WO2015113380A1 - 内嵌式触摸屏及显示装置 - Google Patents

内嵌式触摸屏及显示装置 Download PDF

Info

Publication number
WO2015113380A1
WO2015113380A1 PCT/CN2014/082043 CN2014082043W WO2015113380A1 WO 2015113380 A1 WO2015113380 A1 WO 2015113380A1 CN 2014082043 W CN2014082043 W CN 2014082043W WO 2015113380 A1 WO2015113380 A1 WO 2015113380A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
capacitance
touch screen
touch
area
Prior art date
Application number
PCT/CN2014/082043
Other languages
English (en)
French (fr)
Inventor
王海生
董学
薛海林
刘英明
丁小梁
杨盛际
赵卫杰
刘红娟
任涛
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/422,522 priority Critical patent/US10013121B2/en
Priority to JP2016565532A priority patent/JP6430536B2/ja
Priority to EP14851431.8A priority patent/EP3101516B1/en
Priority to KR1020157013320A priority patent/KR101693132B1/ko
Publication of WO2015113380A1 publication Critical patent/WO2015113380A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • Embodiments of the present invention relate to an in-cell touch panel and a display device. Background technique
  • the Touch Screen Panel With the rapid development of display technology, the Touch Screen Panel has gradually spread throughout people's lives.
  • the touch screen can be divided into an add-on touch panel, an on-cell touch panel, and an in-cell touch panel (In Cell Touch Panel).
  • the external touch screen is produced by separately separating the touch screen from the liquid crystal display (LCD), and then bonding them together to form a liquid crystal display with touch function.
  • the external touch screen has high production cost and low light transmittance.
  • the module is thick and so on.
  • the in-cell touch panel embeds the touch electrode of the touch screen inside the liquid crystal display, which can reduce the overall thickness of the module, and can greatly reduce the manufacturing cost of the touch screen, and is favored by various panel manufacturers.
  • a capacitive in-cell touch panel is directly added to a TFT (Thin Film Transistor) array substrate by directly adding a touch driving electrode and a touch sensing electrode, that is, two layers are formed on the surface of the TFT array substrate.
  • the strip-shaped ITO electrodes intersecting each other, the two layers of ITO (Indium Tin Oxides) electrodes are respectively used as touch driving electrodes and touch sensing electrodes of the touch screen.
  • the coupling between the laterally disposed touch driving electrode Tx and the longitudinally disposed touch sensing electrode Rx generates a mutual capacitance C m ( Mutual Capacitance ).
  • the touch detection device detects the position of the touched point of the finger by detecting the amount of change in the current corresponding to the capacitance C m before and after the finger touches.
  • An in-cell touch panel provided by at least one embodiment of the present invention includes a touch detection chip, an upper substrate and a lower substrate disposed opposite to each other, and a plurality of the same disposed between the upper substrate and the lower substrate A self-capacitance electrode with layers disposed and insulated from each other.
  • a display device includes the above-described in-cell touch panel provided by the embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a capacitance generated between a touch driving electrode and a touch sensing electrode
  • FIG. 2 is a schematic structural diagram of an in-cell touch panel according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of driving sequence of an in-cell touch panel according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a self-capacitance electrode in an in-cell touch panel according to an embodiment of the present invention
  • 5a is a schematic diagram of a wire and a self-capacitance electrode disposed in the same layer in a same manner as a wire in an in-cell touch panel according to an embodiment of the present invention
  • FIG. 5b is a schematic diagram showing the same layer arrangement of a wire and a self-capacitance electrode in an in-cell touch panel according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a self-capacitance electrode partition of a display area in an in-cell touch panel according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of connection between a self-capacitance electrode and a conductive connection point disposed in the same layer in each area of the in-cell touch panel according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of connection between a self-capacitance electrode and a conductive connection point disposed in different layers of an in-cell touch panel according to an embodiment of the present disclosure
  • 9a and 9b are schematic structural views of a via hole or a channel in which a self-capacitance electrode is filled in a flat layer in an in-cell touch panel according to an embodiment of the present invention
  • 10a and 10b are respectively adjacent self-powers in an in-cell touch panel according to an embodiment of the present invention.
  • the opposite sides of the capacitor electrode are arranged as a structural schematic diagram of the broken line. detailed description
  • the inventor of the present application has noticed that in the structural design of the capacitive in-cell touch panel with mutual capacitance as shown in FIG. 1, the human body capacitance only couples with the projection capacitance in the mutual capacitance, and the touch driving electrode and The positive capacitance formed by the touch sensing electrodes at the opposite side reduces the signal-to-noise ratio of the touch screen, which affects the accuracy of the touch sensing in the in-cell touch screen.
  • the above structure requires an additional two film layers on the TFT array substrate, which results in an additional process required to fabricate the TFT array substrate, which increases the production cost and is not conducive to improving production efficiency.
  • An in-cell touch panel provided by the embodiment of the present invention, as shown in FIG. 2, includes: an upper substrate 01 and a lower substrate 02 that are oppositely disposed, and are disposed in a plurality of layers disposed between the upper substrate 01 and the lower substrate 02
  • the self-capacitance self-capacitance electrode 04 and the touch detection chip (not shown) for determining the touch position by detecting the amount of change in the capacitance value of each capacitor electrode during the touch period.
  • a plurality of self-capacitance electrodes 04 disposed in the same layer and insulated from each other are disposed between the upper substrate 01 and the lower substrate 02 of the touch panel by using the principle of self-capacitance.
  • the black matrix layer 03 and the self-capacitance electrode 04 are simultaneously disposed on the side of the upper substrate 01 facing the lower substrate 02 in FIG. 2 as an example.
  • the black matrix layer 03 and the self-capacitance electrode 04 may be disposed on the lower substrate 02. On, do not make a comment here.
  • the capacitance of the respective capacitor electrode 04 is a fixed value.
  • the capacitance of the corresponding self-capacitance electrode 04 is a fixed value superimposed on the human body capacitance, and the touch detection chip The touch position can be determined by detecting the amount of change in the capacitance value of each of the capacitor electrodes 04 during the touch period. Since the body capacitance can work for all Self-capacitance, compared to the way the human body capacitance can only act on the projected capacitance in the mutual capacitance, the amount of touch change caused by the human body touching the screen will be relatively large, so the signal-to-noise ratio of the touch can be effectively improved, thereby improving the touch. Control the accuracy of the induction.
  • the touch detection chip can apply a driving signal to the respective capacitor electrodes 04 during the touch period, and receive the feedback signals of the respective capacitor electrodes 04, due to the self-capacitance.
  • the amount of change in the capacitance value caused by the touch of the electrode 04 increases the RC delay of the feedback signal.
  • the touch detection chip can also determine the touch position by determining the amount of change in the capacitance value of each capacitor electrode 04 by other means such as detecting the amount of charge change, and no comment is made here.
  • the touch and display stage may also adopt a time-sharing manner.
  • the display driving chip and the touch detection chip can be integrated into one chip, thereby further reducing the production cost.
  • the time of displaying each frame (V-sync) of the touch screen is divided into a display period (Display) and a touch period (Touch).
  • the time of displaying one frame of the touch screen is 16.7 ms, and 5 ms is selected as the touch time period, and the other 11.7 ms is used as the display time period.
  • the duration of the two chips can be appropriately adjusted according to the processing capability of the IC chip, and the embodiment of the present invention is not specifically limited.
  • a gate scan signal is sequentially applied to each gate signal line Gate 1, Gate2, ...
  • the touch detection chip connected to the respective capacitor electrodes Cxi ... Cx n respectively applies driving signals to the touch driving electrodes Cxi ... Cx n simultaneously Receiving respective capacitor electrodes
  • the feedback signal of Cxi ... Cx n determines whether a touch occurs by analyzing the feedback signal to implement the touch function.
  • each self-capacitance electrode 04 disposed between the upper substrate 01 and the lower substrate 02 may be in the same layer, and therefore, the array function is realized when the touch function is implemented with respect to the mutual capacitance principle.
  • the touch screen provided by the embodiment of the present invention only one layer of the self-capacitance electrode 04 is needed to implement the touch function, which saves production cost and improves production efficiency. In an example, as shown in FIG.
  • the above-mentioned in-cell touch panel provided by the embodiment of the present invention may further include a black matrix layer 03 disposed between the upper substrate 01 and the lower substrate 02; and, the respective capacitor electrodes 04
  • the orthographic projection of the pattern on the lower substrate 02 may be located in the region of the pattern of the black matrix layer 03.
  • the patterns of the respective capacitor electrodes 04 are both disposed in the region where the pattern of the black matrix layer 03 is located, the electric field generated by the self-capacitance electrode does not affect the electric field of the pixel opening region, and therefore, does not affect the normal display;
  • the respective capacitive electrodes in the black matrix layer pattern occlusion region can also prevent the self-capacitance electrode 04 from affecting the transmittance of the touch screen.
  • the density of the touch screen is typically on the order of millimeters, so, in one example, the density and footprint of the respective capacitive electrode 04 can be selected to ensure the desired touch density based on the desired touch density.
  • the respective capacitor electrode 04 is designed as a square electrode of about 5 mm * 5 mm.
  • the density of the display is usually on the order of micrometers, so generally one self-capacitance electrode 04 can correspond to multiple pixel units in the display. In order to ensure that the pattern of the respective capacitor electrodes 04 does not occupy the open area of the pixel unit, as shown in FIG.
  • the area of the respective capacitor electrode 04 and the open area of the pixel unit may be The pattern of the corresponding position is dug, that is, the pattern of the respective capacitor electrodes 04 can be designed such that the orthographic projection on the lower substrate 02 is a grid-like structure located in the region of the pattern of the black matrix layer 03. Further, in order to ensure uniformity of display, a pattern of self-capacitance electrodes 04 is generally provided at the gap of each of the sub-pixel units in each pixel unit, and each group of RGB sub-pixel units in Fig. 4 constitutes one pixel unit.
  • the density referred to in the embodiment of the present invention is the pitch of the self-capacitance electrodes of the touch screen or the pitch (Pitch) of the pixel units of the display screen.
  • an in-cell touch panel may further include: a wire corresponding to the respective capacitor electrode 04, in order to facilitate the touch detection chip to detect the amount of change in the capacitance value of the respective capacitor electrode. 05, and a conduction connection point 06 corresponding to the self-capacitance electrode 04.
  • Each of the conductive connection points 06 can be disposed in the area where the frame glue of the in-cell touch panel is located.
  • the orthographic projection of each wire 05 on the lower substrate 02 is also located in the region of the pattern of the black matrix layer 03; the respective capacitor electrodes 04 are connected to the conduction connection point 06 through the wire 05, and are passed through the frame glue.
  • FIG. 5a shows the case of eight self-capacitance electrodes 04 in a row, and the number of the wires 05 and the conduction connection points 06 corresponding to the self-capacitance electrodes 04 may be one or more, here Not limited.
  • the wire 05 is connected to the touch detection chip 100, and the touch detection chip 100 can be disposed, for example, in one
  • the substrate is either disposed on a flexible printed circuit board.
  • the wire 05 and the conductive connection point 06 are generally disposed on the same substrate as the self-capacitance electrode 04, that is, can be simultaneously disposed on the upper substrate, but can also be disposed on the lower substrate at the same time; the trace 07 and the touch detection chip
  • the connection terminal 08 is generally disposed on the lower substrate. If the wire 05 and the conduction connection point 06 and the self-capacitance electrode 04 are disposed on the upper substrate, the conduction connection point 06 passes through the upper and lower conduction of the conductive particles (such as a gold ball) in the sealant and the frame on the lower substrate.
  • the trace 07 of the area where the glue is located is electrically connected, and then led to the connection terminal 08 of the corresponding touch detection chip through the trace 07.
  • the conduction connection point 06 is directly electrically connected to the trace 07 located in the region where the frame glue of the lower substrate is located, and then is led to the corresponding line through the trace 07.
  • the touch detection chip is connected to the terminal 08.
  • each of the wires 05 may be disposed in the same layer as the respective capacitor electrodes 04, and the wires 05 and the self-capacitance electrodes 04 as shown in FIG. 5b are disposed on the upper substrate. Between the black matrix layer 03 of 01 and the color filter layer RGB. However, since the pattern of the self-capacitance electrode 04 and the wire 05 is designed with a metal layer, in order to avoid a short circuit between the respective capacitor electrodes 04, the wires 05 connecting the respective capacitor electrodes 04 need to be mutually non-crossed. Therefore, when the wire 05 is designed by the wiring method as shown in FIG.
  • FIG. 5a that is, the wire 05 connected to all the self-capacitance electrodes 04 extends in one direction and is connected to the corresponding guides disposed in the same side region.
  • Figure 5a shows the touch dead zone formed by eight self-capacitance electrodes 04 in one row. It should be noted that only the pattern of the self-capacitance electrode 04 and the pattern of the wires 05 connected to the respective capacitor electrodes 04 are illustrated in FIG. 5a, and the pattern of each sub-pixel unit is not shown; and, for convenience of viewing, In 5a, the area occupied by the respective capacitor electrodes 04 is shown by different filling patterns.
  • the wires 05 connecting the plurality of self-capacitance electrodes in the touch dead zone pass through the touch dead zone. Therefore, the signal in the touch blind zone is relatively turbulent, so it is called a touch dead zone, that is, a touch in the area. Control performance is not guaranteed.
  • the conductive connection point 06 may be distributed on the four sides of the area where the frame glue of the in-cell touch screen is located, that is, the conductive connection point 06 is on the four sides of the area where the frame glue is located. All have distribution.
  • the conductive connection point 06 is on the four sides of the area where the frame glue is located. All have distribution.
  • the design of the above-mentioned reduced touch dead zone provided by the embodiment of the present invention is illustrated by using a 5-inch touch screen.
  • Figure 6 As shown, in order to introduce each self-capacitance electrode 04 to the corresponding conduction connection point 06, and
  • each self-capacitance electrode 04 in each area, connect the self-capacitance electrodes 04 in the area to the connection terminals (FPC Bonding Pad) 08 of the touch detection chip below the display area.
  • connection terminals FPC Bonding Pad
  • each self-capacitance electrode 04 is shown in each area in FIG. 7; the respective capacitance electrodes of the Part A area are taken out from the upper left area of the display area, and are introduced to the FPC binding through the left border of the display area.
  • the respective capacitive electrodes of the Part B area are drawn from above the display area, and then introduced from the left border of the display area to the FPC binding area; after the respective capacitive electrodes of the Panel C area are taken out from above the display area, Then, the right border of the display area is introduced into the FPC binding area; the respective capacitive electrodes of the Part D area are drawn from the upper right of the display area and then introduced to the FPC binding area through the right border of the display area; similarly, the respective Part E areas are After the capacitor electrode is taken out from the lower left of the display area, it is introduced into the FPC binding area through the left border of the display area; the respective capacitive electrodes of the Part F area are directly connected to the FPC binding area from the lower side of the display area; The respective capacitor electrodes are taken out from the lower side of the display area and directly connected to the FPC bonding area; the respective capacitors of the Part H area Drawn from the lower right of the display region, introduced into the region through the FPC binding region to the right
  • FIG. 7 only shows the connection relationship between the partial self-capacitance electrode 04 and the conduction connection point 06.
  • the size of the touch dead zone in Part A, Part D, Part E, and Part H on both sides of the display area is about 3 sub-pixel units, which is represented by h in Figure 7, to 5
  • the size of the corresponding pixel unit in the inch touch screen is estimated, and the touch dead zone is about 260 ⁇ m; the size of the touch dead zone in Part B, Part C, Part F, and Part G in the middle of the display area is about 10 sub-pixel units.
  • connection relationship between the self-capacitance electrode 04 and the conduction connection point 06 is merely an example, and can be designed according to the specific size of the touch screen in actual design.
  • the conductive connection points 06 corresponding to the respective capacitor electrodes 04 may be distributed at the side of the region where the frame glue is closest to the self-capacitance electrode 04, so that The length of the wire 05 connecting the self-capacitance electrode 04 and the conduction connection point 06 is shortened to reduce the area of the touch dead zone as much as possible.
  • the self-capacitance electrode can be 04 and the wire 05 are disposed in different layers, and the self-capacitance electrode 04 and the corresponding wire 05 are electrically connected through the via hole, so that the wiring manner as shown in FIG. 8 can be used when designing the connection relationship of the wire 05, that is, with all the self.
  • the wires 05 to which the capacitor electrodes 04 are connected extend in one direction and are connected to corresponding conductive connection points 06 provided in the same side region of the region where the frame glue is located.
  • the black matrix layer 03 may be located on a side of the upper substrate 01 facing the lower substrate 02, and may also be on the black matrix layer 03.
  • a color filter layer is provided (RGB indicates a color filter layer in Fig. 2).
  • the self-capacitance electrode 04 is disposed in the same layer as the wire 05, the respective capacitor electrode 04 and each wire 05 may be disposed between the black matrix layer 03 and the color filter layer, or disposed above the color filter layer.
  • the self-capacitance electrode 04 and the wire 05 are disposed in different layers, in order to reduce the interference of the human body capacitance on the signal transmitted on the wire, the self-capacitance electrode 04 may be disposed between the black matrix layer 03 and the color filter layer, and the wire 05 is set. Above the color filter layer, the wire 05 is connected to the self-capacitance electrode 04 through a via hole in the color filter layer, so that the self-capacitance electrode 04 can shield the signal interference caused by the wire 05 covered under itself.
  • a flat layer may be disposed between the black matrix layer 03 and the color film layer. 09, the flat layer 09 has a trapezoidal via or channel at least in a region corresponding to the pattern of the self-capacitance electrode 04; FIG.
  • FIG. 9a shows that the flat layer 09 has a trapezoidal shape in a region corresponding to the pattern of the self-capacitance electrode 04.
  • FIG. 9b shows that the flat layer 09 has a trapezoidal channel in a region corresponding to the pattern of the self-capacitance electrode 04; the pattern of the self-capacitance electrode 04 is filled at least in the via or the channel, and is filled in the via or the channel The pattern area of the self-electric self-capacitance electrode 04.
  • the convex portion viewed from the side of the finger can aggregate more charges due to the tip end, and can be improved when the finger is touched.
  • the amount of touch change increases the effect of touch sensing.
  • the human body capacitance acts on the self-capacitance of the respective capacitor electrodes 04 by directly engaging, the human body touches the screen only under the touch position.
  • the capacitance value of the self-capacitance electrode 04 has a large change amount, and the touch bit When, for example, a finger slides on the touch screen, there may be a case where the touch coordinates in the area where the self-capacitance electrode 04 is located cannot be determined.
  • the opposite sides of the adjacent two self-capacitance electrodes 04 can be set as a fold line, so as to increase the position of the touch, for example, the following two methods can be used.
  • One or a combination of the respective shapes of the respective capacitor electrodes 04 are provided: a structure in which the two stepped structures are identical in shape and matched to each other, as shown in FIG. 10a, and 2*2 self-capacitance electrodes 04 are shown in FIG. 10a;
  • the structure, the two concave-convex structures have the same shape and match each other.
  • 2*2 self-capacitance electrodes 04 are shown in Fig. 10b.
  • At least one embodiment of the present invention further provides a display device including the above-described in-cell touch panel provided by the embodiment of the present invention.
  • the display device can be any product or component having a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display device for the implementation of the display device, reference may be made to the above-described embodiment of the in-cell touch panel, and the repeated description is omitted.
  • the in-cell touch panel and the display device provided by the embodiments of the present invention use a self-capacitance principle to provide a plurality of self-capacitance electrodes disposed in the same layer and insulated from each other between the upper substrate and the lower substrate of the touch screen, when the human body does not touch the screen.
  • the capacitance of the respective capacitor electrodes is a fixed value.
  • the capacitance of the corresponding self-capacitance electrode is a fixed value superimposed on the human body capacitance, and the touch detection chip detects the respective capacitances during the touch time period. The amount of change in the capacitance of the electrode can determine the touch position.
  • the human body capacitance can act on all self-capacitances, the amount of touch change caused by the human body touching the screen is relatively large compared to the way in which the human body capacitance can only act on the projected capacitance in the mutual capacitance, so that the touch can be effectively improved. Signal-to-noise ratio, which improves the accuracy of touch sensing.
  • the touch function is implemented, the two-layer film layer is additionally added to the array substrate.
  • the touch screen provided by the embodiment of the invention only needs to add a self-capacitance electrode to realize the touch function, thereby saving Production costs increase production efficiency. The spirit and scope of the invention.

Abstract

一种内嵌式触摸屏及显示装置,该触摸屏包括:相对设置的上基板(01)和下基板(02),设置于所述上基板(01)和所述下基板(02)之间的多个同层设置且相互绝缘的自电容电极(04),以及在触控时间段通过检测各所述自电容电极的电容值变化量以判断触控位置的触控侦测芯片。这样能够实现一种触控精度较高、成本较低、生产效率较高且透过率较高的内嵌式触摸屏。

Description

内嵌式触摸屏及显示装置 技术领域
本发明实施例涉及一种内嵌式触摸屏及显示装置。 背景技术
随着显示技术的飞速发展, 触摸屏( Touch Screen Panel ) 已经逐渐遍及 人们的生活中。 目前,触摸屏按照组成结构可以分为:外挂式触摸屏(Add on Mode Touch Panel ) 、 覆盖表面式触摸屏 ( On Cell Touch Panel ) 以及内嵌式 触摸屏( In Cell Touch Panel )。外挂式触摸屏是将触摸屏与液晶显示屏( Liquid Crystal Display, LCD )分开生产, 然后贴合到一起成为具有触摸功能的液晶 显示屏, 外挂式触摸屏存在制作成本较高、光透过率较低、模组较厚等缺点。 而内嵌式触摸屏将触摸屏的触控电极内嵌在液晶显示屏内部, 可以减薄模组 整体的厚度, 又可以大大降低触摸屏的制作成本, 受到各大面板厂家青睐。
目前, 电容式内嵌触摸屏是在 TFT ( Thin Film Transistor, 薄膜场效应晶 体管) 阵列基板上直接另外增加触控驱动电极和触控感应电极实现的, 即在 TFT 阵列基板的表面制作两层相互异面相交的条状 ITO 电极, 这两层 ITO ( Indium Tin Oxides, 铟锡金属氧化物) 电极分别作为触摸屏的触控驱动电 极和触控感应电极。 如图 1所示, 横向设置的触控驱动电极 Tx和纵向设置 的触控感应电极 Rx之间耦合产生互电容 Cm ( Mutual Capacitance ) 。 当手指 触碰屏幕时, 手指的触碰会改变互电容 Cm的值, 触摸检测装置通过检测手 指触碰前后电容 Cm对应的电流的改变量, 从而检测出手指触摸点的位置。
在横向设置的触控驱动电极 Tx和纵向设置的触控感应电极 Rx之间会形 成两种互电容 Cm, 如图 1所示, 一种是对实现触摸功能有效的投射电容(图 1 中带箭头的曲线为投射电容) , 手指触碰屏幕时, 会改变投射电容值; 另 一种是对实现触摸功能无效的正对电容(带箭头的直线为正对电容) , 手指 触碰屏幕时, 正对电容值不会发生变化。 发明内容 本发明的实施例提供了一种内嵌式触摸屏及显示装置, 用以实现触控精 度较高、 成本较低、 生产效率较高且透过率较高的内嵌式触摸屏。
本发明的至少一个实施例提供的一种内嵌式触摸屏,包括触控侦测芯片, 相对设置的上基板和下基板, 以及设置于所述上基板和所述下基板之间的多 个同层设置且相互绝缘的自电容电极。
本发明的至少一个实施例提供的一种显示装置, 包括本发明实施例提供 的上述内嵌式触摸屏。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为一种触控驱动电极和触控感应电极之间产生的电容示意图; 图 2为本发明实施例提供的内嵌式触摸屏的结构示意图;
图 3为本发明实施例提供的内嵌式触摸屏的驱动时序示意图;
图 4为本发明实施例提供的内嵌式触摸屏中一个自电容电极的结构示意 图;
图 5a为本发明实施例提供的内嵌式触摸屏中釆用一种走线方式同层设 置的导线和自电容电极的示意图;
图 5b 为本发明实施例提供的内嵌式触摸屏中导线和自电容电极同层设 置的示意图;
图 6为本发明实施例提供的内嵌式触摸屏中显示区域的自电容电极分区 示意图;
图 7为本发明实施例提供的内嵌式触摸屏中各区域内同层设置的自电容 电极与导通连接点的连接示意图;
图 8为本发明实施例提供的内嵌式触摸屏中各区域异层设置的自电容电 极与导通连接点的连接示意图;
图 9a和图 9b分别为本发明实施例提供的内嵌式触摸屏中自电容电极填 充于平坦层的过孔或沟道的结构示意图;
图 10a和图 10b分别为本发明实施例提供的内嵌式触摸屏中相邻的自电 容电极相对的侧边设置为折线的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图, 对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
本申请的发明人注意到, 在如图 1所示的釆用互电容的电容式内嵌触摸 屏的结构设计中, 人体电容仅会与互电容中的投射电容发生耦合作用, 触控 驱动电极与触控感应电极在正对面处形成的正对电容会使触摸屏的信噪比降 低,这影响了内嵌式触摸屏中触控感应的准确性。并且,上述结构需要在 TFT 阵列基板上另外增加两层膜层,这导致在制作 TFT阵列基板时需要另外增加 工艺, 使生产成本增加, 不利于提高生产效率。
下面结合附图, 对本发明实施例提供的内嵌式触摸屏及显示装置的具体 实施方式进行详细地说明。
附图中各层膜层的厚度和形状不反映真实比例, 目的只是示意说明本发 明的内容。
本发明实施例提供的一种内嵌式触摸屏, 如图 2所示, 包括: 相对设置 的上基板 01和下基板 02, 设置于上基板 01和下基板 02之间的多个同层设 置且相互绝缘的自电容电极 04, 以及在触控时间段通过检测各自电容电极的 电容值变化量以判断触控位置的触控侦测芯片 (图中未示出) 。
本发明实施例提供的上述内嵌式触摸屏, 利用自电容的原理在触摸屏的 上基板 01和下基板 02之间设置多个同层设置且相互绝缘的自电容电极 04。 这里以图 2中在上基板 01面向下基板 02的一侧同时设置黑矩阵层 03和自电 容电极 04为例进行说明, 当然,也可以将黑矩阵层 03和自电容电极 04设置 在下基板 02上, 在此不做赞述。 当人体未触碰屏幕时, 各自电容电极 04所 承受的电容为一固定值, 当人体触碰屏幕时,对应的自电容电极 04所承受的 电容为固定值叠加人体电容, 触控侦测芯片在触控时间段通过检测各自电容 电极 04的电容值变化量可以判断出触控位置。由于人体电容可以作用于全部 自电容, 相对于人体电容仅能作用于互电容中的投射电容的方式, 由人体碰 触屏幕所引起的触控变化量会比较大, 因此能有效提高触控的信噪比, 从而 提高触控感应的准确性。
例如,为了能有效检测出各自电容电极 04的电容值变化量,触控侦测芯 片可以在触控时间段向各自电容电极 04施加驱动信号,并接受各自电容电极 04的反馈信号, 由于自电容电极 04被触摸引起的电容值变化量会增加反馈 信号的 RC延时,通过判断各自电容电极 04的反馈信号 RC延时即可确定自 电容电极 04是否被触摸,从而定位触控位置。 当然, 触控侦测芯片还可以通 过诸如检测电荷变化量等其他方式确认各自电容电极 04 的电容值变化量以 判断触控位置, 在此不做赞述。
为了降低显示信号和触控信号之间的相互干扰, 提高画面品质和触控准 确性, 在本发明一个实施例提供的上述触摸屏中, 触控和显示阶段还可以釆 用分时驱动的方式, 并且, 例如还可以将显示驱动芯片和触控侦测芯片整合 为一个芯片, 进一步降低生产成本。
例如, 如图 3所示的驱动时序图中, 将触摸屏显示每一帧 (V-sync ) 的 时间分成显示时间段 ( Display )和触控时间段(Touch ) 。 例如, 图 3所示 的驱动时序图中触摸屏的显示一帧的时间为 16.7ms,选取其中 5ms作为触控 时间段, 其他的 11.7ms作为显示时间段。 当然也可以根据 IC芯片的处理能 力适当的调整两者的时长, 本发明的实施例不做具体限定。 在显示时间段 ( Display ) , 对触摸屏中的每条栅极信号线 Gate 1, Gate2... ... Gate n依次施 加栅扫描信号, 对数据信号线 Data施加灰阶信号, 实现液晶显示功能。 在触 控时间段(Touch ) , 与各自电容电极 Cxi ... ... Cx n连接的触控侦测芯片向 各触控驱动电极 Cxi ... ... Cx n分别施加驱动信号, 同时接收各自电容电极
Cxi ... ... Cx n的反馈信号, 通过对反馈信号的分析判断是否发生触控, 以实 现触控功能。
本发明实施例提供的上述内嵌式触摸屏, 在上基板 01和下基板 02之间 设置的各个自电容电极 04可以同层, 因此,相对于釆用互电容原理实现触控 功能时在阵列基板内设置两层膜层的方式, 本发明实施例提供的触摸屏中仅 需要设置一层自电容电极 04即可实现触控功能,节省了生产成本,提高了生 产效率。 在一个示例中,如图 2所示,在本发明实施例提供的上述内嵌式触摸屏, 还可以包括设置于上基板 01和下基板 02之间的黑矩阵层 03; 并且, 各自电 容电极 04的图形在下基板 02上的正投影可以位于黑矩阵层 03的图形所在区 域内。
在该示例中, 由于各自电容电极 04的图形均设置在黑矩阵层 03的图形 所在的区域, 自电容电极产生的电场不会影响像素开口区域的电场, 因此, 不会影响正常显示; 并且设置在黑矩阵层图形遮挡区域的各自电容电极还可 以避免自电容电极 04影响触摸屏的透过率。
触摸屏的密度通常在毫米级, 因此, 在一个示例中, 可以根据所需的触 控密度选择各自电容电极 04的密度和所占面积以保证所需的触控密度。通常 各自电容电极 04设计为 5mm*5mm左右的方形电极。 显示屏的密度通常在 微米级, 因此一般一个自电容电极 04可对应显示屏中的多个像素单元。为了 保证各自电容电极 04的图形不占用像素单元的开口区域,如图 4所示,在一 个实施例中,可以将各自电容电极 04的图形中与像素单元的开口区域(像素 区域中的空白部分)对应的位置的图形挖去, 即可以将各自电容电极 04的图 形设计为在下基板 02上的正投影为位于黑矩阵层 03的图形所在区域内的网 格状结构。 并且, 为了确保显示的均匀性, 一般在各像素单元中的每个亚像 素单元的间隙处均设置有自电容电极 04的图形, 图 4中每一组 RGB亚像素 单元组成一个像素单元。 本发明实施例中所指的密度是触摸屏的自电容电极 的间距或者显示屏的像素单元的间距(Pitch ) 。
为了便于触控侦测芯片检测各自电容电极的电容值变化量, 在本发明一 个实施例提供的内嵌式触摸屏, 如图 5a所示, 还可以包括: 与各自电容电极 04——对应的导线 05, 以及与自电容电极 04——对应的导通连接点 06。 各 导通连接点 06可设置在内嵌式触摸屏的边框胶所在区域。为了不影响正常的 显示功能,各导线 05在下基板 02上的正投影也位于黑矩阵层 03的图形所在 区域内;各自电容电极 04通过导线 05连接至导通连接点 06后,通过位于边 框胶所在区域的走线 07与触控侦测芯片的连接端子 08 电性连接。 在图 5a 中示出了一行中 8个自电容电极 04的情况, 与自电容电极 04——对应的导 线 05以及导通连接点 06的个数可以为一个,也可以为多个,在此不做限定。 导线 05连接到触控侦测芯片 100,该触控侦测芯片 100例如可以设置在一个 基板上或者设置在柔性印刷电路板上。
例如,导线 05和导通连接点 06—般与自电容电极 04设置在同一基板上, 即可以同时设置在上基板上,但也可以同时设置在下基板上;走线 07和触控 侦测芯片的连接端子 08—般设置在下基板上。 若导线 05和导通连接点 06 与自电容电极 04设置在上基板时, 导通连接点 06会通过封框胶中的导电粒 子 (例如金球) 的上下导通作用与位于下基板的边框胶所在区域的走线 07 电性连接, 然后通过走线 07引至相应的触控侦测芯片的连接端子 08处。 若 导线 05和导通连接点 06与自电容电极 04设置在下基板时, 导通连接点 06 直接与位于下基板的边框胶所在区域的走线 07电性连接, 然后通过走线 07 引至相应的触控侦测芯片的连接端子 08处。
在一个示例中, 为了在触摸屏中尽量减少膜层数量以及构图工艺, 可以 将各导线 05与各自电容电极 04同层设置, 如图 5b所示的导线 05和自电容 电极 04均设置在上基板 01的黑矩阵层 03和彩色滤光层 RGB之间。 但是, 由于釆用一层金属层设计自电容电极 04和导线 05的图形, 为了避免各自电 容电极 04之间发生短路的现象,连接各自电容电极 04的导线 05需要互不交 叉。 因此, 釆用如图 5a所示的布线方式设计导线 05时, 即与所有自电容电 极 04连接的导线 05都沿着一个方向延伸, 且连接至设置在同一个侧边区域 内的对应的导通连接点 06上, 在触摸屏中出现触控盲区。 图 5a示出了在一 行中 8个自电容电极 04形成的触控盲区。 需要注意的是, 在图 5a中仅示意 出了自电容电极 04的图形以及与各自电容电极 04连接的导线 05的图案,未 示出各亚像素单元的图形; 并且, 为了方便观看, 在图 5a中釆用不同填充图 案示出了各自电容电极 04所占区域。在触控盲区内连接多个自电容电极的导 线 05均经过该触控盲区, 因此, 在这个触控盲区内的信号相对比较紊乱, 故 此称为触控盲区, 也就是在该区域内的触控性能无法保证。
为了尽量减小触控盲区的面积, 可以在内嵌式触摸屏的边框胶所在区域 的四个侧边均分布导通连接点 06, 即导通连接点 06在边框胶所在区域的四 个侧边均有分布。 这样, 通过导线 05将各自电容电极 04分别连接至设置在 显示区域四周的对应的导通连接点 06, 可以从总体上减小触控盲区的面积。
以一个 5寸触摸屏为例说明本发明实施例提供的上述减少触控盲区的设 计, 在 5寸触摸屏中需要的自电容电极 04数量约为 22* 12=264个。 如图 6 所示, 为了将每个自电容电极 04都引入至对应的导通连接点 06处, 且尽可
-PartH,在每个区域都将区域内的自电容电极 04逐个连接至显示区域( Panel ) 下方的触控侦测芯片的连接端子(FPC Bonding Pad ) 08处。 如图 7所示, 在 图 7中每个区域均示出了 3个自电容电极 04; Part A区域的各自电容电极从 显示区域的左上方区域引出, 经过显示区域左边框引入至 FPC 绑定区域 ( Bonding Pad ) ; Part B区域的各自电容电极从显示区域的上方引出后, 再 从显示区域的左边框引入至 FPC绑定区域; Panel C区域的各自电容电极从 显示区域的上方引出后, 再从显示区域的右边框引入至 FPC绑定区域; Part D区域的各自电容电极从显示区域的右上方引出后经过显示区域的右边框引 入至 FPC绑定区域; 同理, Part E区域的各自电容电极从显示区域的左下方 引出后, 经过显示区域的左边框引入至 FPC绑定区域; Part F区域的各自电 容电极从显示区域的下方引出后直接连接至 FPC绑定区域; Part G区域的各 自电容电极从显示区域的下方引出后直接连接至 FPC绑定区域; Part H区域 的各自电容电极从显示区域的右下方引出, 经过显示区域右边框引入至 FPC 绑定区域。
需要注意的是,为了便于观看, 图 7仅示出了部分自电容电极 04与导通 连接点 06的连接关系。从图 7可以看出,位于显示区域两侧的 Part A、 Part D、 Part E和 Part H中触控盲区的大小约为 3个亚像素单元的宽度, 在图 7中用 h表示, 以 5 寸触摸屏中对应的像素单元的大小进行估算, 触控盲区约为 260μπι; 位于显示区域中部的 Part B、 Part C、 Part F和 Part G中触控盲区的 大小约为 10个亚像素单元的宽度, 在图 7中用 w表示, 以 5寸触摸屏中对 应的像素单元的大小进行估算, 触控盲区约为 290μπι。
上述自电容电极 04与导通连接点 06的连接关系仅是举例说明, 在实际 设计时可以根据触摸屏的具体尺寸进行设计。 例如, 为了尽可能地减少触控 盲区的面积, 可以将与各自电容电极 04对应的导通连接点 06分布在离自电 容电极 04距离最近的边框胶所在区域的侧边处,这样可以尽可能地缩短连接 自电容电极 04与导通连接点 06之间的导线 05的长度,以便尽可能的减少触 控盲区的面积。
在一个示例中, 为了消除触摸屏中出现的触控盲区, 可以将自电容电极 04与导线 05异层设置, 且自电容电极 04与对应的导线 05通过过孔电性连 接,这样在设计导线 05的连接关系时可以釆用如图 8所示的布线方式, 即与 所有自电容电极 04连接的导线 05都沿着一个方向延伸, 且连接至设置在边 框胶所在区域的同一个侧边区域内的对应的导通连接点 06上。
在一个示例中, 在本发明实施例提供的上述内嵌式触摸屏中, 如图 2所 示, 黑矩阵层 03可以位于上基板 01面向下基板 02的一侧, 在黑矩阵层 03 上还可以设置有彩色滤光层(图 2中 RGB表示彩色滤光层) 。 当自电容电 极 04与导线 05同层设置时, 可以将各自电容电极 04和各导线 05设置在黑 矩阵层 03与彩色滤光层之间, 或设置在彩色滤光层之上。 当自电容电极 04 与导线 05异层设置时,为了减少人体电容对在导线上传输信号的干扰,可以 将自电容电极 04设置在黑矩阵层 03与彩色滤光层之间,将导线 05设置在彩 色滤光层之上, 导线 05通过彩色滤光层中的过孔与自电容电极 04连接, 这 样自电容电极 04可以屏蔽自身下方覆盖的的导线 05带来的信号干扰。
例如, 在本发明实施例提供的上述内嵌式触摸屏中, 由于各自电容电极 04的图形被黑矩阵层 03的图形遮挡, 因此, 各自电容电极 04的网格状结构 的图形的总面积会受限于黑矩阵层 03的图形面积。为了尽可能增大各自电容 电极 04的图形面积, 以便提高触控灵敏度, 在一个示例中, 如图 9a和图 9b 所示, 在黑矩阵层 03与彩膜层之间还可以设置有平坦层 09, 该平坦层 09至 少在与自电容电极 04的图形对应的区域具有梯形的过孔或沟道; 图 9a示出 了平坦层 09在与自电容电极 04的图形对应的区域具有梯形的过孔, 图 9b 示出了平坦层 09在与自电容电极 04的图形对应的区域具有梯形的沟道; 自 电容电极 04的图形至少填充于过孔或沟道内,且填充于过孔或沟道内的自电 自电容电极 04的图形面积。 并且, 置于过孔或沟道内的自电容电极 04具有 的凹凸状结构中, 从手指侧看过去的凸出来的部分由于其为尖端, 可以汇聚 更多的电荷, 当手指触控时可以提高触控变化量,进而提高触控感应的效果。
在一个示例中, 在本发明实施例提供的内嵌式触摸屏中, 由于人体电容 通过直接辆合的方式作用于各自电容电极 04的自电容, 因此,人体触碰屏幕 时,仅在触摸位置下方的自电容电极 04的电容值有较大的变化量,与触摸位 当例如手指在触摸屏上滑动时,可能出现不能确定自电容电极 04所在区域内 的触控坐标的情形。 因此, 在本发明实施例提供的上述内嵌式触摸屏中, 可 以将相邻的两个自电容电极 04相对的侧边均设置为折线,以便增大位于触摸 例如, 可以釆用如下两种方式之一或组合的方式设置各自电容电极 04 的整体形状: 状结构, 两阶梯状结构形状一致且相互匹配, 如图 10a所示, 图 10a中示出 了 2*2个自电容电极 04; 状结构, 两凹凸状结构形状一致且相互匹配, 如图 10b所示, 图 10b中示出 了 2*2个自电容电极 04。
基于同一发明构思, 本发明的至少一个实施例还提供了一种显示装置, 其包括本发明实施例提供的上述内嵌式触摸屏。 该显示装置可以为: 手机、 平板电脑、 电视机、 显示器、 笔记本电脑、 数码相框、 导航仪等任何具有显 示功能的产品或部件。 该显示装置的实施可以参见上述内嵌式触摸屏的实施 例, 重复之处不再赘述。
本发明实施例提供的内嵌式触摸屏及显示装置, 利用自电容的原理在触 摸屏的上基板和下基板之间设置多个同层设置且相互绝缘的自电容电极, 当 人体未触碰屏幕时, 各自电容电极所承受的电容为一固定值, 当人体触碰屏 幕时, 对应的自电容电极所承受的电容为固定值叠加人体电容, 触控侦测芯 片在触控时间段通过检测各自电容电极的电容值变化量可以判断出触控位 置。 由于人体电容可以作用于全部自电容, 相对于人体电容仅能作用于互电 容中的投射电容的方式, 由人体碰触屏幕所引起的触控变化量会比较大, 因 此能有效提高触控的信噪比, 从而提高触控感应的准确性。 并且, 相对于釆 用互电容原理实现触控功能时需要在阵列基板内另外增加两层膜层, 本发明 实施例提供的触摸屏中仅需要增加一层自电容电极即可实现触控功能, 节省 了生产成本, 提高了生产效率。 发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要 求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。 本申请要求于 2014年 1月 28日递交的中国专利申请第 201410041369.7 号的优先权, 在此全文引用上述中国专利申请公开的内容以作为本申请的一 部分。

Claims

权利要求书
1、 一种内嵌式触摸屏, 包括:
触控侦测芯片;
相对设置的上基板和下基板; 以及
设置于所述上基板和所述下基板之间的多个同层设置且相互绝缘的自电 容电极。
2、如权利要求 1所述的内嵌式触摸屏,还包括: 设置于所述上基板和所 述下基板之间的黑矩阵层, 其中,
各所述自电容电极的图形在所述下基板上的正投影位于所述黑矩阵层的 图形所在区域内。
3、如权利要求 2所述的内嵌式触摸屏, 其中,各所述自电容电极的图形 在所述下基板上的正投影为位于所述黑矩阵层的图形所在区域内的网格状结 构。
4、如权利要求 2或 3所述的内嵌式触摸屏,还包括: 与各所述自电容电 极——对应的导线, 以及与所述自电容电极——对应的导通连接点, 其中, 各所述导线在所述下基板上的正投影位于所述黑矩阵层的图形所在区域 内;
各所述导通连接点设置在所述内嵌式触摸屏的边框胶所在区域; 各所述自电容电极通过所述导线连接至所述导通连接点后, 通过位于所 述边框胶所在区域的走线与所述触控侦测芯片的连接端子电性连接。
5、如权利要求 4所述的内嵌式触摸屏, 其中,各所述导线与各所述自电 容电极同层设置。
6、如权利要求 4或 5所述的内嵌式触摸屏, 其中, 所述内嵌式触摸屏的 边框胶所在区域具有四个侧边, 所述导通连接点在所述边框胶所在区域的四 个侧边均有分布。
7、 如权利要求 4-6任一所述的内嵌式触摸屏, 其中, 与各所述自电容电 极对应的导通连接点分布在离所述自电容电极距离最近的边框胶所在区域的 侧边处。
8、 如权利要求 4-7任一所述的内嵌式触摸屏, 其中, 所述黑矩阵层位于所述上基板面向所述下基板的一侧;
在所述黑矩阵层上设置有彩色滤光层;
各所述自电容电极和各所述导线位于所述黑矩阵层与所述彩色滤光层之 间, 或位于所述彩色滤光层之上。
9、 如权利要求 4-8任一所述的内嵌式触摸屏, 其中, 所述导线与所述自 电容电极异层设置, 所述自电容电极与对应的导线通过过孔电性连接。
10、 如权利要求 4-9任一所述的内嵌式触摸屏, 其中,
所述黑矩阵层位于所述上基板面向所述下基板的一侧;
在所述黑矩阵层上还设置有彩色滤光层;
所述自电容电极位于所述黑矩阵层与所述彩色滤光层之间;
所述导线位于所述彩色滤光层之上, 通过所述彩色滤光层中的过孔与对 应的自电容电极电性连接。
11、 如权利要求 2-10任一所述的内嵌式触摸屏, 其中, 在所述黑矩阵层 与所述彩膜层之间还设置有平坦层, 所述平坦层至少在与所述自电容电极的 图形对应的区域具有梯形的过孔或沟道, 所述自电容电极的图形至少填充于 大于所述过孔或沟道的梯形底面积。
12、 如权利要求 1-10任一项所述的内嵌式触摸屏, 其中, 相邻的两个所 述自电容电极相对的侧边均为折线。
13、如权利要求 12所述的内嵌式触摸屏, 其中,相邻的两个自电容电极 相对的为折线的侧边均具有阶梯状结构,两阶梯状结构形状一致且相互匹配; 和 /或, 状结构形状一致且相互匹配。
14、如权利要求 1-13任一所述的内嵌式触摸屏,还包括:显示驱动芯片, 其中, 所述显示驱动芯片和所述触控侦测芯片整合为一个芯片。
15、 一种显示装置, 包括如权利要求 1-14任一项所述的内嵌式触摸屏。
PCT/CN2014/082043 2014-01-28 2014-07-11 内嵌式触摸屏及显示装置 WO2015113380A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/422,522 US10013121B2 (en) 2014-01-28 2014-07-11 In-cell touch panel and display device with self-capacitance electrodes
JP2016565532A JP6430536B2 (ja) 2014-01-28 2014-07-11 インセルタッチパネル及び表示装置
EP14851431.8A EP3101516B1 (en) 2014-01-28 2014-07-11 In cell touch panel and display device
KR1020157013320A KR101693132B1 (ko) 2014-01-28 2014-07-11 인-셀 터치 패널 및 디스플레이 디바이스

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410041369.7A CN103793120A (zh) 2014-01-28 2014-01-28 一种内嵌式触摸屏及显示装置
CN201410041369.7 2014-01-28

Publications (1)

Publication Number Publication Date
WO2015113380A1 true WO2015113380A1 (zh) 2015-08-06

Family

ID=50668862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082043 WO2015113380A1 (zh) 2014-01-28 2014-07-11 内嵌式触摸屏及显示装置

Country Status (6)

Country Link
US (1) US10013121B2 (zh)
EP (1) EP3101516B1 (zh)
JP (1) JP6430536B2 (zh)
KR (1) KR101693132B1 (zh)
CN (1) CN103793120A (zh)
WO (1) WO2015113380A1 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103793120A (zh) 2014-01-28 2014-05-14 北京京东方光电科技有限公司 一种内嵌式触摸屏及显示装置
CN103970392B (zh) 2014-04-18 2019-10-01 京东方科技集团股份有限公司 一种触摸屏及显示装置
KR101696511B1 (ko) 2014-05-19 2017-01-16 엘지디스플레이 주식회사 터치센서 내장형 액정 표시장치
CN104020907B (zh) * 2014-05-30 2017-02-15 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020910B (zh) * 2014-05-30 2017-12-15 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020893B (zh) * 2014-05-30 2017-01-04 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020911A (zh) 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020913A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
WO2015180315A1 (zh) * 2014-05-30 2015-12-03 京东方科技集团股份有限公司 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
CN104020908B (zh) * 2014-05-30 2017-03-01 京东方科技集团股份有限公司 一种内嵌式触摸屏的驱动方法、装置及显示装置
CN104022127B (zh) 2014-05-30 2016-10-05 京东方科技集团股份有限公司 一种阵列基板及其制作方法、以及显示装置
CN104020905B (zh) * 2014-05-30 2017-06-16 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020906B (zh) * 2014-05-30 2016-09-07 京东方科技集团股份有限公司 一种内嵌式触摸屏以及显示装置
CN104035640B (zh) 2014-05-30 2017-10-27 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020891A (zh) 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020912B (zh) 2014-05-30 2017-02-15 京东方科技集团股份有限公司 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
CN104020909B (zh) * 2014-05-30 2017-06-30 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020892B (zh) 2014-05-30 2017-07-28 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104122706A (zh) * 2014-07-14 2014-10-29 深圳市华星光电技术有限公司 彩色滤光片基板及显示装置
US9612679B2 (en) 2014-07-14 2017-04-04 Shenzhen China Star Optoelectronics Technology Co., Ltd. Color filter substrate and display apparatus
CN104142772B (zh) * 2014-07-24 2017-05-03 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104166476A (zh) 2014-07-28 2014-11-26 京东方科技集团股份有限公司 触控显示面板及其控制方法、触控显示装置
CN104216564B (zh) * 2014-09-01 2017-09-01 上海天马微电子有限公司 一种触摸屏、触摸显示面板及显示装置
CN104298409B (zh) * 2014-09-16 2017-05-03 京东方科技集团股份有限公司 触摸屏和显示装置
CN104267531B (zh) * 2014-10-11 2016-12-07 京东方科技集团股份有限公司 彩膜基板及显示装置
CN104571765B (zh) * 2015-01-09 2017-08-29 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104536619B (zh) * 2015-01-19 2017-07-11 京东方科技集团股份有限公司 触摸基板及其制作方法、显示装置
CN104678635A (zh) * 2015-03-19 2015-06-03 合肥京东方光电科技有限公司 一种显示面板和显示装置
CN106066720B (zh) * 2015-04-22 2019-04-26 财团法人工业技术研究院 感应装置
CN104880854A (zh) * 2015-06-17 2015-09-02 京东方科技集团股份有限公司 一种彩膜基板及其制备方法、显示装置及其制备方法
CN104991677B (zh) * 2015-07-28 2019-05-14 昆山龙腾光电有限公司 触控液晶显示面板及装置
CN105094483B (zh) 2015-07-28 2018-08-07 合肥京东方光电科技有限公司 自电容式触摸结构、触摸屏及显示装置
JP6629011B2 (ja) * 2015-08-31 2020-01-15 エルジー ディスプレイ カンパニー リミテッド タッチセンサおよびタッチセンサ内蔵型表示装置
CN106557214A (zh) * 2015-11-13 2017-04-05 上海宏昊企业发展有限公司 触摸点移动平滑的电容式触摸屏
CN106547412A (zh) * 2015-11-13 2017-03-29 上海宏昊企业发展有限公司 自电容互电容一体式触摸屏
KR102510818B1 (ko) 2015-12-30 2023-03-17 엘지디스플레이 주식회사 터치 센서 내장형 표시장치
CN105426030A (zh) * 2016-01-05 2016-03-23 京东方科技集团股份有限公司 触控面板及显示装置
CN105629548A (zh) * 2016-01-26 2016-06-01 京东方科技集团股份有限公司 显示基板及其制作方法和显示装置
KR102562896B1 (ko) 2016-03-18 2023-08-04 삼성디스플레이 주식회사 디스플레이 장치
KR102555596B1 (ko) * 2016-06-21 2023-07-17 삼성디스플레이 주식회사 전자 장치
KR102573208B1 (ko) * 2016-11-30 2023-08-30 엘지디스플레이 주식회사 표시패널
CN106843616B (zh) * 2017-01-03 2020-05-19 京东方科技集团股份有限公司 一种触控基板及其制作方法、触控显示装置
CN108287622B (zh) * 2017-01-10 2021-07-16 昆山国显光电有限公司 触控显示装置及其制造方法
CN107153484B (zh) * 2017-05-25 2021-04-13 上海中航光电子有限公司 一种显示面板及显示装置
CN108279518A (zh) * 2018-01-29 2018-07-13 武汉华星光电技术有限公司 内嵌式触控显示面板
US11110493B2 (en) * 2018-08-21 2021-09-07 Eastman Kodak Company Double-sided electrodynamic screen films
KR102589750B1 (ko) * 2018-08-22 2023-10-18 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
CN110362235B (zh) * 2019-07-25 2024-03-19 京东方科技集团股份有限公司 一种触控显示面板及显示装置
US11243646B2 (en) 2019-12-04 2022-02-08 Sharp Kabushiki Kaisha Display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110291961A1 (en) * 2010-05-28 2011-12-01 Au Optronics Corporation Touch-sensing display panel
CN102929031A (zh) * 2012-10-31 2013-02-13 北京京东方光电科技有限公司 彩膜基板及其制造方法、触摸显示装置及其驱动方法
CN103186304A (zh) * 2013-01-21 2013-07-03 敦泰科技有限公司 实现多点触摸识别的单层自电容触摸屏及其数据处理方法
CN103353819A (zh) * 2013-07-05 2013-10-16 浙江大学 具有高精度手写笔输入功能的自电容多点触摸屏
CN103793120A (zh) * 2014-01-28 2014-05-14 北京京东方光电科技有限公司 一种内嵌式触摸屏及显示装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101182521B1 (ko) 2005-10-28 2012-10-02 엘지디스플레이 주식회사 액정 표시 장치 및 이의 제조 방법
KR101295943B1 (ko) * 2006-06-09 2013-08-13 애플 인크. 터치 스크린 액정 디스플레이
US8125465B2 (en) * 2007-10-19 2012-02-28 Chimei Innolux Corporation Image displaying systems
JP2009211531A (ja) 2008-03-05 2009-09-17 Toshiba Mobile Display Co Ltd 表示装置
US8508495B2 (en) 2008-07-03 2013-08-13 Apple Inc. Display with dual-function capacitive elements
CN101847066A (zh) * 2009-03-25 2010-09-29 友达光电股份有限公司 互电容式触控显示装置
EP2385448B1 (de) * 2010-05-05 2013-03-13 Siemens Aktiengesellschaft Berührungssensitive Sensoranordnung
KR101803502B1 (ko) * 2011-03-09 2017-12-01 삼성디스플레이 주식회사 터치 스크린 패널
CN102955628B (zh) * 2011-08-26 2015-12-09 宸鸿科技(厦门)有限公司 触控面板的制造方法
CN103309488B (zh) * 2012-03-15 2016-08-24 宸鸿科技(厦门)有限公司 触控面板及其制造方法
KR101373044B1 (ko) * 2012-04-19 2014-03-11 삼성디스플레이 주식회사 터치 스크린 패널
US9478590B2 (en) * 2012-05-22 2016-10-25 Superc-Touch Corporation In-cell OLED touch display panel structure with metal layer for sensing
TWM445719U (zh) * 2012-05-22 2013-01-21 Inv Element Inc 具金屬感應層之內嵌式觸控顯示面板結構
KR101944503B1 (ko) * 2012-06-21 2019-04-18 삼성디스플레이 주식회사 센서 기판 및 이를 포함하는 센싱 표시 패널
CN102955636B (zh) * 2012-10-26 2015-09-09 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN202939388U (zh) * 2012-10-31 2013-05-15 北京京东方光电科技有限公司 一种彩膜基板和触摸显示装置
TWI613572B (zh) * 2012-12-03 2018-02-01 Lg伊諾特股份有限公司 電極構件及包含其之觸控面板
TWI498797B (zh) * 2012-12-13 2015-09-01 Au Optronics Corp 觸控面板及觸控顯示面板
KR102074418B1 (ko) * 2013-01-29 2020-02-07 삼성디스플레이 주식회사 플렉서블 터치 스크린 패널
KR101625176B1 (ko) * 2013-04-22 2016-05-27 엘지디스플레이 주식회사 터치스크린 일체형 표시장치용 컬러 필터 기판 및 이의 제조 방법
CN103246420B (zh) * 2013-05-13 2016-08-10 苏州欧菲光科技有限公司 单层多点电容触摸屏
CN203366301U (zh) * 2013-05-13 2013-12-25 苏州欧菲光科技有限公司 单层多点电容触摸屏
CN103294312B (zh) * 2013-05-15 2016-04-20 京东方科技集团股份有限公司 电容式触摸屏、电容式触摸屏制备方法及显示装置
CN203311397U (zh) * 2013-05-17 2013-11-27 北京京东方光电科技有限公司 一种触摸屏及显示装置
CN103309503B (zh) * 2013-05-17 2016-03-02 北京京东方光电科技有限公司 一种触摸屏及显示装置
CN103294322B (zh) * 2013-06-06 2017-07-07 敦泰电子有限公司 触控显示装置
CN103279245B (zh) 2013-06-06 2017-03-15 敦泰电子有限公司 触控显示装置
CN103941934B (zh) * 2013-07-30 2017-03-01 上海天马微电子有限公司 一种内嵌式电容触摸显示面板及内嵌式电容触摸显示装置
KR102178659B1 (ko) * 2013-12-26 2020-11-13 엘지디스플레이 주식회사 터치 스크린 패널 및 터치 스크린 패널 제조 방법
KR102281109B1 (ko) * 2013-12-31 2021-07-23 삼성디스플레이 주식회사 표시 장치
CN103885660B (zh) * 2014-03-12 2016-04-06 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020913A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110291961A1 (en) * 2010-05-28 2011-12-01 Au Optronics Corporation Touch-sensing display panel
CN102929031A (zh) * 2012-10-31 2013-02-13 北京京东方光电科技有限公司 彩膜基板及其制造方法、触摸显示装置及其驱动方法
CN103186304A (zh) * 2013-01-21 2013-07-03 敦泰科技有限公司 实现多点触摸识别的单层自电容触摸屏及其数据处理方法
CN103353819A (zh) * 2013-07-05 2013-10-16 浙江大学 具有高精度手写笔输入功能的自电容多点触摸屏
CN103793120A (zh) * 2014-01-28 2014-05-14 北京京东方光电科技有限公司 一种内嵌式触摸屏及显示装置

Also Published As

Publication number Publication date
US20160018922A1 (en) 2016-01-21
US10013121B2 (en) 2018-07-03
KR101693132B1 (ko) 2017-01-04
EP3101516B1 (en) 2022-03-02
JP2017504139A (ja) 2017-02-02
EP3101516A4 (en) 2017-08-30
JP6430536B2 (ja) 2018-11-28
EP3101516A1 (en) 2016-12-07
CN103793120A (zh) 2014-05-14
KR20150103659A (ko) 2015-09-11

Similar Documents

Publication Publication Date Title
WO2015113380A1 (zh) 内嵌式触摸屏及显示装置
WO2015180356A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
WO2015180321A1 (zh) 内嵌式触摸屏及显示装置
WO2015158083A1 (zh) 触摸屏及显示装置
US10198130B2 (en) In-cell touch panel and display device
US10067614B2 (en) In-cell touch panel and display device
US9830028B2 (en) In-cell touch panel with self-capacitive electrodes and display device
WO2015180322A1 (zh) 内嵌式触摸屏以及显示装置
US10459573B2 (en) In-cell touch panel and display device
US9519374B2 (en) In-cell touch panel and display device
US9830029B2 (en) In-cell touch panel and display device
WO2015180359A1 (zh) 阵列基板及其制作方法、以及显示装置
WO2015180313A1 (zh) 内嵌式触摸屏及显示装置
WO2015180303A1 (zh) 内嵌式触摸屏及显示装置
WO2015180316A1 (zh) 内嵌式触摸屏及显示装置
WO2015180315A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
WO2015180274A1 (zh) 内嵌式触摸屏及显示装置
WO2016041301A1 (zh) 触摸屏、其触控定位方法及显示装置
WO2015180358A1 (zh) 阵列基板及其制作方法和显示装置
WO2016119408A1 (zh) 触控面板、显示装置及触摸驱动方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14422522

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014851431

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014851431

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157013320

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016565532

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851431

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE