WO2015111493A1 - 磁気共鳴イメージング装置及び騒音低減方法 - Google Patents

磁気共鳴イメージング装置及び騒音低減方法 Download PDF

Info

Publication number
WO2015111493A1
WO2015111493A1 PCT/JP2015/050902 JP2015050902W WO2015111493A1 WO 2015111493 A1 WO2015111493 A1 WO 2015111493A1 JP 2015050902 W JP2015050902 W JP 2015050902W WO 2015111493 A1 WO2015111493 A1 WO 2015111493A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
gradient magnetic
pulse
frequency
control unit
Prior art date
Application number
PCT/JP2015/050902
Other languages
English (en)
French (fr)
Inventor
厚志 倉谷
Original Assignee
株式会社 日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立メディコ filed Critical 株式会社 日立メディコ
Priority to CN201580004491.XA priority Critical patent/CN105939661B/zh
Priority to US15/104,751 priority patent/US10393834B2/en
Priority to JP2015558816A priority patent/JP6419730B2/ja
Publication of WO2015111493A1 publication Critical patent/WO2015111493A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3854Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils means for active and/or passive vibration damping or acoustical noise suppression in gradient magnet coil systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/546Interface between the MR system and the user, e.g. for controlling the operation of the MR system or for the design of pulse sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5613Generating steady state signals, e.g. low flip angle sequences [FLASH]
    • G01R33/5614Generating steady state signals, e.g. low flip angle sequences [FLASH] using a fully balanced steady-state free precession [bSSFP] pulse sequence, e.g. trueFISP
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5615Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
    • G01R33/5616Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE] using gradient refocusing, e.g. EPI

Definitions

  • the present invention relates to a magnetic resonance imaging apparatus, and more specifically, to a technique for reducing noise generated by a gradient magnetic field apparatus that applies a pulsed gradient magnetic field to a subject placed in a static magnetic field.
  • a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) applies a pulsed local gradient magnetic field to a subject placed in a static magnetic field using a gradient magnetic field apparatus having a gradient magnetic field coil.
  • an electromagnetic force is generated in the gradient magnetic field coil, which causes mechanical distortion in the gradient magnetic field device including the gradient magnetic field coil, and noise is generated from the gradient magnetic field device.
  • the repetition time (period) of the current of the gradient magnetic field pulse flowing through the gradient coil is extremely short, the sound has a high frequency. Since this sound imposes a great mental burden on the subject during imaging, noise reduction is an important issue in the MRI apparatus.
  • Patent Document 1 deals with the problem that electromagnetic force is generated by driving a gradient coil according to a pulse sequence, and the gradient coil generates mechanical distortion (vibration) and generates noise. Yes.
  • Patent Document 1 when the gradient magnetic field pulse repetition interval (cycle) is short, the gradient magnetic field repeats rising and falling in a short time, resulting in high-frequency noise and noise that causes the subject to feel great discomfort. There is not enough consideration for suppression.
  • the problem to be solved by the present invention is to provide an MRI apparatus that can reduce high-frequency noise during measurement in view of the above circumstances.
  • the present invention provides a gradient magnetic field device that applies a pulsed gradient magnetic field to a subject placed in a static magnetic field, and a magnetic resonance image obtained by driving the gradient magnetic field device with a gradient magnetic field pulse.
  • a magnetic resonance imaging apparatus including a measurement control unit for measuring data, wherein the measurement control unit changes a waveform of the gradient magnetic field pulse during repetition of the gradient magnetic field pulse having a constant period, and the gradient magnetic field device Noise suppression control is performed by shifting the frequency of generated noise to the low frequency side.
  • the application intervals (cycles) of the plurality of gradient magnetic field pulses connected to the gradient magnetic field pulse with the changed waveform can be lengthened. It is based on the knowledge that. Generally, a person feels uncomfortable as the frequency is higher. Therefore, the discomfort of the person who is the subject can be reduced by shifting the frequency of the noise to the low frequency side.
  • high frequency noise during measurement can be reduced to a low frequency.
  • the block diagram which shows the whole structure of one Embodiment of the MRI apparatus which concerns on this invention (a) is a conventional gradient magnetic field pulse, (b) is a diagram showing the time change of each gradient magnetic field pulse of Example 1.
  • (a) is a frequency distribution diagram obtained by Fourier transform of the conventional gradient magnetic field pulse of FIG. 2A (a)
  • (b) is a frequency distribution diagram obtained by Fourier transform of the gradient magnetic field pulse of Example 1 of FIG. 2A (b).
  • (a) is a conventional gradient magnetic field pulse
  • (b) is a diagram showing the time change of each gradient magnetic field pulse of Example 2.
  • (a) is a diagram showing a frequency distribution obtained by Fourier transform of the conventional gradient magnetic field pulse of FIG.
  • (b) is a frequency distribution diagram obtained by Fourier transform of the gradient magnetic field pulse of Example 2 of FIG. 3A (b).
  • (a) is a conventional gradient magnetic field pulse
  • (b) is a diagram showing the time change of each gradient magnetic field pulse of Example 3.
  • (a) is a frequency distribution diagram obtained by Fourier transform of the conventional gradient magnetic field pulse of FIG. 4A (a)
  • (b) is a frequency distribution diagram obtained by Fourier transform of the gradient magnetic field pulse of Example 3 of FIG. 4A (b).
  • (a) is a conventional gradient magnetic field pulse
  • (b) is a diagram showing the time change of each gradient magnetic field pulse of Example 4.
  • (a) is a frequency distribution diagram obtained by Fourier transform of the conventional gradient magnetic field pulse of FIG.
  • FIG. 5A (a), (b) is a frequency distribution diagram obtained by Fourier transform of the gradient magnetic field pulse of Example 4 of FIG. 5A (b).
  • Figure showing the frequency characteristics of the gradient magnetic field device's noise and the relationship between the noise level and frequency when the gradient magnetic field pulse period is changed The figure which shows an example of the operation screen which shows the silence parameter etc. in each Example of the noise suppression control of an MRI apparatus The figure explaining the calculation method of the excitation frequency of the same slice position at the time of polarity reversal of a gradient magnetic field pulse
  • the MRI apparatus of the present embodiment captures a tomographic image of a subject using a nuclear magnetic resonance (NMR) phenomenon.
  • the MRI apparatus includes a static magnetic field generation system 2, a gradient magnetic field generation system 3, a transmission system 5, a reception system 6, a signal processing system 7, a measurement control unit 4, an arithmetic processing unit ( CPU) 8.
  • the static magnetic field generation system 2 is a vertical magnetic field system, it generates a uniform static magnetic field in a direction perpendicular to the body axis in the space around the subject 1. In the horizontal magnetic field method, a uniform static magnetic field is generated in the body axis direction.
  • a permanent magnet type, normal conducting type or superconducting type static magnetic field generating source is arranged around the subject 1.
  • the gradient magnetic field generating system 3 includes a gradient magnetic field coil 9 wound in the three-axis directions of X, Y, and Z, which is a coordinate system (stationary coordinate system) of the MRI apparatus, and a gradient magnetic field power source 10 that drives each gradient magnetic field coil. It consists of.
  • the gradient magnetic field coil 9 and the gradient magnetic field power source 10 constitute a gradient magnetic field apparatus.
  • the gradient magnetic field power supply 10 is provided corresponding to each of the gradient magnetic field coils 9 of the X, Y, and Z axes, and each gradient magnetic field power supply 10 is driven in accordance with a gradient magnetic field pulse output from the measurement control unit 4 described later.
  • gradient magnetic fields Gx, Gy, and Gz are applied in the three-axis directions of X, Y, and Z.
  • a slice-selected gradient magnetic field pulse (Gs) is applied in a direction orthogonal to the slice plane (imaging cross section) to set the slice plane for the subject 1, and the remaining planes orthogonal to the slice plane and orthogonal to each other are set.
  • a phase encoding gradient magnetic field pulse (Gp) and a frequency encoding gradient magnetic field pulse (Gf) are applied in two directions, and position information in each direction is encoded into an echo signal.
  • the measurement control unit 4 is a control unit that repeatedly applies a high-frequency magnetic field pulse (hereinafter referred to as “RF pulse”) having an excitation frequency and a gradient magnetic field pulse in a predetermined pulse sequence that is set.
  • RF pulse high-frequency magnetic field pulse
  • the measurement control unit 4 operates under the control of the arithmetic processing unit 8, and sends various commands necessary for collecting tomographic image data of the subject 1 to the transmission system 5, the gradient magnetic field generation system 3, and the reception system 6. It has become.
  • the transmission system 5 irradiates the subject 1 with RF pulses in order to cause nuclear magnetic resonance to occur in the nuclear spins of the atoms constituting the living tissue of the subject 1, and the high-frequency oscillator 11, the modulator 12, and the high-frequency It comprises an amplifier 13 and a high frequency coil (transmission coil) 14a on the transmission side.
  • the high-frequency pulse output from the high-frequency oscillator 11 is amplitude-modulated by the modulator 12 at a timing according to a command from the measurement control unit 4, and the amplitude-modulated high-frequency pulse is amplified by the high-frequency amplifier 13 and then close to the subject 1.
  • the RF pulse is applied to the subject 1 by being supplied to the high-frequency coil 14a arranged in the manner described above.
  • the receiving system 6 detects an echo signal (NMR signal) emitted by nuclear magnetic resonance of nuclear spins constituting the biological tissue of the subject 1, and receives a high-frequency coil (receiving coil) 14b on the receiving side and a signal amplifier 15 And a quadrature phase detector 16 and an A / D converter 17.
  • NMR signal an echo signal
  • the signals are divided into two orthogonal signals by the quadrature phase detector 16 at the timing according to the command from the measurement control unit 4, converted into digital quantities by the A / D converter 17, and sent to the signal processing system 7.
  • the signal processing system 7 performs various data processing and display and storage of processing results, and is formed by including an external storage device such as an optical disk 19 and a magnetic disk 18 and a display 20 made up of a CRT or the like.
  • an external storage device such as an optical disk 19 and a magnetic disk 18 and a display 20 made up of a CRT or the like.
  • the arithmetic processing unit 8 executes processing such as signal processing and image reconstruction, and displays the tomographic image of the subject 1 as a result on the display 20.
  • the data is recorded on the magnetic disk 18 of the external storage device.
  • the operation unit 25 inputs various control information of the MRI apparatus and control information of processing performed by the signal processing system 7, and includes a trackball or mouse 23, a keyboard 24, and the like.
  • the operation unit 25 is disposed in the vicinity of the display 20, and the operator controls various processes of the MRI apparatus interactively through the operation unit 25 while looking at the display 20.
  • the high-frequency coil 14a and the gradient magnetic field coil 9 on the transmission side face the subject 1 in the static magnetic field space of the static magnetic field generation system 2 into which the subject 1 is inserted, in the case of the vertical magnetic field method. If the horizontal magnetic field method is used, the subject 1 is installed so as to surround it.
  • the high-frequency coil 14b on the receiving side is installed so as to face or surround the subject 1.
  • the imaging target nuclide of the MRI apparatus is a hydrogen nucleus (proton) that is a main constituent material of the subject as widely used in clinical practice.
  • proton hydrogen nucleus
  • the imaging information on the spatial distribution of proton density and the spatial distribution of the relaxation time of the excited state, the form or function of the human head, abdomen, limbs, etc. is imaged two-dimensionally or three-dimensionally.
  • the noise suppression control which is a characteristic part of the present invention, executed by the measurement control unit 4 will be described by way of examples.
  • the noise suppression control that shifts the frequency of noise generated by the gradient magnetic field device to the low frequency side, as a specific method of changing the waveform of the gradient magnetic field pulse during the repetition of the gradient magnetic field pulse of a certain period, A method of each embodiment described below, or a method in which those embodiments are appropriately combined can be applied.
  • Example 1 is an example in which the polarity of at least one gradient magnetic field pulse is reversed and the waveform of a gradient magnetic field pulse train having a set number of repetitions is changed during repetition of a gradient magnetic field pulse with a constant period.
  • FIG. 2A (a) shows a gradient magnetic field pulse 201 of slice selection applied at a constant period used in the gradient echo system.
  • FIG. 2A (b) shows a gradient magnetic field pulse 202 for slice selection according to this embodiment.
  • the gradient magnetic field pulse 202 of this embodiment is a pulse train pattern in which the polarity is inverted and the waveform is changed once every three repetitions of the gradient magnetic field pulse applied at a constant period. .
  • a graph 203 in FIG. 2B (a) is a frequency distribution diagram obtained by performing Fourier transform on the gradient magnetic field pulse 201 in FIG. 2A (a).
  • Reference numeral 204 denotes a frequency that is a fundamental tone of noise
  • reference numeral 205 is a frequency that is a harmonic overtone of the fundamental tone.
  • a graph 206 in FIG. 2B (b) is a frequency distribution diagram obtained by performing Fourier transform on the gradient magnetic field pulse 202 in FIG. 2A (b).
  • the horizontal axis indicates the frequency
  • the vertical axis indicates a value correlated with the noise intensity.
  • reference numeral 207 in the figure is a frequency that becomes a fundamental tone of noise
  • reference numeral 208 is a frequency that becomes a harmonic of the fundamental tone.
  • the repetition interval (period) of the gradient magnetic field pulse 201 in FIG. 2A (a) is Ts
  • a sound having a frequency of 1 / Ts (Hz) is generated.
  • the gradient magnetic field pulse 202 is inverted once every three times as shown in FIG. 2A (b)
  • the fundamental tone is changed to a sound having a frequency of 1/3 Ts (Hz).
  • sound energy is distributed to each frequency, and the sound level of each frequency including the fundamental tone and the overtone is lowered.
  • the excitation frequency of the RF pulse is calculated and changed so that the slice position does not change compared to before the inversion.
  • the static magnetic field intensity B0 and the gradient magnetic field intensity at that position G + during forward rotation, G ⁇ during reverse rotation
  • the example which repeats according to it was shown.
  • the gradient magnetic field pulse for reversing the polarity is not limited to the head, but the polarity of the gradient magnetic field pulse at an arbitrary position and an arbitrary set number of m is reversed, and the frequency reduction effect is confirmed by Fourier transform and adopted. .
  • the fundamental frequency (1 / Ts) when the fundamental frequency (1 / Ts) is multiplied by 1 / n, it is possible to invert up to m times with respect to n repetitions. Even if the noise suppression control is not performed, it is possible not to perform the noise suppression control when the fundamental frequency of the noise is a frequency of 20 Hz or less that does not affect humans.
  • the polarity of at least one gradient magnetic field pulse is reversed to change the waveform of the gradient magnetic field pulse.
  • the fundamental frequency of the noise of the gradient magnetic field device becomes 1 / nTs, and the frequency can be lowered.
  • a person feels uncomfortable as the frequency is higher. Therefore, the discomfort of the person who is the subject can be reduced by shifting the frequency of the noise to the low frequency side.
  • a user interface (UI) 701 shown in FIG. 7 can be displayed on the screen of the operation unit 25 or the display 20 of FIG. 7 includes a noise suppression control flag 702, a noise frequency 703 before suppression, a noise frequency 704 after suppression, and a parameter n705 of 1 / nTs (Hz).
  • Reference numeral 706 indicates the type of noise suppression control, and specifically indicates the type of an example of noise suppression control.
  • the user can select whether to perform noise suppression control by turning on / off the noise suppression control flag 702.
  • the noise frequencies 703 and 704 before and after suppression may be displayed, or the frequencies may be selected by the user.
  • 1 / Ts (Hz) calculated from the period Ts of the gradient magnetic field pulse of slice selection is displayed, and an arbitrary period and frequency (1 / nTs) are selected by selecting the setting repetition number n705 as a parameter. You may be able to do it.
  • n corresponds to the number of slices
  • 1 / Ts, 1 / 2Ts, ..., 1 / ( n-1) Ts and 1 / nTs (Hz) can be selected. It is desirable that the number be divisible by n.
  • the noise suppression control type 706 can select a combination of the embodiments according to the noise suppression control.
  • Example 1 is not limited to inversion between different slices, but between the same slices between 90 ° and 180 ° RF pulses of the spin echo system, or between the same slices of the 180 ° RF pulse of the first spin echo system. Can be applied.
  • the noise suppression control by polarity reversal of the gradient magnetic field of the first embodiment is not limited to the slice selection gradient magnetic field pulse, but can be applied to the noise suppression of the frequency encoding gradient magnetic field pulse and the phase encoding gradient magnetic field pulse. it can. In this case, the arrangement of the k space of the measured magnetic resonance image data may be reversed at the same time. Further, the present invention can be applied to noise suppression of a crusher pulse applied in order to phase-disperse transverse magnetization of protons selectively excited by an RF pulse.
  • Example 2 is an example in which the waveform of a gradient magnetic field pulse train having a set number of repetitions is changed by increasing the application time (pulse width) of at least one gradient magnetic field pulse during repetition of a gradient magnetic field pulse having a constant period.
  • FIG. 3A (a) shows a frequency-encoded gradient magnetic field pulse 301 applied at a fixed period used for echo planar imaging or the like.
  • FIG. 3A (b) shows the frequency-encoded gradient magnetic field pulse 302 of this embodiment.
  • the gradient magnetic field pulse 302 of the present embodiment when counting the upside-down inversion of the frequency-encoded gradient magnetic field pulse 302 applied at a constant period Ts as the repetition number “1”, is set to the set repetition number n (
  • a graph 303 in FIG. 3B (a) is a result of Fourier transform of the gradient magnetic field pulse 301.
  • Reference numeral 304 indicates a fundamental frequency
  • reference numeral 305 indicates a harmonic frequency.
  • a graph 306 in FIG. 3B (b) is a result of Fourier transform of the gradient magnetic field pulse 302 in FIG. 3A (b), where the horizontal axis indicates the frequency and the vertical axis is a value correlated with the noise intensity.
  • Numeral 307 is a frequency that becomes a fundamental tone
  • numeral 308 is a frequency that becomes a harmonic.
  • the waveform of the gradient magnetic field pulse is changed by increasing the application time (pulse width) of at least one gradient magnetic field pulse during repetition of the gradient magnetic field pulse having a constant period.
  • the application interval (cycle) of a plurality of gradient magnetic field pulses connected to the gradient magnetic field pulse whose pulse width is increased can be lengthened.
  • a gradient magnetic field device that is repeatedly driven with a gradient magnetic field pulse with a constant period Ts is driven with a pulse train with a period (nTs + Ta). It will be. As a result, the frequency of the fundamental sound of the gradient magnetic field device becomes 1 / (nTs + Ta) and can be lowered, and the emitted sound also shifts from a high frequency to a low frequency. It is possible to reduce the discomfort of the person who is.
  • the echo acquisition time TE is not changed in order to maintain the image contrast.
  • the target for changing the application time of the gradient magnetic field is not limited to the frequency-encoded gradient magnetic field pulse, and may be a slice selection gradient magnetic field pulse or a phase encode pulse. Further, it may be a crusher pulse applied in order to phase-disperse the transverse magnetization of protons selectively excited by the RF pulse. Furthermore, it may be implemented in combination with Example 1, and the combination can be determined according to the pulse shape used for each measurement.
  • Example 3 is an example in which the waveform of a gradient magnetic field pulse train having a set number of repetitions is changed by moving the application timing of at least one gradient magnetic field pulse in the time axis direction during the repetition of a gradient magnetic field pulse with a constant period.
  • the waveform of the pulse train of the gradient magnetic field pulse is changed by changing the application interval of the gradient magnetic field pulse.
  • the gradient magnetic field is applied at long-period intervals, and the emitted sound also shifts from a high frequency to a low frequency.
  • FIG. 4A (a) shows a slice-selected gradient magnetic field pulse 401 applied at a constant period.
  • the application interval of the gradient magnetic field pulse of slice selection applied at a fixed period in this embodiment is changed in the pulse train of the set repetition number 2 and the application interval of the set magnetic field pulse of the set number 1 is changed.
  • a gradient magnetic field pulse 402 having a pulse train pattern with a changed waveform is shown.
  • a graph 403 in FIG. 4B (a) is a frequency distribution diagram obtained by Fourier transforming the gradient magnetic field pulse 401 in FIG. 4A (a).
  • Reference numeral 404 is a frequency that is a fundamental sound of noise
  • reference numeral 405 is a harmonic of the fundamental sound. This is the frequency.
  • a graph 406 in FIG. 4B (b) is a frequency distribution diagram obtained by Fourier transforming the gradient magnetic field pulse 402 in FIG. 4A (b).
  • the horizontal axis indicates the frequency
  • the vertical axis is a value correlated with the noise intensity.
  • reference numeral 407 in the figure denotes a frequency that becomes a fundamental tone of noise
  • reference numeral 408 denotes a frequency that becomes a harmonic of the fundamental tone.
  • the interval (period) of the gradient magnetic field pulse 401 in FIG. 4A (a) is Ts
  • a sound with a fundamental frequency of 1 / Ts (Hz) is generated.
  • Change the application interval of magnetic field pulses That is, the application interval of the first and second gradient magnetic field pulses in the gradient magnetic field pulse train having the set repetition number 2 is shortened.
  • the application timing of the second gradient magnetic field pulse is moved in the direction of the first gradient magnetic field pulse to shorten the interval with the first gradient magnetic field pulse.
  • the period of the gradient magnetic field pulse train of the set repetition number n shown in FIG.4A (b) becomes nTs.As a result, as shown in FIG.4B (b), the sound generated from the gradient magnetic field device has a fundamental tone.
  • the frequency changes to 1 / (2Ts) (Hz).
  • auxiliary functions such as a user interface (UI) 701 shown in FIG. 7 can be added.
  • the target for changing the application time of the gradient magnetic field is not limited to the slice selection gradient magnetic field pulse. Should be done correctly. Further, it may be a crusher pulse applied in order to phase-disperse the transverse magnetization of protons selectively excited by the RF pulse. Furthermore, it may be implemented in combination with other embodiments.
  • Example 4 of the present invention will be described.
  • the fourth embodiment is an example in which the gradient magnetic field pulse train is changed in intensity by changing the intensity of the gradient magnetic field pulse during the repetition of the gradient magnetic field pulse having a constant period.
  • FIG. 5A (a) shows a slice-selective gradient magnetic field pulse 501 applied at a constant period.
  • a graph 503 in FIG. 5B (a) is a frequency distribution diagram obtained by performing Fourier transform on the gradient magnetic field pulse 501 shown in FIG. 5A (a).
  • Reference numeral 504 denotes a fundamental frequency
  • reference numeral 505 denotes a harmonic frequency.
  • a graph 506 in FIG. 5B (b) is a frequency distribution diagram obtained by performing Fourier transform on the gradient magnetic field pulse 502 in FIG. 5A (b).
  • the horizontal axis represents frequency
  • the vertical axis represents a value correlated with noise intensity.
  • Reference numeral 507 denotes a frequency that becomes a fundamental tone
  • reference numeral 508 denotes a frequency that becomes a harmonic. At this time, sound energy is distributed to each frequency, and the sound level of each frequency including the fundamental tone and the overtone is lowered.
  • the long period Gradient magnetic field pulses are applied at intervals, and the emitted sound also shifts from high frequency to low frequency.
  • the interval (period) of the gradient magnetic field pulses in FIG. 5A (a) is Ts
  • the intensity of the crusher pulse applied to the gradient magnetic field pulse is that the sound of the fundamental frequency is 1 / Ts (Hz). Is gradually changed to a sound having a frequency of 1 / (4Ts) (Hz) as shown in FIG. 5B (b).
  • the discomfort of the person who is the subject can be reduced as in the first to third embodiments.
  • sound energy is distributed to each frequency, and the sound level of each frequency including the fundamental tone and the overtone is lowered.
  • auxiliary functions such as a user interface (UI) 701 shown in FIG. 7 can be added.
  • the target for changing the intensity of the gradient magnetic field pulse is not limited to the crusher pulse, and even if the gradient magnetic field pulse is a slice selection, the slice profile may be the same. Moreover, even if it is a phase encoding pulse, it is sufficient if the arrangement of the k space is not changed after the change. Further, it may be implemented in combination with the first embodiment, the second embodiment, or the third embodiment.
  • Embodiment 5 of the present invention will be described with reference to FIG.
  • the present embodiment is an example in which noise suppression is performed by changing the frequency more effectively by preparing the frequency characteristics of the noise of the gradient magnetic field device generated by the gradient magnetic field pulse in advance.
  • the horizontal axis represents the frequency
  • the vertical axis represents the noise level [dBA] for each gradient magnetic field pulse intensity of the gradient magnetic field apparatus
  • reference numeral 601 represents the frequency characteristic of the noise level of the gradient magnetic field apparatus.
  • (B) is a graph of the sound level of the frequency of the fundamental tone 1 / Ts when the period of the gradient magnetic field pulse is Ts, and shows the noise level when the gradient magnetic field apparatus has the frequency characteristic 601. Yes.
  • FIG. 5C is a graph showing the sound level of the frequency of the fundamental tone 1/2 Ts when the gradient magnetic field pulse period is 2 Ts, and shows the noise level corresponding to the frequency characteristic 601 of the gradient magnetic field device.
  • FIG. 4D is a graph showing the sound level of the frequency of the fundamental tone 1/3 Ts when the period of the gradient magnetic field pulse is 3 Ts, and shows the noise level corresponding to the frequency characteristic 601 of the gradient magnetic field device.
  • the noise level with respect to the noise suppression frequency of Fig. 11 (b) to (d) is predicted in advance.
  • the noise level is the smallest in (d)
  • the setting repetition number n that becomes 1 / 3Ts in noise suppression control and the setting number m that changes the waveform are automatically selected. Can be changed.
  • the noise suppression effect for example, the noise before and after the change [dBA] can be notified to the user.
  • the frequency of the fundamental tone of the noise of the gradient magnetic field device can be lowered by applying the noise suppression control of Embodiments 1 to 4 alone or in combination as appropriate. Furthermore, if Example 5 is combined, noise suppression control can be performed appropriately. At that time, the measurement control unit 4 may allow the user to select a combination of the noise suppression controls described in the first to fifth embodiments.
  • the measurement control unit 4 may change the waveform of the gradient magnetic field pulse when the constant period Ts of the gradient magnetic field pulse is shorter than a predetermined set period. Further, the measurement control unit 4 may notify the user that any noise suppression control including the first to fifth embodiments is being performed.
  • the present invention sets the number of repetitions of the gradient magnetic field pulse having a constant period Ts to n (where n is a natural number), changes the pulse train pattern of the gradient magnetic field pulse train of the set repetition number n, and lengthens the pulse train pattern. .
  • the purpose of the present invention is to lower the frequency of the fundamental sound of the noise generated from the gradient magnetic field device by repeatedly driving the gradient magnetic field device with the gradient magnetic field pulse train of the set repetition number n having a long period. That is, the gradient magnetic field device is repeatedly driven in units of a pulse train pattern with a reduced frequency.
  • the gradient magnetic field device that is repeatedly driven by the gradient magnetic field pulse having the constant cycle Ts is driven by the repetition cycle nTs of the pulse train pattern unit.
  • the noise frequency of the gradient magnetic field device becomes 1 / nTs and the frequency is lowered.
  • 1 subject 2 static magnetic field generation system, 3 gradient magnetic field generation system, 4 measurement control unit, 5 transmission system, 6 reception system, 7 signal processing system, 8 arithmetic processing unit, 9 gradient magnetic field coil, 10 gradient magnetic field power supply, 11 High frequency oscillator, 12 modulator, 13 high frequency amplifier, 14a high frequency coil (transmitting coil), 14b high frequency coil (receiving coil), 15 signal amplifier, 16 quadrature phase detector, 17 A / D converter, 18 magnetic disk, 19 optical disk , 20 display, 21 ROM, 22 RAM, 23 trackball or mouse, 24 keyboard

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

 計測中の高周波の騒音を低周波化することができるMRI装置を提供するために、静磁場中に置かれた被検体にパルス状の傾斜磁場を印加する傾斜磁場装置(9,10)と、傾斜磁場装置を傾斜磁場パルスにより駆動して磁気共鳴画像データを計測する計測制御部4を備えた磁気共鳴イメージング装置であって、計測制御部は、一定周期の傾斜磁場パルスの繰返し中に傾斜磁場パルスの波形を変えて、傾斜磁場装置が発生する騒音の周波数を低周波側に移行させる騒音抑制制御を行う。

Description

磁気共鳴イメージング装置及び騒音低減方法
 本発明は、磁気共鳴イメージング装置に係り、具体的には、静磁場中に置かれた被検体にパルス状の傾斜磁場を印加する傾斜磁場装置が発生する騒音を緩和する技術に関する。
 磁気共鳴イメージング装置(以下、MRI装置と称する。)は、傾斜磁場コイルを備えた傾斜磁場装置を用いて、静磁場中に置かれた被検体にパルス状の局所的な傾斜磁場を印加してMR画像を取得する。傾斜磁場を発生させる際、傾斜磁場コイルに電磁気力が発生し、これが傾斜磁場コイルを備えた傾斜磁場装置に機械的歪みを生じさせて、傾斜磁場装置から騒音が発生する。特に、傾斜磁場コイルに流通する傾斜磁場パルスの電流の繰り返し時間(周期)が極めて短い場合、高い周波数の音になる。この音は、撮像の際に被検体に大きな精神的負担を与えるため、騒音低減はMRI装置において重要な課題である。
 例えば、特許文献1には、パルスシーケンスに従った傾斜磁場コイルの駆動により電磁気力が発生し、傾斜磁場コイルが機械的歪み(振動)を生じて騒音が発生するという問題への対応がなされている。
米国特許第6567685号明細書
 しかし、特許文献1では、傾斜磁場パルスの繰り返し間隔(周期)が短い場合において、傾斜磁場が短時間で立ち上がりと立ち下りが繰り返すので高周波の騒音になり、被検体が大きな不快感をもつ騒音を抑制することについては、十分に配慮されていない。
 本発明が解決しようとする課題は、上記事情を鑑みて、計測中の高周波の騒音を低周波化することができるMRI装置を提供することにある。
 上記の課題を解決するため、本発明は、静磁場中に置かれた被検体にパルス状の傾斜磁場を印加する傾斜磁場装置と、前記傾斜磁場装置を傾斜磁場パルスにより駆動して磁気共鳴画像データを計測する計測制御部を備えた磁気共鳴イメージング装置であって、前記計測制御部は、一定周期の前記傾斜磁場パルスの繰返し中に前記傾斜磁場パルスの波形を変えて、前記傾斜磁場装置が発生する騒音の周波数を低周波側に移行させて騒音抑制制御を行うことを特徴とする。
 すなわち、本発明は、一定周期の傾斜磁場パルスの繰返し中に傾斜磁場パルスの波形を変えると、波形が変わった傾斜磁場パルスに連なる複数の傾斜磁場パルスの印加間隔(周期)を長周期化できるという知見に基づくものである。一般に、人は周波数が高いほど不快に感ずるから、騒音の周波数を低周波側に移すことにより、被検体である人の不快感を軽減することができる。
 本発明によれば、計測中の高周波の騒音を低周波に落とすことができる。
本発明に係るMRI装置の一実施形態の全体構成を示すブロック図 (a)は従来の傾斜磁場パルス、(b)は実施例1の傾斜磁場パルスのそれぞれ時間変化を示す図 (a)は図2A(a)の従来の傾斜磁場パルスをフーリエ変換した周波数分布図、(b)は図2A(b)の実施例1の傾斜磁場パルスをフーリエ変換した周波数分布図 (a)は従来の傾斜磁場パルス、(b)は実施例2の傾斜磁場パルスのそれぞれ時間変化を示す図 (a)は図3A(a)の従来の傾斜磁場パルスをフーリエ変換した周波数分布を示す図、(b)は図3A(b)の実施例2の傾斜磁場パルスをフーリエ変換した周波数分布図 (a)は従来の傾斜磁場パルス、(b)は実施例3の傾斜磁場パルスのそれぞれ時間変化を示す図 (a)は図4A(a)の従来の傾斜磁場パルスをフーリエ変換した周波数分布図、(b)は図4A(b)の実施例3の傾斜磁場パルスをフーリエ変換した周波数分布図 (a)は従来の傾斜磁場パルス、(b)は実施例4の傾斜磁場パルスのそれぞれ時間変化を示す図 (a)は図5A(a)の従来の傾斜磁場パルスをフーリエ変換した周波数分布図、(b)は図5A(b)の実施例4の傾斜磁場パルスをフーリエ変換した周波数分布図 傾斜磁場装置の騒音の周波数特性と、傾斜磁場パルスの周期を変化させた時の騒音レベルと周波数の関係を示した図 MRI装置の騒音抑制制御の各実施例における静音化パラメータ等を示す操作画面の一例を示す図 傾斜磁場パルスの極性反転時の同スライス位置の励起周波数の算出方法を説明する図
 以下、添付図面に従って本発明を実施形態及び実施例に基づいて説明する。
 図1を参照して、本発明のMRI装置の一実施形態について説明する。なお、発明の実施形態を説明する全ての図において、同一機能を有するものは同一符号を付け、その繰り返しの説明を省略する。図1に示すように、本実施形態のMRI装置は、核磁気共鳴(NMR)現象を利用して被検体の断層画像を撮像するものである。図1に示すように、MRI装置は静磁場発生系2と、傾斜磁場発生系3と、送信系5と、受信系6と、信号処理系7と、計測制御部4と、演算処理部(CPU)8とを備えて構成される。
 静磁場発生系2は、垂直磁場方式であれば、被検体1の周りの空間にその体軸と直交する方向に均一な静磁場を発生させる。また、水平磁場方式であれば、体軸方向に均一な静磁場を発生させる。そして、被検体1の周りに永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源が配置されている。
 傾斜磁場発生系3は、MRI装置の座標系(静止座標系)であるX,Y,Zの3軸方向に巻かれた傾斜磁場コイル9と、それぞれの傾斜磁場コイルを駆動する傾斜磁場電源10とから成る。これらの傾斜磁場コイル9と傾斜磁場電源10によって、傾斜磁場装置が構成される。傾斜磁場電源10は、X,Y,Z軸のそれぞれの傾斜磁場コイル9に対応して設けられ、後述の計測制御部4から出力される傾斜磁場パルスに従って、それぞれの傾斜磁場電源10が駆動される。これにより、X,Y,Zの3軸方向に傾斜磁場Gx,Gy,Gzが印加される。撮影時には、スライス面(撮影断面)に直交する方向にスライス選択の傾斜磁場パルス(Gs)を印加して被検体1に対するスライス面を設定し、そのスライス面に直交して且つ互いに直交する残りの2つの方向に位相エンコードの傾斜磁場パルス(Gp)と周波数エンコードの傾斜磁場パルス(Gf)を印加して、エコー信号にそれぞれの方向の位置情報をエンコードする。
 計測制御部4は、励起周波数の高周波磁場パルス(以下、「RFパルス」という。)と傾斜磁場パルスを、設定される所定のパルスシーケンスで繰り返し印加する制御手段である。計測制御部4は、演算処理部8の制御で動作し、被検体1の断層画像のデータ収集に必要な種々の命令を送信系5、傾斜磁場発生系3、および受信系6に送るようになっている。
 送信系5は、被検体1の生体組織を構成する原子の原子核スピンに核磁気共鳴を起こさせるために、被検体1にRFパルスを照射するものであり、高周波発振器11と変調器12と高周波増幅器13と送信側の高周波コイル(送信コイル)14aとから構成される。
 高周波発振器11から出力された高周波パルスを計測制御部4からの指令によるタイミングで変調器12により振幅変調し、この振幅変調された高周波パルスを高周波増幅器13で増幅した後に、被検体1に近接して配置された高周波コイル14aに供給することによりRFパルスが被検体1に照射される。
 受信系6は、被検体1の生体組織を構成する原子核スピンの核磁気共鳴により放出されるエコー信号(NMR信号)を検出するもので、受信側の高周波コイル(受信コイル)14bと信号増幅器15と直交位相検波器16と、A/D変換器17とから成る。送信側の高周波コイル14aから照射された電磁波によって誘起された被検体1の応答のNMR信号が被検体1に近接して配置された高周波コイル14bで検出され、信号増幅器15で増幅された後、計測制御部4からの指令によるタイミングで直交位相検波器16により直交する二系統の信号に分割され、それぞれがA/D変換器17でディジタル量に変換されて、信号処理系7に送られる。
 信号処理系7は、各種データ処理と処理結果の表示及び保存等を行うもので、光ディスク19、磁気ディスク18等の外部記憶装置と、CRT等からなるディスプレイ20とを有して形成される。受信系6からのデータが演算処理部8に入力されると、演算処理部8が信号処理、画像再構成等の処理を実行し、その結果である被検体1の断層画像をディスプレイ20に表示すると共に、外部記憶装置の磁気ディスク18等に記録する。
 操作部25は、MRI装置の各種制御情報や信号処理系7で行う処理の制御情報を入力するもので、トラックボール又はマウス23、及び、キーボード24等から成る。操作部25はディスプレイ20に近接して配置され、操作者がディスプレイ20を見ながら操作部25を通してインタラクティブにMRI装置の各種処理を制御する。
 なお、図1において、送信側の高周波コイル14aと傾斜磁場コイル9は、被検体1が挿入される静磁場発生系2の静磁場空間内に、垂直磁場方式であれば被検体1に対向して、水平磁場方式であれば被検体1を取り囲むようにして設置されている。また、受信側の高周波コイル14bは、被検体1に対向して、或いは取り囲むように設置されている。
 MRI装置の撮像対象核種は、臨床で普及しているものとしては、被検体の主たる構成物質である水素原子核(プロトン)である。プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態、又は機能を2次元もしくは3次元的に撮像する。
 以下、計測制御部4が実行する本発明の特徴部である騒音抑制制御を実施例に分けて説明する。基本的に、傾斜磁場装置が発生する騒音の周波数を低周波側に移す騒音抑制制御を行うために、一定周期の傾斜磁場パルスの繰返し中に傾斜磁場パルスの波形を変える具体的な方法として、次に説明する各実施例の方法、あるいはそれらの各実施例を適宜組み合せた方法を適用することができる。
 本実施例1は、一定周期の傾斜磁場パルスの繰返し中に、少なくとも一つの傾斜磁場パルスの極性を反転して、設定繰返し数の傾斜磁場パルス列の波形を変える例である。図2A(a)にグラジェントエコー系に用いられる一定周期で印加されているスライス選択の傾斜磁場パルス201を示す。図2A(b)に本実施例のスライス選択の傾斜磁場パルス202を示す。本実施例の傾斜磁場パルス202は、同図に示すように、一定周期で印加されている傾斜磁場パルスの繰返し数の3回に1回、極性を反転して波形を変えたパルス列パターンである。
 図2B(a)のグラフ203は、図2A(a)の傾斜磁場パルス201をフーリエ変換した周波数分布図であり、符号204は騒音の基音となる周波数、符号205は基音の倍音となる周波数である。図2B(b)のグラフ206は、図2A(b)の傾斜磁場パルス202をフーリエ変換した周波数分布図であり、横軸は周波数を示し、縦軸は騒音の強度に相関する値である。また、同図中の符号207は騒音の基音となる周波数であり、符号208は基音の倍音となる周波数である。
 それらのグラフからわかるように、一定周期で印加されていた傾斜磁場パルス202の設定された設定繰返し数n(ただし、nは自然数であり、図示例ではn=3である。)のうち、設定数m(ただし、mは自然数であり、m<n/2である。図示例ではm=1である。)の傾斜磁場パルス202の極性を反転している。言い換えれば、設定繰返し数nの傾斜磁場パルス202からなるパルス列の先頭の傾斜磁場パルスの極性を、他の傾斜磁場パルスに対して反転する。これにより、長周期の間隔で傾斜磁場パルスが印加されるようになり、図2B(b)のフーリエ変換した周波数分布図にも示されているように、基音の周波数が低周波側に移っている。このことは、傾斜磁場装置から発せられる騒音が高周波から低周波へ移行することを意味する。
 例えば、図2A(a)の傾斜磁場パルス201の繰返し間隔(周期)がTsのとき、基音が1/Ts(Hz)の周波数の音が発生している。これに対し、図2A(b)のように傾斜磁場パルス202を3回に1回反転すると、基音が1/3Ts(Hz)の周波数の音に変わる。この時、音のエネルギーが各周波数に分散され、基音と倍音を含めた各周波数の音のレベルは下がる。
 ここで、スライス選択の傾斜磁場パルスを反転する際は、スライス位置が反転前と比べて変わらないようにするため、RFパルスの励起周波数を算出して変更する。具体的には、図8に示すように、傾斜磁場パルスを反転させて同じスライス位置を励起するために、その位置の静磁場強度B0と傾斜磁場強度(正転時G+、反転時G-)とラーモア周波数γから求まる励起周波数(正転時ω+,反転時ω-)のRFパルスを照射する。
 なお、図2A、Bの例では、n=3、m=1の例を示し、設定繰返し数3の傾斜磁場パルスの先頭の傾斜磁場パルスの極性を反転させたパルス列を、必要なスライス枚数に応じて繰返す例を示した。しかし、極性を反転する傾斜磁場パルスは先頭に限られるものではなく、任意の位置、任意の設定数mの傾斜磁場パルスの極性を反転し、フーリエ変換して周波数低減効果を確認して採用する。
 例えば、基音の周波数(1/Ts)を1/n倍するときは、n回の繰り返しに関して、m回以下の反転を行うことも可能である。また、騒音抑制制御を行わなくても、騒音の基音が人には影響のない20Hz以下の周波数の場合は、騒音抑制制御を行わないようにすることも可能である。
 本実施例1は、一定周期の傾斜磁場パルスの繰返し中に、少なくとも一つの傾斜磁場パルスの極性を反転して、傾斜磁場パルスの波形を変えている。これにより、本実施例によれば、極性が反転された傾斜磁場パルスに連なる複数の傾斜磁場パルスの印加間隔(周期)を長周期化できる。つまり、一定周期Tsの傾斜磁場パルスの設定繰返し数nの繰返し中に、例えば設定数mの傾斜磁場パルスの極性を反転することにより、一定周期Tsの傾斜磁場パルスで繰り返し駆動される傾斜磁場装置は、n倍の周期nTsのパルス列により駆動されることになる。その結果、傾斜磁場装置の騒音の基音の周波数が1/nTsになり低周波数化することができる。一般に、人は周波数が高いほど不快に感ずるから、騒音の周波数を低周波側に移すことにより、被検体である人の不快感を軽減することができる。
 また、本実施例1の騒音抑制制御には、種々の補助機能を付加することができる。例えば、図7に示すユーザインターフェイス(UI)701を、図1の操作部25或いはディスプレイ20の画面上に表示することができる。図7のUI701は、騒音抑制制御フラグ702、抑制前の騒音周波数703、抑制後の騒音周波数704、1/nTs(Hz)のパラメータn705である。また、符号706は、騒音抑制制御のタイプを表示しており、具体的には騒音抑制制御の実施例のタイプを表示する。ユーザは、UI701を用いて、騒音抑制制御フラグ702をオン/オフして騒音抑制制御を行うか否か選択できる。
 抑制前及び抑制後の騒音周波数703、704を表示させること、あるいはそれらの周波数をユーザによって選択できるようにしてもよい。その際、スライス選択の傾斜磁場パルスの周期Tsから算出される1/Ts(Hz)を表示し、パラメータである設定繰返し数n705を選択することで任意の周期及び周波数(1/nTs)を選択できるようにしてもよい。
 また、スライス毎の傾斜磁場方向を揃える制限を入れる場合は、設定繰返し数nのスライス選択の場合、nはスライス枚数に相当するから、1/Ts、1/2Ts、・・・、1/(n-1)Ts、1/nTs(Hz)に制限して選ぶことができ、その際nに対して割り切れる数で制限することが望ましい。また、騒音抑制制御のタイプ706は、騒音抑制制御に係る各実施例の組み合わせを選択することもできる。
 本実施例1は、異なるスライス間の反転に限らず、スピンエコー系の90°RFパルスと180°RFパルス間の同一スライス間や、ファーストスピンエコー系の180°RFパルス間の同一スライス間に適用することができる。
 本実施例1の傾斜磁場の極性反転による騒音抑制制御は、スライス選択の傾斜磁場パルスに限らず、周波数エンコードの傾斜磁場パルス、位相エンコードの傾斜磁場パルスの騒音抑制に対しても適用することができる。この場合、計測される磁気共鳴画像データのk空間の配置も同時に反転させればよい。また、RFパルスにより選択励起されたプロトンの横磁化を位相分散させるために印加するクラッシャーパルスの騒音抑制に適用することができる。
 本実施例2は、一定周期の傾斜磁場パルスの繰返し中に、少なくとも一つの傾斜磁場パルスの印加時間(パルス幅)を増大して、設定繰返し数の傾斜磁場パルス列の波形を変える例である。図3A(a)にエコープラナーイメージング等に用いられる一定周期で印加されている周波数エンコードの傾斜磁場パルス301を示す。図3A(b)に本実施例の周波数エンコードの傾斜磁場パルス302を示す。
 本実施例の傾斜磁場パルス302は、同図に示すように、一定周期Tsで印加されている周波数エンコードの傾斜磁場パルス302の上下反転を繰返し数「1」として数えると、設定繰返し数n(図示例では、n=4)中に、設定数m(図示例では、m=1)の斜磁場パルスの印加時間(パルス幅)を増大したパルス列としている。図3B(a)のグラフ303は、傾斜磁場パルス301をフーリエ変換したものであり、符号304は基音となる周波数、符号305は倍音となる周波数である。図3B(b)のグラフ306は、図3A(b)の傾斜磁場パルス302をフーリエ変換したものであり、横軸は周波数を示し、縦軸は騒音の強度に相関する値である。
 また、符号307は基音となる周波数、符号308は倍音となる周波数である。
 一定周期で印加されていた傾斜磁場パルスの印加時間(パルス幅)を増大することによって、長周期の間隔で傾斜磁場が印加されるようになり、発せられる音も高周波から低周波へ移行する。すなわち、図3A(a)の傾斜磁場の上下反転の間隔(周期)がTsであるとすると、基音が1/Ts(Hz)の周波数の音が発生されていたものが、設定繰返し数n(図示例では、n=4)に設定数m図示例では、m=1)の傾斜磁場パルスの印加時間が増大するので、その増加分の時間をTaとすると、基音が1/(4Ts+Ta)(Hz)の周波数の音に変わる。この時、音のエネルギーが各周波数に分散され、基音と倍音を含めた各周波数の音のレベルは下がる。
 本実施例2は、一定周期の傾斜磁場パルスの繰返し中に、少なくとも一つの傾斜磁場パルスの印加時間(パルス幅)を増大することにより、傾斜磁場パルスの波形を変えている。これにより、本実施例2によれば、パルス幅が増大された傾斜磁場パルスに連なる複数の傾斜磁場パルスの印加間隔(周期)を長周期化できる。
 つまり、一定周期で印加されていた複数の傾斜磁場パルス列の印加時間を増大することによって、一定周期Tsの傾斜磁場パルスで繰り返し駆動される傾斜磁場装置は、周期(nTs+Ta)のパルス列により駆動されることになる。その結果、傾斜磁場装置の騒音の基音の周波数が1/(nTs+Ta)になり低周波数化することができ、発せられる音も高周波から低周波へ移行するから、実施例1と同様に、被検体である人の不快感を軽減することができる。
 なお、本実施例2のように、周波数エンコードの傾斜磁場パルスの印加時間(パルス幅)を変更する際は、画像コントラストを保つためにエコー取得時間TEは変えないようにすることは言うまでもない。
 また、実施例1と同様に、図7に示すユーザインターフェイス(UI)701などの種々の補助機能を付加することができる。また、実施例1と同様、傾斜磁場の印加時間を変化させる対象は、周波数エンコードの傾斜磁場パルスに限らず、スライス選択傾斜磁場パルスであっても、位相エンコードパルスであっても良い。また、RFパルスにより選択励起されたプロトンの横磁化を位相分散させるために印加するクラッシャーパルスであっても良い。さらに、実施例1と組み合わせて実施しても良く、各計測に用いるパルス形状によって組み合わせを決めておくことができる。
 実施例3は一定周期の傾斜磁場パルスの繰返し中に、少なくとも一つの傾斜磁場パルスの印加タイミングを時間軸方向に移動して、設定繰返し数の傾斜磁場パルス列の波形を変える例である。言い換えれば、傾斜磁場パルスの印加間隔を変えて、傾斜磁場パルスのパルス列の波形を変えている。これにより、本実施例3によれば、長周期の間隔で傾斜磁場が印加されるようになり、発せられる音も高周波から低周波へ移行することになる。
 つまり、図4A(a)に一定周期で印加されているスライス選択の傾斜磁場パルス401を示す。図4A(b)に、本実施例の一定周期で印加されているスライス選択の傾斜磁場パルスの印加間隔を、設定繰返し数2のパルス列において、設定数1の傾斜磁場パルスの印加間隔を変化させて、波形を変えたパルス列パターンを有する傾斜磁場パルス402を示す。また、図4B(a)のグラフ403は、図4A(a)の傾斜磁場パルス401をフーリエ変換した周波数分布図であり、符号404は騒音の基音となる周波数であり、符号405は基音の倍音となる周波数である。図4B(b)のグラフ406は、図4A(b)の傾斜磁場パルス402をフーリエ変換した周波数分布図であり、横軸は周波数を示し、縦軸は騒音の強度に相関する値である。また、同図中の符号407は騒音の基音となる周波数であり、符号408は基音の倍音となる周波数である。
 図4A(a)の傾斜磁場パルス401の間隔(周期)をTsとすると、基音が1/Ts(Hz)の周波数の音が発生される。これに対し、図4A(b)の傾斜磁場パルス402のように波形を変えて、設定繰返し数n(図示例では、n=2)に設定数m(図示例では、m=1)の傾斜磁場パルスの印加間隔を変える。つまり、設定繰返し数2の傾斜磁場パルス列の1回目と2回目の傾斜磁場パルスの印加間隔を短くしている。
 言い換えれば、2回目の傾斜磁場パルスの印加タイミングを1回目の傾斜磁場パルスの方向に移動して、1回目の傾斜磁場パルスとの間隔を短くしている。これにより、図4A(b)に示す設定繰返し数nの傾斜磁場パルス列の周期はnTsになり、その結果、図4B(b)に示すように、傾斜磁場装置から発生される音は、基音が1/(2Ts)(Hz)の周波数に変わる。これにより、実施例1、2と同様に、被検体である人の不快感を軽減することができる。この時、音のエネルギーが各周波数に分散され、基音と倍音を含めた各周波数の音のレベルは下がる。
 また、実施例1と同様に、図7に示すユーザインターフェイス(UI)701などの種々の補助機能を付加することができる。また、実施例1と同様、傾斜磁場の印加時間を変化させる対象は、スライス選択の傾斜磁場パルスに限らず、周波数エンコード傾斜磁場パルスであっても、位相エンコードパルスであってもk空間の配置が正しく行われればよい。また、RFパルスにより選択励起されたプロトンの横磁化を位相分散させるために印加するクラッシャーパルスであってもよい。さらに、その他の実施例と組み合わせて実施してもよい。
 本発明の実施例4を説明する。本実施例4は、一定周期の傾斜磁場パルスの繰返し中に、傾斜磁場パルスの強度を変えて、設定繰返し数の傾斜磁場パルス列の波形を変える例である。図5A(a)に、一定周期で印加されているスライス選択の傾斜磁場パルス501を示す。図5A(b)は、図5A(a)に示した傾斜磁場パルス501のクラッシャーパルスの印加強度を設定繰返し数n(図示例では、n=4)である。図5A(b)は、設定数m(図示例では、m=4)のクラッシャーパルスの強度を変化させて、一定周期で印加されている傾斜磁場パルス502を示す。
 図5B(a)のグラフ503は、図5A(a)に示した傾斜磁場パルス501をフーリエ変換した周波数分布図であり、符号504は基音となる周波数であり、符号505は倍音となる周波数である。図5B(b)のグラフ506は、図5A(b)の傾斜磁場パルス502をフーリエ変換した周波数分布図であり、横軸は周波数を示し、縦軸は騒音の強度に相関する値である。また、符号507は基音となる周波数であり、符号508は倍音となる周波数である。この時、音のエネルギーが各周波数に分散され、基音と倍音を含めた各周波数の音のレベルは下がる。
 本実施例4によれば、一定周期かつ一定強度で印加されていた繰り返し数n=4の傾斜磁場パルスの設定数m=4の傾斜磁場パルスのクラッシャーパルスの印加強度を変えることにより、長周期の間隔で傾斜磁場パルスが印加されるようになり、発せられる音も高周波から低周波へ移行する。例えば、図5A(a)の傾斜磁場パルスの間隔(周期)をTsとすると、基音が1/Ts(Hz)の周波数の音が発生されていたものが、傾斜磁場パルスのクラッシャーパルスの印加強度を漸次変えることにより、図5B(b)に示すように、基音が1/(4Ts)(Hz)の周波数の音に変わる。これにより、実施例1~3と同様に、被検体である人の不快感を軽減することができる。この時、音のエネルギーが各周波数に分散され、基音と倍音を含めた各周波数の音のレベルは下がる。
 また、実施例1と同様に、図7に示すユーザインターフェイス(UI)701などの種々の補助機能を付加することができる。また、実施例1と同様、傾斜磁場パルスの強度変化させる対象は、クラッシャーパルスに限らず、スライス選択の傾斜磁場パルスであっても、スライスプロファイルが同じであればよい。また、位相エンコードパルスであってもk空間の配置を変更後で変わらなければよい。また、実施例1や実施例2や実施例3と組み合わせて実施してもよい。
 図6を参照して、本発明の実施例5を説明する。本実施例では、予め傾斜磁場パルスにより発生される傾斜磁場装置の騒音の周波数特性を用意しておくことで、より効果的に周波数を変更することで騒音抑制を行う例である。
 図6(a)において、横軸は周波数を示し、縦軸は傾斜磁場装置の傾斜磁場パルス強度ごとの騒音レベル[dBA]を示し、符号601は傾斜磁場装置の騒音レベルの周波数特性である。同図(b)は、傾斜磁場パルスの周期がTsの時の基音1/Tsの周波数の音のレベルのグラフであり、傾斜磁場装置が周波数特性601を持っているときの騒音レベルを示している。同図(c)は、傾斜磁場パルスの周期が2Tsの時の基音1/2Tsの周波数の音のレベルを示すグラフであり、傾斜磁場装置の周波数特性601に対応する騒音レベルを示している。同図(d)は傾斜磁場パルスの周期が3Tsの時の基音1/3Tsの周波数の音のレベルを示すグラフであり、傾斜磁場装置の周波数特性601に対応する騒音レベルを示している。
 同図(a)の傾斜磁場装置の周波数特性に対応させて、同図(b)~(d)の騒音抑制の周波数に対する騒音レベルをあらかじめ予測しておく。図6の例では、騒音レベルが最も小さくなるのは(d)であることから、騒音抑制制御で1/3Tsになる設定繰返し数nと、波形を変える設定数mを自動的に選択して、変更するようにすることができる。また、騒音抑制効果、例えば変更前後の騒音[dBA]をユーザに知らせるようにすることができる。
 以上説明したように、本発明によれば、実施例1~4の騒音抑制制御を単独又は適宜組み合わせて適用することにより、傾斜磁場装置の騒音の基音の周波数を低周波数化することができる。さらに、実施例5を組み合わせれば、適切に騒音抑制制御を行うことができる。その際、計測制御部4は、上記実施例1~5に記載の騒音抑制制御の組み合わせをユーザに選ばせてもよい。
 さらに、計測制御部4は、傾斜磁場パルスの一定周期Tsが所定の設定周期よりも短い場合に、傾斜磁場パルスの波形を変えるようにしてもよい。また、計測制御部4は、上記実施例1~5を含むいずれかの騒音抑制制御を行っていることをユーザに知らせるようにしてもよい。
 なお、傾斜磁場パルスの波形を変えた場合、これに伴って高周波磁場パルス(RFパルス)の照射周波数と照射位相を制御することは当然に要求されることは言うまでもない。
 なお、本発明は上述した実施例1~4又はこれらの組み合わせに限定されるものではなく、本発明の主旨の範囲で変形又は変更された形態で実施することが可能であることは、当業者にあっては明白なことであり、そのような変形又は変更された形態が本願の特許請求の範囲に属することは当然のことである。
 すなわち、本発明は、一定周期Tsの傾斜磁場パルスの設定繰返し数をn(ただし、nは自然数)とし、設定繰返し数nの傾斜磁場パルス列のパルス列パターンを変えて、パルス列パターンを長周期化する。長周期化された設定繰返し数nの傾斜磁場パルス列により傾斜磁場装置を繰り返し駆動することにより、傾斜磁場装置から発生される騒音の基音の周波数を低周波化することを本旨とする。つまり、低周波化されたパルス列パターンを単位として、傾斜磁場装置を繰り返し駆動することを特徴とする。
 さらに付言すると、パルス列パターンが変わると、一定周期Tsの傾斜磁場パルスで繰り返し駆動される傾斜磁場装置は、パルス列パターン単位の繰返し周期nTsにより駆動されることになる。繰返し周期nTsのパルス列パターンをフーリエ変換すると、傾斜磁場装置の騒音の周波数が1/nTsになり低周波数化されることになる。
 1 被検体、2 静磁場発生系、3 傾斜磁場発生系、4 計測制御部、5 送信系、6 受信系、7 信号処理系、8 演算処理部、9 傾斜磁場コイル、10 傾斜磁場電源、11 高周波発振器、12 変調器、13 高周波増幅器、14a 高周波コイル(送信コイル)、14b 高周波コイル(受信コイル)、15 信号増幅器、16 直交位相検波器、17 A/D変換器、18 磁気ディスク、19 光ディスク、20 ディスプレイ、21 ROM、22 RAM、23 トラックボール又はマウス、24 キーボード

Claims (15)

  1.  静磁場中に置かれた被検体にパルス状の傾斜磁場を印加する傾斜磁場装置と、前記傾斜磁場装置を傾斜磁場パルスにより駆動して磁気共鳴画像データを計測する計測制御部を備えた磁気共鳴イメージング装置であって、
     前記計測制御部は、一定周期の前記傾斜磁場パルスの繰返し中に少なくとも一つの前記傾斜磁場パルスの波形を変えて、前記傾斜磁場装置が発生する騒音の周波数を低周波側に移行させる騒音抑制制御を行うことを特徴とする磁気共鳴イメージング装置。
  2.  前記計測制御部は、一定周期の前記傾斜磁場パルスの設定繰返し数毎に、前記傾斜磁場パルスの波形を変えて騒音抑制制御を行うことを特徴とする請求項1に記載の磁気共鳴イメージング装置。
  3.  前記計測制御部は、一定周期の前記傾斜磁場パルスの繰返し中に、少なくとも一つの前記傾斜磁場パルスの極性を反転させて前記騒音抑制制御を行うことを特徴とする請求項1に記載の磁気共鳴イメージング装置。
  4.  前記計測制御部は、一定周期の前記傾斜磁場パルスの繰返し中に、少なくとも一つの前記傾斜磁場パルスの印加時間を増大して前記騒音抑制制御を行うことを特徴とする請求項1に記載の磁気共鳴イメージング装置。
  5.  前記計測制御部は、一定周期の前記傾斜磁場パルスの繰返し中に、少なくとも一つの前記傾斜磁場パルスの印加タイミングを時間軸方向に移動して前記騒音抑制制御を行うことを特徴とする請求項1に記載の磁気共鳴イメージング装置。
  6.  前記計測制御部は、一定周期の前記傾斜磁場パルスの繰返し中に、前記傾斜磁場パルスの強度を変えて前記騒音抑制制御を行うことを特徴とする請求項1に記載の磁気共鳴イメージング装置。
  7.  前記計測制御部は、前記傾斜磁場パルスに付加するクラッシャーパルスの強度を漸次変えて前記騒音抑制制御を行うことを特徴とする請求項6に記載の磁気共鳴イメージング装置。
  8.  前記計測制御部は、SSFP系、GRE系、FSE系、EPI系のパルスシーケンスにより前記磁気共鳴画像データを計測することを特徴とする請求項1に記載の磁気共鳴イメージング装置。
  9.  前記計測制御部は、前記傾斜磁場パルスの前記一定周期が、設定周期よりも短い場合に、前記傾斜磁場パルスの波形を変えることを特徴とする請求項1に記載の磁気共鳴イメージング装置。
  10.  前記計測制御部は、前記騒音抑制制御を行っていることをユーザに知らせることを特徴とする請求項1に記載の磁気共鳴イメージング装置。
  11.  前記計測制御部は、前記騒音抑制制御による騒音周波数をユーザに選ばせることを特徴とする請求項1に記載の磁気共鳴イメージング装置。
  12.  前記計測制御部は、
     一定周期の前記傾斜磁場パルスの設定繰返し数ごとに、前記傾斜磁場パルスの波形を変えること、
     一定周期の前記傾斜磁場パルスの繰返し中に、少なくとも一つの前記傾斜磁場パルスの極性を反転させること、
     一定周期の前記傾斜磁場パルスの繰返し中に、少なくとも一つの前記傾斜磁場パルスの印加時間を増大すること、
     一定周期の前記傾斜磁場パルスの繰返し中に、少なくとも一つの前記傾斜磁場パルスの印加タイミングを時間軸方向に移動すること、
     の内の2つ以上の組み合わせを騒音抑制制御として行うことを特徴とする請求項1に記載の磁気共鳴イメージング装置。
  13.  前記計測制御部は、前記騒音抑制制御の組み合わせをユーザに選ばせることを特徴とする請求項12記載の磁気共鳴イメージング装置。
  14.  前記計測制御部は、前記傾斜磁場装置の騒音の特性に基づいて、騒音の基音が最も小さくなる前記傾斜磁場パルスの繰返しの設定繰返し数を選択することを特徴とする請求項2記載の磁気共鳴イメージング装置。
  15.  静磁場中に置かれた被検体にパルス状の傾斜磁場を印加する傾斜磁場装置と、前記傾斜磁場装置を傾斜磁場パルスにより駆動して磁気共鳴画像データを計測する計測制御部を備えた磁気共鳴イメージング装置における騒音低減方法であって、
     一定周期の前記傾斜磁場パルスの繰返し中に少なくとも一つの前記傾斜磁場パルスの波形を変えて、前記傾斜磁場装置が発生する騒音の周波数を低周波側に移行させるステップと、
     前記波形を変えられた傾斜磁場パルスを用いて前記被検体から磁気共鳴画像データを計測するステップと、
     を有することを特徴とする騒音低減方法。
PCT/JP2015/050902 2014-01-27 2015-01-15 磁気共鳴イメージング装置及び騒音低減方法 WO2015111493A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580004491.XA CN105939661B (zh) 2014-01-27 2015-01-15 磁共振成像装置以及降噪方法
US15/104,751 US10393834B2 (en) 2014-01-27 2015-01-15 Magnetic resonance imaging apparatus and noise reduction method
JP2015558816A JP6419730B2 (ja) 2014-01-27 2015-01-15 磁気共鳴イメージング装置及び騒音低減方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-012796 2014-01-27
JP2014012796 2014-01-27

Publications (1)

Publication Number Publication Date
WO2015111493A1 true WO2015111493A1 (ja) 2015-07-30

Family

ID=53681299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050902 WO2015111493A1 (ja) 2014-01-27 2015-01-15 磁気共鳴イメージング装置及び騒音低減方法

Country Status (4)

Country Link
US (1) US10393834B2 (ja)
JP (1) JP6419730B2 (ja)
CN (1) CN105939661B (ja)
WO (1) WO2015111493A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109414214A (zh) * 2016-07-28 2019-03-01 株式会社日立制作所 磁共振成像装置
WO2022181817A1 (ja) 2021-02-26 2022-09-01 ビークルエナジージャパン株式会社 組電池及び電源装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014221950B3 (de) * 2014-10-28 2016-04-21 Siemens Aktiengesellschaft Geräuschreduzierung bei selektiver MR-Anregung
US11353527B2 (en) 2019-07-19 2022-06-07 Shanghai United Imaging Healthcare Co., Ltd. Systems and methods for waveform determination in magnetic resonance imaging
CN112826494B (zh) * 2020-12-30 2023-05-23 上海联影医疗科技股份有限公司 Mr设备振动和声学噪声消减方法、系统、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4360912B2 (ja) * 2001-11-26 2009-11-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 音響ノイズが低減された磁気共鳴撮像方法
JP2011530371A (ja) * 2008-08-14 2011-12-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Mriノイズ美化
WO2013165571A1 (en) * 2012-04-30 2013-11-07 The General Hospital Corporation System and method for quiet magnetic resonance imaging
WO2014189929A1 (en) * 2013-05-23 2014-11-27 General Electric Company Systems and methods for reducing magnetic resonance (mr) imaging acoustic noise in mr inflow imaging
US20140347050A1 (en) * 2013-05-22 2014-11-27 General Electric Company System and method for reducing acoustic noise level in mr imaging

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4035410C2 (de) * 1989-11-20 2000-03-16 Siemens Ag Pulssequenz nach dem Echoplanarverfahren
EP0554584A1 (en) * 1991-11-29 1993-08-11 Koninklijke Philips Electronics N.V. Magnetic resonance device and signal combination device
DE19910018C1 (de) * 1999-03-08 2000-10-19 Siemens Ag Verfahren zum Betrieb eines Magnetresonanztomographiegeräts
AU2003237848A1 (en) * 2002-05-15 2003-12-02 University Of Virginia Patent Foundation Method and system for rapid magnetic resonance imaging of gases with reduced diffusion-induced signal loss
JP4497973B2 (ja) * 2004-03-24 2010-07-07 株式会社東芝 磁気共鳴イメージング装置
US7683614B2 (en) * 2006-04-27 2010-03-23 Stefan Posse Magnetic resonance spectroscopy with sparse spectral sampling and interleaved dynamic shimming
EP2283373B1 (en) * 2008-04-28 2021-03-10 Cornell University Accurate quantification of magnetic susceptibility in molecular mri
US9833168B2 (en) * 2011-06-06 2017-12-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Noise tolerant localization systems and methods
DE102011083619B4 (de) * 2011-09-28 2023-01-26 Siemens Healthcare Gmbh Verfahren zur Erzeugung einer Serie von MR-Bildern zur Überwachung einer Position eines in einem Untersuchungsgebiet befindlichen Interventionsgeräts, Magnetresonanzanlage und elektronisch lesbarer Datenträger
US9588207B2 (en) * 2011-10-06 2017-03-07 National Institutes of Health (NIH), U.S. Dept. of Health and Human Services (DHHS), The United States of America NIH Division of Extramural Inventions and Technology Resources (DEITR) System for reconstructing MRI images acquired in parallel
DE102012203512B4 (de) * 2012-02-03 2014-02-13 Siemens Aktiengesellschaft Ermittlung einer MR-Messsequenz mittels eines Gradienten-Optimierungsverfahrens
DE102012219010B4 (de) * 2012-10-18 2014-04-30 Siemens Aktiengesellschaft Optimierung einer Pulssequenz für eine Magnetresonanzanlage
JP6013137B2 (ja) * 2012-10-26 2016-10-25 東芝メディカルシステムズ株式会社 磁気共鳴イメージング装置および周波数シフト量測定方法
JP6277201B2 (ja) * 2013-01-15 2018-02-07 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 音響ノイズ放射が抑制される動脈スピンラベリング及びその作動方法
DE102013202559B3 (de) * 2013-02-18 2014-08-21 Siemens Aktiengesellschaft Optimierung einer MR-Pulssequenz durch automatisches Optimieren von Gradientenpulsen in veränderbaren Intervallen
DE102013213255B4 (de) * 2013-07-05 2017-06-08 Siemens Healthcare Gmbh Beschleunigte Bestimmung von Gradientenverläufen auf der Grundlage von vorherigen Gradientenverläufen
DE102013218475B4 (de) * 2013-09-16 2015-10-22 Siemens Aktiengesellschaft Geräuschsoptimierung einer Magnetresonanz-Sequenz durch Anhebung einer Pulsbandweite
US9612300B2 (en) * 2013-11-25 2017-04-04 Wisconsin Alumni Research Foundation System and method for object-based initialization of magnetic field inhomogeneity in magnetic resonance imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4360912B2 (ja) * 2001-11-26 2009-11-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 音響ノイズが低減された磁気共鳴撮像方法
JP2011530371A (ja) * 2008-08-14 2011-12-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Mriノイズ美化
WO2013165571A1 (en) * 2012-04-30 2013-11-07 The General Hospital Corporation System and method for quiet magnetic resonance imaging
US20140347050A1 (en) * 2013-05-22 2014-11-27 General Electric Company System and method for reducing acoustic noise level in mr imaging
WO2014189929A1 (en) * 2013-05-23 2014-11-27 General Electric Company Systems and methods for reducing magnetic resonance (mr) imaging acoustic noise in mr inflow imaging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109414214A (zh) * 2016-07-28 2019-03-01 株式会社日立制作所 磁共振成像装置
WO2022181817A1 (ja) 2021-02-26 2022-09-01 ビークルエナジージャパン株式会社 組電池及び電源装置

Also Published As

Publication number Publication date
US20170003362A1 (en) 2017-01-05
JP6419730B2 (ja) 2018-11-07
US10393834B2 (en) 2019-08-27
JPWO2015111493A1 (ja) 2017-03-23
CN105939661B (zh) 2019-03-08
CN105939661A (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
JP6419730B2 (ja) 磁気共鳴イメージング装置及び騒音低減方法
KR20130050846A (ko) 자기 공명 영상 장치 및 그 제어 방법
US20130069650A1 (en) Magnetic resonance imaging apparatus and high-frequency magnetic field pulse modulation method
WO2010053012A1 (ja) 磁気共鳴イメージング装置及び方法
JP2014502910A (ja) インターリーブスピンロッキングイメージング
JP6615184B2 (ja) 磁気共鳴イメージング装置
JP5808659B2 (ja) 磁気共鳴イメージング装置及びT1ρイメージング法
JP5159200B2 (ja) 磁気共鳴イメージング装置
JP5536346B2 (ja) 磁気共鳴イメージング装置
JP5602208B2 (ja) 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
WO2015076082A1 (ja) 磁気共鳴イメージング装置
JP5352130B2 (ja) 磁気共鳴イメージング装置
JP6157976B2 (ja) 磁気共鳴イメージング装置、及び方法
JP5942265B2 (ja) 磁気共鳴イメージング装置及びrfパルス制御方法
JP5758230B2 (ja) 磁気共鳴イメージング装置及び反転rfパルス位相制御方法
JP2016131847A (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング方法
JP2018114163A (ja) 磁気共鳴イメージング装置
JP2009291388A (ja) 磁気共鳴イメージング方法及び磁気共鳴イメージング装置
JP2016214630A (ja) 磁気共鳴イメージング装置、及び作動方法
JP2017123888A (ja) 磁気共鳴イメージング装置及びリフェーズ傾斜磁場印加方法
JP6233965B2 (ja) 磁気共鳴イメージング装置及びrfシミング方法
JP5283213B2 (ja) 磁気共鳴イメージング装置
JP2015128552A (ja) 磁気共鳴イメージング装置、及びその磁場印加方法
JP2010233799A (ja) Mriにおけるハイブリッド法及びmri装置
JP2017006522A (ja) 磁気共鳴イメージング装置及びその磁場印加方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015558816

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15104751

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740577

Country of ref document: EP

Kind code of ref document: A1