WO2015111452A1 - Substrate for light-emitting element and light-emitting device - Google Patents

Substrate for light-emitting element and light-emitting device Download PDF

Info

Publication number
WO2015111452A1
WO2015111452A1 PCT/JP2015/050516 JP2015050516W WO2015111452A1 WO 2015111452 A1 WO2015111452 A1 WO 2015111452A1 JP 2015050516 W JP2015050516 W JP 2015050516W WO 2015111452 A1 WO2015111452 A1 WO 2015111452A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light emitting
main surface
emitting element
outer edge
Prior art date
Application number
PCT/JP2015/050516
Other languages
French (fr)
Japanese (ja)
Inventor
勝寿 中山
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015558799A priority Critical patent/JP6398996B2/en
Publication of WO2015111452A1 publication Critical patent/WO2015111452A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body

Definitions

  • the present invention relates to a light emitting element substrate and a light emitting device.
  • LED light-emitting diode
  • a heat radiator so as to penetrate the substrate on which the light emitting element is mounted. Further, by providing an inclined portion or a stepped portion on the side surface of the radiator, it is possible to increase the contact area between the radiator and the base that mainly constitutes the substrate, thereby ensuring the adhesive strength between the radiator and the base.
  • the inclined portion and the stepped portion are usually configured such that a cross-sectional area increases (perpendicular to the thickness direction) from one main surface side on which the light emitting element is mounted toward the other main surface side. .
  • the thing of a two-stage structure is known as a heat radiator which has a level
  • the present invention has been made to solve the above-described problems, and provides a light-emitting element substrate and a light-emitting device in which cracking of a base caused by an inclined portion or a stepped portion provided on a side surface of a radiator is suppressed. With the goal.
  • the substrate for a light emitting element of the present invention has a base, a heat radiator, a first coating layer, and a second coating layer.
  • the base is plate-shaped and has a first main surface on which the light emitting element is mounted and a second main surface arranged on the opposite side of the first main surface.
  • the heat dissipating member is arranged inside the base, and has a plurality of configurations in which the area of the end surface on the second main surface side is larger than the area of the end surface on the first main surface side and is divided in the thickness direction of the base Has units.
  • the first covering layer is disposed on the first main surface, covers the end surface on the first main surface side of the second structural unit of the radiator disposed on the first main surface side, and The outer edge of the first coating layer is disposed outside the outer edge formed by the end surface on the first main surface side of the two structural units.
  • the second covering layer is disposed between the plurality of structural units of the heat radiating body, and among these structural units, the first structural unit disposed on the second main surface side with respect to the second structural unit.
  • the outer edge of the second covering layer is arranged outside the outer edge formed by the end face on the first main surface side of the first structural unit while covering the end surface on the first main surface side.
  • the light-emitting device of the present invention includes the light-emitting element substrate of the present invention and a light-emitting element mounted on the light-emitting element substrate.
  • the substrate for a light-emitting element of the present invention is provided with a first covering layer so as to straddle the heat dissipating body and its peripheral base on one main surface side on which the light-emitting element is mounted, A second coating layer is provided so as to straddle the peripheral substrate.
  • substrate for light emitting elements shown in FIG. FIG. 2 is a cross-sectional view of the light emitting element substrate shown in FIG. Explanatory drawing explaining angle (theta) of the side surface of a heat radiator.
  • the top view which shows the positional relationship of a heat radiator and a 2nd coating layer.
  • FIG. 1 is a top view showing a first embodiment of a light emitting element substrate.
  • FIG. 2 is a bottom view of the light-emitting element substrate shown in FIG.
  • FIG. 3 is a cross-sectional view of the light emitting element substrate shown in FIG.
  • the light emitting element substrate 10 has a plate-like substrate 11 as shown in FIG. 3, for example.
  • the base 11 has a first main surface 11a on which the light emitting element is mounted, and a second main surface 11b disposed on the opposite side of the first main surface 11a.
  • a heat radiator 12 composed of two structural units 111 and 112 divided in the thickness direction of the base body 11 is provided inside the base body 11.
  • a first coating layer 13 is provided on the first major surface 11a.
  • a second coating layer 14 is provided between the structural units 111 and 112 of the radiator 12.
  • first main surface 11 a may be provided with the wiring conductor 15 (FIG. 1) and the frame body 16 so as to surround the first covering layer 13 and the wiring conductor 15.
  • External electrodes 17 and 18 are provided on the second main surface 11b.
  • a through conductor (not shown) that connects the wiring conductor 15 and the external electrode 17 is provided inside the base 11.
  • the base 11 has, for example, a square cross-sectional shape in a cross section perpendicular to the thickness direction.
  • the base body 11 includes, for example, a first base body 111 and a second base body 112 in order from the second main surface 11b side.
  • the thickness direction means a direction from the first main surface 11a to the second main surface 11b perpendicularly.
  • the thickness of the substrate 11 is not particularly limited, but is usually 0.20 mm or more and 0.60 mm or less.
  • the thickness of each of the first base 111 and the second base 112 is preferably 0.10 mm or more. When the thickness is 0.10 mm or more, handling of the green sheet at the time of manufacture becomes good. In addition, when the thickness is 0.10 mm or more, it is easy to form the radiator 12 on the green sheet.
  • the thickness of each of the first base 111 and the second base 112 is more preferably 0.15 mm or more. On the other hand, the thicknesses of the first base 111 and the second base 112 can be set to 0.30 mm or less or 0.25 mm or less, respectively.
  • the ratio of the thickness of the first base 111 to the thickness of the second base 112 is 3: 7 to 7 : 3 is preferable, 4: 6 to 6: 4 is more preferable, and 5: 5 (that is, the same thickness) is particularly preferable.
  • the base 11 is made of, for example, an inorganic insulating material.
  • the inorganic insulating material include alumina, aluminum nitride, and glass ceramics.
  • Glass ceramics is a sintered body of a glass ceramic composition containing glass powder and ceramic powder, and includes low temperature co-fired ceramics (LTCC) and the like.
  • the thermal conductivity of aluminum nitride is about 200 W / (m ⁇ K)
  • the thermal conductivity of alumina is about 20 W / (m ⁇ K)
  • the thermal conductivity of glass ceramics is about 4 W / (m ⁇ K).
  • the thermal conductivity of alumina and glass ceramics is significantly lower than that of aluminum nitride. For this reason, when the inorganic insulating material is alumina or glass ceramics, the effect of providing the radiator 12 is large.
  • glass ceramics are preferred because of their low firing temperature.
  • a silver reflective film may be formed on the light emitting element substrate 10 on the first main surface 11a side of the base body 11 in order to increase the light reflectance. Since the firing temperature of glass ceramics is low, the silver reflective film can be fired simultaneously with the firing of glass ceramics. Further, glass ceramics are particularly preferable as the inorganic insulating material from the viewpoint of good workability compared to alumina.
  • the radiator 12 is provided inside the base 11 so as to extend in the thickness direction.
  • the radiator 12 has a square cross-sectional shape in a cross section perpendicular to the thickness direction.
  • the area of the end surface by the side of the 2nd main surface 11b of the heat sink 12 is large compared with the area of the end surface by the side of the 1st main surface 11a of the heat sink 12.
  • cross-sectional area and “cross-sectional area” mean an area in a cross-section perpendicular to the thickness direction
  • cross-sectional shape means a thickness direction. It shall mean the shape in a vertical cross section.
  • the area of the end face of the first main surface 11a side of the radiator 12 is preferably 0.60 mm 2 or less, 0.55 mm 2 or less being more preferred.
  • the area of the end face of the heat dissipating body 12 on the first main surface 11a side is the area of the light emitting element mounting surface (hereinafter referred to as “light emitting element area”), that is, the light emitting element is mounted on the light emitting element substrate. It is preferable that it is small compared with the area of the mounting part.
  • the outer edge of the first covering layer 13 is provided on the outer side of the outer edge formed by the end surface of the heat dissipating body 12 on the first main surface 11a side.
  • the area of the end surface on the first main surface 11a side of the heat radiating element 12 is larger than the area of the light emitting element, inevitably light emission in a plan view (when viewed from the first main surface 11a side).
  • the first coating layer 13 protrudes from the element.
  • the area of the end surface by the side of the 1st main surface 11a of the heat sink 12 is smaller than the area of a light emitting element so that the light of a light emitting element may not be absorbed.
  • the heat radiator 12 has, for example, a stepped portion on the side surface, and the cross-sectional area gradually increases from the first main surface 11a side to the second main surface 11b side. Further, for example, as shown in FIG. 3, the radiator 12 includes a plurality of structural units divided by a plane perpendicular to the thickness direction, and in order from the second main surface 11 b side, the first structural unit 121, And a second structural unit 122.
  • the cross-sectional area of the first structural unit 121 is larger than the cross-sectional area of the second structural unit 122.
  • the thickness of the first structural unit 121 is generally substantially the same as the thickness of the first base 111.
  • the thickness of the second structural unit 122 is generally substantially the same as the thickness of the second base body 112.
  • the ratio (V 2 / V 1 ) of the volume (V 2 ) of the radiator 12 to the total volume (V 1 ) of the base member 11 and the members disposed therein is preferably 10% by volume or more.
  • the heat radiator 12, the 2nd coating layer 14, and a penetration conductor (not shown) are mentioned.
  • the ratio (V 2 / V 1 ) is 10% by volume or more, since the volume of the radiator 12 is sufficiently large, the heat dissipation is good.
  • the ratio (V 2 / V 1 ) is 10% by volume or more
  • the base body 11 starting from the radiator 12 is used. Cracking is likely to occur. Since the substrate for a light emitting device of the embodiment has the above-described coating layer, even when the ratio (V 2 / V 1 ) is 10% by volume or more, generation of cracks is suppressed and good heat dissipation is achieved. Sex is obtained.
  • the ratio (V 2 / V 1 ) of the radiator 12 is more preferably 15% by volume or more.
  • the ratio (V 2 / V 1 ) is preferably 30% by volume or less.
  • the ratio (V 2 / V 1 ) exceeds 30% by volume, the volume (V 1 ) is relatively reduced and the strength of the substrate 11 is lowered, and the first coating layer 13 and the second coating layer 14 are reduced. Even if provided, there is a possibility that the base 11 is cracked starting from the radiator 12. Further, the ratio (V 2 / V 1 ) is more preferably 25% by volume or less.
  • FIG. 4 is an explanatory diagram for explaining the angle ⁇ of the side surface of the radiator 12.
  • the angle ⁇ corresponds to the first straight line 31 extending in the thickness direction of the base 11, and the end surface and the side surface on the second main surface 11 b side in each of the structural units 121 and 122.
  • the angle ⁇ is preferably 20 ° or more.
  • the angle ⁇ is 20 ° or more, the area of the end surface on the second main surface 11b side is sufficiently larger than the area of the end surface on the first main surface 11a side, so that the heat dissipation is improved.
  • the angle ⁇ is more preferably 30 ° or more. On the other hand, an angle ⁇ of about 70 ° is sufficient from the viewpoint of heat dissipation.
  • the angle ⁇ is more preferably 60 ° or less. Usually, the angle ⁇ is particularly preferably about 45 °.
  • the heat dissipating body 12 preferably has a curvature radius of a corner portion formed by two side surfaces in the cross-sectional shape of 0.03 mm or more. That is, when the cross section perpendicular to the thickness direction of the radiator 12 is a square, it is preferable that the curvature radii of the corners present at the four corners of the square are 0.03 mm or more. When the radius of curvature is 0.03 mm or more, cracking of the substrate 11 starting from the corner apex is suppressed.
  • the curvature radius is more preferably 0.05 mm or more.
  • the curvature radius is preferably 0.40 mm or less, and more preferably 0.35 mm or less.
  • the constituent material of the radiator 12 is preferably a metal material having high thermal conductivity.
  • a metal material include metals mainly composed of copper, silver, gold, and the like.
  • a metal composed of silver, silver and platinum, or silver and palladium is preferable.
  • that a certain component is the main component of the constituent material means that the component is contained in an amount exceeding 50 mass% with respect to the total amount of the constituent material.
  • the constituent material of the first constituent unit 121 and the constituent material of the second constituent unit 122 may be the same or different.
  • the constituent material of the radiator 12 is preferably a refractory metal such as tungsten or molybdenum from the viewpoint of suppressing deformation during firing.
  • the first covering layer 13 is disposed on the surface of the base 11 on the first main surface 11a side.
  • the first covering layer 13 has a square cross-sectional shape in accordance with the second structural unit 122 having a square cross-sectional shape.
  • the first coating layer 13 covers the end surface of the second structural unit 122 on the first main surface 11 a side, and the outer edge of the first coating layer is the first main surface of the second structural unit 122. It is arranged outside the outer edge formed by the end surface on the 11a side.
  • the outer edge of the first covering layer 13 is disposed outside the outer edge formed by the end surface of the second structural unit 122 on the first main surface 11a side, so that the base of the peripheral portion of the second structural unit 122 is provided.
  • 11 (second substrate 112) is covered with the first covering layer 13. Thereby, the crack in the surface direction of the base 11 starting from the second structural unit 122 is suppressed.
  • FIG. 5 is a top view showing the positional relationship between the second structural unit 122 and the first coating layer 13.
  • Distance L 1 between the first principal surface 11a side of the end face outer edges of the (square) sides and the outer edge of the first cover layer 13 (squares) each side of the second constitutional unit 122, respectively, 0.03 mm or more is preferable.
  • the distance L 1 is 0.03 mm or more, the base 11 (second base 112) in the periphery of the second structural unit 122 is sufficiently covered with the first coating layer 13. Thereby, the crack in the surface direction of the substrate 11 starting from the second structural unit 122 is further suppressed.
  • the distance L 1 is more preferably equal to or greater than 0.05 mm.
  • the distance L 1 is preferably equal to 0.30 mm, more preferably at most 0.25 mm.
  • the area of the end surface of the second structural unit 122 on the first main surface 11a side is the area of the optical element mounting portion.
  • the outer edge formed by the end surface of the second structural unit 122 on the first main surface 11a side is preferably located on the inner side that does not overlap the outer edge of the light emitting element mounting portion.
  • the outer edge of the first covering layer 13 is shown as a square. However, if the distance L 1 from the outer edge of the second structural unit 122 satisfies the predetermined range as described above.
  • the outer edge of the first covering layer 13 is not limited to a square, and any shape can be applied.
  • the area of the first covering layer 13 is larger than the area of the light emitting element, and when there is a part protruding from the light emitting element, if a layer that absorbs light is formed in this part, the light of the light emitting element is absorbed and light Use efficiency may be reduced. Therefore, the area of the first covering layer 13 is the same as or smaller than the area of the light emitting element so that the light of the light emitting element is not absorbed, and the outer edge of the first covering layer 13 (in plan view) is The light emitting element is preferably located on the same side as the outer edge of the mounting portion or on the inner side.
  • the “inner side” referred to here is not limited to the case where the outer edge of the first covering layer 13 is positioned on the inner side without overlapping the outer edge of the light emitting element mounting portion, but the outer edge of the first covering layer 13. It is interpreted that this also includes a case where a part of the light-emitting element overlaps a part of the outer edge of the light-emitting element mounting portion and is positioned inside.
  • a protective layer which is usually formed on the surface of the first coating layer 13 so as to cover the entire surface is exemplified. It is done.
  • the protective layer include a metal plating layer in which a nickel (Ni) plating layer and a Ni / Au plating layer having a gold (Au) plating layer are stacked in this order from the surface side of the first coating layer 13.
  • the thickness of the first coating layer 13 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, from the viewpoint of suppressing cracking of the substrate 11 due to the second structural unit 122. Further, the thickness of the first coating layer 13 is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, from the viewpoint of reducing the influence on the substrate 11 due to its thermal expansion.
  • Examples of the constituent material of the first coating layer 13 include a metal material, a resin material, and the like, and a metal material is preferable because it has a high effect of suppressing cracking of the base 11 and high thermal conductivity.
  • Examples of such a metal material include metals mainly composed of copper, silver, gold, and the like. Specifically, a metal composed of silver, silver and platinum, or silver and palladium is preferable.
  • refractory metals such as tungsten and molybdenum, are preferable.
  • the first covering layer 13 preferably has a dense structure made of these metal materials. According to what has a precise
  • Examples of the resin material include acrylic resin, epoxy resin, and silicone resin.
  • the second coating layer 14 is disposed inside the base 11 and between the first structural unit 121 and the second structural unit 122.
  • the second coating layer 14 has, for example, a square cross-sectional shape in accordance with the radiator 12 having a square cross-sectional shape.
  • the 2nd coating layer 14 covers the end surface by the side of the 1st main surface 11a of the 1st structural unit 121 arrange
  • the outer edge of the second coating layer 14 is arranged outside the outer edge formed by the end surface of the first structural unit 121 on the first main surface 11a side.
  • the outer edge of the second coating layer 14 is disposed outside the outer edge formed by the end surface of the first structural unit 121 on the first main surface 11a side, so that the base of the peripheral portion of the first structural unit 121 is provided.
  • 11 (first substrate 111) is covered with the second covering layer 14.
  • the base 11 (the second main body 11) heads toward the first main surface 11a starting from the corner portion formed by the boundary between the end surface and the side surface on the first main surface 11a side in the first structural unit 121. Cracks in the thickness direction of the substrate 112) are suppressed.
  • FIG. 6 is a top view showing the positional relationship between the first structural unit 121 and the second coating layer 14.
  • the distance L 2 is more than 0.10mm and more preferably.
  • the first substrate 111 and second substrate 112 is easily peeled off.
  • Such peeling of inhibition of the distance L 2 is preferably 0.35mm or less, more preferably 0.30 mm.
  • the outer edge of the second coating layer 14 is shown as a square, but the distance L 2 from the outer edge formed by the end surface of the first structural unit 121 on the first main surface 11 a side is the above-described distance L 2. If the predetermined range is satisfied, the outer edge of the second covering layer 14 is not limited to a square, and any shape can be applied. Although the cross-sectional area of the first structural unit 121 is not particularly limited, it is preferable that the cross-sectional area is larger than the area of the optical element mounting portion because the heat dissipation effect can be enhanced.
  • the thickness of the second coating layer 14 can be the same as that described for the first coating layer 13.
  • the constituent material of the second coating layer 14 can be the same as that described for the first coating layer 13.
  • the shape of the frame 16, the wiring conductor 15, the external electrodes 17 and 18, and the through conductor are not limited, and the shape can be selected as necessary.
  • the constituent material of the frame 16 is preferably the same material as the constituent material of the substrate 11 from the viewpoint of productivity and the like.
  • alumina, aluminum nitride, glass ceramics and the like are preferable, alumina and glass ceramics are more preferable, and glass ceramics such as low temperature co-fired ceramics (LTCC) are particularly preferable.
  • LTCC low temperature co-fired ceramics
  • the constituent materials of the wiring conductor 15, the external electrodes 17 and 18, and the through conductor are preferably the same metal materials as the constituent materials of the radiator 12, the first covering layer 13, and the second covering layer 14.
  • a metal material include metals mainly composed of copper, silver, gold, and the like. Specifically, a metal composed of silver, silver and platinum, or silver and palladium is preferable.
  • refractory metals such as tungsten and molybdenum, are preferable.
  • the light emitting element substrate according to the embodiment has been described with respect to the example including the two structural units such that the heat radiator 12 has the stepped portion on the side surface.
  • a light emitting element substrate is not limited to one in which the radiator has two structural units.
  • the structural unit of the radiator 12 may be three or more. That is, in the light emitting element substrate according to the embodiment, the heat dissipation body 12 may have a configuration in which the cross section of the radiator 12 has three or more steps.
  • the 2nd coating layer 14 should just be arrange
  • the first structural unit can be arbitrarily determined from a plurality of structural units excluding the second structural unit closest to the first main surface 11a side.
  • the cross section of the heat radiating body 12 has a stepped shape of three or more steps, the second between all the structural units of the two or more structural units excluding the second structural unit.
  • the covering layer 14 is preferably disposed.
  • FIG. 7 is a top view showing the first embodiment of the light emitting device.
  • FIG. 8 is a cross-sectional view of the light emitting device shown in FIG.
  • the light emitting device 20 includes the light emitting element substrate 10 of the first embodiment.
  • a light emitting element 21 is mounted on the first covering layer 13 in the light emitting element substrate 10.
  • the light emitting element 21 is a 1-wire type light emitting element, and has electrodes on both main surfaces.
  • One electrode of the light emitting element 21 is electrically connected to the wiring conductor 15 by a bonding wire 22.
  • the other electrode of the light emitting element 21 is electrically connected to the first covering layer 13.
  • the radiator 12 has a function as a conductive part in addition to a function as a heat radiating part.
  • a sealing layer 23 is provided inside the frame 16 so as to cover the light emitting element 21 and the like.
  • a sealing material such as a silicone resin or an epoxy resin generally used for a sealing material of a light emitting device is used without particular limitation.
  • FIG. 9 is a top view showing the light emitting element substrate of the second embodiment.
  • FIG. 10 is a cross-sectional view taken along the line CC of the light emitting element substrate shown in FIG.
  • the radiator 12 has a stepped portion on the side surface, whereas in the light emitting element substrate of the second embodiment, the radiator 12 has an inclined portion on the side surface. It is different in having. Other than that, it is the same as the substrate for a light emitting device of the first embodiment.
  • the light-emitting element substrate of the second embodiment will be described mainly with respect to the radiator 12 different from the light-emitting element substrate of the first embodiment.
  • the radiator 12 has an inclined portion on the side surface.
  • the radiator 12 includes a plurality of structural units divided by a plane perpendicular to the thickness direction.
  • the first structural unit 121 and the second structural unit 122 are sequentially arranged from the second main surface 11b side. Have.
  • the heat radiator 12 may be divided into three or more structural units.
  • the first structural unit can be arbitrarily determined from a plurality of structural units excluding the second structural unit closest to the first main surface 11a side.
  • the second coating layer 14 is disposed between all the structural units of the two or more structural units excluding the second structural unit. It is preferable.
  • the second coating layer 14 is disposed between the first structural unit 121 and the second structural unit 122. Moreover, the 2nd coating layer 14 covers the end surface by the side of the 1st main surface 11a of the 1st structural unit 121 arrange
  • the first covering layer 13 covers the end surface of the second structural unit 122 on the first main surface 11a side as in the first embodiment of the light emitting element substrate described above.
  • the outer edge to the outside from the outer edge of the end surface by a predetermined distance L 1 is arranged so as to be located.
  • the second coating layer 14 is also of the first constitutional unit 121 covers the end surface of the first main surface 11a side, from the outer edge of the end surface by a predetermined distance L 2 indicated above outer edge on the outside It is arranged to be located.
  • the area of the end surface on the first main surface 11a side is preferably smaller than the area of the light emitting element mounting portion.
  • the area of the end surface on the first main surface 11a side is preferably larger than the area of the light emitting element mounting portion.
  • the angle ⁇ of the side surface of the radiator 12 measured in the same manner as described above is preferably 20 ° or more.
  • the angle ⁇ is an angle formed between a first straight line extending in the thickness direction of the base 11 and a second straight line passing through the side surface of the heat radiator 12 when the heat radiator 12 has an inclined portion on the side surface.
  • a method for manufacturing a substrate for a light-emitting element will be described below by taking as an example the case where the substrate is a low-temperature co-fired ceramic (LTCC).
  • substrate for light emitting elements of this invention is not limited to this.
  • the substrate for a light emitting element can be manufactured, for example, through the following steps (A) to (D).
  • a green sheet is produced using a glass ceramic composition containing glass powder and ceramic powder (hereinafter referred to as a sheet production step).
  • a green sheet on which an unfired conductor layer is formed is laminated (hereinafter referred to as a lamination process).
  • the laminated green sheets are fired (hereinafter referred to as a firing step).
  • a slurry is prepared by adding a binder and, if necessary, a plasticizer, a dispersant, a solvent, and the like to a glass ceramic composition containing glass powder and ceramic powder. This slurry is formed into a sheet by a doctor blade method or the like and dried to produce a green sheet. At this time, it is preferable to manufacture a plurality of types of green sheets in accordance with, for example, the number of structural units of the radiator 12 (two or more in the present invention). In addition, the green sheet corresponding to each structural unit may have a single layer structure composed of one sheet, or may have a laminated structure composed of two or more sheets.
  • the glass powder preferably has a glass transition point (Tg) of 550 ° C. or higher and 700 ° C. or lower.
  • Tg glass transition point
  • the glass powder preferably has a glass transition point (Tg) of 550 ° C. or higher and 700 ° C. or lower.
  • the glass powder is preferably crystallized when fired at 800 ° C. or higher and 930 ° C. or lower. When crystals are precipitated, sufficient mechanical strength is obtained. Further, the glass powder preferably has a crystallization peak temperature (Tc) measured by DTA (differential thermal analysis) of 880 ° C. or lower. When the crystallization peak temperature (Tc) is 880 ° C. or lower, the dimensional accuracy is increased.
  • Tc crystallization peak temperature measured by DTA (differential thermal analysis) of 880 ° C. or lower.
  • SiO 2 is 57 mol% or more and 65 mol% or less
  • B 2 O 3 is 13 mol% or more and 18 mol% or less
  • CaO is 9 mol% or more and 23 mol% or less
  • Al 2 O 3 is 3 mol% or more and 8 mol% or less.
  • those containing less 0.5 mol% or more 6 mol% of at least one in total selected from K 2 O and Na 2 O are preferred.
  • the flatness of the surface of the substrate 11 is improved.
  • SiO 2 becomes a glass network former.
  • the content of SiO 2 is preferably 58 mol% or more, more preferably 59 mol% or more, and particularly preferably 60 mol% or more.
  • the content of SiO 2 is preferably 64 mol% or less, more preferably 63 mol% or less.
  • B 2 O 3 is a glass network former. If the content of B 2 O 3 is less than 13 mol%, there is a possibility that the glass melting temperature or the glass transition point (Tg) becomes too high. On the other hand, when the content of B 2 O 3 exceeds 18 mol%, it is difficult to obtain a stable glass and the chemical durability may be lowered.
  • the content of B 2 O 3 is preferably 14 mol% or more, more preferably 15 mol% or more. Further, the content of B 2 O 3 is preferably 17 mol% or less, more preferably 16 mol% or less.
  • Al 2 O 3 is added to increase the stability, chemical durability, and strength of the glass.
  • the content of Al 2 O 3 is less than 3 mol%, the glass may become unstable.
  • the content of Al 2 O 3 exceeds 8 mol%, the glass melting temperature and the glass transition point (Tg) may be excessively high.
  • the content of Al 2 O 3 is preferably 4 mol% or more, more preferably 5 mol% or more.
  • the content of Al 2 O 3 is preferably 7 mol% or less, more preferably 6 mol% or less.
  • CaO is added to increase glass stability and crystal precipitation, and to lower the glass melting temperature and glass transition point (Tg).
  • the content of CaO is less than 9 mol%, the glass melting temperature may be excessively high.
  • the content of CaO exceeds 23 mol%, the glass may become unstable.
  • the content of CaO is preferably 12 mol% or more, more preferably 13 mol% or more, and particularly preferably 14 mol% or more.
  • the CaO content is preferably 22 mol% or less, more preferably 21 mol% or less, and particularly preferably 20 mol% or less.
  • K 2 O and Na 2 O lower the glass transition point (Tg).
  • Tg glass melting temperature
  • Tg glass melting point
  • the total content of K 2 O and Na 2 O is preferably 0.8 mol% or more and 5 mol% or less.
  • glass powder is not necessarily limited to what consists only of the said component, Other components can be contained in the range with which various characteristics, such as a glass transition point (Tg), are satisfy
  • the glass powder is obtained by producing glass having the above glass composition by a melting method and pulverizing it by a dry pulverization method or a wet pulverization method.
  • a dry pulverization method it is preferable to use water as the solvent.
  • a pulverizer such as a roll mill, a ball mill, or a jet mill can be used.
  • the 50% average particle size (D 50 ) of the glass powder is preferably 0.5 ⁇ m or more and 2 ⁇ m or less.
  • the 50% average particle size of the glass powder is 0.5 ⁇ m or more, the glass powder is difficult to aggregate, is easy to handle, and is uniformly dispersed.
  • the 50% average particle diameter of the glass powder is 2 ⁇ m or less, an increase in the glass softening temperature and insufficient sintering are suppressed.
  • the particle size is adjusted by classification or the like.
  • the particle diameter refers to a value obtained by a particle diameter measuring apparatus using a laser diffraction / scattering method.
  • Ceramic powder what is conventionally used for manufacture of glass ceramics can be used.
  • the ceramic powder for example, alumina powder, zirconia powder, or a mixture of alumina powder and zirconia powder can be suitably used.
  • the 50% average particle diameter (D 50 ) of the ceramic powder is preferably 0.5 ⁇ m or more and 4 ⁇ m or less, for example.
  • Glass powder and ceramic powder are blended and mixed to obtain a glass ceramic composition.
  • the ratio of the glass powder to the ceramic powder is preferably 30% by mass to 50% by mass for the glass powder and 50% by mass to 70% by mass for the ceramic powder.
  • a slurry is prepared by adding a binder and, if necessary, a plasticizer, a dispersant, a solvent and the like to the glass ceramic composition.
  • binder examples include polyvinyl butyral and acrylic resin.
  • plasticizer examples include dibutyl phthalate, dioctyl phthalate, and butyl benzyl phthalate.
  • solvent examples include organic solvents such as toluene, xylene, 2-propanol and 2-butanol.
  • the slurry is formed into a sheet by the doctor blade method or the like and dried to obtain a green sheet.
  • the green sheet may be a laminate of a plurality of sheets.
  • three types of green sheets are used as the first base 111, the second base 112, and the frame 16.
  • (B) Conductor layer forming step After forming a hole in the green sheet to be the first substrate 111, the hole is filled with a conductive paste by a screen printing method, and the first structural unit of the radiator 12 is formed. An unfired conductor layer such as 121 is formed. Further, a conductive paste is printed on the front and back surfaces of the green sheet by a screen printing method to form an unfired conductive layer that becomes the second coating layer 14 and the external electrodes 17 and 18.
  • the hole is filled with a conductive paste by a screen printing method to form an unfired conductor layer to be the second structural unit 122 or the like.
  • a conductive paste is printed on the surface of the green sheet by a screen printing method to form an unfired conductor layer that becomes the first coating layer 13 and the wiring conductor 15.
  • a hole having a size that surrounds the first covering layer 13 and the wiring conductor 15 is formed in the green sheet to be the frame body 16.
  • a paste obtained by adding a vehicle such as ethyl cellulose to a metal powder mainly composed of copper, silver, gold or the like, and a solvent or the like as necessary can be used.
  • (D) Firing step Firing for sintering the glass ceramic composition is performed on the integrated green sheet. Thereby, the board
  • the degreasing temperature is preferably 500 ° C. or higher and 600 ° C. or lower.
  • the degreasing time is preferably 1 hour or more and 10 hours or less.
  • the degreasing temperature is 500 ° C. or higher and the degreasing time is 1 hour or longer, the removal of the binder and the like is good.
  • the degreasing temperature is 600 ° C. or less and the degreasing time is 10 hours or less, productivity and the like are good.
  • Calcination temperature is preferably 800 ° C. or higher and 930 ° C. or lower, more preferably 850 ° C. or higher and 900 ° C. or lower, and further preferably 860 ° C. or higher and 880 ° C. or lower in consideration of densification and productivity.
  • the firing time is preferably from 20 minutes to 60 minutes. When the firing temperature is 800 ° C. or higher, densification is good. When the firing temperature is 930 ° C. or lower, deformation is suppressed and productivity is improved. Moreover, when the conductor paste containing silver is used, the deformation
  • Examples 1 to 19 As shown in Table 1, the ratio (V 2 / V 1 ), the thickness of the base 11, the cross-sectional area of the second structural unit 122 (corresponding to the area of the end surface on the first main surface 11a side), the distance L 1 , L 2 , and the radius of curvature were changed, and an evaluation substrate having a structure as shown in FIGS. 1 to 3 was produced.
  • the ratio (V 2 / V 1 ) is a ratio of the volume (V 2 ) of the radiator 12 to the total volume (V 1 ) of the base body 11 and the members disposed therein.
  • the distance L 1 is the distance between each side (square) of the outer edge formed by the end surface of the second structural unit 122 on the first main surface 11 a side and each side (square) of the outer edge of the first covering layer 13.
  • the distance L 2 is the first structural unit 121
  • the outer edge end surface of the first major surface 11a side is formed (squares) each side and outer edge of the second cover layer 14 (squares) It is the distance to each side.
  • a curvature radius is a curvature radius of the square corner
  • the cross-sectional shape of the first structural unit 121 is the same in the thickness direction
  • the cross-sectional shape of the second structural unit 122 is also the same in the thickness direction, and three-dimensionally forms a quadrangular prism. .
  • the planar shapes of the base 11, the heat radiating body 12, the first covering layer 13, and the second covering layer 14 are all square.
  • the length of one side of the base 11 is 3 mm
  • the length of one side of the first structural unit 121 of the radiator 12 is 1.28 mm
  • the length of one side of the second structural unit 122 of the radiator 12 is shown in Table 1.
  • the area value was changed.
  • the length of one side inside the frame 16 is 1.8 mm.
  • the thickness of the first base 111 and the second base 112 is the same.
  • the thickness of the 1st coating layer 13 is 12 micrometers
  • the thickness of the 2nd coating layer 14 is 12 micrometers.
  • the evaluation substrate was manufactured as follows. SiO 2 is 60.4mol%, B 2 O 3 is 15.6mol%, Al 2 O 3 is 6 mol%, CaO is 15mol%, K 2 O is 1 mol%, the raw material as Na 2 O is 2 mol% After mixing and mixing, this raw material mixture was put in a platinum crucible and melted at 1600 ° C. for 60 minutes, and then the molten glass was poured out and cooled. This glass was pulverized with an alumina ball mill for 40 hours to produce a glass powder. In addition, ethyl alcohol was used as a solvent for pulverization.
  • a glass ceramic composition was produced by mixing and mixing the glass powder at 40% by mass and alumina powder (made by Showa Denko KK, trade name: AL-45H) at 60% by mass. 50 g of this glass ceramic composition, 15 g of an organic solvent (mixed with toluene, xylene, 2-propanol, 2-butanol in a mass ratio of 4: 2: 2: 1), a plasticizer (di-2-ethylhexyl phthalate) 2.5 g of polyvinyl butyral (trade name: PVK # 3000K, manufactured by Denka) as a binder and 5 g of a dispersant (trade name: BYK180, manufactured by Big Chemie) were further blended and mixed to prepare a slurry.
  • an organic solvent mixed with toluene, xylene, 2-propanol, 2-butanol in a mass ratio of 4: 2: 2: 1
  • a plasticizer di-2-ethylhexyl phthal
  • the slurry was applied on a PET film by a doctor blade method and dried to produce green sheets to be the first substrate 111, the second substrate 112, and the frame 16.
  • the thicknesses of the substrate 11, the first substrate 111, and the second substrate 112 were adjusted by the thickness of the green sheet.
  • Each green sheet is formed with a hole, filled with a conductive paste, printed, and the like as necessary to form an unfired conductor that becomes the heat radiating body 12, the first coating layer 13, the second coating layer 14, and the like.
  • a layer was formed.
  • the ratio (V 2 / V 1 ), the cross-sectional area of the second structural unit 122 of the radiator 12, and the radius of curvature of the corner in the cross-sectional shape (square shape) are the size and shape of the hole formed in the green sheet Adjusted by.
  • the distances L 1 and L 2 were adjusted according to the printing range of the conductor paste.
  • the conductive paste is composed of conductive powder (manufactured by Daiken Chemical Co., Ltd., trade name: S550), ethyl cellulose as a vehicle in a mass ratio of 85:15, and a solvent so that the solid content is 85 mass%. And then kneaded in a porcelain mortar for 1 hour, and further dispersed three times with a three roll. The conductor paste was filled and printed by screen printing.
  • the green sheets on which the unfired conductor layers were formed were laminated in a predetermined order, and then pressed and integrated. Thereafter, the integrated green sheet was degreased at a degreasing temperature of 550 ° C. and a degreasing time of 5 hours. Further, firing was performed at a firing temperature of 870 ° C. and a firing time of 30 minutes. This produced the board
  • DESCRIPTION OF SYMBOLS 10 Light emitting element substrate, 11 ... Base, 12 ... Radiator, 13 ... First coating layer, 14 ... Second coating layer, 15 ... Wiring conductor, 16 ... Frame body, 17, 18 ... External electrode, 20
  • DESCRIPTION OF SYMBOLS ... Light-emitting device, 21 ... Light emitting element, 22 ... Bonding wire, 31 ... 1st straight line, 32 ... 2nd straight line, 111 ... 1st base

Abstract

 To provide a substrate for a light-emitting element in which cracking of the base body, caused by a heat-radiating body having an inclined part or a stepped part on the side surface, is inhibited. The substrate for a light-emitting element has a base body, a heat-radiating body, a first coating layer, and a second coating layer. The base body has a first main surface and a second main surface disposed on the opposite side from the first main surface. The heat-radiating body has a plurality of constituent units disposed inside the base body and divided in the thickness direction of the base body. The first coating layer is disposed on the first main surface and covers the first-main-surface-side end surface of the second constituent unit of the heat-radiating body disposed on the first main surface side, and the outer edge of the first coating layer is disposed on the outside of the outer edge formed by the end surface of the second constituent unit. The second coating layer is disposed between a plurality of the constituent units of the heat-radiating body and covers the first-main-surface-side end surface of the first constituent unit, which is the constituent unit disposed on the second main surface side, and the outer edge of the second coating layer is disposed on the outside of the outer edge formed by the first-main-surface-side of the first constituent unit.

Description

発光素子用基板および発光装置Light emitting element substrate and light emitting device
 本発明は、発光素子用基板および発光装置に関する。 The present invention relates to a light emitting element substrate and a light emitting device.
 近年、発光ダイオード(LED)素子の高輝度、白色化に伴い、携帯電話や大型液晶TVのバックライト等にLED素子を用いた発光装置が使用されている。このような発光装置においては、LED素子の高輝度化により発熱量が増加しており、温度上昇のために必ずしも十分な発光輝度が得られていない。 In recent years, with the increase in brightness and whiteness of light-emitting diode (LED) elements, light-emitting devices using LED elements are used for backlights of mobile phones and large liquid crystal TVs. In such a light emitting device, the amount of heat generation is increased due to the increase in luminance of the LED element, and sufficient light emission luminance is not necessarily obtained due to temperature rise.
 そこで、発光装置の温度上昇を抑制するために、発光素子が搭載される基板を貫通するように放熱体を設けることが知られている。また、放熱体の側面に傾斜部または段差部を設けることにより、放熱体と、基板を主として構成する基体と、の接触面積を増加させて、放熱体と基体との接着強度を確保することが知られている。傾斜部、段差部は、通常、発光素子が搭載される一方の主面側から対向する他方の主面側へと向かって(厚さ方向に垂直な)断面積が大きくなるように構成される。また、段差部を有する放熱体として、2段構造のものが知られている(例えば、特許文献1参照。)。 Therefore, in order to suppress the temperature rise of the light emitting device, it is known to provide a heat radiator so as to penetrate the substrate on which the light emitting element is mounted. Further, by providing an inclined portion or a stepped portion on the side surface of the radiator, it is possible to increase the contact area between the radiator and the base that mainly constitutes the substrate, thereby ensuring the adhesive strength between the radiator and the base. Are known. The inclined portion and the stepped portion are usually configured such that a cross-sectional area increases (perpendicular to the thickness direction) from one main surface side on which the light emitting element is mounted toward the other main surface side. . Moreover, the thing of a two-stage structure is known as a heat radiator which has a level | step-difference part (for example, refer patent document 1).
特開2006-093565号公報JP 2006-093565 A
 しかしながら、放熱体の側面に傾斜部または段差部を設けた場合、基体と放熱体との熱膨張率の違いにより、放熱体の側面を起点として、その周辺の基体に割れが発生しやすい。例えば、放熱体として、発光素子が搭載される一方の主面側から順に、断面積が小さい放熱体、および断面積が大きい放熱体が配置された2段構造のものが知られている。このような場合、断面積が大きい放熱体の上記主面側の表面と側面との境界により構成される角部を起点とし、上記主面側へと向かって、基体に厚さ方向の割れが発生しやすい。また、上記主面においては、放熱体を起点として、その周辺の基体に面方向の割れが発生しやすい。 However, when an inclined portion or a stepped portion is provided on the side surface of the radiator, cracks are likely to occur in the surrounding substrate starting from the side surface of the radiator due to the difference in thermal expansion coefficient between the substrate and the radiator. For example, a heat radiator having a two-stage structure in which a heat radiator having a small cross-sectional area and a heat radiator having a large cross-sectional area are arranged in order from one main surface side on which a light emitting element is mounted is known. In such a case, the base portion is cracked in the thickness direction toward the main surface side, starting from a corner portion formed by the boundary between the main surface side surface and the side surface of the radiator having a large cross-sectional area. Likely to happen. In addition, on the main surface, starting from the heat dissipating body, surface cracks are likely to occur in the surrounding substrate.
 本発明は、上記課題を解決するためになされたものであって、放熱体の側面に設けられた傾斜部または段差部に起因する基体の割れが抑制された発光素子用基板および発光装置の提供を目的とする。 The present invention has been made to solve the above-described problems, and provides a light-emitting element substrate and a light-emitting device in which cracking of a base caused by an inclined portion or a stepped portion provided on a side surface of a radiator is suppressed. With the goal.
 本発明の発光素子用基板は、基体、放熱体、第1の被覆層、および第2の被覆層を有する。基体は、板状であり、発光素子が搭載される第1の主面と、この第1の主面の反対側に配置される第2の主面とを有する。放熱体は、基体の内部に配置され、第1の主面側の端面の面積に比べて第2の主面側の端面の面積が大きく、かつ基体の厚さ方向に分割された複数の構成単位を有する。第1の被覆層は、第1の主面上に配置され、第1の主面側に配置される放熱体の第2の構成単位の、第1の主面側の端面を覆うとともに、第2の構成単位の、第1の主面側の端面がなす外縁の外側に第1の被覆層の外縁が配置される。第2の被覆層は、放熱体の複数の構成単位の間に配置され、これらの構成単位のうち、第2の構成単位よりも第2の主面側に配置される第1の構成単位の、第1の主面側の端面を覆うとともに、第1の構成単位の、第1の主面側の端面がなす外縁の外側に第2の被覆層の外縁が配置される。 The substrate for a light emitting element of the present invention has a base, a heat radiator, a first coating layer, and a second coating layer. The base is plate-shaped and has a first main surface on which the light emitting element is mounted and a second main surface arranged on the opposite side of the first main surface. The heat dissipating member is arranged inside the base, and has a plurality of configurations in which the area of the end surface on the second main surface side is larger than the area of the end surface on the first main surface side and is divided in the thickness direction of the base Has units. The first covering layer is disposed on the first main surface, covers the end surface on the first main surface side of the second structural unit of the radiator disposed on the first main surface side, and The outer edge of the first coating layer is disposed outside the outer edge formed by the end surface on the first main surface side of the two structural units. The second covering layer is disposed between the plurality of structural units of the heat radiating body, and among these structural units, the first structural unit disposed on the second main surface side with respect to the second structural unit. The outer edge of the second covering layer is arranged outside the outer edge formed by the end face on the first main surface side of the first structural unit while covering the end surface on the first main surface side.
 本発明の発光装置は、本発明の発光素子用基板と、この発光素子用基板に搭載される発光素子とを有する。 The light-emitting device of the present invention includes the light-emitting element substrate of the present invention and a light-emitting element mounted on the light-emitting element substrate.
 本発明の発光素子用基板は、発光素子が搭載される一方の主面側に放熱体とその周辺部の基体とに跨るように第1の被覆層が設けられるとともに、内部に放熱体とその周辺部の基体とに跨るように第2の被覆層が設けられる。これにより、放熱体の側面に傾斜部または段差部が設けられた場合でも、放熱体を起点とする基体の割れが抑制される。 The substrate for a light-emitting element of the present invention is provided with a first covering layer so as to straddle the heat dissipating body and its peripheral base on one main surface side on which the light-emitting element is mounted, A second coating layer is provided so as to straddle the peripheral substrate. Thereby, even when an inclined part or a stepped part is provided on the side surface of the radiator, cracking of the base body starting from the radiator is suppressed.
第1の実施形態の発光素子用基板を示す上面図。The top view which shows the board | substrate for light emitting elements of 1st Embodiment. 図1に示す発光素子用基板の下面図。The bottom view of the board | substrate for light emitting elements shown in FIG. 図1に示す発光素子用基板のAA線矢視断面図。FIG. 2 is a cross-sectional view of the light emitting element substrate shown in FIG. 放熱体の側面の角度θを説明する説明図。Explanatory drawing explaining angle (theta) of the side surface of a heat radiator. 放熱体と第1の被覆層との位置関係を示す上面図。The top view which shows the positional relationship of a heat radiator and a 1st coating layer. 放熱体と第2の被覆層との位置関係を示す上面図。The top view which shows the positional relationship of a heat radiator and a 2nd coating layer. 発光装置の第1の実施形態を示す上面図。The top view which shows 1st Embodiment of a light-emitting device. 図7に示す発光装置のBB線矢視断面図。BB arrow sectional drawing of the light-emitting device shown in FIG. 第2の実施形態の発光素子用基板を示す上面図。The top view which shows the board | substrate for light emitting elements of 2nd Embodiment. 図9に示す発光素子用基板のCC線矢視断面図。CC sectional view taken on the CC line of the light emitting element use substrate shown in FIG.
 以下、発光素子用基板の実施形態について説明する。
 図1は、発光素子用基板の第1の実施形態を示す上面図である。図2は、図1に示す発光素子用基板の下面図である。図3は、図1に示す発光素子用基板のAA線矢視断面図である。
Hereinafter, embodiments of the light emitting element substrate will be described.
FIG. 1 is a top view showing a first embodiment of a light emitting element substrate. FIG. 2 is a bottom view of the light-emitting element substrate shown in FIG. FIG. 3 is a cross-sectional view of the light emitting element substrate shown in FIG.
 発光素子用基板10は、例えば図3に示すように、板状の基体11を有する。基体11は、発光素子が搭載される第1の主面11a、および第1の主面11aの反対側に配置される第2の主面11bを有する。基体11の内部には、基体11の厚さ方向に分割された2個の構成単位111、112からなる放熱体12が設けられる。第1の主面11a上には、第1の被覆層13が設けられる。放熱体12の各構成単位111、112の間には、第2の被覆層14が設けられる。 The light emitting element substrate 10 has a plate-like substrate 11 as shown in FIG. 3, for example. The base 11 has a first main surface 11a on which the light emitting element is mounted, and a second main surface 11b disposed on the opposite side of the first main surface 11a. Inside the base body 11, a heat radiator 12 composed of two structural units 111 and 112 divided in the thickness direction of the base body 11 is provided. A first coating layer 13 is provided on the first major surface 11a. A second coating layer 14 is provided between the structural units 111 and 112 of the radiator 12.
 さらに、第1の主面11aには、配線導体15(図1)が設けられるとともに、第1の被覆層13および配線導体15を囲むように枠体16が設けられてもよい。第2の主面11bには、外部電極17、18が設けられる。基体11の内部には、配線導体15と外部電極17とを接続する図示しない貫通導体が設けられる。 Furthermore, the first main surface 11 a may be provided with the wiring conductor 15 (FIG. 1) and the frame body 16 so as to surround the first covering layer 13 and the wiring conductor 15. External electrodes 17 and 18 are provided on the second main surface 11b. A through conductor (not shown) that connects the wiring conductor 15 and the external electrode 17 is provided inside the base 11.
 基体11は、例えば、厚さ方向に垂直な断面において、正方形状の断面形状を有する。また、基体11は、例えば、第2の主面11b側から順に、第1の基体111、および第2の基体112を有する。なお、厚さ方向とは、第1の主面11aから第2の主面11bに垂直に向かう方向を意味する。 The base 11 has, for example, a square cross-sectional shape in a cross section perpendicular to the thickness direction. In addition, the base body 11 includes, for example, a first base body 111 and a second base body 112 in order from the second main surface 11b side. Note that the thickness direction means a direction from the first main surface 11a to the second main surface 11b perpendicularly.
 また、基体11の厚さは特に制限されないが、通常、0.20mm以上0.60mm以下である。 The thickness of the substrate 11 is not particularly limited, but is usually 0.20 mm or more and 0.60 mm or less.
 第1の基体111、第2の基体112の厚さは、それぞれ、0.10mm以上が好ましい。厚さが0.10mm以上の場合、製造時のグリーンシートの取り扱いが良好になる。また、厚さが0.10mm以上の場合、グリーンシートへの放熱体12の形成が容易となる。第1の基体111、第2の基体112の厚さは、それぞれ、0.15mm以上がより好ましい。一方、第1の基体111、第2の基体112の厚さは、それぞれ、0.30mm以下や、0.25mm以下に設定できる。また、基体11が、第1の基体111と第2の基体112から構成される場合、第1の基体111の厚さと、第2の基体112の厚さと、の比は、3:7~7:3の範囲が好ましく、4:6~6:4の範囲がより好ましく、5:5(即ち、同じ厚さ)が特に好ましい。 The thickness of each of the first base 111 and the second base 112 is preferably 0.10 mm or more. When the thickness is 0.10 mm or more, handling of the green sheet at the time of manufacture becomes good. In addition, when the thickness is 0.10 mm or more, it is easy to form the radiator 12 on the green sheet. The thickness of each of the first base 111 and the second base 112 is more preferably 0.15 mm or more. On the other hand, the thicknesses of the first base 111 and the second base 112 can be set to 0.30 mm or less or 0.25 mm or less, respectively. Further, when the base 11 is composed of the first base 111 and the second base 112, the ratio of the thickness of the first base 111 to the thickness of the second base 112 is 3: 7 to 7 : 3 is preferable, 4: 6 to 6: 4 is more preferable, and 5: 5 (that is, the same thickness) is particularly preferable.
 基体11は、例えば、無機絶縁材料からなる。無機絶縁材料としては、アルミナ、窒化アルミニウム、ガラスセラミックス等が挙げられる。ガラスセラミックスは、ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物の焼結体であり、低温同時焼成セラミックス(LTCC)等が挙げられる。 The base 11 is made of, for example, an inorganic insulating material. Examples of the inorganic insulating material include alumina, aluminum nitride, and glass ceramics. Glass ceramics is a sintered body of a glass ceramic composition containing glass powder and ceramic powder, and includes low temperature co-fired ceramics (LTCC) and the like.
 窒化アルミニウムの熱伝導率は200W/(m・K)程度、アルミナの熱伝導率は20W/(m・K)程度、ガラスセラミックスの熱伝導率は4W/(m・K)程度である。アルミナ、ガラスセラミックスの熱伝導率は、窒化アルミニウムの熱伝導率に比べて大幅に低い。このため、無機絶縁材料が、アルミナ、ガラスセラミックスの場合、放熱体12を設ける効果が大きい。 The thermal conductivity of aluminum nitride is about 200 W / (m · K), the thermal conductivity of alumina is about 20 W / (m · K), and the thermal conductivity of glass ceramics is about 4 W / (m · K). The thermal conductivity of alumina and glass ceramics is significantly lower than that of aluminum nitride. For this reason, when the inorganic insulating material is alumina or glass ceramics, the effect of providing the radiator 12 is large.
 これらの中でも、焼成温度が低いことからガラスセラミックスが好ましい。例えば、発光素子用基板10には、光の反射率を高めるために、基体11の第1の主面11a側に銀反射膜が形成されることがある。ガラスセラミックスは、その焼成温度が低いことから、ガラスセラミックスの焼成と同時に銀反射膜も焼成できる。また、ガラスセラミックスは、アルミナに比べて加工性が良好という観点からも、無機絶縁材料としては、特にガラスセラミックスが好ましい。 Of these, glass ceramics are preferred because of their low firing temperature. For example, a silver reflective film may be formed on the light emitting element substrate 10 on the first main surface 11a side of the base body 11 in order to increase the light reflectance. Since the firing temperature of glass ceramics is low, the silver reflective film can be fired simultaneously with the firing of glass ceramics. Further, glass ceramics are particularly preferable as the inorganic insulating material from the viewpoint of good workability compared to alumina.
 例えば図3に示すように、放熱体12は、基体11の内部に、厚さ方向に延びるように設けられる。通常、放熱体12は、厚さ方向に垂直な断面において、正方形状の断面形状を有する。そして、放熱体12の第2の主面11b側の端面の面積は、放熱体12の第1の主面11a側の端面の面積に比べて大きい。第1の主面11a側の面積に比べて第2の主面11b側の面積が大きい場合、発光素子の熱が第1の主面11a側から第2の主面11b側へと伝達される際、面方向(厚さ方向と直交する平面方向)にも伝達されて放熱性が良好となる。また、放熱体12の厚さ方向における任意の位置の断面の面積は、この断面よりも第1の主面11a側にある断面の面積と同一か、これよりも大きいことが好ましい。なお、本明細書においてとくに説明が無い限り、「断面積」、「断面の面積」とは、厚さ方向に垂直な断面における面積、を意味し、「断面形状」とは、厚さ方向に垂直な断面における形状を意味するものとする。 For example, as shown in FIG. 3, the radiator 12 is provided inside the base 11 so as to extend in the thickness direction. Usually, the radiator 12 has a square cross-sectional shape in a cross section perpendicular to the thickness direction. And the area of the end surface by the side of the 2nd main surface 11b of the heat sink 12 is large compared with the area of the end surface by the side of the 1st main surface 11a of the heat sink 12. When the area on the second main surface 11b side is larger than the area on the first main surface 11a side, the heat of the light emitting element is transferred from the first main surface 11a side to the second main surface 11b side. At this time, it is also transmitted in the surface direction (a plane direction orthogonal to the thickness direction), and the heat dissipation is improved. The area of the cross section at an arbitrary position in the thickness direction of the radiator 12 is preferably equal to or larger than the area of the cross section on the first main surface 11a side than the cross section. Unless otherwise specified in this specification, “cross-sectional area” and “cross-sectional area” mean an area in a cross-section perpendicular to the thickness direction, and “cross-sectional shape” means a thickness direction. It shall mean the shape in a vertical cross section.
 放熱体12の第1の主面11a側の端面の面積は、放熱性を良好にする観点から、0.20mm以上が好ましく、0.25mm以上がより好ましい。一方、放熱体12の第1の主面11a側の端面の面積は、0.60mm以下が好ましく、0.55mm以下がより好ましい。 Area of the end face of the first main surface 11a side of the radiator 12, from the viewpoint of improving heat dissipation, preferably 0.20 mm 2 or more, 0.25 mm 2 or more is more preferable. On the other hand, the area of the end face of the first main surface 11a side of the radiator 12 is preferably 0.60 mm 2 or less, 0.55 mm 2 or less being more preferred.
 また、放熱体12の第1の主面11a側の端面の面積は、発光素子の搭載面の面積(以下、「発光素子の面積」という。)、すなわち、発光素子用基板において発光素子が搭載される搭載部の面積に比べて小さいことが好ましい。後述するように、第1の被覆層13の外縁は、放熱体12の第1の主面11a側の端面がなす外縁の外側に設けられる。この場合、発光素子の面積に比べて放熱体12の第1の主面11a側の端面の面積が大きいと、平面視(第1の主面11a側から見たとき)において、必然的に発光素子から第1の被覆層13がはみ出ることになる。はみ出した部分がある場合、この部分に光を吸収する層が形成されていると、発光素子の光が吸収されるため光利用効率が低下するおそれがある。このため、発光素子の光が吸収されないように、放熱体12の第1の主面11a側の端面の面積は、発光素子の面積よりも小さいことが好ましい。 The area of the end face of the heat dissipating body 12 on the first main surface 11a side is the area of the light emitting element mounting surface (hereinafter referred to as “light emitting element area”), that is, the light emitting element is mounted on the light emitting element substrate. It is preferable that it is small compared with the area of the mounting part. As will be described later, the outer edge of the first covering layer 13 is provided on the outer side of the outer edge formed by the end surface of the heat dissipating body 12 on the first main surface 11a side. In this case, if the area of the end surface on the first main surface 11a side of the heat radiating element 12 is larger than the area of the light emitting element, inevitably light emission in a plan view (when viewed from the first main surface 11a side). The first coating layer 13 protrudes from the element. In the case where there is a protruding portion, if a layer that absorbs light is formed in this portion, the light use efficiency may be reduced because the light of the light emitting element is absorbed. For this reason, it is preferable that the area of the end surface by the side of the 1st main surface 11a of the heat sink 12 is smaller than the area of a light emitting element so that the light of a light emitting element may not be absorbed.
 放熱体12は、例えば、側面に段差部を有し、第1の主面11a側から第2の主面11b側に向かって断面積が段階的に大きくなる。また、例えば図3に示すように、放熱体12は、厚さ方向に垂直な平面で分割された複数の構成単位からなり、第2の主面11b側から順に、第1の構成単位121、および第2の構成単位122を有する。第1の構成単位121の断面積は、第2の構成単位122の断面積よりも大きい。第1の構成単位121の厚さは、通常、第1の基体111の厚さとほぼ同じである。同様に、第2の構成単位122の厚さは、通常、第2の基体112の厚さとほぼ同じである。 The heat radiator 12 has, for example, a stepped portion on the side surface, and the cross-sectional area gradually increases from the first main surface 11a side to the second main surface 11b side. Further, for example, as shown in FIG. 3, the radiator 12 includes a plurality of structural units divided by a plane perpendicular to the thickness direction, and in order from the second main surface 11 b side, the first structural unit 121, And a second structural unit 122. The cross-sectional area of the first structural unit 121 is larger than the cross-sectional area of the second structural unit 122. The thickness of the first structural unit 121 is generally substantially the same as the thickness of the first base 111. Similarly, the thickness of the second structural unit 122 is generally substantially the same as the thickness of the second base body 112.
 また、基体11およびその内部に配置される部材の合計した体積(V)に対する放熱体12の体積(V)の割合(V/V)は、10体積%以上が好ましい。なお、上記部材としては、放熱体12、第2の被覆層14、および(不図示の)貫通導体が挙げられる。割合(V/V)が10体積%以上の場合、放熱体12の体積が十分に大きいことから、放熱性が良好となる。 Further, the ratio (V 2 / V 1 ) of the volume (V 2 ) of the radiator 12 to the total volume (V 1 ) of the base member 11 and the members disposed therein is preferably 10% by volume or more. In addition, as said member, the heat radiator 12, the 2nd coating layer 14, and a penetration conductor (not shown) are mentioned. When the ratio (V 2 / V 1 ) is 10% by volume or more, since the volume of the radiator 12 is sufficiently large, the heat dissipation is good.
 なお、割合(V/V)が10体積%以上になると、第1の被覆層13および第2の被覆層14が設けられていない従来の構成では、放熱体12を起点とする基体11の割れが発生しやすくなる。実施形態の発光素子用基板においては、上記被覆層を有する構成としているため、割合(V/V)が10体積%以上であっても、割れの発生が抑制されるとともに、良好な放熱性が得られる。 When the ratio (V 2 / V 1 ) is 10% by volume or more, in the conventional configuration in which the first coating layer 13 and the second coating layer 14 are not provided, the base body 11 starting from the radiator 12 is used. Cracking is likely to occur. Since the substrate for a light emitting device of the embodiment has the above-described coating layer, even when the ratio (V 2 / V 1 ) is 10% by volume or more, generation of cracks is suppressed and good heat dissipation is achieved. Sex is obtained.
 放熱体12の割合(V/V)は、15体積%以上がより好ましい。一方、割合(V/V)は、30体積%以下が好ましい。割合(V/V)が30体積%を超える場合、相対的に体積(V)が減少することとなり基体11の強度が低下し、第1の被覆層13および第2の被覆層14が設けられたとしても、放熱体12を起点とする基体11の割れが発生するおそれがある。また、割合(V/V)は、25体積%以下がより好ましい。 The ratio (V 2 / V 1 ) of the radiator 12 is more preferably 15% by volume or more. On the other hand, the ratio (V 2 / V 1 ) is preferably 30% by volume or less. When the ratio (V 2 / V 1 ) exceeds 30% by volume, the volume (V 1 ) is relatively reduced and the strength of the substrate 11 is lowered, and the first coating layer 13 and the second coating layer 14 are reduced. Even if provided, there is a possibility that the base 11 is cracked starting from the radiator 12. Further, the ratio (V 2 / V 1 ) is more preferably 25% by volume or less.
 図4は、放熱体12の側面の角度θを説明する説明図である。角度θは、放熱体12が側面に段差部を有する場合、基体11の厚さ方向に延びる第1の直線31と、各構成単位121、122における第2の主面11b側の端面と側面との境界により構成される角部を通過する第2の直線32とのなす角度である。角度θは、20°以上が好ましい。角度θが20°以上の場合、第1の主面11a側の端面の面積に比べて第2の主面11b側の端面の面積が十分に大きくなるために放熱性が良好になる。角度θは、30°以上がより好ましい。一方、角度θは、放熱性の観点から、70°程度もあれば十分である。角度θは、60°以下がより好ましい。通常、角度θは、特に45°程度が好ましい。 FIG. 4 is an explanatory diagram for explaining the angle θ of the side surface of the radiator 12. When the heat radiating body 12 has a stepped portion on the side surface, the angle θ corresponds to the first straight line 31 extending in the thickness direction of the base 11, and the end surface and the side surface on the second main surface 11 b side in each of the structural units 121 and 122. The angle formed by the second straight line 32 passing through the corner portion formed by the boundary. The angle θ is preferably 20 ° or more. When the angle θ is 20 ° or more, the area of the end surface on the second main surface 11b side is sufficiently larger than the area of the end surface on the first main surface 11a side, so that the heat dissipation is improved. The angle θ is more preferably 30 ° or more. On the other hand, an angle θ of about 70 ° is sufficient from the viewpoint of heat dissipation. The angle θ is more preferably 60 ° or less. Usually, the angle θ is particularly preferably about 45 °.
 また、放熱体12は、その断面形状における2つの側面からなる角部の曲率半径が、0.03mm以上が好ましい。即ち、放熱体12の厚さ方向に垂直な断面が、正方形である場合、この正方形の4隅に存在する角部の曲率半径がいずれも0.03mm以上が好ましい。曲率半径が0.03mm以上の場合、角部の頂点を起点とした基体11の割れが抑制される。曲率半径は、0.05mm以上がより好ましい。一方、曲率半径が大きくなりすぎると、放熱体12の断面形状が円形状に近づくために、基体11の断面形状(外縁)との形状の違いが大きくなり、かえって基体11の割れが発生しやすくなる。このため、曲率半径は、0.40mm以下が好ましく、0.35mm以下がより好ましい。 Further, the heat dissipating body 12 preferably has a curvature radius of a corner portion formed by two side surfaces in the cross-sectional shape of 0.03 mm or more. That is, when the cross section perpendicular to the thickness direction of the radiator 12 is a square, it is preferable that the curvature radii of the corners present at the four corners of the square are 0.03 mm or more. When the radius of curvature is 0.03 mm or more, cracking of the substrate 11 starting from the corner apex is suppressed. The curvature radius is more preferably 0.05 mm or more. On the other hand, if the radius of curvature is too large, the cross-sectional shape of the heat radiating body 12 approaches a circular shape, so that the difference in shape from the cross-sectional shape (outer edge) of the base 11 becomes large, and the base 11 is more likely to crack. Become. For this reason, the curvature radius is preferably 0.40 mm or less, and more preferably 0.35 mm or less.
 放熱体12の構成材料は、熱伝導性の高い金属材料が好ましい。このような金属材料としては、銅、銀、金等を主成分とする金属が挙げられる。具体的には、銀、銀と白金、または銀とパラジウムからなる金属が好ましい。ここで、本明細書において、ある成分を構成材料の主成分とするとは、構成材料全量に対して該成分を、50質量%を超えて含有することをいう。なお、第1の構成単位121の構成材料と、第2の構成単位122の構成材料は、同一でもよいし、異なってもよい。なお、基体11の構成材料がガラスセラミックス以外の場合、放熱体12の構成材料は、焼成時の変形等を抑制する観点から、タングステン、モリブデン等の高融点金属が好ましい。 The constituent material of the radiator 12 is preferably a metal material having high thermal conductivity. Examples of such a metal material include metals mainly composed of copper, silver, gold, and the like. Specifically, a metal composed of silver, silver and platinum, or silver and palladium is preferable. Here, in this specification, that a certain component is the main component of the constituent material means that the component is contained in an amount exceeding 50 mass% with respect to the total amount of the constituent material. Note that the constituent material of the first constituent unit 121 and the constituent material of the second constituent unit 122 may be the same or different. When the constituent material of the substrate 11 is other than glass ceramics, the constituent material of the radiator 12 is preferably a refractory metal such as tungsten or molybdenum from the viewpoint of suppressing deformation during firing.
 第1の被覆層13は、基体11の第1の主面11a側の表面に配置される。第1の被覆層13は、例えば、正方形状の断面形状を有する第2の構成単位122に合わせて、正方形状の断面形状を有する。第1の被覆層13は、第2の構成単位122の第1の主面11a側の端面を覆うとともに、第1の被覆層の外縁が、第2の構成単位122の、第1の主面11a側の端面がなす外縁の外側に配置される。第1の被覆層13の外縁が、第2の構成単位122の、第1の主面11a側の端面がなす外縁の外側に配置されることにより、第2の構成単位122の周辺部の基体11(第2の基体112)が第1の被覆層13により被覆される。これにより、第2の構成単位122を起点とする基体11の面方向の割れが抑制される。 The first covering layer 13 is disposed on the surface of the base 11 on the first main surface 11a side. For example, the first covering layer 13 has a square cross-sectional shape in accordance with the second structural unit 122 having a square cross-sectional shape. The first coating layer 13 covers the end surface of the second structural unit 122 on the first main surface 11 a side, and the outer edge of the first coating layer is the first main surface of the second structural unit 122. It is arranged outside the outer edge formed by the end surface on the 11a side. The outer edge of the first covering layer 13 is disposed outside the outer edge formed by the end surface of the second structural unit 122 on the first main surface 11a side, so that the base of the peripheral portion of the second structural unit 122 is provided. 11 (second substrate 112) is covered with the first covering layer 13. Thereby, the crack in the surface direction of the base 11 starting from the second structural unit 122 is suppressed.
 図5は、第2の構成単位122と第1の被覆層13との位置関係を示す上面図である。第2の構成単位122の第1の主面11a側の端面の外縁の(正方形の)各辺と第1の被覆層13の外縁の(正方形の)各辺との距離Lは、それぞれ、0.03mm以上が好ましい。距離Lが0.03mm以上の場合、第2の構成単位122の周辺部の基体11(第2の基体112)が第1の被覆層13により十分に被覆される。これにより、第2の構成単位122を起点とする基体11の面方向の割れがさらに抑制される。距離Lは、0.05mm以上がより好ましい。一方、距離Lが大きくなりすぎると、発光素子(の搭載部)から第1の被覆層13がはみ出るおそれがある。はみ出した部分があると、上述のように、この部分で発光素子の光が吸収されるおそれがある。このため、発光素子の光が吸収されないように、距離Lは、0.30mm以下が好ましく、0.25mm以下がより好ましい。 FIG. 5 is a top view showing the positional relationship between the second structural unit 122 and the first coating layer 13. Distance L 1 between the first principal surface 11a side of the end face outer edges of the (square) sides and the outer edge of the first cover layer 13 (squares) each side of the second constitutional unit 122, respectively, 0.03 mm or more is preferable. When the distance L 1 is 0.03 mm or more, the base 11 (second base 112) in the periphery of the second structural unit 122 is sufficiently covered with the first coating layer 13. Thereby, the crack in the surface direction of the substrate 11 starting from the second structural unit 122 is further suppressed. The distance L 1 is more preferably equal to or greater than 0.05 mm. On the other hand, when the distance L 1 becomes too large, there is a possibility that the first cover layer 13 from the light emitting element (mounting portion) is protruding. If there is a protruding portion, the light from the light emitting element may be absorbed by this portion as described above. Therefore, as the light emitting element is not absorbed, the distance L 1 is preferably equal to 0.30 mm, more preferably at most 0.25 mm.
 このように発光素子の搭載部と第2の構成単位122との関係を考えると、第2の構成単位122の、第1の主面11a側の端面の面積は、光学素子の搭載部の面積よりも小さく、第2の構成単位122の、第1の主面11a側の端面がなす外縁は、発光素子の搭載部の外縁と重ならない内側に位置する方が好ましい。なお、図5の例では、第1の被覆層13の外縁を正方形として示したが、第2の構成単位122の外縁からの距離Lが上記のような所定の範囲を満足していれば、第1の被覆層13の外縁は、とくに正方形に限らず任意の形状を適用できる。 Thus, considering the relationship between the light emitting element mounting portion and the second structural unit 122, the area of the end surface of the second structural unit 122 on the first main surface 11a side is the area of the optical element mounting portion. The outer edge formed by the end surface of the second structural unit 122 on the first main surface 11a side is preferably located on the inner side that does not overlap the outer edge of the light emitting element mounting portion. In the example of FIG. 5, the outer edge of the first covering layer 13 is shown as a square. However, if the distance L 1 from the outer edge of the second structural unit 122 satisfies the predetermined range as described above. The outer edge of the first covering layer 13 is not limited to a square, and any shape can be applied.
 第1の被覆層13の面積は、発光素子の面積より大きく、発光素子からはみ出した部分がある場合、この部分に光を吸収する層が形成されていると、発光素子の光が吸収され光利用効率が低下するおそれがある。このため、発光素子の光が吸収されないように、第1の被覆層13の面積は、発光素子の面積と同一か、これよりも小さく、(平面視における)第1の被覆層13の外縁が、発光素子の搭載部の外縁と同一か、それよりも内側に位置することが好ましい。なお、ここでいう「内側」とは、第1の被覆層13の外縁が、発光素子の搭載部の外縁に重ならずに内側に位置する場合に限らず、第1の被覆層13の外縁の一部が、発光素子の搭載部の外縁の一部と重なって内側に位置する場合も含むものと解釈する。 The area of the first covering layer 13 is larger than the area of the light emitting element, and when there is a part protruding from the light emitting element, if a layer that absorbs light is formed in this part, the light of the light emitting element is absorbed and light Use efficiency may be reduced. Therefore, the area of the first covering layer 13 is the same as or smaller than the area of the light emitting element so that the light of the light emitting element is not absorbed, and the outer edge of the first covering layer 13 (in plan view) is The light emitting element is preferably located on the same side as the outer edge of the mounting portion or on the inner side. The “inner side” referred to here is not limited to the case where the outer edge of the first covering layer 13 is positioned on the inner side without overlapping the outer edge of the light emitting element mounting portion, but the outer edge of the first covering layer 13. It is interpreted that this also includes a case where a part of the light-emitting element overlaps a part of the outer edge of the light-emitting element mounting portion and is positioned inside.
 なお、上記光を吸収する層としては、第1の被覆層13の腐食を抑制するために、通常、第1の被覆層13の表面上にその全体を覆うように形成される保護層が挙げられる。保護層としては、第1の被覆層13の表面側から、ニッケル(Ni)メッキ層、金(Au)メッキ層を有するNi/Auメッキ層の順に積層された金属メッキ層等が挙げられる。 In addition, as a layer which absorbs the light, in order to suppress corrosion of the first coating layer 13, a protective layer which is usually formed on the surface of the first coating layer 13 so as to cover the entire surface is exemplified. It is done. Examples of the protective layer include a metal plating layer in which a nickel (Ni) plating layer and a Ni / Au plating layer having a gold (Au) plating layer are stacked in this order from the surface side of the first coating layer 13.
 第1の被覆層13の厚さは、第2の構成単位122に起因する基体11の割れを抑制する観点から、5μm以上が好ましく、10μm以上がより好ましい。また、第1の被覆層13の厚さは、それの熱膨張による基体11への影響を低減する観点から、20μm以下が好ましく、15μm以下がより好ましい。 The thickness of the first coating layer 13 is preferably 5 μm or more, more preferably 10 μm or more, from the viewpoint of suppressing cracking of the substrate 11 due to the second structural unit 122. Further, the thickness of the first coating layer 13 is preferably 20 μm or less, more preferably 15 μm or less, from the viewpoint of reducing the influence on the substrate 11 due to its thermal expansion.
 第1の被覆層13の構成材料としては、金属材料、樹脂材料等が挙げられ、基体11の割れを抑制する効果が高く、かつ熱伝導性が高いことから金属材料が好ましい。このような金属材料としては、銅、銀、金等を主成分とする金属が挙げられる。具体的には、銀、銀と白金、または銀とパラジウムからなる金属が好ましい。なお、基体11の構成材料がガラスセラミックス以外の場合、焼成時の変形等を抑制する観点から、タングステン、モリブデン等の高融点金属が好ましい。第1の被覆層13は、これらの金属材料からなる緻密な構造を有するものが好ましい。緻密な構造を有するものによれば、基体11の割れを抑制する効果が大きい。緻密な構造は、焼成条件の調整により行われる。また樹脂材料としてはアクリル樹脂、エポキシ樹脂、シリコーン樹脂などが挙げられる。 Examples of the constituent material of the first coating layer 13 include a metal material, a resin material, and the like, and a metal material is preferable because it has a high effect of suppressing cracking of the base 11 and high thermal conductivity. Examples of such a metal material include metals mainly composed of copper, silver, gold, and the like. Specifically, a metal composed of silver, silver and platinum, or silver and palladium is preferable. In addition, when the constituent material of the base | substrate 11 is other than glass ceramics, from a viewpoint of suppressing the deformation | transformation at the time of baking, refractory metals, such as tungsten and molybdenum, are preferable. The first covering layer 13 preferably has a dense structure made of these metal materials. According to what has a precise | minute structure, the effect which suppresses the crack of the base | substrate 11 is large. The dense structure is performed by adjusting the firing conditions. Examples of the resin material include acrylic resin, epoxy resin, and silicone resin.
 第2の被覆層14は、基体11の内部であって、第1の構成単位121と第2の構成単位122との間に配置される。第2の被覆層14は、正方形状の断面形状を有する放熱体12に合わせて、例えば、正方形状の断面形状を有する。第2の被覆層14は、その第2の主面11b側に配置される第1の構成単位121の、第1の主面11a側の端面を覆う。また、第2の被覆層14は、この第1の構成単位121の、第1の主面11a側の端面がなす外縁の外側にそれの外縁が配置される。 The second coating layer 14 is disposed inside the base 11 and between the first structural unit 121 and the second structural unit 122. The second coating layer 14 has, for example, a square cross-sectional shape in accordance with the radiator 12 having a square cross-sectional shape. The 2nd coating layer 14 covers the end surface by the side of the 1st main surface 11a of the 1st structural unit 121 arrange | positioned at the 2nd main surface 11b side. In addition, the outer edge of the second coating layer 14 is arranged outside the outer edge formed by the end surface of the first structural unit 121 on the first main surface 11a side.
 第2の被覆層14の外縁が、第1の構成単位121の、第1の主面11a側の端面がなす外縁の外側に配置されることにより、第1の構成単位121の周辺部の基体11(第1の基体111)が第2の被覆層14によって被覆される。これにより、第1の構成単位121における第1の主面11a側の端面と側面との境界により構成される角部を起点とした第1の主面11a側へと向かう基体11(第2の基体112)の厚さ方向の割れが抑制される。 The outer edge of the second coating layer 14 is disposed outside the outer edge formed by the end surface of the first structural unit 121 on the first main surface 11a side, so that the base of the peripheral portion of the first structural unit 121 is provided. 11 (first substrate 111) is covered with the second covering layer 14. As a result, the base 11 (the second main body 11) heads toward the first main surface 11a starting from the corner portion formed by the boundary between the end surface and the side surface on the first main surface 11a side in the first structural unit 121. Cracks in the thickness direction of the substrate 112) are suppressed.
 図6は、第1の構成単位121と第2の被覆層14との位置関係を示す上面図である。第1の構成単位121の、第1の主面11a側の端面がなす外縁の(正方形の)各辺と第2の被覆層14の外縁の(正方形の)各辺との距離Lは、それぞれ、0.05mm以上が好ましい。距離Lが0.05mm以上の場合、第1の構成単位121とその周辺部の基体11(第1の基体111)とが第2の被覆層14により十分に被覆される。これにより、第1の構成単位121における第1の主面11a側の角部を起点とした基体11(第2の基体112)の厚さ方向の割れがさらに抑制される。距離Lは、0.10mm以上がより好ましい。一方、距離Lが大きくなると、第1の基体111と第2の基体112とが剥離しやすくなる。このような剥離を抑制する観点から、距離Lは、0.35mm以下が好ましく、0.30mm以下がより好ましい。 FIG. 6 is a top view showing the positional relationship between the first structural unit 121 and the second coating layer 14. The first structural unit 121, the distance L 2 between the first major surface 11a side end surface forms the outer edge (squares) each side and outer edge of the second cover layer 14 (squares) each side, Each is preferably 0.05 mm or more. If the distance L 2 is more than 0.05 mm, the first constitutional unit 121 of the base 11 of the peripheral portion (the first substrate 111) it is sufficiently covered by the second cover layer 14. Thereby, the crack of the base | substrate 11 (2nd base | substrate 112) in the thickness direction from the corner | angular part by the side of the 1st main surface 11a in the 1st structural unit 121 is further suppressed. The distance L 2 is more than 0.10mm and more preferably. On the other hand, when the distance L 2 is increased, the first substrate 111 and second substrate 112 is easily peeled off. Such peeling of inhibition of the distance L 2 is preferably 0.35mm or less, more preferably 0.30 mm.
 なお、図6の例では、第2の被覆層14の外縁を正方形として示したが、第1の構成単位121の、第1の主面11a側の端面がなす外縁からの距離Lが上記のような所定の範囲を満足していれば、第2の被覆層14の外縁は、とくに正方形に限らず任意の形状を適用できる。なお、第1の構成単位121の断面積は、とくに限定されないが、光学素子の搭載部の面積よりも大きい方が放熱効果を高めることができるので好ましい。 In the example of FIG. 6, the outer edge of the second coating layer 14 is shown as a square, but the distance L 2 from the outer edge formed by the end surface of the first structural unit 121 on the first main surface 11 a side is the above-described distance L 2. If the predetermined range is satisfied, the outer edge of the second covering layer 14 is not limited to a square, and any shape can be applied. Although the cross-sectional area of the first structural unit 121 is not particularly limited, it is preferable that the cross-sectional area is larger than the area of the optical element mounting portion because the heat dissipation effect can be enhanced.
 第2の被覆層14の厚さは、第1の被覆層13について説明した内容と同様にできる。
 第2の被覆層14の構成材料としては、第1の被覆層13について説明した内容と同様にできる。
The thickness of the second coating layer 14 can be the same as that described for the first coating layer 13.
The constituent material of the second coating layer 14 can be the same as that described for the first coating layer 13.
 また、枠体16、配線導体15、外部電極17、18、図示しない貫通導体は、その形状等に制限はなく、必要に応じて形状等を選択できる。 Further, the shape of the frame 16, the wiring conductor 15, the external electrodes 17 and 18, and the through conductor (not shown) are not limited, and the shape can be selected as necessary.
 枠体16の構成材料は、生産性等の観点から、基体11の構成材料と同様の材料が好ましい。このような材料としては、アルミナ、窒化アルミニウム、ガラスセラミックス等が好ましく、アルミナ、ガラスセラミックスがより好ましく、例えば、低温同時焼成セラミックス(LTCC)等のガラスセラミックスが特に好ましい。 The constituent material of the frame 16 is preferably the same material as the constituent material of the substrate 11 from the viewpoint of productivity and the like. As such a material, alumina, aluminum nitride, glass ceramics and the like are preferable, alumina and glass ceramics are more preferable, and glass ceramics such as low temperature co-fired ceramics (LTCC) are particularly preferable.
 配線導体15、外部電極17、18、貫通導体の構成材料は、放熱体12、第1の被覆層13、第2の被覆層14の構成材料と同様の金属材料が好ましい。このような金属材料としては、銅、銀、金等を主成分とする金属が挙げられる。具体的には、銀、銀と白金、または銀とパラジウムからなる金属が好ましい。なお、基体11の構成材料がガラスセラミックス以外の場合、焼成時の変形等を抑制する観点から、タングステン、モリブデン等の高融点金属が好ましい。 The constituent materials of the wiring conductor 15, the external electrodes 17 and 18, and the through conductor are preferably the same metal materials as the constituent materials of the radiator 12, the first covering layer 13, and the second covering layer 14. Examples of such a metal material include metals mainly composed of copper, silver, gold, and the like. Specifically, a metal composed of silver, silver and platinum, or silver and palladium is preferable. In addition, when the constituent material of the base | substrate 11 is other than glass ceramics, from a viewpoint of suppressing the deformation | transformation at the time of baking, refractory metals, such as tungsten and molybdenum, are preferable.
 以上、実施形態の発光素子用基板について、放熱体12が側面に段差部を有するように2つの構成単位からなる例について説明した。このような発光素子用基板は、放熱体が2つの構成単位を有するものに限られない。放熱体12の構成単位は、3以上でもよい。すなわち、実施形態の発光素子用基板において、放熱体12の断面が、3段以上の階段状となる構成であってもよい。この場合、第2の被覆層14は、2以上の構成単位間の少なくとも1つの構成単位間に配置されていればよい。その場合、第1の構成単位は、第1の主面11a側に最も近い第2の構成単位を除く、複数の構成単位の中から任意に決定できる。実施形態の発光素子用基板において、放熱体12の断面が3段以上の階段状となる構成である場合、第2の構成単位を除く、2以上の構成単位全ての構成単位間に第2の被覆層14が配置されることが好ましい。 As above, the light emitting element substrate according to the embodiment has been described with respect to the example including the two structural units such that the heat radiator 12 has the stepped portion on the side surface. Such a light emitting element substrate is not limited to one in which the radiator has two structural units. The structural unit of the radiator 12 may be three or more. That is, in the light emitting element substrate according to the embodiment, the heat dissipation body 12 may have a configuration in which the cross section of the radiator 12 has three or more steps. In this case, the 2nd coating layer 14 should just be arrange | positioned between the at least 1 structural unit between two or more structural units. In this case, the first structural unit can be arbitrarily determined from a plurality of structural units excluding the second structural unit closest to the first main surface 11a side. In the light emitting element substrate of the embodiment, when the cross section of the heat radiating body 12 has a stepped shape of three or more steps, the second between all the structural units of the two or more structural units excluding the second structural unit. The covering layer 14 is preferably disposed.
 次に、発光装置の実施形態について説明する。
 図7は、発光装置の第1の実施形態を示す上面図である。また、図8は、図7に示す発光装置のBB線矢視断面図である。
Next, an embodiment of a light emitting device will be described.
FIG. 7 is a top view showing the first embodiment of the light emitting device. FIG. 8 is a cross-sectional view of the light emitting device shown in FIG.
 発光装置20は、第1の実施形態の発光素子用基板10を有する。発光素子用基板10には、第1の被覆層13上に発光素子21が搭載される。発光素子21は、1ワイヤータイプの発光素子であり、両主面に電極を有する。発光素子21の一方の電極は、ボンディングワイヤ22により配線導体15に電気的に接続される。発光素子21の他方の電極は、第1の被覆層13に電気的に接続される。なお、この場合、放熱体12は、放熱部としての機能に加えて、導電部としての機能を有する。 The light emitting device 20 includes the light emitting element substrate 10 of the first embodiment. A light emitting element 21 is mounted on the first covering layer 13 in the light emitting element substrate 10. The light emitting element 21 is a 1-wire type light emitting element, and has electrodes on both main surfaces. One electrode of the light emitting element 21 is electrically connected to the wiring conductor 15 by a bonding wire 22. The other electrode of the light emitting element 21 is electrically connected to the first covering layer 13. In this case, the radiator 12 has a function as a conductive part in addition to a function as a heat radiating part.
 枠体16の内部には、発光素子21等を覆うように封止層23が設けられる。封止層23の構成材料としては、発光装置の封止材に一般的に用いられるシリコーン樹脂、エポキシ樹脂等の封止材が特に制限なく用いられる。 A sealing layer 23 is provided inside the frame 16 so as to cover the light emitting element 21 and the like. As a constituent material of the sealing layer 23, a sealing material such as a silicone resin or an epoxy resin generally used for a sealing material of a light emitting device is used without particular limitation.
 次に、発光素子用基板の第2の実施形態について説明する。
 図9は、第2の実施形態の発光素子用基板を示す上面図である。また、図10は、図9に示す発光素子用基板のCC線矢視断面図である。第1の実施形態の発光素子用基板において放熱体12が側面に段差部を有するものであったのに対し、第2の実施形態の発光素子用基板においては放熱体12が側面に傾斜部を有する点で異なる。それ以外は第1の実施形態の発光素子用基板と同様である。以下、第2の実施形態の発光素子用基板について、第1の実施形態の発光素子用基板と異なる放熱体12について主として説明する。
Next, a second embodiment of the light emitting element substrate will be described.
FIG. 9 is a top view showing the light emitting element substrate of the second embodiment. FIG. 10 is a cross-sectional view taken along the line CC of the light emitting element substrate shown in FIG. In the light emitting element substrate of the first embodiment, the radiator 12 has a stepped portion on the side surface, whereas in the light emitting element substrate of the second embodiment, the radiator 12 has an inclined portion on the side surface. It is different in having. Other than that, it is the same as the substrate for a light emitting device of the first embodiment. Hereinafter, the light-emitting element substrate of the second embodiment will be described mainly with respect to the radiator 12 different from the light-emitting element substrate of the first embodiment.
 例えば、図10に示すように、第2の実施形態の発光素子用基板において、放熱体12は側面に傾斜部を有する。放熱体12は、厚さ方向に垂直な平面で分割された複数の構成単位からなり、例えば、第2の主面11b側から順に、第1の構成単位121、および第2の構成単位122を有する。 For example, as shown in FIG. 10, in the light emitting element substrate of the second embodiment, the radiator 12 has an inclined portion on the side surface. The radiator 12 includes a plurality of structural units divided by a plane perpendicular to the thickness direction. For example, the first structural unit 121 and the second structural unit 122 are sequentially arranged from the second main surface 11b side. Have.
 なお、放熱体12は、3以上の構成単位に分割されていてもよい。その場合、第1の構成単位は、第1の主面11a側に最も近い第2の構成単位を除く、複数の構成単位の中から任意に決定できる。実施形態の発光素子用基板において、放熱体12の断面が3以上である場合、第2の構成単位を除く、2以上の構成単位全ての構成単位間に第2の被覆層14が配置されることが好ましい。 In addition, the heat radiator 12 may be divided into three or more structural units. In this case, the first structural unit can be arbitrarily determined from a plurality of structural units excluding the second structural unit closest to the first main surface 11a side. In the light emitting element substrate of the embodiment, when the cross section of the heat radiating body 12 is 3 or more, the second coating layer 14 is disposed between all the structural units of the two or more structural units excluding the second structural unit. It is preferable.
 第2の被覆層14は、第1の構成単位121と第2の構成単位122との間に配置される。また、第2の被覆層14は、その第2の主面11b側に配置される第1の構成単位121の、第1の主面11a側の端面を覆う。さらに、第2の被覆層14は、この第1の構成単位121の、第1の主面11a側の端面がなす外縁の外側に、その外縁が配置される。 The second coating layer 14 is disposed between the first structural unit 121 and the second structural unit 122. Moreover, the 2nd coating layer 14 covers the end surface by the side of the 1st main surface 11a of the 1st structural unit 121 arrange | positioned at the 2nd main surface 11b side. Further, the outer edge of the second coating layer 14 is arranged outside the outer edge formed by the end surface of the first structural unit 121 on the first main surface 11a side.
 この場合においても、上記で示した発光素子用基板の第1の実施形態と同様に、第1の被覆層13は、第2の構成単位122の第1の主面11a側の端面を覆うとともに、該端面の外縁から所定の距離Lだけ外側に外縁が位置するように配置される。また、第2の被覆層14も、第1の構成単位121の、第1の主面11a側の端面を覆うとともに、該端面の外縁から上記で示した所定の距離Lだけ外側に外縁が位置するように配置される。また、第2の構成単位122のうち、第1の主面11a側の端面の面積は、発光素子の搭載部の面積より小さいことが好ましい。さらに、第1の構成単位121のうち、第1の主面11a側の端面の面積は、発光素子の搭載部の面積より大きいことが好ましい。 Also in this case, the first covering layer 13 covers the end surface of the second structural unit 122 on the first main surface 11a side as in the first embodiment of the light emitting element substrate described above. , the outer edge to the outside from the outer edge of the end surface by a predetermined distance L 1 is arranged so as to be located. The second coating layer 14 is also of the first constitutional unit 121 covers the end surface of the first main surface 11a side, from the outer edge of the end surface by a predetermined distance L 2 indicated above outer edge on the outside It is arranged to be located. In the second structural unit 122, the area of the end surface on the first main surface 11a side is preferably smaller than the area of the light emitting element mounting portion. Further, in the first structural unit 121, the area of the end surface on the first main surface 11a side is preferably larger than the area of the light emitting element mounting portion.
 また、側面に傾斜部を有する放熱体12の場合も、上記と同様にして測定される放熱体12の側面の角度θは、20°以上が好ましい。角度θは、放熱体12が側面に傾斜部を有する場合、基体11の厚さ方向に延びる第1の直線と、放熱体12の側面を通過する第2の直線とのなす角度である。 Further, in the case of the radiator 12 having the inclined portion on the side surface, the angle θ of the side surface of the radiator 12 measured in the same manner as described above is preferably 20 ° or more. The angle θ is an angle formed between a first straight line extending in the thickness direction of the base 11 and a second straight line passing through the side surface of the heat radiator 12 when the heat radiator 12 has an inclined portion on the side surface.
 次に、発光素子用基板の製造方法について、基体が低温同時焼成セラミックス(LTCC)である場合を例に以下に説明する。なお、本発明の発光素子用基板の製造方法はこれに限定されない。 Next, a method for manufacturing a substrate for a light-emitting element will be described below by taking as an example the case where the substrate is a low-temperature co-fired ceramic (LTCC). In addition, the manufacturing method of the board | substrate for light emitting elements of this invention is not limited to this.
 発光素子用基板は、例えば、以下の(A)~(D)の工程を経て製造できる。
(A)ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物を用いて、グリーンシートを作製する(以下、シート作製工程と記す)。
(B)放熱体12、第1の被覆層13、第2の被覆層14等の導体層となる未焼成導体層を形成する(以下、導体層形成工程と記す)。
(C)未焼成導体層が形成されたグリーンシートを積層する(以下、積層工程と記す)。
(D)積層されたグリーンシートを焼成する(以下、焼成工程と記す)。
The substrate for a light emitting element can be manufactured, for example, through the following steps (A) to (D).
(A) A green sheet is produced using a glass ceramic composition containing glass powder and ceramic powder (hereinafter referred to as a sheet production step).
(B) An unfired conductor layer to be a conductor layer such as the heat radiating body 12, the first covering layer 13, and the second covering layer 14 is formed (hereinafter referred to as a conductor layer forming step).
(C) A green sheet on which an unfired conductor layer is formed is laminated (hereinafter referred to as a lamination process).
(D) The laminated green sheets are fired (hereinafter referred to as a firing step).
 以下、各工程について説明する。
(A)シート作製工程
 ガラス粉末とセラミックス粉末とを含むガラスセラミックス組成物に、バインダー、必要に応じて、可塑剤、分散剤、溶剤等を添加してスラリーを調製する。このスラリーをドクターブレード法等によりシート状に成形し、乾燥させて、グリーンシートを製造する。この際、グリーンシートは、例えば、放熱体12の構成単位の数(本発明の場合2以上)に合わせて、複数の種類を製造することが好ましい。なお、各構成単位に対応するグリーンシートは、1枚のシートからなる単層構造を有するものでもよいし、2枚以上のシートからなる積層構造を有するものでもよい。
Hereinafter, each step will be described.
(A) Sheet production process A slurry is prepared by adding a binder and, if necessary, a plasticizer, a dispersant, a solvent, and the like to a glass ceramic composition containing glass powder and ceramic powder. This slurry is formed into a sheet by a doctor blade method or the like and dried to produce a green sheet. At this time, it is preferable to manufacture a plurality of types of green sheets in accordance with, for example, the number of structural units of the radiator 12 (two or more in the present invention). In addition, the green sheet corresponding to each structural unit may have a single layer structure composed of one sheet, or may have a laminated structure composed of two or more sheets.
 ガラス粉末は、550℃以上700℃以下のガラス転移点(Tg)を有することが好ましい。ガラス転移点(Tg)が550℃未満の場合、脱脂が困難となるおそれがある。700℃を超える場合、収縮開始温度が高くなり、寸法精度が低下するおそれがある。 The glass powder preferably has a glass transition point (Tg) of 550 ° C. or higher and 700 ° C. or lower. When the glass transition point (Tg) is less than 550 ° C., degreasing may be difficult. When it exceeds 700 degreeC, there exists a possibility that shrinkage start temperature may become high and a dimensional accuracy may fall.
 ガラス粉末は、800℃以上930℃以下で焼成したときに結晶が析出することが好ましい。結晶が析出する場合、十分な機械的強度が得られる。さらに、ガラス粉末は、DTA(示差熱分析)により測定される結晶化ピーク温度(Tc)が880℃以下であることが好ましい。結晶化ピーク温度(Tc)が880℃以下の場合、寸法精度が高くなる。 The glass powder is preferably crystallized when fired at 800 ° C. or higher and 930 ° C. or lower. When crystals are precipitated, sufficient mechanical strength is obtained. Further, the glass powder preferably has a crystallization peak temperature (Tc) measured by DTA (differential thermal analysis) of 880 ° C. or lower. When the crystallization peak temperature (Tc) is 880 ° C. or lower, the dimensional accuracy is increased.
 このようなガラス粉末としては、例えばSiOを57mol%以上65mol%以下、Bを13mol%以上18mol%以下、CaOを9mol%以上23mol%以下、Alを3mol%以上8mol%以下、KOおよびNaOから選ばれる少なくとも一方を合計で0.5mol%以上6mol%以下含有するものが好ましい。このようなガラス粉末の場合、基体11の表面の平坦度が向上する。 As such glass powder, for example, SiO 2 is 57 mol% or more and 65 mol% or less, B 2 O 3 is 13 mol% or more and 18 mol% or less, CaO is 9 mol% or more and 23 mol% or less, and Al 2 O 3 is 3 mol% or more and 8 mol% or less. hereinafter, those containing less 0.5 mol% or more 6 mol% of at least one in total selected from K 2 O and Na 2 O are preferred. In the case of such a glass powder, the flatness of the surface of the substrate 11 is improved.
 SiOは、ガラスのネットワークフォーマとなる。SiOの含有量が57mol%未満の場合、安定なガラスを得ることが難しく、化学的耐久性も低下するおそれがある。一方、SiOの含有量が65mol%を超える場合、ガラス溶融温度やガラス転移点(Tg)が過度に高くなるおそれある。SiOの含有量は、好ましくは58mol%以上、より好ましくは59mol%以上、特に好ましくは60mol%以上である。また、SiOの含有量は、好ましくは64mol%以下、より好ましくは63mol%以下である。 SiO 2 becomes a glass network former. When the content of SiO 2 is less than 57 mol%, it is difficult to obtain a stable glass and the chemical durability may be lowered. On the other hand, when the content of SiO 2 exceeds 65 mol%, the glass melting temperature and the glass transition point (Tg) may be excessively high. The content of SiO 2 is preferably 58 mol% or more, more preferably 59 mol% or more, and particularly preferably 60 mol% or more. The content of SiO 2 is preferably 64 mol% or less, more preferably 63 mol% or less.
 Bは、ガラスのネットワークフォーマとなる。Bの含有量が13mol%未満の場合、ガラス溶融温度やガラス転移点(Tg)が過度に高くなるおそれがある。一方、Bの含有量が18mol%を超える場合、安定なガラスを得ることが難しく、また化学的耐久性も低下するおそれがある。Bの含有量は、好ましくは14mol%以上、より好ましくは15mol%以上である。また、Bの含有量は、好ましくは17mol%以下、より好ましくは16mol%以下である。 B 2 O 3 is a glass network former. If the content of B 2 O 3 is less than 13 mol%, there is a possibility that the glass melting temperature or the glass transition point (Tg) becomes too high. On the other hand, when the content of B 2 O 3 exceeds 18 mol%, it is difficult to obtain a stable glass and the chemical durability may be lowered. The content of B 2 O 3 is preferably 14 mol% or more, more preferably 15 mol% or more. Further, the content of B 2 O 3 is preferably 17 mol% or less, more preferably 16 mol% or less.
 Alは、ガラスの安定性、化学的耐久性、および強度を高めるために添加される。Alの含有量が3mol%未満の場合、ガラスが不安定となるおそれがある。一方、Alの含有量が8mol%を超える場合、ガラス溶融温度やガラス転移点(Tg)が過度に高くなるおそれがある。Alの含有量は、好ましくは4mol%以上、より好ましくは5mol%以上である。また、Alの含有量は、好ましくは7mol%以下、より好ましくは6mol%以下である。 Al 2 O 3 is added to increase the stability, chemical durability, and strength of the glass. When the content of Al 2 O 3 is less than 3 mol%, the glass may become unstable. On the other hand, when the content of Al 2 O 3 exceeds 8 mol%, the glass melting temperature and the glass transition point (Tg) may be excessively high. The content of Al 2 O 3 is preferably 4 mol% or more, more preferably 5 mol% or more. The content of Al 2 O 3 is preferably 7 mol% or less, more preferably 6 mol% or less.
 CaOは、ガラスの安定性や結晶の析出性を高めると共に、ガラス溶融温度やガラス転移点(Tg)を低下させるために添加される。CaOの含有量が9mol%未満の場合、ガラス溶融温度が過度に高くなるおそれがある。一方、CaOの含有量が23mol%を超える場合、ガラスが不安定となるおそれがある。CaOの含有量は、好ましくは12mol%以上、より好ましくは13mol%以上、特に好ましくは14mol%以上である。また、CaOの含有量は、好ましくは22mol%以下、より好ましくは21mol%以下、特に好ましくは20mol%以下である。 CaO is added to increase glass stability and crystal precipitation, and to lower the glass melting temperature and glass transition point (Tg). When the content of CaO is less than 9 mol%, the glass melting temperature may be excessively high. On the other hand, when the content of CaO exceeds 23 mol%, the glass may become unstable. The content of CaO is preferably 12 mol% or more, more preferably 13 mol% or more, and particularly preferably 14 mol% or more. The CaO content is preferably 22 mol% or less, more preferably 21 mol% or less, and particularly preferably 20 mol% or less.
 KO、NaOは、ガラス転移点(Tg)を低下させる。KOおよびNaOの合計した含有量が0.5mol%未満の場合、ガラス溶融温度やガラス転移点(Tg)が過度に高くなるおそれがある。一方、KOおよびNaOの合計した含有量が6mol%を超える場合、化学的耐久性、特に耐酸性が低下するおそれがあり、電気的絶縁性も低下するおそれがある。KOおよびNaOの合計した含有量は、0.8mol%以上5mol%以下が好ましい。 K 2 O and Na 2 O lower the glass transition point (Tg). When the total content of K 2 O and Na 2 O is less than 0.5 mol%, the glass melting temperature and the glass transition point (Tg) may be excessively high. On the other hand, when the total content of K 2 O and Na 2 O exceeds 6 mol%, chemical durability, particularly acid resistance may be lowered, and electrical insulation may be lowered. The total content of K 2 O and Na 2 O is preferably 0.8 mol% or more and 5 mol% or less.
 なお、ガラス粉末は、必ずしも上記成分のみからなるものに限定されず、ガラス転移点(Tg)等の諸特性を満たす範囲で他の成分を含有できる。他の成分を含有する場合、その合計した含有量は10mol%以下が好ましい。 In addition, glass powder is not necessarily limited to what consists only of the said component, Other components can be contained in the range with which various characteristics, such as a glass transition point (Tg), are satisfy | filled. When other components are contained, the total content is preferably 10 mol% or less.
 ガラス粉末は、上記ガラス組成を有するガラスを溶融法によって製造し、乾式粉砕法または湿式粉砕法により粉砕して得られる。湿式粉砕法の場合、溶媒に水を用いることが好ましい。粉砕は、例えばロールミル、ボールミル、ジェットミル等の粉砕機が使用できる。 The glass powder is obtained by producing glass having the above glass composition by a melting method and pulverizing it by a dry pulverization method or a wet pulverization method. In the case of the wet pulverization method, it is preferable to use water as the solvent. For the pulverization, for example, a pulverizer such as a roll mill, a ball mill, or a jet mill can be used.
 ガラス粉末の50%平均粒径(D50)は、0.5μm以上2μm以下が好ましい。ガラス粉末の50%平均粒径が0.5μm以上の場合、ガラス粉末が凝集しにくく、取り扱いが容易であるとともに、均一に分散する。一方、ガラス粉末の50%平均粒径が2μm以下の場合、ガラス軟化温度の上昇や焼結不足が抑制される。粒径の調整は、分級等により行われる。なお、本明細書において、粒径は、レーザ回折・散乱法による粒子径測定装置により得られる値をいう。 The 50% average particle size (D 50 ) of the glass powder is preferably 0.5 μm or more and 2 μm or less. When the 50% average particle size of the glass powder is 0.5 μm or more, the glass powder is difficult to aggregate, is easy to handle, and is uniformly dispersed. On the other hand, when the 50% average particle diameter of the glass powder is 2 μm or less, an increase in the glass softening temperature and insufficient sintering are suppressed. The particle size is adjusted by classification or the like. In the present specification, the particle diameter refers to a value obtained by a particle diameter measuring apparatus using a laser diffraction / scattering method.
 セラミックス粉末としては、従来からガラスセラミックスの製造に用いられるものを使用できる。セラミックス粉末としては、例えばアルミナ粉末、ジルコニア粉末、またはアルミナ粉末とジルコニア粉末との混合物を好適に使用できる。セラミックス粉末の50%平均粒径(D50)は、例えば、0.5μm以上4μm以下が好ましい。 As ceramic powder, what is conventionally used for manufacture of glass ceramics can be used. As the ceramic powder, for example, alumina powder, zirconia powder, or a mixture of alumina powder and zirconia powder can be suitably used. The 50% average particle diameter (D 50 ) of the ceramic powder is preferably 0.5 μm or more and 4 μm or less, for example.
 ガラス粉末とセラミックス粉末とを、配合、混合して、ガラスセラミックス組成物が得られる。ガラス粉末とセラミックス粉末との割合は、ガラス粉末が30質量%以上50質量%以下、セラミックス粉末が50質量%以上70質量%以下、が好ましい。ガラスセラミックス組成物には、バインダー、必要に応じて、可塑剤、分散剤、溶剤等を添加してスラリーを調製する。 Glass powder and ceramic powder are blended and mixed to obtain a glass ceramic composition. The ratio of the glass powder to the ceramic powder is preferably 30% by mass to 50% by mass for the glass powder and 50% by mass to 70% by mass for the ceramic powder. A slurry is prepared by adding a binder and, if necessary, a plasticizer, a dispersant, a solvent and the like to the glass ceramic composition.
 バインダーとしては、ポリビニルブチラール、アクリル樹脂等が挙げられる。可塑剤としては、フタル酸ジブチル、フタル酸ジオクチル、フタル酸ブチルベンジル等が挙げられる。また、溶剤としては、トルエン、キシレン、2-プロパノール、2-ブタノール等の有機溶剤が挙げられる。 Examples of the binder include polyvinyl butyral and acrylic resin. Examples of the plasticizer include dibutyl phthalate, dioctyl phthalate, and butyl benzyl phthalate. Examples of the solvent include organic solvents such as toluene, xylene, 2-propanol and 2-butanol.
 スラリーをドクターブレード法等によりシート状に成形し、乾燥させて、グリーンシートとする。グリーンシートは、複数枚が積層されたものでもよい。グリーンシートは、例えば、第1の基体111、第2の基体112、および枠体16となる3種を製造する。 The slurry is formed into a sheet by the doctor blade method or the like and dried to obtain a green sheet. The green sheet may be a laminate of a plurality of sheets. For example, three types of green sheets are used as the first base 111, the second base 112, and the frame 16.
(B)導体層形成工程
 第1の基体111となるグリーンシートには、孔部を形成した後、この孔部にスクリーン印刷法により導体ペーストを充填して、放熱体12の第1の構成単位121等となる未焼成導体層を形成する。また、このグリーンシートの表裏面には、スクリーン印刷法により導体ペーストを印刷して、第2の被覆層14、外部電極17、18となる未焼成導体層を形成する。
(B) Conductor layer forming step After forming a hole in the green sheet to be the first substrate 111, the hole is filled with a conductive paste by a screen printing method, and the first structural unit of the radiator 12 is formed. An unfired conductor layer such as 121 is formed. Further, a conductive paste is printed on the front and back surfaces of the green sheet by a screen printing method to form an unfired conductive layer that becomes the second coating layer 14 and the external electrodes 17 and 18.
 第2の基体112となるグリーンシートには、孔部を形成した後、この孔部にスクリーン印刷法により導体ペーストを充填して、第2の構成単位122等となる未焼成導体層を形成する。また、このグリーンシートの表面には、スクリーン印刷法により導体ペーストを印刷して、第1の被覆層13、配線導体15となる未焼成導体層を形成する。 After forming a hole in the green sheet to be the second substrate 112, the hole is filled with a conductive paste by a screen printing method to form an unfired conductor layer to be the second structural unit 122 or the like. . Further, a conductive paste is printed on the surface of the green sheet by a screen printing method to form an unfired conductor layer that becomes the first coating layer 13 and the wiring conductor 15.
 枠体16となるグリーンシートには、第1の被覆層13および配線導体15を囲むような大きさの孔部を形成する。 A hole having a size that surrounds the first covering layer 13 and the wiring conductor 15 is formed in the green sheet to be the frame body 16.
 導体ペーストとしては、例えば、銅、銀、金等を主成分とする金属粉末に、エチルセルロース等のビヒクル、必要に応じて溶剤等を添加して、ペースト状としたものを使用できる。 As the conductive paste, for example, a paste obtained by adding a vehicle such as ethyl cellulose to a metal powder mainly composed of copper, silver, gold or the like, and a solvent or the like as necessary can be used.
(C)積層工程
 未焼成導体層が形成された各グリーンシートを所定の順序で積層した後、これらを圧着して一体化する。
(C) Laminating step After the green sheets on which the unfired conductor layers are formed are laminated in a predetermined order, they are pressure-bonded and integrated.
(D)焼成工程
 一体化されたグリーンシートに対して、ガラスセラミックス組成物を焼結させるための焼成を行う。これにより、発光素子用基板10が得られる。なお、必要に応じて、焼成前に、バインダー等を除去するための脱脂を行ってもよい。
(D) Firing step Firing for sintering the glass ceramic composition is performed on the integrated green sheet. Thereby, the board | substrate 10 for light emitting elements is obtained. In addition, you may degrease for removing a binder etc. before baking as needed.
 脱脂温度は、500℃以上600℃以下が好ましい。脱脂時間は、1時間以上10時間以下が好ましい。脱脂温度が500℃以上、脱脂時間が1時間以上の場合、バインダー等の除去が良好となる。脱脂温度が600℃以下、脱脂時間が10時間以下の場合、生産性等が良好となる。 The degreasing temperature is preferably 500 ° C. or higher and 600 ° C. or lower. The degreasing time is preferably 1 hour or more and 10 hours or less. When the degreasing temperature is 500 ° C. or higher and the degreasing time is 1 hour or longer, the removal of the binder and the like is good. When the degreasing temperature is 600 ° C. or less and the degreasing time is 10 hours or less, productivity and the like are good.
 焼成温度は、緻密化および生産性を考慮して、800℃以上930℃以下が好ましく、850℃以上900℃以下がより好ましく、860℃以上880℃以下がさらに好ましい。焼成時間は、20分以上60分以下が好ましい。焼成温度が800℃以上の場合、緻密化が良好となる。焼成温度が930℃以下の場合、変形が抑制されるとともに、生産性が良好となる。また、銀を含有する導体ペーストを用いた場合、焼成温度が880℃以下であると、軟化による変形が抑制される。 Calcination temperature is preferably 800 ° C. or higher and 930 ° C. or lower, more preferably 850 ° C. or higher and 900 ° C. or lower, and further preferably 860 ° C. or higher and 880 ° C. or lower in consideration of densification and productivity. The firing time is preferably from 20 minutes to 60 minutes. When the firing temperature is 800 ° C. or higher, densification is good. When the firing temperature is 930 ° C. or lower, deformation is suppressed and productivity is improved. Moreover, when the conductor paste containing silver is used, the deformation | transformation by softening is suppressed as a calcination temperature is 880 degrees C or less.
 以下、本発明の実施例を説明する。
 なお、本発明はこれら実施例に限定されるものではない。
Examples of the present invention will be described below.
The present invention is not limited to these examples.
[実施例1~19]
 表1に示すように、割合(V/V)、基体11の厚さ、第2の構成単位122の断面積(第1の主面11a側の端面の面積に相当)、距離L、L、曲率半径を変更して、図1~図3に示すような構造を有する評価用基板を作製した。ここで、割合(V/V)は、基体11およびその内部に配置される部材の合計した体積(V)に対する放熱体12の体積(V)の割合である。距離Lは、第2の構成単位122の、第1の主面11a側の端面がなす外縁の(正方形の)各辺と第1の被覆層13の外縁の(正方形の)各辺との距離であり、距離Lは、第1の構成単位121の、第1の主面11a側の端面がなす外縁の(正方形の)各辺と第2の被覆層14の外縁の(正方形の)各辺との距離である。曲率半径は、放熱体12の、厚さ方向に垂直な断面における正方形の角部の曲率半径である。なお、第1の構成単位121の断面形状は、厚さ方向に同一であり、第2の構成単位122の断面形状も、厚さ方向に同一であり、3次元的には四角柱を構成する。
[Examples 1 to 19]
As shown in Table 1, the ratio (V 2 / V 1 ), the thickness of the base 11, the cross-sectional area of the second structural unit 122 (corresponding to the area of the end surface on the first main surface 11a side), the distance L 1 , L 2 , and the radius of curvature were changed, and an evaluation substrate having a structure as shown in FIGS. 1 to 3 was produced. Here, the ratio (V 2 / V 1 ) is a ratio of the volume (V 2 ) of the radiator 12 to the total volume (V 1 ) of the base body 11 and the members disposed therein. The distance L 1 is the distance between each side (square) of the outer edge formed by the end surface of the second structural unit 122 on the first main surface 11 a side and each side (square) of the outer edge of the first covering layer 13. the distance, the distance L 2 is the first structural unit 121, the outer edge end surface of the first major surface 11a side is formed (squares) each side and outer edge of the second cover layer 14 (squares) It is the distance to each side. A curvature radius is a curvature radius of the square corner | angular part in the cross section perpendicular | vertical to the thickness direction of the heat radiator 12. FIG. In addition, the cross-sectional shape of the first structural unit 121 is the same in the thickness direction, and the cross-sectional shape of the second structural unit 122 is also the same in the thickness direction, and three-dimensionally forms a quadrangular prism. .
 上記のように、基体11、放熱体12、第1の被覆層13、第2の被覆層14の平面形状は、いずれも正方形状である。基体11の一辺の長さは3mm、放熱体12のうち第1の構成単位121の一辺の長さは1.28mm、放熱体12のうち第2の構成単位122の一辺の長さを表1の面積値となるように変化させた。また、枠体16の内側の一辺の長さは1.8mmである。第1の基体111と第2の基体112の厚さは同一である。また、第1の被覆層13の厚さは12μm、第2の被覆層14の厚さは12μmである。 As described above, the planar shapes of the base 11, the heat radiating body 12, the first covering layer 13, and the second covering layer 14 are all square. The length of one side of the base 11 is 3 mm, the length of one side of the first structural unit 121 of the radiator 12 is 1.28 mm, and the length of one side of the second structural unit 122 of the radiator 12 is shown in Table 1. The area value was changed. The length of one side inside the frame 16 is 1.8 mm. The thickness of the first base 111 and the second base 112 is the same. Moreover, the thickness of the 1st coating layer 13 is 12 micrometers, and the thickness of the 2nd coating layer 14 is 12 micrometers.
 また、評価用基板は、以下のようにして製造した。
 SiOが60.4mol%、Bが15.6mol%、Alが6mol%、CaOが15mol%、KOが1mol%、NaOが2mol%となるように原料を配合、混合し、この原料混合物を白金ルツボに入れて1600℃で60分間溶融させた後、この溶融状態のガラスを流し出し冷却した。このガラスをアルミナ製ボールミルにより40時間粉砕してガラス粉末を製造した。なお、粉砕時の溶媒にはエチルアルコールを用いた。
Moreover, the evaluation substrate was manufactured as follows.
SiO 2 is 60.4mol%, B 2 O 3 is 15.6mol%, Al 2 O 3 is 6 mol%, CaO is 15mol%, K 2 O is 1 mol%, the raw material as Na 2 O is 2 mol% After mixing and mixing, this raw material mixture was put in a platinum crucible and melted at 1600 ° C. for 60 minutes, and then the molten glass was poured out and cooled. This glass was pulverized with an alumina ball mill for 40 hours to produce a glass powder. In addition, ethyl alcohol was used as a solvent for pulverization.
 このガラス粉末が40質量%、アルミナ粉末(昭和電工社製、商品名:AL-45H)が60質量%となるように配合し、混合することによりガラスセラミックス組成物を製造した。このガラスセラミックス組成物50gに、有機溶剤(トルエン、キシレン、2-プロパノール、2-ブタノールを質量比4:2:2:1で混合したもの)15g、可塑剤(フタル酸ジ-2-エチルヘキシル)2.5g、バインダーとしてのポリビニルブチラール(デンカ社製、商品名:PVK#3000K)5g、さらに分散剤(ビックケミー社製、商品名:BYK180)を配合し、混合してスラリーを調製した。 A glass ceramic composition was produced by mixing and mixing the glass powder at 40% by mass and alumina powder (made by Showa Denko KK, trade name: AL-45H) at 60% by mass. 50 g of this glass ceramic composition, 15 g of an organic solvent (mixed with toluene, xylene, 2-propanol, 2-butanol in a mass ratio of 4: 2: 2: 1), a plasticizer (di-2-ethylhexyl phthalate) 2.5 g of polyvinyl butyral (trade name: PVK # 3000K, manufactured by Denka) as a binder and 5 g of a dispersant (trade name: BYK180, manufactured by Big Chemie) were further blended and mixed to prepare a slurry.
 このスラリーをPETフィルム上にドクターブレード法により塗布し、乾燥させて、第1の基体111、第2の基体112、および枠体16となるグリーンシートを製造した。基体11、第1の基体111、第2の基体112の厚さは、このグリーンシートの厚さにより調整した。 The slurry was applied on a PET film by a doctor blade method and dried to produce green sheets to be the first substrate 111, the second substrate 112, and the frame 16. The thicknesses of the substrate 11, the first substrate 111, and the second substrate 112 were adjusted by the thickness of the green sheet.
 各グリーンシートには、必要に応じて、孔部の形成、導体ペーストの充填、印刷等を行って、放熱体12、第1の被覆層13、第2の被覆層14等となる未焼成導体層を形成した。割合(V/V)、放熱体12のうち第2の構成単位122の断面積、断面形状(正方形形状)における角部の曲率半径は、グリーンシートに形成する孔部の大きさ、形状により調整した。また、距離L、Lの調整は、導体ペーストの印刷範囲により調整した。 Each green sheet is formed with a hole, filled with a conductive paste, printed, and the like as necessary to form an unfired conductor that becomes the heat radiating body 12, the first coating layer 13, the second coating layer 14, and the like. A layer was formed. The ratio (V 2 / V 1 ), the cross-sectional area of the second structural unit 122 of the radiator 12, and the radius of curvature of the corner in the cross-sectional shape (square shape) are the size and shape of the hole formed in the green sheet Adjusted by. The distances L 1 and L 2 were adjusted according to the printing range of the conductor paste.
 なお、導体ペーストは、導電性粉末(大研化学工業社製、商品名:S550)、ビヒクルとしてのエチルセルロースを質量比85:15の割合で配合し、固形分が85質量%となるように溶剤としてのαテレピネオールに分散した後、磁器乳鉢中で1時間混練を行い、さらに三本ロールにて3回分散を行って製造した。また、導体ペーストの充填、印刷は、スクリーン印刷により行った。 The conductive paste is composed of conductive powder (manufactured by Daiken Chemical Co., Ltd., trade name: S550), ethyl cellulose as a vehicle in a mass ratio of 85:15, and a solvent so that the solid content is 85 mass%. And then kneaded in a porcelain mortar for 1 hour, and further dispersed three times with a three roll. The conductor paste was filled and printed by screen printing.
 未焼成導体層が形成されたグリーンシートを所定の順序で積層した後、圧着して一体化した。その後、一体化されたグリーンシートに対して、脱脂温度550℃、脱脂時間5時間の脱脂を行った。さらに、焼成温度870℃、焼成時間30分間の焼成を行った。これにより、評価用基板を作製した。 The green sheets on which the unfired conductor layers were formed were laminated in a predetermined order, and then pressed and integrated. Thereafter, the integrated green sheet was degreased at a degreasing temperature of 550 ° C. and a degreasing time of 5 hours. Further, firing was performed at a firing temperature of 870 ° C. and a firing time of 30 minutes. This produced the board | substrate for evaluation.
[比較例1]
 第1の被覆層13を形成しないこと以外は、実施例1と同様に評価用基板を作製した。
[Comparative Example 1]
An evaluation substrate was produced in the same manner as in Example 1 except that the first coating layer 13 was not formed.
[比較例2]
 第2の被覆層14を形成しないこと以外は、実施例1と同様に評価用基板を作製した。
[Comparative Example 2]
An evaluation substrate was produced in the same manner as in Example 1 except that the second coating layer 14 was not formed.
 次に、実施例および比較例の評価用基板について、面積が1×1mmの発光素子を、金錫共晶ハンダを用いて310℃で60秒加熱することで第1の被覆層13と接合した後、光学顕微鏡を用い30倍の倍率で表面の割れを観察した。結果を表1に示す。なお、比較例1は、上記条件で発光素子と放熱体12とを、金錫共晶ハンダを用いて直接接合して評価した。表1中、「○」は、評価用基板の表面に割れが発生しなかったことを示し、「×」は、評価用基板の表面に何らかの割れが発生したことを示す。 Next, for the evaluation substrates of Examples and Comparative Examples, a light emitting device having an area of 1 × 1 mm was joined to the first coating layer 13 by heating at 310 ° C. for 60 seconds using gold-tin eutectic solder. Thereafter, surface cracks were observed at a magnification of 30 times using an optical microscope. The results are shown in Table 1. Note that Comparative Example 1 was evaluated by directly bonding the light emitting element and the heat radiating body 12 using gold-tin eutectic solder under the above conditions. In Table 1, “◯” indicates that no crack was generated on the surface of the evaluation substrate, and “X” indicates that some crack was generated on the surface of the evaluation substrate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、第1の被覆層13を有しない比較例1の評価用基板、第2の被覆層14を有しない比較例2の評価用基板は、いずれも割れが発生した。一方、第1の被覆層13および第2の被覆層14を有する評価用基板は、いずれも割れが発生しなかった。 As is clear from Table 1, the evaluation substrate of Comparative Example 1 that does not have the first coating layer 13 and the evaluation substrate of Comparative Example 2 that does not have the second coating layer 14 both crack. On the other hand, the evaluation substrate having the first coating layer 13 and the second coating layer 14 was not cracked.
 10…発光素子用基板、11…基体、12…放熱体、13…第1の被覆層、14…第2の被覆層、15…配線導体、16…枠体、17、18…外部電極、20…発光装置、21…発光素子、22…ボンディングワイヤ、31…第1の直線、32…第2の直線、111…第1の基体、112…第2の基体、121…第1の構成単位、122…第2の構成単位122。 DESCRIPTION OF SYMBOLS 10 ... Light emitting element substrate, 11 ... Base, 12 ... Radiator, 13 ... First coating layer, 14 ... Second coating layer, 15 ... Wiring conductor, 16 ... Frame body, 17, 18 ... External electrode, 20 DESCRIPTION OF SYMBOLS ... Light-emitting device, 21 ... Light emitting element, 22 ... Bonding wire, 31 ... 1st straight line, 32 ... 2nd straight line, 111 ... 1st base | substrate, 112 ... 2nd base | substrate, 121 ... 1st structural unit, 122... Second structural unit 122.

Claims (14)

  1.  発光素子が搭載される第1の主面と、前記第1の主面の反対側に配置される第2の主面とを有する板状の基体と、
     前記基体の内部に配置され、前記第1の主面側の端面の面積に比べて前記第2の主面側の端面の面積が大きく、かつ前記基体の厚さ方向に分割された複数の構成単位を有する放熱体と、
     前記第1の主面上に配置され、前記第1の主面側に配置される前記放熱体の第2の構成単位の、前記第1の主面側の端面を覆うとともに、前記第2の構成単位の、前記第1の主面側の端面がなす外縁の外側に外縁が配置される第1の被覆層と、
     前記放熱体の複数の構成単位の間に配置され、これらの構成単位のうち、前記第2の構成単位よりも前記第2の主面側に配置される第1の構成単位の、前記第1の主面側の端面を覆うとともに、前記第1の構成単位の、前記第1の主面側の端面がなす外縁の外側に外縁が配置される第2の被覆層と
    を有する発光素子用基板。
    A plate-like substrate having a first main surface on which a light-emitting element is mounted and a second main surface disposed on the opposite side of the first main surface;
    A plurality of configurations that are arranged inside the base, have an area of the end face on the second main face side larger than an area of the end face on the first main face side, and are divided in the thickness direction of the base body A radiator having a unit;
    The second structural unit of the radiator disposed on the first main surface and disposed on the first main surface side covers an end surface on the first main surface side and covers the second main unit. A first covering layer in which an outer edge is disposed outside an outer edge formed by an end surface on the first main surface side of the structural unit;
    The first of the first structural units disposed between the plurality of structural units of the heat dissipating body, and among the structural units, disposed closer to the second main surface than the second structural unit. And a second covering layer having an outer edge disposed outside the outer edge formed by the end face on the first main surface side of the first structural unit. .
  2.  前記放熱体は、前記第2の主面側に向かって側面に段差部を有し、断面積が段階的に大きくなる請求項1記載の発光素子用基板。 The substrate for a light-emitting element according to claim 1, wherein the heat dissipating member has a stepped portion on a side surface toward the second main surface side, and a cross-sectional area gradually increases.
  3.  前記放熱体、前記第1の被覆層、および前記第2の被覆層は、厚さ方向に垂直な断面が、いずれも正方形状の断面形状を有する請求項1または2記載の発光素子用基板。 The substrate for a light emitting element according to claim 1 or 2, wherein each of the radiator, the first coating layer, and the second coating layer has a square cross-sectional shape perpendicular to the thickness direction.
  4.  前記第2の構成単位の、前記第1の主面側の端面がなす外縁の各辺と、前記各辺に対応する前記第1の被覆層の外縁の各辺との距離が、0.03mm以上である請求項3記載の発光素子用基板。 The distance between each side of the outer edge formed by the end surface on the first main surface side of the second structural unit and each side of the outer edge of the first covering layer corresponding to each side is 0.03 mm. The substrate for a light emitting device according to claim 3, which is as described above.
  5.  前記第1の構成単位の、前記第1の主面側の端面がなす外縁の各辺と、前記各辺に対応する前記第2の被覆層の外縁の各辺との距離が、0.05mm以上である請求項3または4記載の発光素子用基板。 The distance between each side of the outer edge formed by the end surface on the first main surface side of the first structural unit and each side of the outer edge of the second coating layer corresponding to each side is 0.05 mm. The substrate for a light emitting device according to claim 3 or 4, which is as described above.
  6.  前記放熱体の厚さ方向に垂直な断面における正方形の角部の曲率半径は、0.03mm以上0.40mm以下である請求項3乃至5のいずれか1項記載の発光素子用基板。 The light emitting element substrate according to any one of claims 3 to 5, wherein a radius of curvature of a square corner in a cross section perpendicular to the thickness direction of the heat radiating body is 0.03 mm or more and 0.40 mm or less.
  7.  前記基体およびその内部に配置される部材の合計した体積に対する前記放熱体の体積の割合は、10体積%以上30体積%以下である請求項1乃至6のいずれか1項記載の発光素子用基板。 The ratio of the volume of the said heat radiator with respect to the total volume of the said base | substrate and the member arrange | positioned in the inside is 10 volume% or more and 30 volume% or less, The board | substrate for light emitting elements of any one of Claim 1 thru | or 6 .
  8.  前記基体は、0.20mm以上0.60mm以下の厚さを有する請求項1乃至7のいずれか1項記載の発光素子用基板。 The substrate for a light emitting device according to any one of claims 1 to 7, wherein the base has a thickness of 0.20 mm to 0.60 mm.
  9.  前記第1の被覆層の厚さは、5μm以上20μm以下である請求項1乃至8のいずれか1項記載の発光素子用基板。 The substrate for a light emitting element according to any one of claims 1 to 8, wherein a thickness of the first coating layer is not less than 5 µm and not more than 20 µm.
  10.  前記第2の被覆層の厚さは、5μm以上20μm以下である請求項1乃至9のいずれか1項記載の発光素子用基板。 The substrate for a light emitting element according to any one of claims 1 to 9, wherein a thickness of the second coating layer is 5 µm or more and 20 µm or less.
  11.  前記第1の被覆層および前記第2の被覆層は金属材料からなる請求項1乃至10のいずれか1項記載の発光素子用基板。 The light emitting element substrate according to any one of claims 1 to 10, wherein the first coating layer and the second coating layer are made of a metal material.
  12.  前記第1の被覆層の外縁は、前記第1の主面における前記発光素子が搭載される搭載部の外縁と同一かまたは、前記搭載部の外縁よりも内側に位置する請求項1乃至11のいずれか1項記載の発光素子用基板。 The outer edge of the first covering layer is the same as the outer edge of the mounting portion on which the light emitting element is mounted on the first main surface, or is located inside the outer edge of the mounting portion. The substrate for a light emitting device according to any one of the above.
  13.  前記第2の構成単位の前記第1の主面側の端面がなす外縁は、前記第1の主面における前記発光素子が搭載される搭載部の外縁に重ならない内側に位置する請求項1乃至12のいずれか1項記載の発光素子用基板。 The outer edge formed by the end surface on the first main surface side of the second structural unit is located on the inner side that does not overlap the outer edge of the mounting portion on which the light emitting element is mounted on the first main surface. 13. The substrate for a light emitting device according to any one of 12 above.
  14.  請求項1乃至13のいずれか1項記載の発光素子用基板と、
     前記発光素子用基板に搭載される発光素子と
    を有する発光装置。
    A substrate for a light emitting device according to any one of claims 1 to 13,
    A light emitting device having a light emitting element mounted on the light emitting element substrate.
PCT/JP2015/050516 2014-01-24 2015-01-09 Substrate for light-emitting element and light-emitting device WO2015111452A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015558799A JP6398996B2 (en) 2014-01-24 2015-01-09 Light emitting element substrate and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-011654 2014-01-24
JP2014011654 2014-01-24

Publications (1)

Publication Number Publication Date
WO2015111452A1 true WO2015111452A1 (en) 2015-07-30

Family

ID=53681260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050516 WO2015111452A1 (en) 2014-01-24 2015-01-09 Substrate for light-emitting element and light-emitting device

Country Status (3)

Country Link
JP (1) JP6398996B2 (en)
TW (1) TWI648884B (en)
WO (1) WO2015111452A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7475360B2 (en) 2019-10-30 2024-04-26 京セラ株式会社 Light-emitting element mounting package and light-emitting device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123477A (en) * 2003-10-17 2005-05-12 Toyoda Gosei Co Ltd Optical device
JP2006156447A (en) * 2004-11-25 2006-06-15 Kyocera Corp Wiring board for light emitting element, light emitting device and its manufacturing method
JP2007123482A (en) * 2005-10-27 2007-05-17 Kyocera Corp Wiring board for light emitting element, light emitting device, and method for manufacturing board
JP2008244421A (en) * 2006-12-26 2008-10-09 Nichia Corp Light-emitting device and its manufacturing method
JP2012018948A (en) * 2010-07-06 2012-01-26 Asahi Glass Co Ltd Board for device, light-emitting device and method of manufacturing board for device
JP2014068013A (en) * 2012-09-25 2014-04-17 Lg Innotek Co Ltd Light emitting element package

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093565A (en) * 2004-09-27 2006-04-06 Kyocera Corp Wiring board for light emitting element, light emitting device and method for manufacturing it
WO2005106973A1 (en) * 2004-04-27 2005-11-10 Kyocera Corporation Wiring board for light emitting element
KR101241650B1 (en) * 2005-10-19 2013-03-08 엘지이노텍 주식회사 Package of light emitting diode
US7687823B2 (en) * 2006-12-26 2010-03-30 Nichia Corporation Light-emitting apparatus and method of producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123477A (en) * 2003-10-17 2005-05-12 Toyoda Gosei Co Ltd Optical device
JP2006156447A (en) * 2004-11-25 2006-06-15 Kyocera Corp Wiring board for light emitting element, light emitting device and its manufacturing method
JP2007123482A (en) * 2005-10-27 2007-05-17 Kyocera Corp Wiring board for light emitting element, light emitting device, and method for manufacturing board
JP2008244421A (en) * 2006-12-26 2008-10-09 Nichia Corp Light-emitting device and its manufacturing method
JP2012018948A (en) * 2010-07-06 2012-01-26 Asahi Glass Co Ltd Board for device, light-emitting device and method of manufacturing board for device
JP2014068013A (en) * 2012-09-25 2014-04-17 Lg Innotek Co Ltd Light emitting element package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7475360B2 (en) 2019-10-30 2024-04-26 京セラ株式会社 Light-emitting element mounting package and light-emitting device

Also Published As

Publication number Publication date
JPWO2015111452A1 (en) 2017-03-23
JP6398996B2 (en) 2018-10-03
TWI648884B (en) 2019-01-21
TW201533935A (en) 2015-09-01

Similar Documents

Publication Publication Date Title
JP5640632B2 (en) Light emitting device
JP5742353B2 (en) Light emitting element substrate and light emitting device
JP5729375B2 (en) Light emitting device
JP5499960B2 (en) Element substrate, light emitting device
WO2012036219A1 (en) Light-emitting element substrate and light-emitting device
JP5862574B2 (en) Light emitting element substrate and light emitting device
WO2011059070A1 (en) Substrate for light-emitting elements and light-emitting device
WO2011092945A1 (en) Substrate for mounting light emitting element, method for producing same, and light emitting device
JP2013149637A (en) Light emitting device and manufacturing method of the same
JP6398996B2 (en) Light emitting element substrate and light emitting device
JP2012209310A (en) Substrate for light-emitting element, and light-emitting device
JP2014154582A (en) Light-emitting element substrate and light-emitting device
JP2012074478A (en) Substrate for light emitting element, and light emitting device
WO2012067204A1 (en) Substrate for light-emitting element, and light-emitting device
JP6492443B2 (en) Light emitting element substrate and light emitting device
JP5725029B2 (en) Light emitting element mounting substrate and light emitting device
WO2013141322A1 (en) Method for manufacturing substrate for light-emitting element, substrate for light-emitting element, and light-emitting device
JP2012248593A (en) Light-emitting element substrate and light-emitting device
WO2012057234A1 (en) Substrate for light-emitting element, and light emitting device
JP2012039028A (en) Wiring board and coupling substrate
JP2011176302A (en) Substrate for mounting light emitting element and method for manufacturing the same
JP2011176303A (en) Substrate for mounting light emitting element and method for manufacturing the same
JP2012238855A (en) Substrate for light emitting element and light emitting device
JP2015070088A (en) Substrate for light-emitting element and light-emitting device
JP2011228652A (en) Substrate for light-emitting element and light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740418

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015558799

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740418

Country of ref document: EP

Kind code of ref document: A1