WO2015180322A1 - 内嵌式触摸屏以及显示装置 - Google Patents

内嵌式触摸屏以及显示装置 Download PDF

Info

Publication number
WO2015180322A1
WO2015180322A1 PCT/CN2014/087156 CN2014087156W WO2015180322A1 WO 2015180322 A1 WO2015180322 A1 WO 2015180322A1 CN 2014087156 W CN2014087156 W CN 2014087156W WO 2015180322 A1 WO2015180322 A1 WO 2015180322A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
capacitance
lower substrate
layer
cell touch
Prior art date
Application number
PCT/CN2014/087156
Other languages
English (en)
French (fr)
Inventor
杨盛际
董学
王海生
薛海林
刘英明
赵卫杰
丁小梁
刘红娟
李昌峰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/648,087 priority Critical patent/US9778802B2/en
Priority to EP14863059.3A priority patent/EP3151099B1/en
Publication of WO2015180322A1 publication Critical patent/WO2015180322A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality

Definitions

  • At least one embodiment of the present invention is directed to an in-cell touch screen and display device.
  • the Touch Screen Panel With the rapid development of display technology, the Touch Screen Panel has gradually spread throughout people's lives.
  • the touch screen can be divided into an add-on touch panel, an on-cell touch panel, and an in-cell touch panel according to the composition structure.
  • the in cell touch screen can be further divided into: a mutual capacitance touch screen and a self capacitance touch screen.
  • self-capacitive touch screens due to the accuracy of their touch sensing and high signal-to-noise ratio, they are favored by major panel manufacturers.
  • the self-capacitance touch screen utilizes the principle of self-capacitance to realize the method of detecting the touch position of the finger, which may include: setting a plurality of self-capacitance electrodes arranged in the same layer and insulated from each other in the touch screen, and when the human body does not touch the screen, the respective capacitor electrodes are subjected to The capacitance is a fixed value.
  • the capacitance of the self-capacitance electrode corresponding to the touch position is a fixed value superimposed on the human body capacitance, and the touch detection chip detects the capacitance of the respective capacitor electrode during the touch time period. The value change can determine the touch position.
  • each self-capacitance electrode needs to be connected to the touch detection chip through a separate lead line.
  • each lead wire may include: a wire 2 connecting the self-capacitance electrode 1 to the frame of the touch screen, and being disposed at the frame for conducting the self-capacitance electrode 1 to the touch detection.
  • the periphery of the terminal 3 of the chip is routed 4.
  • the wire 2 and the self-capacitance electrode 1 are disposed in the same layer; in FIG. 1b, the self-capacitance electrode 1 and the wire 2 are disposed in different layers, and the self-capacitance electrode 1 and the corresponding wire 2 are electrically connected through the via 5.
  • At least one embodiment of the present invention provides an in-cell touch panel and a display device for reducing the number of wires in the in-cell touch panel to favor a narrow bezel design and reduce the occurrence of a large touch dead zone. Probability.
  • At least one embodiment of the present invention provides an in-cell touch panel including: an upper substrate and a lower substrate disposed opposite to each other; a side disposed on the upper substrate facing the lower substrate, or disposed at the a conductive layer on a side of the substrate facing the upper substrate, the conductive layer comprising a plurality of hollow regions arranged in a matrix; a plurality of layers disposed in the same layer as the conductive layer and insulated from the conductive layer a self-capacitance electrode, each of the hollow regions is provided with at least one self-capacitance electrode; and a plurality of mutually non-intersecting wires disposed in a different layer from the conductive layer and electrically connected to the self-capacitance electrode, respective capacitors The wires to which the electrodes are electrically connected are different.
  • At least one embodiment of the present invention provides a display device including the in-cell touch panel provided by the embodiment of the present invention.
  • 1a is a schematic top plan view of a touch screen disposed in the same layer as a wire and a self-capacitance electrode;
  • 1b is a schematic top plan view of a touch screen in which a wire and a self-capacitance electrode are disposed in different layers;
  • FIGS. 2a-2c are schematic top plan views of an in-cell touch panel according to an embodiment of the present invention.
  • FIG. 3 is a schematic side view showing the structure of an in-cell touch panel according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a self-capacitance electrode in an in-cell touch panel according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of driving timing of a display device according to an embodiment of the present invention.
  • each self-capacitance electrode is very large.
  • the area occupied by each self-capacitance electrode is 5 mm * 5 mm, and a 5-inch liquid crystal display requires 264 self-capacitance electrodes. If each self-capacitance electrode is designed to be smaller, there will be more self-capacitance electrodes, which makes the number of wires connected to the self-capacitance electrode in the case shown in Figures 1a and 1b, resulting in a setting.
  • the number of peripheral traces connected to the wires one by one at the frame is also very large, which is not conducive to the narrow bezel design; or, when the wires and the self-capacitance electrodes are arranged in the same layer, the number of wires is large, resulting in a large touch dead zone.
  • the in-cell touch panel includes: an upper substrate and a lower substrate disposed oppositely; a side disposed on the upper substrate facing the lower substrate, or disposed on the lower substrate facing the a conductive layer on one side of the upper substrate, the conductive layer comprising a plurality of hollow regions arranged in a matrix; a plurality of self-capacitance electrodes disposed in the same layer as the conductive layer and insulated from the conductive layer, each The hollowed out region is provided with at least one of the self-capacitance electrodes; and a plurality of mutually non-intersecting wires disposed in a different layer from the conductive layer and electrically connected to the self-capacitance electrode, and the respective capacitor electrodes are electrically connected The wires are different.
  • the self-capacitance electrode is disposed in the same layer as the conductive layer, and the conductive layer occupies a part of the area, so that under the same size touch screen,
  • the number of self-capacitance electrodes is reduced, thereby reducing the number of wires connected to the self-capacitance electrodes, which is advantageous to a narrow frame design and reduces the probability of occurrence of a large touch dead zone.
  • An in-cell touch panel provided by at least one embodiment of the present invention includes: an upper substrate and a lower substrate disposed opposite to each other; a side disposed on the upper substrate facing the lower substrate, or disposed on the lower substrate a conductive layer on one side of the upper substrate, the conductive layer includes a plurality of hollow regions arranged in a matrix; a plurality of self-capacitance electrodes disposed in the same layer as the conductive layer and insulated from the conductive layer Each of the hollow regions is provided with the self-capacitance electrode; and a plurality of mutually non-intersecting wires disposed in a different layer from the conductive layer and electrically connected to the self-capacitance electrode, and the respective capacitor electrodes are electrically connected The wires are different.
  • the self-capacitance electrode is disposed in the same layer as the conductive layer, and the conductive layer occupies a part of the area, so that under the same size touch screen,
  • the number of self-capacitance electrodes is reduced, thereby reducing the number of wires connected to the self-capacitance electrodes, which is advantageous to a narrow frame design and reduces the probability of occurrence of a large touch dead zone. And it is beneficial to reduce the cost of the touch detection chip.
  • the upper substrate and the lower substrate in the embodiment of the present invention are oppositely disposed upper and lower substrates included in the display panel of the display device.
  • the display panel is a liquid crystal panel
  • the upper substrate may be a color film substrate
  • the lower substrate is an array substrate.
  • the conductive layer and the self-capacitance electrode may be a film layer having a conductive property; or may be disposed on a side of the upper substrate facing the lower substrate, or may be disposed. a conductive layer having a conductive property, such as a common electrode layer, on a side of the lower substrate facing the upper substrate.
  • the film may be disposed at any position on the side of the upper substrate facing the lower substrate, or The substrate is placed at any position on the side of the upper substrate.
  • the conductive layer is disposed on a side of the upper substrate facing the lower substrate. Assuming that the side of the upper substrate facing the lower substrate is sequentially laminated with a black matrix layer, a color filter layer, a flat layer, and a spacer layer, the conductive layer being located between the black matrix layer and the color filter layer; or The conductive layer is located between the color filter layer and the planar layer; or the conductive layer is located between the planar layer and the spacer layer.
  • the conductive layer and the self-capacitance electrode are provided with a conductive layer disposed on a side of the upper substrate facing the lower substrate or on a side of the lower substrate facing the upper substrate.
  • the conductive layer and the self-capacitance electrode may be used as a common electrode layer.
  • the conductive layer and the self-capacitance electrode are used as a common electrode layer, which can save a film layer and reduce the complexity of fabricating the in-cell touch panel in the embodiment of the present invention.
  • the shape of the self-capacitance electrode may be a regular shape such as a square, a rectangle, a triangle, a circle, or the like.
  • the self-capacitance electrode 10 has a square shape.
  • the shape of the self-capacitance electrode may also be any irregular shape.
  • the fabrication complexity is relatively low.
  • the shape of the respective capacitive electrodes may be identical.
  • each of the self-capacitance electrodes 10 included in the in-cell touch panel has the same shape.
  • the shapes of the respective capacitor electrodes may also be partially the same or completely different. In the implementation, when the shapes of the respective capacitor electrodes are completely the same, the fabrication complexity is relatively low.
  • each of the hollow regions may be provided with a self-capacitance electrode or a plurality of self-capacitance electrodes.
  • the number of self-capacitance electrodes disposed in each of the hollow regions may be determined according to the size of the area occupied by each of the hollow regions. For example, taking the area occupied by each of the hollow regions as 6 mm*6 mm, and the area occupied by each self-capacitance electrode is 5 mm*5 mm, a self-capacitance electrode may be disposed in each of the hollow regions.
  • the shape of the hollow region may be the same as the shape of the self-capacitance electrode.
  • the shape of each hollow region 21 is the same
  • the shape of each self-capacitance electrode 10 is the same
  • the shape of the hollow region 21 is the same as the shape of the self-capacitance electrode 10.
  • the shape of the hollow region and the shape of the self-capacitance electrode may also be different.
  • the complexity of fabricating the in-cell touch panel is relatively low.
  • each of the hollow regions is provided with one self-capacitance electrode, and the shape of the hollow region is the same as the shape of the self-capacitance electrode, the adjacent two self-capacitance electrodes are opposite The sides can be all broken lines.
  • the opposite sides of the adjacent two self-capacitance electrodes may have a stepped structure, and the two stepped structures have the same shape and match each other; and/or the adjacent two self-capacitance electrodes are opposite lines.
  • the sides of the two sides may have a concave-convex structure, and the two concave-convex structures have the same shape and match each other.
  • each of the hollow regions 21 is provided with a self-capacitance electrode 10, each of which has the same shape, each self-capacitance electrode 10 has the same shape, and the shape and self-capacitance of the hollow region 21.
  • the shape of the electrode 10 is also the same; the opposite sides of the adjacent two self-capacitance electrodes 10 are all broken lines, and the opposite sides of the adjacent two self-capacitance electrodes 10 have a stepped structure on both sides of the fold line, and the two stepped structures The shapes are consistent and match each other.
  • one of the self-capacitance electrodes is disposed in each of the hollow regions, and when the shape of the hollow region is the same as the shape of the self-capacitance electrode, two adjacent self-capacitance electrodes are disposed.
  • the opposite sides are set as fold lines to ensure the position of the human touch when the screen is touched. It can always cover at least one area of the self-capacitance electrode, so that the accuracy of the determined touch position can be improved.
  • the dimensions of the conductive layer, the hollow region and the self-capacitance electrode need to meet the requirements of the touch sensing accuracy.
  • the minimum value of the frame from the hollow region is smaller than the first threshold value for any point on the frame of the self-capacitance electrode;
  • the conductive layer includes a plurality of elongated branches between adjacent row and column hollow regions, and each of the branches has a widest dimension value less than a second threshold value.
  • the first threshold is less than 6 microns; the second threshold is less than 2 millimeters.
  • the wire may be disposed on the same substrate as the self-capacitance electrode, that is, the wire and the self-capacitance electrode are simultaneously disposed on a side of the upper substrate facing the lower substrate, or The lower substrate faces one side of the upper substrate.
  • connection relationship between the wire and the self-capacitance electrode may be a connection relationship between the wire and the self-capacitance electrode known to those skilled in the art.
  • the wires electrically connected to the respective capacitor electrodes are different, and one self-capacitance electrode is electrically connected to at least one wire. This can further reduce the number of wires.
  • the wire and the self-capacitance electrode may be disposed in different layers, and the self-capacitance electrode and the corresponding heterogeneous wire are electrically connected through the via.
  • the self-capacitance electrode 10 and the corresponding different-layered wires 40 are electrically connected through the via hole 30.
  • the wire and the self-capacitance electrode are disposed in different layers, so that the touch dead zone can be better eliminated.
  • the in-cell touch panel further includes: a touch electrically connected to the wire and configured to detect a touch position by detecting a change in a capacitance value of each of the self-capacitance electrodes during a touch scan time And detecting a chip, and located at a frame of the in-cell touch screen, and electrically connecting the wire to the peripheral wire.
  • the wire connects the self-capacitance electrode to the frame of the in-cell touch panel; the touch detection chip is electrically connected to the peripheral trace through a connection terminal.
  • the touch detection chip is disposed on the circuit board, for example, on a circuit board located on the back of the display device, or on a circuit board located on the frame area of the display device, or the flexibleness of the lower substrate is included. On the board.
  • the wires may be directly electrically connected to the touch detection chip, or may be electrically connected to the touch detection chip through the peripheral wires.
  • the wire is disposed on the lower substrate surface
  • the wire may be directly electrically connected to the touch detection chip; for example, the wire is disposed on the upper substrate.
  • the wire can be electrically connected to the touch detection chip through the peripheral trace.
  • the bezel of the in-cell touch screen has four sides, and each of the self-capacitance electrodes is connected to the nearest side by a corresponding wire on the basis that the wires do not cross each other.
  • the frame of the in-cell touch panel has four sides, and each of the self-capacitance electrodes 10 is connected to the distance through the corresponding wire 40 on the basis that the wires 40 do not cross each other. The nearest side.
  • the shape of the frame of the in-cell touch panel is a rectangle, and the extending direction of each of the wires is consistent with the direction of the short side of the frame.
  • the shape of the frame of the in-cell touch panel is a rectangle, and the extending direction of each of the wires 40 is consistent with the direction of the short side of the frame.
  • the extending direction of each of the wires is consistent with the short side direction of the frame, so that it is easy to ensure that the wires do not cross each other to achieve electrical insulation of the wires.
  • the shape of the frame of the in-cell touch panel is a rectangle
  • the extending direction of each of the wires may also be consistent with the longitudinal direction of the frame.
  • the peripheral traces are generally disposed on the lower substrate.
  • the wire when the self-capacitance electrode and the wire are disposed on the upper substrate, the wire can pass through the upper and lower conduction of the conductive particles (such as a gold ball) in the sealant and the electrical conductivity of the periphery of the lower substrate.
  • the wire when the self-capacitance electrode and the wire are disposed on the lower substrate, the wire may be electrically connected directly to the peripheral trace located on the lower substrate.
  • the film layer where the conductive layer and the self-capacitance electrode are located is disposed on a side of the upper substrate facing the lower substrate or on a side of the lower substrate facing the upper substrate.
  • the conductive layer can maintain the original connection relationship of the film layer, and can also be connected to the touch detection chip; the film layer where the conductive layer and the self-capacitance electrode are located is
  • the conductive layer may not be connected to other components, or may be connected to other components through a wire, for example, through a wire to a power component, or through a wire and a touch detection chip. connection.
  • the conductive layer and self-capacitance electrode can be used as a common electrode layer.
  • the conductive layer is disposed on a side of the lower substrate facing the upper substrate; the in-cell touch panel And a common electrode line (gate Vcom line) disposed in the same layer as the gate and the gate line disposed on a side of the lower substrate facing the upper substrate; the common electrode line and the common electrode layer are disposed in different layers, And electrically connected to the common electrode layer through the via; the common electrode line is used as the wire.
  • the common electrode line connecting the common electrode layers is used as the wire, and the number of wires can be further reduced.
  • the principle of determining the touch position by the touch detection chip can be determined by using a touch detection chip known to those skilled in the art to determine the self-capacitance principle of the touch position, and details are not described herein.
  • the principle of reducing the number of self-capacitance electrodes in the embodiment of the present invention will be described below with reference to only one specific embodiment.
  • the in-cell touch panel provided by at least one embodiment of the present invention includes: a conductive layer 20 including a plurality of hollow regions 21 arranged in a matrix; a plurality of layers disposed in the same layer as the conductive layer 20 and The self-capacitance electrode 10 is insulated from each other by the conductive layer 20, and each of the hollow regions 21 is provided with one self-capacitance electrode 10; the self-capacitance electrode 10 is disposed in a different layer and the self-capacitance electrode 10 is connected to the in-line electrode a plurality of wires 40 that do not intersect each other at the frame of the touch screen, and the respective capacitor electrodes 10 are electrically connected to the different ones of the wires 40 through the via holes 30; at the frame of the in-cell touch screen and the strips The wires 40 are connected to the connected peripheral wires 50 one by one; and electrically connected to the peripheral wires 50 through the terminals 60 for determining the touch position by detecting the change of the capacitance value of the
  • the size of the touch screen shown in FIG. 2 is taken as an example: if the solution described in the embodiment of the present invention is used, 48 wires 40 electrically connected to the self-capacitance electrode 10 are required; In the scheme shown in FIG. 1a and FIG. 1b, a total of 70 self-capacitance electrodes of 10 rows and 7 columns should be set in the touch screen size, and correspondingly, 70 wires are required;
  • the number of wires used in the embodiment of the present invention is small, so that the number of peripheral wires connected in one-to-one correspondence with the wires is reduced, which is beneficial to the design of the narrow frame of the touch screen, and is also beneficial for reducing the cost of the touch detection chip.
  • the in-cell touch panel may further include: a black side disposed on a side of the upper substrate facing the lower substrate, or a black side disposed on a side of the lower substrate facing the upper substrate a matrix layer; the conductive layer, each of the self-capacitance electrodes, and a wire on the lower substrate A projection is located within the orthographic projection of the black matrix layer on the lower substrate.
  • the conductive layer, each of the self-capacitance electrodes, and the orthographic projection of the wires on the lower substrate are located in an orthographic projection of the black matrix layer on the lower substrate, the conductive The electric field generated by the layer and the self-capacitance electrode does not affect the electric field in the open area of the pixel, and therefore does not affect the normal display.
  • the orthographic projection of the conductive layer, each of the self-capacitance electrodes, and the wires on the lower substrate is located in an orthographic projection of the black matrix layer on the lower substrate, Affects the transmittance of the in-line touch screen.
  • the orthographic projection of each of the self-capacitance electrodes on the lower substrate is a grid-like structure and is located within an orthographic projection of the black matrix layer on the lower substrate.
  • the density of the touch screen is usually in the order of millimeters, and the density of the display screen is usually on the order of micrometers. Therefore, generally one self-capacitance electrode can correspond to a plurality of pixel units in the display screen, in order to ensure that the respective capacitor electrodes do not occupy the opening area of the pixel unit, in one In an embodiment, a position corresponding to an opening area of the pixel unit in each of the capacitor electrodes may be diced.
  • the density referred to in the embodiment of the present invention refers to the pitch of the self-capacitance electrodes of the touch screen or the pitch of the pixel units of the display screen.
  • a pattern of orthographic projection of each of the self-capacitance electrodes on the lower substrate is taken as an example of a grid-like structure located in an orthographic projection of the black matrix layer on the lower substrate, as shown in FIG. 4 .
  • the positions of the respective capacitor electrodes 10 corresponding to the opening areas of the pixel units are excavated, that is, the patterns of the respective capacitor electrodes 10 can be designed such that the orthographic projections on the lower substrate are located in the orthographic projection of the black matrix layer 100 on the lower substrate.
  • a self-capacitance electrode 10 is generally disposed at a gap of each sub-pixel unit in each pixel unit, and each group of RGB sub-pixel units constitutes one pixel unit.
  • the conductive layer and the self-capacitance electrode are used as a common electrode layer, the common electrode layer is located between the black matrix layer and the color filter layer, and the wire is located above the color filter layer
  • the common electrode layer is located between the black matrix layer and the color filter layer
  • the wire is located above the color filter layer
  • the in-cell touch panel includes: an upper substrate 01 and a lower substrate 02 disposed opposite to each other; and a black matrix layer 100 on a side of the upper substrate 01 facing the lower substrate 02. a conductive layer 20 including a plurality of hollow regions arranged in a matrix arrangement on the side of the black matrix layer 100 facing the lower substrate 02, and a self-capacitance electrode 10 disposed in the same layer as the conductive layer 20 and insulated from the conductive layer 20, And, each of the hollow regions is provided with one self-capacitance electrode 10; a color filter layer 03 located on a side of the film layer of the conductive layer 20 on the lower substrate 02; The layer 03 faces the film layer on the side of the lower substrate 02 (not shown in FIG. 3), and the wires are connected to the corresponding self-capacitance electrode 10 through via holes (not shown in FIG. 3) in the color filter layer.
  • a flat layer 04 located on the side of the film layer on the lower substrate 02 where the
  • the film layer of the self-capacitance electrode is disposed between the black matrix layer and the color filter layer, and the film layer of the wire is disposed on one side of the color filter layer to the lower substrate, thereby reducing the capacitance of the human body. Interference of signals transmitted on the wires.
  • At least one embodiment of the present invention further provides a display device including the above-described in-cell touch panel provided by the embodiment of the present invention.
  • the display device may be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • a display device for the implementation of the display device, reference may be made to the above embodiment of the in-cell touch panel, and the repeated description is omitted.
  • the number of wires in the in-cell touch panel is reduced, the number of wires in the display device including the in-cell touch panel provided by the embodiment of the present invention is also reduced, thereby being able to be certain To a lesser extent, it is advantageous for narrow bezel design and reduces the probability of occurrence of large touch dead zones.
  • At least one embodiment of the present invention provides a scanning method for the display device, the method comprising: performing touch scanning and display scanning in a time division in a frame time; and detecting a touch detection chip in a touch scanning time
  • the driving signals are respectively applied to the respective capacitor electrodes by the wires connected to the respective capacitor electrodes and the peripheral wires; the feedback signals of the respective capacitor electrodes are received, and the touch position is determined according to the feedback signals.
  • the touch scan and the display scan are performed in a time division manner, which can reduce mutual interference between the display signal and the touch signal, and improve picture quality and touch accuracy.
  • the display driving chip and the touch detection chip can be integrated into one chip to reduce the production cost.
  • a scanning method of the display device in the embodiment of the present invention will be described in detail below with reference to FIG.
  • the time at which the display device displays each frame is divided into a display scan period and a touch scan period.
  • the display device displays a frame time of 16.7 ms, and selects 5 ms as the touch scan time period and the other 11.7 ms as the display scan time period.
  • the duration of the two chips can be appropriately adjusted according to the processing capability of the IC chip, and is not specifically limited herein.
  • a gate scan signal is sequentially applied to each of the gate signal lines Gate1, Gate2, ..., Gate n in the display device, and a gray scale signal is applied to the data signal line Data to realize a display function.
  • the touch detection chip applies a drive signal to the respective capacitor electrodes Cx1 . . . Cxn in a time-sharing manner; meanwhile, receives feedback signals of the respective capacitor electrodes Cx1 . . . Cxn.
  • the touch position is determined by analyzing the feedback signals of the respective capacitance electrodes Cx1 . . . Cxn to implement the touch function.
  • the touch detection chip can determine the touch position by analyzing the feedback signals of the respective capacitor electrodes Cx1 . . . Cxn to adopt a technique known to those skilled in the art, and no longer Narration.
  • a Vcom voltage is applied to each of the capacitor electrodes and the conductive layer during a display scan period. This ensures that the display device is normally displayed.
  • a floating voltage is applied to each of the capacitor electrode and the conductive layer during a display scanning period ( That is, floating).
  • the self-capacitance electrode on the upper substrate and the conductive layer and the electrode on the lower substrate can be prevented from forming a positive electric field, which can avoid the negative influence on the display of the display device to a certain extent.
  • the touch detection chip can scan the respective capacitor electrodes one by one in the lateral direction to apply the driving signals to the respective capacitor electrodes in a time division manner; or scan the respective capacitors one by one in the vertical direction.
  • the electrodes apply drive signals to the respective capacitor electrodes in a time division manner.
  • the voltage signal applied to the conductive layer is the same as the voltage signal applied to the self-capacitance electrode during the touch time period. This can ensure better uniformity between the conductive layer and the self-capacitance electrode.
  • a Vcom voltage may be applied to the common electrode layer during a touch time period (Touch).

Abstract

一种内嵌式触摸屏以及显示装置,该内嵌式触摸屏包括相对设置的上基板(01)和下基板(02);设置于上基板(01)面向下基板(02)的一侧,或设置于下基板(02)面向上基板(01)的一侧的导电层(20),导电层(20)包括多个呈矩阵式排布的镂空区域(21);多个与导电层(20)同层设置且相互绝缘的自电容电极(10);每个镂空区域(21)设置有至少一个自电容电极(10);以及电性连接自电容电极(10)的多条导线(40)。该内嵌式触摸屏可以减少导线数量,从而在一定程度上有利于窄边框设计并降低较大触控盲区发生的概率。

Description

内嵌式触摸屏以及显示装置 技术领域
本发明的至少一个实施例涉及一种内嵌式触摸屏以及显示装置。
背景技术
随着显示技术的飞速发展,触摸屏(Touch Screen Panel)已经逐渐遍及人们的生活中。目前,触摸屏按照组成结构可以分为:外挂式触摸屏(Add on Mode Touch Panel)、覆盖表面式触摸屏(On Cell Touch Panel)以及内嵌式触摸屏(In Cell Touch Panel)。内嵌(In cell)式触摸屏又可以分为:互电容触摸屏和自电容触摸屏。对于自电容触摸屏,由于其触控感应的准确度和信噪比比较高,因而受到了各大面板厂家青睐。
目前,自电容触摸屏利用自电容的原理实现检测手指触摸位置的方法可以包括:在触摸屏中设置多个同层设置且相互绝缘的自电容电极,当人体未触碰屏幕时,各自电容电极所承受的电容为一固定值,当人体触碰屏幕时,触碰位置对应的自电容电极所承受的电容为固定值叠加人体电容,触控侦测芯片在触控时间段通过检测各自电容电极的电容值变化可以判断出触控位置。
在自电容触摸屏中,每一个自电容电极需要通过单独的引出线与触控侦测芯片连接。如图1a和图1b所示,每条引出线可以包括:将自电容电极1连接至触摸屏的边框处的导线2,以及设置在边框处用于将自电容电极1导通至触控侦测芯片的接线端子3的周边走线4。在图1a中,导线2和自电容电极1同层设置;在图1b中,自电容电极1和导线2异层设置,且自电容电极1与对应的导线2通过过孔5电性连接。
发明内容
本发明的至少一个实施例提供了一种内嵌式触摸屏以及显示装置,用以减少内嵌式触摸屏中的导线数量,以在一定程度上有利于窄边框设计并降低较大触控盲区发生的概率。
第一方面,本发明的至少一个实施例提供一种内嵌式触摸屏,其包括:相对设置的上基板和下基板;设置于所述上基板面向所述下基板的一侧,或设置于所述下基板面向所述上基板的一侧的导电层,所述导电层包括多个呈矩阵式排布的镂空区域;多个与所述导电层同层设置且与所述导电层相互绝缘的自电容电极,每个所述镂空区域设置有至少一个所述自电容电极;以及与所述导电层异层设置且与所述自电容电极电性连接的多条互不交叉的导线,各自电容电极电性连接的所述导线不同。
第二方面,本发明的至少一个实施例提供一种显示装置,其包括本发明实施例提供的所述内嵌式触摸屏。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1a为一种导线和自电容电极同层设置的触摸屏的俯视结构示意图;
图1b为一种导线和自电容电极异层设置的触摸屏的俯视结构示意图;
图2a~图2c为本发明实施例中内嵌式触摸屏的俯视结构示意图;
图3为本发明实施例中内嵌式触摸屏的侧视结构示意图;
图4为本发明实施例提供的内嵌式触摸屏中一个自电容电极的结构示意图;
图5为本发明实施例中显示装置的驱动时序示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请的发明人注意到,自电容电极的数量非常多,以每个自电容电极的所占面积为5mm*5mm为例,5寸的液晶显示屏就需要264个自电容电极, 若将每个自电容电极设计的更小一些,则会有更多的自电容电极,这使得在图1a和图1b所示的情形中与自电容电极连接的导线数量非常多,从而造成设置在边框处的与导线一一对应连接的周边走线数量也非常多,不利于窄边框设计;或者,在导线和自电容电极同层设置时,导线数量多造成触控盲区比较大。
在本发明的至少一个实施例中,内嵌式触摸屏包括:相对设置的上基板和下基板;设置于所述上基板面向所述下基板的一侧,或设置于所述下基板面向所述上基板的一侧的导电层,所述导电层包括多个呈矩阵式排布的镂空区域;多个与所述导电层同层设置、且与所述导电层相互绝缘的自电容电极,每个所述镂空区域设置有至少一个所述自电容电极;以及与所述导电层异层设置、且与所述自电容电极电性连接的多条互不交叉的导线,各自电容电极电性连接的所述导线不同。
与图1a和图1b所示的情形相比,在本发明实施例中,自电容电极与导电层同层设置,由于导电层占据了一部分面积,使得在同等尺寸的触控屏幕下,所述自电容电极的个数被减少,从而实现减少与自电容电极连接的导线的数量,在一定程度上有利于窄边框设计并降低较大触控盲区发生的概率。
下面结合说明书附图对本发明实施例作进一步详细描述。
附图中各层膜层的厚度和形状不反映真实比例,目的只是示意说明本发明内容。
本发明的至少一个实施例提供的一种内嵌式触摸屏,包括:相对设置的上基板和下基板;设置于所述上基板面向所述下基板的一侧,或设置于所述下基板面向所述上基板的一侧的导电层,所述导电层包括多个呈矩阵式排布的镂空区域;多个与所述导电层同层设置、且与所述导电层相互绝缘的自电容电极,每个所述镂空区域设置有所述自电容电极;以及与所述导电层异层设置、且与所述自电容电极电性连接的多条互不交叉的导线,各自电容电极电性连接的所述导线不同。
与图1a和图1b所示的情形相比,在本发明实施例中,自电容电极与导电层同层设置,由于导电层占据了一部分面积,使得在同等尺寸的触控屏幕下,所述自电容电极的个数被减少,从而实现减少与自电容电极连接的导线的数量,在一定程度上有利于窄边框设计并降低较大触控盲区发生的概率, 以及有利于降低触控侦测芯片的成本。
需要说明的是,本发明实施例中的所述上基板和下基板为显示装置的显示面板包含的相对设置的上基板和下基板。比如,在显示装置为液晶显示装置时,显示面板为液晶面板,所述上基板可以为彩膜基板,所述下基板为阵列基板。
在不同实施例中,所述导电层和自电容电极所在的膜层可以为新增的具有导电性能的膜层;也可以利用设置于所述上基板面向所述下基板的一侧,或设置于所述下基板面向所述上基板的一侧的具有导电性能的膜层,比如,公共电极层。
例如,所述导电层和自电容电极所在的膜层为新增的具有导电性能的膜层时,其可以设置于所述上基板面向所述下基板一侧的任一位置,或设置于所述下基板面向所述上基板一侧的任一位置。
比如,以所述导电层设置于所述上基板面向所述下基板的一侧为例。假设所述上基板面向下基板的一侧依次层叠有黑矩阵层、彩色滤光层、平坦层和隔垫物层,所述导电层位于所述黑矩阵层和彩色滤光层之间;或者,所述导电层位于所述彩色滤光层和平坦层之间;或者,所述导电层位于所述平坦层和所述隔垫物层之间。
需要说明的是,将所述导电层和自电容电极所在的膜层设置于所述下基板面向所述上基板的一侧的具体实施方式与将所述导电层和自电容电极所在的膜层设置于所述上基板面向所述下基板的一侧的具体实施方式类似,在此不再赘述。
例如,所述导电层和自电容电极所在的膜层利用设置于所述上基板面向所述下基板的一侧,或设置于所述下基板面向所述上基板的一侧的具有导电性能的膜层时;可以将所述导电层和自电容电极作为公共电极层使用。
在本发明实施例中,将所述导电层和自电容电极作为公共电极层使用,可以节省一层膜层,降低制作本发明实施例中的内嵌式触摸屏的复杂度。
在不同实施例中,自电容电极的形状可以为规则形状,比如,正方形、矩形、三角形和圆形等。比如,如图2a和图2b所示,自电容电极10的形状为正方形。自电容电极的形状也可以为任一种不规则形状。在本发明实施例中,在自电容电极的形状为规则形状时,其制作复杂度比较低。
在一个实施例中,各自电容电极的形状可以完全相同。比如,如图2a~图2c所示,内嵌式触摸屏包括的每个自电容电极10的形状均相同。当然,各自电容电极的形状也可以部分相同或者完全不同。在实施中,在各自电容电极的形状完全相同时,其制作复杂度比较低。
在不同实施例中,每个所述镂空区域可以设置有一个自电容电极,也可以设置有多个自电容电极。例如,可以根据每个所述镂空区域所占面积大小,确定在每个所述镂空区域设置的自电容电极的个数。比如,以每个所述镂空区域所占面积为6mm*6mm,且每个自电容电极所占面积为5mm*5mm为例,则可以在每个所述镂空区域设置一个自电容电极。
在一个实施例中,对于一个镂空区域以及设置于所述镂空区域内的一个自电容电极的情形,所述镂空区域的形状与所述自电容电极的形状可以相同。比如,如图2a~图2c所示,每个镂空区域21的形状均相同,每个自电容电极10的形状均相同,镂空区域21的形状与自电容电极10的形状也相同。当然,所述镂空区域的形状与所述自电容电极的形状也可以不相同。在本发明实施例中,在所述镂空区域的形状与所述自电容电极的形状相同时,制作所述内嵌式触摸屏的复杂度比较低。
在一个实施例中,当每个所述镂空区域设置有一个所述自电容电极,且所述镂空区域的形状与所述自电容电极的形状相同时,相邻的两个自电容电极相对的侧边可以均为折线。
例如,相邻的两个自电容电极相对的为折线的侧边可以均具有阶梯状结构,两阶梯状结构形状一致且相互匹配;和/或,相邻的两个自电容电极相对的为折线的侧边可以均具有凹凸状结构,两凹凸状结构形状一致且相互匹配。
比如,如图2c所示,每个镂空区域21设置有一个自电容电极10,每个镂空区域21的形状均相同,每个自电容电极10的形状均相同,镂空区域21的形状与自电容电极10的形状也相同;相邻的两个自电容电极10相对的侧边均为折线,相邻的两个自电容电极10相对的为折线的侧边均具有阶梯状结构,两阶梯状结构形状一致且相互匹配。
在本发明实施例中,在每个所述镂空区域设置有一个所述自电容电极,且所述镂空区域的形状与所述自电容电极的形状相同时,将相邻的两个自电容电极相对的侧边均设置为折线,可以保证在触摸屏幕时,人体触控的位置 可以始终覆盖到至少一个自电容电极所在区域,从而可以提高确定的触控位置的准确度。
在本发明实施例中,所述导电层、镂空区域和自电容电极的尺寸需要满足触控感应准确性的要求。比如,每个所述镂空区域设置有一个所述自电容电极时,对于所述自电容电极的边框上的任意一点,其距离所述镂空区域的边框的最小值均小于第一门限值;以及,所述导电层包括位于相邻行和列镂空区域之间的多个长条状分支,且每个所述分支的最宽尺寸值小于第二门限值。在一个实施例中,所述第一门限值小于6微米;所述第二门限值小于2毫米。这样,在本发明实施例中,可以保证触控感应的准确性。
在一个实施例中,所述导线可以与所述自电容电极设置在同一基板上,即,所述导线和自电容电极同时设置于所述上基板面向所述下基板的一侧,或设置于所述下基板面向所述上基板的一侧。
在上述实施例中,导线与所述自电容电极的连接关系可以采用本领域技术人员已知的导线与所述自电容电极的连接关系。比如,各自电容电极电性连接的所述导线不同,且一个自电容电极电性连接至少一条导线。这样可以进一步减少导线的数量。
在一个实施例中,所述导线与所述自电容电极可以异层设置,自电容电极与对应的异层设置的导线通过过孔电性连接。比如,如图2a和图2b所示,自电容电极10与对应的异层设置的导线40通过过孔30电性连接。在本发明实施例中,所述导线与所述自电容电极异层设置,可以更好地消除触控盲区。
在一个实施例中,所述内嵌式触摸屏还包括:与所述导线电性连接且用于在触摸扫描时间内通过检测各所述自电容电极的电容值变化以判断触控位置的触控侦测芯片,以及位于所述内嵌式触摸屏的边框处、且与所述导线电性连接周边走线。所述导线将所述自电容电极连接至所述内嵌式触摸屏的边框处;所述触控侦测芯片通过接线端子与所述周边走线电性连接。
在不同实施例中,触控侦测芯片设置于电路板上,例如可以设置于位于显示装置背部的电路板上,或者位于显示装置的边框区域的电路板上,或者所述下基板包括的柔性电路板上。
在不同实施例中,导线可以与触控侦测芯片直接电性连接,也可以通过周边走线与触控侦测芯片电性连接。比如,在导线设置于所述下基板面向上 基板的一侧,且触控侦测芯片设置于所述下基板包括的柔性电路板上时,所述导线可以与触控侦测芯片直接电性连接;例如,在导线设置于所述上基板面向下基板的一侧,且触控侦测芯片设置于位于显示装置背部的电路板上时,所述导线可以通过周边走线与触控侦测芯片电性连接。
在一个实施例中,所述内嵌式触摸屏的边框具有四个侧边,各所述自电容电极在所述导线互不交叉的基础上通过对应的所述导线连接至距离最近的侧边。比如,如图2a所示,所述内嵌式触摸屏的边框具有四个侧边,各所述自电容电极10在所述导线40互不交叉的基础上通过对应的所述导线40连接至距离最近的侧边。
在一个实施例中,所述内嵌式触摸屏的边框形状为长方形,各条所述导线的延伸方向与所述边框的短边方向一致。比如,如图2b所示,所述内嵌式触摸屏的边框形状为长方形,各条所述导线40的延伸方向与所述边框的短边方向一致。在本发明实施例中,各条所述导线的延伸方向与所述边框的短边方向一致,可以很容易地实现保证各导线互不交叉,以实现各导线电性绝缘。当然,在具体实施中,所述内嵌式触摸屏的边框形状为长方形时,各条所述导线的延伸方向也可以与所述边框的长边方向一致。
在内嵌式触摸屏中,周边走线一般设置在下基板上。在一个实施例中,当所述自电容电极和导线设置在上基板时,导线可通过封框胶中的导电粒子(例如金球)的上下导通作用与位于下基板的周边走线电性连接;在一个实施例中,当所述自电容电极和导线设置在下基板时,导线可直接与位于下基板的周边走线电性连接。
在上述实施例中,在所述导电层和自电容电极所在的膜层利用设置于所述上基板面向所述下基板的一侧,或设置于所述下基板面向所述上基板的一侧的具有导电性能的膜层时,所述导电层可以保持该膜层原有的连接关系不变,也可以与触控侦测芯片连接;在所述导电层和自电容电极所在的膜层为新增的具有导电性能的膜层时,所述导电层可以不与其他部件连接,也可以通过导线与其他部件连接,比如,通过导线与电源部件连接,或者,通过导线与触控侦测芯片连接。
在一个实施例中,可以将所述导电层和自电容电极作为公共电极层使用。例如,所述导电层设置于所述下基板面向上基板的一侧;所述内嵌式触摸屏 还包括与设置于所述下基板面向上基板一侧的栅极和栅线同层设置且电性绝缘的公共电极线(gate Vcom line);所述公共电极线与公共电极层异层设置,且通过过孔与公共电极层电性连接;将所述公共电极线作为所述导线使用。在本发明实施例中,将连接所述公共电极层的公共电极线作为所述导线使用,可以进一步减少导线的数量。
需要说明的是,本发明实施例中触控侦测芯片判断触控位置的原理可以采用本领域技术人员已知的触控侦测芯片判断触控位置的自电容原理,在此不再赘述;下面仅以一个具体的实施例对本发明实施例中减少自电容电极个数的原理进行说明。
如图2a所示,本发明至少一个实施例提供的内嵌式触摸屏包括:包括多个呈矩阵式排布的镂空区域21的导电层20;多个与导电层20同层设置且与所述导电层20相互绝缘的自电容电极10,并且,每个所述镂空区域21设置有一个所述自电容电极10;与自电容电极10异层设置且将自电容电极10连接至所述内嵌式触摸屏的边框处的多条互不交叉的导线40,并且,各自电容电极10通过过孔30电性连接不同的一条所述导线40;位于所述内嵌式触摸屏的边框处且与各条所述导线40一一对应相连的周边走线50;以及通过接线端子60与周边走线50电性相连且用于在触摸扫描时间内通过检测各自电容电极10的电容值变化以判断触控位置的触控侦测芯片。图2a以存在8行6列共48个镂空区域21、以存在8行6列共48个自电容电极10为例进行说明。
在本发明实施例中,以图2a中所示的触控屏幕尺寸为例:若采用本发明实施例中所述的方案,需要48条与自电容电极10电性连接的导线40;若采用图1a和图1b所示的方案,该触控屏幕尺寸中应该设置10行7列共70个自电容电极,相应地,共需要70条导线;
因此,本发明实施例中采用的导线数量较少,使得与导线一一对应连接的周边走线数量减少了,这有利于触摸屏窄边框的设计,也有利于降低触控侦测芯片的成本。
本发明的一个实施例提供的所述内嵌式触摸屏还可以包括:设置于所述上基板面向所述下基板的一侧,或设置于所述下基板面向所述上基板的一侧的黑矩阵层;所述导电层、各所述自电容电极以及导线在所述下基板上的正 投影位于所述黑矩阵层在所述下基板上的正投影内。
在本发明实施例中,由于所述导电层、各所述自电容电极以及导线在所述下基板上的正投影位于所述黑矩阵层在所述下基板上的正投影内,所述导电层和自电容电极产生的电场不会影响像素开口区域的电场,因此,不会影响正常显示。在本发明实施例中,由于所述导电层、各所述自电容电极以及导线在所述下基板上的正投影位于所述黑矩阵层在所述下基板上的正投影内,还可以避免影响内嵌式触摸屏的透过率。
在一个实施例中,各所述自电容电极在所述下基板上的正投影的图形为网格状结构,且位于所述黑矩阵层在所述下基板上的正投影内。
触摸屏的密度通常在毫米级,显示屏的密度通常在微米级,因此,一般一个自电容电极可对应显示屏中的多个像素单元,为了保证各自电容电极不占用像素单元的开口区域,在一个实施例中,可以将各自电容电极中与像素单元的开口区域对应的位置挖去。本发明实施例中所指的密度是指的触摸屏的自电容电极的间距(Pitch)或者显示屏的像素单元的间距。
比如,以各所述自电容电极在所述下基板上的正投影的图形为位于所述黑矩阵层在所述下基板上的正投影内的网格状结构为例,如图4所示,各自电容电极10与像素单元的开口区域对应的位置被挖去,即可以将各自电容电极10的图形设计为在下基板上的正投影位于黑矩阵层100在下基板上的正投影内的网格状结构。并且为了确保显示的均匀性,一般在各像素单元中的每个亚像素单元的间隙处均设置有自电容电极10,每一组RGB亚像素单元组成一个像素单元。
下面以将所述导电层和自电容电极作为公共电极层使用,所述公共电极层位于所述黑矩阵层和彩色滤光层之间,以及所述导线位于所述彩色滤光层之上为例,对本发明实施例中所述的内嵌式触摸屏的实施方式进行详细说明。
如图3所示,本发明的至少一个实施例中所述的内嵌式触摸屏,包括:相对设置的上基板01和下基板02;位于上基板01面向下基板02一侧的黑矩阵层100;位于黑矩阵层100面向下基板02一侧的包括多个呈矩阵式排布的镂空区域的导电层20,以及与导电层20同层设置且与导电层20相互绝缘的自电容电极10,并且,每个所述镂空区域设置有一个所述自电容电极10;位于导电层20所在膜层面向下基板02一侧的彩色滤光层03;位于彩色滤光 层03面向下基板02一侧的导线所在膜层(图3中未示出),并且,导线通过彩色滤光层中的过孔(图3中未示出)与对应的自电容电极10连接;位于所述导线所在膜层面向下基板02一侧的平坦层04。
在本发明实施例中,将自电容电极所在膜层设置在黑矩阵层与彩色滤光层之间,将导线所在膜层设置在彩色滤光层面向下基板的一侧,可以减少人体电容对在导线上传输的信号的干扰。
基于同一发明构思,本发明的至少一个实施例还提供了一种显示装置,其包括本发明实施例提供的上述内嵌式触摸屏。所述显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置的实施可以参见上述内嵌式触摸屏的实施例,重复之处不再赘述。
在本发明实施例中,由于所述内嵌式触摸屏中的导线数量减少了,促使包括本发明实施例提供的所述内嵌式触摸屏的显示装置中的导线数量也减少了,从而能够在一定程度上有利于窄边框设计并降低较大触控盲区发生的概率。
本发明的至少一个实施例提供了一种对所述显示装置的扫描方法,该方法包括:在一帧时间内,分时进行触摸扫描和显示扫描;在触摸扫描时间内,触控侦测芯片通过与各自电容电极相连的导线和周边走线,分时向各自电容电极施加驱动信号;接收各自电容电极的反馈信号,并根据反馈信号判断触控位置。
在本发明实施例中,分时进行触摸扫描和显示扫描,可以降低显示信号和触控信号之间的相互干扰,提高画面品质和触控准确性。并且,在一个实施例中,可以将显示驱动芯片和触控侦测芯片整合为一个芯片,以降低生产成本。
下面将结合图5,对本发明实施例中对所述显示装置的扫描方法进行详细介绍。
如图5所示,将显示装置显示每一帧(V-sync)的时间分成显示扫描时间段和触摸扫描时间段。比如,显示装置的显示一帧的时间为16.7ms,选取其中5ms作为触摸扫描时间段,其他的11.7ms作为显示扫描时间段。当然也可以根据IC芯片的处理能力适当的调整两者的时长,在此不做具体限定。 在显示扫描时间段,对显示装置中的每条栅极信号线Gate1,Gate2……Gate n依次施加栅扫描信号,对数据信号线Data施加灰阶信号,以实现显示功能。在触控时间段,触控侦测芯片分时向各自电容电极Cx1……Cxn施加驱动信号;同时,接收各自电容电极Cx1……Cxn的反馈信号。通过对各自电容电极Cx1……Cxn的反馈信号的分析,判断出触控位置,以实现触控功能。
在本发明实施例中,触控侦测芯片通过对各自电容电极Cx1……Cxn的反馈信号的分析以判断出触控位置的实施方式可以采用本领域技术人员已知的技术,在此不再赘述。
在一个实施例中,在将所述自电容电极和导电层作为公共电极层使用时,在显示扫描时间段,各自电容电极和所述导电层上施加Vcom电压。这样可以保证显示装置正常进行显示。
在一个实施例中,在所述导电层和自电容电极设置于所述上基板面向所述下基板的一侧时,在显示扫描时间段,各自电容电极和所述导电层上施加floating电压(即,悬空)。这样可以避免所述上基板上的自电容电极和所述导电层与所述下基板上的电极形成正对电场,在一定程度上避免对显示装置的显示产生消极影响。
在上述实施例中,在分时向各自电容电极施加驱动信号时,触控侦测芯片可以横向逐个扫描各自电容电极,以分时向各自电容电极施加驱动信号;也可以竖向逐个扫描各自电容电极,以分时向各自电容电极施加驱动信号。
在一个实施例中,在触控时间段,所述导电层上施加的电压信号与所述自电容电极上施加的电压信号相同。这样可以保证所述导电层与所述自电容电极具有较好的均一性。
作为一种实施方式,在将所述自电容电极和导电层作为公共电极层使用时,在触控时间段(Touch),所述公共电极层上也可以施加Vcom电压。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
本申请要求于2014年5月30日递交的中国专利申请第201410239887.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (12)

  1. 一种内嵌式触摸屏,包括:
    相对设置的上基板和下基板;
    设置于所述上基板面向所述下基板的一侧,或设置于所述下基板面向所述上基板的一侧的导电层,其中,所述导电层包括多个呈矩阵式排布的镂空区域;
    多个与所述导电层同层设置且与所述导电层相互绝缘的自电容电极,其中,每个所述镂空区域设置有至少一个所述自电容电极;以及
    与所述导电层异层设置、且与所述自电容电极电性连接的多条互不交叉的导线,其中,各自电容电极电性连接的所述导线不同。
  2. 如权利要求1所述的内嵌式触摸屏,还包括:设置于所述上基板面向所述下基板的一侧,或设置于所述下基板面向所述上基板的一侧的黑矩阵层;
    其中,所述导电层、各所述自电容电极以及导线在所述下基板上的正投影位于所述黑矩阵层在所述下基板上的正投影内。
  3. 如权利要求2所述的内嵌式触摸屏,其中,各所述自电容电极在所述下基板上的正投影的图形为网格状结构,且位于所述黑矩阵层在所述下基板上的正投影内。
  4. 如权利要求1-3任一所述的内嵌式触摸屏,其中,每个所述镂空区域设置有一个所述自电容电极,所述镂空区域的形状与所述自电容电极的形状相同。
  5. 如权利要求4所述的内嵌式触摸屏,其中,相邻的两个所述自电容电极相对的侧边均为折线。
  6. 如权利要求5所述的内嵌式触摸屏,其中,相邻的两个自电容电极相对的为折线的侧边均具有阶梯状结构,两阶梯状结构形状一致且相互匹配;和/或,
    相邻的两个自电容电极相对的为折线的侧边均具有凹凸状结构,两凹凸状结构形状一致且相互匹配。
  7. 如权利要求1-6任一所述的内嵌式触摸屏,还包括:与所述导线电性连接且用于在触摸扫描时间内通过检测各所述自电容电极的电容值变化以判 断触控位置的触控侦测芯片,以及位于所述内嵌式触摸屏的边框处且与所述导线电性连接的周边走线;
    其中,所述导线将所述自电容电极连接至所述内嵌式触摸屏的边框处;所述触控侦测芯片通过接线端子与所述周边走线电性连接。
  8. 如权利要求7所述的内嵌式触摸屏,其中,所述内嵌式触摸屏的边框具有四个侧边,各所述自电容电极在所述导线互不交叉的基础上通过对应的所述导线连接至距离最近的侧边;或者,所述内嵌式触摸屏的边框形状为长方形,各条所述导线的延伸方向与所述边框的短边方向一致。
  9. 如权利要求1-8任一所述的内嵌式触摸屏,其中,每个所述镂空区域设置有一个所述自电容电极,对于所述自电容电极的边框上的任意一点,其距离所述镂空区域的边框的最小值小于6微米;以及,
    所述导电层包括位于相邻行和列镂空区域之间的多个长条状分支,且每个所述分支的最宽尺寸值小于2毫米。
  10. 如权利要求1-9任一所述的内嵌式触摸屏,其中,将所述导电层和自电容电极作为公共电极层使用。
  11. 如权利要求10所述的内嵌式触摸屏,还包括:与设置于所述下基板面向上基板一侧的栅极和栅线同层设置且电性绝缘的公共电极线;
    其中,所述导电层设置于所述下基板面向上基板的一侧;所述公共电极线与公共电极层异层设置,且通过过孔与公共电极层电性连接;所述公共电极线作为所述导线使用。
  12. 一种显示装置,包括如权利要求1-11任一项所述的内嵌式触摸屏。
PCT/CN2014/087156 2014-05-30 2014-09-23 内嵌式触摸屏以及显示装置 WO2015180322A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/648,087 US9778802B2 (en) 2014-05-30 2014-09-23 In-cell touch panel and display device
EP14863059.3A EP3151099B1 (en) 2014-05-30 2014-09-23 Embedded touchscreen and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410239887.XA CN104020906B (zh) 2014-05-30 2014-05-30 一种内嵌式触摸屏以及显示装置
CN201410239887.X 2014-05-30

Publications (1)

Publication Number Publication Date
WO2015180322A1 true WO2015180322A1 (zh) 2015-12-03

Family

ID=51437693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087156 WO2015180322A1 (zh) 2014-05-30 2014-09-23 内嵌式触摸屏以及显示装置

Country Status (4)

Country Link
US (1) US9778802B2 (zh)
EP (1) EP3151099B1 (zh)
CN (1) CN104020906B (zh)
WO (1) WO2015180322A1 (zh)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103970392B (zh) * 2014-04-18 2019-10-01 京东方科技集团股份有限公司 一种触摸屏及显示装置
CN104020891A (zh) 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020905B (zh) * 2014-05-30 2017-06-16 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020907B (zh) 2014-05-30 2017-02-15 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104020906B (zh) * 2014-05-30 2016-09-07 京东方科技集团股份有限公司 一种内嵌式触摸屏以及显示装置
CN104035640B (zh) 2014-05-30 2017-10-27 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
JP6430746B2 (ja) * 2014-08-01 2018-11-28 エルジー ディスプレイ カンパニー リミテッド タッチセンサ
CN104317458A (zh) 2014-11-06 2015-01-28 京东方科技集团股份有限公司 触摸显示屏以及显示装置
CN104536629B (zh) 2015-01-16 2019-03-26 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104503651B (zh) * 2015-01-22 2018-02-13 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
CN104503653B (zh) * 2015-01-26 2017-04-19 京东方科技集团股份有限公司 一种自电容触摸屏和显示装置
CN104571767B (zh) * 2015-01-29 2018-03-16 京东方科技集团股份有限公司 触控面板、显示装置及触摸驱动方法
CN104793819B (zh) * 2015-03-31 2017-11-14 深圳市华星光电技术有限公司 自电容式触摸屏结构、内嵌式触摸屏以及液晶显示器
CN104698637B (zh) 2015-04-01 2019-01-15 上海天马微电子有限公司 阵列基板、测试方法、显示面板及显示装置
TWI587199B (zh) * 2015-04-01 2017-06-11 友達光電股份有限公司 顯示裝置
CN104699348A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 一种阵列基板和显示装置
CN104698636A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 一种显示面板和电子设备
CN104699357B (zh) 2015-04-01 2018-01-09 上海天马微电子有限公司 一种电子设备、触摸显示面板以及触控显示基板
CN104793419B (zh) * 2015-05-08 2018-09-14 上海天马微电子有限公司 阵列基板、显示面板及显示装置
CN107608575B (zh) * 2015-05-29 2019-05-28 上海天马微电子有限公司 一种触摸屏、触控显示面板及触控设备
CN105094483B (zh) 2015-07-28 2018-08-07 合肥京东方光电科技有限公司 自电容式触摸结构、触摸屏及显示装置
US10442533B2 (en) 2015-12-14 2019-10-15 Autel Robotics Co., Ltd. Battery used for unmanned aerial vehicle and unmanned aerial vehicle
CN105760033B (zh) 2016-02-05 2018-10-09 上海天马微电子有限公司 一种触控屏以及触控显示电子设备
CN105760035B (zh) * 2016-03-24 2018-12-25 京东方科技集团股份有限公司 一种触控显示面板、显示装置
CN106201143B (zh) * 2016-07-18 2019-04-26 厦门天马微电子有限公司 一种触控显示装置
CN106227386A (zh) * 2016-07-29 2016-12-14 京东方科技集团股份有限公司 一种触控面板及其制备方法、显示装置
CN106325644B (zh) * 2016-09-09 2023-10-24 合肥京东方光电科技有限公司 自容式触控结构、触摸屏及显示装置
CN106708320B (zh) * 2016-12-27 2020-10-16 厦门天马微电子有限公司 阵列基板、显示面板和显示装置
CN107425033B (zh) * 2017-04-27 2019-12-17 上海天马微电子有限公司 一种显示面板和显示设备
CN107357466B (zh) * 2017-07-31 2019-06-25 Oppo广东移动通信有限公司 阵列基板、自容式触控显示面板和电子设备
CN107422932B (zh) * 2017-08-01 2020-09-22 上海天马微电子有限公司 显示面板、移动终端及其驱动方法
CN109656063B (zh) 2017-10-11 2020-05-19 京东方科技集团股份有限公司 阵列基板、显示面板和显示装置
CN109634470A (zh) * 2018-12-04 2019-04-16 武汉华星光电半导体显示技术有限公司 一种显示屏及电子装置
US11194435B2 (en) * 2019-11-28 2021-12-07 Beijing Boe Display Technology Co., Ltd. Detection substrate and display device
CN112051938A (zh) * 2020-08-27 2020-12-08 武汉华星光电半导体显示技术有限公司 触控显示面板及触控显示面板的制作方法
CN213069771U (zh) * 2020-09-28 2021-04-27 广州视源电子科技股份有限公司 触摸屏及具有其的触摸显示装置
CN114253431B (zh) * 2021-12-22 2024-04-05 武汉天马微电子有限公司 触控显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045601A1 (ja) * 2012-09-24 2014-03-27 パナソニック株式会社 液晶表示装置
US20140111466A1 (en) * 2012-10-22 2014-04-24 Lg Display Co., Ltd. Display device integrated with touch screen and method of driving the same
CN103793120A (zh) * 2014-01-28 2014-05-14 北京京东方光电科技有限公司 一种内嵌式触摸屏及显示装置
US20140132560A1 (en) * 2012-11-14 2014-05-15 Orise Technology Co., Ltd. In-cell multi-touch I display panel system
JP2014099159A (ja) * 2012-10-16 2014-05-29 Toppan Printing Co Ltd タッチパネル用前面板、これを備えた表示装置、およびタッチパネル用前面板とタッチパネルセンサーとの一体型センサー基板
CN104020906A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏、以及显示装置

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI378377B (en) * 2008-06-23 2012-12-01 Au Optronics Corp Capacitive touch panel and manufacturing method thereof
US8217913B2 (en) * 2009-02-02 2012-07-10 Apple Inc. Integrated touch screen
CN102231090B (zh) * 2009-10-22 2014-03-12 群康科技(深圳)有限公司 触控显示面板和触控显示装置
KR101735568B1 (ko) * 2010-03-30 2017-05-15 엘지디스플레이 주식회사 컬러필터 어레이 기판과 이를 포함하는 액정 표시 장치, 및 그의 제조 방법
KR101274649B1 (ko) * 2010-05-27 2013-06-12 엘지디스플레이 주식회사 터치 패널 일체형 액정 표시 장치 및 이의 제조 방법
KR101790977B1 (ko) * 2010-10-08 2017-10-26 엘지디스플레이 주식회사 액정표시장치
TWI426322B (zh) * 2010-12-22 2014-02-11 Au Optronics Corp 觸控顯示面板
US8804056B2 (en) * 2010-12-22 2014-08-12 Apple Inc. Integrated touch screens
EP2492784B1 (en) * 2011-02-25 2021-02-24 LG Display Co., Ltd. Touch sensor integrated display device
TWI512579B (zh) * 2011-07-29 2015-12-11 Sharp Kk 顯示裝置
WO2013018625A1 (ja) * 2011-07-29 2013-02-07 シャープ株式会社 表示装置
US9405330B2 (en) * 2011-07-29 2016-08-02 Sharp Kabushiki Kaisha Touch panel substrate and display panel
KR101805923B1 (ko) * 2011-08-04 2017-12-08 엘지디스플레이 주식회사 터치센서 일체형 표시장치
CN103135815B (zh) * 2011-11-25 2017-02-22 上海天马微电子有限公司 内嵌触摸屏液晶显示装置及其触控驱动方法
TWI477851B (zh) * 2012-05-22 2015-03-21 Au Optronics Corp 觸控顯示面板與觸控液晶顯示面板
TW201351246A (zh) * 2012-06-05 2013-12-16 Wintek Corp 觸控面板與觸控顯示裝置
KR101356968B1 (ko) * 2012-06-14 2014-02-03 엘지디스플레이 주식회사 터치 스크린 일체형 표시장치
CN102866815B (zh) * 2012-09-03 2015-07-01 北京京东方光电科技有限公司 一种电容式内嵌触摸屏及显示装置
CN103294296A (zh) * 2012-09-19 2013-09-11 上海天马微电子有限公司 内置式电容触摸面板、显示器及制造方法
KR102023436B1 (ko) * 2013-01-30 2019-09-20 엘지디스플레이 주식회사 터치 전극을 포함하는 디스플레이 장치
CN103150070B (zh) * 2013-03-05 2016-07-06 合肥京东方光电科技有限公司 一种电容式触控模组、电容式内嵌触摸屏及显示装置
CN103279245B (zh) * 2013-06-06 2017-03-15 敦泰电子有限公司 触控显示装置
KR101487700B1 (ko) * 2013-06-28 2015-01-29 엘지디스플레이 주식회사 표시장치 및 그 구동방법
CN103412697B (zh) * 2013-07-23 2017-02-08 京东方科技集团股份有限公司 一种触摸屏及其制作方法、显示装置
KR101641690B1 (ko) * 2013-09-25 2016-07-21 엘지디스플레이 주식회사 터치스크린 일체형 표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045601A1 (ja) * 2012-09-24 2014-03-27 パナソニック株式会社 液晶表示装置
JP2014099159A (ja) * 2012-10-16 2014-05-29 Toppan Printing Co Ltd タッチパネル用前面板、これを備えた表示装置、およびタッチパネル用前面板とタッチパネルセンサーとの一体型センサー基板
US20140111466A1 (en) * 2012-10-22 2014-04-24 Lg Display Co., Ltd. Display device integrated with touch screen and method of driving the same
US20140132560A1 (en) * 2012-11-14 2014-05-15 Orise Technology Co., Ltd. In-cell multi-touch I display panel system
CN103793120A (zh) * 2014-01-28 2014-05-14 北京京东方光电科技有限公司 一种内嵌式触摸屏及显示装置
CN104020906A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏、以及显示装置

Also Published As

Publication number Publication date
US20160266675A1 (en) 2016-09-15
EP3151099B1 (en) 2020-08-05
EP3151099A4 (en) 2018-02-07
EP3151099A1 (en) 2017-04-05
CN104020906B (zh) 2016-09-07
CN104020906A (zh) 2014-09-03
US9778802B2 (en) 2017-10-03

Similar Documents

Publication Publication Date Title
WO2015180322A1 (zh) 内嵌式触摸屏以及显示装置
WO2015180356A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
US10459573B2 (en) In-cell touch panel and display device
WO2015180359A1 (zh) 阵列基板及其制作方法、以及显示装置
EP3101516B1 (en) In cell touch panel and display device
WO2015180321A1 (zh) 内嵌式触摸屏及显示装置
US9519374B2 (en) In-cell touch panel and display device
WO2015180316A1 (zh) 内嵌式触摸屏及显示装置
WO2015180313A1 (zh) 内嵌式触摸屏及显示装置
WO2015180303A1 (zh) 内嵌式触摸屏及显示装置
US9830029B2 (en) In-cell touch panel and display device
WO2015180315A1 (zh) 电容式触摸结构、内嵌式触摸屏、显示装置及其扫描方法
US10067614B2 (en) In-cell touch panel and display device
WO2015158083A1 (zh) 触摸屏及显示装置
US9830028B2 (en) In-cell touch panel with self-capacitive electrodes and display device
WO2015180358A1 (zh) 阵列基板及其制作方法和显示装置
WO2015180274A1 (zh) 内嵌式触摸屏及显示装置
WO2016112683A1 (zh) 内嵌式触摸屏及显示装置
WO2016119408A1 (zh) 触控面板、显示装置及触摸驱动方法

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014863059

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014863059

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14648087

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE