達関数)を作成するという方法で用いれば、機器を稼働せずに予め補正情報(例:伝達関数)を作成することも可能である。
 また、第5の実施形態では、データの比較のみで補正情報(例:伝達関数)を作成するので、家庭ごとの環境を詳細に考慮しなくても、補正情報(例:伝達関数)を作成することができる。
 また、マンションやホテルなど、部屋ごとに環境が類似している建物では、ひとつの部屋において、第5の実施形態を用いて補正情報(例:伝達関数)を作成すれば、他の複数の部屋にも同じ補正情報(例:伝達関数)を流用することができるようになる。
 また、第5の実施形態を第4の実施形態と合わせれば、ユーザ環境に存在する各電気機器に対して、外部サーバの参照データを補正した後、外部サーバ上で機器の状態推定を行うための学習を行い、推定関数を作成することもできる。外部サーバで作成された推定関数をユーザ環境に送信することで、ユーザ環境で推定関数の作成を行うことなく、電流波形データから各機器の状態を精度よく推定できる電力の見える化サービスを受けることができるようになる。
 以下、参考形態の例を付記する。
1. 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段と、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得する測定データ取得手段と、
 前記測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段と、
 前記機器特徴量又は前記測定特徴量である第1の特徴量を、前記所定の単位の特徴を示す単位特徴情報に基づいて補正する補正手段と、
 補正後の前記第1の特徴量と、前記機器特徴量又は前記測定特徴量であって、前記第1の特徴量と異なる特徴量である第2の特徴量とを利用して、稼働している電気機器を推定する推定手段と、
を有する監視装置。
2. 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段と、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得する測定データ取得手段と、
 前記測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段と、
 前記機器特徴量を、前記所定の単位の特徴を示す単位特徴情報に基づいて補正する第1の補正手段と、
 前記測定特徴量を、前記単位特徴情報に基づいて補正する第2の補正手段と、
 補正後の前記機器特徴量及び補正後の前記測定特徴量を利用して、稼働している電気機器を推定する推定手段と、
を有する監視装置。
3. 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段と、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得する測定データ取得手段と、
 前記測定データを、前記所定の単位の特徴を示す単位特徴情報に基づいて補正する補正手段と、
 補正後の前記測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出手段と、
 前記機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定手段と、
を有する監視装置。
4. 所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶する参照データ記憶手段と、
 複数の前記電気機器各々の前記参照データを、前記所定の単位の特徴を示す単位特徴情報に基づいて補正する補正手段と、
 補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成手段と、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得する測定データ取得手段と、
 前記測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段と、
 前記補正後機器特徴量と、前記測定特徴量とを利用して、稼働している電気機器を推定する推定手段と、
を有する監視装置。
5. 所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶する参照データ記憶手段と、
 複数の前記電気機器各々の前記参照データを、前記所定の単位の特徴を示す単位特徴情報に基づいて補正する第1の補正手段と、
 補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成手段と、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得する測定データ取得手段と、
 前記測定データを、前記単位特徴情報に基づいて補正する第2の補正手段と、
 補正後の前記測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出手段と、
 前記補正後機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定手段と、
を有する監視装置。
6. 1から3のいずれかに記載の監視装置において、
 前記機器特徴量は、前記所定の単位内に設置された複数の前記電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データから抽出した前記電気機器各々の特徴量である監視装置。
7. 1から6のいずれかに記載の監視装置において、
 前記単位特徴情報は、前記所定の単位内における配線に関する情報、及び、前記所定の単位内で前記配線に繋がった前記電気機器を特定する情報の少なくとも一方を含む監視装置。
8. 1、3及び4のいずれかに従属する7に記載の監視装置において、
 前記補正手段は、前記所定の単位内の前記配線をインダクタンスとし、前記所定の単位内で前記配線に繋がった前記電気機器を静電容量とみなすことで特定される前記所定の単位のLC回路としての特性を考慮して、前記補正を行う監視装置。
9. 2又は5に従属する7に記載の監視装置において、
 前記第1の補正手段及び前記第2の補正手段は、前記所定の単位内の前記配線をインダクタンスとし、前記所定の単位内で前記配線に繋がった前記電気機器を静電容量とみなすことで特定される前記所定の単位のLC回路としての特性を考慮して、前記補正を行う監視装置。
10. 1から9のいずれかに記載の監視装置と、
 所定の単位内に設置された測定器が測定した総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得し、前記監視装置に送信する転送装置と、
を有する監視システム。
11. コンピュータが、
 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶しておき、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得する測定データ取得工程と、
 前記測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出工程と、
 前記機器特徴量又は前記測定特徴量である第1の特徴量を、前記所定の単位の特徴を示す単位特徴情報に基づいて補正する補正工程と、
 補正後の前記第1の特徴量と、前記機器特徴量又は前記測定特徴量であって、前記第1の特徴量と異なる特徴量である第2の特徴量とを利用して、稼働している電気機器を推定する推定工程と、
を実行する監視方法。
12.コンピュータが、
 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶しておき、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得する測定データ取得工程と、
 前記測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出工程と、
 前記機器特徴量を、前記所定の単位の特徴を示す単位特徴情報に基づいて補正する第1の補正工程と、
 前記測定特徴量を、前記単位特徴情報に基づいて補正する第2の補正工程と、
 補正後の前記機器特徴量及び補正後の前記測定特徴量を利用して、稼働している電気機器を推定する推定工程と、
を実行する監視方法。
13. コンピュータが、
 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶しておき、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得する測定データ取得工程と、
 前記測定データを、前記所定の単位の特徴を示す単位特徴情報に基づいて補正する補正工程と、
 補正後の前記測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出工程と、
 前記機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定工程と、
を実行する監視方法。
14. コンピュータが、
 所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶しておき、
 複数の前記電気機器各々の前記参照データを、前記所定の単位の特徴を示す単位特徴情報に基づいて補正する補正工程と、
 補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成工程と、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得する測定データ取得工程と、
 前記測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出工程と、
 前記補正後機器特徴量と、前記測定特徴量とを利用して、稼働している電気機器を推定する推定工程と、
を実行する監視方法。
15. コンピュータが、
 所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶しておき、
 複数の前記電気機器各々の前記参照データを、前記所定の単位の特徴を示す単位特徴情報に基づいて補正する第1の補正工程と、
 補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成工程と、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得する測定データ取得工程と、
 前記測定データを、前記単位特徴情報に基づいて補正する第2の補正工程と、
 補正後の前記測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出工程と、
 前記補正後機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定工程と、
を実行する監視方法。
16. 11から13のいずれかに記載の監視方法において、
 前記機器特徴量は、前記所定の単位内に設置された複数の前記電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データから抽出した前記電気機器各々の特徴量である監視方法。
17. 11から16のいずれかに記載の監視方法において、
 前記単位特徴情報は、前記所定の単位内における配線に関する情報、及び、前記所定の単位内で前記配線に繋がった前記電気機器を特定する情報の少なくとも一方を含む監視方法。
18. 11、13及び14のいずれかに従属する17に記載の監視方法において、
 前記補正工程では、前記所定の単位内の前記配線をインダクタンスとし、前記所定の単位内で前記配線に繋がった前記電気機器を静電容量とみなすことで特定される前記所定の単位のLC回路としての特性を考慮して、前記補正を行う監視方法。
19. 12又は15に従属する17に記載の監視方法において、
 前記第1の補正工程及び前記第2の補正工程では、前記所定の単位内の前記配線をインダクタンスとし、前記所定の単位内で前記配線に繋がった前記電気機器を静電容量とみなすことで特定される前記所定の単位のLC回路としての特性を考慮して、前記補正を行う監視方法。
20. コンピュータを、
 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得する測定データ取得手段、
 前記測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段、
 前記機器特徴量又は前記測定特徴量である第1の特徴量を、前記所定の単位の特徴を示す単位特徴情報に基づいて補正する補正手段、
 補正後の前記第1の特徴量と、前記機器特徴量又は前記測定特徴量であって、前記第1の特徴量と異なる特徴量である第2の特徴量とを利用して、稼働している電気機器を推定する推定手段、
として機能させるためのプログラム。
21. コンピュータを、
 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得する測定データ取得手段、
 前記測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段、
 前記機器特徴量を、前記所定の単位の特徴を示す単位特徴情報に基づいて補正する第1の補正手段、
 前記測定特徴量を、前記単位特徴情報に基づいて補正する第2の補正手段、
 補正後の前記機器特徴量及び補正後の前記測定特徴量を利用して、稼働している電気機器を推定する推定手段、
として機能させるためのプログラム。
22. コンピュータを、
 所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得する測定データ取得手段、
 前記測定データを、前記所定の単位の特徴を示す単位特徴情報に基づいて補正する補正手段、
 補正後の前記測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出手段、
 前記機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定手段、
として機能させるためのプログラム。
23. コンピュータを、
 所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶する参照データ記憶手段、
 複数の前記電気機器各々の前記参照データを、前記所定の単位の特徴を示す単位特徴情報に基づいて補正する補正手段、
 補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成手段、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得する測定データ取得手段、
 前記測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段、
 前記補正後機器特徴量と、前記測定特徴量とを利用して、稼働している電気機器を推定する推定手段、
として機能させるためのプログラム。
24. コンピュータを、
 所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶する参照データ記憶手段、
 複数の前記電気機器各々の前記参照データを、前記所定の単位の特徴を示す単位特徴情報に基づいて補正する第1の補正手段、
 補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成手段、
 前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである測定データを取得する測定データ取得手段、
 前記測定データを、前記単位特徴情報に基づいて補正する第2の補正手段、
 補正後の前記測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出手段、
 前記補正後機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定手段、
として機能させるためのプログラム。
25. 20から22のいずれかに記載のプログラムにおいて、
 前記機器特徴量は、前記所定の単位内に設置された複数の前記電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データから抽出した前記電気機器各々の特徴量であるプログラム。
26. 20から25のいずれかに記載のプログラムにおいて、
 前記単位特徴情報は、前記所定の単位内における配線に関する情報、及び、前記所定の単位内で前記配線に繋がった前記電気機器を特定する情報の少なくとも一方を含むプログラム。
27. 20、22及び23のいずれかに従属する26に記載のプログラムにおいて、
 前記補正手段に、前記所定の単位内の前記配線をインダクタンスとし、前記所定の単位内で前記配線に繋がった前記電気機器を静電容量とみなすことで特定される前記所定の単位のLC回路としての特性を考慮して、前記補正を行わせるプログラム。
28. 21又は24に従属する26に記載のプログラムにおいて、
 前記第1の補正手段及び前記第2の補正手段に、前記所定の単位内の前記配線をインダクタンスとし、前記所定の単位内で前記配線に繋がった前記電気機器を静電容量とみなすことで特定される前記所定の単位のLC回路としての特性を考慮して、前記補正を行わせるプログラム。
 この出願は、2014年1月29日に出願された日本出願特願2014-014002号及び2014年8月22日に出願された日本出願特願2014-169097号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (36)

  1.  所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段と、
     前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段と、
     前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段と、
     前記機器特徴量又は前記測定特徴量である第1の特徴量を補正する補正手段と、
     補正後の前記第1の特徴量と、前記機器特徴量又は前記測定特徴量であって、前記第1の特徴量と異なる特徴量である第2の特徴量とを利用して、稼働している電気機器を推定する推定手段と、
    を有する監視装置。
  2.  請求項1に記載の監視装置において、
     前記補正手段は、前記所定の単位の特徴を示す単位特徴情報に基づいて前記第1の特徴量を補正する監視装置。
  3.  請求項1に記載の監視装置において、
     前記機器特徴量及び前記測定特徴量に基づいて、前記機器特徴量及び前記測定特徴量の間の差分を打ち消すための補正情報を作成する補正情報作成手段をさらに有し、
     前記補正手段は、前記補正情報に基づいて、前記第1の特徴量を補正する監視装置。
  4.  所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段と、
     前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段と、
     前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段と、
     前記機器特徴量を補正する第1の補正手段と、
     前記測定特徴量を補正する第2の補正手段と、
     補正後の前記機器特徴量及び補正後の前記測定特徴量を利用して、稼働している電気機器を推定する推定手段と、
    を有する監視装置。
  5.  請求項4に記載の監視装置において、
     前記第1の補正手段は、前記所定の単位の特徴を示す単位特徴情報に基づいて前記機器特徴量を補正し、
     前記第2の補正手段は、前記単位特徴情報に基づいて前記測定特徴量を補正する監視装置。
  6.  請求項4に記載の監視装置において、
     前記機器特徴量及び前記測定特徴量に基づいて、前記機器特徴量及び前記測定特徴量の間の差分を打ち消すための補正情報を作成する補正情報作成手段をさらに有し、
     前記第1の補正手段は、前記補正情報に基づいて前記機器特徴量を補正し、
     前記第2の補正手段は、前記補正情報に基づいて前記測定特徴量を補正する監視装置。
  7.  所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段と、
     前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段と、
     前記所定単位測定データを補正する補正手段と、
     補正後の前記所定単位測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出手段と、
     前記機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定手段と、
    を有する監視装置。
  8.  請求項7に記載の監視装置において、
     前記補正手段は、前記所定の単位の特徴を示す単位特徴情報に基づいて前記所定単位測定データを補正する監視装置。
  9.  請求項7に記載の監視装置において、
     前記機器特徴量が抽出された参照データ及び前記所定単位測定データに基づいて、前記参照データ及び前記所定単位測定データの間の差分を打ち消すための補正情報を作成する補正情報作成手段をさらに有し、
     前記補正手段は、前記補正情報に基づいて、前記所定単位測定データを補正する監視装置。
  10.  所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶する参照データ記憶手段と、
     複数の前記電気機器各々の前記参照データを補正する補正手段と、
     補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成手段と、
     前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段と、
     前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段と、
     前記補正後機器特徴量と、前記測定特徴量とを利用して、稼働している電気機器を推定する推定手段と、
    を有する監視装置。
  11.  請求項10に記載の監視装置において、
     前記補正手段は、前記所定の単位の特徴を示す単位特徴情報に基づいて前記参照データを補正する監視装置。
  12.  請求項11に記載の監視装置において、
     前記参照データ及び前記所定単位測定データに基づいて、前記参照データ及び前記所定単位測定データの間の差分を打ち消すための補正情報を作成する補正情報作成手段をさらに有し、
     前記補正手段は、前記補正情報に基づいて、前記参照データを補正する監視装置。
  13.  所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶する参照データ記憶手段と、
     複数の前記電気機器各々の前記参照データを補正する第1の補正手段と、
     補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成手段と、
     前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段と、
     前記所定単位測定データを補正する第2の補正手段と、
     補正後の前記所定単位測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出手段と、
     前記補正後機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定手段と、
    を有する監視装置。
  14.  請求項13に記載の監視装置において、
     前記第1の補正手段は、前記所定の単位の特徴を示す単位特徴情報に基づいて前記参照データを補正し、
     前記第2の補正手段は、前記所定の単位の特徴を示す単位特徴情報に基づいて前記所定単位測定データを補正する監視装置。
  15.  請求項13に記載の監視装置において、
     前記参照データ及び前記所定単位測定データに基づいて、前記参照データ及び前記所定単位測定データの間の差分を打ち消すための補正情報を作成する補正情報作成手段をさらに有し、
     前記第1の補正手段は、前記補正情報に基づいて前記参照データを補正し、
     前記第2の補正手段は、前記補正情報に基づいて前記所定単位測定データを補正する監視装置。
  16.  請求項1から15のいずれか1項に記載の監視装置において、
     前記機器特徴量は、前記所定の単位内に設置された複数の前記電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データから抽出した前記電気機器各々の特徴量である監視装置。
  17.  請求項1から16のいずれか1項に記載の監視装置において、
     前記単位特徴情報は、前記所定の単位内における配線に関する情報、及び、前記所定の単位内で前記配線に繋がった前記電気機器を特定する情報の少なくとも一方を含む監視装置。
  18.  請求項1、2、3、7、8、9、10、11及び12のいずれかに従属する請求項17に記載の監視装置において、
     前記補正手段は、前記所定の単位内の前記配線をインダクタンスとし、前記所定の単位内で前記配線に繋がった前記電気機器を静電容量とみなすことで特定される前記所定の単位のLC回路としての特性を考慮して、前記補正を行う監視装置。
  19.  請求項4、5、6、13、14及び15のいずれかに従属する請求項17に記載の監視装置において、
     前記第1の補正手段及び前記第2の補正手段は、前記所定の単位内の前記配線をインダクタンスとし、前記所定の単位内で前記配線に繋がった前記電気機器を静電容量とみなすことで特定される前記所定の単位のLC回路としての特性を考慮して、前記補正を行う監視装置。
  20.  請求項1から19のいずれか1項に記載の監視装置と、
     所定の単位内に設置された測定器が測定した総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得し、前記監視装置に送信する転送装置と、
    を有する監視システム。
  21.  コンピュータが、
     所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶しておき、
     前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得工程と、
     前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出工程と、
     前記機器特徴量又は前記測定特徴量である第1の特徴量を補正する補正工程と、
     補正後の前記第1の特徴量と、前記機器特徴量又は前記測定特徴量であって、前記第1の特徴量と異なる特徴量である第2の特徴量とを利用して、稼働している電気機器を推定する推定工程と、
    を実行する監視方法。
  22.  コンピュータが、
     所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶しておき、
     前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得工程と、
     前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出工程と、
     前記機器特徴量を補正する第1の補正工程と、
     前記測定特徴量を補正する第2の補正工程と、
     補正後の前記機器特徴量及び補正後の前記測定特徴量を利用して、稼働している電気機器を推定する推定工程と、
    を実行する監視方法。
  23.  コンピュータが、
     所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶しておき、
     前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得工程と、
     前記所定単位測定データを補正する補正工程と、
     補正後の前記所定単位測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出工程と、
     前記機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定工程と、
    を実行する監視方法。
  24.  コンピュータが、
     所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶しておき、
     複数の前記電気機器各々の前記参照データを補正する補正工程と、
     補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成工程と、
     前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得工程と、
     前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出工程と、
     前記補正後機器特徴量と、前記測定特徴量とを利用して、稼働している電気機器を推定する推定工程と、
    を実行する監視方法。
  25.  コンピュータが、
     所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶しておき、
     複数の前記電気機器各々の前記参照データを補正する第1の補正工程と、
     補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成工程と、
     前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得工程と、
     前記所定単位測定データを補正する第2の補正工程と、
     補正後の前記所定単位測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出工程と、
     前記補正後機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定工程と、
    を実行する監視方法。
  26.  コンピュータを、
     所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段、
     前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段、
     前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段、
     前記機器特徴量又は前記測定特徴量である第1の特徴量を補正する補正手段、
     補正後の前記第1の特徴量と、前記機器特徴量又は前記測定特徴量であって、前記第1の特徴量と異なる特徴量である第2の特徴量とを利用して、稼働している電気機器を推定する推定手段、
    として機能させるためのプログラム。
  27.  コンピュータを、
     所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段、
     前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段、
     前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段、
     前記機器特徴量を補正する第1の補正手段、
     前記測定特徴量を補正する第2の補正手段、
     補正後の前記機器特徴量及び補正後の前記測定特徴量を利用して、稼働している電気機器を推定する推定手段、
    として機能させるためのプログラム。
  28.  コンピュータを、
     所定の単位内に設置された複数の電気機器各々の稼動時の特徴量である機器特徴量を記憶する特徴量記憶手段、
     前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段、
     前記所定単位測定データを補正する補正手段、
     補正後の前記所定単位測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出手段、
     前記機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定手段、
    として機能させるためのプログラム。
  29.  コンピュータを、
     所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶する参照データ記憶手段、
     複数の前記電気機器各々の前記参照データを補正する補正手段、
     補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成手段、
     前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段、
     前記所定単位測定データに含まれる前記特徴量である測定特徴量を取得する特徴量抽出手段、
     前記補正後機器特徴量と、前記測定特徴量とを利用して、稼働している電気機器を推定する推定手段、
    として機能させるためのプログラム。
  30.  コンピュータを、
     所定の単位内に設置された複数の電気機器各々を、前記所定の単位と異なる環境下に置いて測定した消費電流、消費電力、及び、電圧の中の少なくとも1つである参照データを記憶する参照データ記憶手段、
     複数の前記電気機器各々の前記参照データを補正する第1の補正手段、
     補正後の前記参照データ各々に含まれる前記電気機器各々の特徴量である補正後機器特徴量を取得する補正後機器特徴量生成手段、
     前記所定の単位内において測定された総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する測定データ取得手段、
     前記所定単位測定データを補正する第2の補正手段、
     補正後の前記所定単位測定データに含まれる前記特徴量である補正後測定特徴量を取得する特徴量抽出手段、
     前記補正後機器特徴量と、前記補正後測定特徴量とを利用して、稼働している電気機器を推定する推定手段、
    として機能させるためのプログラム。
  31.  第1の環境下で測定された電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する手段と、
     前記第1の環境と異なる第2の環境下で測定された前記電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである参照データを取得する手段と、
     前記所定単位測定データ及び前記参照データに基づいて、前記所定単位測定データ及び前記参照データの間の差分を打ち消すための補正情報を作成する手段と、
    を有する補正情報作成装置。
  32.  第1の環境下で測定された電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する手段と、
     前記所定単位測定データに含まれる特徴量である測定特徴量を取得する手段と、
     前記第1の環境と異なる第2の環境下で測定された前記電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである参照データを取得する手段と、
     前記参照データに含まれる特徴量である機器特徴量を取得する手段と、
     前記機器特徴量及び前記測定特徴量に基づいて、前記機器特徴量及び前記測定特徴量の間の差分を打ち消すための補正情報を作成する手段と、
    を有する補正情報作成装置。
  33.  コンピュータを、
     第1の環境下で測定された電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する手段、
     前記第1の環境と異なる第2の環境下で測定された前記電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである参照データを取得する手段、
     前記所定単位測定データ及び前記参照データに基づいて、前記所定単位測定データ及び前記参照データの間の差分を打ち消すための補正情報を作成する手段、
    として機能させるためのプログラム。
  34.  コンピュータを、
     第1の環境下で測定された電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する手段、
     前記所定単位測定データに含まれる特徴量である測定特徴量を取得する手段、
     前記第1の環境と異なる第2の環境下で測定された前記電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである参照データを取得する手段、
     前記参照データに含まれる特徴量である機器特徴量を取得する手段、
     前記機器特徴量及び前記測定特徴量に基づいて、前記機器特徴量及び前記測定特徴量の間の差分を打ち消すための補正情報を作成する手段、
    として機能させるためのプログラム。
  35.  コンピュータが、
     第1の環境下で測定された電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する工程と、
     前記第1の環境と異なる第2の環境下で測定された前記電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである参照データを取得する工程と、
     前記所定単位測定データ及び前記参照データに基づいて、前記所定単位測定データ及び前記参照データの間の差分を打ち消すための補正情報を作成する工程と、
    を実行する補正情報作成方法。
  36.  コンピュータが、
     第1の環境下で測定された電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである所定単位測定データを取得する工程と、
     前記所定単位測定データに含まれる特徴量である測定特徴量を取得する工程と、
     前記第1の環境と異なる第2の環境下で測定された前記電気機器の総消費電流、総消費電力、及び、電圧の中の少なくとも1つである参照データを取得する工程と、
     前記参照データに含まれる特徴量である機器特徴量を取得する工程と、
     前記機器特徴量及び前記測定特徴量に基づいて、前記機器特徴量及び前記測定特徴量の間の差分を打ち消すための補正情報を作成する工程と、
    を実行する補正情報作成方法。
PCT/JP2015/050243 2014-01-29 2015-01-07 監視装置、監視システム、監視方法、補正情報作成装置、補正情報作成方法及びプログラム WO2015115137A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/115,152 US10495674B2 (en) 2014-01-29 2015-01-07 Monitoring device, monitoring system, monitoring method, correction information generation device, correction information generation method, and non-transitory storage medium
JP2015559843A JP6547631B2 (ja) 2014-01-29 2015-01-07 監視装置、監視システム、監視方法、補正情報作成装置、補正情報作成方法及びプログラム
US16/681,427 US11067612B2 (en) 2014-01-29 2019-11-12 Monitoring device, monitoring system, monitoring method, correction information generation device, correction information generation method, and non-transitory storage medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-014002 2014-01-29
JP2014014002 2014-01-29
JP2014-169097 2014-08-22
JP2014169097 2014-08-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/115,152 A-371-Of-International US10495674B2 (en) 2014-01-29 2015-01-07 Monitoring device, monitoring system, monitoring method, correction information generation device, correction information generation method, and non-transitory storage medium
US16/681,427 Division US11067612B2 (en) 2014-01-29 2019-11-12 Monitoring device, monitoring system, monitoring method, correction information generation device, correction information generation method, and non-transitory storage medium

Publications (1)

Publication Number Publication Date
WO2015115137A1 true WO2015115137A1 (ja) 2015-08-06

Family

ID=53756715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050243 WO2015115137A1 (ja) 2014-01-29 2015-01-07 監視装置、監視システム、監視方法、補正情報作成装置、補正情報作成方法及びプログラム

Country Status (3)

Country Link
US (2) US10495674B2 (ja)
JP (1) JP6547631B2 (ja)
WO (1) WO2015115137A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162358A (ja) * 2019-03-27 2020-10-01 河村電器産業株式会社 電力監視システム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6906993B2 (ja) * 2017-03-24 2021-07-21 三菱重工業株式会社 監視システム、処理装置、監視装置、監視方法およびプログラム
US11493360B2 (en) 2019-03-08 2022-11-08 Copper Labs, Inc. Method and apparatus for detection and alert of energy resource outages
US11474132B2 (en) * 2020-11-03 2022-10-18 Honeywell International Inc. Method and apparatus for detecting and reporting tampering of an energy meter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017456A (ja) * 2004-06-04 2006-01-19 Mitsubishi Electric Corp 電気機器稼動状態推定システムおよび電気機器稼動状態推定用データベース構築方法
JP2006158082A (ja) * 2004-11-29 2006-06-15 Fuji Electric Systems Co Ltd 負荷稼動状況推定装置及び方法並びにそれを利用した地絡発生源推定装置及び方法
JP2006343063A (ja) * 2005-06-10 2006-12-21 Daikin Ind Ltd 設備機器の異常予知システム、設備機器の異常予知装置および設備機器の異常予知方法
JP2010210575A (ja) * 2009-03-12 2010-09-24 Oki Electric Ind Co Ltd 電気機器稼動状況推定装置、情報格納装置、及び、電気機器稼動状況推定システム
JP2012184985A (ja) * 2011-03-04 2012-09-27 Panasonic Corp 分散型発電システム
JP2013538552A (ja) * 2010-09-22 2013-10-10 コーニンクレッカ フィリップス エヌ ヴェ 電気的ネットワークにおける機器を特定するための離解装置
JP2013238523A (ja) * 2012-05-16 2013-11-28 Nippon Telegr & Teleph Corp <Ntt> 電気機器検出および電力消費量モニタリングシステム
WO2014097458A1 (ja) * 2012-12-20 2014-06-26 日立コンシューマエレクトロニクス株式会社 電気機器識別システム、電気機器識別信号発生器、及び電気機器識別装置
JP2015021775A (ja) * 2013-07-17 2015-02-02 日本電気株式会社 監視装置、監視方法及びプログラム

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56165412A (en) 1980-05-23 1981-12-19 Nec Corp Voice amplitude limiting amplifier
JPS6221443A (ja) 1985-07-22 1987-01-29 Mitsubishi Heavy Ind Ltd 薄板連続鋳造装置
JP3403368B2 (ja) 1999-02-01 2003-05-06 財団法人電力中央研究所 電気機器モニタリングシステム及び動作異常警報システム
JP3942605B2 (ja) * 2004-05-17 2007-07-11 東芝テック株式会社 モータ制御装置及び電気機器
US7714735B2 (en) * 2005-09-13 2010-05-11 Daniel Rockwell Monitoring electrical assets for fault and efficiency correction
JP2007225374A (ja) 2006-02-22 2007-09-06 Nec Corp 電力測定システムおよびその測定方法
JP4565511B2 (ja) 2006-08-02 2010-10-20 国立大学法人名古屋大学 電気機器稼働状態推定システム
US8103463B2 (en) * 2006-09-21 2012-01-24 Impact Technologies, Llc Systems and methods for predicting failure of electronic systems and assessing level of degradation and remaining useful life
US8892375B2 (en) * 2008-05-09 2014-11-18 Accenture Global Services Limited Power grid outage and fault condition management
US8665102B2 (en) * 2008-07-18 2014-03-04 Schweitzer Engineering Laboratories Inc Transceiver interface for power system monitoring
JP2011017674A (ja) 2009-07-10 2011-01-27 Tokyo Denki Univ 電気機器稼動状況推定システム及びプログラム
JP5453184B2 (ja) * 2010-06-28 2014-03-26 日立ビークルエナジー株式会社 電池制御回路
JP2013029929A (ja) * 2011-07-27 2013-02-07 Canon Inc 消費電力量管理システム及び消費電力量計測デバイス
US8843238B2 (en) * 2011-09-30 2014-09-23 Johnson Controls Technology Company Systems and methods for controlling energy use in a building management system using energy budgets
WO2013081978A1 (en) * 2011-11-28 2013-06-06 Expanergy, Llc Energy search engine methods and systems
JP5914860B2 (ja) * 2012-10-12 2016-05-11 パナソニックIpマネジメント株式会社 管理装置
EP4332612A3 (en) * 2015-03-07 2024-09-04 Verity AG Distributed localization systems and methods and self-localizing apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017456A (ja) * 2004-06-04 2006-01-19 Mitsubishi Electric Corp 電気機器稼動状態推定システムおよび電気機器稼動状態推定用データベース構築方法
JP2006158082A (ja) * 2004-11-29 2006-06-15 Fuji Electric Systems Co Ltd 負荷稼動状況推定装置及び方法並びにそれを利用した地絡発生源推定装置及び方法
JP2006343063A (ja) * 2005-06-10 2006-12-21 Daikin Ind Ltd 設備機器の異常予知システム、設備機器の異常予知装置および設備機器の異常予知方法
JP2010210575A (ja) * 2009-03-12 2010-09-24 Oki Electric Ind Co Ltd 電気機器稼動状況推定装置、情報格納装置、及び、電気機器稼動状況推定システム
JP2013538552A (ja) * 2010-09-22 2013-10-10 コーニンクレッカ フィリップス エヌ ヴェ 電気的ネットワークにおける機器を特定するための離解装置
JP2012184985A (ja) * 2011-03-04 2012-09-27 Panasonic Corp 分散型発電システム
JP2013238523A (ja) * 2012-05-16 2013-11-28 Nippon Telegr & Teleph Corp <Ntt> 電気機器検出および電力消費量モニタリングシステム
WO2014097458A1 (ja) * 2012-12-20 2014-06-26 日立コンシューマエレクトロニクス株式会社 電気機器識別システム、電気機器識別信号発生器、及び電気機器識別装置
JP2015021775A (ja) * 2013-07-17 2015-02-02 日本電気株式会社 監視装置、監視方法及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162358A (ja) * 2019-03-27 2020-10-01 河村電器産業株式会社 電力監視システム
JP7278127B2 (ja) 2019-03-27 2023-05-19 河村電器産業株式会社 電力監視システム

Also Published As

Publication number Publication date
US20160349294A1 (en) 2016-12-01
US11067612B2 (en) 2021-07-20
JP6547631B2 (ja) 2019-07-24
JPWO2015115137A1 (ja) 2017-03-23
US10495674B2 (en) 2019-12-03
US20200081043A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
JP6583265B2 (ja) 監視装置、監視システム、監視方法及びプログラム
JP6593325B2 (ja) 監視装置、監視システム、監視方法及びプログラム
US11067612B2 (en) Monitoring device, monitoring system, monitoring method, correction information generation device, correction information generation method, and non-transitory storage medium
US11002773B2 (en) Monitoring apparatus, monitoring method, and storage medium
CN111165075B (zh) 智能开关设备及其中央控制系统和电源
JP5520807B2 (ja) 住宅用電気機器メンテナンス管理装置及び住宅用電気機器メンテナンスシステム
EP2867620A1 (en) Power consumption monitoring apparatus
JP2011122908A (ja) 分析装置及び計測管理システム
JP5491215B2 (ja) 省エネルギ診断システム
KR20170117393A (ko) 전기 부하의 가시화
WO2012099588A1 (en) System, method, and computer program product for detecting and monitoring utility consumption
CN103869181A (zh) 监控装置及其识别电器装置的方法
US10698012B2 (en) Power measuring system and power measuring method
WO2013145525A1 (ja) エネルギー管理装置、エネルギー管理システム、プログラムを記憶する記憶媒体
JP6263818B2 (ja) コントローラ、およびそれを用いた機器状態判定システム
JP6597606B2 (ja) 監視システム、監視機器、サーバ、監視機器の動作方法、サーバの動作方法、及び、プログラム
CN106468734A (zh) 电力监视系统
JP2015102526A (ja) 電力推定装置及び電力推定方法
WO2019151955A1 (en) Smart electrical outlet/socket device, system, and associated method
CN103034919B (zh) 能量使用量管理装置和能量使用量管理方法
US20110022894A1 (en) Method and system for determining an individual failure rate for the evaluation of an individual complex technical operating equipment
JP2018055292A (ja) 表示方法、プログラム及び表示システム
JP6373522B1 (ja) Led照明評価システム
CN110622181A (zh) 雷击和过压警告
KR101509451B1 (ko) 축사 내 지그비 네트워크 기반의 수요 전력 예측을 통한 시설조명 소비전력을 최소화하는 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559843

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15115152

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743951

Country of ref document: EP

Kind code of ref document: A1