WO2015111313A1 - レドックスフロー電池 - Google Patents

レドックスフロー電池 Download PDF

Info

Publication number
WO2015111313A1
WO2015111313A1 PCT/JP2014/082498 JP2014082498W WO2015111313A1 WO 2015111313 A1 WO2015111313 A1 WO 2015111313A1 JP 2014082498 W JP2014082498 W JP 2014082498W WO 2015111313 A1 WO2015111313 A1 WO 2015111313A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
battery
flow
bipolar plate
electrolyte
Prior art date
Application number
PCT/JP2014/082498
Other languages
English (en)
French (fr)
Inventor
伊藤 賢一
慶 花房
宗一郎 奥村
岳見 寺尾
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CA2937798A priority Critical patent/CA2937798A1/en
Priority to EP14879731.9A priority patent/EP3098888B1/en
Priority to KR1020167020128A priority patent/KR20160113130A/ko
Priority to CN201480073708.8A priority patent/CN106415907B/zh
Priority to AU2014379883A priority patent/AU2014379883B2/en
Priority to US15/113,376 priority patent/US9761890B2/en
Priority to ES14879731.9T priority patent/ES2648691T3/es
Publication of WO2015111313A1 publication Critical patent/WO2015111313A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery.
  • the present invention relates to a redox flow battery with reduced internal resistance in an electrolyte flow type redox flow battery.
  • a redox flow battery (hereinafter referred to as an RF battery) is a battery that performs charge and discharge by utilizing a difference in oxidation-reduction potential between ions contained in a positive electrode electrolyte and ions contained in a negative electrode electrolyte.
  • the RF battery 1 includes a battery cell 100 that is separated into a positive electrode cell 102 and a negative electrode cell 103 by a diaphragm 101 that allows hydrogen ions (protons) to pass therethrough.
  • a positive electrode 104 is built in the positive electrode cell 102, and a positive electrode electrolyte solution tank 106 for storing a positive electrode electrolyte is connected via conduits 108 and 110.
  • a negative electrode electrode 105 is built in the negative electrode cell 103, and a negative electrode electrolyte solution tank 107 that stores a negative electrode electrolyte is connected via conduits 109 and 111.
  • the electrolyte stored in the tanks 106 and 107 is circulated in the electrode cells 102 and 103 by the pumps 112 and 113 during charging and discharging.
  • the battery cell 100 is usually formed inside a structure called a cell stack 200 as shown in the lower diagram of FIG. 24, the cell stack 200 includes a cell frame 120 including a bipolar plate 121 integrated with a frame-shaped frame body 122, a positive electrode 104, a diaphragm 101, and a negative electrode 105 in this order.
  • stacked by is provided.
  • one battery cell 100 is formed between the bipolar plates 121 of the adjacent cell frames 120.
  • the distribution of the electrolyte solution to the battery cell 100 in the cell stack 200 is performed by the liquid supply manifolds 123 and 124 and the drainage manifolds 125 and 126 formed in the frame body 122.
  • the positive electrode electrolyte is supplied from the liquid supply manifold 123 to the positive electrode 104 disposed on the one surface side of the bipolar plate 121 through a groove formed on one surface side (the front surface side of the paper) of the frame body 122.
  • the positive electrode electrolyte is discharged to the drainage manifold 125 through a groove formed in the upper portion of the frame body 122.
  • the negative electrode electrolyte is supplied from the liquid supply manifold 124 to the negative electrode 105 disposed on the other surface side of the bipolar plate 121 through a groove formed on the other surface side (the back surface of the paper) of the frame body 122. Is done.
  • the negative electrode electrolyte is discharged to the drainage manifold 126 through a groove formed in the upper part of the frame body 122.
  • Each of the electrodes 104 and 105 constituting the battery cell 100 may be formed of a porous conductive material so that the flow of the electrolyte as a fluid does not hinder the flow of the electrolyte from the liquid supply side to the drain side.
  • a porous conductive material for example, carbon felt is used (for example, Patent Document 1).
  • the charging / discharging reaction of the RF battery is performed by circulating the electrolytic solution through an electrode such as carbon felt.
  • the distribution state of the electrolytic solution for example, the uniformity of the distribution of the electrolytic solution in the electrode affects the internal resistance of the RF battery.
  • the conventional RF battery it has not been said that sufficient studies have been made to reduce the internal resistance after sufficiently considering the flow state of the electrolyte solution at the electrode.
  • one of the objects of the present invention is to provide a redox flow battery with reduced internal resistance.
  • the redox flow battery of the present invention includes a diaphragm, a bipolar plate, an electrode disposed between the diaphragm and the bipolar plate, an inlet for supplying an electrolytic solution to the electrode, and an exhaust for discharging the electrolytic solution from the electrode. And a charge / discharge reaction is performed by circulating the electrolyte solution through the electrode.
  • the electrode includes an anisotropic electrode layer having different transmittances in a direction A1 in the plane of the electrode and a direction A2 orthogonal to the direction A1 in the plane of the electrode.
  • the transmittance K1 in the direction A1 is larger than the transmittance K2 in the direction A2, the positional relationship between the inlet and the outlet, and the surface of the bipolar plate on the electrode side. It arrange
  • an RF battery with reduced internal resistance can be obtained.
  • FIG. 3 is a schematic front view illustrating a mesh type opposed comb-shaped flow path provided on a bipolar plate included in the RF battery according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing the flow of an electrolyte solution in a mesh type opposed comb-shaped channel provided on a bipolar plate included in the RF battery according to the first embodiment.
  • FIG. 6 is a schematic front view showing a non-meshing opposed comb-shaped channel provided on a bipolar plate included in an RF battery according to a third embodiment.
  • FIG. 6 is a schematic front view showing a series of meandering flow paths provided on a bipolar plate included in an RF battery according to Embodiment 4.
  • FIG. 6 is a schematic front view showing a series of grid-shaped flow paths provided on a bipolar plate included in an RF battery according to Embodiment 5.
  • FIG. 10 is a schematic front view illustrating an intermittent flow path provided in a bipolar plate included in an RF battery according to Embodiment 6.
  • FIG. FIG. 3 is a schematic diagram showing a flow velocity distribution in a main flow direction (X direction) in Test Example 1-1.
  • FIG. 6 is a schematic diagram showing a flow velocity distribution in a main flow direction (X direction) in Test Example 1-2.
  • FIG. 6 is a schematic diagram showing a flow velocity distribution in a main flow direction (X direction) in Test Example 1-3.
  • FIG. 6 is a schematic diagram showing a flow velocity distribution in a main flow direction (X direction) in Test Example 1-4.
  • FIG. 6 is a schematic diagram showing a flow velocity distribution in a main flow direction (X direction) in Test Example 1-5.
  • FIG. 6 is a schematic diagram showing a flow velocity distribution in a main flow direction (X direction) in Test Example 1-6.
  • FIG. 6 is a schematic diagram showing a flow velocity distribution in a main flow direction (X direction) in Test Example 2-1.
  • FIG. 6 is a schematic diagram showing a flow velocity distribution in a main flow direction (X direction) in Test Example 2-2.
  • FIG. 6 is a schematic diagram showing a flow velocity distribution in a main flow direction (X direction) in Test Example 2-3.
  • FIG. 6 is a schematic diagram showing a flow velocity distribution in a main flow direction (X direction) in Test Example 2-4.
  • FIG. 6 is a schematic diagram showing a flow velocity distribution in a main flow direction (X direction) in Test Example 2-5.
  • FIG. 9 is a schematic diagram showing a flow velocity distribution in a main flow direction (X direction) in Test Example 2-6.
  • FIG. 9 is a schematic diagram showing a flow velocity distribution in a main flow direction (X direction) in Test Example 2-7.
  • FIG. 9 is a schematic diagram showing a flow velocity distribution in a main flow direction (X direction) in Test Example 2-8.
  • It is a schematic block diagram of the pressure loss measurement system used for the measurement of the transmittance
  • It is a schematic principle figure of RF battery. It is a schematic block diagram of the cell stack with which an RF battery is provided.
  • An RF battery includes a diaphragm, a bipolar plate, an electrode disposed between the diaphragm and the bipolar plate, an inlet for supplying an electrolyte to the electrode, and the electrolyte from the electrode.
  • a discharge port for discharging, and performing the charge / discharge reaction by circulating the electrolyte solution through the electrode.
  • the electrode includes an anisotropic electrode layer having different transmittances in a direction A1 in the plane of the electrode and a direction A2 orthogonal to the direction A1 in the plane of the electrode. In the anisotropic electrode layer, the transmittance K1 in the direction A1 is larger than the transmittance K2 in the direction A2.
  • the electrode has a main flow direction of the electrolyte solution in the electrode and the direction A1 determined based on a positional relationship between the introduction port and the discharge port and a shape of a surface of the bipolar plate on the electrode side. Arranged so as to be substantially parallel.
  • the RF battery according to the present embodiment has the above-described configuration, so that the number of locations where the electrolytic solution flows in the electrode in the main flow direction at a flow rate suitable for the operation of the RF battery, or the electrolytic solution flows in the main flow direction. It is easy to reduce the number of spots in the electrode. Accordingly, variations in the flow velocity in the main flow direction in the electrode are likely to be reduced. As described above, since the battery reaction is easily performed uniformly over a wide range of electrodes, an RF battery with reduced internal resistance can be obtained.
  • the RF battery according to the embodiment includes an embodiment in which the transmittance K1 is 1.5 times or more and 100 times or less of the transmittance K2.
  • the transmittance K1 When the transmittance K1 is 1.5 times or more of the transmittance K2, it can be said that the anisotropy of the anisotropic electrode layer is remarkable, and an electrode having no anisotropy (hereinafter referred to as an isotropic electrode). As compared with the case of using, the number of locations where the electrolyte flows in the electrode in the main flow direction at a flow rate suitable for the operation of the RF battery is likely to increase. Moreover, the transmittance
  • the RF battery according to the present embodiment can easily perform a battery reaction in a wide range of electrodes, and thus can be an RF battery having a further reduced internal resistance. Furthermore, when the transmittance K1 is 1.5 times or more and 100 times or less of the transmittance K2, it is expected that the electrolytic solution can be easily introduced into the electrode and the pressure loss of the electrolytic solution can be reduced.
  • the RF battery according to the embodiment includes a mode in which the bipolar plate includes a flow path through which the electrolytic solution flows on the surface on the electrode side.
  • the flow path has a plurality of grooves parallel to each other.
  • the main distribution direction is a parallel direction of the plurality of grooves.
  • the bipolar plate is provided with a flow path having a plurality of grooves parallel to each other, so that the electrolyte can be easily supplied along the flow path over a wide area of the electrode plane with low pressure loss. Moreover, it is easy to produce the distribution
  • the RF battery according to the embodiment of the above (3) includes a mode in which the flow path includes an introduction path connected to the introduction port and a discharge path connected to the discharge port.
  • the introduction path and the discharge path each have the plurality of grooves.
  • the introduction path and the discharge path are not in communication and are independent.
  • the introduction path and the discharge path are not in communication and independent, the electrolyte directly passing from the introduction port to the discharge port is reduced with little involvement in the battery reaction, and between the introduction path and the discharge path. It is easy to cause the electrolyte solution to flow through the electrode. Therefore, it is easy to increase the amount of the electrolyte flowing in the main flow direction through the electrode, and the reaction current amount is likely to increase, so that the internal resistance is expected to be reduced. From the above, the RF battery of this embodiment is excellent in energy efficiency as the whole RF battery.
  • the introduction path and the discharge path are provided with comb-shaped grooves, and the introduction path and the discharge path are opposed to each other with the respective comb teeth meshing with each other.
  • the RF battery of this embodiment is excellent in energy efficiency as the whole RF battery.
  • the flow path has a series of meandering shapes from the introduction port to the discharge port, and a plurality of long groove portions arranged in parallel so as to be adjacent to each other; And a plurality of short groove portions that alternately connect one end or the other end of the long groove portion.
  • the main distribution direction is a parallel direction of the plurality of long groove portions.
  • the flow of the electrolyte flowing through the flow path becomes smooth, and the pressure loss of the electrolyte can be reduced.
  • the electrolyte solution can be easily spread over a wide area of the electrode. Therefore, when the electrolyte solution is introduced into the electrode from a wide area of the electrode, a uniform battery reaction is performed. Be expected. From the above, the RF battery of this embodiment is excellent in energy efficiency as a whole.
  • a form in which the surface of the bipolar plate on the electrode side is a flat shape may be mentioned.
  • the main distribution direction is from the inlet side to the outlet side.
  • an anisotropic electrode layer that does not correspond to this direction can be used by substantially paralleling the direction A1 and the main flow direction.
  • the above-described variation in the flow velocity in the main flow direction is more easily reduced. Therefore, a battery reaction can be easily performed uniformly over a wide range of electrodes, and an RF battery with reduced internal resistance can be obtained.
  • ⁇ Embodiment 1> (Outline of RF battery)
  • anisotropic electrodes having different easiness of flow of the electrolyte in the vertical direction and the horizontal direction in the plane of the electrode are used, and the direction in which the electrolyte of the anisotropic electrode easily flows is the main flow direction of the electrolyte.
  • a description will be given of an RF battery arranged in parallel. The main distribution direction will be described later in detail, but is typically the upward direction in the plane of each electrode cell. However, when a plurality of grooves are arranged in parallel on the bipolar plate, the direction is the parallel direction, for example, the left-right direction (width direction). Since this RF battery has a basic configuration common to the conventional RF battery described with reference to FIGS. 23 and 24, the following description will be focused on electrodes and bipolar plates related to the differences. Refer to FIGS. 23 and 24 for the points related to the basic configuration.
  • the electrode is a conductive member for conducting a battery reaction by flowing an electrolytic solution. Usually, a porous material is used to ensure a contact area with the electrolytic solution.
  • An anisotropic electrode ⁇ used for each of the electrodes 104 and 105 included in the RF battery of this embodiment will be described with reference to FIG. In FIG. 1, the horizontal direction of the drawing is the width, the vertical direction of the drawing is the height, and the direction from the front to the back of the drawing is the thickness.
  • the anisotropic electrode ⁇ includes an anisotropic electrode layer ⁇ 1 having different transmittances in two directions orthogonal to each other on the plane of the electrode.
  • FIG. 1 shows an anisotropic electrode ⁇ having a single-layer structure composed only of the anisotropic electrode layer ⁇ 1.
  • the determination of the anisotropy of the electrode is performed by measuring the transmittance K in two directions orthogonal to each other at the electrode, and the direction showing the high transmittance K1 is the A1 direction and the direction showing the low transmittance K2 is the A2 direction.
  • This anisotropy determination method is considered to be particularly effective in the case of a circular electrode or the like. In the case of a rectangular electrode, usually one of the height direction and the width direction is the A1 direction, and the other is the A2 direction.
  • the anisotropic electrode ⁇ When assembling the polar cells 102 and 103 (cell stack 200) using the anisotropic electrode ⁇ , the anisotropic electrode ⁇ is arranged so that the A1 direction showing high transmittance is parallel to the main flow direction of the electrolyte. To do. Therefore, if the main flow direction is, for example, the width direction of each of the polar cells 102 and 103, the width direction of the rectangular anisotropic electrode ⁇ is the A1 direction where the transmittance is high, and the height direction is the A2 direction where the transmittance is low. Thus, the anisotropic electrode ⁇ is cut out.
  • the width direction is the A1 direction
  • the transmittance K1 in the A1 direction is larger than the transmittance K2 in the height direction A2.
  • anisotropic electrode layer examples include carbon felt, carbon paper, carbon cloth, and the like. Some of these have anisotropy from the beginning, and others have anisotropy by performing heat treatment or the like on an isotropic one. Examples of the material having anisotropy from the beginning include carbon cloth in which the fiber diameters of the longitudinal fibers and the transverse fibers are different.
  • an anisotropic electrode layer may be formed by performing a heat treatment on the isotropic electrode layer, or anisotropy may be further increased by performing a heat treatment on the anisotropic electrode layer. .
  • the degree of anisotropy can be adjusted by adjusting the heat treatment conditions.
  • Preferable heat treatment conditions include conditions of 200 ° C. or higher and 1000 ° C. or lower and 5 minutes or longer and 120 minutes or shorter in the air atmosphere. By such heat treatment, an electrode having predetermined transmittances K1 and K2 in two directions orthogonal to each other can be obtained.
  • Examples of the heat treatment condition include a temperature of 300 ° C. to 800 ° C. in the air atmosphere, a condition of 20 minutes to 100 minutes, a condition of 400 ° C. to 600 ° C. in the air atmosphere, and a condition of 40 minutes to 80 minutes.
  • the transmittance is an index indicating the ease of flowing of the electrolytic solution in the electrode, and the higher the value, the easier the electrolytic solution flows.
  • the ratio K1 / K2 between the transmittances K1 and K2, which indicates how many times the transmittance K1 is the transmittance K2, is preferably 1.5 or more, more preferably 3 or more, and particularly preferably 9 or more. This is because the flow rate in the main flow direction of the electrolyte flowing in the anisotropic electrode layer tends to be more uniform at a flow rate suitable for the operation of the RF battery.
  • this ratio K1 / K2 is preferably 100 or less, more preferably 50 or less.
  • the ratio K1 / K2 is 30 or less, and further 10 or less.
  • the transmittance K1 of the anisotropic electrode layer ⁇ 1 is preferably 7.0 ⁇ 10 ⁇ 14 m 2 or more and 7.0 ⁇ 10 ⁇ 8 m 2 or less. This is because, when the transmittance K1 is in the above range, variation in the flow velocity in the main flow direction can be easily reduced, and the RF battery 1 with reduced internal resistance can be obtained. 7.0 ⁇ 10 ⁇ 14 m 2 or more, further 7.0 ⁇ 10 ⁇ 13 m 2 or more, in particular 7.0 ⁇ 10 ⁇ 12 m 2 or more, a bipolar having an anisotropic electrode and a flow path By combining with the plate, the pressure loss of the electrolytic solution can be reduced, and the energy loss can be reduced.
  • an electrolytic solution that flows in the main flow direction by being 7.0 ⁇ 10 ⁇ 8 m 2 or less, further 7.0 ⁇ 10 ⁇ 9 m 2 or less, particularly 7.0 ⁇ 10 ⁇ 10 m 2 or less. Is expected to be easily distributed at a flow rate suitable for the operation of the RF battery.
  • the transmittance K2 is 4.7 ⁇ 10 ⁇ 14 m 2 or more and 7.0 ⁇ 10 ⁇ 10 m 2 or less, 4.7 ⁇ 10 ⁇ 13 m 2 or more and 7.0 ⁇ 10 ⁇ 11 m 2. The following may be mentioned. Further, it may be 4.7 ⁇ 10 ⁇ 12 m 2 or more and 7.0 ⁇ 10 ⁇ 12 m 2 or less.
  • the transmittance K2 is 2.4 ⁇ 10 ⁇ 14 m 2 or more and 1.4 ⁇ 10 ⁇ 9 m 2 or less, 2.4 ⁇ 10 ⁇ 13 m 2 or more and 1.4 ⁇ 10 ⁇ 10 m 2 or less, 2.4 It may be not less than ⁇ 10 ⁇ 12 m 2 and not more than 1.4 ⁇ 10 ⁇ 11 m 2 .
  • the lower limit of the transmittance K2 may be 4.65 ⁇ 10 ⁇ 14 m 2 or more, 4.65 ⁇ 10 ⁇ 13 m 2 or more, or 4.65 ⁇ 10 ⁇ 12 m 2 or more.
  • the lower limit of the transmittance K2 may be 2.33 ⁇ 10 ⁇ 14 m 2 or more, 2.33 ⁇ 10 ⁇ 13 m 2 or more, or 2.33 ⁇ 10 ⁇ 12 m 2 or more. Further, 7.77 ⁇ 10 ⁇ 15 m 2 or more and 2.33 ⁇ 10 ⁇ 9 m 2 or less, 7.77 ⁇ 10 ⁇ 14 m 2 or more and 2.33 ⁇ 10 ⁇ 10 m 2 or less, or 7.77 ⁇ 10 It may be ⁇ 13 m 2 or more and 2.33 ⁇ 10 ⁇ 11 m 2 or less, and may be 7.77 ⁇ 10 ⁇ 9 m 2 or less.
  • K1 / K2 is 1.5 or more and 100 or less in a specific range of the transmittance K1 and the transmittance K2. This is because each of the above effects is expected to be more easily exhibited. A detailed method for measuring the transmittances K1 and K2 will be described in a test example described later.
  • the bipolar plate 121 is a plate that is sandwiched between the positive and negative electrodes 104 and 105 to partition each battery cell 100, and is formed of a conductive plate that does not allow electrolyte to pass through.
  • the above-described direction A1 indicating the transmittance K1 of the anisotropic electrode ⁇ is arranged in parallel with the main flow direction of the electrolytic solution in the electrode.
  • One of the determining factors of the main flow direction is the shape of the electrode-side surface of the bipolar plate 121.
  • the electrode side surface of the bipolar plate 121 may or may not include a flow path.
  • the bipolar plate provided with the flow path 130 is demonstrated. In FIG.
  • the solid line arrows mainly indicate the flow of the electrolyte solution on the electrode surface along the flow path 130 provided in the bipolar plate 121, and the broken line arrows indicate the main flow direction of the electrolyte solution in the electrodes. This also applies to FIGS. 3 to 7 described later.
  • the flow path 130 is provided on at least one surface of the bipolar plate 121 on the side of the electrodes 104 and 105 in order to adjust the flow of the electrolyte flowing through the electrodes in each cell.
  • the flow path 130 has a plurality of grooves that are parallel to each other.
  • each of the introduction path 131 and the discharge path 132 has a comb-shaped groove portion, and has a mesh-type opposed comb-tooth shape in which the respective comb teeth are meshed with each other and face each other (see FIG. 2). .
  • the introduction path 131 (discharge path 132) is provided at the lower part (upper part) of the bipolar plate 121, and has a single lateral groove 131a (132a) extending in the width direction and a plurality of lateral grooves 131a (132a) extending upward (downward) from the lateral groove. And a vertical groove 131b (132b). And the introduction path 131 and the discharge path 132 are arrange
  • the anisotropic electrode ⁇ described above is arranged such that the direction A1 showing the high transmittance K1 is parallel to the main flow direction of the electrolyte solution in the electrode.
  • the main flow direction is the flow direction of the electrolytic solution mainly involved in the battery reaction in the electrode.
  • the flow direction of the electrolyte mainly involved in the battery reaction depends on the positional relationship between the inlet for introducing the electrolyte into the electrode and the outlet for discharging the electrolyte from the electrode, and the shape of the electrode side surface of the bipolar plate. Determine based on.
  • the liquid supply manifold 123 (124) and the drainage manifold 125 (126) in FIG. 24 correspond to the introduction port and the discharge port.
  • the introduction port and the discharge port are provided above and below the cell frame in FIG. 24, they may be provided on the left and right. This is the same in any of Embodiments 2 to 7 described later.
  • the main distribution direction is the side where the discharge port is arranged from the side where the electrolyte solution inlet is arranged in each electrode cell when the electrode side surface of the bipolar plate is flat.
  • the inlet 123 (124) is disposed below each polar cell (cell frame 120) and the outlet 125 (126) is disposed above each polar cell (cell frame 120).
  • the side is the main distribution direction.
  • the electrolyte introduced from the lower side is preferentially distributed toward the upper side of the electrode spreading in the left-right direction, and the battery reaction is performed in the process of distribution. Even when the introduction port 123 (124) and the discharge port 125 (126) are shifted in the width direction of the cell frame 120, only the opposite direction (vertical direction in FIG. 24) is considered without considering the shift between the two.
  • the main distribution direction is the side where the discharge port is arranged from the side where the electrolyte solution inlet is arranged in each electrode cell when the electrode side surface of the bipolar plate is flat.
  • the inlet 123 (124) is
  • the main flow direction is in principle the parallel direction of the groove portions regardless of the facing direction of the introduction port and the discharge port.
  • the parallel direction of the longitudinal grooves 131b and 132b is the main flow direction.
  • FIG. 3 is a cross-sectional view in the width direction of the portion where the vertical grooves 131b and 132b in FIG. 2 are arranged in parallel.
  • the electrolytic solution introduced into the electrode from the introduction path 131 flows into the discharge path 132 through the electrodes 104 and 105.
  • the vertical grooves 131b of the introduction path and the vertical grooves 132b of the discharge path are alternately arranged in the X direction as shown in the upper diagram of FIG. Therefore, as shown in the enlarged view of FIG.
  • the electrolytic solution supplied to the electrode from the vertical groove 131b crosses a portion located between the vertical groove 131b and the vertical groove 132b in the anisotropic electrode layer ⁇ 1. It flows and is discharged to the vertical groove 132b.
  • the groove part included in the flow path of the bipolar plate and the part sandwiched between the groove parts are collectively referred to as a collar part.
  • the part is the buttocks.
  • the parallel direction (X direction) of the vertical grooves 131b and 132b is the main flow direction. (See broken line arrows in FIGS. 2 and 3).
  • the electrode-side surface of the bipolar plate 121 is a flat surface
  • the anisotropic electrode ⁇ is arranged so that the electrode direction A1 is substantially parallel to the vertical direction of the cell frame in FIG.
  • the electrode direction A1 is anisotropic so as to be substantially parallel to the parallel direction of the grooves (X direction in FIG. 2).
  • the conductive electrode ⁇ is disposed.
  • Arrangement so as to be substantially parallel is not only the case where the main flow direction and the direction A1 are arranged completely in parallel, but also there is an angle difference of ⁇ 30 ° or less between the main flow direction and the direction A1. Including the case where it is arranged in a state. In particular, when the difference in angle is ⁇ 10 ° or less, and further ⁇ 5 ° or less, it is expected that variations in flow velocity in the main flow direction in the electrode can be reduced.
  • the cell stack configured using anisotropic electrodes and bipolar plates having such an arrangement relationship is connected to the power generation unit 400 and the load via the AC / DC converter 300 and the substation equipment 310. 500.
  • the RF battery of this embodiment described above has the following effects. (1) By disposing the direction in which the transmittance K1 of the anisotropic electrode is high substantially in parallel with the main flow direction, the electrolytic solution flows in the electrode in the main flow direction at a flow rate suitable for the operation of the RF battery. It is possible to increase the number of places that circulate or reduce the number of places where the electrolyte flowing in the main flow direction stays in the electrode. Along with this, it is possible to reduce variations in the flow velocity in the main flow direction. Therefore, it can be said that the electrolytic solution easily flows uniformly over a wide range in the electrode, and an RF battery with reduced internal resistance can be obtained.
  • the electrolyte is easily supplied to the wide area of the electrodes along the grooves with a low pressure loss, and the electrodes are interposed between the adjacent grooves. It is easy to cause circulation of the electrolyte. Therefore, it is expected that the amount of the electrolyte flowing in the electrode in the main flow direction can be easily increased, the amount of reaction current can be increased, and the internal resistance can be reduced. With the supply of the electrolyte solution due to these low pressure losses and the increase in the amount of reaction current, the energy efficiency of the entire RF battery can be improved.
  • this RF battery may have the following configuration.
  • the thickness (d) of the anisotropic electrode ⁇ can be arbitrarily adjusted by the structure of the cell stack 200, mainly the degree of compression of the anisotropic electrode ⁇ .
  • the thickness of the anisotropic electrode ⁇ is preferably 1000 ⁇ m or less in a state where the anisotropic electrode ⁇ is disposed between the diaphragm 101 and the bipolar plate 121. This is because if the anisotropic electrode ⁇ is thin, the internal resistance of the RF battery can be reduced.
  • the thickness of the anisotropic electrode ⁇ is more preferably 500 ⁇ m or less, further preferably 300 ⁇ m or less.
  • the thickness of the anisotropic electrode ⁇ is preferably 50 ⁇ m or more, and more preferably 100 ⁇ m or more. Even when the anisotropic electrode ⁇ is a laminated electrode to be described later, the thickness of the laminated electrode as a whole is preferably as described above.
  • the bipolar plate material is more preferably a material having acid resistance and appropriate rigidity. This is because the cross-sectional shape and dimensions of the flow path are difficult to change over a long period of time, and the effect of the flow path is easily maintained.
  • An example of such a material is a conductive material containing carbon. More specifically, a conductive plastic formed from graphite and a polyolefin-based organic compound or a chlorinated organic compound can be used. Further, a conductive plastic in which a part of graphite is substituted with at least one of carbon black and diamond-like carbon may be used. Examples of the polyolefin organic compound include polyethylene, polypropylene, polybutene and the like. Examples of the chlorinated organic compound include vinyl chloride, chlorinated polyethylene, and chlorinated paraffin.
  • the bipolar plate can be manufactured by molding the above material into a plate shape by a known method such as injection molding, press molding, or vacuum molding.
  • a known method such as injection molding, press molding, or vacuum molding.
  • forming the flow path at the same time as forming the bipolar plate is excellent in manufacturing efficiency of the bipolar plate.
  • a bipolar plate without a flow path may be manufactured, and then the surface of the bipolar plate may be cut.
  • the cross-sectional shape of the flow path can be any shape.
  • shapes such as a rectangular shape and a semicircular shape can be mentioned.
  • the rectangular shape and the semicircular shape are expected to be (1) easy to form (easily process) the flow path in the bipolar plate, and (2) low pressure loss of the electrolyte flowing through the flow path.
  • the width per groove is preferably 0.1 mm or more and 10 mm or less.
  • a more preferable width of the flow path is 0.2 mm or more and 2 mm or less, and a more preferable width of the flow path is 0.5 mm or more and 1.5 mm or less.
  • the depth of the groove is preferably 50% to 99% of the thickness of the bipolar plate.
  • (2) The flow rate of the electrolyte flowing through the region on the diaphragm side of the electrode can be increased.
  • a more preferable depth of the channel is 70% or more and 80% or less of the thickness of the bipolar plate.
  • the groove portions having the above-described depth can be formed on both surfaces of the bipolar plate by providing the groove portions at positions that do not overlap when viewed in plan.
  • the flow paths so that the intervals between the plurality of groove portions arranged in parallel (vertical grooves 131b and 132b in FIG. 2) are the same. Furthermore, the interval between the adjacent vertical grooves 131b and 132b in the mesh type opposed comb tooth shape and the interval between the horizontal grooves 132a (131a) facing the edge of the vertical groove 131b (132b) may be the same. preferable. This is because it is expected that the flow of the electrolyte flowing through the electrodes to be uniform across these intervals will be uniform, and the pressure loss can be further reduced.
  • the number of the vertical grooves 131b and 132b and the horizontal grooves 131a and 132a described above can be arbitrarily adjusted. For example, when the total number of the longitudinal grooves 131b and 132b exceeds 10 in the above-described meshing type opposed comb tooth shape, it is expected that the effect of reducing the pressure loss of the electrolyte flowing through the flow path is large.
  • the length of the portion where the vertical groove 131b and the vertical groove 132b mesh is preferably as long as possible. This is because the flow rate of the electrolyte flowing in the main flow direction tends to be more uniform over the entire electrode, and the reduction of the internal resistance of the RF battery 1 can be expected. Moreover, since the pressure loss of electrolyte solution is reduced more, it is excellent by the energy efficiency of RF battery.
  • the length of the portion where the vertical groove 131b and the vertical groove 132b mesh with each other is preferably 80% or more in the height direction (Y direction) of the bipolar plate 121, and is 90% or more. Is more preferable.
  • a vanadium-based electrolytic solution using vanadium ions as active materials can be preferably used as the electrolytic solution.
  • a manganese (Mn 2+ / Mn 3+ ) -titanium (Ti 4+ / Ti 3+ ) -based electrolyte using manganese (Mn) ions for the anode and titanium (Ti) ions for the negative electrode electrolyte can be suitably used.
  • RF battery including a bipolar plate having meshed opposed comb-shaped flow paths different from those in the first embodiment in which horizontal grooves are arranged in the vertical direction
  • the RF battery of the second embodiment has the same configuration as that of the first embodiment except for the configuration of the bipolar plate and the arrangement direction of the anisotropic electrodes, these differences will be described, and description of other configurations will be omitted. The same applies to other embodiments described later.
  • the mesh type opposed comb-tooth shape in the present embodiment is such that the introduction path (discharge path) is provided on the left side (right side) of the bipolar plate, and the vertical groove extends in the height direction (Y direction). And a plurality of lateral grooves extending in the right direction (left direction).
  • the main flow of the electrode is across the region facing the collar portion located between the lateral grooves of the bipolar plate. Therefore, the main distribution direction is the Y direction in FIG. Therefore, the anisotropic electrode ⁇ is arranged so that the direction A1 is parallel to the Y direction. Thereby, the dispersion
  • Embodiment 3 an RF battery including a bipolar plate having non-meshing opposed comb-shaped channels shown in FIG. 4 will be described.
  • the non-meshing opposing comb tooth shape is a shape in which the introduction path 131 and the discharge path 132 do not mesh with each other.
  • the introduction path 131 and the discharge path 132 have a point-symmetric shape, and one vertical groove 131b (132b) provided on the right side (left side) of the bipolar plate 121 and the left side from the vertical groove 131b (132b).
  • the shape includes a plurality of lateral grooves 131a (132a) extending to the right side.
  • the main distribution direction is the Y direction in FIG. Therefore, the anisotropic electrode ⁇ is arranged so that the direction A1 is parallel to the Y direction. Thereby, the dispersion
  • the introduction path 131 may have a shape including a plurality of vertical grooves 131b (132b) and a single horizontal groove 131a (132a) on which the plurality of vertical grooves 131b (132b) stand. Good.
  • This shape is a shape in which the introduction path 131 and the discharge path 132 do not mesh with each other in the meshing type opposed comb tooth shape shown in FIG.
  • the anisotropic electrode ⁇ is disposed so that the direction A1 is parallel to the X direction.
  • the series of meandering shapes is a series of flow paths from the introduction port to the discharge port, and includes a plurality of long groove portions 135b arranged in parallel in the width direction (X direction) of the bipolar plate 121 so as to be adjacent to each other, and a plurality of long groove portions 135b.
  • the shape includes a plurality of short groove portions 135a that alternately connect one end or the other end.
  • a flow from the long groove portion 135b on the inlet side to the long groove portion 135b on the discharge port side adjacent to the long groove portion 135b becomes the mainstream (see the broken line arrow in FIG. 5). That is, the direction in which the long groove portions 135b are arranged in parallel (X direction) is the main distribution direction. Therefore, the anisotropic electrode ⁇ is arranged so that the direction A1 is parallel to the X direction.
  • the meandering shape is such that a plurality of long groove portions 135b arranged in parallel in the height direction of the bipolar plate 121 so as to be adjacent to each other (the Y direction in FIG. 5) and one end or the other end of the plurality of long groove portions 135b are alternately arranged. It is good also as a shape provided with the several short groove part 135a to connect.
  • the direction in which the plurality of long groove portions 135b arranged in parallel (the Y direction in FIG. 5) is the main distribution direction. Therefore, the anisotropic electrode ⁇ is arranged so that the direction A1 is parallel to the Y direction.
  • the RF battery of this embodiment described above has the following effects. (1) By setting it as a series of flow paths, the flow of the electrolyte solution which flows through a flow path becomes smooth, and the pressure loss of electrolyte solution can be reduced.
  • an RF battery including a bipolar plate having a series of grid-shaped channels shown in FIG. 6 will be described.
  • a vertical grid shape is used.
  • the vertical grid shape is a shape including a plurality of vertical grooves 130b extending in the height direction of the bipolar plate 121 and a pair of horizontal grooves 130a provided to connect the upper and lower ends of the vertical grooves 130b in series.
  • the direction in which the plurality of vertical grooves 130b arranged in parallel (X direction) is the main distribution direction. Therefore, the anisotropic electrode ⁇ is arranged so that the direction A1 is parallel to the X direction. Thereby, the dispersion
  • the horizontal grid shape includes a plurality of horizontal grooves arranged in parallel in the height direction (Y direction) of the bipolar plate, and a pair of vertical grooves provided on the left and right so as to connect the horizontal grooves in series.
  • the direction in which the plurality of lateral grooves are arranged in parallel (Y direction) is the main distribution direction. Therefore, the anisotropic electrode ⁇ is arranged so that the direction A1 is parallel to the Y direction. Thereby, the dispersion
  • an RF battery including a bipolar plate having an intermittent channel shown in FIG. 7 will be described.
  • the longitudinal grooves 131b (132b) constituting the meshing type opposing comb tooth shape shown in FIG. 2 have an intermittent shape formed intermittently (discontinuously).
  • the electrolyte solution passes through the electrodes 104 and 105 so that the electrolyte crosses not only the flange portion in the width direction but also the flange portion between the groove portions (vertical grooves 131b (132b)) adjacent in the height direction. Therefore, it is expected that the amount of reaction current increases (see the broken line arrow in FIG. 7).
  • the lateral groove 131a may be formed intermittently, or only a part of the flow path 130 may be formed intermittently.
  • each embodiment illustrated above may form at least one part intermittently.
  • the main distribution direction is the X direction in FIG. Therefore, the anisotropic electrode ⁇ is arranged so that the direction A1 is parallel to the X direction. Thereby, the dispersion
  • an RF battery including a laminated electrode having an anisotropic electrode layer ⁇ 1 will be described.
  • the RF battery of the seventh embodiment has a configuration in which the single-layer electrode used in the first to sixth embodiments is a laminated electrode. Other than that, since it has the same configuration as each of the embodiments described above, only the laminated electrode will be described, and description of the other configuration will be omitted.
  • the laminated electrode (1) two or more anisotropic electrode layers having different degrees of anisotropy are laminated, and (2) one or more anisotropic electrode layers ⁇ 1 and one or more isotropic electrodes. And (3) one or more anisotropic electrode layers ⁇ 1 and one or more base material layers made of a material through which the electrolyte solution circulates but does not cause a battery reaction. It is done.
  • the transmittance of the anisotropic electrode layer ⁇ 1 can be measured by peeling and separating the electrode layer and the base material layer forming the laminated electrode from each other.
  • the transmittance K1 is 1.5 times or more and 100 times or less of the transmittance K2, although it depends on the size of the transmittance and the thickness of each anisotropic electrode layer. Further, it is considered that the direction A1 should be defined based on an anisotropic electrode layer that is 3 to 50 times, particularly 9 to 30 times. As described above, when the anisotropy is within the above range, the electrolytic solution can easily flow through the electrode uniformly at a flow rate suitable for the operation of the RF battery in the electrode, or the electrolytic solution can flow in the main flow direction. This is because it is expected to easily reduce the location where the liquid stays in the electrode.
  • an anisotropic electrode layer having anisotropy within the above range is preferably located on the diaphragm 101 side.
  • the anisotropic electrode layer ⁇ 1 may be disposed so as to be located on the diaphragm 101 side. preferable. The same applies to the case where a laminated electrode in which the anisotropic electrode layer ⁇ 1 and the base material layer are laminated is used.
  • Test Example 1 the characteristics of the RF battery of this embodiment were examined by simulation.
  • a model 1 including a bipolar plate including meshing opposed comb-shaped channels shown in FIG. 2 was constructed using simulation analysis software (ANSYS Fluent, manufactured by Ansys Japan Co., Ltd.).
  • Model 1 is an RF battery having a single cell structure including one positive cell and one negative cell. At this time, anisotropic electrodes having the same configuration were set as the positive electrode and the negative electrode.
  • the electrolyte is introduced from the lower part of the bipolar plate and discharged from the upper part.
  • the vertical direction is the height (Y direction)
  • the horizontal direction is the width (X direction)
  • the direction orthogonal to the X direction and the Y direction is the thickness (Z direction). Therefore, in the model 1, the anisotropic electrode is arranged so that the direction A1 (direction in which the transmittance is large) is parallel to the X direction.
  • a model 2 having the same configuration as the model 1 was constructed except that an isotropic electrode was used.
  • the flow rate of the electrolyte is various
  • XY speed ratio the flow rate distribution of the electrolyte in the electrodes in the X and Y directions
  • FIGS. 8 to 13 show the distribution of flow velocity in the X direction in each test example.
  • the X direction flow velocity, the Y direction flow velocity, and the XY velocity ratio in Table 1 indicate values at the center of the electrode where the velocity in the X direction is the slowest. 8 to 13, the X-direction flow velocity is represented by the shading shown in the charts shown in the respective drawings. Here, it shows that the flow rate in the right direction is faster as the density becomes lighter, and that the flow rate in the left direction is faster as the density becomes darker. A specific value of the flow velocity is indicated by a numerical value written on the chart. A positive value indicates the rightward flow velocity, and the rightward flow velocity increases as the value increases. A negative value indicates the leftward flow velocity, and the smaller the value, the faster the leftward flow velocity. Moreover, in each figure, the vertically striped portion (region) with clear shading is a region in which the electrolyte solution circulates at a flow rate suitable for the operation of the RF battery in the main distribution direction (X direction).
  • the direction A1 is the main flow direction at any flow rate. It can be seen from Table 1 that the model 1 arranged so as to be parallel to the X direction has a larger XY speed ratio than the model 2 using the isotropic electrode. Further, when comparing the flow velocity distribution in the main flow direction (X direction) when the flow rates are equal, for example, in Test Example 1-2 (Model 2), the lightness and density formed so as to spread in the vertical direction from the center of the electrode The ratio of the vertically striped region is large (see FIG. 9).
  • This region is a region where the flow rate is slower than the flow rate suitable for the operation of the RF battery. If there are many such regions, it can be said that there is a large variation in the flow rate because the region in which the electrolyte solution flows at a flow rate suitable for the operation of the RF battery decreases. If there is variation in the flow rate of the electrolyte flowing in the main flow direction, the battery reaction is not uniformly performed in the entire electrode, and the internal resistance may increase. On the other hand, in Test Example 1-1 (Model 1), as compared with Test Example 1-2, the region where the flow velocity is low is reduced, and the region of the vertical stripes with clear shading extending from the top and bottom of the electrode toward the center is large. (Refer to FIG. 8 and FIG. 9 for comparison).
  • This region is a region of a flow rate suitable for the operation of the RF battery.
  • the direction A1 of the anisotropic electrode in parallel with the main flow direction (X direction)
  • the vertical stripe region with clear shading increases, and the flow rate suitable for the operation of the RF battery is increased. It can be seen that the area where the electrolyte solution is distributed widens.
  • Test Example 1-2 portions where vertical stripes are interrupted are seen at the left and right ends of the center of the electrode at the left and right ends of the center of the electrode (see FIG. 9). This is because the electrolyte that flows to the right at the left end and to the left at the right end normally flows in the opposite direction or stays without flowing in either the left or right direction. Conceivable. That is, the flow of the electrolyte solution in the left-right direction is disturbed, or there are places where the flow velocity is remarkably low. From this point, it can be said that the variation in the flow velocity within the electrode occurs. On the other hand, in Test Example 1-1, there is no such part (see FIG. 8). The same can be said when the flow rates are different (Test Example 1-4 (FIG. 11) and Test Example 1-3 (FIG. 10), Test Example 1-6 (FIG. 13) and Test Comparison with Example 1-5 (FIG. 12)).
  • the direction A1 of the anisotropic electrode in parallel with the main flow direction (X direction), the region in which the electrolyte is flowing at a flow rate suitable for the operation of the RF battery is expanded, It is easy to reduce the location where the electrolyte flowing in the main flow direction stays in the electrode. Thereby, it is considered that the variation in flow velocity is reduced and the internal resistance is reduced.
  • Test Example 2 In Test Example 2, the correspondence between the main flow direction and the anisotropic electrode was examined. First, a model 3 was constructed in which the configuration of the electrode and the flow rate of the electrolytic solution were different from the model 1 of Test Example 1, respectively. X in the case where the transmittance Kx in the direction parallel to the main flow direction (X direction) of the electrolytic solution is set to a constant value and the transmittance Ky in the direction orthogonal to the main flow direction on the plane of the electrode is set to various values. Directional flow rate, Y-direction flow rate, and XY speed ratio were examined.
  • Test Example 2-6 is an isotropic electrode.
  • Table 2 shows the test results
  • FIGS. 14 to 21 show the flow velocity distribution in the X direction in each Test Example.
  • the XY speed ratio and the charts shown in each figure are the same as in Test Example 1.
  • Test Example 3 a charge / discharge test was performed using a small RF battery having a single cell structure, and the internal resistance was examined.
  • This small RF battery also includes a bipolar plate having meshed opposed comb-shaped channels shown in FIG. 2, and the same electrode was used for the positive electrode and the negative electrode.
  • the electrolytic solution is introduced from the lower part of the bipolar plate and discharged from the upper part. Therefore, the vertical direction is the height (Y direction), the horizontal direction is the width (X direction), and the direction orthogonal to the X direction and the Y direction is the thickness (Z direction).
  • Electrode Type: Carbon electrode (SGL Carbon Japan, GDL10AA) Height: 3.1 (cm), Width: 2.9 (cm), Thickness: 0.02 (cm) ⁇ Electrolyte> Sulfuric acid V aqueous solution (V concentration: 1.7 mol / L, sulfuric acid concentration: 3.4 mol / L) Charge state: 50% ⁇ Electrolyte flow rate, etc.> Inlet flow rate: 0.31 (ml / min / cm 2 ) Outlet flow rate: Free outflow ⁇ Dipolar plate ⁇ Height (Y direction): 3.1 (cm), Width (X direction): 2.9 (cm) [Flow path] Groove shape: mating type opposed comb tooth shape Number of longitudinal grooves: 8 introduction paths x 7 discharge paths Vertical groove length: 2.6 (cm) Groove width: 0.1 (cm) Groove depth: 0.1 (cm) Vertical groove interval: 0.1 (cm) Groove cross-sectional shape
  • Example 3-1 in which the direction A1 of the anisotropic electrode is arranged in parallel to the X direction which is the main flow direction, the direction A1 is orthogonal to the main flow direction (X direction).
  • the internal resistance is smaller than that of Test Example 3-2 arranged as described above. This is because, as shown in Test Example 1 and Test Example 2 described above, in Test Example 3-1, the direction A1 of the anisotropic electrode and the main flow direction (X direction) are arranged in parallel. This is considered to be due to the reduced variation in the flow rate of the electrolyte flowing in the main flow direction in the electrode.
  • the pressure loss measurement system 600 includes a measurement cell 610, a fluid tank 620, a pump 640, a flow meter 650, a differential pressure meter 660, and a pipe 630 that connects these devices.
  • the measurement cell 610 houses an electrode (electrode layer) for which the transmittance K is desired.
  • the fluid tank 620 stores a fluid 622 (water or the like) introduced into the electrode.
  • the pump 640 pumps the fluid 622 to each device via the pipe 630, and the flow meter 650 measures the flow rate of the fluid on the pump outlet side.
  • the differential pressure gauge 660 is connected to the measurement cell 610 in parallel by a pipe 630 and measures the pressure loss ⁇ P.
  • the measurement cell 610 includes a storage portion (not shown) for storing electrodes, and a spacer (not shown) for securing the electrode thickness d to 0.2 to 0.5 mm is disposed in the storage portion. .
  • the flow meter 650 and the differential pressure meter 660 are attached to the pipe 630.
  • a one-dot chain line arrow in FIG. 22 indicates a direction in which the fluid 622 is circulated.
  • An electrode having a height h of 100 mm and a width d of 50 mm is pushed into the measuring cell 610 into the storage part.
  • a fluid 622 water, where viscosity ⁇ is a constant
  • a fluid 622 is introduced into the electrode layer from its side surface (surface having a cross-sectional area wd) and is distributed in the height direction.
  • the pressure loss ⁇ P when the flow rate Q is changed to various values by adjusting the pump 640 is measured by the differential pressure gauge 660, respectively.
  • the flow rate Q is plotted on the horizontal axis and the pressure loss ⁇ P is plotted on the vertical axis.
  • K is the permeability (m 2 )
  • ⁇ P is the pressure loss (Pa)
  • Q is the flow rate of the fluid introduced to the electrode (m 3 / s)
  • is the flow.
  • V is the height (m) of the electrode
  • w is the width (m) of the electrode ⁇
  • d is the thickness of the electrode compressed in the cell stack 200 ( m) respectively. Since the transmittance K is a value specific to the electrode layer regardless of the type of fluid, as described above, it is a constant that can be measured using a fluid having a known viscosity such as water.
  • the redox flow battery of the present invention has a large capacity for the purpose of stabilizing fluctuations in power generation output, storing power when surplus generated power, load leveling, etc., for power generation of natural energy such as solar power generation and wind power generation. It can utilize suitably for this storage battery.
  • the redox flow battery of the present invention can be suitably used as a large-capacity storage battery that is attached to a general power plant, a large commercial facility, etc., for the purpose of power supply reduction and load reduction. it can.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

内部抵抗が低減されたレドックスフロー電池を提供する。隔膜と、双極板と、前記隔膜および前記双極板の間に配置される電極と、前記電極に電解液を供給する導入口と、前記電極から前記電解液を排出する排出口とを備え、前記電解液を前記電極に流通させて充放電反応を行うレドックスフロー電池であって、前記電極が、この電極の平面における方向A1と、前記方向A1と前記電極の平面において直交する方向A2とで透過率が異なる異方性電極層を備え、前記異方性電極層は、前記方向A1の透過率K1が前記方向A2の透過率K2よりも大きく、前記導入口と前記排出口との位置関係、および前記双極板の前記電極側の面の形状に基づいて定まる前記電極内での前記電解液の主たる流通方向と前記方向A1とが実質的に並行するように配置されるレドックスフロー電池。

Description

レドックスフロー電池
 本発明は、レドックスフロー電池に関する。特に、電解液流通型のレドックスフロー電池において、内部抵抗が低減されたレドックスフロー電池に関する。
 レドックスフロー電池(以下、RF電池という)は、正極用電解液に含まれるイオンと負極用電解液に含まれるイオンとの酸化還元電位の差を利用して充放電を行う電池である。図23に示すように、RF電池1は、水素イオン(プロトン)を透過させる隔膜101で正極セル102と負極セル103とに分離された電池セル100を備える。正極セル102には正極電極104が内蔵され、かつ正極用電解液を貯留する正極電解液用タンク106が導管108,110を介して接続されている。同様に、負極セル103には負極電極105が内蔵され、かつ負極用電解液を貯留する負極電解液用タンク107が導管109,111を介して接続されている。各タンク106,107に貯留される電解液は、充放電の際にポンプ112,113により各極セル102,103内に循環される。
 上記電池セル100は通常、図24の下図に示すように、セルスタック200と呼ばれる構造体の内部に形成される。セルスタック200は、図24の上図に示すように、額縁状の枠体122に一体化された双極板121を備えるセルフレーム120、正極電極104、隔膜101、および負極電極105を、この順番で積層した構成を備える。この構成では、隣接する各セルフレーム120の双極板121の間に一つの電池セル100が形成されることになる。
 セルスタック200における電池セル100への電解液の流通は、枠体122に形成される給液用マニホールド123,124と、排液用マニホールド125,126により行われる。正極用電解液は、給液用マニホールド123から枠体122の一面側(紙面表側)に形成される溝を介して双極板121の一面側に配置される正極電極104に供給される。そして、その正極用電解液は、枠体122の上部に形成される溝を介して排液用マニホールド125に排出される。同様に、負極用電解液は、給液用マニホールド124から枠体122の他面側(紙面裏側)に形成される溝を介して双極板121の他面側に配置される負極電極105に供給される。その負極用電解液は、枠体122の上部に形成される溝を介して排液用マニホールド126に排出される。
 電池セル100を構成する各電極104,105は、流体である電解液の流通が給液側から排液側に向かう電解液の流通を阻害しないように多孔質の導電材で構成されることが多い。例えばカーボンフェルトなどが利用される(例えば、特許文献1)。
特開2002-367659号公報
 RF電池の充放電反応は、電解液をカーボンフェルトなどの電極に流通させて行われる。その際、電解液の流通状態、例えば、電極における電解液の流通の均一性などはRF電池の内部抵抗に影響を及ぼす。しかし、従来のRF電池においては、電極での電解液の流通状態を十分に考慮した上で内部抵抗を低減することについては、必ずしも十分な検討がなされているとは言えなかった。
 したがって、本発明の目的の一つは、内部抵抗が低減されたレドックスフロー電池を提供することにある。
 本発明のレドックスフロー電池は、隔膜と、双極板と、前記隔膜および前記双極板の間に配置される電極と、前記電極に電解液を供給する導入口と、前記電極から前記電解液を排出する排出口とを備え、前記電解液を前記電極に流通させて充放電反応を行う。前記電極は、この電極の平面における方向A1と、前記方向A1と前記電極の平面において直交する方向A2とで透過率が異なる異方性電極層を備える。前記異方性電極層は、前記方向A1の透過率K1が前記方向A2の透過率K2よりも大きく、前記導入口と前記排出口との位置関係、および前記双極板の前記電極側の面の形状に基づいて定まる前記電極内での前記電解液の主たる流通方向と前記方向A1とが実質的に並行するように配置される。
 本発明のRF電池によれば、内部抵抗が低減されたRF電池とすることができる。
実施形態1に係るRF電池が備える電極の一形態を表す概略側面図である。 実施形態1に係るRF電池が備える双極板に設けられた噛合型の対向櫛歯形状の流路を表す概略正面図である。 実施形態1に係るRF電池が備える双極板に設けられた噛合型の対向櫛歯形状の流路における電解液の流れを表す概略断面図である。 実施形態3に係るRF電池が備える双極板に設けられた非噛合型の対向櫛歯形状の流路を表す概略正面図である。 実施形態4に係るRF電池が備える双極板に設けられた一連の蛇行形状の流路を表す概略正面図である。 実施形態5に係るRF電池が備える双極板に設けられた一連のグリッド形状の流路を表す概略正面図である。 実施形態6に係るRF電池が備える双極板に設けられた断続形状の流路を表す概略正面図である。 試験例1-1における主たる流通方向(X方向)の流速分布を示す概略図である。 試験例1-2における主たる流通方向(X方向)の流速分布を示す概略図である。 試験例1-3における主たる流通方向(X方向)の流速分布を示す概略図である。 試験例1-4における主たる流通方向(X方向)の流速分布を示す概略図である。 試験例1-5における主たる流通方向(X方向)の流速分布を示す概略図である。 試験例1-6における主たる流通方向(X方向)の流速分布を示す概略図である。 試験例2-1における主たる流通方向(X方向)の流速分布を示す概略図である。 試験例2-2における主たる流通方向(X方向)の流速分布を示す概略図である。 試験例2-3における主たる流通方向(X方向)の流速分布を示す概略図である。 試験例2-4における主たる流通方向(X方向)の流速分布を示す概略図である。 試験例2-5における主たる流通方向(X方向)の流速分布を示す概略図である。 試験例2-6における主たる流通方向(X方向)の流速分布を示す概略図である。 試験例2-7における主たる流通方向(X方向)の流速分布を示す概略図である。 試験例2-8における主たる流通方向(X方向)の流速分布を示す概略図である。 透過率の測定に使用する圧力損失測定システムの概略構成図である。 RF電池の概略原理図である。 RF電池が備えるセルスタックの概略構成図である。
[本発明の実施形態の説明]
 本発明者らは、RF電池の内部抵抗を低減するために、種々の検討を行った。この検討の過程で、同一の構成を備える複数のRF電池を同一の条件で運転したにもかかわらず、内部抵抗が高いRF電池と低いRF電池があることが判明した。本発明者らは、この内部抵抗の異なるRF電池についてさらなる検討を重ねたところ、次の知見を得た。
(A)電極には、電解液を流通させる方向によって電解液の流れやすさ(透過率)が異なるもの(以下、異方性電極という)がある。
(B)この異方性電極の特定方向を電極内での電解液の主たる流通方向(詳細は後述)に合わせたRF電池は、そうでないRF電池に比べて内部抵抗を低減できる。
 本発明は、これらの知見に基づきなされたものである。以下に本発明の実施形態の内容を列記して説明する。
(1)実施形態に係るRF電池は、隔膜と、双極板と、前記隔膜および前記双極板の間に配置される電極と、前記電極に電解液を供給する導入口と、前記電極から前記電解液を排出する排出口とを備え、前記電解液を前記電極に流通させて充放電反応を行う。前記電極は、この電極の平面における方向A1と、前記方向A1と前記電極の平面において直交する方向A2とで透過率が異なる異方性電極層を備える。前記異方性電極層は、前記方向A1の透過率K1が前記方向A2の透過率K2よりも大きい。前記電極は、前記導入口と前記排出口との位置関係、および前記双極板の前記電極側の面の形状に基づいて定まる前記電極内での前記電解液の主たる流通方向と前記方向A1とが実質的に並行するように配置される。
 RF電池においては、電極内での電解液の主たる流通方向が存在する。そして、主たる流通方向に流通する電解液が充放電反応(以下、電池反応という場合がある)に主として関与する。本実施形態のRF電池は、上記構成を備えることで、電解液が電極内を主たる流通方向へRF電池の運転に適した流速で流通する箇所を増加したり、主たる流通方向へ流通する電解液が電極内で滞留する箇所を低減したりしやすい。それに伴い、電極内での主たる流通方向の流速のばらつきが低減されやすい。以上より、電極の広範囲で電池反応が均一に行われやすいので、内部抵抗が低減されたRF電池とすることができる。
(2)実施形態のRF電池として、前記透過率K1が前記透過率K2の1.5倍以上100倍以下である形態が挙げられる。
 透過率K1が透過率K2の1.5倍以上であることで、異方性電極層の異方性が顕著であるといえ、異方性を備えない電極(以下、等方性電極という)を用いた場合よりも電解液が電極内を主たる流通方向へRF電池の運転に適した流速で流通する箇所が増加しやすい。また、透過率K1が透過率K2の100倍以下であることで、主たる流通方向へ流通する電解液が電極内で滞留する箇所を低減しやすい。以上より、本実施形態のRF電池は、電極の広範囲で電池反応が均一に行われやすいので、内部抵抗がより低減されたRF電池とすることができる。さらに、透過率K1が透過率K2の1.5倍以上100倍以下であることで、電解液を電極内へ導入させやすく、電解液の圧力損失を小さくすることができると期待される。
(3)実施形態のRF電池として、前記双極板が、前記電極側の面に前記電解液が流通する流路を備える形態が挙げられる。前記流路は、互いに並列する複数の溝部を有する。前記主たる流通方向は、前記複数の溝部の並列方向である。
 双極板が互いに並列する複数の溝部を有する流路を備えることで、電解液を流路に沿って電極の平面の広範囲に低圧損にて供給しやすい。また、互いに並列する複数の溝部同士の間で電極を介した主たる流通方向への電解液の流通を生じさせやすい。よって、電極内で十分に電池反応が行われると期待されるので、反応電流量が増加しやすく、ひいては内部抵抗をより低減できると期待される。以上より、本実施形態のRF電池は、RF電池全体としてのエネルギー効率に優れる。
(4)上記(3)の実施形態のRF電池として、前記流路が、前記導入口と繋がる導入路と、前記排出口と繋がる排出路とを備える形態が挙げられる。前記導入路および前記排出路は、前記複数の溝部をそれぞれ有する。前記導入路と前記排出路とは連通しておらず独立している。
 導入路と排出路とが連通しておらず独立していることで、電池反応にほとんど関与することなく導入口から排出口へ直通する電解液を減少させ、導入路と排出路との間で電極を介した電解液の流通を生じさせやすい。よって、電極内を主たる流通方向へ流れる電解液の量を増加させやすく、反応電流量が増加しやすいので、内部抵抗が低減されると期待される。以上より、本実施形態のRF電池は、RF電池全体としてのエネルギー効率に優れる。
(5)上記(4)の実施形態のRF電池として、前記導入路および前記排出路が櫛歯形状の溝部を備え、前記導入路と前記排出路とは、それぞれの櫛歯が互いに噛み合って対向するように配置される形態が挙げられる。
 流路が互いに噛み合って対向するように配置される櫛歯を備えることで、導入路と排出路との間、特に隣り合う櫛歯同士の間で電極を介した電解液の主たる流通方向への流通を生じさせやすい。また、櫛歯の数や形成領域などによっては、電極の広範囲に電解液を均一に行き渡らせやすいので、電極の広範囲の領域から電極内に電解液が導入され、均一な電池反応が行われると期待される。したがって、反応電流量が増加しやすく、ひいては内部抵抗を低減できると期待される。以上より、本実施形態のRF電池は、RF電池全体としてのエネルギー効率に優れる。
(6)上記(3)の実施形態のRF電池として、前記流路は、前記導入口から前記排出口まで一連の蛇行形状であり、互いに隣り合うように並列する複数の長溝部と、前記複数の長溝部の一端同士または他端同士を交互に繋ぐ複数の短溝部とを備える形態が挙げられる。前記主たる流通方向は、前記複数の長溝部の並列方向である。
 導入口から排出口まで一連の流路とすることで、流路を流れる電解液の流れがスムーズになり、電解液の圧力損失を低減することができる。一方で、このような一連の流路でありながら蛇行形状とすることで、隣り合う長溝部同士の間で電極を介した電解液の流通を生じさせやすい。また、長溝部の数や形成領域などによっては、電極の広範囲に電解液を均一に行き渡らせやすいので、電極の広範囲の領域から電極内に電解液が導入され、均一な電池反応が行われると期待される。以上より、本実施形態のRF電池は全体としてのエネルギー効率に優れる。
(7)上記(1)または(2)の実施形態のRF電池として、前記双極板の前記電極側の面の形状が平面状である形態が挙げられる。前記主たる流通方向は、前記導入口側から前記排出口側である。
 双極板の電極側の面が溝部を備えない平面状であっても、方向A1と主たる流通方向とを実質的に並列させることで、この方向の対応がなされていない異方性電極層を用いたRF電池や、等方性電極を用いたRF電池よりも、上述した主たる流通方向の流速のばらつきが低減されやすい。よって、電極の広範囲にわたって電池反応が均一に行われやすく、内部抵抗が低減されたRF電池とすることができる。
[本発明の実施形態の詳細]
 以下、図面を参照して、実施形態のRF電池について説明する。各図において同一符号は、同一名称物を示す。本発明はこれらの実施形態に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
<実施形態1>
 (RF電池の概要)
 実施形態1では、電極の平面における縦方向と横方向とで電解液の流れやすさが異なる異方性電極を用い、この異方性電極の電解液の流れやすい方向を電解液の主たる流通方向に並列させたRF電池を説明する。主たる流通方向とは、詳細は後述するが、代表的には各極セルの平面における上方向である。但し、双極板に複数の溝部が並列されている場合、その並列方向、例えば左右方向(幅方向)である。このRF電池は、図23、図24を参照して説明した従来のRF電池と共通する基本構成を備えるため、以下の説明は相違点に関連する電極および双極板を中心に行う。基本構成に関わる点については図23、図24を参照する。
 (電極)
 電極は電解液が流通することで電池反応を行うための導電性の部材である。通常、電解液との接触面積を確保するため、多孔質材料が用いられる。図1を用いて、本実施形態のRF電池が備える各電極104,105に用いられる異方性電極αを説明する。図1では、図面の左右方向を幅、図面の上下方向を高さ、図面の手前から奥へ向かう方向を厚さとする。異方性電極αは、電極の平面において、互いに直交する2方向における透過率が異なる異方性電極層α1を備える。図1では異方性電極層α1のみから構成される単層構造の異方性電極αを示している。
 電極の異方性の決定は、電極における互いに直交する2方向の透過率Kを測定し、高い透過率K1を示す方向をA1方向、低い透過率K2を示す方向をA2方向とする。もっとも、複数の方向およびこの複数の各方向に直交する方向からなる複数対の方向について透過率Kを測定することが望ましい。透過率を測定する方向によっては、異方性の度合が異なる場合も想定されるからである。その場合、最も透過率の高い方向をA1方向、それに直交する方向をA2方向とすればよい。この異方性の決定手法は、円形の電極などの場合に特に有効と考えられる。矩形の電極の場合、通常、高さ方向と幅方向の一方がA1方向、他方がA2方向となる。
 異方性電極αを用いて各極セル102,103(セルスタック200)を組み立てる際、高い透過率を示すA1方向が、電解液の主たる流通方向に並列するように異方性電極αを配置する。そのため、主たる流通方向が例えば各極セル102,103の幅方向であれば、矩形の異方性電極αの幅方向が透過率の高いA1方向、高さ方向が透過率の低いA2方向となるように異方性電極αを切り出しておく。ここでは、幅方向がA1方向であり、A1方向の透過率K1が高さ方向A2の透過率K2よりも大きい。
 異方性電極層の具体例としては、カーボンフェルトやカーボンペーパー、カーボンクロス等が挙げられる。これらは、初めから異方性を備えるものや、等方性のものに熱処理等を行うことで異方性が備わるものがある。初めから異方性を備えるものとしては、例えば、縦繊維と横繊維の繊維径を異ならせたカーボンクロス等が挙げられる。また、等方性電極層に熱処理を施すことで、異方性電極層とできる場合や、異方性電極層に対して熱処理等を行うことで、さらに異方性が顕著になる場合もある。熱処理を行うことで異方性を付与したり異方性を顕著にしたりする場合には、熱処理条件を調整することで異方性の度合を調整することができる。好ましい熱処理条件としては、大気雰囲気中200℃以上1000℃以下、5分以上120分以下の条件が挙げられる。このような熱処理により、互いに直交する2方向で所定の透過率K1,K2を有する電極を得ることができる。熱処理条件としては、大気雰囲気中300℃以上800℃以下、20分以上100分以下の条件や、大気雰囲気中400℃以上600℃以下、40分以上80分以下の条件等が挙げられる。
 透過率は、電極における電解液の流通しやすさを示す指標であり、その値が高いほど電解液が流れやすいことを示す。透過率K1が透過率K2の何倍であるかを示す透過率K1とK2との比K1/K2は、1.5以上、さらには3以上、特に9以上であることが好ましい。異方性電極層内を流通する電解液の主たる流通方向の流速が、RF電池の運転に適した流速でより均一になりやすいからである。但し、この比率K1/K2は100以下、さらには50以下が好ましい。電極内において、主たる流通方向へ流通する電解液が滞留する箇所が低減されるからである。これにより、RF電池の運転に適した流速で電解液が流通する箇所と電解液が滞留する箇所とが存在することによる電池反応のばらつきを低減でき、RF電池の内部抵抗を低減できると期待される。この比率K1/K2は、30以下、さらには10以下とすることが挙げられる。
 異方性電極層α1の透過率K1は、7.0×10-14以上7.0×10-8以下であることが好ましい。透過率K1が上記の範囲にあることで、主たる流通方向の流速のばらつきが低減されやすく、内部抵抗が低減されたRF電池1とすることができるからである。7.0×10-14以上、さらには7.0×10-13以上、特には7.0×10-12以上とすれば、異方性電極と流路を有する双極板とを組み合わせることで、電解液の圧力損失を低減でき、エネルギー損失を小さくすることができる。一方、7.0×10-8以下、さらには7.0×10-9以下、特には7.0×10-10以下とすることで、主たる流通方向に流れる電解液をRF電池の運転に適した流速で流通させやすいと期待される。
 同様の観点から、透過率K2は、4.7×10-14以上7.0×10-10以下、4.7×10-13以上7.0×10-11以下とすることが挙げられる。また、4.7×10-12以上7.0×10-12以下とすることもできる。
透過率K2は、2.4×10-14以上1.4×10-9以下、2.4×10-13以上1.4×10-10以下、2.4×10-12以上1.4×10-11以下としてもよい。また、7.8×10-15以上2.3×10-9以下、7.8×10-14以上2.3×10-10以下、7.8×10-13以上2.3×10-11以下としてもよく、7.0×10-9以下としてもよい。加えて、透過率K2の下限は、4.65×10-14以上、4.65×10-13以上、または4.65×10-12以上とすることもできる。また、透過率K2の下限は、2.33×10-14以上、2.33×10-13以上、または2.33×10-12以上としてもよい。さらに、7.77×10-15以上2.33×10-9以下、7.77×10-14以上2.33×10-10以下、または7.77×10-13以上2.33×10-11以下としてもよく、7.77×10-9以下としてもよい。
 特に、上記した透過率K1および透過率K2の具体的な範囲でK1/K2を1.5以上100以下とすることが好ましい。上記した各効果がより発揮されやすいと期待されるからである。透過率K1,K2の詳細な測定方法は後述する試験例にて説明する。
 (双極板)
 双極板121は、正負極の各電極104,105に挟まれて各電池セル100を仕切る板であり、電解液は通さない導電性の板から形成される。上述した異方性電極αの透過率K1を示す方向A1は、電極内における電解液の主たる流通方向に並列するよう配置される。この主たる流通方向の決定要因の一つとして、双極板121の電極側の面の形状がある。双極板121の電極側の面は、流路を備える場合と流路を備えない場合とがある。ここでは、図2を参照して、流路130を備える双極板を説明する。図2において、実線矢印は主として双極板121が備える流路130に沿った電極表面での電解液の流れを、破線矢印は電極内での電解液の主たる流通方向を示す。この点は、後述する図3~図7においても同様である。
 流路130は、各電極に流通される電解液の各セル内での流れを調整するために、双極板121の各電極104,105側の面の少なくとも一方の面に設けられる。この流路130は、互いに並列する複数の溝部を有する。ここでは、導入路131と排出路132とがそれぞれ櫛歯形状の溝部を備え、各櫛歯が互いに噛み合って対向するように配置される噛合型の対向櫛歯形状である(図2を参照)。導入路131(排出路132)は、双極板121の下部(上部)に設けられ、幅方向に伸びる一本の横溝131a(132a)と、この横溝から上方向(下方向)に伸びる複数本の縦溝131b(132b)とを備える。
そして、導入路131と排出路132とは、互いに連通することなく独立して配置され、それぞれが備える縦溝131bと縦溝132bとが間隔をあけて並列される。
 (異方性電極と双極板の配置)
 上述した異方性電極αは、高い透過率K1を示す方向A1が、電極内における電解液の主たる流通方向に並列するよう配置される。主たる流通方向は、電極における電池反応に主として関与する電解液の流通方向のことである。電池反応に主として関与する電解液の流通方向は、電解液を電極内に導入する導入口と電極内から電解液を排出する排出口との位置関係、および双極板の電極側の面の形状に基づいて定まる。本実施形態では、図24における給液用マニホールド123(124)および排液用マニホールド125(126)が導入口および排出口に相当する。この導入口および排出口は、図24ではセルフレームの上下に設けているが、左右に設けてもよい。この点は、後述する実施形態2~実施形態7のいずれにおいても同様である。
 主たる流通方向は、双極板の電極側の面が平面である場合、各極セルにおける電解液の導入口の配置された側から排出口の配置された側である。例えば、図24において、導入口123(124)は各極セル(セルフレーム120)の下側、排出口125(126)は各極セル(セルフレーム120)の上側に配置されているため、上側が主たる流通方向となる。この場合、下側から導入された電解液は電極の左右方向に広がるものの上側に向かって優先的に流通し、この流通の過程で電池反応が行われるからである。導入口123(124)と排出口125(126)がセルフレーム120の幅方向にずれている場合であっても、両者のずれは考慮することなく互いの対向方向(図24では上下方向)のみをもって主たる流通方向とする。
 これに対し、双極板の電極側の面が並列する複数の溝部を有する流路を備える場合、主たる流通方向は、導入口と排出口の対向方向に関わらず、原則として溝部の並列方向である。例えば、上述した噛合型の対向櫛歯形状の流路を備える場合、縦溝131b,132bの並列方向が主たる流通方向となる。
 図2、図3を用いて、噛合型の対向櫛歯形状の流路130を備える場合において、電極内での電解液の流通状態を説明する。図3は図2の縦溝131b,132bが並列する箇所の幅方向断面図で、同図の上下方向を厚み(Z方向)、左右方向を幅(X方向)とする。図2に示すように、導入路131から電極内に導入された電解液は、各電極104,105を経て排出路132へ流通する。その際、導入路の縦溝131bと排出路の縦溝132bは、図3の上図に示すように、X方向に交互に並列されている。そのため、図3の拡大図に示すように、縦溝131bから電極に供給された電解液は、異方性電極層α1における縦溝131bと縦溝132bとの間に位置する部分を渡るように流れて、縦溝132bへと排出される。以下、電極において、双極板の流路が備える溝部と溝部に挟まれる部分を総称して畝部という。本実施形態では、(1)各電極104,105における縦溝131bと縦溝132bとの間に位置する部分、(2)横溝131a(132a)と縦溝132b(131b)との間に位置する部分が畝部である。電池反応は、この両縦溝131b,132bの間の畝部を渡るように電解液が流れる際に主に行われるため、この縦溝131b,132bの並列方向(X方向)が主たる流通方向となる(図2および図3中の破線矢印を参照)。
 従って、双極板121の電極側の面が平面である場合、各極セル102,103における電解液の導入口123(124)の配置された側から排出口125(126)の配置された側(図24のセルフレームの上下方向)に電極の方向A1が実質的に並行するように異方性電極αを配置する。双極板121の電極側の面が並列される複数の溝部を有する流路130を備える場合、溝部の並列方向(図2のX方向)に電極の方向A1が実質的に並行するように異方性電極αを配置する。実質的に並行するように配置するとは、主たる流通方向と方向A1とが完全に並行して配置される場合のみならず、主たる流通方向と方向A1とに±30°以下の角度の差がある状態で配置される場合を含む。特に、この角度の差が±10°以下、さらには±5°以下であると電極における主たる流通方向の流速のばらつきを低減できると期待される。このような配置関係を持った異方性電極と双極板を用いて構成したセルスタックは、図23に示すように、交流/直流変換器300や変電設備310を介して、発電部400と負荷500との間に接続される。
 (作用効果)
 以上説明した本実施形態のRF電池は、以下の作用効果を奏する。
 (1)異方性電極の透過率K1が高い方向を主たる流通方向と実質的に並行するように配置することで、電解液が電極内を主たる流通方向へRF電池の運転に適した流速で流通する箇所を増加したり、主たる流通方向へ流通する電解液が電極内で滞留する箇所を低減したりできる。それに伴い、主たる流通方向の流速のばらつきを低減できる。よって、電解液が電極内で広範囲にわたって均一に流通しやすいと言え、内部抵抗が低減されたRF電池とすることができる。
 (2)双極板が複数の溝部を有する流路を備える場合には、電解液を溝部に沿って電極の広範囲に低圧損にて供給しやすく、かつ隣り合う溝部同士の間で電極を介した電解液の流通を生じさせやすい。よって、電極内を主たる流通方向へ流れる電解液の量を増加させやすく、反応電流量を増加させて、ひいては内部抵抗が低減されると期待される。これら低圧損による電解液の供給と、反応電流量の増加に伴い、RF電池全体としてのエネルギー効率を改善できる。
 (RF電池の構成に関する補足)
 実施形態1の主に特徴部分に係る構成や作用効果について説明したが、このRF電池は以下の構成を備えてもよい。
  《電極の厚み》
 異方性電極αの厚み(d)は、セルスタック200の構造、主として異方性電極αの圧縮程度により任意に調整することができる。特に、異方性電極αの厚みが、隔膜101と双極板121との間に配置された状態で1000μm以下であることが好ましい。異方性電極αが薄ければ、RF電池の内部抵抗を低減することができるからである。より好ましい異方性電極αの厚みは500μm以下、さらに好ましくは300μm以下である。但し、電極における電解液の圧力損失を考慮すれば、異方性電極αの厚みは50μm以上、さらには100μm以上が好ましい。異方性電極αが後述する積層電極である場合も、積層電極全体の厚みとして上記の厚みを有することが好ましい。
  《双極板の材質と製造方法》
 双極板の材料には、耐酸性および適度な剛性を有する材料であることがより好ましい。
長期に亘って流路の断面形状や寸法が変化し難く、流路の効果を維持し易いからである。
このような材料としては、例えば、炭素を含有する導電性材料が挙げられる。より具体的には、黒鉛およびポリオレフィン系有機化合物または塩素化有機化合物から形成される導電性プラスチックが挙げられる。また、黒鉛の一部をカーボンブラックおよびダイヤモンドライクカーボンの少なくとも一方に置換した導電性プラスチックでもよい。ポリオレフィン系有機化合物としては、ポリエチレン、ポリプロピレン、ポリブテンなどが挙げられる。塩素化有機化合物としては、塩化ビニル、塩素化ポリエチレン、塩素化パラフィンなどが挙げられる。双極板がこのような材料から形成されることで、双極板の電気抵抗を小さくすることができる上に、耐酸性に優れる。
 双極板は、上記の材料を射出成形、プレス成形、および真空成形等の公知の方法により板状に成形することで製造することができる。流路を備える場合、双極板の成形と同時に流路を成形すると、双極板の製造効率に優れる。他にも、流路を形成していない双極板を製造し、その後、この双極板の表面を切削して形成してもよい。
  《その他の流路の構成》
 流路(溝部)の断面形状は、任意の形状とすることができる。例えば、矩形状や半円状などの形状が挙げられる。矩形状や半円状は、(1)双極板に流路を形成しやすい(加工しやすい)、(2)流路を流通する電解液の圧力損失が少ない、と期待される。
 溝部の一本当たりの幅は、0.1mm以上10mm以下であることが好ましい。(1)電極全体の流速の均一性がより向上する、(2)電極に流通する電解液の流量を増加させることができる、(3)電極が流路(溝部)に落ち込みにくい、(4)流路を流通する電解液の圧力損失をより低減できる、といった効果が期待できるからである。より好ましい流路の幅は、0.2mm以上2mm以下、さらに好ましい流路の幅は、0.5mm以上1.5mm以下である。
 溝部の深さは双極板の厚みの50%以上99%以下であることが好ましい。(1)電極全体の流速の均一性がより向上する、(2)電極の隔膜側の領域に流通する電解液の流量を増加させることができる、(3)電極が流路(溝部)に落ち込みにくい、(4)流路を流通する電解液の圧力損失をより低減できる、(5)流路を備えていても双極板の機械的強度を十分とすることができる、といった効果が期待できるからである。より好ましい流路の深さは、双極板の厚みの70%以上80%以下である。双極板の両面に溝を設ける場合には、平面透視した場合に重ならない位置に溝部を設けることで、上記の深さの溝部を双極板の両面に形成できる。
 流路は、並列される複数の溝部(図2では縦溝131b,132b)の間隔が同一になるように配置することが好ましい。さらに、噛合型の対向櫛歯形状における隣り合う縦溝131b,132bの間隔と、縦溝131b(132b)の端縁と向かい合う横溝132a(131a)との間隔とが同一になるようにすることが好ましい。これらの間隔を渡るように電極を流れる電解液の流通が均一になり、圧力損失をより低減できると期待されるからである。
 上述した縦溝131b,132bや横溝131a,132aの本数は、任意に調整することができる。例えば、上述した噛合型の対向櫛歯形状において縦溝131b,132bの本数が合計で10本を超えると、流路を流通する電解液の圧力損失の低減効果が大きいと期待される。
 噛合型の対向櫛歯形状において、縦溝131bと縦溝132bとが噛み合う部分の長さは、できるだけ長いことが好ましい。主たる流通方向に流れる電解液の流速が電極全体でより均一になりやすく、RF電池1の内部抵抗の低減が期待できるからである。また、電解液の圧力損失がより低減されるので、RF電池のエネルギー効率により優れる。具体的には、縦溝131bと縦溝132bとが噛み合う部分の長さが双極板121の高さ方向(Y方向)の80%以上であることが好ましく、90%以上の長さであることがより好ましい。
  《電解液》
 電解液には、図23に示すように、バナジウムイオンを各極活物質としたバナジウム系電解液が好適に利用できる。その他、正極活物質として鉄(Fe)イオンを、負極活物質としてクロム(Cr)イオンを用いた鉄(Fe2+/Fe3+)-クロム(Cr3+/Cr2+)系電解液や、正極電解液にマンガン(Mn)イオン、負極電解液にチタン(Ti)イオンを用いるマンガン(Mn2+/Mn3+)-チタン(Ti4+/Ti3+)系電解液が好適に利用できる。
<実施形態2>
 実施形態2では、横溝が縦方向に並列された実施形態1とは異なる噛合型の対向櫛歯形状の流路を有する双極板を備えるRF電池について説明する。この実施形態2のRF電池は、双極板の構成と異方性電極の配置方向以外は実施形態1と共通する構成を備えるため、これら相違点について説明し、他の構成の説明は省略する。後述する他の実施形態においても同様である。
 本実施形態における噛合型の対向櫛歯形状は、導入路(排出路)が双極板の左側(右側)に設けられ、高さ方向(Y方向)に伸びる一本の縦溝と、この縦溝から右方向(左方向)に伸びる複数本の横溝とを備える。横溝同士が噛み合う噛合型の対向櫛歯形状の場合、電極においては、双極板の横溝同士の間に位置する畝部に対向する領域を渡るような流れが主流となる。よって、主たる流通方向は図2におけるY方向となる。したがって、異方性電極αは、方向A1がY方向と並行するように配置される。これにより、電極内を流通する電解液の主たる流通方向(Y方向)の流速のばらつきが低減されやすい。
<実施形態3>
 実施形態3では、図4に示す非噛合型の対向櫛歯形状の流路を有する双極板を備えるRF電池について説明する。非噛合型の対向櫛歯形状は、導入路131と排出路132とが、互いに噛み合わない形状である。ここでは、導入路131と排出路132とは点対称な形状であり、双極板121の右側(左側)に設けられる一本の縦溝131b(132b)と、この縦溝131b(132b)から左側(右側)へ伸びる複数本の横溝131a(132a)とを備える形状である。この場合、各電極104,105においては、双極板121の横溝131aと横溝132aとの間に位置する畝部に対向する領域を渡るような流れが主流となる。よって、主たる流通方向は図4におけるY方向となる。したがって、異方性電極αは方向A1がY方向と並行するように配置される。これにより、電解液の主たる流通方向(Y方向)の流速のばらつきが低減されやすい。
 また、導入路131(排出路132)は、複数本の縦溝131b(132b)と、この複数本の縦溝131b(132b)が立脚する一本の横溝131a(132a)とを備える形状としてもよい。この形状は、図2に示す噛合型の対向櫛歯形状において、導入路131と排出路132とが噛み合わない形状としたものである。この場合、縦溝131b(132b)が並行する方向(X方向)が主たる流通方向となるので、異方性電極αは方向A1がX方向と並行するように配置される。
<実施形態4>
 実施形態4では、図5に示す一連の蛇行形状の流路を有する双極板を備えるRF電池について説明する。一連の蛇行形状は、導入口から排出口まで一連の流路であり、互いに隣り合うように双極板121の幅方向(X方向)に並列する複数の長溝部135bと、複数の長溝部135bの一端同士または他端同士を交互に繋ぐ複数の短溝部135aとを備える形状である。この場合、導入口側の長溝部135bからこの長溝部135bに隣り合う排出口側の長溝部135bに渡るような流れが主流となる(図5中の破線矢印を参照)。
すなわち、長溝部135bが並列する方向(X方向)が主たる流通方向となる。したがって、異方性電極αは方向A1がX方向に並行するように配置される。
 蛇行型形状は、互いに隣り合うように双極板121の高さ方向(図5におけるY方向)に並列される複数の長溝部135bと、複数の長溝部135bの一端同士または他端同士を交互に繋ぐ複数の短溝部135aとを備える形状としてもよい。この場合、並列される複数の長溝部135bが並列する方向(図5におけるY方向)が主たる流通方向となる。
したがって、異方性電極αは方向A1がY方向に並行するように配置される。
 (作用効果)
 以上説明した本実施形態のRF電池は、以下の作用効果を奏する。
(1)一連の流路とすることで、流路を流れる電解液の流れがスムーズになり、電解液の圧力損失を低減することができる。
(2)一連の流路でありながら蛇行形状とすることで、隣り合う長溝部同士の間で異方性電極を介した電解液の流通を生じさせやすい。よって、反応電流量が増加し、ひいては内部抵抗が低減されると期待される。
(3)長溝部の数や形成領域によっては、異方性電極の平面に広範囲に電解液を均一に行き渡らせやすい。よって、異方性電極の平面の広範囲の領域から電極内に電解液が導入されるので均一な電池反応が行われると期待される。
<実施形態5>
 実施形態5では、図6に示す一連のグリッド形状の流路を有する双極板を備えるRF電池について説明する。本実施形態では、縦グリッド形状としている。縦グリッド形状は、双極板121の高さ方向に伸びる複数の縦溝130bと、これら縦溝130bの上下端を一連に繋ぐように設けられる一対の横溝130aとを備える形状である。この場合、並列される複数の縦溝130bが並列する方向(X方向)が主たる流通方向となる。したがって、異方性電極αは方向A1がX方向に並行するように配置される。これにより、電解液の主たる流通方向(X方向)の流速のばらつきが低減されやすい。
 他のグリッド形状としては、横グリッド形状が挙げられる。横グリッド形状は、双極板の高さ方向(Y方向)に並列される複数の横溝と、これら横溝を一連に繋ぐように左右に設けられる一対の縦溝とを備える。この場合、複数の横溝が並列する方向(Y方向)が主たる流通方向となる。したがって、異方性電極αは方向A1がY方向に並行するように配置される。これにより、電解液の主たる流通方向(Y方向)の流速のばらつきが低減されやすい。
<実施形態6>
 実施形態6では、図7に示す断続形状の流路を有する双極板を備えるRF電池について説明する。本実施形態では、図2に示した噛合型の対向櫛歯形状を構成する縦溝131b(132b)を、断続的に(非連続に)形成した断続形状としている。このようにすることで、電解液が幅方向の畝部だけでなく、高さ方向に隣り合う溝部(縦溝131b(132b))の間の畝部を渡るように各電極104,105を介して流通しやすくなるので(図7中の破線矢印を参照)、反応電流量が増加することが期待される。よって、RF電池の電流量が増加し、ひいてはRF電池の内部抵抗を低減することができると期待される。
もちろん、横溝131a(132a)を断続的に形成してもよいし、流路130の一部のみを断続形状としてもよい。また、上記に例示した各実施形態は、その少なくとも一部を断続的に形成してもよい。
 本実施形態でも、各電極104,105においては、双極板121の縦溝131bと横溝132bとの間に位置する畝部に対向する領域を渡るような流れが主流となる。よって、主たる流通方向は図7におけるX方向となる。したがって、異方性電極αは方向A1がX方向と並行するように配置される。これにより、電解液の主たる流通方向(X方向)の流速のばらつきが低減されやすい。
<実施形態7> 
 実施形態7では、異方性電極層α1を有する積層電極を備えるRF電池について説明する。この実施形態7のRF電池は、上記の実施形態1~6において用いた単層電極を積層電極とした形態である。それ以外は上記の各実施形態と共通する構成を備えるため、積層電極についてのみ説明し、他の構成の説明は省略する。
 積層電極としては、(1)それぞれ異方性の程度が異なる2以上の異方性電極層を積層させたもの、(2)1以上の異方性電極層α1と1以上の等方性電極層とを積層したもの、(3)1以上の異方性電極層α1と電解液が流通するが電池反応を生じない材料から構成される1以上の基材層とを積層したもの等が挙げられる。積層電極である場合、積層電極を形成する電極層や基材層を互いに引き剥がして分離させることで、異方性電極層α1の透過率を測定することができる。
 2以上の異なる異方性電極層を含む積層電極の場合、透過率の大きさや各異方性電極層の厚みにもよるが、透過率K1が透過率K2の1.5倍以上100倍以下、さらには3倍以上50倍以下、特には9倍以上30倍以下である異方性電極層を基準として方向A1を規定すると良いと考えられる。上述したように、異方性が上記の範囲内にあると、電解液が電極内にてRF電池の運転に適した流速で電極内を均一に流通しやすかったり、主たる流通方向へ流通する電解液が電極内で滞留する箇所を低減しやすかったりすると期待されるからである。
 2以上の異なる異方性電極層を含む積層電極の場合、異方性が上記の範囲内にある異方性電極層が隔膜101側に位置するようにすることが好ましいと期待される。このようにすることで、電解液が隔膜側まで流通したうえで主たる流通方向に流れる電解液の流れを形成しやすく、また、主たる流通方向の流速のばらつきが低減されることで、各電極間での水素イオンの伝達のばらつきが低減されると期待されるからである。よって、RF電池の内部抵抗をより低減できると期待される。同様の観点から、異方性電極層α1と等方性電極層とを積層した積層電極を電極として用いる場合には、異方性電極層α1が隔膜101側に位置するように配置することが好ましい。異方性電極層α1と基材層とを積層した積層電極を用いた場合も同様である。
<試験例1>
 試験例1では、本実施形態のRF電池の特性をシミュレーションにて調べた。本試験例では、シミュレーション解析ソフト(アンシス・ジャパン株式会社製、ANSYS Fluent)を用いて、図2に示す噛合型の対向櫛歯形状の流路を備える双極板を備えるモデル1を構築した。モデル1は、正極セル及び負極セルをそれぞれ一つずつ備える単セル構造のRF電池である。この際、正極電極および負極電極には、同一の構成の異方性電極を設定した。また、モデル1では、上述した実施形態1と同様に、電解液は双極板の下部から導入され、上部から排出される。よって、上述した実施形態1と同様、上下方向を高さ(Y方向)、左右方向を幅(X方向)、X方向とY方向とに直交する方向を厚み(Z方向)とした。したがって、モデル1においては、異方性電極は方向A1(透過率が大きい方向)がX方向と並行するように配置される。
 さらに、比較のために、等方性電極を用いた以外はモデル1と同一の構成のモデル2を構築した。そして、両モデルにおいて、電解液の流量を種々の値とした場合において、X方向およびY方向における電極内での電解液の流速分布(Y方向の電解液の流速に対するX方向の電解液の流速の速度比。以下、XY速度比という)を調べた。以下、詳細な試験条件を示すとともに、表1に得られた試験結果を、図8~図13に各試験例におけるX方向の流速の分布を示す。表1におけるX方向流速、Y方向流速、およびXY速度比は、X方向の速度が最も遅くなる電極中央における値を示す。図8~図13では、各図に記載したチャートに示した濃淡でX方向流速が表されている。ここでは、濃淡が薄くなるにしたがって右方向への流速が速いことを示し、濃淡が濃くなるにしたがって左方向への流速が速いことを示す。具体的な流速の値は、チャートに併記した数値により示される。正の値は右方向の流速を示し、値が大きくなるにしたがって右方向の流速が速いことを示す。負の値は左方向の流速を示し、値が小さくなるにしたがって左方向の流速が速いことを示す。また、各図において、濃淡がはっきりとした縦縞状の箇所(領域)ほど、主たる流通方向(X方向)へRF電池の運転に適した流速で電解液が流通している領域である。
(試験条件)
 《電極》
 長さ:15.8(cm)、幅:15.8(cm)、厚み:0.05(cm)
 電極反応面積密度(A):50000(l/m)
 電極反応速度定数(k):3.0×10(m/s)
 透過率
  [モデル1] K1:7.56×10-11 K2:1.95×10-11
  [モデル2] K:7.00×10-11
 《電解液》
 硫酸V水溶液(V濃度:1.7mol/L、硫酸濃度:3.4mol/L)
 充電状態(State of Charge;充電深度と言うこともある):50%
 《電解液流量等》
 入口流量:75、150、または300(ml/min)
 出口流量:自由流出
 流れモデル:層流モデル
 《双極板》
  高さ(Y方向)・幅(X方向):15.8(cm)
  〔流路〕
  溝形状:噛合型の対向櫛歯形状
  縦溝数:導入路39本×排出路40本
  縦溝長さ:21(cm)
  溝幅:0.1(cm)
  溝深さ:0.1(cm)
  縦溝間隔:0.1(cm)
  溝断面形状:正方形
Figure JPOXMLDOC01-appb-T000001
 異方性電極のX方向の透過率(方向A1の透過率K1)と等方性電極の透過率Kとがおおむね等しいにもかかわらず、いずれの流量の場合においても、方向A1を主たる流通方向であるX方向に並列するように配置したモデル1のほうが、等方性電極を用いたモデル2よりもXY速度比が大きいことが表1より判る。また、流量が等しい場合における主たる流通方向(X方向)の流速分布を比較すると、例えば、試験例1-2(モデル2)においては、電極中央から上下方向に広がるように形成される濃淡の薄い縦縞状の領域の割合が大きい(図9を参照)。この領域は、流速がRF電池の運転に適した流速と比較して遅い領域である。このような領域が多く存在すると、RF電池の運転に適した流速で電解液が流通している領域が少なくなるので、流速のばらつきが大きいといえる。主たる流通方向へ流通する電解液の流速にばらつきがあると、電極全体で電池反応が均一に行われないため、内部抵抗が上昇する場合がある。一方、試験例1-1(モデル1)では、試験例1-2と比較して、流速が遅い領域が減少し、電極の上下から中央方向に広がる濃淡のはっきりとした縦縞状の領域が大きくなっている(図8と図9とを比較して参照)。この領域は、RF電池の運転に適した流速の領域である。このように、異方性電極の方向A1を主たる流通方向(X方向)に並列するように配置することで、濃淡がはっきりとした縦縞状の領域が増加し、RF電池の運転に適した流速で電解液が流通している領域が広がることが判る。
 さらに、試験例1-2では、電極中央の左端および右端において、縦縞が途切れている部分が電極中央の左端と右端とにみられる(図9参照)。これは、本来であれば左端においては右方向へ、右端においては左方向へ流れる電解液が、それぞれ逆方向へ流れている、または左右方向のどちらにも流通せずに滞留しているためと考えられる。すなわち、左右方向の電解液の流通が乱れたり、流速が著しく低い箇所が発生したりしているので、この点からも電極内の流速のばらつきが発生しているといえる。一方、試験例1-1では、そのような箇所がない(図8参照)。流量を異ならせた場合にも、これらと同様のことが言える(試験例1-4(図11)と試験例1-3(図10)とを、試験例1-6(図13)と試験例1-5(図12)とをそれぞれ比較)。
 このように、異方性電極の方向A1を主たる流通方向(X方向)に並列するように配置することで、RF電池の運転に適した流速で電解液が流通している領域が広がったり、主たる流通方向へ流通する電解液が電極内で滞留する箇所を低減しやすかったりする。それにより、流速のばらつきが低減され、内部抵抗が低減されると考えられる。
<試験例2>
 試験例2では、主たる流通方向と異方性電極の対応関係について調べた。まず、電極の構成と電解液の流量とをそれぞれ試験例1のモデル1と異ならせたモデル3を構築した。
そして、電解液の主たる流通方向(X方向)に並行する方向の透過率Kxを一定の値とし、電極の平面で主たる流通方向に直交する方向の透過率Kyを種々の値とした場合におけるX方向流速、Y方向流速、およびXY速度比を調べた。ここでは、試験例2-1~試験例2-5が異方性電極の方向A1を主たる流通方向であるX方向に並列するように配置した場合に、試験例2-6が等方性電極を用いた場合に、試験例2-7、試験例2-8が異方性電極の方向A1を主たる流通方向であるX方向に直交するように配置した場合に相当する。以下、試験例1と異なる条件を示すと共に、試験結果を表2に、図14から図21に各試験例におけるX方向の流速の分布を示す。XY速度比、および各図に記載したチャートについては、試験例1と同様である。
 (電解液流量等)
 入口流量:0.3(ml/min/cm
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、異方性電極の方向A1を主たる流通方向であるX方向に並列するように配置した場合に相当する試験例2-1~試験例2-5では、等方性電極を用いた場合に相当する試験例2-6や、異方性電極の方向A1を主たる流通方向であるX方向に直交するように配置した場合に相当する試験例2-7、試験例2-8よりもXY速度比が大きいことが判る。特に、試験例2-7、試験例2-8から、異方性電極の透過率が大きい方向を主たる流通方向(X方向)と直交するように配置した場合には、主たる流通方向であるX方向の流速がY方向の流速を下回ることが判る。また、試験例2-5より、異方性電極の方向A1を主たる流通方向であるX方向に並列するように配置した場合に、Kx/Ky(ここではK1/K2に相当)を3.0以上とすることで、XY速度比を4.6以上とできることが判る。同様に、試験例2-4より、Kx/Ky(K1/K2)を9.0以上とすることで、XY速度比が20近くまで上昇することが、試験例2-3より、Kx/Ky(K1/K2)を100以上とすることで、XY速度比が40近くまで上昇することが、試験例2-2より、Kx/Ky(K1/K2)を1000以上とすることで、XY速度比が50近くまで上昇することが、試験例2-1より、Kx/Ky(K1/K2)を10000以上とすることで、XY速度比が60近くまで上昇することが判る。
 図17から図21を比較すると、主たる流通方向(X方向)の透過率Kxが、主たる流通方向と直交する方向の透過率Kyよりも大きくなるにしたがって、RF電池の運転に適した流速の領域(濃淡のはっきりとした縦縞状の領域)が大きくなっていくことが判る。
このように、少なくともKx/Kyが10となる程度までは、Kx/Kyが大きくなるにしたがって、濃淡がはっきりとした縦縞状の縦縞状の領域が増加し、RF電池の運転に適した流速で電解液が流通している領域の割合が大きくなることが判る。
 Kx/Ky(K1/K2)が10000である試験例2-1(図14)、およびKx/Ky(K1/K2)が1000である試験例2-2(図15)では、電極の左右に縦縞状の領域が確認できない。これは、この領域に存在する電解液の流速が、電解液が電極内で滞留しているとみなせる程度の流速であるからである。換言すれば、流速が0に近いため、各図に用いたチャートの構成上、濃淡がはっきりとした縦縞状とならない。上述したように、RF電池の運転に適した流速で電解液が流通する領域と電解液が滞留する領域とが存在すると、電池反応にばらつきが生じやすい。その結果、RF電池の内部抵抗が上昇する要因の一つになると考えられる。このように、主たる流通方向(X方向)の透過率Kxが、主たる流通方向と直交する方向の透過率Kyよりも大きすぎると、RF電池の内部抵抗が上昇するおそれがある。一方で、Kx/Ky(K1/K2)が100である試験例2-3では、試験例2-1や試験例2-2と比べて、主たる流通方向へ流通する電解液が電極内で滞留する領域が大幅に低減されていることが判る(図16を参照)。
 以上より、Kx/Kyが1.5以上100以下であると、すなわち、K1がK2の1.5倍以上100倍以下であると、X方向へRF電池の運転に適した流速で電解液が流通している領域の割合が大きくなったり、主たる流通方向へ流通する電解液が電極内で滞留する領域が低減されたりすることで内部抵抗が低減されると期待される。
 <試験例3>
 試験例3では、単セル構造の小型RF電池を用いて充放電試験を行い、内部抵抗を調べた。この小型RF電池も、図2に示す噛合型の対向櫛歯形状の流路を備える双極板を備え、正極電極および負極電極は、同一の電極を用いた。電解液は、実施形態1と同様に、電解液は双極板の下部から導入され、上部から排出される。よって、上下方向を高さ(Y方向)、左右方向を幅(X方向)、X方向とY方向とに直交する方向を厚み(Z方向)とした。そして、異方性電極の方向A1を主たる流通方向であるX方向に並列するように配置した場合(試験例3-1)、および、方向A1を主たる流通方向(X方向)と直交するように配置した場合(試験例3-2)における内部抵抗をそれぞれ測定した。本試験例では、上述のように単セル構造のRF電池としているので、電池の内部抵抗はセル抵抗率と同義となる。よって、内部抵抗はセル抵抗率として表す。以下、詳細な試験条件を示すと共に、結果を表3に示す。表3におけるセル抵抗率は、下記に示すセル抵抗率の計算手法により求めた2サイクル目および3サイクル目におけるセル抵抗率の値の平均値を表す。
(試験条件)
 《電極》
 種類:カーボン電極(SGLカーボンジャパン株式会社製、GDL10AA)
 高さ:3.1(cm)、幅:2.9(cm)、厚み:0.02(cm)
 《電解液》
 硫酸V水溶液(V濃度:1.7mol/L、硫酸濃度:3.4mol/L)
 充電状態:50%
 《電解液流量等》
 入口流量:0.31(ml/min/cm
 出口流量:自由流出
 《双極板》
  高さ(Y方向):3.1(cm)、幅(X方向):2.9(cm)
  〔流路〕
  溝形状:噛合型の対向櫛歯形状
  縦溝数:導入路8本×排出路7本
  縦溝長さ:2.6(cm)
  溝幅:0.1(cm)
  溝深さ:0.1(cm)
  縦溝間隔:0.1(cm)
  溝断面形状:正方形
 《充放電条件》
  充放電方法 :定電流
  電流密度  :70(mA/cm
  充電終了電圧:1.55(V)
  放電終了電圧:1.00(V)
  温度    :25℃
 《セル抵抗率(内部抵抗)》
  計算手法:R=(V2-V1)/2I
  R:セル抵抗率(Ω・cm
  I:電流密度(A/cm
  V1:充電時間の中点における電圧(V)
  V2:放電時間の中点における電圧(V)
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、異方性電極の方向A1を主たる流通方向であるX方向に並列するように配置した試験例3-1のほうが、方向A1を主たる流通方向(X方向)と直交するように配置した試験例3-2よりも内部抵抗が小さい。これは、上述の試験例1、試験例2で示したように、試験例3-1では、異方性電極の方向A1と主たる流通方向(X方向)とを並列するように配置したことで、電極内において、主たる流通方向へ流通する電解液の流速のばらつきが低減されたためと考えられる。
 (透過率の測定手法)
 試験例3に用いた異方性電極の透過率は、図22に示す圧力損失測定システム600を用いて圧力損失ΔPと流体の流量Qとを測定し、その測定結果とΔP=(h/K)μ(Q/wd)により示される式(ダルシー・ワイズバッハの式と呼ばれる。詳細については後述)とにより求めた。圧力損失測定システム600は、測定セル610と、流体槽620と、ポンプ640と、流量計650と、差圧計660と、これらの機器をつなぐ配管630とを備える。測定セル610は透過率Kを求めたい電極(電極層)を収納する。流体槽620は電極に導入される流体622(水等)を貯留する。ポンプ640は配管630を介して流体622を各機器に圧送し、流量計650はポンプ出口側の流体の流量を測定する。差圧計660は測定セル610と並列に配管630で接続され、圧力損失ΔPを測定する。測定セル610は、電極を収納する収納部(図示せず)を備え、収納部には電極の厚みdを0.2~0.5mmに確保するためのスペーサー(図示せず)が配置される。流量計650と差圧計660とは、配管630に取り付けられる。図22中の一点鎖線矢印は、流体622が流通される方向を示す。
 測定セル610に高さhを100mm、幅dを50mmとした電極を上記収納部に押し込む。そして、電極層を保持する測定セル610に流体622(ここでは水、粘度μは定数とする)をポンプ640により流通させる。電極層には、その側面(断面積wdを有する面)から流体622が導入され、その高さ方向に流通される。このとき、ポンプ640を調整して、流量Qを種々の値に変更させた場合の圧力損失ΔPを、それぞれ差圧計660により測定する。そして、流量Qを横軸、圧力損失ΔPを縦軸としてプロットする。これらのプロットした測定点を、上記のダルシー・ワイズバッハの式で近似して、この近似直線の傾きを高さ方向の透過率Kとする。
 ダルシー・ワイズバッハの式において、Kは透過率(m)であり、ΔPは圧力損失(Pa)を、Qは電極へ導入される流体の流量(m/s)を、μは流通される流体の粘度(Pa・s)を、hは電極の高さ(m)を、wは電極αの幅(m)を、dは電極のセルスタック200内で圧縮された状態での厚み(m)をそれぞれ示す。透過率Kは、流体の種類によらず電極層固有の値であるので、上述したように、水等の粘度が既知の流体を用いて測定することができる定数である。
 本発明のレドックスフロー電池は、太陽光発電、風力発電などの自然エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした大容量の蓄電池に好適に利用することができる。また、本発明のレドックスフロー電池は、一般的な発電所や大型商業施設等に併設されて、瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池としても好適に利用することができる。
 1 レドックスフロー電池(RF電池)
  100 電池セル
  101 隔膜  102 正極セル  103 負極セル
  104 正極電極  105 負極電極
  106 正極電解液用タンク  107 負極電解液用タンク
  108,109,110,111 導管
  112,113 ポンプ
  200 セルスタック
   120 セルフレーム
    121 双極板
     130 流路
      131 導入路  132 排出路
       130a,131a,132a 横溝(溝部)
       130b,131b,132b 縦溝(溝部)
      135a 短溝部  135b 長溝部
    122 枠体
     123,124 導入口(給液用マニホールド)
     125,126 排出口(排液用マニホールド)
  α 異方性電極
   α1 異方性電極層
 300 交流/直流変換器  310 変電設備
 400 発電部  500 負荷
 600 圧力損失測定システム
  610 測定セル  620 流体槽  622 流体
  630 配管  640 ポンプ
  650 流量計  660 差圧計

Claims (7)

  1.  隔膜と、双極板と、前記隔膜および前記双極板の間に配置される電極と、前記電極に電解液を供給する導入口と、前記電極から前記電解液を排出する排出口とを備え、前記電解液を前記電極に流通させて充放電反応を行うレドックスフロー電池であって、
     前記電極が、
      この電極の平面における方向A1と、前記方向A1と前記電極の平面において直交する方向A2とで透過率が異なる異方性電極層を備え、
      前記異方性電極層は、前記方向A1の透過率K1が前記方向A2の透過率K2よりも大きく、
      前記導入口と前記排出口との位置関係、および前記双極板の前記電極側の面の形状に基づいて定まる前記電極内での前記電解液の主たる流通方向と前記方向A1とが実質的に並行するように配置されるレドックスフロー電池。
  2.  前記透過率K1が前記透過率K2の1.5倍以上100倍以下である請求項1に記載のレドックスフロー電池。
  3.  前記双極板が、前記電極側の面に前記電解液が流通する流路を備え、
     前記流路は互いに並列する複数の溝部を有し、
     前記主たる流通方向が、前記複数の溝部の並列方向である請求項1または請求項2に記載のレドックスフロー電池。
  4.  前記流路が、前記導入口と繋がる導入路と、前記排出口と繋がる排出路とを備え、
     前記導入路および前記排出路は、前記複数の溝部をそれぞれ有し、
     前記導入路と前記排出路とが連通しておらず独立している請求項3に記載のレドックスフロー電池。
  5.  前記導入路および前記排出路が櫛歯形状の溝部を備え、
     前記導入路と前記排出路とは、それぞれの櫛歯が互いに噛み合って対向するように配置される請求項4に記載のレドックスフロー電池。
  6.  前記流路は、前記導入口から前記排出口まで一連の蛇行形状であり、互いに隣り合うように並列する複数の長溝部と、前記複数の長溝部の一端同士または他端同士を交互に繋ぐ複数の短溝部とを備え、
     前記主たる流通方向が、前記複数の長溝部の並列方向である請求項3に記載のレドックスフロー電池。
  7.  前記双極板の前記電極側の面の形状が平面状であり、
     前記主たる流通方向が、前記導入口側から前記排出口側である請求項1または請求項2に記載のレドックスフロー電池。
PCT/JP2014/082498 2014-01-24 2014-12-09 レドックスフロー電池 WO2015111313A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2937798A CA2937798A1 (en) 2014-01-24 2014-12-09 Redox flow battery
EP14879731.9A EP3098888B1 (en) 2014-01-24 2014-12-09 Redox flow battery
KR1020167020128A KR20160113130A (ko) 2014-01-24 2014-12-09 레독스 플로우 전지
CN201480073708.8A CN106415907B (zh) 2014-01-24 2014-12-09 氧化还原液流电池
AU2014379883A AU2014379883B2 (en) 2014-01-24 2014-12-09 Redox flow battery
US15/113,376 US9761890B2 (en) 2014-01-24 2014-12-09 Redox flow battery with anisotropic electrode layer
ES14879731.9T ES2648691T3 (es) 2014-01-24 2014-12-09 Batería de flujo redox

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-011897 2014-01-24
JP2014011897A JP6103386B2 (ja) 2014-01-24 2014-01-24 レドックスフロー電池

Publications (1)

Publication Number Publication Date
WO2015111313A1 true WO2015111313A1 (ja) 2015-07-30

Family

ID=53681133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082498 WO2015111313A1 (ja) 2014-01-24 2014-12-09 レドックスフロー電池

Country Status (10)

Country Link
US (1) US9761890B2 (ja)
EP (1) EP3098888B1 (ja)
JP (1) JP6103386B2 (ja)
KR (1) KR20160113130A (ja)
CN (1) CN106415907B (ja)
AU (1) AU2014379883B2 (ja)
CA (1) CA2937798A1 (ja)
ES (1) ES2648691T3 (ja)
TW (1) TWI652850B (ja)
WO (1) WO2015111313A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025406A1 (ja) * 2016-08-05 2018-02-08 昭和電工株式会社 レドックスフロー電池
CN108352554A (zh) * 2016-05-30 2018-07-31 住友电气工业株式会社 双极板、电池框架和电池堆以及氧化还原液流电池
CN109075356A (zh) * 2016-04-07 2018-12-21 洛克希德马丁能源有限责任公司 具有所设计的流场的电化学电池单体和用于生产该电化学电池单体的方法
CN110192299A (zh) * 2017-01-19 2019-08-30 住友电气工业株式会社 双极板、单元框架、单元组和氧化还原液流电池
EP3496199A4 (en) * 2016-08-04 2020-06-03 Showa Denko K.K. REDOX FLOW CELL

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101560202B1 (ko) * 2015-04-30 2015-10-14 스탠다드에너지(주) 레독스 흐름전지
WO2016208482A1 (ja) * 2015-06-23 2016-12-29 住友電気工業株式会社 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池
JP6701514B2 (ja) * 2016-02-29 2020-05-27 住友電気工業株式会社 レドックスフロー電池用電極、及びレドックスフロー電池
KR102169179B1 (ko) * 2016-03-31 2020-10-21 주식회사 엘지화학 바이폴라 플레이트 및 이를 포함하는 레독스 흐름 전지
EP3522279A4 (en) * 2016-09-30 2020-07-01 Showa Denko K.K. REDOX FLOW BATTERY
JP6730693B2 (ja) 2016-10-12 2020-07-29 住友電気工業株式会社 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
JP6738052B2 (ja) 2016-11-16 2020-08-12 住友電気工業株式会社 セルフレーム、セルスタック、及びレドックスフロー電池
AU2016429827A1 (en) 2016-11-16 2018-06-28 Sumitomo Electric Industries, Ltd. Cell frame, cell stack, and redox flow battery
EP3561929A4 (en) 2016-12-22 2019-11-13 Sumitomo Electric Industries, Ltd. CELL CHASSIS, CELL STACK AND RED FLOW BATTERY
JP6525120B1 (ja) 2017-07-27 2019-06-05 住友電気工業株式会社 セルフレーム、セルスタック、およびレドックスフロー電池
US11527770B2 (en) 2018-02-27 2022-12-13 Sumitomo Electric Industries, Ltd. Cell stack and redox flow battery
CN112534614B (zh) 2018-08-13 2023-08-04 住友电气工业株式会社 氧化还原液流电池单体及氧化还原液流电池
AU2019425621A1 (en) * 2019-01-29 2021-07-22 Sumitomo Electric Industries, Ltd. Battery cell, cell stack, and redox flow battery
CN113330618A (zh) 2019-01-30 2021-08-31 住友电气工业株式会社 电池单元、电池组及氧化还原液流电池
US11769886B2 (en) 2019-01-30 2023-09-26 Sumitomo Electric Industries, Ltd. Battery cell, cell stack, and redox flow battery
WO2020166418A1 (ja) 2019-02-14 2020-08-20 住友電気工業株式会社 双極板、セルフレーム、セルスタック、およびレドックスフロー電池
CN112447997B (zh) * 2019-08-28 2023-11-17 中国科学院大连化学物理研究所 一种液流电池电堆双极板及应用
EP4042503A1 (en) 2019-11-05 2022-08-17 ESS Tech, Inc. Method and system for redox flow battery performance recovery
CN110690488A (zh) * 2019-11-13 2020-01-14 上海海事大学 一种液流电池
US20230369627A1 (en) 2020-10-06 2023-11-16 Sumitomo Electric Industries, Ltd. Cell stack and redox flow battery
WO2023219648A1 (en) 2022-05-09 2023-11-16 Lockheed Martin Energy, Llc Flow battery with a dynamic fluidic network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638568U (ja) * 1986-07-02 1988-01-20
JPH02148659A (ja) * 1988-11-30 1990-06-07 Toyobo Co Ltd レドックスフロー型電池
JP2002367659A (ja) 2001-06-12 2002-12-20 Sumitomo Electric Ind Ltd レドックスフロー電池用セルフレーム及びレドックスフロー電池
WO2011075135A1 (en) * 2009-12-18 2011-06-23 United Technologies Corporation Flow battery with interdigitated flow field
WO2013095378A1 (en) * 2011-12-20 2013-06-27 United Technologies Corporation Flow battery with mixed flow

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656390A (en) * 1995-02-16 1997-08-12 Kashima-Kita Electric Power Corporation Redox battery
US9123962B2 (en) * 2011-02-07 2015-09-01 United Technologies Corporation Flow battery having electrodes with a plurality of different pore sizes and or different layers
KR101890747B1 (ko) * 2011-11-03 2018-10-01 삼성전자주식회사 이온 교환막 충전용 조성물, 이온 교환막의 제조방법, 이온 교환막 및 레독스 플로우 전지
US20130252044A1 (en) * 2012-03-26 2013-09-26 Primus Power Corporation Electrode for High Performance Metal Halogen Flow Battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS638568U (ja) * 1986-07-02 1988-01-20
JPH02148659A (ja) * 1988-11-30 1990-06-07 Toyobo Co Ltd レドックスフロー型電池
JP2002367659A (ja) 2001-06-12 2002-12-20 Sumitomo Electric Ind Ltd レドックスフロー電池用セルフレーム及びレドックスフロー電池
WO2011075135A1 (en) * 2009-12-18 2011-06-23 United Technologies Corporation Flow battery with interdigitated flow field
WO2013095378A1 (en) * 2011-12-20 2013-06-27 United Technologies Corporation Flow battery with mixed flow

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3098888A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075356A (zh) * 2016-04-07 2018-12-21 洛克希德马丁能源有限责任公司 具有所设计的流场的电化学电池单体和用于生产该电化学电池单体的方法
CN109075356B (zh) * 2016-04-07 2021-06-22 洛克希德马丁能源有限责任公司 具有所设计的流场的电化学电池单体和用于生产该电化学电池单体的方法
CN108352554B (zh) * 2016-05-30 2021-05-11 住友电气工业株式会社 双极板、电池框架、电池堆以及氧化还原液流电池
US20180277858A1 (en) * 2016-05-30 2018-09-27 Sumitomo Electric Industries, Ltd. Bipolar plate, cell frame, cell stack, and redox flow battery
EP3346537A4 (en) * 2016-05-30 2018-10-31 Sumitomo Electric Industries, Ltd. Bipolar plate, cell frame and cell stack, and redox flow battery
CN108352554A (zh) * 2016-05-30 2018-07-31 住友电气工业株式会社 双极板、电池框架和电池堆以及氧化还原液流电池
EP3496199A4 (en) * 2016-08-04 2020-06-03 Showa Denko K.K. REDOX FLOW CELL
JPWO2018025406A1 (ja) * 2016-08-05 2018-08-16 昭和電工株式会社 レドックスフロー電池
US10707514B2 (en) 2016-08-05 2020-07-07 Showa Denko K.K. Redox flow battery
WO2018025406A1 (ja) * 2016-08-05 2018-02-08 昭和電工株式会社 レドックスフロー電池
CN110192299A (zh) * 2017-01-19 2019-08-30 住友电气工业株式会社 双极板、单元框架、单元组和氧化还原液流电池
CN110192299B (zh) * 2017-01-19 2022-07-08 住友电气工业株式会社 双极板、单元框架、单元组和氧化还原液流电池
AU2017393759B2 (en) * 2017-01-19 2022-10-13 Sumitomo Electric Industries, Ltd. Bipolar plate, cell frame, cell stack and redox flow battery
US11631867B2 (en) * 2017-01-19 2023-04-18 Sumitomo Electric Industries, Ltd. Bipolar plate, cell frame, cell stack and redox flow battery

Also Published As

Publication number Publication date
US20170012299A1 (en) 2017-01-12
TW201530888A (zh) 2015-08-01
US9761890B2 (en) 2017-09-12
TWI652850B (zh) 2019-03-01
JP2015138771A (ja) 2015-07-30
EP3098888B1 (en) 2017-09-27
ES2648691T3 (es) 2018-01-05
EP3098888A4 (en) 2017-01-18
JP6103386B2 (ja) 2017-03-29
KR20160113130A (ko) 2016-09-28
AU2014379883B2 (en) 2018-05-24
CN106415907B (zh) 2019-01-08
EP3098888A1 (en) 2016-11-30
CA2937798A1 (en) 2015-07-30
AU2014379883A1 (en) 2016-07-21
CN106415907A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
JP6103386B2 (ja) レドックスフロー電池
JP6201876B2 (ja) 双極板、レドックスフロー電池、及び双極板の製造方法
JP2015122231A (ja) レドックスフロー電池
JP2015122230A (ja) レドックスフロー電池
JP6108008B1 (ja) 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池
JP6701514B2 (ja) レドックスフロー電池用電極、及びレドックスフロー電池
JP6819885B2 (ja) 双極板、セルフレーム及びセルスタック、並びにレドックスフロー電池
WO2016189970A1 (ja) レドックスフロー電池
JP6408750B2 (ja) レドックスフロー電池
JP6970388B2 (ja) レドックスフロー電池用電極、レドックスフロー電池セル及びレドックスフロー電池
JP6956949B2 (ja) 双極板、セルフレーム、セルスタック、及びレドックスフロー電池
US20190348692A1 (en) Cell frame, cell stack, and redox flow battery
WO2020158623A1 (ja) 電池セル、セルスタック、及びレドックスフロー電池
JP7068613B2 (ja) レドックスフロー電池セル及びレドックスフロー電池
JP2020107481A (ja) 集電板ユニットおよびレドックスフロー電池
JPWO2020158624A1 (ja) 電池セル、セルスタック、及びレドックスフロー電池
JP2019012694A (ja) 集電板
JP2020170694A (ja) 双極板、電池セル、セルスタック、及びレドックスフロー電池
JP2019036439A (ja) モニタセル、及びレドックスフロー電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879731

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014879731

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014879731

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014379883

Country of ref document: AU

Date of ref document: 20141209

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15113376

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2937798

Country of ref document: CA

Ref document number: 20167020128

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE