WO2015180313A1 - 内嵌式触摸屏及显示装置 - Google Patents

内嵌式触摸屏及显示装置 Download PDF

Info

Publication number
WO2015180313A1
WO2015180313A1 PCT/CN2014/087004 CN2014087004W WO2015180313A1 WO 2015180313 A1 WO2015180313 A1 WO 2015180313A1 CN 2014087004 W CN2014087004 W CN 2014087004W WO 2015180313 A1 WO2015180313 A1 WO 2015180313A1
Authority
WO
WIPO (PCT)
Prior art keywords
disposed
self
capacitance
touch panel
electrodes
Prior art date
Application number
PCT/CN2014/087004
Other languages
English (en)
French (fr)
Inventor
王海生
董学
薛海林
刘英明
赵卫杰
丁小梁
杨盛际
刘红娟
王磊
王春雷
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP14863070.0A priority Critical patent/EP3151100B1/en
Priority to US14/648,090 priority patent/US10031627B2/en
Publication of WO2015180313A1 publication Critical patent/WO2015180313A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/047Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using sets of wires, e.g. crossed wires
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • Embodiments of the present invention relate to an in-cell touch panel and display device.
  • the Touch Screen Panel has gradually spread throughout people's lives.
  • the touch screen can be divided into an Add-on Mode Touch Panel, an On-Cell Touch Panel, and an In-Cell Touch Panel.
  • the external touch screen is produced by separately separating the touch screen from the liquid crystal display (LCD), and then bonding them together to form a liquid crystal display with touch function.
  • the external touch screen has high manufacturing cost, low light transmittance, and mode.
  • the group is thicker.
  • the in-cell touch screen embeds the touch electrode of the touch screen in the interior of the liquid crystal display, which can reduce the overall thickness of the module, and can greatly reduce the manufacturing cost of the touch screen, and is highly valued by the major panel manufacturers.
  • an in-cell touch screen utilizes the principle of mutual capacitance or self-capacitance to detect the touch position of a finger.
  • a plurality of self-capacitance electrodes arranged in the same layer and insulated from each other can be disposed in the touch screen.
  • the capacitance of the respective capacitor electrodes is a fixed value
  • the capacitance of the corresponding self-capacitance electrode is a fixed value superimposed on the human body capacitance.
  • the touch detection chip can determine the touch position by detecting a change in the capacitance value of each capacitor electrode during the touch period.
  • the capacitance of the human body can only act on the projection capacitance in the mutual capacitance.
  • the touch variation caused by the human body touching the screen is greater than the touch screen produced by the mutual capacitance principle.
  • the capacitive touch screen can effectively improve the signal-to-noise ratio of the touch relative to the mutual-capacitance touch screen, thereby improving the accuracy of the touch sensing.
  • At least one embodiment of the present invention provides an in-cell touch panel and a display device capable of reducing the inside The production cost of the embedded touch screen and the improvement of production efficiency.
  • At least one embodiment of the present invention provides an in-cell touch panel including a first substrate and a second substrate disposed on a side of the second substrate facing the first substrate, and a touch electrode a detecting chip; wherein the pixel electrode layer comprises a plurality of mutually insulated pixel electrodes and self-capacitance electrodes; each of the pixel electrodes is arranged in an array, and the patterns of the self-capacitance electrodes are located in two adjacent ones At the gap of the pixel electrode.
  • At least one embodiment of the present invention provides a display device including the in-cell touch panel described above.
  • FIG. 1 is a schematic structural diagram of an in-cell touch panel according to an embodiment of the present invention.
  • FIG. 2 is a schematic top view of an in-cell touch panel according to an embodiment of the present invention.
  • 3a and 3b are schematic diagrams showing driving timings of an in-cell touch panel according to an embodiment of the present invention.
  • FIG. 4 and FIG. 5 are respectively a schematic top view of the in-cell touch panel according to an embodiment of the present invention.
  • FIG. 6 and FIG. 7 are respectively a top view of the in-cell touch panel according to an embodiment of the present invention.
  • each film layer in the drawings do not reflect the true scale, and are merely intended to illustrate the present invention.
  • At least one embodiment of the present invention provides an in-cell touch panel, as shown in FIG. 1 , including: a first substrate 01 and a second substrate 02 disposed opposite to each other, and disposed on a side of the second substrate 02 facing the first substrate 01
  • the pixel electrode layer 03 includes a plurality of mutually insulated pixel electrodes 05 and self-capacitance electrodes 06; each of the pixel electrodes 05 is arranged in an array, and the patterns of the respective capacitor electrodes 06 are located at the adjacent two pixel electrodes 05. At the gap.
  • the touch detection chip 04 is configured to determine the touch position by detecting a change in the capacitance value of the respective capacitor electrode 06 during the touch time period. As shown in FIG. 1 , the touch detection chip 04 is disposed on the second substrate 02 , but the present invention is not limited thereto, and may be disposed on the first substrate 01 or connected to the second substrate 02 or the like through a flexible circuit board or the like.
  • the self-capacitance electrode 06 disposed in the same layer as the pixel electrode 05 is disposed at the gap of each pixel electrode 05 of the touch screen by using the principle of self-capacitance, and the touch detection chip 04 is The touch time period can determine the touch position by detecting the change in the capacitance value of the respective capacitor electrode 06. Since the touch screen provided by the embodiment of the present invention designs the structure of the pixel electrode layer, a self-capacitance electrode is formed at the gap of each pixel electrode. Therefore, the in-cell touch panel provided by the embodiment of the present invention can save the production cost and improve the production efficiency on the basis of the existing array substrate preparation process without adding an additional process.
  • the touch screen provided by the embodiment of the present invention uses the gap of the pixel electrode 05 to form the self-capacitance electrode 06.
  • the touch and display phase can be used for time-division driving.
  • the display driver chip and the touch detection chip can also be integrated into one chip, which can further reduce the production cost.
  • the time of displaying each frame (V-sync) of the touch screen is divided into a display time period (Display) and a touch time period (Touch), for example, as shown in FIG. 3a and
  • the time of displaying one frame of the touch screen is 16.7 ms, and 5 ms is selected as the touch time period, and the other 11.7 ms is used as the display time period.
  • the duration of the two chips can be appropriately adjusted according to the processing capability of the IC chip, and is not specifically limited herein.
  • a gate scan signal is sequentially applied to each of the gate signal lines Gate1, Gate2, ..., Gaten in the touch screen, and a gray scale signal is applied to the data signal line Data to realize a liquid crystal display function.
  • the touch detection chip connected to the respective capacitor electrodes Cx1 . . . Cxn simultaneously applies driving signals to the respective capacitor electrodes Cx1 . . . Cx n while receiving the respective capacitor electrodes Cx1.
  • ... Cx n feedback signal as shown in FIG. 3b, the touch detection chip connected to the respective capacitance electrodes Cx1 ... Cx n sequentially applies driving signals to the respective capacitance electrodes Cx1 ... Cx n to respectively receive respective capacitances.
  • Feedback signals for electrodes Cx1...Cx n here Without limitation, the touch signal function can be realized by analyzing the feedback signal to determine whether touch is generated.
  • the density of the touch screen is usually on the order of millimeters. Therefore, the density and the occupied area of the respective capacitor electrodes 06 can be selected according to the required touch density to ensure the required touch density.
  • the respective capacitor electrodes 06 are designed to be 5 mm*. A square electrode of about 5 mm may of course be of other shapes.
  • the density of the display screen is usually on the order of micrometers. Therefore, generally one self-capacitance electrode 06 corresponds to a plurality of pixel units in the display screen.
  • the pattern of the self-capacitance electrode 06 is disposed at the gap of each pixel electrode.
  • the pattern of the respective capacitor electrodes 06 is a grid-like structure including a plurality of meshes, and the grid-like structure The mesh corresponds to the pixel electrode.
  • Figure 2 shows a pattern of a self-capacitance electrode 06.
  • each self-capacitance electrode 06 can be connected to the touch detection chip 04 through a single wire 07, and thus is generally included in the touch screen.
  • the self-capacitance electrode 06 is connected to the plurality of wires 07 of the touch detection chip 04.
  • the pattern of the wire 07 and the self-capacitance electrode 06 may be disposed in the same film layer, that is, may be prepared simultaneously with the pattern of the pixel electrode; or the pattern of the wire 07 and the self-capacitance electrode 06 may be disposed in a different layer, that is, a separate composition is adopted.
  • the process produces a pattern of wires 07.
  • the self-capacitance electrode 06 and the wire 07 are disposed in the same layer to form a touch dead zone, and a plurality of self-capacitance electrodes are connected in the touch blind zone.
  • the wire 07 of 06 passes through the touch dead zone, so the signal in the touch dead zone is relatively turbulent, that is, the touch performance in the area cannot be guaranteed.
  • the wire 07 and the self-capacitance electrode 06 are generally disposed in different layers.
  • the pattern of each wire 07 is generally The non-opening regions of the respective pixel units are disposed, for example, the orthographic projections of the patterns of the respective wires 07 on the second substrate 02 are located at the gaps between the adjacent two pixel electrodes 05.
  • the gate signal line disposed on the side of the second substrate 02 facing the first substrate 01 may be further included.
  • the gate signal line 08 and the data signal line 09 are located in an array structure, and the array structure may further include a thin film transistor (TFT) for each sub-pixel unit and as a switching element, and the TFT controls charging and discharging of the corresponding pixel electrode. .
  • TFT thin film transistor
  • the general guide The extending direction of the line 07 is set to be the same as the gate signal line 08 or set to be the same as the data signal line 09. That is, generally, the extending directions of the respective wires 07 are uniform.
  • the wire 07 connected to the self-capacitance electrode 06 can be the same as the gate signal line 08.
  • the layer is set or set in the same layer as the data signal line 09.
  • each adjacent two rows of pixel electrodes 05 is a pixel group; two gate signal lines are disposed between two rows of pixel electrodes 05 of one pixel group. 08, for providing a gate scan signal for the two rows of pixel electrodes 05, respectively.
  • the position of the gate signal line 08 between adjacent pixel groups can be saved.
  • the wires 07 can be disposed at the gaps between adjacent pixel groups and disposed in the same layer as the gate signal lines 08.
  • the wire 07 is electrically connected to the corresponding self-capacitance electrode 06 through the via.
  • the array substrate adopts a double gate structure, and on the second substrate 02, two gate signal lines 08 are disposed between the pixel electrodes 05 of adjacent rows; and each adjacent two columns of pixels
  • the electrode 05 i.e., the sub-pixel unit
  • the wire 07 can be disposed at a gap between adjacent pixel groups and disposed in the same layer as the data signal line.
  • the wire 07 is electrically connected to the corresponding self-capacitance electrode 06 through the via.
  • the pixel electrode layer is generally made of an ITO material, and the resistance of the ITO material is high, in order to minimize the resistance and increase the signal-to-noise ratio of the electrical signal transmitted by the respective capacitor electrode 06, the self-capacitance electrode 06 and the corresponding wire can be 07 is electrically connected through a plurality of vias, as shown in FIG. 6.
  • the electrical resistance of the entire electrode can be minimized, thereby improving the signal-to-noise ratio when the electrodes transmit signals.
  • each of the wires 07 when designing each of the wires 07, as shown in FIG. 7, after the wires 07 and the corresponding self-capacitance electrodes 06 are electrically connected, the original wires can be penetrated.
  • the entire wire of the entire panel is broken, and a wire 07 and a plurality of metal wires 10 disposed in the same layer as the wire 07 and insulated from each other are formed; each of the metal wires 10 and the wires 07 are in the same straight line, and a self-capacitor overlapping
  • the electrodes 06 are connected in parallel, that is, electrically connected through the via holes.
  • the above design can make full use of the gap between adjacent groups of pixel units, and utilizes the aperture ratio of the touch screen while utilizing
  • the redundant part of the wire is provided with a metal wire having a lower resistance value, and the metal wire having a lower resistance value is connected in parallel with the respective capacitance electrode having a higher resistance value, thereby minimizing the resistance of the respective capacitor electrode.
  • the above-mentioned in-cell touch panel provided by at least one embodiment of the present invention is applicable to both a twisted nematic (TN) liquid crystal display and an advanced dual-dimensional field switch (ADS) type liquid crystal display.
  • ADS advanced dual-dimensional field switch
  • IPS In-Plane Switch
  • the common electrode is located as a plate electrode in the lower layer (closer to the substrate), and the pixel electrode is located as the slit electrode in the upper layer (closer to the liquid crystal layer), in the pixel electrode and the common electrode An insulating layer is provided between them.
  • the pixel electrode is located as a plate electrode in the lower layer (closer to the substrate), and the common electrode is located as the slit electrode in the upper layer (closer to the liquid crystal layer), and is disposed between the pixel electrode and the common electrode. There is insulation.
  • the pixel electrode 05 and the respective capacitor electrode 06 disposed in the same layer may be disposed on the common electrode or may be disposed under the common electrode, which is not limited herein. Further, in order to increase the change caused by the self-capacitance electrode 06 sensing the human body capacitance during the touch time period, the respective capacitor electrode 06 and the pixel electrode 05 are generally disposed above the common electrode in the second substrate 02 (ie, further away from the substrate). That is, the ADS mode is adopted to make the self-capacitance electrode 06 as close as possible to the first substrate 01.
  • Each of the film layers on the second substrate 02 can be formed by any known patterning process.
  • 8 patterning processes can be employed: gate and gate line patterning ⁇ active layer patterning ⁇ first insulating layer patterning ⁇ data lines and sources Drain pattern ⁇ resin layer pattern ⁇ common electrode pattern ⁇ second insulating layer pattern ⁇ pixel electrode layer patterning; also according to the actual design, 7-time patterning process, 6-time patterning process or 5-time patterning process, not limited here .
  • At least one embodiment of the present invention further provides a display device, including the above-mentioned in-cell touch panel provided by at least one embodiment of the present invention, which may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame. , navigation, etc. Any product or component that has a display function.
  • a display device including the above-mentioned in-cell touch panel provided by at least one embodiment of the present invention, which may be: a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame. , navigation, etc. Any product or component that has a display function.
  • the display device reference may be made to the above embodiment of the in-cell touch panel, and the repeated description is omitted.
  • the in-cell touch panel and the display device provided by at least one embodiment of the present invention use a self-capacitance principle to provide a self-capacitance electrode disposed in the same layer as the pixel electrode at a gap of each pixel electrode of the touch screen, and the touch detection chip is The touch time period can determine the touch position by detecting the change in the capacitance value of the respective capacitor electrodes.
  • the touch screen provided by the embodiment of the present invention is a structure of a pixel electrode layer.
  • the row change forms a self-capacitance electrode at the original gap of each pixel electrode. Therefore, on the basis of the known array substrate preparation process, no additional process is required, the production cost is saved, and the production efficiency is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Input By Displaying (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种内嵌式触摸屏及显示装置,利用自电容原理,在触摸屏的各像素电极(05)的间隙处设置与像素电极(05)同层设置的自电容电极(06),触控侦测芯片(04)在触控时间段通过检测各自电容电极(06)的电容值变化可以判断出触控位置。该触摸屏在阵列基板制备工艺的基础上,不需要增加额外的工艺,节省了生产成本,提高了生产效率。

Description

内嵌式触摸屏及显示装置 技术领域
本发明的实施例涉及一种内嵌式触摸屏及显示装置。
背景技术
随着显示技术的飞速发展,触摸屏(Touch Screen Panel)已经逐渐遍及人们的生活中。目前,触摸屏按照组成结构可以分为:外挂式触摸屏(Add-on Mode Touch Panel)、覆盖表面式触摸屏(On-Cell Touch Panel)、以及内嵌式触摸屏(In-Cell Touch Panel)。外挂式触摸屏是将触摸屏与液晶显示屏(Liquid Crystal Display,LCD)分开生产,然后贴合到一起成为具有触摸功能的液晶显示屏,外挂式触摸屏制作成本较高、光透过率较低、模组较厚。而内嵌式触摸屏将触摸屏的触控电极内嵌在液晶显示屏内部,可以减薄模组整体的厚度,又可以大大降低触摸屏的制作成本,受到各大面板厂家重视。
目前,内嵌(In-cell)式触摸屏是利用互电容或自电容的原理实现检测手指触摸位置。利用自电容的原理可以在触摸屏中设置多个同层设置且相互绝缘的自电容电极,当人体未触碰屏幕时,各自电容电极所承受的电容为一固定值,当人体触碰屏幕时,对应的自电容电极所承受的电容为固定值叠加人体电容。触控侦测芯片在触控时间段通过检测各自电容电极的电容值变化可以判断出触控位置。由于人体电容可以作用于全部自电容,相对于人体电容仅能作用于互电容中的投射电容,由人体碰触屏幕所引起的触控变化量会大于利用互电容原理制作出的触摸屏,因此自电容的触摸屏相对于互电容的触摸屏能有效提高触控的信噪比,从而提高触控感应的准确性。
在上述电容式内嵌触摸屏的结构设计中,需要在显示面板内部增加新的膜层以形成相应电极等,导致在制作面板时需要增加新的工艺,使生产成本增加,不利于提高生产效率。
发明内容
本发明至少一实施例提供了一种内嵌式触摸屏及显示装置,能够降低内 嵌式触摸屏的生产成本、提高生产效率。
本发明至少一实施例提供一种内嵌式触摸屏,包括相对而置的第一基板和第二基板设置于所述第二基板面向所述第一基板的一侧的像素电极层,以及触控侦测芯片;其中,所述像素电极层包括多个相互绝缘的像素电极和自电容电极;各所述像素电极呈阵列排布,各所述自电容电极的图形位于相邻的两个所述像素电极的间隙处。
本发明至少一实施例提供一种显示装置,包括上述所述的内嵌式触摸屏。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明实施例提供的内嵌式触摸屏的结构示意图;
图2为本发明实施例提供的内嵌式触摸屏的俯视示意图之一;
图3a和图3b分别为本发明实施例提供的内嵌式触摸屏的驱动时序示意图;
图4和图5分别为本发明实施例提供的内嵌式触摸屏的俯视示意图之二;
图6和图7分别为本发明实施例提供的内嵌式触摸屏的俯视示意图之三。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
附图中各膜层的厚度和形状不反映真实比例,目的只是示意说明本发明内容。
本发明至少一实施例提供一种内嵌式触摸屏,如图1所示,包括:相对设置的第一基板01和第二基板02,设置于第二基板02面向第一基板01的一侧的像素电极层03,以及触控侦测芯片(IC)04。
如图2所示,像素电极层03包括多个相互绝缘的像素电极05和自电容电极06;各像素电极05呈阵列排布,各自电容电极06的图形位于相邻的两个像素电极05的间隙处。
触控侦测芯片04用于在触控时间段通过检测各自电容电极06的电容值变化以判断触控位置。如图1所示,触控侦测芯片04设置在第二基板02上,但是本发明不限于此,也可以设置第一基板01上,或者通过柔性电路板等连接至第二基板02等。
本发明实施例提供的上述内嵌式触摸屏,利用自电容的原理,在触摸屏的各像素电极05的间隙处,设置与像素电极05同层设置的自电容电极06,触控侦测芯片04在触控时间段通过检测各自电容电极06的电容值变化可以判断出触控位置。由于本发明实施例提供的触摸屏是将像素电极层的结构进行设计,在各像素电极的间隙处形成自电容电极。因此,本发明实施例提供的内嵌式触摸屏,可在现有的阵列基板制备工艺的基础上,不需要增加额外的工艺,节省了生产成本,提高了生产效率。
例如,由于本发明实施例提供的上述触摸屏采用像素电极05的间隙制作自电容电极06,为了减少显示和触控信号之间的相互干扰,在实施时,可以采用触控和显示阶段分时驱动的方式。在一个具体实施例中,还可以将显示驱动芯片和触控侦测芯片整合为一个芯片,这可以进一步降低生产成本。
例如:如图3a和图3b所示的驱动时序图中,将触摸屏显示每一帧(V-sync)的时间分成显示时间段(Display)和触控时间段(Touch),例如如图3a和图3b所示的驱动时序图中触摸屏的显示一帧的时间为16.7ms,选取其中5ms作为触控时间段,其他的11.7ms作为显示时间段。当然也可以根据IC芯片的处理能力适当的调整两者的时长,在此不做具体限定。在显示时间段(Display),对触摸屏中的每条栅极信号线Gate1,Gate2……Gaten依次施加栅扫描信号,对数据信号线Data施加灰阶信号,以实现液晶显示功能。在触控时间段(Touch),如图3a所示,与各自电容电极Cx1……Cxn连接的触控侦测芯片向各自电容电极Cx1……Cx n同时施加驱动信号,同时接收各自电容电极Cx1……Cx n的反馈信号;也可以如图3b所示,与各自电容电极Cx1……Cx n连接的触控侦测芯片向各自电容电极Cx1……Cx n依次施加驱动信号,分别接收各自电容电极Cx1……Cx n的反馈信号,在此 不做限定,通过对反馈信号的分析判断是否发生触控,以实现触控功能。
一般地,触摸屏的密度通常在毫米级,因此,可以根据所需的触控密度选择各自电容电极06的密度和所占面积以保证所需的触控密度,通常各自电容电极06设计为5mm*5mm左右的方形电极,当然也可以是其他形状。而显示屏的密度通常在微米级,因此,一般一个自电容电极06会对应显示屏中的多个像素单元。并且,自电容电极06的图形是设置在各像素电极的间隙处,这样,如图2所示,一般各自电容电极06的图形为包括多个网孔的网格状结构,该网格状结构的网孔对应于像素电极。图2示出了一个自电容电极06的图形。
在采用自电容原理设计触摸屏时,如图4和图5所示,一般每一个自电容电极06可通过单独的一条导线07与触控侦测芯片04连接,由此一般在触摸屏中还包括用于将自电容电极06连接至触控侦测芯片04的多条导线07。
例如,可以将导线07与自电容电极06的图形设置在同一膜层,即可以和像素电极的图形同时制备;也可以将导线07与自电容电极06的图形异层设置,即采用单独的构图工艺制作导线07的图形。
将导线07和自电容电极06同层设置虽然可以避免增加新的构图工艺,但是,将自电容电极06和导线07同层设置会形成触控盲区,在触控盲区内连接多个自电容电极06的导线07均经过该触控盲区,因此,在这个触控盲区内的信号相对比较紊乱,也就是在该区域内的触控性能无法保证。基于上述考虑,优选地,一般将导线07和自电容电极06异层设置。
进一步地,不管是将导线07和自电容电极06异层设置,还是将导线07与自电容电极06同层设置,为了使导线07的图形不影响正常的显示操作,一般将各导线07的图形设置于各像素单元的非开口区域,例如将各导线07的图形在第二基板02的正投影均位于相邻的两个像素电极05的间隙处。
在本发明至少一实施例提供的上述触摸屏中,如图4和图5所示,还可以包括:设置于第二基板02面向第一基板01的一侧的相互交叉而置的栅极信号线08和数据信号线09。栅极信号线08和数据信号线09位于阵列结构之中,该阵列结构还可以包括用于每个亚像素单元并且作为开关元件的薄膜晶体管(TFT),该TFT控制相应的像素电极的充放电。
为了便于通过导线07将自电容电极06与触控侦测芯片04连接,一般导 线07的延伸方向设置为与栅极信号线08相同,或设置为与数据信号线09相同。即一般各导线07的延伸方向均一致。
在本发明至少一实施例提供的触摸屏中,为了尽可能的不增加新的膜层,保证生产效率和降低生产成本,例如可以将与自电容电极06连接的导线07与栅极信号线08同层设置,或与数据信号线09同层设置。
例如,如图4所示,在第二基板02上,以每相邻的两行像素电极05为一个像素组;在一个像素组的两行像素电极05之间设置有两条栅极信号线08,用于分别为该两行像素电极05提供栅极扫描信号。通过变更相邻两行像素电极05之间的栅极信号线08和TFT开关的位置,可以节省出相邻像素组之间栅极信号线08的位置。这样,如图4所示,就可以将导线07设置在相邻的像素组之间的间隙处,且与栅极信号线08同层设置。导线07与对应的自电容电极06通过过孔电连接。
例如,如图5所示,阵列基板采用双栅结构,在第二基板02上,在相邻行的像素电极05之间均设置两条栅极信号线08;且每相邻的两列像素电极05(即亚像素单元)设为一个像素组,一个像素组中的两列像素电极共用一条位于该两列像素电极05之间的数据信号线09。通过增加一倍栅极信号线08的数量,可以节省出相邻像素组之间数据信号线09的位置。这样,如图5所示,就可以将导线07设置在相邻的像素组之间的间隙处,且与数据信号线同层设置。导线07与对应的自电容电极06通过过孔电连接。
由于像素电极层一般由ITO材料制成,而ITO材料的电阻较高,为了最大限度的降低其电阻,提高各自电容电极06传递电信号的信噪比,可以将自电容电极06与对应的导线07通过多个过孔电性相连,如图6所示。相当于将ITO电极和多个由导线形成的金属电阻并联,这样能最大限度的减少电极整体的电阻,从而提高电极传递信号时的信噪比。
进一步地,为了进一步降低自电容电极06的整体电阻,在设计各条导线07时,如图7所示,在满足各导线07与对应的自电容电极06电性连接后,还可以将原来贯穿整个面板的整条的导线断开,形成导线07和与导线07同层设置且相互绝缘的多条金属线10;各金属线10与各导线07位于同一直线,且与交叠的一自电容电极06并联,即通过过孔电性相连。上述这种设计能充分利用相邻组像素单元之间的间隙,在保证触摸屏的开口率的同时,利用了 导线的冗余部分,设置电阻值较低的金属线,并将电阻值较低的金属线与电阻值较高的各自电容电极并联,能最大程度的降低各自电容电极的电阻。
本发明至少一实施例提供的上述内嵌式触摸屏既适用于扭转向列(Twisted Nematic,TN)型液晶显示屏,也适用于高级超维场开关(Adwanced Dimension Switch,ADS)型液晶显示屏和平面内开关(In-Plane Switch,IPS)型液晶显示屏。
例如,在ADS型液晶面板的第二基板上,公共电极作为板状电极位于下层(更靠近衬底基板),像素电极作为狭缝电极位于上层(更靠近液晶层),在像素电极和公共电极之间设有绝缘层。而HADS型液晶面板的阵列基板上,像素电极作为板状电极位于下层(更靠近衬底基板),公共电极作为狭缝电极位于上层(更靠近液晶层),在像素电极和公共电极之间设有绝缘层。
根据上述触摸屏具体应用的液晶显示面板的模式,同层设置的像素电极05和各自电容电极06可以设置于公共电极之上,也可以设置于公共电极之下,在此不做限定。进一步地,为了增加在触控时间段自电容电极06感知人体电容带来的变化,一般将由各自电容电极06和像素电极05设置在第二基板02中的公共电极的上方(即更远离基板),即采用ADS模式,以尽量使自电容电极06接近第一基板01。
可以采用已知的任意种构图流程制作第二基板02上的各膜层,例如可以采用8次构图工艺:栅极和栅线构图→有源层构图→第一绝缘层构图→数据线和源漏极构图→树脂层构图→公共电极构图→第二绝缘层构图→像素电极层构图;也可以根据实际设计,采用7次构图工艺、6次构图工艺或5次构图工艺,在此不做限定。
本发明至少一实施例还提供了一种显示装置,包括本发明至少一实施例提供的上述内嵌式触摸屏,该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述内嵌式触摸屏的实施例,重复之处不再赘述。
本发明至少一实施例提供的上述内嵌式触摸屏及显示装置,利用自电容的原理,在触摸屏的各像素电极的间隙处设置与像素电极同层设置的自电容电极,触控侦测芯片在触控时间段通过检测各自电容电极的电容值变化可以判断出触控位置。由于本发明实施例提供的触摸屏是将像素电极层的结构进 行变更在各像素电极原有的间隙处形成自电容电极,因此,在已知的阵列基板制备工艺的基础上,不需要增加额外的工艺,节省了生产成本,提高了生产效率。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2014年5月30日递交的中国专利申请第201410240493.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (10)

  1. 一种内嵌式触摸屏,包括:相对而置的第一基板和第二基板,设置于所述第二基板面向所述第一基板的一侧的像素电极层,以及触控侦测芯片;其中,
    所述像素电极层包括多个相互绝缘的像素电极和自电容电极;各所述像素电极呈阵列排布,各所述自电容电极的图形位于相邻的两个所述像素电极的间隙处所述触控侦测芯片用于在触控时间段通过检测各所述自电容电极的电容值变化以判断触控位置。
  2. 如权利要求1所述的内嵌式触摸屏,其中,各所述自电容电极的图形为包括多个网孔的网格状结构,所述多个像素电极对应于所述多个网孔。
  3. 如权利要求1或2所述的内嵌式触摸屏,还包括:用于将所述自电容电极连接至所述触控侦测芯片的多条导线。
  4. 如权利要求3所述的内嵌式触摸屏,其中,所述导线与所述自电容电极异层设置。
  5. 如权利要求4所述的内嵌式触摸屏,其中,各所述导线的图形在所述第二基板上的正投影位于相邻的两个所述像素电极的间隙处。
  6. 如权利要求5所述的内嵌式触摸屏,还包括:设置于所述第二基板面向所述第一基板的一侧的相互交叉而置的栅极信号线和数据信号线;
    其中,所述导线的延伸方向与所述栅极信号线相同或与所述数据信号线相同。
  7. 如权利要求6所述的内嵌式触摸屏,其中,以每相邻的两行像素电极为一个像素组,在该两行像素电极之间设置有两条栅极信号线分别为该两行像素电极提供栅极扫描信号;
    所述导线设置在相邻的像素组之间的间隙处,且与所述栅极信号线同层设置。
  8. 如权利要求6所述的内嵌式触摸屏,其中,相邻行的像素电极之间设置有两条栅极信号线;且每相邻的两列像素电极为一个像素组,共用一条位于该两列像素电极之间的数据信号线;
    所述导线设置在相邻的像素组之间的间隙处,且与所述数据信号线同层 设置。
  9. 如权利要求7或8所述的内嵌式触摸屏,还包括:与各条导线同层设置且相互绝缘的多条金属线;
    其中,各所述金属线与各条导线位于同一直线,且与交叠的一所述自电容电极并联。
  10. 一种显示装置,包括如权利要求1-9任一项所述的内嵌式触摸屏。
PCT/CN2014/087004 2014-05-30 2014-09-20 内嵌式触摸屏及显示装置 WO2015180313A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14863070.0A EP3151100B1 (en) 2014-05-30 2014-09-20 Embedded touchscreen and display device
US14/648,090 US10031627B2 (en) 2014-05-30 2014-09-20 In-cell touch panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410240493.6 2014-05-30
CN201410240493.6A CN104020910B (zh) 2014-05-30 2014-05-30 一种内嵌式触摸屏及显示装置

Publications (1)

Publication Number Publication Date
WO2015180313A1 true WO2015180313A1 (zh) 2015-12-03

Family

ID=51437697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087004 WO2015180313A1 (zh) 2014-05-30 2014-09-20 内嵌式触摸屏及显示装置

Country Status (4)

Country Link
US (1) US10031627B2 (zh)
EP (1) EP3151100B1 (zh)
CN (1) CN104020910B (zh)
WO (1) WO2015180313A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2492784B1 (en) * 2011-02-25 2021-02-24 LG Display Co., Ltd. Touch sensor integrated display device
CN104020891A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020907B (zh) 2014-05-30 2017-02-15 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020910B (zh) 2014-05-30 2017-12-15 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104035640B (zh) 2014-05-30 2017-10-27 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104516145A (zh) * 2014-12-31 2015-04-15 深圳市华星光电技术有限公司 一种触控式液晶面板及其制作方法
CN104536637A (zh) * 2015-01-29 2015-04-22 京东方科技集团股份有限公司 内嵌式触摸屏及显示装置
CN104571768B (zh) * 2015-01-30 2018-03-20 京东方科技集团股份有限公司 一种阵列基板、内嵌式触摸屏和显示装置
CN104881167B (zh) * 2015-03-31 2018-01-12 深圳市华星光电技术有限公司 一种触控面板和显示装置
CN104915081B (zh) * 2015-06-10 2019-03-15 京东方科技集团股份有限公司 一种阵列基板及其制备方法、触控显示面板
CN104898911A (zh) * 2015-06-17 2015-09-09 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104915084B (zh) * 2015-07-06 2018-09-07 京东方科技集团股份有限公司 内嵌式触摸屏及有机发光二极管显示装置
CN105652498A (zh) * 2016-03-22 2016-06-08 上海中航光电子有限公司 一种阵列基板、触控显示面板和触控显示装置
CN106444117A (zh) * 2016-07-18 2017-02-22 武汉华星光电技术有限公司 阵列基板及触控显示器
CN108287622B (zh) * 2017-01-10 2021-07-16 昆山国显光电有限公司 触控显示装置及其制造方法
US20190034003A1 (en) * 2017-07-31 2019-01-31 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Array substrate, self-capacitive touch display panel, and electronic apparatus
CN109634470A (zh) * 2018-12-04 2019-04-16 武汉华星光电半导体显示技术有限公司 一种显示屏及电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045601A1 (ja) * 2012-09-24 2014-03-27 パナソニック株式会社 液晶表示装置
US20140111466A1 (en) * 2012-10-22 2014-04-24 Lg Display Co., Ltd. Display device integrated with touch screen and method of driving the same
CN103793120A (zh) * 2014-01-28 2014-05-14 北京京东方光电科技有限公司 一种内嵌式触摸屏及显示装置
US20140132560A1 (en) * 2012-11-14 2014-05-15 Orise Technology Co., Ltd. In-cell multi-touch I display panel system
JP2014099159A (ja) * 2012-10-16 2014-05-29 Toppan Printing Co Ltd タッチパネル用前面板、これを備えた表示装置、およびタッチパネル用前面板とタッチパネルセンサーとの一体型センサー基板
CN104020910A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW500937B (en) * 1999-07-13 2002-09-01 Samsung Electronics Co Ltd Liquid crystal display
KR20060065333A (ko) * 2004-12-10 2006-06-14 삼성전자주식회사 감지 소자를 내장한 표시판 및 표시 장치
KR20070074344A (ko) * 2006-01-09 2007-07-12 삼성전자주식회사 박막 트랜지스터 기판과 그 제조 방법 및 이를 포함한 액정표시 장치
KR101778650B1 (ko) * 2011-02-23 2017-09-15 삼성디스플레이 주식회사 표시 패널 및 이를 포함하는 표시 장치
EP2492784B1 (en) * 2011-02-25 2021-02-24 LG Display Co., Ltd. Touch sensor integrated display device
KR101819677B1 (ko) * 2011-04-01 2018-01-17 엘지디스플레이 주식회사 터치 센서 일체형 표시장치
KR101706242B1 (ko) * 2011-04-27 2017-02-14 엘지디스플레이 주식회사 인셀 터치 패널
CN102200872B (zh) * 2011-07-15 2012-09-26 南京华东电子信息科技股份有限公司 一种内嵌电容式液晶触摸屏
US9733706B2 (en) * 2011-10-26 2017-08-15 Nokia Technologies Oy Apparatus and associated methods for touchscreen displays
CN103135830A (zh) * 2011-11-21 2013-06-05 智点科技(深圳)有限公司 一种有源触控平板显示器
CN103975299B (zh) * 2011-12-12 2016-07-06 夏普株式会社 触摸面板基板和显示装置
KR101295536B1 (ko) * 2012-03-26 2013-08-12 엘지디스플레이 주식회사 터치 스크린 일체형 표시장치 및 그 제조 방법
KR101466556B1 (ko) * 2012-03-29 2014-11-28 엘지디스플레이 주식회사 액정표시장치 및 그 제조방법
US9372582B2 (en) * 2012-04-19 2016-06-21 Atmel Corporation Self-capacitance measurement
KR101373044B1 (ko) * 2012-04-19 2014-03-11 삼성디스플레이 주식회사 터치 스크린 패널
TWM445719U (zh) * 2012-05-22 2013-01-21 Inv Element Inc 具金屬感應層之內嵌式觸控顯示面板結構
US9478590B2 (en) * 2012-05-22 2016-10-25 Superc-Touch Corporation In-cell OLED touch display panel structure with metal layer for sensing
CN102841716B (zh) 2012-08-21 2015-08-05 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN102937853B (zh) * 2012-10-19 2015-10-14 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN102937852B (zh) * 2012-10-19 2015-08-05 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN102955637B (zh) 2012-11-02 2015-09-09 北京京东方光电科技有限公司 一种电容式内嵌触摸屏、其驱动方法及显示装置
CN103279245B (zh) * 2013-06-06 2017-03-15 敦泰电子有限公司 触控显示装置
KR101487700B1 (ko) * 2013-06-28 2015-01-29 엘지디스플레이 주식회사 표시장치 및 그 구동방법
US9542023B2 (en) * 2013-08-07 2017-01-10 Synaptics Incorporated Capacitive sensing using matrix electrodes driven by routing traces disposed in a source line layer
US9459367B2 (en) * 2013-10-02 2016-10-04 Synaptics Incorporated Capacitive sensor driving technique that enables hybrid sensing or equalization
TWI518571B (zh) * 2013-10-31 2016-01-21 友達光電股份有限公司 觸控裝置及其驅動方法
CN103677414B (zh) * 2013-12-09 2016-10-05 合肥京东方光电科技有限公司 一种触摸显示装置
KR101984443B1 (ko) * 2013-12-13 2019-05-30 애플 인크. 자기-정전용량성 터치 센서를 위한 통합된 터치 및 디스플레이 아키텍처
CN103728761B (zh) * 2013-12-26 2016-07-13 深圳市华星光电技术有限公司 一种内嵌式触控阵列基板及液晶显示面板
CN107918235A (zh) * 2013-12-31 2018-04-17 上海天马微电子有限公司 一种阵列基板及显示装置
JP6320227B2 (ja) * 2014-01-17 2018-05-09 株式会社ジャパンディスプレイ 表示装置
EP2937767A1 (en) * 2014-03-27 2015-10-28 LG Display Co., Ltd. Touch panel, display device and method of driving the same
US10268295B2 (en) * 2014-04-16 2019-04-23 Apple Inc. Structure for pixelated self-capacitance
KR101719397B1 (ko) * 2014-08-14 2017-03-24 엘지디스플레이 주식회사 터치센서 내장형 액정 표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045601A1 (ja) * 2012-09-24 2014-03-27 パナソニック株式会社 液晶表示装置
JP2014099159A (ja) * 2012-10-16 2014-05-29 Toppan Printing Co Ltd タッチパネル用前面板、これを備えた表示装置、およびタッチパネル用前面板とタッチパネルセンサーとの一体型センサー基板
US20140111466A1 (en) * 2012-10-22 2014-04-24 Lg Display Co., Ltd. Display device integrated with touch screen and method of driving the same
US20140132560A1 (en) * 2012-11-14 2014-05-15 Orise Technology Co., Ltd. In-cell multi-touch I display panel system
CN103793120A (zh) * 2014-01-28 2014-05-14 北京京东方光电科技有限公司 一种内嵌式触摸屏及显示装置
CN104020910A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置

Also Published As

Publication number Publication date
CN104020910A (zh) 2014-09-03
CN104020910B (zh) 2017-12-15
US10031627B2 (en) 2018-07-24
EP3151100A1 (en) 2017-04-05
US20160306454A1 (en) 2016-10-20
EP3151100B1 (en) 2019-09-11
EP3151100A4 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
WO2015180313A1 (zh) 内嵌式触摸屏及显示装置
WO2015180303A1 (zh) 内嵌式触摸屏及显示装置
WO2015180316A1 (zh) 内嵌式触摸屏及显示装置
WO2015180356A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
WO2015180318A1 (zh) 内嵌式触摸屏及显示装置
WO2015180312A1 (zh) 内嵌式触摸屏及显示装置
WO2015180322A1 (zh) 内嵌式触摸屏以及显示装置
WO2015180321A1 (zh) 内嵌式触摸屏及显示装置
US10198130B2 (en) In-cell touch panel and display device
WO2016119445A1 (zh) 内嵌式触摸屏及显示装置
WO2015180315A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
US20160357337A1 (en) In-Cell Touch Panel and Display Device
WO2015180314A1 (zh) 内嵌式触摸屏及显示装置
WO2016110045A1 (zh) 内嵌式触摸屏及显示装置
WO2016041301A1 (zh) 触摸屏、其触控定位方法及显示装置
WO2015158083A1 (zh) 触摸屏及显示装置
WO2015180274A1 (zh) 内嵌式触摸屏及显示装置
WO2015113380A1 (zh) 内嵌式触摸屏及显示装置
WO2016112683A1 (zh) 内嵌式触摸屏及显示装置
US9830028B2 (en) In-cell touch panel with self-capacitive electrodes and display device
WO2014131248A1 (zh) 电容式内嵌触摸屏及显示装置
WO2014166260A1 (zh) 电容式内嵌触摸屏及显示装置
WO2014139229A1 (zh) 电容式内嵌触摸屏及显示装置

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014863070

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14648090

Country of ref document: US

Ref document number: 2014863070

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE